Infraocclusion of primary molars and associated

dental anomalies in twins and singletons: what is the

underlying aetiology?

School of Dentistry

The University of Adelaide

Ruba Mohammed Odeh

Submitted for the degree of Doctor of Philosophy in Dentistry

November 2013

Table of contents

Table of contents	i
List of tables	iv
List of figures	xiii
List of abbreviations	xvii
Abstract	xviii
Thesis declaration	XX
Format of the thesis	xxi
Acknowledgments	xxii
1. Introduction	1
2. Literature review	3
2.1. Introduction	3
2.2. The process of tooth eruption and associated disturbances	3
2.3. Infraocclusion	8
2.4. Associated dental anomalies	21
2.5. Association of dental age with infraocclusion	25
2.6. Association of tooth size with infraocclusion	
2.7. Application of different twin models to study genetic influences on infraocclus	sion 31
2.8. Management of infraoccluded teeth: prevention and treatment	
2.9. Summary	40
3. Aims, hypotheses and significance	43
4. Methodology	45
4.1. Study samples	45
4.2. Measurement methods and criteria for selection	46
4.3. Assessment of errors in measurement and scanning	57
4.4. Methods for deciding different categories of infraocclusion	
4.5. Validity	
4.6. Methods for assessing dental anomalies and dental development in the OPG sa	mple61
4.7. Methods for assessing mesiodistal crown width in the twin sample	65
4.8. Methods for assessing study models obtained at three different stages in indivi- showing infraocclusion	duals 66
4.9. Methods for assessing study models of family members of individuals showing infraocclusion	g 67
4.10. Statistical analysis	67
5. Errors of measurement	70
5.1. Introduction	70

	5.2. Types of measurement errors	70
	5.3. Minimising errors of measurements	71
	5.4. Accounting for measurement error	72
	5.5. Discussion	80
6.	Results of descriptive analysis of infraocclusion in singletons and twins	82
	6.1. Introduction	82
	6.2. Materials and methods	84
	6.3. Statistical analysis	86
	6.4. Descriptive analysis of infraocclusion in the maxillary arch	88
	6.5. Comparing the overall prevalence of infraocclusion between singleton and twin samples	94
	6.6. Results of descriptive analysis of the singleton sample	95
	6.7. Results of descriptive analysis of the twin sample	102
	6.8. Discussion	109
	6.9. Conclusion	112
7.	Genetic influences on infraocclusion in twins	114
	7.1. Introduction	114
	7.2. Materials and methods	120
	7.3. Statistical analysis	121
	7.4. Comparisons of expression of infraocclusion among MZ and DZ twin pairs	123
	7.5. Comparisons of concordances for infraocclusion among MZ and DZ twin pairs	131
	7.6. Results of genetic modelling in the twin sample	136
	7.7. Discussion	141
	7.8. Conclusion	144
8.	Infraocclusion and associated dental anomalies	145
	8.1. Introduction	145
	8.2. Materials and methods	148
	8.3. Statistical analysis	149
	8.4. Results	150
	8.5. Discussion	162
	8.6. Conclusion	166
9.	Selected cases which illustrate aspects of study and raise future research questions	167
	9.1. Range of expressions of infraocclusion in MZ twin pairs	168
	9.2. Longitudinal observations of infraocclusion in MZ and DZ twins	171
	9.3. Triplets	180
	9.4. Families of twins showing infraocclusion	181
	9.5. Discussion	191

9.6. Conclusion	192
10. General discussion	193
11. Conclusions	201
12. References	203
13. Appendices	225
13.1. Appendix 1 - List of achievements and professional development activities of R Odeh during PhD candidature 2010-2013	uba 225
13.2. Appendix 2 - The following figures relate to material presented in Chapter 6, in particular they complement Figures 6.3 and 6.4.	227
13.3. Appendix 3 - Ethical approval	246

List of tables

Table 2.1. Abnormalities related to disturbances in the process of tooth eruption	6
Table 2.2. The prevalence of infraocclusion in the primary dentition	10
Table 2.3. Prevalence of dental anomalies in association with infraocclusion compared w prevalence in the normal population.	vith 23
Table 2.4. Prevalence of associated dental anomalies among seven groups of patients	24
Table 2.5. Summary of the published findings on infraocclusion in twins.	37
Table 4.1. Camera settings used to ensure quality and standardisation for all photographs	549
Table 4.2. Scores for visual assessment of OPGs.	59
Table 4.3. Individual maturity scores for each of the developmental stages for boys and g	girls. 64
Table 5.1. Summary of double determinations conducted for infraocclusion data	73
Table 5.2. Intra-operator double determinations of infraocclusion measurements on orthopantomographs, using Photoshop CS5.	74
Table 5.3. Intra-operator double determinations of infraocclusion measurements on orthopantomographs, comparing Photoshop CS5 and ImageJ.	75
Table 5.4. Inter-operator double determinations of infraocclusion measurements on orthopantomographs, using Photoshop CS5.	76
Table 5.5. Intra-operator double determinations of infraocclusion measurements on study models, using Photoshop CS5.	, 76
Table 5.6. Inter-operator double determinations of infraocclusion measurements on study models, using Photoshop CS5.	, 77
Table 5.7. Intra-operator double determinations for dental age on orthopantomographs	78
Table 5.8. Intra-operator double determinations for measuring the mesiodistal crown wid on study models.	lths 79
Table 6.1. Summary of singletons displaying infraocclusion only in the maxillary arch, including associated anomalies.	89
Table 6.2. Summary of singletons displaying infraocclusion in both mandibular and maxiarches, including associated anomalies	illary 90

Table 6.3. Summary of twins displaying infraocclusion in both the mandibular and maxillary arches.
Table 6.4. Comparison of prevalence of infraocclusion between singletons and twins (males and females combined).
Table 6.5. Comparison of the frequency of occurrence and degree of expression of infraocclusion between primary mandibular first (D) and second (E) molars (right side) - singleton sample.
Table 6.6. Comparison of the frequency of occurrence and degree of expression ofinfraocclusion between mandibular right and left first molars - singleton sample96
Table 6.7. Comparison of the frequency of occurrence and degree of expression ofinfraocclusion between mandibular right and left second molars - singleton sample. 96
Table 6.8. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular right first molars between males and females - singleton sample
Table 6.9. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular right second molars between males and females - singleton sample
Table 6.10. Comparison of the frequency of occurrence of infraocclusion between males andfemales for the mandibular first and second molars combined - singleton sample98
Table 6.11. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular first molar between right and left sides within individuals - male singleton sample
Table 6.12. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular second molar between right and left sides within individuals - male singleton sample. 100
Table 6.13. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular first molar between right and left sides within individuals - female singleton sample
Table 6.14. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular second molar between right and left sides within individuals - female singleton sample. 101

v

Table 6.15. Comparison of the frequency of occurrence and degree of expression of
infraocclusion between primary mandibular first (D) and second (E) molars (right side) - twin sample
Table 6.16. Comparison of the frequency of occurrence and degree of expression ofinfraocclusion between mandibular right and left first molars - twin sample
Table 6.17. Comparison of the frequency of occurrence and degree of expression ofinfraocclusion between mandibular right and left second molars - twin sample104
Table 6.18. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular right first molars between males and females - twin sample. 105
Table 6.19. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular right second molars between males and females - twin sample. 105
Table 6.20. Comparison of the frequency of occurrence of infraocclusion between males andfemales for the mandibular first and second molars - twin sample.105
Table 6.21. Comparison of the frequency of occurrence and degree of expression of infraocclusion for the mandibular first molar between right and left sides within individuals - male twin sample. 107
Table 6.22. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular second molar between right and left sides within individuals - male twin sample. 107
Table 6.23. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular first molar between right and left sides within individuals - female twin sample. 108
Table 6.24. Comparison of the frequency of occurrence and degree of expression of infraocclusion for the mandibular second molar between right and left sides within individuals - female twin sample. 109
Table 7.1. MZ male twins where both members of the pair showed infraocclusion
Table 7.2. MZ male twins where one member of the pair showed infraocclusion125
Table 7.3. MZ female twins where both members of the pair showed infraocclusion
Table 7.4. MZ female twins where one member of the pair showed infraocclusion

Table 7.5. DZ male twins where both members of the pair showed infraocclusion
Table 7.6. DZ male twins where one member of the pair showed infraocclusion
Table 7.7. DZ female twins where both members of the pair showed infraocclusion
Table 7.8.DZ female twins where one member of the pair showed infraocclusion
Table 7.9. Comparison of the frequency of occurrence and degree of expression of infraocclusion in the primary mandibular right first molars among members of male MZ twin pairs. 131
Table 7.10. Comparison of the frequency of occurrence and degree of expression of
infraocclusion in the primary mandibular right second molars among members of male MZ twin pairs
Table 7.11. Comparison of the frequency of occurrence and degree of expression of
infraocclusion in the primary mandibular right first molars among members of male DZ twin pairs
Table 7.12. Comparison of the frequency of occurrence and degree of expression of
infraocclusion in the primary mandibular right second molars among members of male DZ twin pairs
Table 7.13. Comparison of the frequency of occurrence and degree of expression of
infraocclusion in the primary mandibular right first molars among members of female MZ twin pairs
Table 7.14. Comparison of the frequency of occurrence and degree of expression of
infraocclusion in the primary mandibular right second molars among members of female MZ twin pairs
Table 7.15 Comparison of the frequency of ecourrence and degree of expression of
infraocclusion of the primary mandibular right first molars among members of female DZ twin pairs
Table 7.16. Comparison of the frequency of occurrence and degree of expression of
infraocclusion of the primary mandibular right second molars among members of female DZ twin pairs
Table 7.17. Results of fitting the conditional causal model to data on initiation and subsequent progression of infraocclusion. 140
Table 8.1. Association between infraocclusion and dental agenesis in singletons

Table 8.2. Association between infraocclusion and ectopic canines in singletons
Table 8.3. Association between infraocclusion and lateral incisor complex in singletons 151
Table 8.4. Comparisons of findings of associated dental anomalies between infraoccluded and non-infraoccluded groups in the singleton sample. 152
Table 8.5. Comparison of dental age obtained using the Demirjian system with chronologicalage in the infraoccluded and non-infraoccluded groups - singleton males
Table 8.6. Comparison of dental age obtained using the Demirjian system between infraoccluded and non-infraoccluded groups - singleton males. 155
Table 8.7. Comparison of dental age obtained using the Willems system with chronologicalage in the infraoccluded and non-infraoccluded groups - singleton males
Table 8.8. Comparison of dental age obtained using the Willems system betweeninfraoccluded and non-infraoccluded groups - singleton males.156
Table 8.9. Comparison of the chronological age between infraoccluded and non-infraoccluded groups - singleton males. 156
Table 8.10. Comparison of dental age obtained following the Demirjian system to chronological age in the infraoccluded and non-infraoccluded groups - singleton females. 157
Table 8.11. Comparison of dental age obtained following the Demirjian system betweeninfraoccluded and non-infraoccluded groups - singleton females.157
Table 8.12. Comparison of dental age obtained following the Willems system to chronological age in the infraoccluded and non-infraoccluded groups - singleton females. 157
Table 8.13. Comparison of dental age obtained following the Willems system betweeninfraoccluded and non-infraoccluded groups - singleton females.158
Table 8.14. Comparison of chronological age between infraoccluded and non-infraoccluded groups - singleton females. 158
Table 8.15. Z-scores of dental age for singleton males showing infraocclusion with agenesis.
Table 8.16. Z-scores of dental age for singleton females showing infraocclusion with agenesis. 159

Table 8.17. Comparison of mesiodistal crown widths between the infraoccluded group andnon-infraoccluded group in the twin male sample - right side.161
Table 8.18. Comparison of the mesiodistal crown widths between the infraoccluded group andnon-infraoccluded group in the twin male sample - left side
Table 8.19. Comparison of the mesiodistal crown widths between the infraoccluded group andnon-infraoccluded group in the twin female sample - right side.162
Table 8.20. Comparison of the mesiodistal crown widths between the infraoccluded group and non-infraoccluded group in the twin female sample - left side
Table 9.1. Summary of twins' study models examined at three stages in twins showing infraocclusion. 172
Table 9.2. Summary of findings of infraocclusion and associated anomalies in families of twin pairs with infraocclusion. 183
The following tables appear in the appendices:
 Table 1. Comparison of the frequency of occurrence and degree of expression of infraocclusion between primary mandibular first (D) and second (E) molars (left side) singleton sample. (Complements Table 6.5)
Table 2. Comparison of the frequency of occurrence and degree of expression of infraocclusion of the mandibular left first molars between males and females - singleton sample. (Complements Table 6.8)
Table 3. Comparison of the frequency of occurrence and degree of expression of
infraocclusion of the mandibular left second molars between males and females - singleton sample. (Complements Table 6.9)
Table 4. Comparison of the frequency of occurrence and degree of expression of infraoccluded primary mandibular first (D) and second (E) molars (right side) - singleton sample. (Additional results)
Table 5. Comparison of the frequency of occurrence and degree of infraoccluded primary mandibular first (D) and second (E) molars (left side) - singleton sample. (Additional results)
Table 6. Comparison of the frequency of occurrence and degree of infraocclusion betweenmandibular right and left first molars - singleton sample. (Additional results)

Table 7. Comparison of the frequency of occurrence and degree of infraocclusion betweenmandibular right and left second molars - singleton sample. (Additional results) 230

Table 10	. Comparison	of the frequency	of occurrence	e and degree	of infraoccl	uded mand	ibular
le	eft first molars	between males a	nd females -	singleton sar	nple. (Addit	tional result	ts)232

 Table 11. Comparison of the frequency of occurrence and degree of expression of

 infraoccluded mandibular left second molars between males and females - singleton

 sample. (Additional results)

 Table 17. Comparison of the frequency of occurrence and degree of expression of

 infraocclusion of the mandibular left first molars between males and females - twin

 sample. (Complements Table 6.18)

 Table 18. Comparison of the frequency of occurrence and degree of expression of

 infraocclusion of the mandibular left second molars between males and females - twin

 sample. (Complements Table 6.19)

- Table 19. Comparison of the frequency of occurrence and degree of infraoccluded primary

 mandibular first (D) and second (E) molars (right side) twin sample. (Additional

 results)

- Table 23. Comparison of the frequency of occurrence and degree of infraoccluded mandibularright first molars between males and females twin sample. (Additional results)....238
- Table 24. Comparison of the frequency of occurrence and degree of infraoccluded mandibularright second molars between males and females twin sample. (Additional results)238
- Table 25. Comparison of the frequency of occurrence and degree of infraoccluded mandibularleft first molars between males and females twin sample. (Additional results)......239
- Table 26. Comparison of the frequency of occurrence and degree of infraoccluded mandibularleft second molars between males and females twin sample. (Additional results) .239
- Table 28. Comparison of the frequency of occurrence and degree of infraoccluded mandibular second molar between right and left sides within individuals male twin sample.

 (Additional results)
 240

List of figures

Figure 2.1. A multilayered illustration of the dental developmental process, showing that
genetic and environmental disturbances during dental development may result in
distinct clinical phenotypes. Derived from Thesleff (2006) and Brook (2009)7
Figure 2.2. Radiographs showing a pair of infraoccluded primary mandibular first molars: A.
mandibular right, B. mandibular left9
Figure 2.3. An orthopantomograph showing infraoccluded primary mandibular left and right first molars
Figure 2.4. A study model showing an infraoccluded primary mandibular left first molar15
Figure 2.5. Intra-oral photographs showing a infraoccluded primary mandibular right first molar (A) and a primary maxillary left first molar (B)15
Figure 2.6. Study models showing the direct measurement of infraocclusion using a calibrated ruler (derived from Shalish et al., 2010)
Figure 2.7. Method used to measure infraocclusion from study models by Darling and Levers (1973)
Figure 2.8. Infraocclusion determined from the occlusal plane of the affected tooth to the occlusal plane of the adjacent teeth
Figure 2.9. The effect of infraocclusion on the orientation of the trans-septal fibres and tilting of the adjacent teeth.(Becker and Karnei-R'em, 1992b)
Figure 2.10. Model of normal distribution illustrating the relationships between anomalies of tooth number and size and possible association of infraocclusion, modified from Brook (2009)
Figure 2.11. Diagram showing the relationships of infraocclusion with other dental anomalies.
Figure 4.1.a. Construction of the occlusal plane in cases where no infraocclusion was present, to determine the reference points b. An example representing construction of lines to measure the level of infraocclusion
Figure 4.2. 2D imaging system used to assess infraocclusion
Figure 4.3. A surveyor was used to level the occlusal plane for each study model, according to specified reference points

Figure 4.4. Portable study model holder and adjustable table used to position the study models vertically
Figure 4.5. a. Photograph of study model obtained using 2D image system and then measured using the Photoshop computer software following the same criteria as the OPGs. The photograph was identified by: Twin ID, Twin A/B, upper/lower and right/left51
Figure 4.6. Illustration to explain precision and accuracy using a bull's eye (derived from Harris and Smith, 2009)
Figure 4.7. Sectors used to locate the tip of the canine in relation to the lateral incisor
Figure 4.8. A 2D images of the right sides of a study model showing maximum mesiodistal width measurements from the buccal view of the primary canines, primary first molars, primary second molars and permanent first molars
Figure 6.1. Method used to obtain infraocclusion measurements from the singleton orthopantomographs
Figure 6.2. Method used to obtain infraocclusion measurements from the twin study models.
Figure 6.3. Bar chart presenting measurements obtained from the occlusal plane to the occlusal table of the primary mandibular right first molar in singletons
Figure 6.4. Bar charts presenting measurements obtained from the occlusal plane to the occlusal table of the primary mandibular right second molar in singletons
Figure 6.5.Orthopantomographic of singletons who displayed infraocclusion in both the mandible and the maxilla
Figure 6.6.Orthopantomographic of singletons who displayed infraocclusion in both the mandible and the maxilla
Figure 7.1.Univariate model of the twin relationship
Figure 7.2. Gene-environment modelling of Carabelli trait for one member of a pair of MZ twins, consisting of general additive genetic factor (Ag), general dominance genetic factor (Dg) and general unique environmental factor (Eg) (derived from Townsend and Martin, 1992)
Figure 7.3. Full genetic modelling path diagram for Twin A and Twin B showing the relationship between initiation and progression. The model includes specifications for MZ and DZ twins

- Figure 7.4. Final fitted genetic modelling path diagram for Twin A and Twin B showing the relationship between initiation of infraocclusion in primary mandibular first molar and its progression. The model includes specifications for both MZ and DZ twins. 138
- Figure 7.5. Final fitted genetic modelling path diagram for Twin A and Twin B showing the relationship between initiation of infraocclusion in primary mandibular second molar and its progression. The model includes specifications for both MZ and DZ twins. 139
- Figure 8.1. Orthopantomograph showing an example of infraocclusion, agenesis of the mandibular left and right second premolars, ectopic canine (13) and small size lateral incisor (22).

Figure 9.1.Similar expression of infraocclusion in an MZ Twin pair (ID 808).168

- Figure 9.2.Dissimilar expression of infraocclusion in an MZ Twin pair (ID 808).....169
- Figure 9.3.Mirror image presentation of infraocclusion in an MZ twin pair (ID 324)......170

Figure	9.10. 2D images of study models showing infraocclusion in a sibling of one of the twins (ID 447)
Figure	9.11. 2D images of study models showing infraocclusion and associated anomalies at later stage in a sibling of one of the twins showing infraocclusion (ID 538)
Figure	9.12. 2D images of study models showing infraocclusion and associated anomalies in family members of a twin pair of which one of the twins show infraocclusion (ID 254).
Figure	9.13. 2D images of study models showing infraocclusion in different members of the family of a DZ Twin pair (ID 531)
Figure	9.14. 2D images of a sibling of a twin pair showing associated dental anomalies 190
Figure	10.1. Flow chart showing the contribution of different factors associated with disturbances resulting in infraocclusion or primary eruption failure
Figure	10.2. Presentation of infraocclusion and associated anomalies in the primary and permanent dentition
The fol	llowing figures appear in the appendices:
Figure	1. Bar chart presenting measurements obtained from the occlusal plane to the occlusal table of the primary mandibular left first molar in singletons

List of abbreviations

AIC	Akaike's Information Criterion
CA	Chronological age
С	Primary canine
CorGE	Genotype-environment correlation
D	Primary first molar
DAP	Dental anomaly pattern
DDA	Demirjian dental age
DZ	Dizygotic (twin pairs)
E	Primary second molar
F	Female
GxE	Genotype by environmental interaction
h^2	Heritability estimate
L	Left
М	Male
Man	Mandibular arch
Max	Maxillary arch
MD	Mesiodistal tooth width
MEF	Mechanical eruption failure
MI	
MLD	Mandibular left first molar
MLE	Mandibular left second molar
MO MZ	Moderate Monomyostia (twin naim)
MZ NI	Non infraogaludad
OPG	Orthonantomograph
PEE	Primary eruntion failure
R R	Right
K SD	Right Standard deviation
SD	
Se	Daniberg statistic
SE	Severe
SEM	Structural equation modelling
SE	Standard error
V_A	Additive genetic variance
V_D	Dominance variance (effects between alleles at the same locus)
V _E	Total environmental variance
V_{EC}	Common environmental variance (affecting both twins)
$V_{\rm EW}$	Individual environmental variance (affecting one twin)
V_{G}	Total genetic variance
V_{I}	Epistatic variance (interactions between alleles at different loci)
V_P	Phenotypic variance
WDA	Willems dental age
x diff	Mean difference
6	Permanent first molar

Abstract

The process of tooth eruption involves complex interactions between genetic, epigenetic and environmental factors. 'Infraocclusion' refers to a tooth that is positioned below the normal plane of occlusion. This study aims to determine the frequency of occurrence of infraocclusion in the primary molars and to find out whether there are associations between infraocclusion and several variables. Further, it is planned to clarify the roles of genetic, epigenetic and environmental factors in contributing to observed variation in infraocclusion, and to estimate the frequency of occurrence of some selected dental anomalies in association with infraocclusion.

Orthopantomographs of 1,454 healthy singleton Finnish boys and girls aged between 9-10 years, and study models of 320 Australian twin pairs aged between 8-10 years were examined. Adobe Photoshop CS5 computer software was used to construct reference lines (from the mesial marginal ridge of the mandibular first permanent molar to the cusp tip of the primary canine or the mesioincisal edge of the permanent lateral incisor). The distances between reference points were measured (in mm) for both samples and categorised into noninfraoccluded, mild, moderate, and severe. Genetic modelling was also used to quantify the contribution of genetic and environmental factors to observed variation. The orthopantomographs were examined for the presence of associated dental anomalies. Dental age and tooth size assessment were carried out in individuals showing infraocclusion.

Descriptive statistics, including mean values, standard deviations and percentage frequencies, were used to summarise data within groups and comparisons between groups were made using t-tests and chi-square analyses.

The overall prevalence of infraocclusion was 22% in singletons, and 27 % in twins. The primary mandibular first molar was the most commonly affected tooth (21% in singletons and 28% in twins compared with 6% and 18% for the mandibular second molar in singletons and twins respectively). Genetic modelling indicated a strong genetic contribution (~94%) to observed variation in the primary mandibular first molar, while common and unique environmental factors contributed to infraocclusion of the primary mandibular second molar. Investigation of MZ twin pairs revealed differences in the expression of infraocclusion within some twin pairs, for example, mirror imaging. These findings reflect epigenetic events and/or environmental disturbances that have occurred during the developmental process. Analysis of dental anomalies in singletons revealed a significant association of ectopic canines and the lateral incisor complex with infraocclusion. Individuals showing infraocclusion displayed delayed dental development and evidence of reduced primary tooth size.

The findings showed that genetic factors play a major role in contributing to infraocclusion of the primary mandibular first molar, whereas environmental factors contribute more to variation in infraocclusion of the second molar. These environmental factors could occur in the prenatal or early postnatal stages of life and may disrupt the network of epithelial rests of Malassez, leading to localised areas of ankylosis. A possible pleiotropic effect was reflected by the presence of associated dental anomalies with infraocclusion.

These findings are significant in improving understanding of the basic biological mechanisms and associated features of infraocclusion, and should assist clinicians in providing proper counselling, early diagnoses, prevention and treatment planning for affected individuals.

Thesis declaration

Name: Ruba Mohammed Odeh

Program: PhD in Dentistry

This work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:_____

Format of the thesis

This thesis is presented as eleven main chapters. The first two chapters provide an overall introduction and literature review, focusing on setting the scene of this research and identifying gaps in our knowledge, while Chapter 3 presents the aims. The fourth chapter summarises the methods used in this project, while the fifth chapter focuses on reporting the systematic and random errors of the methods. Chapters 6, 7 and 8 present results and are set up to facilitate future publications, so there is some repetition from the literature review and materials and methods presented in previous chapters. For certain topics, a more detailed explanation is included than one might expect in a published paper, for example the section about genetic modelling in Chapter 7. When these findings are submitted for publication, some of these sections will be reduced in length or removed.

Chapter 6 presents descriptive statistics on infraocclusion obtained from the singleton and twin samples. Chapter 7 reports on genetic analysis of infraocclusion in the twin sample. Chapter 8 explores associations between infraocclusion and other dental anomalies in both samples. Chapter 9 presents a series of interesting cases selected from the twin sample, as well as some of their family members. Chapter 10 presents a general discussion of this research, with key findings and suggestions for further research, while Chapter 11 provides general conclusions. A list of references is provided at the end of this thesis, together with some appendices.

Acknowledgments

In the name of GOD, the lord of the universe, the most gracious, the most merciful. Words will never be enough to express how I am deeply thankful to him, without whose guidance, will and blessings, this work would have not grown a reality.

I would like to express my greatest gratitude to my principal supervisor Professor Grant Townsend; you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a researcher. Your advice and guidance throughout my candidature has been invaluable, without which this research would have been impossible to complete. I would like also to thank my co-supervisor Dr. Suzanna Mihailidis for her effortless support, encouragement and guidance. I am thankful and grateful to Dr. Toby Hughes for the time and effort he placed in guiding me through the data analysis. My appreciation and thankfulness to Professor Alan Brook for providing me with valuable comments that added to my knowledge and enriched my thoughts. I would like to thank Assistant Professor Raija Lahdesmaki for believing in this research and sharing with us some of her resources, and for kindly answering all my questions during her visits in Adelaide. I would like to thank all my supervisors for their valuable feedback, not only in preparation of this thesis, but for insight, knowledge, and clarification over the past several years and for all of the countless hours they spent in assessing and reviewing my previous drafts.

My appreciation and thankfulness extends to all members of the Craniofacial Biology and Dental Education Group who overwhelmed me with their kindness, their warm smiles and their family-like environment. I am thankful to Associate Professors John Kaidonis and Tracy Winning for sharing their valuable knowledge and experience during the seminars conducted within the group. I would especially like to thank Michelle Bockmann for facilitating my stay in the MJ Barrett lab during data collection and for the lovely chats we had in the corridors of the sixth floor. The efforts of Abbe Harris and Corinna Bennet in collection and storage of twin's data is greatly acknowledged. Special thanks to Karen Squires for being helpful at all times and for organising our afternoon gatherings, and thanks to Sandra Pinkerton for her generous help and lovely smiles. Many thanks and appreciation to Dr. Atika Ashar and Dr. Daniela Ribeiro, my friends and colleagues who always have been there to help with difficulties, and for their generosity in sharing with me their knowledge and experiences.

Warmest thanks go to my dearest friend Khloud Fakihi, for sharing with me this journey on a daily basis and to my friends Doctor Akram Qutoub, Doctor Narmin Nasr, Doctor Abdulrahman Al-Azri, Doctor Durr, Doctor Abdulaziz Al Majid and their families for their unlimited friendship, support and care. All of you have been there to support me when I needed you most and you made my long journey less lonely, full of fun and memories -thank you.

A special thanks to my family. Words cannot express how grateful I am to my beloved husband Dr Mohamed El-Kishawi for all of the sacrifices that you've made on my behalf; I can't thank you enough for encouraging me throughout this experience. And to my darling son Zaid, I would like to express my thanks for being such a good boy always cheering me up. And to my sweetheart Malik, who encouraged me with every smile and every giggle.

I would like to dedicate this thesis to my idol, inspiration and source of strength my dear father Mohamed Odeh, and to the most loving, caring and kindest ever, to my mother Fahima Hassan. Your prayers for me were what sustained me this far, your constant encouragement for learning and to pursue my dreams have always lifted me in the most difficult days, I hope I have made you proud. Also this thesis is dedicated to my dearly loved sisters Nabila, Heyam, Rana and Hala for all the support, care and unconstrained love, and to my dear brothers Nader and Loay and their families for all the support and encouragement throughout the journey. I would also like to dedicate this thesis to my dear mother in law Fahima Elkishawi, your prayers, your unconstrained love and encouragement have made me strong and cheered me up when I was most depressed, you are a true motivation. To my dear brothers in law Abdelhay, Abdelrahman, Ahmad and Alhussain, and their families thank you for being substantially supportive.