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Abstract

This thesis presents a versatile study on the design and Very Large Scale Integration

(VLSI) implementation of various synaptic plasticity rules ranging from phenomeno-

logical rules, to biophysically realistic ones. In particular, the thesis aims at developing

novel spike timing-based learning circuits that advance the current neuromorphic sys-

tems, in terms of power consumption, compactness and synaptic modification (learn-

ing) abilities. Furthermore, the thesis investigates the usefulness of the developed de-

signs and algorithms in specific engineering tasks such as pattern classification. To fol-

low the mentioned goals, this thesis makes several original contributions to the field of

neuromorphic engineering, which are briefed in the following.

First, a programmable multi-neuron neuromorphic chip is utilised to implement a

number of desired rate- and timing-based synaptic plasticity rules. Specific software

programs are developed to set up and program the neuromorphic chip, in a way to

show the required neuronal behaviour for implementing various synaptic plasticity

rules. The classical version of Spike Timing Dependent Plasticity (STDP), as well as

the triplet-based STDP and the rate-based Bienenstock-Cooper-Munro (BCM) rules are

implemented and successfully tested on this neuromorphic device. In addition, the im-

plemented triplet STDP learning mechanism is utilised to train a feedforward spiking

neural network to classify complex rate-based patterns, with a high classification per-

formance.

In the next stage, VLSI designs and implementations of a variety of synaptic plasticity

rules are studied and weaknesses and strengths of these implementations are high-

lighted. In addition, the applications of these VLSI learning networks, which build

upon various synaptic plasticity rules are discussed. Furthermore, challenges in the

way of implementing these rules are investigated and effective ways to address those

challenges are proposed and reviewed. This review provides us with deep insight into

the design and application of synaptic plasticity rules in VLSI.

Next, the first VLSI designs for the triplet STDP learning rule are developed, which

significantly outperform all their pair-based STDP counterparts, in terms of learning

capabilities. It is shown that a rate-based learning feature is also an emergent property
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Abstract

of the new proposed designs. These primary designs are further developed to gener-

ate two different VLSI circuits with various design goals. One of these circuits that has

been fabricated in VLSI as a proof of principle chip, aimed at maximising the learning

performance—but this results in high power consumption and silicon real estate. The

second design, however, slightly sacrifices the learning performance, while remark-

ably improves the silicon area, as well as the power consumption of the design, in

comparison to all previous triplet STDP circuits, as well as many pair-based STDP cir-

cuits. Besides, it significantly outperforms other neuromorphic learning circuits with

various biophysical as well as phenomenological plasticity rules, not only in learning

but also in area and power consumption. Hence, the proposed designs in this thesis

can play significant roles in future VLSI implementations of both spike timing and rate

based neuromorphic learning systems with increased learning abilities. These systems

offer promising solutions for a wide set of tasks, ranging from autonomous robotics to

brain machine interfaces.
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