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Abstract

In this thesis, we detail the techniques required to perform general

lattice QCD calculations. Specifically, we introduce the method by

which the continuum theory of quarks and gluons, Quantum Chromo-

dynamics is discretised in order to be solved numerically. We describe

the distinct methods by which the discrete actions for the gauge and

fermion fields given by naively applying a finite-difference approxima-

tion to the continuum theory can be improved, going some way to

remove the systematic errors of discretisation. The background field

method for placing electromagnetic fields onto a discrete lattice is also

introduced.

Techniques required for the calculation of wave functions are then

introduced, beginning with the two-point function, which is funda-

mental in extracting properties of hadrons from the lattice. The vari-

ational method, which allows access to the excited states of particles

is then introduced. The wave function is then constructed from the

two-point function, which forms the basis of the most significant re-

sults of this thesis. We also introduce gauge fixing, made necessary

by the gauge dependent nature of wave function operators.

The smeared operators used in the construction of these two-point

functions are evaluated, by way of two measures designed to measure

the coupling strength of these operators to states with a variety of mo-

menta. Of particular interest is the extent to which strong overlap can

be obtained with individual high-momentum states. This is vital to

exploring hadronic structure at high momentum transfers on the lat-

tice and addressing interesting phenomena observed experimentally.

We consider a novel idea of altering the shape of the smeared operator

to match the Lorentz contraction of the probability distribution of the

high-momentum state, and show a reduction in the relative error of



the two-point function by employing this technique. Our most impor-

tant finding is that the overlap of the states becomes very sharp in

the smearing parameters at high momenta and fine tuning is required

to ensure strong overlap with these states.

Making use of the background field methods and the wave functions

constructed from the two-point functions, we calculate the probability

distributions of quarks in the ground state of the proton, and how

they are affected in the presence of a constant background magnetic

field. We focus on wave functions in the Landau and Coulomb gauges

using the quenched approximation of QCD. We observe the formation

of a scalar u − d diquark clustering. The overall distortion of the

quark probability distribution under a very large magnetic field, as

demanded by the quantisation conditions on the field, is quite small.

The effect is to elongate the distributions along the external field axis

while localizing the remainder of the distribution. Using optimised

smearing parameters calculated from the methods detailed in this

thesis, we construct wave functions of high-momentum states, and are

able to qualitatively observe high momentum states. We find that, at

very high momenta, artefacts are present caused by the poor overlap

of these states to the interpolating operators. Careful tuning of the

smearing parameters is shown to reduce these artefacts, reinforcing

results presented earlier in the thesis.

The culmination of the techniques introduced and the results obtained

in this thesis is the application of the eigenvectors from a variational

analysis to successfully extract the wave functions of even-parity ex-

cited states of the nucleon, including the Roper, in full QCD. We

explore the first four states in the spectrum excited by the standard

nucleon interpolating field. We find that the states exhibit a struc-

ture qualitatively consistent with a constituent quark model, where

the ground, first-, second- and third-excited states have 0, 1, 2, and 3

nodes in the radial wave function of the d-quark about two u quarks

at the origin. Moreover the radial amplitude of the probability dis-

tribution is similar to that predicted by constituent quark models.

We present a detailed examination of the quark-mass dependence of



the probability distributions for these states, searching for a nontriv-

ial role for the multi-particle components mixed in the finite-volume

QCD eigenstates. Finally we examine the dependence of the d-quark

probability distribution on the positions of the two u quarks. The

results are fascinating, with the underlying S-wave orbitals governing

the distributions even at rather large u-quark separations.
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