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Abstract 

 

The overall aim of this thesis was to study the natural and landscape-induced 

patterns of herbicide sorption and risks of leaching and off-site transport of herbicides 

in an intensively managed orchard system. The questions for this thesis were: a) How 

can contour-derived digital elevation models be enhanced? b) To what extent do 

topographic and management factors influence the distribution of soil properties in an 

apple orchard? c) How do landscape topography, soil properties and land management 

factors influence the spatial distribution of diuron sorption affinity? and d) How is the 

fate of diuron influenced by the spatial variability of soil and key fate properties?  

The objectives of this thesis were: a) to determine whether a ‘smoothing’ 

algorithm can enhance the accuracy of a contour-derived digital elevation model; b) to 

evaluate the role of topography and management practises in predicting the 

distribution of soil properties using a soil-landscape modeling approach; c) to evaluate 

the effects of topography, soil properties and management practises on the sorption 

affinity of diuron; and d) to assess the integrated effect of topography, management 

practises and herbicide sorption on the leaching potential of diuron in a spatially 

variable landscape using the Leaching Estimation and Chemistry Model (LEACHM) and 

surface runoff using the Organization for Economic Cooperation and Development 

(OECD) model.  

 A study site in the Mount Lofty Ranges, South Australia, was selected for its 

wide variation in landscape and soil properties under intensive horticultural 

management. The site was a section of an apple orchard with a strong texture contrast 

soil and landform with a relief difference of 50 m. The accuracy of digital elevation 

models (DEMs) of the site was first evaluated. Then the relationship between terrain 
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parameters and critical soil properties that were easily determined in the field (e.g. soil 

colour and texture) was determined. A strong relationship was found and therefore the 

experiment was expanded to take into account the effects of management and terrain 

on soil properties that influence pesticide sorption, such as total organic carbon, soil 

pH, electrical conductivity, clay content, and soil texture.  Sorption of the herbicide 

diuron was determined on the soil through traditional laboratory and chemometric 

analyses using mid-infrared (MIR) spectroscopy. A strong correlation was found 

between diuron sorption coefficient values determined by traditional laboratory 

methods and those predicted using MIR spectroscopy (R2 = 0.79) .   

Then, the determination of the effects of terrain properties and management 

practises on diuron sorption distribution was evaluated within the context of soil-

landscape analysis and geostatistical mapping. Soil properties varied significantly 

between alley and tree line regions and among different establishment ages of the 

orchard trees. Unique spatial patterns for soil properties, particularly total organic 

carbon (TOC), occurred within zones of the orchard. The variability in spatial 

distribution of the soil properties was reflected in the amount of diuron sorbed to the 

different soils. In the tree-line, where the soil was kept bare, diuron sorption affinity 

was significantly 16% lower than in the alley, where sod strips protected the soil 

surface all year round. 

Finally, leaching of diuron was estimated using LEACHM and the potential for 

surface runoff of diuron was determined using the OECD model. Management 

practises, the level of TOC and slope were found to influence leaching and runoff 

potential of diuron.  

 The findings imply that, for intensively managed horticultural operations on 

complex landscapes, the influence of terrain on the distribution of soil properties and 
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consequently on diuron sorption affinity was masked by management factors. 

Assessments of sorption distribution and, therefore, the environmental fate of 

pesticides must include stratification strategies based on management factors. The 

leaching estimation also suggests variable risk of diuron for mobility based on 

management and TOC. Therefore, a differential herbicide and pesticide application or 

management regime might need to be observed to minimise off-site impact of 

pesticides. 
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You have only to ask the cattle, for them to instruct you, and the birds of 

the sky, for them to inform you. The creeping things of earth will give you 

lessons, and the fish of the sea provide you an explanation: there is not one such 

creature but will know that the hand of God has arranged things like this! In 

his hand is the soul of every living thing and the breath of every human being! 

Job 12: 7-10  
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I. Introduction 

 

1.  Research background  

The interrelated processes of retention (most commonly referred to as 

sorption), transformation and transport govern the behavior of pesticides, once 

applied in an agricultural environment. Sorption is the result of the interaction 

between the pesticide molecules and the soil particle surface. The degree to 

which a pesticide is sorbed to soil is controlled by many factors including 

characteristics of the pesticides and of the soil. The amount of organic carbon in 

the soil is often the primary soil component controlling pesticide sorption. The 

process of transformation depends largely on the chemical and physical nature 

of the pesticides. Transformation occurs through abiotic (e.g. hydrolysis, 

photolysis) and biotic (e.g. microbrial degradation) processes. More often, this 

process is linked with the amount of biological activity, which is in turn 

influenced by organic matter content, soil moisture and temperature. Pesticide 

transport, on the other hand, is driven by numerous factors including, but not 

limited to, topography, weather and the chemical and physical properties of the 

pesticide. These parameters and the complex interrelationship that occurs in 

the environment make prediction of off-site transport of pesticides challenging. 

Moreover, due to the complexity of these interrelated processes and factors as 

well as the large spatial variability in the environment, measurement and 

analysis have to be done using samples over an extensive area. However, the 

first steps in understanding pesticide behavior entail the measurement of these 

parameters with some degree of certainty and pinpointing which processes are 

important.  
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In this research, a soil-landscape analysis technique was employed to 

map the spatial distribution of key soil properties and the sorption affinity of 

diuron in a 5.6 ha apple orchard. This included a digital terrain analysis to 

assess and enhance the accuracy of elevation models derived from readily 

available topographic maps. Finally a leaching simulation was performed using 

the Leaching Estimation and Chemistry Model (LEACHM) integrating the 

observed spatial variability of the key parameters that dictate the fate diuron in 

an intensively managed apple orchard. 

The questions for this thesis were: a) How can contour-derived digital 

elevation models be enhanced for a complex landscape in Mt. Lofty Ranges, 

South Australia? b) To what extent do topographic and management factors 

influence the distribution of soil properties in an apple orchard in Mt. Lofty 

Ranges, South Australia? c) How do landscape topography, soil properties and 

land management factors influence the spatial distribution of diuron sorption 

affinity? and d) How is the fate of diuron influenced by the spatial variability of 

soil and sorption properties?  

2.  Research objectives  

The objectives of the project were: a) to determine whether a ‘smoothing’ 

algorithm can enhance the accuracy of a contour-derived digital elevation mode 

for a complex landscape in Mt. Lofty Ranges, South Australia; b) to evaluate the 

role of topography and management practises in predicting the distribution of 

soil properties in an apple orchard using a soil-landscape modeling approach; c) 

to evaluate the effects of topography, soil properties and management practises 

on the sorption affinity of diuron; and d) to assess the integrated effect of 

topography, management practises and herbicide sorption on the leaching 
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potential of diuron in a spatially variable landscape using LEACHM and the 

Organization for Economic Cooperation and Development (OECD) surface 

transport models.  

3. Thesis structure 

This thesis is composed of eight chapters. Some of the chapters contained 

here are either published or submitted to journals for publication or 

manuscript in preparation for submission. Chapter II briefly outlines the 

processes and factors that determine the environmental fate of pesticides, and 

the current approaches to model this process. It also summarizes the status of 

global pesticide use with a slight focus on environmental issues of pesticide use. 

This is followed by an outline and examples of pesticide fate modeling. The 

chapter ends with a short description of previous and current attempts to use 

soil-landscape analysis in modeling the fate of pesticides focusing on the role of 

the spatial variability of soil, specifically soil organic carbon, and topographic 

properties in estimating the distribution of sorption properties of pesticides. 

Chapters III to VII are the research components of this thesis. Several 

hypotheses were tested and these chapters included results of these 

experiments. The research focused on an intensively managed apple orchard in 

the Mount Lofty Ranges (MLR), South Australia. Chapter III considered the 

question: Can topographically-derived digital elevation models (DEM) be 

enhanced? The use of existing smoothing algorithms was investigated to 

determine their effectiveness to improve the quality of a DEM derived from 

contour data. Chapters IV and V used the enhanced DEM to predict the 

distribution of soil properties for an intensively managed orchard, and 

discussed the question: In the context of off-site movement of pesticides, what 
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controls the spatial distribution of soil properties in an intensively managed 

apple orchard? Classical statistics and geostatistical analysis were used to 

model the spatial distribution of soil properties. In Chapter VI, I expanded the 

spatial analysis to assess the sorption affinity of a commonly used herbicide, 

diuron. A similar question to the previous chapter was posed but this time I 

focused my analysis on diuron sorption affinity (Kd).  In addition, I validated the 

use of a new technique called mid-infrared partial least squares (MIR-PLS) to 

predict diuron Kd. In Chapter VII, a deterministic research tool called LEACHM 

was used to estimate the leaching of diuron in a spatially variable landscape. 

Then an OECD pesticide transport model was used to estimate pesticide 

transport in surface runoff. I tried to answer the question: How does the 

variability of key leaching parameters affect the fate of diuron? Conclusion and 

some recommendation for future research are presented in the last chapter. 
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II. Literature Overview 

(N.B. Only a broad overview is given here as specific literature reviews are 

incorporated in the chapters of this thesis)  

1.  Pesticides and the modern agricultural production 

The first recorded use of pesticide was in the mid 1800s when sulfur 

dust was used to prevent the growth of powdery mildew in grapes. Reliance on 

pesticide and other external farm inputs increased as monocultural production 

system and area also increased. Productivity had to be maintained and 

ultimately increased as labor became expensive and land resources scarce. The 

pesticide industry became an integral part of agricultural production. The 2001 

global pesticide use is estimated at 2.2 million tons with an equivalent 

investment cost of about US$32B (Donaldson et al., 2004). Herbicides are the 

largest contributor to this amount (~36% of pesticide use), followed by 

insecticides and fungicides, which account for about 25% and 10% of the total 

pesticide use worldwide, respectively. The remainder of pesticide usage is 

composed of nematicides, rodenticides, molluscicides and other pesticides 

(Kiely et al., 2004).  

Australia’s agricultural sector, which contributes about 3% to national 

GDP (OECD, 2008), relies considerably upon pesticide use. Though a substantial 

area of the total Australian landmass is devoted to agriculture (DCC, 2008), 

agricultural production is constrained by fragile and infertile soils and limited 

water supply, and its sustainability depends on considerable management input 

(NLWRA, 2001) including the use of pesticides. 
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Pesticide may be defined as any substance used to control, kill, attract or 

repel a pest or disease (USEPA, 2007). Pesticides vary in physico-chemical 

properties and classes that target plant, animal and microbial pests and 

diseases. Pesticides can persist in the environment and potentially harm other 

non-targeted species, including humans, depending on their properties. The 

problem can be further exacerbated by improper handling and misuse 

(Eddleston and Bateman, 2007).  

 

2.  Threat of pesticides to the environment 

Despite the advances in pesticide technology and agriculture, traces of 

pesticides and its by-products are sometime detected in the surrounding 

environment. The potential risk of pesticides to the environment and human 

health is attributed to the “leaky” nature of agricultural landscapes (Harris, 

2002) or any other ecological landscapes. Pesticides applied in agriculture have 

been detected in both ground- and surface-water either in their original forms 

or as the degradation product. If the pesticides are toxic, water quality suffers, 

harming the environment and potentially human health. As a result, numerous 

monitoring and research activities are carried out in different parts of the world 

providing information on pesticide behaviour and fate most specifically in 

aquatic ecosystems.  The study by Cessna et al (2001) showed that a number of 

pesticides were detected, although only in trace amounts, in water samples 

collected in South Saskatchewan River in Canada as a result of herbicide 

application in flood-irrigated forage production areas. Similar observations 

were made in Lourens River in South Africa where endosulfan, deltamethrin, 
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azinphos-methyl, chlorpyrifos and procymidone were detected after a notable 

rainfall event (Dabrowski et al., 2002) in surrounding farming area. In the 

Central Valley, California, 52 out of 70 sediment samples tested positive for 

pyrethroid, an insecticide extensively used in orchards and vegetables farmlots 

in the region (Weston et al., 2004). Linuron and pendemethalin, two active 

ingredients present in commonly applied herbicides, were also detected above 

the EU limit of 0.1 µg L-1 in a small Northern Italian creek near Bologna (Gardi, 

2001).   

Although the industry has adopted more environment-friendly pesticide 

application schemes, serious concerns remain about the continued decline of 

both surface and ground water quality due to nutrient loading and migration of 

pesticides from agricultural fields (Kookana et al., 2005; Kookana and Aylmore, 

1994; Kookana et al., 1998; OECD, 2008; Radcliffe, 2002; Salama and Kookana, 

2001). For example, the report by the 2006 Australian State of the Environment 

Committee, indicates that the world-renowned Great Barrier Reef Marine Park 

is under great threat from elevated levels of nutrients, sediments and pesticides 

draining from agricultural and pastoral areas (Beeton et al., 2006). In a 3-year 

study in the Mount Lofty Ranges Region, South Australia, chlorpyrifos 

concentrations in surface runoff were found more than ten times the 

environmental guideline value (0.01 mg L-1) in the 2007 and 2009 sampling year 

(Oliver et al., 2011). 
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3. Mathematical modeling of pesticide fate  

The factors governing and the processes involved in pesticide migration 

are complex and varied. Currently, there is no better way to facilitate quick and 

inexpensive assessment of the impact of pesticides to the environment than 

through the use of computer simulations or modeling. A model is defined as “an 

object or concept designed according to a structural, functional or logical 

analogy to a corresponding origin in the real world” (Mirsal, 2004). Modeling is 

beneficial in predicting pesticide migration because it helps assess dissipation 

time, mobility and persistence of pesticides in soil environments, and it aids in 

determining management schemes for rational pesticide use (Wagenet and Rao, 

1990). 

Over the last 50 years, numerous modeling approaches have been 

developed. The tools have been varied and may be categorised as either 

empirical or simple models and physical process or complex models (Ghadiri 

and Rose, 1992). Modeling approaches can also be categorised based on their 

function (either for research, management, screening, or instructional purposes 

(Wagenet and Rao, 1990), input parameters (either deterministic and 

mechanistic or functional (Ghadiri and Rose, 1992)) or scales (either lumped or 

distributed). Table II.a. presents some examples of tools used for modeling 

pesticide behaviour in the environment and their classification based on 

purpose.  

The Behavioral Assessment Model (BAM), developed by Jury et al. 

(1983), was able to assess the relative fate (volatilisation, leaching and 

degradation) of a number of trace organic chemicals in soil (Jury et al., 1984). A 
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pesticide version of the Leaching Estimations and Chemistry Model (LEACHM), 

LEACHP, has been used by Sarmah (1998) to simulate the fate of three 

sulfonylurea residues under low rainfall conditions in a southern Australian 

agricultural soil. The Pesticide Root Zone Model (PRZM), developed in the early 

1980s, has been used to simulate aldicarb behaviour including: interactions in 

surface runoff, advection in percolating water, molecular diffusion, dispersion, 

uptake by plants, sorption to soil, and biological and chemical degradation 

(Carsel et al., 1985). 

Table II.a. Examples of simulation models used to predict pesticide behaviour 

classified according to purpose (Wagenet and Rao, 1990). 

Purpose/Classfication Model 

Screening Behavior Assessment Model (BAM) 
Research Leaching Estimation and Chemistry Model 

(LEACHM); 
Numerical Solution to CDE 

Management Pesticide Root Zone Model (PRZM); 
Chemicals, Runoff and Erosion from 
Agricultural Management Systems (CREAMS) 

Instructional Chemical Movement in Layered Soil (CMLS); 
Method of Saturated zone Solute Estimation 
(MOUSE) 

 
As mentioned earlier, the temporal and spatial variability of both 

environmental and soil properties are important aspect of modeling pesticide 

migration. It has been shown in many studies that soil and environmental 

properties vary across time and space (Addiscott and Mirza, 1998). Gaultier et 

al. (2006), for instance, showed that soil organic matter content, pH and 

carbonate varied within (horizontally) and across (vertically) the soil profile. 

This variability affects the behavior of pesticides in soils.  

Another approach in modeling pesticide migration, stochastic modeling, 

has integrated spatial and temporal variability of the soil and environmental 

properties. This approach assumes that soil-water system processes can only be 
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defined in statistical terms due to uncertainty. Recent work on stochastic 

modeling done by Lindahl et al. (2005), and Schriever and Liess (2007) has 

shown successful results. Results from stochastic modeling predict the 

migration of a phenoxyacetic acid pesticide MCPA, in a small catchment in the 

south of Sweden were highly comparable to the measured MCPA 

concentrations in the surface waters (Lindahl et al., 2005). A stochastic 

modeling approach was also used for regional Europe to predict runoff inputs 

and to map ecological risk of agricultural pesticides at a regional scale 

(Schriever and Liess, 2007). 

 

4.  Soil-landscape analysis in assessing pesticide fate 

The fate of pesticide is influenced by soil variability, which in turn, is 

influenced by landscape factors (Liu et al., 2002). Soil variability that is 

influenced by landscape factors is best studied at the landscape level. This is the 

emphasis of soil landscape analysis – the science that deals with patterns and 

distribution of soils in landscapes (Hole and Campbell, 1985). Soil landscape 

analysis thus becomes potentially important in observing, delineating, and 

often mapping pesticide behavioural properties (e.g. sorption and leaching) in 

landscapes.  

The concept of using soil landscape analysis to assess pesticide fate is 

relatively new.  Novak et al (1997) was the first to evaluate the effect of 

landscape position on the sorption of atrazine to soil. Atrazine sorption affinity, 

which was largely affected by soil organic carbon content, was greatest in soils 

found in low lying areas compared with soils from an upland shoulder slope . 

They further concluded that the distribution of field-scale atrazine sorption was 
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best predicted based on landscape position. Later, Farenhorst et a l. (2001) also 

found high sorption affinity of 2,4-D in lower landscape positions that had high 

organic matter content. Sorption and mineralization of atrazine and alachlor 

were also assessed in a small field in South Dakota (Liu et al., 2002). The 

research found that herbicides had different sorption and mineralization rates 

in soils from different positions in the landscape. 

Further studies explored the use of digital terrain analysis to model 

sorption of pesticides, focusing mainly on one herbicide, 2,4-D. Landscape or 

topographic parameters, like slope, aspect and curvatures, were successfully 

used to differentiate distribution of 2,4-D sorption between conventional-till 

and no-till agricultural fields (Farenhorst et l., 2003). Landscape positions were 

used to segment a hummocky landscape in a Manitoba cereal-oilseed crop 

system in order to predict 2,4-D sorption in subsurface soils (Gaultier et al., 

2006). More recently, Farenhorst et al (Farenhorst et al., 2008) found that 2,4-D 

sorption was halved in soils found in upper slopes. The study also found 

significant correlation of herbicide sorption with compounded topographic 

index (CTI) gradient and some curvature parameters. 

Previous studies on soil-landscape analysis in assessing pesticide fate 

have only been done in limited areas using limited pesticides. However, it’s 

merit extends beyond gently rolling landscapes and a small breadth of organic 

chemicals that are used in agricultural production systems.  
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III. Quality Assessment of a Topographically Derived High-

Resolution Digital Elevation Model of a South Australian Sloping 

Landscape 

  
Abstract 

 

Digital elevation models (DEMs) are important inputs in many spatial 

applications, such as land use planning and soil-landscape modeling. For 

informed decision-making to take place, it is essential that the DEM be of 

high accuracy and to achieve this, plausibility or smoothing algorithms are 

often employed to enhance accuracy. DEM’s derived from fine scale 

topographic data are often used in field and catchment scale hydrologic 

investigations. However, the accuracy of these DEMS are almost never 

assessed. 

We generated DEMs from existing contour topographic information 

and interferometric synthetic aperture radar (IfSAR). We assessed the error 

in elevation and terrain models from the DEMs by comparison with a high-

resolution real-time kinematic GPS survey. We further investigated whether 

plausibility algorithms enhanced the quality of the resulting DEMs.  

Results showed that the contour-derived DEM underestimated the 

‘true’ elevation with a root mean square error (RMSE) of 3.0 – 4.0 m. The 

analysis of the DEM also revealed the effect of contour biasing on 

geomorphological parameters such as slope and curvatures.  Smoothing of 

the contour-derived DEM increased the accuracy of terrain attributes.   
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Keywords: Contour elevation, smoothing algorithm, accuracy assessment, 

geomorphological variables 

1.  Introduction 

A digital elevation model (DEM) is a digital representation of elevation 

information, often arranged in regularly spaced grids embodied as raster sets in a 

geographic information system (GIS). Accurate elevation models are fundamental 

data sets for management and research in many scientific disciplines; including 

meteorology, geomorphology, hydrology and ecology, and are essential component 

of GIS databases (Hutchinson, 1989). Topography influences energy and material 

flow between atmosphere, biosphere and pedosphere and thus influences almost 

all ecological and geomorphological processes (Ostendorf, 1993; Ostendorf, 2011 

#2011). Additionally, the spatial variability of a DEM is often used as a surrogate 

measure of the spatial variability of the various biophysical and geochemical 

processes occurring at all scales (Moore et al., 1991). Using DEMs for 

quantification and delineation of geomorphological attributes (e.g. slope and 

aspect, catchment boundary, drainage networks), and other topographic 

parameters is a trivial exercise applied routinelyin hydrological and 

environmental modeling (e.g. solar radiation). 

DEMs can be generated with different methods and at different scales. A 

global 30 m DEM (GDEM) was first released in 2009 using the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on 

board the Terra satellite (http://asterweb.jpl.nasa.gov/). The ASTER GDEM covers 

the majority of the terrestrial earth and provides a good source of global elevation 

data. However, the exact accuracy of the data is unknown especially in areas of 
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high and complex relief and land cover. Another global elevation model was 

generated during the 2000 Shuttle Radar Topography Mission (SRTM) at 90 m 

resolution. 

However, there are known inaccuracies in both of these datasets. A study 

conducted by Hirt et al. (2010) revealed that the Australian GEODATA DEM 9S 

contained height errors of up to 100 m in rugged terrain, the CGIAR-CSI SRTM 

lacked assessment for drainage accuracy, and the ASTER GDEM contained 

methodological acquisition artifacts.  

Frequently, elevation data with a very high spatial resolution (e.g. < 25 m) is 

required for field and catchment scale hydrological investigations (Gessler et al., 

2009). Such detailed elevation models can be generated using airborne LIDAR, 

ground-based topographic surveys or photogrammetry (Clarke et al., 1983). 

Photogrammetry is the most commonly applied since it is the least expensive as 

most contour data have now been converted to digital format. Contour data are 

interpolated to create the raster DEM which often becomes the prinicipal DEM 

data. Strategically, topographic data is available at fine scales (e.g. 1:10,000 scale) 

for many intensively used land areas. Except for flat terrain, manually derived 

contour data is the best available source of information for elevation models. 

Nevertheless, DEMs generated from topographic data are not immune to 

errors. The high number of processing steps (e.g., photogrammetric interpretation, 

digitization, interpolation) (Oksanen and Sarjakoski, 2005), the method of data 

generation and the interpolation procedure (Fisher and Tate, 2007) can all 

produce errors. Hence, the accuracy of DEMs need to be actively assessed prior to 

use in analysis.  
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To enhance the quality of topographically-derived DEM, several techniques 

can be applied. One technique employs error reduction algorithms (Hengl et al., 

2004) which include spurious pit removal or filtering and neighborhood analysis, 

which are often collectively known as smoothing algorithms. Employing these 

algorithms has become a standard operating procedure in DEM generation. 

However, there is a need to assess if these algorithms in fact increase the accuracy 

of the DEM (Wechsler, 2007) or simply improve the aesthetic quality of the maps. 

Furthermore, appropriate techniques may have to be employed to prevent error 

propagation in subsequent analyses.  The assessment of DEMs derived from 

topographic data is also limited. Often, analyses are done in spatial resolution of 30 

m but elevation data with finer spatial resolution (e.g. < 25 m) is often sought in 

most field and catchment scale hydrological investigations (Gessler et al., 2009). 

Assessment of the accuracy of high resolution DEMs generated from the 

interpolation and smoothing procedures of topographic data therefore needs to be 

done. 

The objective of this research was to examine the accuracy of high resolution 

(5 m) digital elevation and terrain models derived from contour datasets digitized 

from topographic maps for a complex landscape in the Mount Lofty Ranges (MLR) 

region of South Australia. We also determined the effectiveness of a smoothing 

algorithm to improve the accuracy of digital elevation and terrain models. The 

interferometric synthetic aperture radar (IFSAR) DEM (Intermap, Englewood, CO) 

was also analyzed to assess how the contour-derived DEM compared with  

commercially available elevation data. 
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2.  Methodology 

2.1.  Study site  

A hilly area located within the Mt. Lofty Ranges (MLR) region (30 km east of 

Adelaide, South Australia) was selected for this study (Fig. III.a). The subcatchment 

has a relief of about 100 m, an area of approximately 65 ha and a Mediterranean 

climate with mean maximum and minimum temperatures of 12°C and 5°C during 

winter (June-August) and 26°C and 14°C during summer (December-February), 

respectively. The subcatchment has a mixed use but is planted primarily to apples. 

It is bounded by Plummers Road in the north to northeast direction, by Hewletts 

Road in the south, and by Mawson Road in the west.  

2.2.  Digital elevation models 

Topographic maps (1:10,000 and 1:50,000) in digital format were obtained 

from the South Australian Department of Environment and Heritage (DEH) 

(metadata of both data available online at www.asdd.sa.gov.au). Both maps were 

derived photogrametrically from aerial photography and surveyed control points 

(bench marks). The maps were then scanned and converted to GIS formats. The 

1:10,000 map had a contour interval of 5 m. The 1:50,000 map had a contour 

interval of 10 m. 

Several DEMs were generated as a result of this study, all with a resolution of 

5 m. The first pair of DEMs were from the interpolated 1:10,000 and 1:50,000 

topographic maps and referred here to as raw10K and raw50K, respectively. 

These DEMs were interpolated using the ‘Topo to Raster’ tool (ANUDEM) with 

drainage enforcement and sink filling in ArcGIS 10.0 (ESRI, Redlands, CA).  
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The second pair of DEMs were generated from the raw10K and raw50K DEM 

with a smoothing algorithm and are referred to here as smooth10K and 

smooth50K. The smoothing algorithm was a 3 x 3 low pass filter (mean) which 

reduced the impact of outliers by local averaging (Brown and Bara, 1994).  

Another DEM dataset was included in this study to evaluate a commercially 

available, high resolution, remotely-sensed DEM. The DEM – an interferometric 

synthetic aperture radar terrain model – was obtained from Intermap (Englewood, 

CO) through Apogee Imaging International (Lobethal, South Australia) and is 

referred to here as IfSAR. The dataset has a reported accuracy of 2 m. The concepts 

of acquisition, data manipulation and application are summarized by Richards 

(2007). All of the DEMs utilized in this study are listed in Table III.a. and are all 

projected to Geocentric Datum of Australia 1994 (GDA94) Zone 54. 

2.3  Field evaluation data 

Two sets of field evaluation data were collected in the winter-spring season 

(July-September) of 2010. The first set of data was collected in the 65 ha 

subcatchment (marked by the blue boundary in Fig. III.a).   Firstly, one hundred 

and seventy four (174) elevation points were obtained along three creek lines at 

regular intervals (every 10 m) and throughout the subcatchment in random 

locations using a real-time kinematic GPS (RTK-GPS). This dataset was used to 

validate the point elevation of DEM for the whole subcatchment. Secondly, we 

obtained dense elevation data in a 5.6 ha subarea (marked by the black boundary 

in Fig. III.a) within the subcatchment using RTK GPS. The survey in the subarea 

generated elevation data approximately every 2 m as it passed through the alleys 

of the apple orchard. Each alley transect was 5 m wide. The dense elevation data 
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were then used to generate a DEM for the subarea using the ‘Topo to Raster’ tool 

(ANUDEM). This dataset, hereinafter referred to as rtk, was used to validate the 

elevation, slope and curvature parameters for the subarea. The RTK-GPS system, 

mounted on an all-terrain vehicle (5 kph speed), was set to record data points 

every 3 s to gather the dataset used for the subarea. All survey campaigns were 

done in winter-spring season (August-October) when vegetation cover was 

substantially low (apple trees shed leaves during the winter months) to reduce the 

effect of canopy interception of GPS signals. Days following a heavy rain were also 

avoided to reduce the effect of moisture on GPS signals. We used EPOCH 10 L1 GPS 

receivers (Spectra Precision, Westminster, CO) attached to a Reckon data collector. 

The system was comprised of a base station, which was tied to a bench mark, and a 

roving station that gathered the survey point measurements. Horizontal and 

vertical precision during the survey was set to 10 cm. Post processing was done 

using Spectra Precision Survey Office software (Spectra Precision, Westminster, 

CO). 

2.4  Analysis 

Differences in elevation data (or spot heights) were analyzed for the 

subcatchment using the various DEMs (raw10K, raw50K, smooth10K, smooth50K, 

and IfSAR) with the point elevation obtained through RTK-GPS. Geomorphological 

terrain models (slope, plan and profile curvatures) were analyzed using a subarea 

dataset (Table III.b). We removed any edge effects (raster cells on the edge of the 

survey area with fewer neighboring cells) by creating an inward buffer of 10 m.  

The following quantitative error descriptors were used: bias, mean absolute 

error (MAE), and root mean square error (RMSE). Bias is the average deviation of 
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the topographically-derived and remotely-sensed DEM from the reference DEM 

(i.e. rtk). Bias was calculated using the equation: 

 

, 

where Xi is the observed measurement at ith location, Ri is the reference 

measurement at the ith location, and n is the number of samples (in this case the 

number of raster cells which is 174 for the elevation data points; and 1208 for the 

subarea).  

Mean absolute error (MAE) measures the closeness of the topographic and 

remotely-sensed DEM to the reference DEM, and was calculated using the 

equation: 

 

    . 

Root mean square error is used here as a measure of accuracy which is used 

to distinguish between DEM (Wise, 2000). RMSE was calculated using the 

equation: 

RMSE =
X i -Ri( )2

i=1

n

å
n -1

. 

 

3.  Results  

3.1  Interpolation and smoothing of DEM 

The contour lines reveal some breaks and overlapping (Fig. III.a). These 

features are common throughout this data set and the 1:50,000 contour map due 

MAE =
1

n -1
Xi -Ri

i=1

n

å

Bias =
1

n -1
(X i - Ri)

i=1

n

å

�  R M S E= Xi -Ri( )2i=1nå n -1
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to manual digitization. These anomalies can be treated as sources of inaccuracy for 

the interpolated DEM. For example, broken contour lines can create a void in the 

interpolation procedure between elevation data points. A careful investigation of 

the contour data also revealed an unexplained anomaly in the south central part of 

the site. A polygon was inadvertently created along the stream and connected to 

one of the contour lines, which can also cause anomalous sinks or pits in the 

resulting DEM. However, this was avoided in our study site due to the 

interpolation procedure. The ‘Topo to Raster’ interpolation tool incorporates a 

drainage enforcement algorithm that removes spurious sinks (Hutchinson, 1988; 

ESRI, 2011).  

The interpolated DEMs (raw10K and raw50K) and their corresponding 

smooth versions (smooth10K and smooth50K) are presented in Fig. III.b. The 

interpolation, using ‘Topo to Raster’ tool, created a sink-free DEM of the study site. 

Some artifacts were created that may be due to bias imposed by the high data 

point density along the contour during the interpolation. This was observed when 

histograms of the DEM were investigated (Fig. III.c). Contour bias, in this case, is a 

phenomenon wherein input contours created distortion in the terrain models. The 

histogram of the DEM showed increased occurrence of elevation close to the 

contour interval (5 m for 1:10,000 and 10 m for 1:50,000 topographic maps) (Fig. 

III.c). Contour bias was more pronounced in the 1:50,000 DEM than in the 

1:10,000 DEM. A similar anomaly was documented in the United States Geological 

Survey (USGS) DEM derived from contour data, and this anomaly was referred to 

as a ‘ghost’ artifact (Guth, 1999) brought about by “over-representation of 

elevation equal to the digitized contour” (Fisher and Tate, 2007). We speculate 

that this anomaly has not been reported for high resolution DEMs derived from 
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fine scale topographic maps because topographic maps are usually used to 

generate coarse resolution DEMs, and because there is little awareness of this form 

of error. 

The effect of the smoothing algorithm was difficult to notice in the DEM 

output. However, their corresponding histograms revealed that the over-

representation of elevation close to the original contour was reduced.  This over -

representation is observable as peaks in the DEM histogram, and these peaks were 

substantially minimized through smoothing of the raw10K and raw50K DEMs (Fig. 

III.c). To show the effect of this phenomenon (contour biasing) in using the raw 

(un-smoothed) DEM to derive other terrain variables, we computed profile 

curvature (ProfC) surface model. The unsmooth DEM created an unrealistic ProfC 

surface model compared with the smooth DEM (Fig. III.d). This emphasized the 

importance of interrogating DEM quality.  

3.2  Validation of subcatchment elevation  

The IfSAR DEM overestimated elevation at the sampled locations with a bias 

of -0.2 m, but with an RMSE value of 2.6 m (Table III.c.). Among the different DEMs, 

IfSAR had the lowest bias, MAE and RMSE at -0.2 m, 2.0 m and 2.6 m, respectively. 

The raw50K DEM had the highest bias, MAE and RMSE at 2.0 m, 3.4 m and 4.0 m, 

respectively. The smoothing algorithm enhanced the topographically-derived DEM 

minimally in both scales (1:10,000 and 1:50,000). Nevertheless, the smooth10K 

had a comparable MAE and RMSE (2.4 and 3.0 m respectively) to the IfSAR DEM. 
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3.3  Quality of rtk DEM  

The survey using the RTK-GPS instrument generated a dataset for a 5.6 ha 

subarea. The horizontal and vertical accuracy of the survey was 0.5 m. The 

accuracy is lower than the spot height survey (0.10 m) due to complexity of the 

terrain where the dense points were collected (i.e. in the subarea).  Some transects 

fell short of the 0.5 m accuracy limit and were culled from the dataset. The final 

post-processed dataset was comprised of 5,629 points.  

The interpolated DEM had 1,208 pixels (5 m size) (bounded by effective DEM 

area polygon in Fig. III.e). The mean elevation was 516.1 m with a very small bias 

of 0.1 m and RMSE of 0.7 m (Table III.d) against the RTK-GPS point measurements. 

We assume that, given the low bias and RMSE values, the resulting rtk DEM was 

the “true” elevation model of the sub area and hence was used as the basis of 

comparison for the DEMs under investigation (i.e. topographically derived DEM).  

3.4  Assessment of topographically derived DEM 

The assessment of topographically-derived and the IfSAR DEM was done 

using the rtk DEM as a reference. Three statistical parameters were calculated: 

bias, MAE and RMSE. The summary of the statistical analyses performed on the 

different DEM sources, including residuals, is summarized in Figures 6 and 7.  

In terms of elevation, the IfSAR DEM, as expected, had the lowest bias, MAE 

and RMSE (0.91 m, 1.08 m and 1.49 m, respectively). All DEMs generated from the 

contour data overestimated elevation. The unsmooth 1:50,000 DEM (raw50K) had 

the highest bias and RSME (-2.63 m, and 2.89 m respectively).  The smooth 

1:10,000 DEM (smooth10K) also overestimated elevation for the subarea (bias = -

1.30 m), but had a relatively low RMSE (1.73 m). In addition, the subarea DEM 
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analysis of elevation showed all generated DEM were highly correlated with rtk 

DEM (R2 = 0.99) (Fig. III.f).  

In terms of slope, raw50K DEM had the highest RMSE value at 3.26 °.  The 

smooth50K had the smallest bias (0.10 °) and the smooth10K DEM had the lowest 

RMSE (0.26 °) (Fig. III.f). All DEM have slightly overestimated the curvature 

parameter PlanC. The bias of all DEMs were within the range of -0.02 to -0.10 ° m-1 

(Fig. III.f). Finally, for the profile curvature parameter (ProfC), all DEM had 

negligible bias. The IfSAR and smooth10K DEM were almost identical with the rtk 

DEM having only 0.26 and 0.28 ° m-1 RMSE values, respectively (Fig. III.f).  

The analysis of the residuals also revealed the effect of contour bias in DEMs 

generated from topographic data. The resulting geomorphological parameters ha d 

greater residuals as the measurements approached the digitized contour (Fig. III.f). 

This was prominently observed in DEMs derived from the 1:50,000 data.    

The correlation of the DEM in terms of slope and curvature parameters also 

showed varying results (Fig. III.g). In terms of slope, IfSAR was most highly 

correlated with rtk (R2 = 0.74) followed closely by the smooth10K DEM (R2 = 0.70). 

The least correlated was r10K (R2 = 0.56).  In terms of PlanC, smooth50K had the 

highest correlation with rtk (R2 = 0.48). In terms of ProfC, the smooth10K was 

highly correlated with rtk DEM (R2 = 0.85).  

 

4.  Discussion 

In this study, we characterized the errors of DEMs generated from 

topographic data and compared these with a remotely-sensed DEM (IfSAR) and a 

validation DEM (derived from RTK-GPS). The results in this study can be 
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summarized into three main points. Firstly, DEMs derived from various datasets 

exhibited different levels of accuracy. The DEMs derived from topographic 

datasets revealed the effect of contour bias in surface models like slope and 

curvature.  This finding was not surprising, but demonstrates that this form of bias 

is common, and stresses the need for care when utilizing this and other DEMs 

derived from topographic datasets for subsequent analysis (Wise, 2000). The 

correlation analyses also suggest that although the elevation models appeared 

almost identical, the resulting terrain models derived from different sources vary 

independent of its inherent accuracy but dependent on how the elevation is 

distributed in the elevation model. Geomorphological parameters calculated from 

IfSAR were not necessarily more correct compared to those calculated from 

contour-derived DEM. In fact, smooth10K, which was derived from fine scale 

topographic map (1:10,000), was found to be more accurate for the study site. This 

is perhaps not surprising, as the study area contains many steep slopes, and a 

known limitation of the IfSAR DEM is its reduced accuracy in areas with high slope 

(> 10 °) (Intermap, 2010). This work highlights the need to carefully consider the 

choice of DEM for the topography of site and to be aware of the limitations of the 

different DEMs. Given this limitation and the costs involved in acquiring the IfSAR 

dataset, its use is not encouraged in the type of terrain where this study was 

performed. 

Secondly, DEMs derived from topographic data were enhanced using a 

simple smoothing algorithm. The resulting DEMs approximated the ‘real’ shape of 

the topography more closely than the un-smoothed DEMs, and in one case 

(smooth10k) were even higher accuracy than the IfSAR DEM. 
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Finally, the high correlation in elevation data between the rtk DEM and the 

rest of the DEMs indicated that all elevation data sources (topographic maps and 

the remotely sensed DEM) were quite reliable. However, this reliability is limited 

because the shapes of the landscape that were generated from these data sources 

vary. While elevation information corresponds in all models, marked differences in 

slope and curvature parameters exist. Therefore, interpretations based on the 

derived parameters need to be treated with care. The smoothing algorithm 

enhanced the quality of the DEMs and terrain models and therefore should be 

employed whenever DEMs are generated from topographic elevation sources 

similar to those used in this study (e.g. slope and curvatures). 

 

5.  Conclusion 

In this study, we have shown the relative accuracy of DEM derived from fine 

scale contour data, which have the most common source of elevation data. 

Contour-derived and the IfSAR DEMs corresponded reasonably well with the 

validation data. However, derived parameters, like slope and curvature, were more 

strongly influenced by DEM source and the use (or absense) of smoothing. This 

potential error needs to be considered when these topographic variables are used 

as surrogates for biophysical landscape conditions in environmental models. The 

inaccuracy may be due to the unknown reliability of the elevation data as well as 

the limitations of the interpolation procedure employed. 

Most importantly, we have also shown that through a simple smoothing 

algorithm, DEMs derived from contour data can be enhanced to increase accuracy 

of elevation and consequently landscape shape. Additionally, this study has 
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demonstrated the need to assess the quality of all DEMs derived from topographic 

data sources. This assessment need not be time consuming or onerous. We 

recomend a simple analysis of the DEM histogram and the investigation of derived 

topographic parameters (e.g. slope and curvature). 
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Table III.a. Digital elevation model datasets used in this study, all using 5 m pixel. 

DEM Description 

raw10K 
Interpolated 1:10000 contour data using ‘Topo to Raster’   tool in ArcMAP 

10.0;  

raw50K 

Interpolated 1:10000 contour data using ‘Topo to Raster’   tool in ArcMAP 

10.0 

smooth10K 

Smoothing algorithms (filter and focal mean statistics) employed in 

raw10K DEM  

smooth50K 

Smoothing algorithms (filter and focal mean statistics) employed in 

raw50K DEM  

ifsar 

Sourced from Intermap, a digital terrain model derived from surface 

models where vegetation and land surface cover have been digi tally 

removed 

rtk 

interpolated spot heights that have been collected for a subarea using 

real-time kinematic global positioning system (RTK-GPS) using ‘Topo to 

Raster’   tool in ArcMAP 10.0 
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Table III.b. Terrain parameters calculated in this study. 

 
Attribute Description 

Slope, ° change of elevation with horizontal distance 

Plan curvature (PlanC ), ° m-1 
a measure of topographic convergence and 

divergence 

Profile curvature (ProfC), ° m-1 a measure of flow acceleration or deceleration 

  

 
 

 

 

 

Table III.c. Summary statistics of spot heights (m) derived from different elevation 
sources. 

Statistics (n=1208) Value (m) 

Min 495.4 

1st Quartile 509.4 

Mean 516.1 

Median  515.9 

3rd Quartile 523.2 

Max 537.3 

Bias -0.1 

MAE 0.5 

RMSE 0.7 

 

MAE – mean absolute error; RMSE – root means square error 
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Table III.d. Quality of DEM derived from interpolated real-time kinematic GPS 
survey for the subarea. 

 
Statistics rtk raw10K  (smooth10K) raw50K  (smooth50K) ifsar 

Min 471.4 468.1 (468.4) 470.6 (470.4) 470.1 

1st Quartile 508.7 505.4 (506.2) 505.9 (506.2) 508.7 

Mean 524.2 522.3 (522.5) 522.2 (522.3) 524.4 

Median 526.1 523.4 (523.6) 522.4 (522.7) 525.5 

3rd Quartile 538.2 538.5 (538.6) 539.6 (540.1) 540.2 

Max 559.7 560.3 (560.0) 560.4 (560.2) 562.1 

Bias  1.9 (1.7) 2.0 (1.9) -0.2 

MAE  2.6 (2.4) 3.4 (3.3) 2.0 

RMSE  3.1 (3.0) 4.0 (3.9) 2.6 

 

raw10K – interpolated 1:10,000 topographic map; raw50K – interpolated 1:50,000 topographic 

map; smooth10K – smooth 1:10000; smooth50K – smooth 1:50,000; ifsar – interferometric synthetic 

aperture radar; MAE – mean absolute error; RMSE – root means square error; PlanC – plan 

curvature; ProfC – profile curvature 
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Figure III.a. Location of the study site (Red circles mark broken and overlapping 
contour lines. Aerial photograph taken 26 December 2009 is from 
www.nearmap.com available under Creative Commons Attribution Share Alike 

license). 
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Figure III.b. DEM of the site (a - raw10K, b - smooth10K, c - raw50K, d - 

smooth50K). 

raw10K – DEM derived from 1:10,000 DEM by 'Topo to Raster' interpolation; smooth10K – smooth 

raw10K; raw50K – DEM derived from 1:50,000 DEM by 'Topo to Raster' interpolation; smooth50K – 

smooth raw50K.  

a b 

c d 
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Figure III.c. Histograms of contour-derived DEM from (a) 1:10,000 and (b) 1:50,000 

topographic maps. 

 (raw10K – DEM derived from 1:10,000 DEM by 'Topo to Raster' interpolation; smooth10K – smooth 

raw10K; raw50K – DEM derived from 1:50,000 DEM by 'Topo to Raster' interpolation; smooth50K – 

smooth raw50K)  

a 

b 
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Figure III.d. Profile curvature of unsmooth (a) and smooth (b) DEM derived from 

1:10,000 contour data (pixel size = 5 m). 

 

 

 

a 

b 
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Figure III.e. Survey points and digital elevation model from real-time kinematic 
global positioning system (RTK-GPS) survey. 

 

 

 



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 
45 

 

     

 

a 

b 
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Figure III.f. Residuals of the (a) elevation, (b) slope, (c) plan curvature, and (d) 

profile curvature for each DEM against rtk DEM. 

 (raw10K – DEM derived from 1:10,000 DEM by 'Topo to Raster' interpolation; smooth10K – smooth 

raw10K; raw50K – DEM derived from 1:50,000 DEM by 'Topo to Raster' interpolation; smooth50K – 

smooth raw50K)  

c 

d 
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(rtk – real time kinematic; raw10K 

– interpolated 1:10,000 
topographic map; raw50K – 

interpolated 1:50,000 topographic 

map; smooth10K – smooth 
1:10,000; smooth50K – smooth 

1:50,000; ifsar – interferometric  
synthetic aperture radar (n = 

1,208 pixels). 

a) b)   

c) d)  

Figure III.g. Scatterplots and correlation coefficient values of digital elevation models (a) elevation, (b) Slope, (c) plan curvature, and d) 

profile curvature) from different sources. 
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V. Effect of terrain and management on the spatial variability of 

soil properties in an apple orchard 

 
Abstract 

Soil variability has implications in farm workability, nutrient and 

pesticide management, and sustainability. The aims of this study were to 

investigate how management practises and topography influence the 

variability of key soil properties and to test the efficacy of various 

analytical techniques for predictive high resolution soil mapping. We 

measured properties of soils sampled in an intensively managed orchard 

in the Adelaide Hills, South Australia using a stratified sampling design 

for alleys and tree-lines in order to distinguish potential management 

effects (extrinsic factors) from effects of natural soil variability (intrinsic 

factors). Key soil properties were determined using standard techniques 

and predictions using mid-infrared partial least-squares (MIR-PLS). 

Total organic carbon and electrical conductivity (EC) were significantly 

lower in the tree-line than in the alley. The distribution of coarse 

fraction (>2mm) was also very different between tree-line and alley, 

most likely because of ripping during orchard establishment. Terrain 

parameters had varying effect on distribution of soil properties. The 

degree of correlation between soil properties and terrain parameters 

was influenced by the different management regimes in the alley and the 

tree-line. Within-field management practises impose marked short-

range variability in soil properties. Soil sampling for risk assessment of 
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pesticide movement must consider both the spatial variability of soil 

properties between tree-lines and alleys and the influence of terrain.  

Keywords 

Soil-landscape analysis; managed apple orchard 

 

1.  Introduction 

The variability of soil properties has a profound, but often unrecognized, 

effect on the economic and environmental aspects of agricultural production. 

Soil variability has implications in farm workability (Kværnø, 2007), nutrient 

management (Stenger et al., 2002; Liu et al., 2009), and sustainability (Patzold 

et al., 2008; Van de Wauw et al., 2008). The spatial variability of soil properties 

is invariably influenced by changes in topography, and this variability affects 

the transport and storage of water within the soil profile (Mulla and McBratney, 

2000; Ahuja et al., 2002). Topographic gradients characterise the shape of the 

land surface thereby dictating the distribution of soil chemical and physical 

properties (Moore et al., 1991).  

Numerous research studies have reported the relevance, often the 

primacy, of topography in determining the variability of soil properties. Moore 

et al. (1993) attributed variability of key soil chemical and physical properties 

to slope, wetness index, aspect and to some extent plan curvature in a study in 

north-eastern Colorado, USA. Similarly, McKenzie and Ryan (1999) used plan 

curvature, dispersal area and related environmental variables to predict soil 

depth, total phosphorus and total carbon in an alpine and sub-alpine mountain 

site in New South Wales, Australia. Also, Gessler et al., (2000) attributed soil 
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carbon, depth of A-horizon and net primary productivity in a hillslope catena to 

slope and flow accumulation. Takata et al., (2007) reported that the distribution 

of potential mineralizable carbon and soil organic carbon were predicted using 

elevation and mean curvature as independent variables.  More recently, Hattar 

et al. (2010) explained that the distribution of total carbonates and organic 

matter in the Levant (an arid region in the East Mediterranean), were primarily 

influenced by hillslope position, steepness and topographic shape properties.  

Studies on spatial variability of soil properties are most often conducted 

in homogenous fields or landscapes such as arid zones (Hattar et al., 2010), 

forests, pasture areas and broadacre cropping (e.g. grain and oilseed 

production, but there is a paucity of reports on soil variability in intensively 

managed, non-homogenous fields such as orchards. Profitability and 

environmental sustainability of small-orchard enterprises is highly influenced 

by nutrient and pesticide distribution in the landscape (Aggelopoulou et al., 

2011). With respect to soil chemistry, organic carbon, pH, electrical 

conductivity and texture of the surface horizons often exert a dominant effect 

on nutrient availability, pesticide sorption (Kookana et al., 1998) and overall 

ecosystem services (Simon et al., 2010).  In this paper we attempt to quantify 

the spatial structure of these soil properties, determine the effect of 

management practises on this spatial structure in a heterogeneous landscape, 

and explore a suitable interpolation technique for un-sampled location. 

Numerous spatial interpolation or prediction methods are available for a wide 

range of soil properties. One is digital soil-terrain modelling (Bishop and 

Minasny, 2006) which emanated from Jenny’s equation of soil formation (Jenny, 

1941) and employs regression. This approach requires reliable model 
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parameter data, for example elevation. Moreover, the statistical relationship of 

the variables also needs to be established. Another approach is geostatistics 

(Goovaerts, 1999; McBratney et al., 2003; Webster and Oliver, 2007) whereby 

the spatial coordinates of properties are used to describe their spatial structure 

as well as predict the values at unsampled locations. The most common 

geostatistical method is ordinary kriging (Webster and Oliver, 2007) and has 

been used extensively to predict the distribution of a variety soil properties. 

Other geostatistical and hybrid approaches are available and readers are 

encouraged to read Webster and Oliver (2007) and Hengl (2009). 

The objectives of this study were therefore to (i) measure the spatial 

variability of surface soil properties in an intensively managed apple orchard 

(ii) determine the effects of topography and management practises on the 

distribution of soil properties and iii) determine an appropriate approach for 

the spatial prediction of soil properties. We quantify the spatial structure of soil 

properties in an apple orchard, compare how this structure varies from alley to 

tree-line, and predict the distribution of soil properties using regression and 

geostatistical approaches.  
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2. Materials and methods 

2.1. Site description and general methodological approach 

The study site, situated in the central Mount Lofty Ranges 30 km east of 

Adelaide, South Australia (34°54.918"S 138°48.107"E), lies within the 

Onkaparinga Catchment and was planted to apples of various varieties in the 

early 1950s.  The subcatchment is hilly with mean elevation of 513 m, 

maximum slope of 30° and mean slope of 13°. The area has a Mediterranean 

climate with mean maximum and minimum temperatures of 12°C and 5°C 

during winter and 26°C and 14°C during summer, respectively. The soils have a 

xeric moisture regime. The mean monthly rainfall from 1970 to 2000 in the 

winter months (June-August) was approximately 150 mm and in the summer 

months (December to February) was 32 mm. The soils in the site developed 

from Proterozoic shales, siltstones and metasandstones (Hall et al., 2009) and 

are classified as Petroferric, Melanic-Vertic, Red-Yellow Chromosols. Profiles on 

the upper slopes are thin, moderately gravelly and silty. The size of the study 

site is 5.6 ha (Fig. V.a).  The site is dominated by one soil type, Red-Yellow 

Chromosols (Isbell, 2002) (The Australian Soil Classification). Soils of this type 

occur on about 60% of the entire Mt. Lofty Ranges region.  

2.2. DEM and DTM Generation 

A digital elevation model (DEM) was generated from 5-m contour and 

drainage maps both of which were obtained in digital format from the state 

mapping agency. The Topo to Grid interpolator in ArcMAP 10® (Environmental 
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Systems Research Institute, 2010) was used to create a 5 m gridded DEM, which 

was further enhanced using error-reduction algorithms (Hengl et al., 2004a).  

Eight key terrain parameters (Table V.a) were calculated in a GIS  

environment using ArcMAP 10® and Terrain Analysis System or TAS (Lindsay, 

2005). All DEM data were converted to TAS format. First and second derivatives 

of the DEM were estimated using the finite difference method (Wilson and 

Gallant, 2000) with the D∞ flow routing algorithm. This algorithm is 

recommended for high-resolution DEM, with the advantage of reducing bias 

caused by overestimation of grid alignment upslope area (Tarboton, 1997). The 

resulting terrain models were converted back to ArcMap format for spatial 

sampling and analysis. The resulting digital terrain models are presented in Fig. 

V.b.  

2.3. Apple orchard management  

The orchard was established in the 1950s. Trees were planted at high 

density  (~450 trees per hectare). Tree-lines, 2 to 4 m wide, run either across or 

along the slope. Alleys, 2.5 m wide divide the tree-lines. A small portion, 

concentrated mainly on the western section of the study site, had been 

replanted in 2006. Ripping to a depth of about 1 m along the tree-lines was 

carried out during establishment to break up the top of the dense B horizon. 

Sod strips were laid out in the alleys (between tree-lines) using various grass 

species such as Festuca sp. (dwarf fescue), Pennisetum purpurium (napier) and 

Hordeum hystrix (barley grass). Native grasses are also encouraged along the 

alleys. Clippings from mowing were used as mulch to minimise moisture loss in 

the tree-lines, most importantly during replanting and in elevated and sloping 
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areas. Herbicides are also periodically applied. Fertiliser is applied through 

localised fertigation. Irrigation is localised using sprinklers raised less than 0.3 

m above the ground from a series of lines laid out along the tree-line. Thinned 

biomass (fruits, leaves and small branches) is left under the trees whereas 

mown grasses are left where they are cut (normally on alleys). Mulching and 

herbicide application along the tree-line is undertaken to reduce competition 

for nutrient and water. Sod strips in the alleys serve as cover to reduce impact 

of farm machinery and to act as buffer for soil erosion and material loses. 

2.4. Soil sampling and analysis 

One thousand soil samples were collected from one hundred paired 

locations (2 x 100) randomly selected from an area of 5.6 ha within the 

subcatchment. Each location was referenced on the ground using a handheld 

high-sensitivity GPS. A pair location corresponds to one sampling point from 

the tree-line and one sampling point from the alley. At each sampling point, a 

0.25 m2 area, 5 subsamples were taken – one at each corner and one at the 

center. Soil sampling in alleys was carried out in such a way that compacted 

zones from farm machinery tracks were avoided. The top 10 cm of soil was 

sampled with an auger. Samples were air-dried, passed through a 2mm sieve, 

composited and analysed. Total organic carbon (TOC, %) and clay (%) were all 

determined by diffuse reflectance infrared Fourier-transform (DRIFT) 

spectroscopy and models derived from partial least-squares regression (Janik 

and Skjemstad, 1995; Janik et al., 1998).  Prior to scanning, samples were 

pulverised to ~0.1mm (Janik and Skjemstad, 1995).  
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The predictions were calibrated by analysing a sub-set (10%) of samples 

using traditional wet chemistry techniques. Total carbon was determined by 

high temperature combustion in an atmosphere of oxygen using a Leco CNS-

2000 (Matejovic, 1997). Inorganic C was determined by reacting the sample 

with acid in a sealed container and measuring the pressure increase with a 

pressure transducer (Sherrod et al., 2002). Total organic carbon was calculated 

by subtracting the inorganic carbon from the total carbon. The proportion of 

clay was determined using the pipette method (Day, 1965). The coefficient of 

determination (R2) between the prediction and the calibration data sets was 

0.93 and 0.98 for TOC and clay (%), respectively.  

Electrical conductivity (EC) was measured in 1:5 soil suspensions using an 

Orion 150 EC meter with 2 cell constants and calibrated using standard 

solutions. Soil pHw was measured in 1:1 soil:H2O suspension. Proportion of 

coarse fraction (>2mm, mostly stones and pebbles) was determined 

gravimetrically. Soil EC, pHw and coarse fraction were all determined in the 

laboratory for all soil samples.  

2.5. Statistical Analysis 

All measured and predicted soil properties were analysed for normality 

using the Shapiro-Wilks test. Means of variables for each sampling location 

were analysed for significant differences at 0.05 level of confidence using the 

Welch Modified two-sample t-test. Pearson’s product-moment coefficients (r) 

were computed in order to determine significant associations between soil 

properties and terrain parameters listed in Table V.a.  
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Spatial autocorrelation of soil properties were calculated through semi-

variogram modelling using VESPER (Minasny et al., 2005). The calculations 

used the equation: 

ˆ g (h) =
1

N(h)
z(x i) - z(x i + h)[ ]2

i=1

N (h )

å  

The analysis, a local variogram calculation, used a maximum lag size of 

300 m divided into 15 lag distance classes. Model fitting was based on root 

mean square error (RMSE) and the Akaike Information Criteria as reported by 

VESPER. Among the soil properties, only EC was log transformed to 

approximate a normal distribution. Spatial autocorrelation was evaluated using 

the nugget:sill ratio (Cambardella et al., 1994). 

2.6. Regression and geostatistical prediction of soil property 
distribution 

Three approaches were used to predict the spatial distribution of soil 

properties within the apple orchard. Moreover, two sets of predictions were 

made, one for alley and one for tree-line samples because of differences in 

spatial structure and variability. The first approach was multiple linear 

regression using the terrain parameters as explanatory variables. Regressions 

employed were all in the first order form. Key model parameters were selected 

using stepwise (forward and backward) Akaike Information Criteria (Akaike, 

1974) in the statistical software R. The second approach was ordinary kriging 

(Goovaerts, 1999; Webster and Oliver, 2007) to predict the distribution of soil 

properties utilizing the spatial coordinates and ultimately the spatial 

dependence of the soil properties across all sampling points. Using the semi-

variance model parameters generated in the spatial autocorrelation analysis, 
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prediction maps were generated for each of the soil properties. The third 

approach was regression-krigging model C (Odeh et al., 1995; Hengl et al., 

2004b). This approach utilised the regression output of the first approach to 

create spatial predictions of soil properties using the significant model 

parameters as predictors. Residuals at sample locations were also used to 

obtain a kriged spatial estimate (using ordinary kriging) of the prediction error. 

Finally, the two spatial predictions were added to give an estimate of the 

distribution of the soil properties. A more detailed explanation of this 

procedure can be found in Hengl et al. (2004b) and Herbst et al. (2006). All 

analyses were performed at a 5 m raster resolution. 

To examine model accuracy, jack-knife validation was carried out by 

partitioning the sample set into training (80%) and validation (20%) data sets. 

Samples in each set were identified randomly. The three approaches stated 

earlier (regression, ordinary kriging and regression kriging) were applied to the 

training set for the alley and tree-line samples. Spatial predictions based on 

these models were sampled on points where the validation set was located and 

the residuals were computed. The predicted and measured soil properties in 

these sampling locations were compared. Mean absolute error (MAE) and root 

mean square error (RMSE) were computed as comparative parameters for each 

model. They were calculated using the equation: 

 

, 

where ei is the residual for each soil property under investigation. 
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Maps of selected soil properties (TOC and coarse fraction) were created 

using ordinary kriging. To visualise the heterogeneity of soil properties 

between the alley and tree-line locations, soil properties were interpolated 

independently in these locations and overlaid.   

 

3. Results  

3.1. Variability of soil properties  

The range of variability of soil properties within and between alleys and 

tree-lines (Table V.b) was wide regardless of sampling location. For instance, 

clay content and pHw had little variability (CV < 15%), however, coarse fraction, 

EC and TOC showed moderate (CV = 15-35%) to high variability (CV  > 35%). 

Mean TOC and EC values were significantly greater in soils from the alleys than 

those from the tree-lines but coarse fraction was significantly greater in soils 

from the tree-lines than those from the alleys. The level of variability also 

increased from moderate in soils collected in alleys to high in soils collected in 

tree-lines for EC.  

3.2. Univariate spatial dependence analysis of soil properties 

The results of the variogram modelling show that the spatial structure 

varied between sample locations and among soil properties (Fig. V.c). For 

example, the nugget:sill ratio of TOC increased from 0.28 in the alley to 1.07 in 

the tree-line  and in a similar manner for clay content and coarse fraction. This 

means that the spatial structure of TOC, clay and coarse fraction was greater in 

the alley than in the tree-line. The reverse was true for pHw and EC which had 
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weaker spatial structure in the alley than in the tree-line. We also observed that 

in the alley, coarse fraction had the highest spatial structure and EC had the 

lowest whereas in the tree-line, pHw had the strongest spatial structure and clay 

content the weakest. The semi-variogram for EC in the tree-line and the coarse 

fraction in the alley had unbounded forms (range was greater than the 

maximum variogram distance), in this case, may be limited by the size of the 

study site.  

3.3. Soil landscape analysis and modelling 

The soil properties for both alley and tree-line samples were influenced, 

albeit minimally, by most terrain parameters (Fig. V.d). TOC in the alley was 

significantly correlated with slope and STCI. In the tree-lines, TOC was 

significantly correlated (p<0.05) with the same terrain parameters as well as 

elevation and ProfC. Soil pHw in the alley was correlated (p<0.05) with 

elevation, PlanC, TanC, STCI and WI. In the tree-line, pHw was correlated with 

slope, RSP and STCI. Soil EC in the alley was correlated (p<0.05) with SCA, RSP 

and STCI, whereas in tree-line, it was correlated with elevation, slope, ProfC and 

WI. For clay content, the topographic variables that showed significant 

correlation (p<0.05) were elevation, PlanC, TanC, SCA, RSP, STCI and WI in the 

alleys. The same parameters, except elevation, were correlated with clay 

content in the tree-line. Coarse fraction in the alley was correlated with 

elevation, slope, ProfC, TanC and WI. In the treeline, coarse fraction was 

correlated with elevation and ProfC. 

The level of correlation also changed based on sampling location (tree-line 

vs. alley). For instance, the r for TOC and slope was -0.54 and -0.29 in alleys and 
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tree-lines, respectively. The value of r for the association between coarse 

fraction and elevation was 0.69 in the alley but 0.60 in the tree-line. Over the 

whole landscape segment, the correlation was moderate and sometimes weak: 

r-values ranged from |0.01| to |0.69|.  This level of correlation was expected and 

is not unusual in soil-landscape studies (Moore et al., 1993; Garten et al., 2007). 

3.4. Prediction of soil properties  

To determine the appropriate interpolation procedure for the spatial 

distribution of soil properties, regression, ordinary kriging and regression -

kriging model C were employed. Owing to the weak correlation between the 

explanatory variables and the dependent variables, most soil-landscape models 

had weak R2 values (Table V.c). On the other hand, the model R2 values for TOC 

in the tree-line was 0.41 0.51 and for coarse fraction in the alley. The stepwise 

regression also revealed which terrain variables were significant in predicting 

the distribution of soil properties. The significance of the terrain variables also 

varied from alley and tree-line locations. The model parameters for the 

distribution of soil pHw, for instance, include elevation, TanC, ProfC, SCA and 

RSP in the alley. In the tree-line, model parameters were PlanC, TanC, SCA and 

RSP. 

A summary of the model MAE and RMSE is presented in Table V.d. Of the 

soil properties studied, only the distribution of the coarse fraction in the alley 

was accurately predicted by regression, which had the minimum RMSE at 4.79 

owing to the high correlation of coarse fraction with model parameters 

(elevation, slope, TanC and WI). The other soil properties were more accurately 

predicted by ordinary kriging. Regression and regression kriging had high MAE 
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and RMSE which we attribute to the low correlation of regression mode l 

parameters with soil properties. However, regression kriging had lower MAE 

and RMSE than regression, which indicate improved prediction highlighting the 

benefit of residual kriging. Kriged maps were created for TOC and coarse 

fraction (Fig. V.e) assuming that there were clear boundaries between the alley 

and the tree-line for each of the soil properties. Based on field observations, the 

grower follow strict orchard floor management whereby the tree-lines are kept 

free from ground cover vegetation (grasses or weeds) and sod strips are 

maintained in the alley.   

 

4. Discussion 

Previous studies conducted reveal the behaviour of soil spatial structure 

and variability in natural vegetation areas and in monoculture farms. The 

present study describes the distribution of some soil properties in a 

heterogeneously-managed orchard. We found that the distribution of soil 

properties in the site was affected more by orchard floor management than by 

terrain properties. The low levels of TOC in the tree-line was attributed to the 

periodic application of herbicide products that prohibited ground cover growth. 

Both the proportion, and the spatial structure of TOC (Fig. V.c) in the tree-lines 

were significantly lower in soils collected in the tree-line. We also observed that 

TOC levels were lower in the western side, where replanting took place in 2006, 

compared with the rest of the study area (Fig. V.e). However, the tree line in the 

western side had relatively higher proportion of TOC compared with the alley.  

This is most likely caused by addition of trimmed biomass, now discontinued, 
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after the original trees were removed and while the new stocks were growing. 

Similarly, Hipps and Samuelson (1991) found that organic carbon, along with 

other key soil nutrients, were significantly lower in bare soils where herbicide 

was applied than in grassed areas of an apple orchard. Soil organic carbon was 

also lower in cultivated lands than in the adjacent restored grassland in a study 

in Saskatchewan, Canada (Nelson et al., 2008).  

More evidence of management practice altering soil patterns is provided 

by the variability of coarse fraction. The significantly higher amount of coarse 

fraction in the tree-lines compared with alleys is most likely the result of 

ripping during orchard establishment. Ripping may have resulted in the 

incorporation of coarse materials from B and C horizons into the surface 

horizon. Hydraulic properties of the soil, especially the rate of infiltration 

(Brakensiek and Rawls, 1994) will have been altered. 

The results of the topographic analysis also indicate that within -field 

management practises altered the distribution of some soil properties in the 

apple orchard landscape. Correlations between terrain parameters and soil 

properties differed markedly between alley and tree-line samples (Fig. V.d). 

Correlations were either enhanced or moderated as evidenced by, for example, 

non-significant to highly significant positive correlations between TOC and 

elevation in the alley and tree-line, respectively. Empirically, under natural 

conditions, TOC is expected to show negative correlation with elevation 

(Manning et al., 2001) due to higher moisture contents and therefore organic 

matter accumulation, in lower lying areas. This is not the case in the tree-line, 

probably because of management practises. The association of coarse fraction 

and elevation was lower in the tree-line than in the alley. Similar trends in 
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association (either reduced or enhanced) were observed for other soil 

variables. These observations imply a masking effect of management practises 

on soil distribution. This masking effect renders the distribution of soil 

properties more complex and sometimes unpredictable. Other management-

related factors, such as age of trees, variable irrigation scheme and varietal 

management regimes, which were not considered in this study, are envisaged to 

further explain this variability.  

Guo et al. (2009) found that for a hilly area in South-Western China, soil 

organic matter is negatively correlated with slope and elevation by about 50% 

and to WI by only 30%. However, we observed that TOC was not affected by WI 

and elevation in the alleys but positively correlated with elevation in the tree-

line. The only plausible explanation for this is the constant addition of mulch 

material in the tree-line on elevated sites in order to reduce soil erosion and 

reduce the impact of pesticide on neighboring bodies of water (rivers and 

dams). This was supported by the grower during a follow-up interview. Organic 

carbon is an important parameter in predicting environmental fate and 

behaviour of pesticides (Wauchope et al., 2002). A direct link between sorption 

properties of organic herbicides and soil organic carbon has also been 

established (Coquet and Barriuso, 2002). Farenhorst et al. (2008) found that 

integrating soil and topographic properties can best model the distribution of 

2,4-D sorption which has weak soil sorption capacity. The spatial structure and 

distribution of TOC in this kind of landscape implies that pesticide risk 

assessment and models should accommodate the spatial variability of soil 

parameters caused by management practises in order to improve accuracy and 

reliability.  
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The geostatistical prediction show that ordinary kriging provide good 

results for modelling the distribution of soil properties. This was expected, and 

due to the low correlation of the terrain parameters with soil properties, 

regression kriging did not show better predictions than ordinary kriging. This 

suggests that variogram analysis and kriging work well for our study site 

considering the heterogeneity of soil properties that have been brought about 

by existing management regimes. 

 

5. Conclusion and Recommendation 

The degree by which terrain affected the distribution of soil properties 

investigated here varied between the alley and the tree-line. Ordinary kriging 

interpolation also reveal the masked extent to which orchard floor management 

influenced the distribution of soil properties. This rendered the orchard soil to 

have a distinct spatial pattern.  

This study also shows that soil sampling in this type of landuse should be 

stratified. There is clear spatial heterogeneity of soil properties and that 

management history adds to the complexity, yet in a systematic and predictable 

way. The spatial prediction of soil properties is important in order to identify 

zones or pockets that are critical in terms of material dissipation or 

accumulation.  
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Table V.a. Terrain parameters calculated in this study. 

Attribute Description Formula (reference) 

Slope, °  rate of change of elevation 謬権掴2 髪 権槻2  

(Wilson and Gallant, 2000)  

Plan curvature (PlanC), ° 

m-1 

horizontal curvature, a measure of 

topographic conv ergence and 

divergence 

権掴掴権槻2 伐 2権掴槻権掴権槻 髪権槻槻権掴2喧3【2
 

(Wilson and Gallant, 2000)  

2

Profile curvature (ProfC), 

° m-1 

vertical curvature, a measure of flow 

acceleration or decel eration 

権掴掴権掴2 髪 2権掴槻権掴権槻 髪 権槻槻権槻2圏3【2
 

(Wilson and Gallant, 2000)  

Tangential curv ature 

(TanC), ° m-1 

a measure of flow convergence and 

divergence 

権掴掴権槻2 伐 2権掴槻権掴権槻 髪権槻槻権掴2喧圏1【2
 

(Wilson and Gallant, 2000)  

2

Specific catchment area 

(SCA), m2m-1 

the ratio of the area upslope of a 

contour segment that contributes flow 

to that segment and the length of that 

segment 

A/l  

(Wilson and Gallant, 2000)  

Sediment transport 

capacity index (STCI)  

equivalent to RUSLE Length-Slope 

factor

磐 鯨系畦
22 ┻13

卑0┻6 抜 磐 嫌件券紅
0┻0896

卑1┻3
 

(Burrough and McDonnell, 

1998) 

Relative stream power 

(RSP) 

an index of erosive power of overland 

flow  

鯨系畦" 抜 建欠券紅  

(Moore et al., 1993)  

Wetness index (WI) characterise spatial distribution of 

surface saturation 

ln岫鯨系畦【建欠券紅 岻
 

(Beven and Kirkby, 1979)  

 

notations: zn corresponds to each grid in a 3x3 grid matrix, clockwise from top right, with h as grid size;  権掴" 噺" 佃2貸佃6

2ℎ
, 権槻" 噺" 佃8貸佃4

2ℎ
, 権掴掴" 噺 "佃2貸2佃9袋佃6

ℎ
2 , 権槻槻" 噺" 佃8貸2佃9袋佃4

ℎ
2 , 権掴槻" 噺 "貸佃7袋佃1袋佃5貸佃3

4ℎ
2 , 喧 噺 権掴2髪 権槻2, 圏 噺 喧髪 1, 紅 噺

arctan"岫嫌健剣喧結岻. All formula from Wilson and Gallant (2000) and Moore et al. (1993) 
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Table V.b. Summary statistics of properties for soils sampled in alleys and in tree 
lines. 

Variable 
Sampling 

location 
Min Max Mean§ Median SD 

Skew-

ness 
CV 

TOC, % alley 2.2 6.9 4.5a 4.7 1.1 -0.1 24.3 

tree line 1.5 5.5 3.4b 3.4 0.8  0.0 23.1 

pH (1:1 

H2O) 

alley 6.1 7.5 6.9 6.9 0.3 -0.5 4.7 

tree line 5.4 7.6 6.9 7.1 0.5 -1.2 6.4 

EC, mS cm-1 alley 181.8 729.1 404.6a 378.7 118.6 0.6 29.3

tree line 160.9 1071.6 339.3b 328.8 124.9 2.5 36.8 

 Clay, % alley 16.1 33.8 23.3 22.9 3.7 0.6 15.7 

tree line 16.7 35.7 23.1 22.8 3.5 0.5 14.9 

Coarse 

fraction, 

% 

alley 7.4 47.2 30.6b 31.2 8.7 -0.4 28.3 

tree line 15.9 50.4 35.0a 35.6 7.7 -0.3 21.9 

 

TOC – total organic carbon; EC – electrical conductivity 

§ means of variables for each sampling location followed by different letters are significantly different at 0.05 

level of confidence using Welch Modified two sample t-test. 
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Table V.c. Summary table of model parameters for soils properties using stepwise linear regression with Akaikie Information Criterion.  

Location Soil property  Intercept Elevation Slope PlanC ProfC TanC SCA RSP WI STCI 
Model 

R2 
p-value 

Alley TOC, % (df=78) 7.54  -0.23        0.30 <0.001 

pHw (df=74) 0.17 0.01  -0.10 0.36  0.0039 -0.01   0.21 <0.01 

EC,  mS cm-1 (df=73) 2098.56  -53.59   214.10 2.03 -14.10 239.94 75.26 0.20 <0.05 

Clay, % (df=74) 43.95    -7.40  32.16 0.13 -0.36 -4.26  0.32 <0.001 

Coarse Fraction, % 

(df=75) 

-348.11 0.63 1.14   -24.62   7.11  0.51 <0.001 

Tree 

line  

TOC, % (df=75) -13.08 0.03    -1.19   0.07   -0.28 0.41 <0.001 

pHw (df=75) 7.18   -0.46  2.35 0.01 -0.05   0.19 <0.01 

EC,  mS cm-1 (df=73) -2168.64 3.94 51.49 -165.02  707.24 3.57   70.62 0.32 <0.001 

Clay, % (df=74) 35.44   -5.99  28.51 0.08 -0.23 -2.38  0.21 <0.01 

Coarse Fraction, % 

(df=77) 

-195.81 0.41  -1.57     3.61  0.33 <0.001 

 
EC – electrical conductivity; PlanC – plan curvature, ° m-1; ProfC – profile curvature, ° m-1; TanC – tangential curvature, ° m-1; RSP – relative stream power; SCA – specific catchment area, m2m-1; STCI – 

sediment transport capacity index; TOC – total organic carbon, % WI – wetness index.  
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Table V.d. Results of the jack-knife validation of the three prediction models 

 Alley  Tree line  

 TOC (%) pHw EC,  mS cm-1 Clay (%) 
Coarse 

Fraction 

(%) 

TOC (%) pHw EC,  mS cm-1 Clay (%) 
Coarse 

Fraction 

(%) 

MAE1  

Regression 0.67 0.23 98.31 2.86 3.68 0.62 0.29 66.74 2.71 5.73 

Ordinary 

Kriging 
0.37 0.17 65.33 1.67 3.76 0.48 0.11 29.26 2.62 3.71 

Regression 

Kriging 
0.52 0.21 88.03 2.97 3.75 0.63 0.21 65.02 2.57 4.85 

RMSE2  

Regression 0.79 0.27 114.29 3.64 4.79 0.72 0.35 95.56 3.12 6.99 

Ordinary 

Kriging 
0.46 0.22 79.56 2.28 5.12 0.54 0.14 36.95 3.00 4.37 

Regression-
kriging  

0.64 0.25 105.02 3.63 4.86 0.73 0.27 94.64 2.94 6.65 

EC – electrical conductivity, mS cm-1; PlanC – plan curvature, ° m-1; ProfC – profile curvature, ° m-1; TanC – tangential curvature, ° m-1; RSP – relative stream power; SCA – specific catchment area, m2m-1; STCI – 

sediment transport capacity index; TOC – total organic carbon, % WI – wetness index.  

TOC – total organic carbon; WI – wetness index.  

1MAE – mean absolute error 

2 RMSE – root mean square error 
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Figure V.a. Location map of the study site (Each × represents a sampling location of 
two samples, one in the alley and one in the tree line). 

South Australia 
Mt. Lofty  

Ranges 
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Figure V.b. Digital terrain models generated from topographic and drainage maps of 
the study site (contour lines in gray are from 490 m at the top right to 540 m at the 
bottom left). PlanC – plan curvature; ProfC – profile curvature; TanC – tangential curvature; RSP – 

relative stream power; SCA – specific catchment area, m2m-1; STCI – sediment transport capacity 

index; WI - wetness index).  
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Figure V.c. Variograms of total organic carbon (%) in the alley (a) and tree line (b), 
pHw in the alley (c) and tree line (d), log normal electrical conductivity in the alley 
(e) and tree line (f), per cent clay in the alley (g) and tree line (h), and per cent 

coarse fraction in the alley (i) and tree line (j). 

a b 

c d 

e f 

g h 

i j 



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 
99 

 

 
 

 
 

  

 

 

 

 
 
 

Figure V.d. Pearson correlation coefficients of soil properties and terrain 
parameters.  

PlanC – plan curvature; ProfC – profile curvature; TanC – tangential curvature; RSP – relative stream power; SCA – specific 
catchment area, m2m-1; STCI – sediment transport capacity index; WI - wetness index) *** p < 0.001 ** p < 0.01 * p < 0.05   
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a

 

b  

 

Figure V.e. Predicted map of total organic carbon (a), and coarse fraction (b), of the 
study site using ordinary kriging (both properties are in %; hatched area is the tree 
line, the rest is alley; contour lines at 5 m interval from 490 m in the top right to 540 

m in the bottom left). 

 

  

2.27 – 2.92 

2.93 – 3.72 

3.73 – 4.52 

4.53 – 5.31 

5.32 – 6.11 

Open/access area 

14.49 – 20.87 

20.88 – 25.92 

25.93 – 29.99 

30.00 – 33.62 

33.63 – 37.80 

37.81 – 42.53 

Open/access area 



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 
101 

 

CHAPTER VI 
 
 
 

Spatial distribution of diuron sorption affinity as affected by soil, terrain and 

management practices in an intensively manged apple orchard 
 
 
 
 

BENG P. UMALI1, DANNI P. OLIVER2, BERTRAM OSTENDORF1, SEAN FORRESTER2, 
DAVID J. CHITTLEBOROUGH1, JOHN L. HUTSON3, and RAI S. KOOKANA2,  

 
 
 
 

1Ecology, Evolutionary Biology and Landscape Science 
The University of Adelaide 

 
2CSIRO Land and Water, Water for a Healthy Country National Research Flagship 
 

3School of the Environment, Flinders University  
 
 
 
 
 
 

Journal of Hazardous Materials – 2012, accepted





Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 
103 

 

  



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 

104 

VI. Spatial distribution of diuron sorption affinity as affected by 

soil, terrain and management practises in an intensively 

managed apple orchard 

 

Abstract 

We investigated how the sorption affinity of diuron (3’-(3,4-

dichlorophenyl)-1,1-dimenthyl-urea), a moderately hydrophobic 

herbicide, is affected by soil properties, topography and management 

practises in an intensively managed orchard system. Soil-landscape 

analysis was carried out in an apple orchard which had a strong texture 

contrast soil and a landform with relief difference of 50 m. Diuron 

sorption (Kd) affinity was successfully predicted (R2 = 0.79; p < 0.001) 

using a mid-infrared – partial least squares model and calibrated 

against measured data using a conventional batch sorption technique.  

Soil and terrain properties explained 75% of the variance of 

diuron Kd with TOC, pHw, slope and WI as key variables. Mean diuron Kd 

values were also significantly different (p < 0.05) between alley and tree 

line and between the different management zones. Soil in the tree line 

generally had lower sorption capacity for diuron than soil in the alleys. 

Younger stands, which were found to have lower TOC than in the older 

stands, also had lower diuron Kd values. In intensively managed 

orchards, sorption affinity of herbicides is influenced not only by soil 

properties and terrain attributes but also by the management regimes. 

Keywords 

diuron, MIR-PLS prediction, soil-landscape analysis, apple orchard, spatial  

variability 
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1.  Introduction 

Agricultural pesticides continue to contribute to the emergence of 

environmental and health risks. Active parent compounds and by-products 

have contaminated, in some cases, both soil and water ecosystems near, or even 

several kilometers away from, vineyards, orchards and key agricultural 

production areas (Wesseling et al., 1997; Gilliom et al., 2006). Assessing the risk 

and predicting the impact and movement of pesticides is critical for informing 

both policy makers and growers. 

Soil and topography are among the many factors that affect the behavior 

of pesticides and likelihood of off-site transport. Oliveira et al. (1999) mapped 

the distribution of imazethapyr (a herbicide used in soybean production) 

sorption based on soil pH variability.  Later on, Farenhorst et al. (2008) 

demonstrated the association of 2,4-D sorption, soil organic matter and slope 

position, in which the greatest sorption was found in lower landscape positions 

with higher soil organic matter. More recently, topographic analysis in mapping 

the distribution of soil properties and processes (or soil-landscape modeling) 

has become increasingly used to assess the movement and behavior of 

agricultural pesticides at the landscape level. For instance, it was found that 

predicting the spatial distribution of 2,4-D sorption using soil properties was 

enhanced by about 20% after incorporating terrain parameters (Farenhorst et 

al., 2003; Farenhorst et al., 2008). There is evidence that spatial estimates of 

pesticide sorption can be enhanced by reliable and easily accessible digital 

elevation data in combination with terrain attributes derived from these data. 

There is also an increased recognition that spatial factors influence the 
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distribution of pesticide sorption. However, little is known about how within-

field management practises interact with natural biophysical variability in 

order to mitigate pesticide offsite impacts. In a heterogeneously managed hilly 

orchard, for instance, the effect of topography on soil distributio n is masked by 

the long-term differential management in the alley and tree line (Umali et al., 

2012). Thus, management practises affect soil variability and hence have the 

potential to influence pesticide sorption characteristics. 

However, mapping of the spatial distribution of pesticide sorption relies 

on a spatially adequate and representative set of soil samples. This makes it 

necessary to explore new techniques that reduce soil and pesticide analysis 

costs without compromising prediction accuracy. Recently, a mid-infrared 

spectroscopy coupled with partial least squares (MIR-PLS) technique was 

successfully used to predict not only key soil properties (Janik and Skjemstad, 

1995) but also pesticide sorption affinity (Forouzangohar et al., 2008). This 

technique is a robust, multivariate statistical tool for quantitative analysis of 

mid-infrared (400–4,000 cm−1) spectral data (Haaland and Thomas, 1988). 

Applying these techniques has the potential to assist the process of elucidating 

the spatial distribution of pesticide sorption.   

Diuron (3’-(3,4-dichlorophenyl)-1,1-dimenthyl-urea) is a non-selective, 

systemic herbicide that blocks electron transport at photosystem II (Giacomazzi 

and Cochet, 2004). It is non-ionic, moderately soluble in water (42 mg L -1) and 

breaks down to several derivatives. In Australia, it is used in irrigated and 

horticultural production areas (Bowmer et al., 1998).  As a widely used and 

persistent herbicide (DT50 = 75-100 d), it has been detected in runoff, tile drain 

water (Stork et al., 2008), river systems (Meyer et al., 2010) and enclosed 
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seawater (Martinez et al., 2001). Diuron is moderately hydrophobic and its 

behaviour in soil is said to be influenced by soil organic carbon (Ahangar et al., 

2008). Giacomazzi and Cochet (2004) wrote a comprehensive review on the 

behaviour and the environmental effects of diuron.  

The aim of this study was to investigate how sorption of diuron is affected 

by soil properties, terrain attributes and within-field management practises 

(including orchard stand characteristics, age, planting density, etc.) in a 5.6 ha 

apple orchard in the Mt. Lofty Ranges (MLR), South Australia.  

2.  Methodology 

2.1.  Study site, soil sampling and terrain parameterization  

The study site is located in the central Mount Lofty Ranges (MLR) which is 

30 km east of Adelaide, South Australia (34° 54.918" S 138° 48.107" E). The 5.6 

ha orchard is planted to apples of various varieties and was established in the 

early 1960s.  It is hilly with mean elevation of 513 m, maximum slope of 30° and 

mean slope of 13°. The area has a Mediterranean climate with long-term (50 y) 

average maximum and minimum temperatures of 12°C and 5°C during winter 

months and 26°C and 14°C during summer months, respectively, and a xeric 

soil moisture regime. The mean monthly rainfall from 1970 to 2000 was 

approximately 150 mm in the winter and 32 mm in the summer. The soils at the 

site developed from Proterozoic shales, siltstones and metasandstones (Hall et 

al., 2009) and are classified as Petroferric, Melanic-Vertic, Red-Yellow 

Chromosols (Isbell, 2002), which dominate (about 60%) the entire MLR region. 

Profiles on the upper slopes are thin, moderately gravelly and silty.  
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The study site (5.6 ha) was divided into five management zones that were 

unique in at least one of the following characteristics: tree age, variety of apples, 

and tree spacing or density.  These zones were: A - planted in 2006, Pink Lady 

variety, 3.5 m × 1 m spacing (2,860 trees per ha); B - planted in 1980, Royal 

Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - planted in 1960, 

Jonathan and Granny Smith varieties, 4.5 m × 2 m spacing (1,110 trees per ha); 

D - planted in 1960, inter-row of Jonathan-Granny Smith and Pink Lady 

varieties, 4.5 m × 2 m spacing (1,110 trees per ha); and E - planted in 1960, 

Jonathan and Granny Smith varieties, 5 m × 4 m spacing (500 trees per ha). 

Adjacent orchards and orchards throughout region are managed in a similar 

manner but zones may vary in configuration and size. A stratified random 

sampling technique was used to collect soil samples. A total of 100 sampling 

locations were randomly selected across the study site, in effect 20 samples 

were collected in zone A, 5 in zone B, 32 each in zones C and D and 11 in zone E. 

The number of samples in each zone was decided based on size and complexity 

of the terrain. Sampling locations were referenced using a high-sensitivity (~2 

m accuracy) global positioning system (GPS) device. Each sampling location 

corresponded to a pair of sampling units that represented the alley and the tree 

line. This resulted in 200 (2 × 100) sampling points. In each sampling point, a 

0.25 m2 area was established where 5 soil samples were taken – one at the 

center and 4 at each corner, which were composited. The samples were air-

dried and sieved to < 2 mm. As part of the orchard floor management, sod strips 

using a variety of grass species were maintained in the alley. In contrast, a clear 

apple tree understorey was maintained in the tree-line which was mulched only 

at the establishment phase. Relevant soil properties were determined in a 
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previous study and are summarized in Table VI.a (Umali et al., 2012). For the 

purpose of this study, properties considered to influence the behavior of diuron 

sorption were used, namely: total organic carbon (TOC, %); soil pH in 1:1 H2O 

suspension (pHw); electrical conductivity (EC, mS cm-1); and clay (< 0.002 mm) 

content (Clay, %).  

Key terrain parameters were derived from a 5 m digital elevation model 

(DEM) produced from elevation and drainage datasets (Hutchinson, 1989) 

obtained in digital format from the Department of Environment and Natural 

Resources of South Australia (DENR-SA). The DEM was smoothed (Hengl et al., 

2004) and sampled using the GPS locations of the sampling points. The terrain 

variables used in this study were: elevation (Elevation, m), slope (Slope, °), 

mean curvature (MeanC, ° m-1), specific catchment area (SCA, m2m-1), and 

wetness index (WI). Elevation is the vertical height with reference to mean sea 

level. Slope is the rate of change of elevation with horizontal distance. Mean 

curvature (MeanC) describes the flow convergence and relative deceleration of 

material flow.  Specific catchment area (SCA) is the ratio of the area upslope of a 

contour segment that contributes flow to that segment to the length of that 

segment (Wilson and Gallant, 2000). Wetness index (WI) is a gauge used to 

characterize spatial distribution of surface saturation (Beven and Kirkby, 

1979).  A more detailed explanation and calculation of these parameters is 

given in Wilson and Gallant (Wilson and Gallant, 2000). 

2.2.  Diuron sorption determination by mid-infrared spectroscopy 

Diuron was used as a test chemical and as a representative of a 

moderately hydrophobic, neutral pesticide. Due to the cost involved in 
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determining sorption coefficient (Kd) using traditional laboratory techniques, 

diuron Kd for all soil samples was predicted using a MIR-PLS technique. For this 

study, the predictions were calibrated by analyzing a sub-set (50 samples) 

using traditional batch equilibrium method (OECD, 2000). The soils selected for 

traditional determination of Kd values (reference analysis) were chosen to 

cover the range of total organic carbon content (1.55-6.97%) found in our study 

site. In the batch sorption experiment, 25 mL of 2 mg L -1 diuron solution was 

added to 5 g soil (in triplicate). Soils were shaken for 24 h on an end-over-end 

shaker then centrifuged for 10 min at 3500 g. The supernatant was filtered 

through a 0.45 µm polytetraflouroethylene (PTFE) syringe filter. The 

concentration of the remaining diuron in the solution was measured using an 

established protocol for diuron analysis on a high-performance liquid 

chromatograph (HPLC) (Oliver et al., 2005; Forouzangohar et al., 2008). The 

Agilent 1100 HPLC was fitted with an Altima HP C18 column (5 µm particle 

size; 250 mm × 4.6 mm internal diameter). The mobile phase was 

acetonitrile:water (60:40) with a flow rate of 1 mL min-1 and a sample injection 

volume of 20 µL. The amount of diuron sorbed by soil is the difference between 

the initial and the final concentration of diuron in the solution after 

equilibration. Sorption coefficient (Kd) values were calculated as the ratio of 

diuron sorbed by the soil to that remaining in the solution. Method 

reproducibility was ensured by routine analysis of blanks and a series of 

standard diuron solutions. 

Losses of diuron on the polypropylene tubes and PTFE syringe filters 

were tested. Diuron solution with varying concentrations (0.25, 0.45 and 0.95 

μg mL-1) were prepared. About 20 mL of each solution was placed in 
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polypropylene tubes (replicated) and shaken along side the batch with soil 

solution. Another 5 mL of each solution was passed through PTFE syringe filters 

(replicated). About 6% loss was observed in the polypropylene tubes and none 

in the filters. Corrections, due to losses of diuron on the polypropylene tubes, 

were then made to the concentration of diuron remaining in the solution in 

calculating soil sorption. 

To predict diuron Kd values by chemometric analysis, we used the spectral 

data in the frequency range 4,000-500 cm−1 scanned at 8 cm−1 resolution using 

a PerkinElmer Spectrum One FT-IR (PerkinElmer, Wellesley, MA) obtained 

using 0.1 g of soil placed neatly in a stainless steel sample cup. The 

spectrometer has a restricted frequency range within the desired spectral 

region. Samples were prepared for scanning, without dilution, by crushing 10 g 

of the sample in a vibrating ring mill equipped with a steel puck for 60 s. The 

MIR data in absorbance units was transformed using baseline offset and linear 

baseline correction prior to analysis using The Unscramber X (version 10.1 

Camo Software, Norway). A principal component analysis (PCA) of the spectral 

data was first carried out which revealed no potential extreme spectral outliers 

using Hotelling T2 statistics at 5% level of significance. The MIR data was then 

used as the independent variable (in 446 × 50 matrix form) and the laboratory-

derived diuron Kd as the response variable (in 1 × 50 matrix) in the partial least 

squares (PLS) regression [8]. The PLS regression projects the spectral and the 

response variable to a small number of “latent” variables called PLS loadings 

(Geladi and Kowalski, 1986). Both data sets were mean centered and given 

equal weights upon implementation of the regression. Initial PLS regression 

showed four samples had high leverage and deviated largely from the 
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regression line and were thus removed as outliers. The PLS regression was 

recalculated without the outliers and a full cross-validation procedure was 

made to assess model reliability. Using the constructed cross-validated model, 

diuron Kd was predicted for the rest of the samples along with the samples used 

in the PLS regression ensuring all sampling points had diuron Kd values from 

the same data source. The predicted values were then used in subsequent 

analysis and spatial interpolation.  

2.3.  Statistics and modeling spatial distribution of diuron Kd 
values 

The distribution of the soils data was analyzed using standard statistical 

parameters and the Shapiro-Wilks test of normality. Results indicated that EC 

data for both sampling locations were positively skewed and were log 

transformed. The Pearson product moment (r) was used to assess the level of 

correlation between diuron Kd and the independent variables (soil properties 

and terrain parameters). Statistical inferences were done simultaneously for all 

variables, therefore, the adjusted p-value (p) using the Holm’s method (Holm, 

1979) was used to infer significant correlation between variables. Significant 

mean difference between alley and tree-line soil properties was determined 

using the Welch modified test. Effects plots (Fox, 2003) were used to illustrate 

the effects of zones and sampling location on TOC and diuron Kd. Means of TOC 

and diuron Kd were plotted in each management zone and sampling location. 

Least square difference (LSD) values were calculated at p < 0.05 for each 

interaction pair and used to compare mean difference . Soil-landscape modeling 

of diuron Kd was also done using soil properties (Kdsoil_alley, Kdsoil_treeline), terrain 

parameters (Kdterr_alley, Kdterr_treeline), and the combination of soil and terrain 
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variables (Kdsoilterr_alley, Kdsoilterr_treeline). Because the independent variables had 

various units, scaling to unit variance was done using the equation: 

XST =
(X - m)

s
, 

where XST is the standardised value, X is the original value, m is the mean, and s 

is the standard deviation. PLS regression models were developed using the 

nonlinear iterative partial least squares (NIPALS) algorithm (Geladi and 

Kowalski, 1986) to model diuron sorption affinity in the alley and in the tree-

line.  

To create a visual spatial interpolation of the diuron Kd, we used the 

ordinary kriging procedure in ArcMAP 10 (ESRI, Redlands, CA). Semi-variogram 

analysis performed in Vesper v1.62 (Minasny et al., 2005) showed a spatially 

autocorrelated diuron Kd. Kriging parameters were set at a maximum lag size of 

300 m divided into 15 lag distance classes. The alley and tree line boundaries 

were first digitized using an orthorectified high-resolution satellite image of the 

study site. Ordinary kriging of diuron Kd was done on each of the alley and tree 

line data set. Then the two interpolated maps were overlaid.  

 

3.  Results and Discussion 

3.1  Prediction of diuron Kd affinity using MIR-PLS model 

The PLS regression performed in this study showed that spectral data 

were useful in inferring sorption properties of our soil samples for diuron. Two 

of the seven PLS loadings used to generate the MIR-PLS model to predict diuron 

Kd for all soil samples are presented in Fig. VI.a. Positive peaks corresponding to 

both clay (near 3550 cm-1 and 3650 cm-1) and organic matter (near 2900 cm-1) 



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 

114 

characterized the first PLS loading. The cumulative explained variance of all 

seven loadings was 90%. Cross validation showed good agreement between the 

Kd values for diuron predicted by the MIR technique and those determined by 

conventional batch equilibrium methodology in the laboratory with R2 = 0.79 (p 

< 0.001) and a standard error of cross-validation (SECV) of 2.84 (Fig. VI.b). The 

SECV is a measure of the size of the probable error occurring in the model 

prediction. Forouzangohar et al. (2008) reported an R2 and SECV of around 0.81 

and 2.39, respectively, in recent work on diuron Kd prediction using MIR-PLS. 

Based on this relationship, the PLS model was used to predict diuron Kd values 

for the rest of the samples, which was used in subsequent analyses. The mean 

diuron Kd was 28.3 L kg-1 while the minimum and maximum values were 7.9 

and 46.2 L kg-1, respectively (Table VI.a), which followed Gaussian distribution 

at p < 0.05. 

3.2  Relationship of Diuron Kd with soil properties and terrain 
parameters 

Correlation analysis of diuron Kd with soil and terrain variables revealed 

that the strength of correlation was different between the alley and the tree-line 

(Table VI.b). Generally, stronger correlation was observed in the alley than in 

the tree-line. For instance, the value of r for the association of diuron Kd and 

TOC in the alley was 0.70 (p < 0.001) while in the tree-line was 0.55 (p < 0.001). 

The difference may be explained by low TOC in the tree-line and, thus, low 

sorption affinities.  Also, a stronger negative correlation was observed in the 

alley (r = -0.56; p < 0.001) than in the tree-line (r = -0.35; p < 0.01) for diuron Kd 

and slope. We argue that this was due to the fact that the negative correlation of 

TOC and slope was also stronger in the alley (r = -0.53; p < 0.001) than in the 
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tree-line (r = -0.29; ns). This means that for our site, areas with steep slopes 

have low TOC but because of the addition of mulch in the tree-line (as a 

consequence of management practises), the effect of slope on TOC was masked 

(Umali et al., 2012). These observations necessitated the development of 

regression model and kriging estimation unique for alley and for tree-line soils.    

The effect of TOC on the diuron Kd affinity may also be inferred from the 

MIR-PLS regression. A positive contribution of organic carbon around 2900 cm-

1 was revealed by the first PLS loading (Fig. VI.a). Also, previous work on solid-

state 13C nuclear magnetic resonance spectroscopy suggested that certain 

carbon functional groups influence diuron sorption (Ahangar et al., 2008).  

Other factors aside from TOC, may affect diuron Kd affinity. In a recent 

study, Stork et al. (2008) detected more than 70% of diuron and its metabolites 

in the top 15 cm of soil in the field after application, even at TOC level just less 

than 1%. It was found that, at low TOC values, the sorption of non-ionic 

pesticides like diuron, may be indirectly affected by other soil properties such 

as pH and cation exchange capacity (Reddy et al., 1992). The negative 

correlation (p < 0.05) of diuron Kd with pHw was noted by Gaillardon et al. 

(1980) who attributed this to the interaction of diuron molecules with cationic 

species like Fe3+ and Al3+ in humic substances. However, we cannot confirm at 

this stage whether our samples have high Fe3+ and Al3+ contents. Unexpectedly, 

clay content was negatively correlated with diuron Kd. In most circumstances, 

even for neutral molecules like diuron, Kd is normally positively correlated with 

clay content (Liu et al., 1970) as an indirect effect of clay and TOC correlation. 

We found, however, that there is no significant correlation between TOC and 

clay content for our soil samples. In a related study, it was also found that clay 
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and sorption properties were inversely related (Celis et al., 2006) for two non-

ionic organic compounds (phenanthrene and dibenzofuran), but no further 

explanation was given.  

The relationships of diuron Kd with terrain parameters varied depending 

on sampling location (Table VI.b). Generally, the relationship was stronger in 

the alleys and weaker or negligible in the tree line. For instance, diuron Kd 

values were negatively correlated with elevation in the alley (r = -0.35; p < 

0.001) but not in the tree line. In terms of slope, the negative correlation with 

diuron Kd decreased from r = -0.56 (p < 0.001) in the alley to r = -0.35 (p < 0.01) 

in the tree line. The negative correlation of diuron Kd values with elevation (in 

the alley) and slope (both alley and tree line) may be due to loss of organic 

matter and clay from erosion zones.  

The result of the soil-landscape modeling is summarized in Table VI.c. 

Using only either soil properties or terrain variables, the R2 and RMSEP values 

were better in the alley than in the tree-line. Moreover, the tree line PLS 

regression model for diuron Kd using only terrain variables was very poor (R2 

0.09). However, when soil properties and terrain variables were both used as 

input parameters, the regression models improved by as much as 8´ (Table 

VI.c). PLS loadings indicate that in the first component of the regression models 

(Kdsoilterr_alley and Kdsoilterr_treeline), the greatest relative contribution came from 

TOC, pHw, slope and WI (Fig. VI.c). The effect of terrain on sorption properties 

cannot be overemphasized but should be considered as shown here and in 

other earlier works (Farenhorst et al., 2003; Farenhorst et al., 2008). The 

implication of this is that the fate of a non-ionic herbicide, like diuron, may be 

determined by hydrological processes, especially events that induce surface 
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runoff. Stork et al. (2008) found in a study conducted in a coastal catchment of 

southeast Queensland that about 0.6% of total diuron loading was detected 

(including two diuron metabolites) in runoff and had the potential to 

accumulate in river sediments. 

3.3  Sorption of diuron is affected by differential management 

between alley and tree line 

The kriged map of diuron Kd affinity shows the spatial variability of this 

property for the study site (Fig. VI.c). In this map, darker region corresponds to 

higher diuron Kd affinity and lighter region corresponds to lower diuron Kd 

affinity. The mean diuron Kd value for soils in the alley (28.3 L kg-1) was 

significantly greater (p < 0.05) than for soils in the tree line (23.8 L kg-1; hatched 

area in Fig. VI.d). The alley, where sod strips are maintained, also had 

significantly higher (p < 0.05) TOC than the tree line, which may explain the 

greater sorption of diuron (Table VI.a).  

The establishment of sod strips in the alley and a sod-free tree line in 

apple orchard management is a common practise in the MLR and other apple 

growing areas (Hogue and Neilsen, 1987) since apple trees do not compete well 

for nutrients and water. However, growers commonly add straw mulch to 

reduce erosion risk, minimize evaporation and protect newly established trees, 

but only in the first year of establishment.  This can provide soil in the tree line 

an additional source of organic carbon to which diuron may sorb potentially 

reducing pesticide offsite movement. This was evidenced in zone A (Figures 

VI.d and VI.e) where the level of TOC was higher in the tree line than in the 

alley, presumably as a result of the addition of mulch recently during 

establishment. In zones B, C, D and E, where there was no subsequent addition 
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of mulch, TOC levels in the tree line were significantly lower (p < 0.05) than in 

the alley. It has been well documented that when a soil is cultivated, the organic 

carbon decreases significantly (Baldock and Skjemstad, 1999). This data 

suggests that in the more recently cultivated zones (i.e. zone A cultivated in 

2006 and zone B in 1980), the organic carbon content in the alleys has not had 

sufficient time to increase after cultivation during the orchard establishment. 

By contrast the zones where cultivation in the alleys last occurred over 40 years 

ago (i.e. zone C, D and E), TOC under the sod strips increased significantly 

compared with the tree line. Moreover, the mean TOC in the alley in these zones 

is approximately 1.7× the mean TOC in zones A and B (Fig. VI.e). 

The observed differences in TOC were directly reflected in diuron Kd 

values, with higher Kd values for the tree line in zone A and higher Kd values for 

the alley in zones C, D and E (Fig. VI.e). This is most likely due to increased root 

density under the sod strips in the alleys while tree lines are kept sod-free 

through application of herbicides. 

This data suggests that management of tree crops should include the 

maintenance of grassed alleys and the continued application of mulch material 

within the tree lines to increase TOC in soil which would aid in increasing soil 

structural stability, pH buffering capacity, soil nutrient levels, water holding 

capacity (Baldock and Skjemstad, 1999) as well as sorbing pesticides. Finally, 

we suggest that growers ensure that the risk for offsite movement of pesticides 

is avoided by management practises that take into account the spatial 

variability of sorption for pesticides.  
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4.  Conclusion 

In this study, we used a recently developed technique (MIR-PLS) to 

predict Kd values for pesticides. The technique allows for quick and less 

expensive determination of sorption properties thereby facilitating faster 

assessment of the distribution and potential off-site migration of herbicides and 

other agro-chemicals.  

Soil properties together with terrain parameters influenced the spatial 

distribution of diuron sorption affinity at our study site. The level of TOC 

appears to be the parameter that most influences diuron sorption. TOC varied 

with different stand age and between the alleys and the tree lines within each 

zone. Slope and WI were also correlated with diuron sorption affinity. Variable 

soil properties and terrain properties resulted in spatial variability in herbicide 

sorption affinity. 

Management practises were also found to affect the distribution of diuron 

Kd values, mostly through their effects on TOC levels. The zones (differentiated 

by variable tree age, density and apple variety) influenced the distribution of 

soil properties and consequently affected the sorption of diuron. This implies 

that a differential herbicide or pesticide application or management regime 

such as extended or continued mulching after establishment might need to be 

observed to reduce offsite impacts of herbicide applications. 
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Table VI.a. Summary statistics of soil properties and diuron Kd determined for soils 

from alley and tree line.  

Variable 
Sampling 

location 
Min Mean Max 

TOC, % 

Alley 2.2 4.5b 7.0 

Tree line 1.6 3.4a 5.5 

pHw 

Alley 6.10 6.9a 7.5 

Tree line 5.40 7.0a 7.6 

EC†, mS cm-1 

Alley 5.20 5.96b 6.59 

Tree line 5.08 5.77a 6.98 

% Clay content 

(<0.002mm) 

Alley 16.1 23.3a 33.8 

Tree line 16.7 23.1a 35.7 

Diuron Kd, L kg-1 

Alley 12.6 28.3b 46.2 

Tree line 7.9 23.8a 42.0 

 

TOC – total organic carbon; EC – electrical conductivity († log-transformed data); pHw – pH 1:1 soil:H2O. Means 

within a variable denoted by same letter are not significantly different ( p < 0.05).  
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Table VI.b. Correlation matrix of diuron sorption affinity (Kd), soil properties and terrain parameters for alley (in bold) and tree-line (in 

bold-italics). 

 

 Kd TOC pHw EC† Clay Elevation Slope MeanC SCA WI 

Kd 1  0.70 *** -0.35 * 0.12  -0.2  -0.35 ** -0.56 *** 0.24  0.3  0.47 *** 

TOC 0.55 *** 1  0.07  0.55 *** 0.14  0.09  -0.53 *** -0.04  0.04  0.18  

pHw -0.56 *** -0.08  1  0.27  0.25  0.34 * -0.06  -0.25  -0.14  -0.19  

EC† -0.07  0.44 *** 0.03  1  0.23  -0.02  -0.20  -0.10  -0.19  -0.14  

Clay -0.25  -0.11  0.10  0.01  1  0.22  -0.16  -0.38 ** -0.34 * -0.37 ** 

Elevation -0.04  -0.42 *** -0.02  0.50 *** 0.09  1  0.12  -0.17  -0.29  -0.42 *** 

Slope -0.35 ** -0.29  -0.26  0.20  -0.10  0.12  1  0.08  0.72 *** -0.32 * 

MeanC 0.12  -0.10  -0.16  -0.17  -0.38 ** -0.17  0.08  1  -0.1  0.7  

SCA 0.20  0.03  -0.12  -0.18  -0.33 * -0.29  -0.1  0.72 *** 1  0.9 *** 

WI 0.29  0.01  -0.09  -0.35 ** -0.35 ** -0.42 *** -0.32 * 0.7 *** 0.9 *** 1  

 

TOC – total organic carbon, pHw – pH 1:1 soil:H2O; EC – electrical conductivity († log-transformed data); MeanC – mean curvature, SCA – specific catchment area; WI – wetness 

index. *** p < 0.001 ** p < 0.01 * p < 0.05 where p  is the adjusted p-value using Holm’s method.  
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Table VI.c. Soil landscape models for diuron Kd using Partial least squares (PLS) 

regression.  

Model Model parameter input No. of 

components in 

the PLS* 

R2 RMSEP  (L 

kg-1) 

Kdsoil_alley 

TOC, pHw, EC†, Clay 

2 0.67 0.57 

Kdsoil_treeline 2 0.61 0.62 

Kdterr_alley 

Elevation, Slope, MeanC, 
SCA, WI 

2 0.37 0.78 

Kdterr_treeline 2 0.09 0.95 

Kdsoilterr_alley 
TOC, pHw, EC†, Clay, 
Elevation, Slope, MeanC, 

SCA, WI 

3 0.75 0.54 

Kdsoilterr_treeline 3 0.73 0.54 

 

RMSEP – root means square error of the prediction; TOC – total organic carbon, pHw – pH 1:1 soil:H2O; EC – 

electrical conductivity († log-transformed data); MeanC – mean curvature, SCA – specific catchment area; WI – 

wetness index 

* all models p < 0.001  
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Figure VI.a. Partial Least Squares (PLS) loading weights of the first two factors used in the regression model.  
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Figure VI.b. Relationship between diuron Kd values predicted using MIR-PLS and those 

determined on the subset (n=46; 4 outliers were removed) of samples using the traditional batch 

sorption techniques (dotted line is the 1 is to 1 line; SECV is standard error of the cross-

validation). MIR-PLS – mid-infrared partial least squares technique 

  

R
2 

= 0.79 

SECV = 2.84 
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Figure VI.c. Loading weights of the first factor for alley and tree-line of the Partial Least Squares 

(PLS) regression using soil and terrain variables as predictors. 
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Figure VI.d. Interpolated map of diuron Kd (kg L-1) for the study site.  

(dotted area is access road, hatched area is tree line, the rest is alley; letters are zone designations). A - planted in 2006, Pink Lady variety, 3.5 m × 1 m spacing 
(2,860 trees per ha); B - planted in 1980, Royal Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - planted in 1960, Jonathan and Granny Smith varieties, 4.5 

m × 2 m spacing (1,110 trees per ha); D - planted in 1960, inter-row of Jonathan-Granny Smith and Pink Lady varieties, 4.5 m × 2 m spacing (1,110 trees per ha); 
and E - planted in 1960, Jonathan and Granny Smith varieties, 5 m × 4 m spacing (500 trees per ha).  
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Figure VI.e. Means of diuron Kd (lower data, L kg-1) and total organic carbon (upper data, %) in the different management zones and 

sampling locations.  

n for management zones: A = 20; B = 5; C = 32; D = 32; E = 11  

A - planted in 2006, Pink Lady variety, 3.5 m × 1 m 

spacing (2,860 trees per ha); B - planted in 1980, Royal 

Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - 

planted in 1960, Jonathan and Granny Smith varieties, 

4.5 m × 2 m spacing (1,110 trees per ha); D - planted in 

1960, inter-row of Jonathan-Granny Smith and Pink Lady 

varieties, 4.5 m × 2 m spacing (1,110 trees per ha); and E 

- planted in 1960, Jonathan and Granny Smith varieties, 5 

m × 4 m spacing (500 trees per ha). Means for Kd or TOC 

denoted with same letter are not significantly different at 
p < 0.05. 
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VII. Field-scale variability of simulated diuron leaching and surface 

runoff in an intensively managed apple orchard 

 
Abstract 

The fate of diuron was simulated using the deterministic-mechanistic 

tool, Leaching Estimation and Chemistry Model (LEACHM). This was done 

in order to assess the integrated effect of topography, management 

practices and herbicide sorption on the leaching and surface runoff 

potential of diuron in a spatially variable landscape. The specific objective 

was to assess how the observed spatial variability in soil properties and 

landscape attributes affected the simulated environmental fate of 

pesticides, represented by diuron as a model compound. The first 

simulation was performed to determine effect of clay content (17%; 35%), 

TOC (2%; 6%), irrigation, slope (9°; 17°).  The second was made to 

determine the effect of management zones of different stands. Simulated 

flux of diuron just below the top 10 cm of the soil (referred to here as Flux) 

was affected by TOC. Moreover, the simulated amount of diuron that 

remained in the surface layer (referred to here as Retention) was 

significantly higher (p < 0.05) in soils with 6% TOC. The simulated 

concentration of diuron dissolved in water draining below the 10 cm layer 

(referred to here as Loading) also varied depending on zones. As expected, 

simulated leaching was driven by soil water content.   Moreover, varying 

levels of TOC between management zones resulted to significant 

differences in mean Retention, Flux and Loading of diuron among these 

zones. Across the landscape, a 2.7 fold increase in slope was translated 
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into 4 to 5 fold increase in the simulated Pesticide Runoff calculated using 

the Organisation for Economic Cooperation and Development (OECD) 

model. These findings highlight the importance of incorporating the 

spatial heterogeneity of soil and terrain attributes in the simulation of 

fate and risk assessment of the test herbicide.  

 

Keywords: diuron, LEACHP, pesticide transport, spatial heterogeniety, pesticide 

management zones 

1.  Introduction 

 The variability of key field parameters influences both the fate of 

pesticides in the environment as well as the accuracy by which pesticide 

transport can be predicted (Coquet and Barriuso, 2002). Parameters like soil 

properties, cropping system and water regimes vary in time and space. These 

highly variable input parameters can be incorporated in simulation modeling to 

quickly and inexpensively assess the behavior of pesticides (Ghadiri and Rose, 

1992) within a field or region and across seasons. Advances in computer 

technology and speed allow various simulation conditions to be run quickly 

using pesticide fate models.  

The variability of soil and topography has been found to greatly affect 

pesticide fate (Farenhorst et al., 2008). Soil properties are, in turn, influenced by 

management regimes especially for intensively managed orchard systems 

(Umali et al., 2012a).  However, this variation is often not taken into account 

during assessment of pesticide transport. The question addressed in this study 

was: To what extent is the simulated fate of pesticide influenced by the spatial 

variability of key parameters observed on the study site (Umali et al., 2012b)? 
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The Leaching Estimation and Chemistry Model (LEACHM) (Hutson, 2003) was 

applied to heterogeneously managed orchard soils to assess the integrated 

effect of topography and management practises on the leaching and surface 

transport potential of diuron. The specific objective of this research was to 

determine the effect of slope, soil water content, soil parameters and 

management practises on the simulated fate of diuron in a spatially variable 

landscape. 

 

2.  Methodology 

2.1  Study area and diuron 

The area is located in an intensively managed apple orchard in the Forest 

Range (34° 54.918" S 138° 48.107" E) within the central Mount Lofty Ranges 

(MLR) which is 30 km east of Adelaide, South Australia. The 5.6 ha apple 

orchard was planted to various varieties and was established in the early 1960s.  

It is hilly with mean elevation of 513 m, maximum slope of 30° and mean slope 

of 13°. The area has a Mediterranean climate with long-term (50y) average 

maximum and minimum temperatures of 12°C and 5°C during winter months 

(June-August) and 26°C and 14°C during summer months (December-February), 

respectively, and a xeric soil moisture regime. The mean monthly rainfall from 

1970 to 2000 was approximately 150 mm in the winter and 32 mm in the 

summer. The soils at the site developed from Proterozoic shales, siltstones and 

metasandstones (Hall et al., 2009) and are classified as Petroferric, Melanic-

Vertic, Red-Yellow Chromosols (Isbell, 2002), which dominate (about 60%) the 
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entire MLR region. Profiles on the upper slopes are thin, moderately gravelly 

and silty.  

 Apple trees were planted at high density. Tree-lines, 2 to 4 m wide, run 

either across or along the slope and a 2.5 m wide alleys separated the tree -lines. 

Ripping to a depth of about 1 m along the tree-lines was carried out during 

establishment to break up the dense B horizon. Sod strips were laid out in the 

alleys (between tree-lines) using various grass species such as Festuca sp. 

(dwarf fescue), Pennisetum purpurium (napier) and Hordeum hystrix (barley 

grass). Native grasses were also encouraged along the alleys. Clippings from 

mowing were used as mulch to minimise moisture loss in the tree-lines, most 

importantly during re-planting and in elevated and sloping areas. Herbicides 

were also periodically applied. Fertiliser was applied through localised 

fertigation. Irrigation was localised using sprinklers raised less than 0.3 m above 

the ground from a series of lines laid out along the tree-line. Thinned biomass 

(fruits, leaves and small branches) was left under the trees whereas mown 

grasses were left where they were cut (normally on alleys). Mulching and 

herbicide application along the tree-line was undertaken to decrease weed 

competition for nutrients and water. Sod strips in the alleys served as cover to 

reduce the impact of farm machinery and to act as buffer for soil erosion and 

material loses. 

The study site was subdivided into five management zones that were 

unique in at least one of the following characteristics: tree age, variety of apple  

grown, and tree spacing or density (Fig. VII.a).  These zones are: A - planted in 

2006, Pink Lady variety, 3.5 m × 1 m spacing (2,860 trees per ha); B - planted in 

1980, Royal Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - planted in 
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1960, Jonathan and Granny Smith varieties, 4.5 m × 2 m spacing (1,110 trees per 

ha); D - planted in 1960, inter-row of Jonathan-Granny Smith and Pink Lady 

varieties, 4.5 m × 2 m spacing (1,110 trees per ha); and E - planted in 1960, 

Jonathan and Granny Smith varieties, 5 m × 4 m spacing (500 trees per ha). 

Diuron is a phenylurea, non-selective, systemic herbicide that blocks 

electron transport at photosystem II (Giacomazzi and Cochet, 2004). It is non-

ionic, moderately soluble in water (42 mg L -1) (Kidd and James, 1991) and 

breaks down to several derivatives. It is used primarily to effectively control 

weeds in many crops and also commonly applied in non-cultivated areas (e.g. in 

controlling weeds in roads, railways and parks). The environmental fate of 

diuron has been extensively studied (Giacomazzi and Cochet, 2004) and was 

found to be persistent in soil and water environments and has been detecte d in 

runoff, tile drain water (Stork et al., 2008), river systems (Meyer et al., 2010) 

and enclosed seawater (Martinez et al., 2001).  

2.2 Description of LEACHP  

We used the Leaching Estimation and Chemistry Model (LEACHM) 

(Hutson, 2003), to estimate the concentration of diuron retained in the top 10 

cm of soil and flux from this layer. LEACHP is one of a suite of simulation models 

in LEACHM, and was specifically designed in 1985 to simulate the fate and 

transport of pesticides. The version used in this modeling was LEACHM 4.0 

(2010). The input file contains several sections that define periods of simulation, 

profile depth, node spacing, output file specification, soil data, crop data, 

chemical properties and chemical applications, cultivation, weather and 

irrigation data. Detailed explanations are found in the next sections.  
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LEACHP, and in general LEACHM, describes water regime and chemistry 

and transport of solutes in variably saturated soils (Hutson, 2003). LEACHP 

simulates pesticide displacement, transformation and degradation. One or more 

segments, of uniform thickness, may comprise a soil horizon. LEACHP has been 

widely used as a research model. It has been validated using various 

agrochemicals in various soil types and plant growth conditions (Gallant and 

Moore, 1993; Dust et al., 2000; Chatupote and Panapitukkul, 2005). 

In LEACHP, flux is driven by rainfall, evaporation and transpiration and the 

boundary conditions are defined at the soil surface (by quantifying rain, 

irrigation, potential evaporation) and at the lower boundary (fixed matric 

potential, unit gradient drainage, fixed or variable water table, or zero flux). The 

rate of water flow may be calculated using either the Richards equation or the 

Addiscott mobile:immobile capacity concept (Addiscott et al., 1986). Reference 

evapotranspiration (ET0) is split into potential evaporation (EP) and potential 

transpiration (TP) using a defined crop cover fraction that varied over the 

growing season and a crop factor assumed to be 1.  

Input parameters required for simulation include: a) daily water input 

(rainfall or irrigation or both), b) weekly potential evapotranspiration and 

minimum and maximum temperatures, c) soil physical properties (TOC and soil 

texture), d) Soil Conservation Service (SCS) curve number (Williams, 1991) and 

slope e) crop data, f) chemical properties, transformation and degradation rate 

constants, and application rates.  
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2.3  Description of the modeling scenario 

The first simulations (small simulation) determined the effect of clay and 

organic carbon contents, irrigation and slope while the second set of simulation 

(big simulation) determined the effect of management on the simulated fate of 

diuron. A more detailed discussion of the simulations is given in Sections 2.3.1. 

and 2.3.2. For both sets of simulations several parameters were constant. These 

included the simulation period, which was run for 12 years from 1 January 2000 

to 31 December 2011. The profile depth was set to 600 mm with a free draining 

lower boundary condition, which was based on mean depth of soil (surface and 

subsoil layers) of the area determined through a survey using a soil probe. 

Water flow was calculated using the Richards’ equation (Ross, 1990). Water 

retention and hydraulic conductivity were estimated by the two-part retentivity 

Campbell-based function (Campbell, 1974) fitted with data generated using a 

pedotransfer function. A uniform soil bulk density of 1.29 g cm-3 for the top 10 

cm of soil was used in the simulation. Diuron was applied once a year on the 

23rd January at the rate of 100 mg m-2, which was hypothetical but a realistic 

(equivalent to 1 kg ha-1 of active ingredient) to facilitate percentage calculations  

of diuron leaching, retention and runoff. It was assumed that no diuron was 

applied to the site prior to 2000, thus initial profile chemical data was set to 0 

for all simulations. Diuron is moderately to highly persistent in soil ranging from 

30 d to 365 d (Alva and Singh, 1990). As a conservative estimate, a half-life of 

75.5 d was used for the simulation. Two levels of KOC of diuron were used to 

reflect the mean values derived for soils obtained in the alleys (KOC = 633 L kg-1) 

and in the tree-line (KOC = 720 L kg-1) (Umali et al., 2012b). These values were 
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calculated by multiplying the measured mean values of Kd and fraction of 

organic carbon for the site. 

The crop growth and root distribution for the alley, which consisted of sod 

strip and grass, and tree-line, which consisted of the apple trees and cleared 

areas between trees, were estimated based on literature (Hughes and Gandar, 

1993; Neilsen et al., 2000). Various grass species were grown in the sod strip in 

the alley, therefore we have assigned an estimated rooting depth of 30 cm. Crop 

cover for the alley was set to 0.8 (from an index of 0 – 1) all year round. For the 

tree-line, a 60 cm rooting depth was used for the simulation (the maximum soil 

depth). Although the root system of apples can reach up to 3 m deep (Rogers 

and Vyvyan, 1934), the effect of drip fertigation and other management 

practices like root pruning would be expected to limit the bulk of root system to 

a depth of about 1 m (Neilsen et al., 2000) and root-length density is 

significantly lower beyond this depth (Hughes and Gandar, 1993). Crop cover 

for the tree-line region was set to 0.8 during the growing season (from 

September to May) and 0.2 after harvest (June to August). In Fig. VII.c, the 

seasonal variability of cover was evident. The orthophotograph taken on August 

3, 2010 (middle of winter) shows that cover in the tree-line was very minimal. 

In the alley at the same time, however, there was a substantial amount of grass 

cover. Cover in the tree line becomes more pronounced in the summer as shown 

in the orthophoto taken on January 3, 2011.   

Total weekly reference transpiration (ET0, mm) was derived from the 

FAO56 reference estimates of the Lenswood Research Centre weather station 

which was located about 2 km from the orchard (BOM, 2011; 

www.bom.gov.au/silo).  
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Water contents at wilting point (-1500k Pa) were also determined using 

the pressure plate apparatus technique for 74 soil samples randomly selected to 

check simulated water content at -1500 kPa.  

2.3.1. First simulation 

The first simulation was done to determine the key soil and 

environmental parameters that influenced the simulated fate of diuron and to 

establish the overall water balance. The simulation had two levels of soil clay 

content (17% and 35%) and two levels of TOC (1% and 6%) that represented 

the minimum and the maximum values for soils found in the site (Umali et al., 

2012a).  

Irrigation in the tree-line was also automatically set to trigger each time 

the matric potential at 300 mm dropped to -60kPa, rewetting the profile to 

field capacity. 

2.3.2. Second  simulation 

In this simulation, a range of soil properties were used to cover the 

range of TOC, clay and silt contents of soil collected in the 100 paired 

sampling locations. These were obtained from previous studies (Umali et al., 

2012a; Umali et al., 2012b) and are summarized in Table VII.a. Soil samples 

were collected in the alley and in the tree-line and across the five 

management zones within the orchard and 200 input files were created using 

the sampling location identification (ID) number as file name. One hundred of 

these files corresponded to the soils found in the tree-line, and 100 input files 

corresponded to soils found in the alley.  
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To determine the range of slope where the 100-paired sampling points 

were located, a 5 m digital elevation model (DEM) was used. Slope was 

calculated from the DEM and the values for all locations were extracted in 

ArcMAP 10.0. The range of slope values is summarized in Table VII.a. These 

values were then encoded in each of the 200 input files for LEACHP 

simulation. 

From the simulations that covered 12 years (2000-2011) data was 

extracted for certain time periods, which were the wettest year in the last 12 

years (2001; 1202.3 mm annual rainfall), the driest year in the last 12 years 

(2006; 656.6 mm annual rainfall) and the current year (2011, 852.2 mm 

annual rainfall). In each of these years, three separate months were selected 

to represent the end of a specified season i.e. end of summer (February), 

middle of winter (July) and end of spring (November). Forty years of 

meteorological data showed February and July were the driest and wettest 

months, respectively (BOM, 2011). A total of nine simulation periods were 

used and the corresponding total monthly rainfall is presented in Table VII.b.  

2.4.  LEACHM output simulation parameters: Flux, Retention and 

Loading 

Two leaching parameters were studied in the output simulation, namely a) 

flux of chemical species (i.e. diuron) (mg m-2) across the lower boundary of the 

top 10 cm soil (Flux); and b) total amount of chemical (mg m-2) that remained in 

the top 10 cm soil macro-segment during the time step simulation (Retention). 

Flux constitutes the amount of the chemical that may be transported in 

subsurface flow or in groundwater. Retention, on the other hand, constitutes the 

amount of chemical that remains in the surface soil (0-10cm), a critical layer of 
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the soil profile, and may degrade or move off-site with surface runoff. These two 

parameters determine the fate of the chemical in soil. These parameters were 

extracted from the output simulation and were used to assess the fate of diuron 

in the study site. No validation procedure could be done (due to the continuum 

of landscape attributes and heterogeneous soil properties) to assess these 

outputs, however, the main purpose of this paper was to show how spatially 

variable input parameterization impact simulation outputs.  

The concentration of diuron that drained below 10 cm of soil (mg L -1) also 

was calculated across the study site in all simulation periods by obtaining the 

ratio of chemical loading (mg m-2) to water fluxes (mm, or L m-2). This gave an 

approximate estimation of the concentration of diuron that potentially moved in 

drainage from below the top 10 cm. We determined if there were significant 

differences in chemical loading between the alley and tree-line regions and 

among the management zones for a particular simulation period. 

2.5.  Pesticide runoff simulation using the OECD model 

Pesticide runoff was considered to be a significant pathway of diuron 

behavior in the environment. We used an OECD model (OECD, 1998) that 

estimated the fraction of diuron transported with runoff (% Pesticide Runoff): 

%Runoff =
Q

P
f1 f2e

(-Dt(ln 2 /DT50soil )) ´
100

1+Kd
 

where Q is the monthly runoff volume (mm) (an output of LEACHP simulation 

using the Soil Conservation Service curve number approach), P is the monthly 

rainfall, f1 is the slope factor using the equation 

f1 = 0.02153´ slope+ 0.00143´ slope2
, f2 is plant interception factor which was 
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simplistically set to 1,  Dt is the time in days after application and Kd is soil 

sorption coefficient of diuron (set to 28 kg L -1 for the alley and 24 kg L-1  for the 

tree-line which were mean values taken from Umali et al., 2012b). The 

parameter Q was obtained from the simulated runoff output of LEACHP. The 

slope factor was obtained from the DEM. Only two slope values (7° and 19°) 

were used to represent the minimum and maximum slope of the site. For 

simplicity, an SCS curve number value of 75 was assumed based on the existing 

land use of the study site (Williams, 1991). The parameter f1 was therefore 0.22 

for 7°slope and 0.92 for 19° slope. Diuron half-life (DT50) was set to 75.5 d 

similar to the LEACHP simulation. Input parameters of the model were prepared 

in MS Excel spreadsheets where Pesticide Runoff was calculated for each of the 

sampling location point. Pesticide Runoff (%) was used as an indicative 

parameter of the potential runoff risk of diuron.  

 

3.  Results and Discussion 

3.1.  Effects of soil water content and irrigation on simulated Flux 

and Retention 

The simulated soil water regime was compared with rainfall data and field 

measured soil water contents using capacitance probes installed at the site (Fig. 

VII.d) for a period of 1 year (December 2010 to November 2011). Owing to the 

stony condition of the site, a good field calibration of the probe (Sentek Sensor 

Technologies, Stepney, South Australia) was not achieved. However, trends in 

soil water fluctuations behaved similarly for the simulated and the measured 

data. The upward spikes in soil moisture that were observed corresponded with 

rainfall events.  
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The effect of irrigation was investigated using a profile in the tree-line with 

35% clay content and 6% TOC for simplicity since this represented conditions 

under which diuron was least likely to be mobile. Two simulations were 

considered such that one received irrigation each time the matric potential at 

300 mm dropped to -60kPa (called ‘with irrigation’) while the other was not 

irrigated (called ‘no irrigation’). The triggered irrigation in the tree-line 

provided a soil moisture regime contrasting the alley, which was not irrigated. 

Flux happened as soon as diuron was applied to the tree-line soils with 

irrigation (Fig. VII.e). Flux in the tree-line soils with no irrigation peaked only 

when there was considerably high rainfall (mostly in July of each year). The 

simulated Flux occurred along the triggered irrigation events. The effect on 

simulated Retention was also significant. The amount of diuron that remained in 

the surface soil was twice in the non-irrigated soil than in the irrigated soil. 

During most of the simulation period, twice as much diuron remained in the top 

10 cm soil with no irrigation compared to that with irrigation.  

3.2.  Effect of clay and organic carbon contents on the simulated 
Flux and Retention  

Simulated Flux over the period was unchanged in soils with 17% and 35% 

clay content (Fig. VII.f). Simulated Retention was also unchanged in soils with 

17% and 35% clay content. This means that for the range of clay content found 

in the site, the simulated fate of diuron was unaffected. By contrast, the range of 

TOC found in the study site showed a large effect on the simulated Flux and 

Retention of diuron (Fig. VII.g). Simulated Flux was 2 to 3 times higher in soils 

with only 2% TOC than in the soils with 6% TOC in July of each year when soil 

moisture was sufficiently high for leaching to occur. In drier months, simulated 
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Retention was almost 50% greater in soils with 6% TOC than in soils with 2% 

TOC. In the wetter months, however, simulated Retention was only about 20% 

greater in soils with 6% TOC than in soils with 2% TOC.  

3.3.  Effect of cropping system/crop cover on the simulated Flux and 
Retention  

Among the input parameters considered in the simulations, cropping 

system was considered to be a determining factor for assessing the fate of 

diuron.  In this study cropping system constituted crop cover differences in the 

alley and in the tree-line. The alleys had crop cover all year round provided by 

the sod strips, while tree-line had crop cover only during growing months 

(around September to May). However, the effect of crop cover was inferred 

indirectly through its role in increasing the level of TOC. Because soils in the 

alley had higher TOC than soils in the tree-line, the simulated chemical Flux in 

the alley was lower than in the tree-line and the simulated Retention was higher 

in the alley than in the tree-line. 

3.4.   Effect of slope on simulated Pesticide Runoff 

The rate of Pesticide Runoff (%) may be quickly assessed from the 

simulated water runoff output of LEACHP. Consequently, the simulated 

Pesticide Runoff (%) was greater from steep slopes (19°) than from gentle 

slopes (7°) (Fig. VII.h). Moreover, both the timing of application with soil 

moisture and the chemical nature of the diuron were also critical in the 

calculation of Pesticide Runoff. The seasonal trends in the simulated Pesticide 

Runoff (%) in the alley is shown in Fig. VII.h. Expectedly, a big rainfall event in 

the beginning of 2000 resulted in a high simulated Pesticide Runoff. Generally, 
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simulated Pesticide Runoff was considerably higher during the wet months 

(June to August) in each year. In the tree-line, the simulated Pesticide runoff 

occurred right after pesticide application (Fig. VII.h). During the 12 year 

simulation period, an increase in slope from 7° to 19° resulted in an increase in 

the simulated Pesticide Runoff in the alley and in the tree-line.  

3.5.  Seasonal variability of simulated Flux, Retention and Pesticide 

Runoff of diuron 

The summary statistics of simulated Flux, Retention and Pesticide Runoff 

for the different particular simulation periods is given in Table VII.c. This data 

represents the simulated Flux, Retention and Pesticide Runoff for the whole 

study site using input parameters for each of 200 sampling points. Mean 

Retention values fluctuated within and between the simulation periods. Mean 

Retention was higher (p < 0.05) in February than in July and November in each 

of the simulation year periods. The reason was that the pesticide was applied 

just before February of each year and that due to degradation and leaching, by 

November of each year most of the chemical leached or degraded. Also, mean 

Retention was always significantly higher (p < 0.05) in the alley than in the tree-

line in all simulation periods, which is most likely due to the higher amount of 

TOC in the alley than in the tree-line (Umali et al., 2012a).  

Comparison of mean monthly Flux was significantly higher (p < 0.05) in 

July than in February or November in all simulation years (2001, 2006 and 

2011) primarily because rainfall was highest in these periods. The lowest mean 

Flux (p < 0.05) simulated was for November since leaching happened earlier 

than this period and the next diuron application did not occur until January the 

next year. However, minimal mean flux was also observed in February 2011 
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simulation period and we attribute this to low rainfall (only 11.8 mm). 

Moreover, the long half-life (t1/2 = 75.5 d) and high sorption affinity of diuron in 

soil contributed to its persistence that even six months after application, Flux 

tended to peak in high rainfall events (e.g. July 2006).  

3.6.  Effect of management on simulated Flux, Retention and 

Loading 

To determine the effect of management on the simulated Flux and 

Retention of diuron, LEACHP was run in 200 input files that corresponded to the 

sampling locations with unique soil and terrain properties and a particular 

simulation period was chosen (July 2006 – being the month with the highest 

rainfall). Simulated Flux and Retention values were extracted for that period 

and analysed in R and the means were compared using least square difference  

(LSD). The results are show in Table VII.d. During the simulation period, mean 

simulated Flux was variable among management zones and between alleys and 

tree-line soils. The alley soils in zones A and B and the tree-line soils in zones B 

and E had the highest mean simulated Flux. The alley soils in zones C, D and E 

and the tree-line soils in zone A had the lowest mean simulated Flux. Alley soils 

in zones C, D and E had higher simulated Retention compared to zones A and B, 

while in the tree-line, zone E was the lowest while zones A and C were highest. 

In terms of simulated Loading, the alley soils in zones C, D and E had the lowest 

value.  

In a previous study (Umali et al., 2012b) management zones, differentiated 

in terms of age and density of tree planting, influenced the distribution of soil 

properties particularly the level of TOC.  This had considerable consequence on 

sorption behaviour of diuron across the study site wherein old stands (zones C, 
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D and E) with high soil TOC had higher capacity for diuron sorption. In this 

study, the simulated fate of diuron was also notably influenced by differences in 

zones particularly for soils found in the alley. For example, alley soils in zones C 

and D (planted in 1960) which had significantly higher (p < 0.05) TOC had 

significantly lower simulated Flux and Loading (p < 0.05) and significantly 

higher simulated Retention (p < 0.05) compared with zone A (planted in 2006).  

Differences in the simulated fate of diuron were also observed between 

the alley and the tree-line soils in the older stands (zones C, D and E). In these 

zones, the simulated Flux was higher (significantly higher for zone E; p < 0.05), 

the simulated Loading was significantly higher (p < 0.05) and the simulated 

Retention was significantly lower (p < 0.05) in the tree-line, which had lower 

TOC, than in the alley. 

 

4.  Conclusion 

Among the soil properties investigated, the amount of total organic carbon 

greatly influenced the simulated fate of diuron for the study site. Diuron 

remained in the soil surface because of the high level of TOC in specific areas of 

the study site, particularly in older stands. Moreover, because TOC varied in the 

landscape, the simulated fate of diuron also varied significantly. Generally for 

the study site, soils with high TOC had high capacity for retaining diuron while 

soils with low TOC had high tendency to lose the chemical to leaching. The range 

of TOC variability that was observed between the alley and tree-line and among 

the management zones translated to 40-150% differences in the simulated fate 

of diuron. In terms of the simulated Pesticide Runoff, the greater the slope, the 

greater the tendency for diuron to move off-site with surface runoff. This 
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suggests that for the study site, which had a highly variable terrain, the r isk of 

diuron transport may vary depending on slope and spatially variable conditions. 
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Table VII.a. Summary statistics of selected soil, pesticide and terrain properties in 

the alley and tree-line regions in the apple orchard used in the LEACHP simulation. 

Parameter Location Mean SD Min Max 

TOC, % Alley 4.5 b 1.14 2.2  7.0  
 Tree-line 3.4a 0.82 1.6 5.5 

Clay, % Alley 23.3  3.73 16.0  33.8  

 Tree-line 23.1 3.50 16.7 35.7 
Silt, % Alley 35.5  3.06 28.0  41.0  

 Tree-line 34.9 2.95 26.0 41.0 

Koc, kg L-1 Alley 633.0a 122.0   
 Tree-line 720.0b 204.0   

Slope °  12.9   7.0 19.0 

 Koc – organic carbon-normalised sorption coefficient 

TOC – total organic carbon 
SD – Standard deviation 

Means followed by different letters within a given parameter are significantly different at p < 0.05.  

 

 

 

Table VII.b. Total monthly rainfall for the designated month considered in the 

simulation (BOM, 2011). 

Simulation period Rainfall (mm) 

February 2001 11.8 

July 2001 115.7 
November 2001 56.0 

February 2006 27.6 

July 2006 144.2 
November 2006 25.6 

February 2011 61.5 

July 2011 130.5 
November 2011 19.7 
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Table VII.c. Summary statistics of simulated Retention and Flux for alley and tree 

line (in brackets) (n=100) during three simulation periods. 

 

Simulation 
Mean Min Max 

Parameter Period 

Retention 
(mg m-2) 

Feb 2001 130.16 (118.04)* 120.18 (113.46) 137.22 (124.60) 

Feb 2006 154.47 (147.83)* 136.17 (135.80) 168.71 (160.25) 

Feb 2011 114.26 (109.39)* 97.30 (97.43) 129.67 (121.47) 

July 2001 81.80 (70.58)*  66.79 (62.18) 91.66 (79.58) 
July 2006 94.99 (90.55)* 75.59 (78.01) 106.34 (100.10) 

July 2011 81.63 (75.47)* 62.19 (61.47) 98.35 (90.10) 

Nov 2001 45.08 (38.96)* 31.45 (30.86) 54.00 (47.01) 

Nov 2006 73.79 (67.58)* 55.90 (54.66) 88.61 (80.91) 

Nov 2011 54.17 (48.24) * 35.76 (35.05) 69.69 (62.13) 

Flux  
(mg m-2) 

Feb 2001 0.08 (0.06) 0.03 (0.03) 0.12 (0.10) 

Feb 2006 0.34 (0.32) 0.21 (0.22) 0.52 (0.47) 
Feb 2011 1.71 (1.82)* 1.22 (1.30) 2.93 (2.65) 

July 2001 1.97 (2.15)* 1.40 (1.57) 3.3 (3.0) 

July 2006 2.83 (3.13) 1.65 (1.99) 5.72 (4.88) 

July 2011 2.32 (2.34) 1.71 (1.78) 3.60 (3.19) 

Nov 2001 0.20 (0.19) 0.14 (0.14) 0.27 (0.23) 

Nov 2006 0.17 (0.17) 0.12 (0.12) 0.25 (0.23) 

Nov 2011 0.04 (0.02) 0.01 (0.01) 0.07 (0.05) 
Values in bold and italics face are either lowest or highest mean for each simulation output parameter.  

* means between alley and tree-line are significantly different (p < 0.05) 
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Table VII.d. Mean comparison of simulated Flux, Retention and Loading among zones for July 2006; TOC means of zones were put for 

reference (Umali et al., 2012b). 

 
Management zone Flux, mg m-2  Retention, mg m-2  Loading, mg L-1 (´10-2)   TOC, % 

 Alley Tree-line Alley Tree-line Alley Tree-line Alley Tree-line 

A (n=20) 3.79c 2.96a 87.33a 91.80b 3.40c 2.89b 3.13ab 3.54b 

B (n=5) 4.22c 3.76c 86.24a 87.02ab 3.55c 3.92c 4.95c 3.43b 

C (n=32) 2.48a 2.92ab 97.86c 92.16b 2.45a 2.94b 4.91c 3.57b 

D (n=32) 2.57a 3.00ab 96.94c 91.51ab 2.50a 2.90b 5.25c 2.64a 

E (n=11) 2.29a 4.16c 98.91c 82.42a 2.34a 3.75c 3.16ab 2.25a 

 
 

Means followed different letters within each parameter are significantly different at p < 0.05. A - planted in 2006, Pink Lady variety, 3.5 m × 1 m spacing (2,860 trees per ha); 

B - planted in 1980, Roy al Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - planted in 1960, Jonathan and Granny Smith v arieties, 4.5 m × 2 m spacing 
(1,110 trees per ha); D - pl anted in 1960, inter-row of Jonathan-Granny Smith and Pink Lady varieties, 4.5 m × 2 m spacing (1,110 trees per ha); and E - pl anted in 

1960, Jonathan and Granny Smith v arieties, 5 m × 4 m spacing (500 trees per ha).
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Figure VII.a. An orthophotograph of the study site showing the management zones in capital letters.  
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A - planted in 2006, Pink Lady variety, 3.5 m × 1 m spacing (2,860 trees per ha); B - pl anted in 1980, Roy al Gala variety, 4.5 m × 2 m spacing (1,110 trees per ha); C - 

planted in 1960, Jonathan and Granny Smith varieties, 4.5 m × 2 m spacing (1,110 trees per ha); D  - planted in 1960, inter-row of Jonathan-Granny Smith and Pink 

Lady varieties, 4.5 m × 2 m spacing (1,110 trees per ha); and E - planted in 1960, Jonathan and Granny Smith varieties, 5 m × 4 m spacing (500 trees per ha).  

 

 
 

 

 

 

Figure VII. General input-process-output framework of the simulation. 
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Figure VII. The seasonal variability of cover that show alley and tree-line (Nearmap ortophotos zoomed in on one section of the study 

site). 

 

August 3, 2010 January 3, 2011 
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Figure VII. Rainfall and soil water contents simulated using LEACHP and measured using Sentek moisture probe installed in the site at 

10 cm depth (December 2010 – November 2011). 
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Figure VII. Effect of irrigation on Flux (a) and Retention (b).  

(Flux – simulated flux of diuron just from the top 10 cm of soil; Retention – simulated amount of diuron that 
remained in the surface layer)  

a 

b 
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Figure VII. Effect of clay on the simulated Flux (a) and Retention (b) of diuron in the top 10 cm 

of soils found in alley (no irrigation) using 2 % total organic carbon content. 

(Flux – simulated flux of diuron just from the top 10 cm of soil; Retention – simulated amount of diuron that 

remained in the surface layer) 

a 

b 
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Figure VII. Effect of soil total organic carbon on simulated Flux (a) and Retention (b) of diuron 

in the top 10 cm of soil found in alley (no irrigation) using 35% clay content. 

 
(Flux – simulated flux of diuron just from the top 10 cm of soil; Retention – simulated amount of diuron that 
remained in the surface layer)  

a 

b 
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Figure VII. Effect of slope on simulated % Pesticide Runoff in the alley from 2000 to 2006 using 35% clay content and 6% total organic 

carbon content. 
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Figure VII. Effect of slope on simulated Pesticide Runoff (%) in the tree-line from 2000 to 2006 using 35% clay content and 6% total 

organic carbon content.



Umali, B.P. 2012. Mapping patterns of pesticide fate 

 

 

170 

 

VIII.  Overall Summary, Conclusion and Recommendations 

 

Spatial variability of soil properties and processes along with topography 

contributes considerably to pesticide movement in orchards, yet very little 

systematic studies exist that examine causes of variability and hence little 

practical guidelines exist on how to assess the spatial differences in the fate and 

risks of off-site movement of pesticides. Assessment tools generally ignore this 

spatial variability despite wide recognition that soils and associated parameters 

that influence pesticide movement vary dramatically within landscapes. This 

thesis has narrowed this gap by the systematic evaluation of the causes of 

spatial variability of parameters that influence pesticide movement, by testing 

the usefulness of topographic information to explain natural variability in soil 

conditions and the differences of anthropogenic factors that influence pesticide 

sorption. 

The overall aim of this thesis was to study the natural and landscape-

induced patterns of herbicide sorption and risks of leaching and off -site 

transport of herbicides in an intensively managed orchard system. The 

objectives of this thesis were: a) to determine whether a ‘smoothing’ algorithm 

can enhance the accuracy of a contour-derived digital elevation model; b) to 

evaluate the role of topography and management practises in predicting the 

distribution of soil properties using a soil-landscape modeling approach; c) to 

evaluate the effects of topography, soil properties and management practises on 

the sorption affinity of diuron; and d) to assess the integrated effect of 

topography, management practises and herbicide sorption on the leaching 

potential of diuron in a spatially variable landscape using the Leaching 
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Estimation and Chemistry Model (LEACHM) and surface runoff using the 

Organization for Economic Cooperation and Development (OECD) model.  

The salient findings of this research can be summarized as follows: 

· Our study showed that the quality of digital elevation models (DEMs) limits 

the use of simple surrogates for soil landscape analyses.  We tested different 

elevation models against highly precise surveyed elevation points and found 

that contour-based DEMs performed better than commercially available 

broad-scale radar products.  However, the inaccuracies, which were observed 

in slope and curvature terrain models derived from countour data, could be 

reduced using simple smoothing techniques. (Chapter III and Appendix 1).  

· Using soil colour as a surrogate of soil organic carbon, which is a major factor 

in soil sorption of pesticides, an initial assessment of the varying degree of 

capacity for pesticide sorption was made. Moreover, a strategy to separate 

the space between the alleys and the tree-line in an apple orchard was 

needed because of the differences in the spatial variability of soils found in 

these locations (Chapter IV). 

· A key outcome of this thesis was a surprisingly strong systematic influence of 

management-induced soil variability on herbicide sorption. The spatial 

variability of soils in the alley were different for soils found in tree-line. 

Orchard floor management (e.g. keeping the tree-line free from ground 

cover) influenced the distribution of soil properties. Segmenting an orchard 

landscape into management zones better explained the variability of soil 

properties (Chapter V). 

· A mid-infrared – partial least squares (MIR–PLS) regression model was 

developed that incorporated soil organic carbon content, its chemistry as 
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well mineral matter in soils. The model adequately predicted diuron sorption 

affinity (Kd) for soils obtained from the apple orchard, this was validated 

using traditional laboratory techniques. A close agreement was noted 

between laboratory-determined and and MIR-predicted Kd values. Variability 

of diuron Kd was found to vary between alleys and tree-lines and among 

management zones. Terrain variables such as slope and wetness index (WI) 

were used as predictors for modeling the spatial distribution of diuron Kd 

(Chapter VI) 

· Soil water contents influenced simulated leaching, retention and off -site 

movement of diuron in the study site. Due to the moderately high persistence 

of diuron (t1/2 = 75 d) the simulations found the chemical remained in the 

surface soil but potential for leaching and transport was increased later in the 

year when rainfall events were more frequent and of greater quantity  

(Chapter VII). More importantly, the distribution of soil organic carbon 

content, as influenced by management practises, affected the simulated fate 

of diuron in the study site. 

The results of this thesis have potential contributions to a number of areas 

including topographic analysis, digital terrain analysis in the context of pesticide 

fate assessment, assessment of pesticide behaviour in managed orchards and 

pesticide management in variable landscapes. Although, elevation, slope and 

other terrain parameters were found to influence soil distribution, it was also 

greatly influenced by existing management practices.  

Consequently, the management-induced variability of soil properties was 

also found important in assessing herbicide sorption. This was shown in 
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Chapter VI because the sorption property of diuron, the test herbicide used, was 

dependent on soil organic carbon content. This chapter also provided 

information on the relative importance of the terrain variables (e.g. elevation 

and wetness index) in assessing the distribution of diuron sorption. In the last 

chapter, Chapter VII, it was also found that management practises influenced the 

simulated fate of diuron. The implication of these findings for farmers is that in 

order to reduce the risk of off-site movement of diuron, differential 

herbicide/pesticide application might have to be observed.  

The work embodied in this thesis answered a number of questions related 

to natural and management-induced patterns of herbicide fate using the soil 

landscape analysis approach, however, I recommend the following areas for 

future research:  

a) The applicability of using surrogates like colour in assessing pesticide 

fate can be further investigated.  This thesis established that colour was 

related to TOC in one section of the orchard – the alley. A good 

relationship between TOC and diuron sorption was also established. 

However, more work needs to be done in order to ascertain these 

relationships when dealing with soils that have been altered 

immensely by anthropogenic or extrinsic causes.  

b) In addition, a more robust sampling technique could be investigated to 

better assess the distribution of soils that are found in this kind of 

landscape. Results of the geostatistical and regression modeling 

revealed low spatial structure for some of the soil properties in either 

the alley or the tree-line. 
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c) Previous studies have also been conducted in mono-cropping systems 

with gently rolling terrain. Although this study expanded this analysis 

on a more complex terrain with relief difference of 50 m, analyses 

made in this thesis were still limited in the land use and geographic 

region where the soils were taken. Therefore, similar studies are 

needed on other land uses that are impacted not only by the terrain 

attributes but also by the management regime employed by the land 

user. 

d) One of the potential extensions of this research work is in identifiying 

the ‘source zones’ or hotspots from where pesticide residues are 

mobilized in surface water or deep drainage, due to the complex 

interplay of landscape attributes, soil properties and management 

regimes. The study should be extended to identify the ‘source zones’ in 

such systems to allow targeted management of such source zone to 

minimize any off-site impact of pesticides. 
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DEM and terrain analysis to predict spatial pattern of SOC 
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Appendix I. Paper presented during the 19th World Congress of Soils Science, 

Brisbane, Australia. 1-6 August 2010. 
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