NON-LINEAR MODELS FOR EVALUATING THE RESIDUAL OPENING OF HYDRAULICALLY STIMULATED FRACTURES AND ITS IMPACT ON WELL PERFORMANCE

by

Luiz Bortolan Neto

B.Eng., M.Sc.

A thesis submitted for the degree of Doctor of Philosophy at the

School of Mechanical Engineering

The University of Adelaide

Australia

Submitted 6 September 2013

Accepted 14 November 2013

Abstract

Hydraulic stimulation techniques have been employed successfully over the past 60 years to enhance the productivity of oil and gas reservoirs. These techniques work by injecting a pressurised fluid into the wellbore to initiate and propagate an artificial fracture or to open a network of existing fractures. These techniques are also commonly known as hydraulic fracturing or fracking. The main objective of hydraulic stimulation is to create highly conductive pathways, which can significantly increase the permeability of the reservoir and, subsequently, improve the well productivity. An injection of small particles (usually known as propping agents or proppants) with the fracturing fluid is the most common method to prevent the stimulated fractures from full closure during the production stage because of confining stresses.

To date, research has largely focused on the assessment of conditions and characteristics of fluid-driven fractures, as well as proppant transport and settlement mechanisms. The modern theory of hydraulic fractures is based on linear elastic fracture mechanics and theories of poro-elasticity, fluid flow in narrow openings and suspension flow in porous media. Despite numerous studies being carried out, few are devoted to the residual opening of hydraulic fractures, which has a significant effect on well productivity. There are many exciting potential applications and developments of hydraulic stimulation techniques for geothermal reservoirs and coal seam gas production. These all require new and more comprehensive theories, supported by analytical and numerical solutions capable of describing the non-linear effects of proppant placement and

compressibility on the fracture residual opening profile and, ultimately, on the reservoir permeability and well performance.

In order to address these needs and gaps, this thesis aims to develop:

- a new mechanical model for predicting the mechanical response of saturated and unsaturated low-consolidated granular particles to compressive loading;
- a new mathematical method and non-linear solutions for evaluating the residual aperture of fractures partially filled with unconsolidated compressible particles (proppant) and subjected to compressive loading;
- a new mathematical model for evaluating the production rate of hydraulically stimulated wells taking into account the residual closure and various regions of distinct permeability along the fracture.

These new models are all based on the classical theories of solid, fluid, contact, fracture, rock and soil mechanics, which provide a framework for evaluating the residual opening profiles (aperture) of hydraulically stimulated fractures, as well as the influence of the fracture residual aperture on the well performance.

A number of simplifications are used to formulate the mathematical models and develop non-linear solutions. Many of these simplifications, such as twodimensional problem geometry, plane strain conditions and linear elastic behaviour of the medium, represent a well-established foundation for analytical and numerical modelling in reservoir engineering. Accounting for other important phenomena, such as proppant flow-back and secondary cracking, is beyond the scope of this thesis but may be included in future work. The numerical results obtained within the developed models indicate that the residual openings and distribution of proppant along the fracture have a significant effect on well productivity (up to 50 per cent in the case of a relatively low level of confining stresses in the reservoir) and must be incorporated into the evaluation of the efficiency of hydraulic stimulation techniques and assessment of well productivity.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or tertiary institution without the prior approval of The University of Adelaide.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines.

Luiz Bortolan Neto

Date

Acknowledgments

I would not have contemplated this road if not for my parents, Rita de Cássia and Gabriel Bortolan, who instilled in me a love of creative pursuits, science and language, all of which find a place in this thesis. The understanding and endless love and support of my wife, Kathiucia Pamela Ghellere, gave me strength and determination to complete this journey. To my parents and wife I give my eternal admiration and love. My siblings, Julio Cezar and Juliana Bortolan, and my parents-in-law, Sergio and Marilda Ghellere, have also been the best of friends, providing much stress relief during my stays in Brazil. To them I give my appreciation and love.

I also wish to acknowledge my supervisor, Associate Professor Andrei Kotousov, for his invaluable assistance, support and guidance throughout my studies. Without his wealth of knowledge and assistance, this work would not have been possible. My deepest gratitude goes to those who have been part of my supervisory panel — Prof Pavel Bedrikovetsky and Dr Erwin Gamboa — for their insightful remarks.

Special thanks go to all my postgraduate friends, Mohamad Awadalla, Aditya Khanna, Ladan Sahafi, Nikan R. Torghabeh, Kristy Hansen, Erwin Hammiga, Saleh Mahmmoud, Donghoon Chang, Roslina Mohammad and Fabio Pegorin, as well as to my close friends, Ana P. Bortolan, Daniel Knight, Peter Oborn, Sharon Ayris, Oeliton Felipim, Rosana N. Felipim, Marc Breyer, Sergio L. Ghellere,

Father John Rate, Francis Evans and Cathy Black, among others, for the relaxing moments, support and encouragement that helped ease the hard times.

I am indebted to the many anonymous reviewers of the manuscripts produced for helping to shape and guide the direction of the work with instructive comments. My gratitude goes to the School of Mechanical Engineering for the financial means and resources supplied, as well as to the administrative staff for their support. Moreover, I would like to acknowledge the editorial comments and suggestions of Elite Editing, which have been restricted to Standards D and E of the Australian Standards for Editing Practice.

Most of all, thanks to God for giving me strength to keep moving forward and for making the impossible, possible.

This thesis would not have been possible without the help and guidance of all individuals mentioned above and many others who, in one way or another, contributed and extended their valuable assistance in the preparation and conclusion of this study.

Luiz Bortolan Neto

Thesis by Publication

This thesis is comprised of a combination of peer-reviewed publications and submitted journal articles in accordance with the Academic Program Rules 2013 of The University of Adelaide. The journals involved all deal with subject matter closely related to the research field of this thesis.

This thesis is based on the following publications:

- Bortolan Neto, L, Kotousov, A & Bedrikovetsky, P 2011, 'Application of contact theory to evaluation of elastic properties of low consolidated porous media', *International Journal of Fracture*, vol. 168, no. 2, pp. 267– 276. doi:10.1007/s10704-010-9574-6
- Bortolan Neto, L, Kotousov, A & Bedrikovetsky, P 2011, 'Elastic properties of porous media in the vicinity of the percolation limit', *Journal of Petroleum Science and Engineering*, vol. 78, no. 2, pp. 328–333. doi:10.1016/j.petrol.2011.06.026
- Bortolan Neto, L. & Kotousov, A 2012, 'On the residual opening of cracks with rough faces stimulated by shear slip', in A Kotousov, R Das & S Wildy (eds), 7th Australasian Congress on Applied Mechanics (ACAM 7), Engineers Australia, Adelaide, pp. 867–876.
- Bortolan Neto, L & Kotousov, A 2012, 'Residual opening of hydraulically stimulated fractures filled with granular particles', *Journal of Petroleum Science and Engineering*, vol. 100, pp. 24–29. doi:10.1016/j.petrol.2012.11.014

- Bortolan Neto, L & Kotousov, A 2013, 'Residual opening of hydraulic fractures filled with compressible proppant', *International Journal of Rock Mechanics and Mining Sciences*, vol. 61, pp. 223–230. doi:10.1016/j.ijrmms.2013.02.012
- Bortolan Neto, L & Kotousov, A 2013, 'On the residual opening of hydraulic fractures', *International Journal of Fracture*, vol. 181, no. 1, pp. 127–137. doi:10.1007/s10704-013-9828-1
- Bortolan Neto, L & Khanna, A 2013, 'The performance of hydraulic fractures partially filled with compressible proppant', *Australian Journal of Multidisciplinary Engineering*, vol. 10, no. 2, pp 185–197. doi:10.7158/N13-AC08.2013.10.2

The following articles are relevant to the present work and are included as appendices:

- Kotousov, A, Bortolan Neto, L & Rahman, SS 2011, 'Theoretical model for roughness-induced opening of cracks subjected to compression and shear loading', *International Journal of Fracture*, vol. 172, no. 1, pp. 9–18. doi:10.1007/s10704-011-9642-6
- Bortolan Neto, L, Khanna, A & Kotousov, A 2013, 'A new approach to evaluate the performance of partially propped hydraulic fractures' in *APPEA 2013 Journal and Conference Proceedings*, vol. 53, pp. 355–362.
 APPEA 2013 Conference and Exhibition, Brisbane, Australia, APPEA and Media Dynamics.
- Kotousov, A, Bortolan Neto, L & Khanna, A 2014, 'On a rigid inclusion pressed between two elastic half spaces', *Mechanics of Materials*, vol. 68, pp. 38–44. doi:10.1016/j.mechmat.2013.08.004
- Khanna, A, Bortolan Neto, L & Kotousov, A 2014, 'Effect of residual opening on the inflow performance of a hydraulic fracture'. *International Journal of Engineering Science*, vol. 74, pp. 80–90. doi:10.1016/j.ijengsci.2013.08.012

Table of Contents

Abstract	i
Declaration	iii
Acknowledgements	v
Thesis by Publication	vii
Table of Contents	ix
Glossary	xvii

1.	. Introduction				
	1.1	Overview	3		
	1.2	Summary of Gaps	5		
	1.3	Main Objective and Methodology	6		
	1.4	Specific Aims and Details of the Publications	7		
		1.4.1 Theory of low consolidated porous media	8		
		1.4.2 Evaluation of the residual opening of hydraulic fractures	10		
		1.4.3 Investigation of the fracture residual opening influence on well productivity	14		
	1.5	Organisation of the Thesis	15		
	Ref	erences	16		

2.	Basic Aspects of Design and Efficiency Evaluation of Hydraulic			
	Stin	ulations	23	
	2.1	Introduction	25	
	2.2	Fracture Initiation and Propagation	27	
	2.3	Flow and Leak-off of the Stimulating Fluid	29	
	2.4	Fracture Geometry during Hydraulic Stimulation	30	
	2.5	Proppant Transport, Settlement and Distribution	31	
	2.6	Mechanical Properties of Proppants and Low-Consolidated Porous Media	32	
	2.7	Roughness-induced Opening of Natural Fractures	33	
	2.8	Fracture Residual Opening and Conductivity	34	
	2.9	Well Performance	35	
	2.10	Development of Fracturing Materials	36	
	2.10	Environmental risks	37	
	Refe	rences	38	
3.	Fra	cture Mechanics	51	
	3.1	Introduction	53	
	3.2	Linear Elastic Fracture Mechanics	55	
		3.2.1 Westergaard's solution for a centre crack with constant tensile loading	58	
	3.3	The Distributed Dislocation Technique	60	
		3.3.1 DDT formulation for a centre crack with arbitrary loading	62	
		3.3.2 Numerical solution of integral equations with simple Cauchy kernels	64	
	Refe	rences	67	

4.	Application of the Contact Theory to Evaluation of Elastic Properties of Low Consolidated Porous Media	. 71
	Statement of Authorship	. 73
	Abstract	. 75
	Introduction	. 75
	Diagenesis Process and Packing of Spherical Particles	. 77
	Bulk Modulus of Low Consolidated Medium	. 79
	Discussion	. 81
	References	. 83

5.		stic Properties of Porous Media in the Vicinity of the Percolation it	85
	Stat	ement of Authorship	87
	Abs	tract	89
	1.	Introduction	89
	2.	Diagenesis Process and Packing of Spherical Particles	90
	3.	Bulk Modulus of Low Consolidated Medium	91
	4.	Discussion and Conclusion	92
	Refe	erences	94

6.	On the Residual Opening of Cracks with Rough Face Shear Slip	·
	Statement of Authorship	
	Abstract	
	1 Introduction	
	2 Mechanical Model	

3	System of Integral Equations	102
4	Solution Procedure	102
5	Stress Analysis	104
6	Validation	104
7	Physical Remarks	106
8	Conclusions	106
Refe	rences	107

7.			Opening of Hydraulically Stimulated Fractures Filled Inular Particles	9		
	Statement of Authorship 1					
	Abstract					
	No	mencl	ature 11	4		
	1.	Intr	roduction 11	3		
	2.	Pro	blem Formulation 11	5		
		2.1.	Soil compressibility and settlement 11	5		
		2.2	DDT formulation 11	5		
		2.3	Numerical and computational formulations 11	6		
	3.	Dis	cussion 11	6		
		3.1.	Validation of the proposed approach 11	6		
		3.2.	Residual stress intensity factor: physical remarks 11	7		
4. Conclusions				8		
	Re	ference	es 11	8		

8.		sidual Opening of Hydraulic Fractures Filled with Compressible	119
	Stat	tement of Authorship	121
	Abs	stract	123
	1.	Introduction	123
	2.	Mechanical Model	124
	3.	Mathematical Model	125
		3.1. Governing equations	125
		3.2. Proppant response	125
	4.	Solution Procedure	126
		4.1. Numerical formulation	126
		4.2. Computational formulation	126
		4.3. Analysis of stresses	127
	5.	Results and Discussion	127
		5.1. Validation of the proposed method	127
		5.2. Stress intensity factor	128
		5.3. Fracture profiles	128
	6.	Conclusions	129
	Ref	erences	129
9.	On	the Residual Opening of Hydraulic Fractures1	131

Unt	ne Residual Opening of Hydraulic Fractures	131
State	ment of Authorship	133
Abst	ract	135
1	Introduction	135
2	Mechanical Model and Boundary Conditions	137

3	Governing Equations		
4	Mechanical Behaviour of a Pack of Compressible Particles 1		
5	Solution Procedure 13		
	5.1	Numerical formulation	140
	5.2	Computational formulation	140
	5.3	Stress analysis	140
6	Phy	sical Remarks	141
	6.1	Hydraulic fracture residual opening and stress response	141
	6.2	Stress intensity factor	142
7	Cor	nclusions	142
Appendix: Validation of the Computational Approach 14			143
References 144			

10.	The Performance of Hydraulic Fractures Partially Filled with			
	Compressible Proppant			
	Stat	tement	of Authorship	149
	Abstract			151
1. Introduction		oduction	151	
	2.	Prol	plem Formulation	152
	3.	Mec	chanical Model for Residual Opening	154
	4. Model for Fluid Flow towards the Hydraulic Fracture		154	
	5. The Productivity Index		Productivity Index	155
	6.	Res	ults and Discussion	156
		6.1	Proppant distribution influence on well productivity	156
		6.2	Proppant pack compressibility effect on well productivity	158

7.	Conclusion	159
Refe	rences	160
Appe	endix A: Proppant Response Model	161
Appe	endix B: Discretisation of Governing Equations	162

11. Summary, Recommendations and Conclusions 165

11.1 Introduction	. 167
11.2 Theory of Low Consolidated Porous Media	. 168
11.3 Evaluation of the Residual Opening of Hydraulic Fractures	. 170
11.4 Investigation of the Fracture Residual Opening Influence on Well Productivity	. 172
11.5 Recommendations for Future Research	. 174
11.6 Conclusions	. 175
References	. 177

Appendix A.	Theoretical model for roughness induced opening of cracks subjected to compression and shear loading	
Appendix B.	A new approach to evaluate the performance of partially propped hydraulic fractures	193
Appendix C.	On a rigid inclusion pressed between two elastic half spaces	203
Appendix D.	Effect of residual opening on the inflow performance of a hydraulic fracture	213

Glossary

Bottomhole pressure: The pressure at the depth of the producing layer.

- *Breakdown pressure*: The pressure at which a formation matrix fractures. The breakdown pressure is determined before establishing feasible reservoir stimulation techniques. Hydraulic fracturing treatments are performed above the breakdown pressure, whilst matrix treatments are carried out with the treatment pressure safely below the breakdown pressure.
- *Breaker*: Any substance used to degrade the viscosity of polymer-based fracturing fluids, helping to enhance post-fracturing fluid recovery.
- *Damage zone:* The area surrounding the wellbore that has been harmed by the drilling process.
- Fluid leak-off: See fluid loss.
- Fluid loss: The leakage of the stimulating fluid into the formation matrix.
- Formation matrix: The rock mass around the borehole.
- *Fracture conductivity:* The fracture capability to transmit fluids from the reservoir to the wellbore at the production stage.
- *Pay zone*: A reservoir or portion of a reservoir that contains economically producible natural resources.
- *Penetration ratio:* The ratio of the hydraulic fracture length to the equivalent reservoir length.
- Percolation: Movement and filtering of fluids through porous materials.

Percolation limit: See percolation threshold.

- *Percolation threshold*: The limit that defines the medium as frame supported or fluid supported. Below this threshold, no connections between solid particles exist and the medium is fluid supported. Above the percolation limit, the medium is frame supported because of the connections between solid particles.
- Permeability: The ability of a porous medium to convey fluids.
- Porosity: The percentage of pore volume or void space of a porous medium.
- *Pressure drawdown*: The difference between the average reservoir pressure and the flowing bottomhole pressure.
- *Proppant*: Portmanteau of the words 'propping' and 'agent'. See *propping agent* for further details.
- *Proppant flow-back*: Proppant being produced out of a hydraulically fractured well during the resource recovery phase.
- *Propping agent*: Granular particles mixed with fracturing fluid to hold fractures open after a hydraulic fracturing treatment. In addition to naturally occurring sand grains, man-made or specially engineered proppants may also be used. Proppant materials are sorted for size and sphericity to provide an efficient conduit for production of fluid from the reservoir to the wellbore.
- *Reservoir*: A subsurface body of rock with sufficient porosity and permeability to store and convey fluids.
- *Stimulation*: A treatment carried out to reinstate or enhance well productivity. Stimulation treatments fall into two main groups: hydraulic fracturing treatments and matrix treatments. Fracturing treatments induce highly conductive flow paths between the reservoir and the wellbore. Matrix treatments are designed to restore the natural permeability of the reservoir following damage to the near-wellbore area.
- *Unconventional reservoir:* Any reservoir that requires special recovery operations (e.g., stimulation treatments) outside the conventional operating practices. These operations must overcome economic constraints in order to make production from unconventional reservoirs monetarily viable.
- *Wellbore*: The drilled hole or borehole, including the open-hole or uncased portion of the well.