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Abstract

The thesis studies sellers’ pricing and learning behaviour in Bertrand oligopoly mar-

kets using a bounded rational approach. It consists of four chapters.

Chapter 1 develops a quantal response adaptive learning model which combines sell-

ers’ bounded rationality with adaptive belief learning in order to explain price dispersion

and dynamics in laboratory Bertrand markets with perfect information. In the model,

sellers hold beliefs about their opponents’ strategies and play quantal best responses

to these beliefs. After each round, sellers update their beliefs based on the information

learned from previous play. Maximum likelihood estimation suggests that when sellers

have full past price information, the learning model explains price dispersion within

periods and the dynamics across periods. The fit is particularly good if one allows for

sellers being risk averse. In contrast, Quantal Response Equilibrium does not organize

the data well.

Chapter 2 proposes a generalized payoff assessment learning model of Sarin & Vahid

(1999) for the perfect information Bertrand experiments we studied in Chapter 1. The

model contains the quantal-response adaptive learning model of Chapter 1 and the

original payoff assessment learning model as special cases. A main feature of the model

is that it stresses the importance of forgone payoffs for unselected prices in driving the

price adjustments. Maximum likelihood estimation shows that the model substantially

outperforms the quantal-response adaptive learning model with respect to fitting the

data.

Chapter 3 studies the effects of increasing number of sellers on Quantal Response

Equilibrium (QRE) prices in homogeneous product Bertrand oligopoly markets. We

show that the comparative statics properties of QRE can be very sensitive to the spec-

ification of the quantal response function. With the power-function specification, an

increase in the number of competing sellers leads to a decrease in the average QRE

market price. In stark contrast, with logistic specification, having more sellers may
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increase the equilibrium market price, which is at odds with the general intuition that

competition should lead to lower prices.

Chapter 4 proposes an extended payoff-assessment learning model to explain the

pricing and learning behaviour observed in a repeated Bertrand market experiment

with limited feedback. In the experiments, sellers’ only feedback after a period was

their own payoff. Sellers were not able to observe the prices set by their competitors.

The data show that pricing behaviour is strongly influenced by past sales. Sellers on

average increase prices after being successful at selling, while they reduce prices after

failing to sell. We show that by explicitly incorporating the sellers inferences from the

sale history, our learning model manages to explain the data on both the aggregate and

individual level.
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Chapter 1

Explaining price dispersion and
dynamics in laboratory Bertrand
markets

1.1 Introduction

For non-economists it is counter-intuitive that in homogeneous product Bertrand mar-

kets, in Bertrand-Nash equilibrium, all firms always should set prices at the marginal

cost level and earn zero profits. The Bertrand-Nash equilibrium prediction is counter-

intuitive to non-game theorists in the sense that no firm has strong incentives to stick

to the equilibrium because there is no cost of unilaterally deviating from it. Further to

that, sellers are able to achieve higher expected profits by deviating together from the

Nash equilibrium and coordinating on higher prices. Observations from real world and

laboratory markets cast further doubts on the appropriateness of the Bertrand-Nash

prediction. In both real and experimental markets, prices are found to be dispersed

above the marginal cost. Moreover, rather than staying constant over time, empirical

price distributions show significant inter-temporal variation.

Since Stigler (1961), numerous search-theoretical models have been developed to re-

solve the puzzle: Salop & Stiglitz (1977), Reinganum (1979), Varian (1980), and Baye &

Morgan (2001), to name only a few. By introducing heterogeneity among consumers or

sellers in factors such as search costs, production costs or informational frictions, search-
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theoretic models provide excellent rationales for price dispersion. Repeated-game ef-

fects are also frequently used to explain why prices commonly stay above marginal

costs. When sellers engage in repeated interaction, they may have incentives to keep

prices at a high level to prevent pricing wars, which might be triggered by a lower price

if the competitors adopt a trigger strategy. Alternatively, setting high prices can serve

as a signal of friendliness in expectation of reciprocal cooperative behaviour by their

opponents in later interactions.

Persistent price dispersion, however, is still commonly recorded in markets where all

the aforementioned factors play trivial roles. Evidence can be easily found for online-

shopping markets, where search and information costs are negligible (Baye & Morgan

2004) . The same is true for laboratory Bertrand markets where all of those factors

can be appropriately controlled for (Bayer & Ke 2011; Dufwenberg & Gneezy 2000).

To bridge this gap between theory and empirical reality, some behavioural models have

been developed. Rauh (2001) shows that price dispersion can arise when sellers make

small but heterogeneous mistakes in beliefs about the market price distribution. Baye

& Morgan (2004) show that bounded rational choice models, namely, Quantal Response

Equilibrium(QRE, McKelvey & Palfrey 1995) and ε-equilibrium(Radner 1980) can ex-

plain price dispersion in homogeneous-good pricing games. Under the QRE model,

firms play quantal best responses in a manner that choices with higher expected profits

are played with higher probabilities. In contrast, in an ε-equilibrium sellers are equally

likely to choose any price that yields an expected profit within ε of the profits for the

optimal prices.

Like most of the search-theoretical models of dispersed prices, the bounded rational

equilibrium approaches used by Baye & Morgan (2004) are static and hence fail to

capture important dynamic features of market prices. In both laboratory and real world

price competition markets, market prices typically exhibit significant intertemporal

variations. For this reason, we propose a learning model that combines sellers’ bounded
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rational pricing behaviour with learning, which allows for meaningful dynamics.

Our model is based on laboratory observations from two repeated homogeneous

product Bertrand experiments. The only difference between the two experiments is

the amount of information revealed to the players after each period. More specifically,

in one experiment which we call the high information treatment, after each period,

firms are shown their private profits and all sellers’ prices posted in that period. In

contrast, in the low information treatment, sellers were shown only their own profits.

In both treatments, prices are persistently dispersed over the price set. A comparison

of the two treatments shows that the information structure influenced sellers’ choices

substantially. Prices move downward much faster in the high information treatment

than in the low information treatment.

We combine sellers’ bounded rationality and learning in an attempt to explain price

dispersion and dynamics observed in the high information treatment. In our model,

the information about past market prices acts as the main factor of driving the price

adjustments. Following QRE, we assume that the sellers play quantal best responses

to their beliefs about the strategies of their opponents. In an extended model, we

increase the flexibility of the model by allowing for different risk preferences. We model

the dynamics of the game by a belief learning rule. After each period, based on the

previous play, sellers update their beliefs of other sellers’ strategies and play quantal

responses to the new beliefs. Our model maintains the assumption in Baye & Morgan

(2004) that sellers’ beliefs take into account the other players’ noisy behaviour, which is

captured by completely mixed strategies. In QRE, all players’ beliefs are consistent with

the quantal response choices of their opponents. Rather than considering QRE as an

instantaneous result of the game, we conjecture that an equilibrium is a steady state of

long-run evolution. We assume that the beliefs of a seller (i.e., a probability distribution

over the action space of the opponent) is not necessarily correct and changes according

to the learning rule. Following Cheung & Friedman (1997), we use an adaptive learning
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rule with parameter α measuring how past information is discounted. The learning

rule includes Cournot learning (α = 0) and fictitious learning (α = 1) as extreme cases.

When α ∈ (0, 1), all past interactions affect the beliefs; but the more recent periods

receive greater weight.

Note that this model lends itself naturally to one of the treatments (i.e. the full

information treatment), while it seems highly inappropriate for the other. Clearly, a

model built on sellers learning from past prices in the market place only makes sense

if the sellers can observe prices. Consequently, our model provides an appropriate

explanation for the price dynamics in Bertrand markets with full information only

if it fits well in the high information treatment but at the same time not in the low

information treatment. Putting the model to the data of the low information treatment

serves as a robustness test. If it were to fit well there, then it could not be ruled out

that the potentially good fit in the high information treatment is purely mechanical

and results from the number of degrees of freedom in the model.

Maximum likelihood estimates show that the quantal-response adaptive learning

model nicely captures the price dispersion and dynamic adjustments observed in the

high-information treatment, while the Quantal Response Equilibrium approach of Baye

& Morgan (2004) does not. We also find that sellers conditionally on our model being

correct exhibit a reasonable degree of risk-aversion. In contrast, our model does not

perform well in the the low-information treatment. We conclude that the quantal-

response adaptive learning model, where sellers noisily best-respond to their beliefs, is

a good explanation for the price dispersion and dynamics in full-information Bertrand

markets.

The Chapter is organized as follows. Section 1.2 introduces two Bertrand price

competition experiments and its data which we will use as guidance of our modeling.

Section 1.3 lays out the QRE model of Baye & Morgan (2004) and our quantal-response

adaptive learning model for the finitely repeated Bertrand market game. Section 1.4

4



uses the experimental data to structurally estimate the parameters of the models, and

discusses the results. This Section also conveys a comparison of the goodness of fit for

the QRE approach and our learning approach. Section 1.5 concludes with a discussion

of the evolutionary properties of the learning model.

1.2 The experiments

In this section, we present two samples of experimental data which will be taken as

guidance for our learning model. In section 1.4 we shall also use these data to eval-

uate the appropriateness of the model. We use truncated data from two 30-period

Bertrand price-competition experiments, one from Bayer & Ke (2011) and the other a

subsequent experiment, both conducted at Adelaide Laboratory for Experimental Eco-

nomics (Adlab) at the University of Adelaide. In total, 305 participants participated.

The participants were mainly students from the University of Adelaide. They studied

for a variety of under and postgraduate degrees. The experiments were designed to

investigate the responses of sellers’ pricing behaviour to various exogenous cost shocks

where the cost shocks were imposed at the beginning of the 16th period. Since the

effects of exogenous cost shocks are not of interests for this study, we shall focus on the

first 15 periods of play from these experiments for which the production cost were kept

constant.

At the beginning of the experiments the participants were randomly assigned roles

as sellers or buyers at a fixed ratio of two to one. The roles were kept fixed throughout

the experiment. At each period, markets were formed using random matching. Each

market consisted of two sellers and a buyer and all subjects were assigned to participate

in a market. Random re-matching was adopted to minimize repeated game effects.

In each market, two sellers simultaneously and independently set integer prices that
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could range from $E30 (marginal cost) to $E100 (reservation value for the buyer).1

Afterwards, the buyer observes both prices costlessly and then chooses either to buy

from one of the sellers or to leave without buying.2 In each stage the payoff for a

seller who managed to sell was her price less the cost. An unsuccessful seller earned

a profit of zero. The buyers’ payoffs were defined as their reservation value minus

the price they paid if they bought and zero if they did not buy. The only difference

between the two experiments lies in the information that was revealed to the subjects

at the end of each period. In the high information treatment (120 participants), all

players were shown their profits and the prices set by all sellers in the session3. In the

low information treatment (185 participants), the participants learned only their own

payoffs. No price information were given. Before the experiments, participants were

provided with written instructions containing the market rules and the payoff functions.

At the end of the experiments, the participants were paid according to their aggregate

payoffs in the experimental session. On average they earned around 20 Australian

Dollars for about one hour of their time.

Figure 1.2.1: Time Series for Interquantile Ranges of Prices and Mean Prices
1The currency was Experimental Dollars. In what follows we drop the currency symbols.
2In more than 99% cases the buyers bought from the seller with the lower price.
3There were between 12 and 18 sellers in a session.

6



Figure 1.2.1 shows the time series for the interquartile ranges of the prices (boxes) as

well as the average prices (black lines). Red bars in the boxes represent the median price

levels. For both high information and low information treatments, prices were dispersed

persistently over the price set. As can be seen from Figure 1.2.1, in both panels, the

central 50 percent of prices exhibit substantial spreads for all periods. In terms of price

dynamics, however, starting at virtually identical distributions the prices developed

quite differently between the two treatments. For the high information treatment,

the average price started off at 59.8, with an interquartile range of 50 to 70 and a

median price at 60. Then the prices declined quickly as the experiment proceeded. In

period 15, the average price was 40.5, and median price was 38, with an interqartile

range of 34 to 42. For the low information treatment, the prices started off at similar

levels as in the high information treatment. In period 1, the mean and median prices

were 60.5 and 60, respectively, and the corresponding interqartile range was 53.5 to

65. While the prices kept dropping quickly towards Nash equilibrium in the high

information treatment, the prices declined at a much slower speed and stabilized in the

low information treatment. In period 15, the average price was 48.8, the median price

was 49, and the interquartile range 45 to 51. All of these characteristic values are about

10 units above their counterparts in the high information treatment. The fact that the

prices evolve significantly differently in the two treatments suggests that feedback on

the past strategies plays an important role in price dynamics. In our learning model,

the feedback effect will be considered as the main driving force of the price adjustments.
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1.3 Theory

1.3.1 Preliminaries

Consider an environment where a set I = {1, 2, · · · , N} of sellers engage repeatedly in

the standard Bertrand duopoly game along the time horizon T ≡ {1, 2, · · · , 15}. At the

beginning of each period, each seller i ∈ I is randomly matched with a competing seller

j ∈ I. Afterwards, seller i and j compete in prices to sell a homogeneous good produced

at cost c per unit. The market has unit demand for the good up to a reservation price

v. Without loss of generality, we define the price set as P ≡ [c, v]. Let (pi,pj) be the

prices set by the two competing sellers, the payoff to seller i is

πi(pi, pj) =



pi − c if pi < pj

1
2(pi − c) if pi = pj

0 otherwise

;∀pi, pj ∈ P. (1.3.1)

Let seller i’s strategy be a cumulative probability measure over the price set, denoted

as Fi : P → [0, 1]. Further, let Bi (Fj) be seller i’s belief about her rival j’s strategy.

Thus, the expected monetary payoff for seller i posting price p, given Bi (Fj) , is

Eπi(p) = (p− c) [1−Bi (Fj(p))] , ∀i, j ∈ I, i 6= j. (1.3.2)

We now state, without proof, the well known Bertrand-Nash equilibrium, where all

probability mass in a mixed strategy is put on the price that equals marginal cost.

Proposition 1.1. (Bertrand-Nash equilibrium) For all periods t ∈ T , the following

comprises a symmetric Bertrand-Nash equilibrium: For all i, j ∈ I and for all p ∈ P,

FNE
i (p) = 1.
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1.3.2 Quantal Response Choices

The first extension to the Nash equilibrium tradition in our model is to introduce

bounded rationality to sellers’ pricing decisions. It is assumed that sellers are prone to

choice errors and post suboptimal prices with positive probabilities. The errors could

be caused by inexperience, computational limits, or instantaneous mood shocks (see

Chen et al. 1997). Following Baye & Morgan (2004) and López-Acevedo (1997), we

incorporate the choice errors using a power-form quantal-response function. Formally,

the strategy of seller i ∈ I in terms of cumulative probability distribution is

Fi(p,Bi) =
∫ p
q=c [Eπi(q, Bi(Fj))] λdq∫ v
k=c [Eπi(k,Bi(Fj))] λdk

, ∀p ∈ P (1.3.3)

where

Eπi(p,Bi(Fj)) = (p− c) [1−Bi (Fj(p))] . (1.3.4)

The probability that seller i set her price at p is positively related to the expected mone-

tary payoff of p. The “error parameter” or “bounded-rationality parameter”, λ ∈ [0,∞),

measures the degree of sensitivity of the firms to the expected payoffs. As λ→∞, the

firm tends to choose the payoff maximizing price with certainty and becomes fully ra-

tional. On the other hand, as λ→ 0, the firm becomes fully ignorant or confused and

randomizes over all prices with equal probabilities. A property of the choice-probability

functions that is important for empirical applications and also for economic intuition is

that strategies that yield greater expected payoffs are chosen with higher probabilities

when λ > 0. A noteworthy special case is λ = 1, under which choice probabilities of firm

i are proportional to the expected payoffs. This is the classic Luce (1959) probabilistic

choice model and was first applied in non-cooperative games by Rosenthal (1989).
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1.3.3 Quantal Response Equilibrium (QRE)

In a Quantal Response Equilibrium (QRE), all sellers’ strategies are quantal responses

to their beliefs about the probability distributions of their opponents’ prices. That

is, for each i ∈ I, Fi follows Equation 1.3.3. Moreover, the beliefs of all sellers

are consistent with the probability distributions of their opponents’ prices. We have

Bi(Fj) = Fj, ∀i, j ∈ I. Baye & Morgan (2004) obtained a simple, closed-form rep-

resentation of QRE pricing strategies for the homogeneous product Bertrand duopoly

game.

Proposition 1.2. (Baye & Morgan 2004) For any λ ∈ [0, 1), the following comprises

a symmetric QRE:

FQ
i (p) = 1−

[
π(v)1+λ − π(p)1+λ

π(v)1+λ − π(c)1+λ

] 1
1−λ

∀p ∈ [c, v], ∀i ∈ I (1.3.5)

where π(p) is the payoff to a monopolist charging price p.

Proof. See Baye & Morgan (2004).

Note that for the QRE to exist we must have λ ∈ [0, 1). When λ is greater than

one, according to Equation (1.3.5), we have FQ
i (p) > 1 for all prices that are between c

and v, which is impossible. With λ = 0, the sellers behave randomly in choosing prices

so that the prices are distributed uniformly over the price set P. At the other extreme,

with λ tends to 1, more and more probability mass is allocated to low prices and the

QRE converges to the Bertrand-Nash equilibrium. Therefore, in this game, to attain

the Bertrand-Nash equilibrium result, perfect rationality (λ→∞) is not required.
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An appealing feature of the quantal-response choice rule is its flexibility that allows

for incorporating and parametrization of factors that may influence players’ behaviour

other than bounded rationality. By using the Arrow-Pratt risk measure, we can extend

the QRE model to allow for heterogeneous attitudes toward risk or uncertainty in

different circumstances of the game.4 Formally, instead of maximizing the expected

monetary payoffs, we assume that the sellers aim to maximize expected utilities which

we define as

EUi(p) = (p− c)1−r

1− r [1−Bi(Fj(p))];∀t ∈ T, ∀i, j ∈ I. (1.3.6)

The parameter r measures a seller’s risk attitudes, with r = 0 corresponding to risk

neutrality, r > 0 to risk aversion, and r < 0 to risk seeking.5

Proposition 1.3. (QRE with Arrow-Pratt Risk Attitudes) For any λ ∈ [0, 1) and r < 1,

the following comprises a symmetric QRE with risk attitudes:

FAP
i (p) = 1−

[
1−

(
p− c
v − c

)(1−r)(1+λ)
] 1

1−λ

. (1.3.7)

Proof. Setting π(p) ≡ (p−c)1−r

1−r in Equation 1.3.5 yields the result.

4See Goeree et al. (2002) for an example that incorporates QRE with risk aversion in explaining
overbidding in private value auctions.

5 The utility function we use exhibits constant relative risk aversion and is used frequently in
experimental research (e.g., Holt & Laury 2002). For r = 1, where the expected utility function is

undefined, we use ln(p− c) instead of (p−c)1−r

1−r . This is because for r → 1 we have d ln(x)
dx =d( x1−r

1−r )
dx .
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1.3.4 A Quantal Response Adaptive Learning (QRAL) model

In this subsection we propose a simple quantal response learning model to explain

sellers’ intertemporal price adjustments observed in the high information treatment. It

is assumed that firms formulate beliefs of their competitiors’ future strategies based on

the price information of the past periods and play quantal responses to their beliefs.

We use an approach similar to the empirical learning rule of Cheung & Friedman (1997)

where a player’s belief is the weighted average of the strategies that she encountered in

the past periods. Cournot learning and fictitious learning are special cases of the model.

While Cheung & Friedman (1997) assume that players’ beliefs are formulated using the

past strategies of their actual rivals, we assume that the sellers’ current beliefs to be the

weighted average of all her potential opponents’ past strategies. This is a reasonable

assumption because in our context the sellers are randomly rematched in each period

and are shown the prices of all sellers in the same session. Let (F1, · · · , Ft) denote the

vector of market price distribution observed from period 1 to period t , the belief firm

i holds before period t+ 1 is:

Bi,t+1(Fj,t+1) = Ft +∑t−1
τ=1 α

τFt−τ
1 +∑t−1

τ=1 α
τ

. (1.3.8)

Parameter α captures the feature that different past histories enter with different

weights into the beliefs. When 0 < α < 1 we have the typical case that recent histories

carry more weight than older histories. Setting α = 0 yields the Cournot adjustment

rule, where only the most recent period is relevant for the beliefs. Setting α = 1 yields

standard fictitious play, where all past experiences are weighed evenly. Consequently,

in period t + 1 seller i’s probability choice function, given her belief Bi,t+1(Fj,t+1), can

be written as

Fi,t+1(p) =
∫ p
q=c [EUi (q, Bi,t+1(Fj,t+1))] λdq∫ v
k=c [EUi (k,Bi,t+1(Fj,t+1))] λdk . (1.3.9)
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1.4 Estimation

In this section we use our experimental data to estimate the parameters of the QRE

and QRAL models and evaluate the relative fit of these models. We use a discretized

version of the quantal response function and adopt the following interiority condition

(cf. Goeree et al. 2005):

fi,t(p,Bi,t) = [EUi (p,Bi,t(Fj,t))]λ∑v
k=c [EUi (k,Bi,t(Fj,t))]λ

> 0,∀i, j ∈ I,∀t ∈ T,∀p ∈ P.

That is, the mixed strategies defined by the quantal response functions are complete

so that all prices in P are played with positive probabilities. An example in which the

interiority condition is violated is Bi(Fj(p)) = 1 for all p in P. In this case, player i

believes that c is played with certainty by firm j, so the expected payoff for any price is

zero. Hence, both the numerator and denominator of the quantal response function are

equal to zero, which causes an indeterminacy problem. To avoid such indeterminacy

and to ensure that the interiority condition is satisfied, in our estimations, we adjust

the expected payoffs by adding a small positive technical parameter ε:

EUi,t(p,Bi,t) = ε+ (p− c)1−r

1− r [1−Bi,t (Fj,t(p))] ;∀t ∈ T, ∀i, j ∈ I (1.4.1)

One justification for ε is that when people take part in economic activities, they receive

some level of satisfaction from participating, which is independent of the monetary

outcomes they get from the activities. For example, in most economics experiments,

subjects are rewarded with a show-up fee for participation in addition to earnings that

are proportional to their performance. The introduction of ε considerably facilitates

the empirical application of the model. Also, when ε is sufficiently small, compared

to the general expected payoffs, it will not change any of the main implications of the

model. After the transformation, when facing Bi,t(Fj,t(p)) = 1,∀p ∈ P, the quantal
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response choice function will assign uniform probabilities to all prices in P, which is

intuitively and economically more convincing because we naturally expect prices with

identical payoffs to carry the same weight in the sellers strategies.6

We use maximum likelihood estimation (MLE) to derive the estimates for the pa-

rameters of interest. To do this, we search numerically for the parameters that maximize

the likelihood of occurrence of the set of prices observed in the experiments. We set

ε = 10−10 and take the first period’s price distribution as the sellers’ initial beliefs.

From period 2 to 15, for each treatment we calculate the probabilities associated with

the prices chosen by sellers using the quantal response function. The log-likelihood

function is

log(L) = log
[ 15∏
t=2

N∏
i=1

fi,t(pi,t, Bi,t)
]

=
15∑
t=2

N∑
i=1

log [fi,t(pi,t, Bi,t)] ; (1.4.2)

where N is the number of sellers participating in a treatment. For the purpose of

comparison, we conduct the ML estimations for both the QRE and QRAL models in

both high and low information treatments. Recall that the low information treatment

is inconsistent with our learning model as the seller does not have the information

required. The fit in this situation, where the model is misspecified by design, will be

used as a robustness test.
6 In our context, the adoption of the technical parameter ε only serves to prevent the indeterminacy

problem that may arise in the power function specification of the quantal response function. We use the
power specification to keep our model in line with the Baye & Morgan (2004) approach. Alternatively,
we can use the logistic specification, which allows for zero and negative payoffs.
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risk neutral(r = 0) risk seeking/averse (r 6= 0)
λ α log(L) BIC λ α r log(L) BIC

QRAL 1.542 0.321
-3883 3890

1.522 0.505 0.365
-3826 3837

(α ∈ [0, 1]) (0.021) (0.010) (0.014) (0.029) (0.017)

QRE
0.914

– -4122 4125
0.842

–
0.255

-4027 4034
(0.022) (0.011) (0.003)

Table 1.4.1: Maximum Likelihood Estimates for the High Information Treatment.

Table 1.4.1 reports the maximum likelihood estimates for the high information treat-

ment. In parentheses are standard errors obtained using numerical differentiation. The

table also includes the log-likelihood value log(L) and the Bayesian Information Crite-

rion (BIC), which is used to compare the relative goodness of different models.7 Ac-

cording to BIC, QRAL outperforms QRE in a substantial way. Adding a risk-preference

parameter improves the fit even when the additional degree of freedom is taken into

account. In the learning model with risk preference parameter, the decay parameter

α̂ is estimated as 0.505, which is significantly different from both zero and one. This

is reasonable because we would naturally expect the influence of past history to de-

cay as the experiment proceeds. With α̂ = 0.5, the price information from more than

four periods ago has lost almost all of its influence on today’s beliefs (as 0.55 ≈ 0.03).

For both QRE and QRAL models, the parameter r̂ is positive, which indicates that

sellers’ choices were guided by risk aversion.8 For the QRE models, the estimates for

the bounded rationality parameter λ̂ are equal to 0.914 and 0.842, respectively for the

models with and without risk parameter. In contrast, if we allow for learning, both λ̂’s

are about 1.5. This suggests that with QRAL the price dynamics may fail to converge
7 In our analysis, BIC is defined asBIC = k

2 ln(N∗T )−ln(L). Here k is the number of parameters, N
is the number of sellers, T is the number of periods considered, and ln(L) the value of the log-likelihood
function. BIC penalizes models with additional parameters. According to this criterion, a model with
lower BIC value is preferred.

8When r̂ = 0.365, a subject is willing to pay about 35 dollars to take a gamble that yields zero and
100 with the same probability 0.5.
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to a QRE because for QRE to exist, as indicated in subsection (1.3.3), λ needs to be

less than one. So far we can conclude that a model that combines a belief learning

with quantal best response behaviour dominates the static QRE model typically used

to explain pricing behaviour in Bertrand duopolies. Adding a risk parameter further

improves the explanatory power of the model.

Figure 1.4.1: Time Series of Mean Prices: Data and QRAL Predictions-High Informa-
tion Treatment

Figure 1.4.1 plots the estimated mean prices for the adaptive learning models, along

with the empirical mean prices for the high-information treatment. It also shows the

mean prices of simulations using the estimated parameters. In the simulations, we

adopt market-price distribution of period 1 as the initial belief, Bi,2(Fj,2) = F1. Then

given the values of r̂, α̂ and λ̂, we can obtain the predicted mixed strategies for period

2. Then instead of using the actual observed price distributions, the simulations use

the predicted strategies to form the new beliefs and proceed by iterating forward on

the system to obtain the simulated strategies for all periods. Therefore, the difference

between the simulations and estimations is that in the simulations we use the strategies

predicted by Equation 1.3.9 to formulate the beliefs, while in the estimations we use

actually documented strategies. As can be seen from Figure 1.4.1, the average prices

predicted by the QRAL model are fairly close to the empirically observed dynamics.

In particular, in our preferred model (i.e. QRAL with risk preferences) all three time
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series – empirical, estimated and simulated prices – are very close together.

Figure 1.4.2: Comparisons of Cumulative Distributions of Prices: Data, QRAL with
Risk Preferences, and QRE with Risk Preferences

Figure 1.4.2 shows the estimated distributions of prices predicted by the QRE and

QRAL models separately for the 15 periods, both with risk-preference parameters, along

with the empirical price distributions observed in the experiments. The plots indicate
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that the QRAL model predicts the price dispersion and and its evolution quite well,

while the QRE model, due to its static nature, works only well for some middle periods

and fails to capture the price distribution dynamics.

risk neutral(r = 0) risk seeking/averse (r 6= 0)
λ α log(L) BIC λ α r log(L) BIC

QRAL 1.578 0.865
-6176 6183

1.436 0.476 -0.602
-6101 6112

(α ∈ [0, 1]) (0.021) (0.016) (0.016) (0.009) (0.010)

QRE
0.836

– -6411 6415
0.894

–
-0.235

-6347 6354
(0.011) (0.021) (0.011)

Table 1.4.2: Maximum Likelihood Estimates for the Low Information Treatment.

Figure 1.4.3: Time Series of Mean Prices:Data and QRAL Predictions-Low Information
Treatment

When we apply the same methodology to the low information treatment data we

find that the estimated parameter values are not plausible and the model fit is poor.

Table 1.4.2 shows our estimation results for the different models. In order to achieve

a reasonable fit we require an unreasonably low risk-preference parameter r of less

than −0.6. In the otherwise best-fitting QRAL model, this implies an unreasonably

high level of risk-love.9 Moreover, it becomes clear that, when we plot estimated and

simulated price time series against the observed prices (Figure 1.4.3), that the model
9A person with such risk preferences prefers a gamble of $2 with probability 1/3 and nothing with

probability 2/3 to receiving $1 for certain.

18



does a poor job at explaining the pricing behaviour in the low-information treatment.

The poor performance of the model in the low information treatment indicates that

the model’s good fit in the high information treatment is not merely an artifact of its

degrees of freedom. Consequently, we conclude that the estimated QRAL model by

mildly risk-averse subjects is a robust explanation for observed behaviour in Bertrand

duopolies with perfect past information.

1.5 Concluding remarks

In this Chapter we developed a quantal response adaptive learning model in order to

explain price dispersion and dynamic adjustments observed in repeated experimental

Bertrand markets, where prices are observable. In our model, rather than being fully

rational and choosing only crisp best responses, the sellers are assumed to be boundedly

rational in the sense that they play suboptimal strategies with positive probabilities.

The probability they play a specific strategy with is a monotonic function of that

strategy’s expected payoff. We show that price dispersion can be effectively explained

by such quantal response choice rules. However, the static equilibrium approach based

on the quantal-response choice rule, QRE, fails to explain the evolution of prices over

time. We use an adaptive belief-learning rule to model learning and to explain price

dynamics. The beliefs of the sellers are assumed to be the weighted average of her

rivals’ past strategies. We show that for experiments, where the sellers have perfect

information on their opponents’ past choices, the quantal response adaptive learning

model can explain the dynamic evolution of prices remarkably well. In contrast, the

model fails to provide reasonable estimates for experiments where no price information

of preceding play was revealed. This result has two important implications. Firstly, the

good fit of the adaptive learning model is not an artifact just stemming form the model’s
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degrees of freedom. Secondly, an alternative model with limited past information is

necessary for the low-information treatment.

We want to conclude this Chapter with an out-of sample investigation. It is inter-

esting to study how the price dynamics of our best model will evolve if we extend our

investigation to a time horizon that is longer than what we had in the experiments.

We simulate the QRAL model using the estimated parameters for 200 periods. The

result shows that the average price will evolve cyclically without stabilizing at an equi-

librium. Figure 1.5.1 shows the evolution of the average price. The intuition behind

the cyclicality is the following: whenever the mass of the price distribution gets pushed

towards marginal cost, then the profitability of charging a price close to marginal cost

is very low. Thus it becomes profitable to charge a higher price and hope for the rare

occurrence of a competitor who charges a high price due to bounded rationality. Given

the adaptive nature of the learning process, many sellers will follow this strategy at the

same time. Thereafter the downwards dynamics sets in again until a jump becomes

profitable again.10 In our experiments, we do not have enough time periods in order

to see if the cyclical pattern emerges. Bruttel (2009) found some cyclical movement in

her series of experiments, which provides some evidence.
10Note that the cyclicality requires a sufficient level of rationality (i.e. a λ of greater than one) to

occur.
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Figure 1.5.1: Simulation of the QRAL model with estimated parameters for 200 periods

Theoretical explanations of price cycles have focused on the Edgeworth cycles.

Maskin & Tirole (1988) show that in dynamic Bertrand duopoly games, if sellers follow

alternating-move dynamics and adopt Markov perfect equilibrium, then cyclical prices

will be a natural result. In their model, sellers engage in price undercutting until they

arrive at a bottom price, at which the equilibrium strategy for the firm who gets to

move is to raise prices with positive probability. When the firm raises its price, a new

price cycle is triggered. Our model provides an alternative explanation for the cyclical

price phenomenon in Betrand markets. As opposed to the alternating-move assump-

tion that only one firm gets to move in each period, we allow both firms to adjust their

prices in all periods.

Chen et al. (1997) show analytically that for any finite game where the payoffs are

positive for all players, if the choices of players are noisy enough, or put equivalently,

if the bounded rationality parameter λ is small enough, then fictitious play converges

to a unique noisy learning equilibrium. For our adaptive learning model, conditions in

which the prices converge and in which the dynamics fail to converge still need to be
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investigated formally. Moreover, a more in-depth experimental investigation is required

in order to test if price-cycles occurring in laboratory studies are consistent with our

theory.

22



Chapter 2

Price dispersion and dynamics: A

payoff assessment learning approach

2.1 Introduction

In Chapter 1 we used a quantal-response adaptive learning model to explain price

dispersion and learning behaviour observed in our Bertrand duopoly experiments with

perfect information. In this Chapter we propose an alternative model to address the

same issue. The model is an extension of the Payoff Assessment Learning (PAL) model

of Sarin & Vahid (1999). PAL was designed for limited-information settings where the

only feedback a player receives after a period is her own payoff. We generalize PAL

and make it suitable for the use in perfect-information settings. Our model contains

the quantal-response adaptive learning model (from Chapter 1) and the original PAL

model of Sarin & Vahid (1999) as special cases. We then apply the model to the

same data set of high-information Bertrand duopoly experiments used in Chapter 1.

Maximum likelihood estimation shows that the model substantially outperforms the

quantal-response adaptive learning model with respect to fitting the data.

The next Section lays out the model. Section 2.3 presents the estimation and Section

2.4 concludes.
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2.2 A generalized payoff assessment learning model
(GPAL)

Players repeatedly play the Bertrand duopoly game we introduced in Chapter 1. A

set of sellers I = {1, 2, · · · , N} play the stage game for T periods. In each period

t ∈ {1, 2, · · · , T}, a seller is competing against a randomly determined competitor.

Denote the price set as P = {c, c+ 1, · · · , v}. The payoff for seller i is pi− c if her price

is lower than that of her opponent, is pi−c
2 in the case of a tie, and zero otherwise.

Let Ait(p) denote seller i’s payoff assessment of choosing price p in period t. After

having observed the information, the law of motion for seller i’s payoff assessment of

price p is governed by:

Ait+1(p) = αAit(p) + βU i
t (p) + (1− α− β)V i

t (p); ∀i ∈ I, ∀p ∈ P. (2.2.1)

Here Ait(p) is seller i’s payoff assessment for price p in the previous period, which

we refer to as the inertia factor of learning. The second component in Equation

2.2.1 U i
t (p), called the belief-learning factor , is seller i’s expected payoff if she had

chosen p in response to the realized market price distribution. Denote the cumulative

probability distribution function for price p ∈ P in period t as Ft(p). The corresponding

density function is written as ft(p). We can calculate the belief-learning factor as

U i
t (p) ≡ (p−c)[1−Ft(p)+ 1

2ft(p)]. The remaining component V i
t (p) is the experiential-

learning factor . More specifically, V i
t (p) is the (forgone) payoff to seller i if she had

posted p while facing the same opponent she actually faced in the period before. The

parameters α ∈ [0, 1] and β ∈ [0, 1] measure the weights that the sellers allocate to

Ait(p) and U i
t (p), respectively; and 1 − α − β is the weight being allocated to V i

t (p).

Note that, if 1−α− β = 0 the model becomes the risk-neutral adaptive belief learning

model (see Chapter 1) where sellers play in response to the weighted sum of all past

periods’ market price distributions. If on the other hand we have β = 0, the model is
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turned into a modified payoff assessment learning model.1 Also noteworthy here are the

two cases corresponding to the two extreme values of α. With α = 0 a seller’s payoff

assessments are depending purely on the information about the most recent play, and

with α = 1 the market is at a steady state and the sellers always stick to their initial

strategies.

Given the payoff assessments Ait(p) of each seller i ∈ N for each price p ∈ P, we

can transform the payoff assessments into the choice probabilities by either the logisitic

choice rule as

f it+1(p) = eλ·A
i
t(p)∑v

k=c e
λ·Ait(k) ; (2.2.2)

or the power form choice rule as

f it+1(p) =

[
Ait+1(p)

]λ
∑v
k=c [Ait+1(k)]λ

. (2.2.3)

2.3 Estimation and Results

In this section we apply the model to the high-information Bertrand duopoly experi-

ments where all elements of the information stated in Equation 2.2.1 are available to

the sellers.2 More specifically, after a period a seller was provided with the following

pieces of information: her realized payoff, her actual opponent’s price, and the prices

posted by all sellers in the same session of the experiments. Let pjt denote seller i’s

actual opponent’s price in period t. Then the experiential-learning component V i
t (p)

1The original payoff assessment learning model of Sarin & Vahid (1999) considers only the realized
payoffs for the chosen actions. Our model takes into account the forgone payoffs for the unchosen
actions. When a player can learn their actual opponents’ action, the forgone payoff for an alternative
action can be easily calculated. As we shall show in Chapter 4, even if the information is very limited,
a player might still be able to infer the forgone payoffs for the unchosen actions.

2For the details of the experiments, please refer to Chapter 1.
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can be stated as:

V i
t (p) =



p− c if p < pjt

1
2(p− c) if p = pjt

0 otherwise

. (2.3.1)

Now, we turn to the estimation of the parameters. We take the observation in the

first period as a starting point, the initial assessments of prices, Ai1(p)∀p ∈ P, ∀i ∈ I,

is set to the expected payoff of p being played against the market price distribution

in period 1. Starting with Ai1(p), when new information is revealed, then the payoff

assessment vector is updated according to Equation 2.2.1, and the choice probabilities

can be determined by Equation 2.2.2 or Equation 2.2.3. We then search for the values of

α, β and λ that maximize the log-likelihood of observing the prices in the experiments

from period two to fifteen. To allow for a direct comparison between GPAL and the

model used in Chapter 1, the power-form probabilistic choice rule is adopted.3 So, the

estimation task can be stated formally as

max
α,β,λ

log(L) = log
[ 15∏
t=2

80∏
i=1

f it (pit)
]

=
15∑
t=2

80∑
i=1

log
 [Ait(p)]

λ∑v
k=c [Ait(k)]λ

 . (2.3.2)

α β λ log(L) BIC
0.518 0.023 1.522 -3457 3467(0.032) (0.007) (0.055)

Table 2.3.1: Maximum likelihood estimation-Results

Table 2.3.1 presents the results for the estimation. In the parenthesis are the stan-

dard errors calculated by numerical differentiation. The best value of β = 0.023 indi-

cates that the belief-learning component has a very small but significant effect on the
3We have done the estimation using both choice rules, the power form resulted in a better fit than

the logistic form in the estimation.
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price adjustments. In contrast, the inertia component and the experiential component

of payoff assessment are the main driving force of price adjustment. The estimate of

λ = 1.522 is very close to the value we derived from the quantal response adaptive

learning (QRAL) model in Chapter 1. Recall that in the risk-neutral QRAL model we

have λ = 1.542, and in the QRAL risk-nonneutral model we have λ = 1.522, which is

exactly the same as what we derive here. The log-likelihood value −3457 and Bayesian

Information Criterion (BIC) value 3467 indicates that GPAL organizes the data much

better than QRAL in terms of goodness of fit. 4

Figure 2.3.1 shows observed data and the model predictions for the average prices.

Figure 2.3.2 shows the corresponding variances of prices. In addition, Figure 2.3.3

provides a comparison of the actual and predicted relative frequencies from period two

to period fifteen. As can be seen from the figures, GPAL organizes the data rather

well. To evaluate the performance of the model in a more convincing way, we conduct

Kolmogorov-Smirnov(K-S) tests to test the null hypothesis of equality between the

actual price distributions and those predicted by the model. For 10 out of 14 periods

(71.4%) the tests fail to reject the null hypothesis, which provides strong evidence for

the good performance of GPAL. .
4According to the Bayesian Information Criterion, a model with lower BIC is preferred. Recall that

for the QRAL, the best fitting model has BIC=3837, which is much higher than 3467.
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Figure 2.3.1: Average price dynamics: data observation and GPAL prediction

Figure 2.3.2: Price variance dynamics: data observation and GPAL prediction
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Figure 2.3.3: Distributions of prices - Data and Model
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2.4 Conclusion

In this Chapter we proposed a simple extension to the payoff assessment learning model

of Sarin & Vahid (1999) to explain sellers’ learning behaviour in homogeneous-product

Bertrand duopoly experiments with perfect information. The most prominent feature of

the model is that it stresses the importance of the forgone payoffs for unchosen actions.

In a broad sense, there are two categories of forgone payoffs. The first category is the

forgone expected payoff, which is associated with games where the players are randomly

matched in each period. Although being adaptive this component could also been seen

as pointing to the future. Someone might do the following calculation. What profit

will I get on average if I post this price next period and the others do not change

their behaviour? The second category is the forgone payoffs relating to a player’s own

experience. In this case, the forgone payoff for choosing a price is the payoff a seller

could have received if she had chosen that price and played with the same opponent.

By combining both types of forgone payoffs, our model assumes that sellers use all

relevant information and enables us to estimate the relative impact of different types of

information on learning. For the Bertrand duopoly experiments we study, it seems that

the information of a seller’s actual opponents’ choices overwhelmingly dominates the

information of the potential competitors’ prices in driving a sellers’ price adjustments.

However, the small but significant impact of the belief-learning factor considerably

improves the fit of the model.
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Chapter 3

Number of Sellers and Quantal

Response Equilibrium Prices

3.1 Introduction

In homogeneous-product Bertrand oligopoly markets with identical sellers and per-

fectly informed buyers, Nash equilibrium asserts that all sellers set prices uniformly at

the marginal cost and the prices are independent of the number of sellers in the mar-

ket. Paradoxically, empirical observations provide overwhelming evidence against the

Nash equilibrium prediction (e.g., Baye et al. 2004; Clay et al. 2001; and Lach 2002).

Informational frictions on the side of the buyers and heterogeneity among sellers are

intensely used in models to rationalize empirically observed price dispersion as a market

equilibrium (e.g., Burdett & Judd 1983; Reinganum 1979; and Varian 1980). However,

persistent price dispersion is still prevalent in experimental Bertrand markets where

the above factors are deliberately controlled for (e.g., Abrams et al. 2001; Bayer & Ke

2011; and Dufwenberg & Gneezy 2000), as well as in online-shopping markets where

search and information costs are negligible (e.g., Baye & Morgan 2004). Several recent

studies have shown that the concept of Quantal Response Equilibrium of McKelvey &
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Palfrey (1995) can effectively explain the price dispersion observed in laboratory mar-

kets (e.g., Baye & Morgan 2004; Capra et al. 2002; and Dufwenberg et al. 2007). In

a Quantal Response Equilibrium (QRE), sellers are assumed to be boundedly rational

and play noisy best responses to their beliefs about other players’ strategies. Moreover,

the beliefs held by all sellers are correct and prices with higher expected payoffs are

more likely to be played. This Chapter investigates how the changes in the number of

sellers affects QRE market prices.

We study two different but closely related specifications of QRE, namely, the power-

function specification and the logistic specification. In the literature, the two specifica-

tions are frequently used and considered as very similar substitutes that lead to roughly

equivalent approaches. For the power function specification, the probability of posting

a price is proportional to a power function of its expected payoff.1 In contrast, for the

more widely used logistic specification the choice probabilities of prices are proportional

to an exponential function of the corresponding expected payoffs (see McFadden 1973).

Since closed form solutions are not readily available for both specifications we use a sim-

ple Cournot adjustment algorithm, which by design yields a QRE if it converges. The

Cournot dynamics can not only be used to iterated towards an equilibrium but can also

be interpreted as a learning rule towards equilibrium. We simulate quantal-response

dynamics in Bertrand Oligopolies with different model specifications and number of

firms. We find that, quite surprisingly, the two specifications result in opposite effects

of an increase in the number of sellers on the QRE market-price distributions. Under

the power-function specification, an increase in the number of competing sellers results

in a decrease in average market price. In contrast, under the logistic specification,

having more sellers can increase the average market price.

The remainder of the Chapter is structured as follows. The next section describes

the theory. It lays out in detail the two Quantal Response Equilibrium approaches
1The power-function specification is a generalized form of the classic Luce (1959) discrete model in

which the power is equal to one.
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of modeling price dispersion in Bertrand oligopoly markets. Section 3.3 presents the

simulations of the QRE models. Section 3.4 concludes.

3.2 Theory

We consider a Bertrand oligopoly market with n sellers engaged in price competition for

selling exactly one unit of a homogeneous product. All sellers produce at identical and

constant marginal costs c which, without loss of generality, is normalized to zero. Let v

be the choke-off price above which demand is zero. Sellers choose prices simultaneously

and independently from the non-trivial price interval P ≡ [0, v]. A seller whose price is

lower than all other sellers’ prices serves the market alone and earns the corresponding

profit. If a seller is not among the lowest priced sellers, she does not sell and earns

zero profit. In the case that m sellers are tied at the lowest price, they split the market

equally. Given the price profile (p1, p2 · · · , pn), for seller i ∈ N ≡ {1, 2, · · · , n} the

payoff function can be formalized by

Πi(p1,p2, · · · , pn) =



pi if pi < pj∀j 6= i

pi
m

if m sellers are tied at the lowest pirce pi

0 otherwise

The only symmetric Bertrand-Nash equilibrium for the above oligopoly game is for all

sellers to set prices at zero. The Bertrand-Nash equilibrium prediction is based on

the assumption that sellers are perfectly rational and behave optimally. However, it is

likely that the players’ choices are prone to errors and exhibit noise due to inexperience,

computational limits, or mood shocks. This implies that sellers may not be able to

play best responses with certainty. Quantal-response choice rules extend the Nash
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equilibrium logic by allowing sellers to be boundedly rational and to choose suboptimal

strategies with positive probability. Let the strategy of seller i ∈ N be a probability

measure over the price set P, as Fi : P −→ [0, 1]. Further let Bi(F−i) be seller i’s belief

about the probability measure of her opponents’ strategies. For simplicity, we impose

the symmetry assumption so that all sellers adopt identical strategies. Accordingly, for

seller i the expected payoff of choosing price p is expressed as

Eπi (p,B(F−i)) = p [1−Bi(F−i(p))]n−1 . (3.2.1)

Given the expected payoff function, the cumulative probability of seller i choosing price

p, under the logistic specification, is stated as

FLS
i (p,Bi(F−i)) =

∫ p
0 eλ·Eπi(q,B(F−i))dq∫ v
0 eλ·Eπi(k,B(F−i))dk

, ∀p ∈ P,∀i ∈ N. (3.2.2)

Replacing Eπi (p,B(F−i)) in Equation 3.2.2 by ln [Eπi (q, B(F−i))] yields the corre-

sponding power function specification as

F PS
i (p,Bi(F−i)) =

∫ p
0 Eπi (q, B(F−i))λ dq∫ v
0 Eπi (k,B(F−i))λ dk

,∀p ∈ P,∀i ∈ N. (3.2.3)

Common to both specifications, the probability of a seller posting a price is positively

related to the expected profit it yields. Better choices are played with higher proba-

bilities but the best choice is not played with certainty. The parameter λ ∈ [0,∞) is

used to measure the degree of bounded rationality in sellers’ decisions. With λ = 0,

sellers are completely confused and their decisions are insensitive to expected profit

differences. In this case, a seller determines the price by drawing from a uniform distri-

bution over the whole price set. As λ increases, sellers become more precise in making

choices, and as λ tends to infinity they become fully rational and behave optimally. At

a QRE, all sellers’ strategies are quantal responses to their beliefs about the competing
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sellers strategies and the beliefs are correct.

Definition. A strategy profile FLQRE ∈ [0, 1]n comprises a Logistic Quantal Response

Equilibrium (LQRE), if for all i ∈ N and p ∈ P, we have FLQRE
i (p) = FLS

i (pi, Bi(F−i))

and Bi(F−i(p)) = FLQRE
−i (p). Similarly, a strategy profile F PQRE ∈ [0, 1]n comprises a

Power-function Quantal Response Equilibrium (PQRE), if for all i ∈ N and p ∈ P, we

have F PQRE
i (p) = F PS

i (pi, Bi(F−i)) and Bi(F−i(p)) = F PQRE
−i (p).

For the power function specification, Baye & Morgan (2004) show that a closed-form

representations of symmetric F PQRE can be obtained and comparative statics of the

Quantal Response Equilibrium strategies can be analytically studied. 2

Proposition 3.1. (Baye & Morgan 2004) For any λ ∈ [0, 1
n−1), the following comprises

a symmetric PQRE:

F PQRE
i (p) = 1−

[
1−

(
p

v

)1+λ
] 1

1−(n−1)λ

∀p ∈ P, ∀i ∈ I (3.2.4)

Two features of Proposition 1 are noteworthy. First, for a given λ ∈ [0, 1
n−1),

F PQRE
i (p) is uniquely determined. When λ = 0, prices are uniformly distributed over

the price set. As λ approaches 1
n−1 , F

PQRE
i (p) tends to one for all p ∈ P, which

corresponds to the Bertrand-Nash equilibrium outcome. Note that Equation 3.2.4 is

only giving a valid equilibrium density for λ < 1
n−1 , as it would yield negative cumulative

densities for a greater λ. For λ ∈ [0, 1
n−1), an increase in n leads to a higher F PQRE

i (p)
2For a detailed analysis and an experimental test of the comparative statics properties of the PQRE,

see Dufwenberg et al. (2007).
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for all p ∈ (0, v), and thus to a decrease in the PQRE price in terms of first-order

stochastic dominance.

Unfortunately, we are not able to derive a closed-form solution for the LQRE prob-

ability function, and thus cannot study the comparative statics properties of LQRE

analytically. For this reason, in the next Section we simulate the model with both spec-

ifications and investigate the effects of increasing seller numbers from the simulated

results.

3.3 Simulations

In the simulations we consider a discretized version of the game with price set P ≡

{0, 1, · · · , 100}. We have a design with four different seller numbers (n = 2, 3, 4, 5) with

λ = 0.15. We use λ = 0.15 because according to Proposition 1, with λ = 0.15 as we can

be sure from Equation 3.2.4 that a symmetric QRE exists for up to five competitors.

Rather than calculating the QRE probability distribution of prices directly, we adopt

a simple Cournot adjustment algorithm which, as we shall show, can provide us with

meaningful dynamics that converge to QRE for all cases of interest. The Cournot

processes start with a uniform probability measure of prices Ft=0(p) = p+1
101 ∀p ∈ P.

For each of the following periods, Ft=1,2,3,··· is defined as a quantal response to Ft−1.

Formally, the Cournot process for the power function specification is given as

F PS
t (p) =

∑p
q=0 Eπ

(
q, F PS

t−1

)λ
∑v
k=0 Eπ (k, F PS

t−1)λ
,∀p ∈ P, ∀t = 1, 2, 3 · · · ; (3.3.1)

similarly, the process for the logistic specification is stated as

FLS
t (p) =

∑p
q=0 e

λ·Eπ(q,FLSt−1)∑v
k=0 e

λ·Eπ(k,FLSt−1)
,∀p ∈ P, ∀t = 1, 2, 3 · · · . (3.3.2)
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If the Cournot process converges to a steady state, then the strategy profile in which

all sellers adopting the corresponding mixed strategies at the steady state is necessarily

a symmetric Quantal Response Equilibrium. This is because, if the process arrived at

a steady state, the following two conditions that a QRE requires are both satisfied.

First, all sellers are playing quantal responses to the belief that other sellers will keep

their strategies. Second, the beliefs are correct because at the steady state no one will

change her behaviour. For each of the four cases, we simulate the Cournot process

for a thousand periods. Let δMt be the absolute value of the maximum inter-temporal

probability difference between period t and t− 1, which can be expressed as

δMt = max
p∈P
|ft(p)− ft−1(p)|,

where ft(p) is the probability density of price p at period t. If a Cournot process

converges, then there is a t∗ such that δMt = 0 for all t ≥ t∗. As can be seen from

Figure 3.3.1, for both specifications the Cournot processes converge in all n = 2, 3, 4, 5

scenarios.

For the power function specification, the results of the simulations are consistent

with implications that can be derived from Proposition 1. Figure 3.3.2(A) shows the

average price dynamics of the Cournot processes. As n increases from two to five,

at the equilibria the average market price declines from 49.2 to 33.6. Figure 3.3.2(B)

shows the corresponding probability distributions at the steady states (t = 100). As

n increases, in the PQRE increasingly more probability mass is shifted from the high

price domain (50 to100) to the low price domain (0 to 50).

Now we turn to the simulations of the logistic specification. Surprisingly, increasing

the number of sellers affects LQRE in the opposite direction compared to the effects

observed under PQRE. As shown in Figure 3.3.3 (A), the average LQRE market price

increases from 37.8 in the duopoly scenario to 42.5 in the pentaopoly scenario. Figure
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Figure 3.3.1: Time Series for the Maximum Absolute Value of Inter-temporal Changes
in Price Densities with (λ = 0.15)
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Figure 3.3.2: Time Series of Average Market Prices (A) and PQRE Probability Densities
of Prices (B) : Power Function Specification with λ = 0.15
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3.3.3 (B) shows the corresponding probability distributions at the LQRE. This may

help explain why increasing seller numbers lead to a less competitive market price with

the logistic specification. In contrast to the PQRE, in LQRE as n increases, prices

at the two ends of the price interval attract more probability mass, and those in the

middle range are allocated lower mass. The increase in probabilities of the high prices

is the main force that drives up the equilibrium average market price.

Figure 3.3.3: Time Series of Average Market Prices (A) and LQRE Probability Densities
of Prices (B) : Logistic Specification with λ = 0.15
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So far we have focused on λ < 1
n−1 , where the condition of Proposition 1 is satisfied

and the Cournot processes converge. It is also interesting to investigate how would a

change in the number of sellers affect the Cournot dynamics if we relax the restriction

and simulate the models with a higher λ. We conduct a new set of simulations using λ =

0.4 while keeping everything else unchanged. Figure 3.3.4 and Figure 3.3.5 present the

results of simulations for the power function specification and the logistic specification,

respectively. For the power function specification, when n equals to two and three (we

still have λ < 1
n−1 for these two cases), the Cournot processes still converge. However,

when n equals three or four, the Cournot processes evolve cyclically after a few periods

and the cycles persist over time.

Figure 3.3.4: Time Series of Average Market Prices: Power Function Specification with
λ = 0.4
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Figure 3.3.5: Time Series of Average Market Prices: Logistic Specification with λ = 0.4

For the logistic specification, the simulations still produce results contrasting to

those obtained from the simulations with the power-function specification. In the

duopoly, triopoly and quadropoly scenarios we observe persistent cycles of average

market prices. However, increasing the number of sellers reduces the amplitudes of the

price cycles and, when the number of sellers is increased to five the process converges

after about 30 periods. We also ran simulations for markets with six to ten sellers, in

all of these cases the Cournot process also converges, and the results indicate that as

the number of sellers increases the speed of convergence increases. Again, increasing

the number of competitors increases the market price. Therefore, we conclude that

increasing the number of sellers may result in nonconvergence of the Cournot process

under the power function specification, while can lead to convergence of the process

under the logistic specification.
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3.4 Conclusion

The conventional viewpoint that increased competition among sellers has the effect of

reducing market prices has been challenged by many authors. Some models introduce

search costs for consumers hunting for the lowest market price (e.g., Satterthwaite 1979;

Stiglitz 1987; and Janssen & Moraga-González 2004). With more sellers competing in

the market it is more costly for the consumers to succeed when searching. This effect

can reduce search intensity, which in turn gives firms more market power. The possible

result are increased prices. An alternative approach is to divide the consumers into two

different types, for instance, loyal and swinging buyers in Rosenthal (1980) or, informed

and uninformed buyers in Varian (1980). When facing intensified competition the

sellers may have an incentive to exploit the loyal buyers and the uninformed buyers by

charging a higher price. This paper demonstrates that the same phenomenon can arise

in homogeneous product Bertrand oligopoly markets with identical sellers and perfectly

informed buyers. The results of this Chapter also indicate that caution is necessary

when choosing the quantal response specification to model Bertrand competition. The

two dominant specifications which typically are seen as substitutes in modeling, lead

to qualitatively vastly different results with respect to the impact of number of firms

on price levels.
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Chapter 4

Learning under limited information

in laboratory Bertrand markets

4.1 Introduction

In experimental studies where people engaged repeatedly in some stage game, it is well

known that the availability of information about other players’ past actions can have

substantial influence on an agent’s strategic adjustment (e.g., Mookherjee & Sopher

1994; Huck et al. 2000; and Abbink et al. 2004). For a wide variety of games where

players know only their own actions and payoffs, choice reinforcement learning (cf. Bush

& Mosteller 1955; Erev & Roth 1998) and payoff assessment learning (cf. Sarin & Vahid

2001) models have been successfully used to explain observed behaviour.

Traditional choice-reinforcement learning (CRL hereafter) uses propensities to play a

strategy. Initial propensities are given and lay outside the model. The choice probability

for a certain strategy is determined by the propensity of this strategy relative to the

propensity of the chosen strategy is updated according to a reinforcement function,

while the propensity for all the unchosen strategies stays unchanged. In the payoff

assessment learning model (PAL hereafter) subjects choose the strategy that they assess
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subjectively to lead to the highest payoff. Again, initial assessments are assumed to be

given and lie outside the model. PAL has in common with CRL that updating only

occurs for the chosen strategy. So a player updates the payoff assessment for a chosen

strategy according to an updating rule, weighs recent experience more strongly than

experiences in the distant past. Both CRL and PAL models largely ignore an important

factor that may have potent influence on learning: players’ ex-post inferences about the

payoff other strategies might have yielded. The omission only really matters in settings

where players know the game and payoff structure. Note that knowing the game and

payoff structure does not necessarily mean that subjects can infer the forgone payoff

for every possible alternative strategy. In low-information environment such as ours,

a player does not observe the strategy chosen by other players and might not be able

to infer it from her own payoff. In such a situation we cannot use learning algorithms

designed for high-information environments such as fictitious play. For this reason we

will develop extensions to CRL and PAL that take into account what subjects can infer

or might suspect about the forgone payoffs from unchosen strategies after observing

their payoffs.

Our study is based on observations from a Bertrand duopoly experiment conducted

by Bayer & Ke (2011). In the experiments, subjects were assigned to fixed roles as

sellers and buyers, and randomly re-matched in each period to form market groups. In

total subjects played fifteen periods. Over-all 186 subjects participated such that in

each period 62 markets took place. A market consisted of a standard Bertrand price

competition game. Two sellers simultaneous set integer prices between 30 (marginal

cost) and 100 (reservation value for the buyer) to compete for a buyer wishes to buy

one unit of the good in question. Buyers initially saw one of the two prices and could

without incurring any cost uncover the other price with a simple mouse-click. Then

buyers could either choose the seller to buy from or exit the market without buying.1

1In more than 99% of the cases the buyers sampled both prices and bought from the seller offering
the lower price.
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The payoff for successful seller was the difference between price set and cost, while an

unsuccessful seller earned zero. The buyers’ payoffs were calculated as their reservation

value minus the price they paid if they bought from a seller, and were equal to zero

if they did not buy. Before the experiments, participants were provided with detailed

instructions. After each repetition, the only feedback revealed to the participants were

their own payoffs which meant that sellers could infer only if they sold or not but not

the exact price charged by the competitor.

The Bertrand-Nash equilibrium for the stage game requires sellers to set prices

equal to 30 (marginal cost) or just above. The experimental results, however, differed

markedly from the Bertrand-Nash prediction. The main features of the experimental

results can be briefly summarized as follows: (1) Prices were persistently dispersed

above marginal cost and the Bertrand-Nash prices were rarely observed; (2) The mean

and median prices as well as the corresponding price variance decreased with repetition;

(3) The sellers tended to increase or keep their prices unchanged after a successful sale

and to reduce prices after failing to sell. Based on these observations, it is clear that the

CRL or PAL models are not adequate. To illustrate, consider the case of a seller who has

incurred a sales failure and obtained a zero profit. According to the assessment updating

rules, for CRL there would be no change in the attractiveness for all alternatives, and

for PAL the only change is that the payoff assessment for the chosen price is adjusted

down. As a result, there would be little change in the seller’s choice probabilities. This

is obviously inconsistent with the experimental evidence.

Our model address the problem by extending the PAL model. We assume that the

players update the assessments not only for the chosen prices using the realized payoffs,

but also for all the unchosen prices for which the forgone payoffs can be inferred from

the feedback received. More specifically, knowing their own prices, an unsuccessful

seller can easily infer that all higher prices would also have led to failing to seller with

a profit of zero. Likewise, a successful seller can infer that all lower prices would also
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have led to a successful sale and hence the forgone payoffs for lower prices are simply

the corresponding markups. Both successful and unsuccessful sellers can never know

all forgone profits with certainty. A successful seller who does not know the price of

the competitor cannot be sure what the profit for prices higher than that posted would

have been, as she does not know if a sale would have happened. In the same way

an unsuccessful buyer does not know the forgone profits for prices lower than the one

posted. In order to make an assessment a player requires to have beliefs about the

price set by the opponent conditional on the sale result. In what follows we assume a

parametric form for these beliefs and estimate the parameters straight from the data. As

we will show, the extended model organizes the data remarkably well at both aggregate

level and individual level.

One learning model that bears significant relation to our approach is learning di-

rection theory (cf. Selten & Stoecker 1986 and Selten & Buchta 1999). Directional

learning is a qualitative approach that postulated that subjects ex-post rationally as-

sess in which direction forgone payoffs would have been higher than the payoff actually

realized. The theory points out that the realized payoff per se might not be the de-

ciding factor in shaping how people adjust their actions. Instead, subjects adjust their

behaviour according to their beliefs about how they can increase their payoffs. The the-

ory therefore predicts that when the decision makers can infer from the feedback they

received which actions could have led to higher payoffs, they are likely to adjust their

behaviour in the direction of better performance. Strategic adjustments following this

ex-post rationality principle have been shown to exist and persist in many experimental

studies (see, e.g., Cason & Friedman 1997; Selten et al. 2005; and Bruttel 2009).

Grosskopf (2003) stressed the importance of combining choice reinforcement and

directional learning when modeling learning behaviour both quantitatively and quali-

tatively is the aim. Our model goes a step beyond such combination: it embodies the

idea that actions which a subject believes would have been better in the past are more
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likely to be played, and more importantly, it allows us to estimate the degree of players’

ex-post rationality based on the data.

The experience-weighted attraction learning (EWA) model of Camerer & Ho (1999)

also emphasizes the impact of forgone payoffs of unchosen strategies on learning. EWA is

a hybridized propensity updating model of learning which is suit for games with perfect

information. It captures key features of choice-reinforcement learning and weighted

fictitious learning and contains these models as special cases. In EWA, the forgone

payoffs for unchosen strategies are weighted using a parameter δ ∈ [0, 1], while the

realized payoff bears a weight of one. Moreover, a player’s experience of playing the

game is also incorporated in the attraction updating rule. Camerer & Ho (1999) show

that, in terms of data fitting, EWA outperforms choice-reinforcement learning and

weighted fictitious learning for a variety of experiments of games. For our limited-

information setting, however, EWA is not directly applicable.

Our study is also closely related to the strategic similarity approach of Sarin & Vahid

(2004).2 The payoff assessment model allows subjects to update the assessments for the

unchosen strategies that are similar to the chosen strategies. Specifically, Sarin & Vahid

(2004) adopt the idea that similar actions expect similar payoffs and allow the update

of assessments for strategies within a range of the chosen strategy. They use the Barlett

and Parzen similarity function (e.g.,Brockwell & Davis 2009) to weigh the payoffs for

unchosen strategies. According to the similarity functions, the closer a strategy is

to the chosen strategy, the more weight the forgone payoff will have when the payoff

assessment for this strategy is updated. While the strategic similarity approach is more

appropriate for the situation where subjects are ignorant about the game environment,

our approach is better suited for situations where players know the structure of the

game but not the opponents’ past strategy.

The Chapter is structured as follows. Section 2 summarizes the Bertrand duopoly
2See also Bayer et al. (2013) for its application in a voluntary contribution game and Chen &

Khoroshilov (2003) for the use in a cost sharing game.
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experiments of Bayer & Ke (2011). Section 3 presents the model. Section 4 shows the

estimation of the model and compares the model predictions to the experimental data.

Section 5 concludes with a discussion about the model’s convergence properties in the

long run.

4.2 Experiment

The experiment of Bayer & Ke (2011) was conducted in the Adelaide Laboratory for

Experimental Economics (AdLab) at the University of Adelaide. Participants were

mainly university students studying for undergraduate or postgraduate degrees in a

variety of disciplines. In total 186 participants were recruited. Participants were asked

to play fixed roles as sellers and buyers in a Bertrand duopoly market game for thirty

periods. The purpose of Bayer & Ke (2011) was to investigate the effects of exogenous

cost shocks on market price. So they conducted a two-phase experiment, with 15 periods

for each phase. The only difference between the two phases was the sellers’ marginal

costs. In the first phase the marginal cost was 30 for all sellers and all treatments.

After the first phase, in different treatments the marginal costs either went up to 50,

was kept unchanged at 30, or declined to 10. Since the cost shock effects are beyond the

interest of this paper, we focus on the first phase (15 periods) of the experiment where

the cost shocks had not been imposed. Note that the cost shock was unanticipated

such that it should not have any impact on play in the first periods. However, subjects

knew that the experiment would run for 30 periods. At the beginning of each period,

sellers and buyers were randomly matched to form markets. There were 62 markets

and each market consisted of two sellers and a buyer. In each period, sellers with

unit cost c = 30 simultaneously and independently post a price from the price set
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P ≡
{

30, 31, · · · , 100
}

at which they offer to sell the product. Afterwards, the buyer

with unit demand and reservation value v = 100 enters the market, learns one price and

can click to see the other price without any cost. Then the buyers has to decide either

to buy from one of the sellers or to leave without buying. After that a period ends. The

payoffs for successful sellers are equal to their prices minus the cost, while the profits of

unsuccessful sellers are zero. For a buyer, the payoff is v minus the price she paid if she

bought and zero if she did not buy. After each period, the only information revealed

to participants are their own payoffs. At the end of the experiments, the payoffs were

aggregated over all periods and exchanged for real money at a fixed exchange rate. On

average, the participants earned about twenty Australian Dollars for about one hour of

their time.

Figure 4.2.1 shows the frequency distributions of the posted prices for all periods.

Each bar represents the relative frequency for five consecutive prices to be charged as

labeled at the ticks.3 Prices are significantly dispersed above the marginal cost for

all periods and the Bertrand-Nash equilibrium prices are rarely observed throughout.

Further, the price distributions exhibit remarkable temporal variation, as there is an

obvious tendency of prices steering away from the clusters above 60 toward those below

60.
3The lowest bin contains six prices as the number of strategies was not divided by five.
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Figure 4.2.1: Price distributions by period

The tendency of price adjustment becomes clearer by plotting the dynamics of the

mean and median market prices in panel (A) of Figure 4.2.2. Both mean and median

prices start off at about 60 and decrease gradually with repetition. After nine periods,

the speed of price reductions decreased markedly. Actually, the median price remains

at 50 from period 11 to period 14. There is a similar trend for the variance of the prices

(see plot (B) of Figure 4.2.2). The variance decreases quickly from 156 in period one

to 77 in period six, and then slowly to 37 in the last period.
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Figure 4.2.2: Evolution of the mean and median prices (A), and the evolution of price
variances (B)
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Figure 4.2.3: Box plots of price adjustments by sales outcomes(outliers excluded)

At the individual level, the most striking observation is that the sellers’ price ad-

justments depend heavily on whether they sold their unit or not in the previous period.

Figure 4.2.3 shows the interquartile box plots of the sellers’ intertemporal price changes

in all periods, respectively for the unsuccessful sellers (the left panel) and the successful

sellers (the right panel). The red bars in the boxes depict the median price adjust-

ments. As can be seen from the plots, the sellers, who were not able to sell in the

period before, usually reduced their prices. Those sellers, who experienced a sale suc-

cess typically adjust prices upwards or keep their prices unchanged. With other words,

the intertemporal price adjustments observed present strong evidence for the sellers

being ex-post rational in the sense of direction learning theory.
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4.3 Model

In this section we propose a simple learning model base on the experimental observa-

tions. Our model differs from the payoff assessment tradition only in its incorporation of

the forgone payoffs for unchosen strategies. For the chosen price, the payoff assessment

for period t+ 1 is defined as the weighted sum of the corresponding payoff assessment

for period t and the realized payoff from period t. In contrast, for the unchosen prices,

the assessments for period t + 1 are equal to the weighted sum of their respective as-

sessments for period t and the forgone payoffs that a player believes these prices could

have earned in period t. More specifically, for a successful seller, the forgone payoff for

a lower price is its markup over the marginal cost because a lower price would certainly

also have led to a sale if posted. The forgone payoff for a higher price, in contrast,

is defined as the possible markup multiplied by the seller’s believed probability that

a sale would occur if this price were posted. Similarly, for an unsuccessful seller, the

forgone payoff to a higher price is zero, and that to a lower price is its markup times

the seller’s believed sales probability associated with posting that price. Moreover, the

sellers believed sales probabilities should satisfy the simple restriction that is decreases

weakly with a higher price. Further to that, we would expect the probability of a sale

to be zero if a price of v is charged. The probability of a sale for a price smaller than c

should be one. Additionally, we would like to allow one degree of freedom for each for

the reactivity of the beliefs for successful and unsuccessful sellers.

4.3.1 Learning rule

Let Ait = (Ait(c), Ait(c + 1), · · · , Ait(v)) denote the vector of payoff assessments of seller

i in period t. The initial assessment for each p ∈ P is denoted by Ait=0(p). After period

t, the only feedback seller i obtains is her own payoff that resulted from the price
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she posted. In other words, sellers know only whether or not the prices they posted

have yielded a successful sale. Given the feedback from period t, seller i updates her

assessment for price p by the following rule:

Ait+1(p) = φAit(p) + (1− φ)π̂it(p); ∀i ∈ I, ∀p ∈ P. (4.3.1)

In the equation, π̂it(p) is the expected payoff that seller i believes she would have

obtained if she had posted price p instead of pit. Hence, after period t, the payoff

assessment Ait+1(p) is updated as the weighted sum of the previous payoff assessment

Ait(p) and π̂it(p), where φ (0 ≤ φ ≤ 1) is the inertia parameter, which measures the

relative weight the seller puts on her past payoff assessments.

For a seller who has enjoyed a sales success , π̂it(p) is defined as

π̂it(p) =


p− c, if p ≤ pit

(p− c)
(
v−p
v−pit

)α
, if p > pit

. (4.3.2)

That is, if seller i succeeded at price pit, then a lower price p ≤ pit would also have

yielded a sale, with a profit of p− c. A higher price, by contrast, would have resulted in

a tradeoff between a higher markup and the risk of not selling. We use (p− c)
(
v−p
v−pit

)α
to capture such a tradeoff. This formulation satisfies the structure of the properties

we require. The first part is the markup. The second part,
(
v−p
v−pit

)α
∈ [0, 1], is used to

capture the seller’s (subjective) expected probability of sales success if she had posted a

higher price p. Here v−pit is the length of the interval for prices that are greater than the

posted price pit, and v−p
v−pit

is the proportion of prices that are above p. Accordingly, the

closer p is to pit, the higher is the probability the seller expects that he would have sold.

The parameter α ∈ [0,∞) is introduced to capture the sensitivity of a successful sellers’

believes are towarding price increases. When α = 0, the seller is extremely insensitive

and believes that she would have sold at any higher price. On the other hand, when
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Figure 4.3.1: Subjective probability of selling at a higher price: an example with pit = 50.

α→∞, she is extremely sensitive and believes that any price increase would definitely

have led to a failure to sell. Figure 4.3.1 provides an example of
(
v−p
v−pit

)α
with pit = 50

for different values of α.

For sellers, who incurred a sales failure, π̂it(p) is defined as

π̂it(p) =


0, if p ≥ pit

(p− c)
(
pit−p
pit−c

)β
, if p < pit

. (4.3.3)

If a seller failed to sell at pit, a higher price would also have led to a failure. In contrast,

a lower price would have provided a chance to win the consumer. Similar to the case of

successful sellers,
(
pit−p
pit−c

)β
∈ [0, 1] is used to capture an unsuccessful seller’s (subjective)

expected probability of sales success if she had posted a lower price. The sensitivity

parameter β ∈ [0,∞) serves the same purpose as α does for the case of successful sellers.

The closer is p to pit, i.e. the higher price p is, the lower is the expected likelihood of

having been able to sell at p .
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Given the above definition of π̂it(p), for both the successful and unsuccessful sellers,

a smaller α or β implies larger expected forgone profits of π̂it(p) for prices in the “could-

have-been-better” direction compared to the other prices. In other words, we are more

likely to observe successful sellers increasing their prices and the unsuccessful sellers

reducing their prices if the estimates of α and β are small than when they are big. To

see this, consider the extreme condition with α and β equal to zero. For the successful

sellers π̂it(p) will be equal to p − c for all prices and thus higher prices will have a

higher increase in their payoff assessment. This is because higher prices lead to higher

margins. For unsuccessful sellers, for p ≥ pit the payoff assessment will not be changed,

but for p < pit, the change in payoff assessment will be π̂it(p) = p− c, which is maximal.

Increasing values dampen the directional learning effect, since then the changes in payoff

assessments become smaller.

4.3.2 Choice rule

If a seller’s price choices are not affected by random factors such as mood shocks or noise,

then she would always choose the strategies that she assesses to have the highest payoffs.

Now suppose that at period t, the seller experiences identically and independently

distributed mood shocks εt = (εt(c), · · · , εt(p)). Denote the shock-distorted payoff

assessments as Ãit(p) ≡ Ait(p) + εit(p), ∀p. At period t, instead of selecting the price

that maximizes Ait(p), we assume that the seller selects a price p if

Ãit(p) > Ãit(m), ∀m 6= p, ∀m ∈ P.

We use the logit probabilistic choice model to account for the above feature of price

choice. With this we implicitly assume that each εit(p) follows a Gumbel or type I
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extreme value distribution.4 With this specification, at period t , the probability of

seller i choosing price p is

f it (p) = eµt·A
i
t−1(p)∑v

k=c e
µ·Ait−1(k)

where

µt ≡ λ+ (t− 1)γ. (4.3.4)

Parameter µt is used to measure how sensitive the sellers are to the differences in payoff

assessments of different prices, or in the mood shock formulations how strong the moods

shocks are. When µt is positive, the logit model has an intuitively appealing property

for modeling decisions: the strategies that being assessed to have higher payoffs are

more likely to be selected. As µt approaches infinity, the firms will always choose the

prices with the highest payoff assessment. On the other hand, when µt equals to zero,

a seller becomes fully ignorant or confused about the game she is playing and makes

random choices. Differing from most previous applications of the logit model where

parameter µt was taken as a constant across all periods, we endogenize µt as 4.3.4

for the following reasons.5 First, while playing the game repeatedly the players may

accumulate experience so they are likely to make more precise choices over time. It is

common in experimental applications that the period-specific estimations of µt often

yield higher values for later periods than for earlier ones (see McKelvey & Palfrey 1995

and Dufwenberg et al. 2007). Second, allowing µt to vary over time may help us to

disentangle two different learning effects: the learning effect of accumulating experience

and making more precise decisions, and the effect of the payoff assessment learning

following Equation 4.3.1.
4With the Gumbel extreme value distribution (see Akiva & Lerman 1985), the density function

for each εi
t(p) is f(εi

t(p)) = exp[−εi
t(p) − exp(−εi

t(p))] and the associating cumulative distribution is
F (εi

t(p)) = exp[− exp(−εi
t(p))].

5We also tried a nonlinear version using a harmonic function such as µt ≡ λ + γ
∑t

1
1
t , which

assumes that a player’s sensitivity toward the payoff assessment differences is an increasing/decreasing
function of t at a diminishing rate. It makes little difference in the estimates.
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4.4 Estimation

4.4.1 Initial payoff assessments

The only remaining task for us before estimating the model parameters is to pin down

for all players i ∈ I the initial payoff assessment vector Ait=0. For games with small

pure strategy sets Ait=0 could be estimated directly with the model (e.g., Camerer &

Ho (1999); Erev & Roth 1998). With large pure strategy sets, however, estimating

the initial assessments introduces massive computational complexity as well as a large

number of degrees of freedom, which will almost certainly lead to over-fitting. A simple

alternative (e.g., Chen & Tang 1998; Chen & Khoroshilov 2003 ) widely used is to

assign to all pure strategies an uniform initial assessment that is equal to the average

payoff earned by all players in period one. However, the null hypothesis of uniform

initial assessments being compatible with the first period behaviour is rejected by a

Kolmogorov–Smirnov(K-S) test at the 5% significance level (p-value= 0.003). Ho et al.

(2007) adopt the idea of cognitive hierarchy theory (Camerer et al. 2004) where players

are categorized as step k thinkers: step 0 players randomize, step 1 players best respond

to step 0, and step k players best responds to their beliefs of the distribution (usually

assumed to be a Poisson distribution) of step 0 to step k − 1 thinkers. As an average

of step 1.5 has been tested to fit well for a wide range of experimental data, Ho et al.

(2007) set the initial payoff assessment of a strategy as its expected payoff while being

played against step 1.5 thinkers. In our context, however, this approach is also not

ideal. Best responses played against a uniform distribution (step 1) leads to a payoff

distribution that is nice and smooth, and that can be easily derived.6 Nevertheless,

for step 2 players, in the case of playing against step 1 players, the expected payoffs

for different prices change in an undesirable discrete manner: prices less than 65 (the
6However, the assumption that all sellers are step1 thinkers is rejected by K-S test at 10% signifi-

cance level (p-value= 0.072)
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price that step 1 players choose) yield expected payoffs equal to the markups and prices

above 65 yield zero expected payoffs.

We use a reverse engineering approach in setting Ait=0. Specifically, we trace back for

an appropriate price distribution to which the best response is the mode price observed

in the first period data. It turns out that Poisson distribution serves our purpose quite

well. The Poisson distribution has an appealing property of having only one parameter

κ: let the markup of a price be m ≡ p − c ∈ {0, 1, · · · , v − c}, then the probability

function of the Poisson distribution with mean κ is given by

f (m) = κme−κ

m! ,∀m.

For the first period, the mode price of the data was 60 (so, p − c = 30) and it is a

best response to a Poisson price distribution with κ = 37 (so the mean price of the

distribution is c + κ = 30 + 37 = 67). Accordingly, the initial payoff assessment for

price p = m + c is defined as its expected payoff for being played against the Poisson

distribution with κ = 67:

Ait=0(p) = (p− c)
1−

p−c∑
q=0

κqe−κ

q!

 ,∀p ∈ P.

This approach is validated by the K-S test (p-value= 0.452) and fits the first period

data way better than all the above mentioned approaches. For simplicity, in the esti-

mation we shall make the assumption that the initial payoff assessment vectors are the

same across all players.
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4.4.2 Maximum likelihood estimation

For the estimation we search for the values of the parameters that maximize the log-

likelihood of observing the experimental data. Formally, we cast about for the values

of φ, α, β , λ and γ that maximize

log(L) = log
[ 15∏
t=1

N∏
n=1

fi,t(p)
]

=
15∑
t=1

N∑
n=1

log
 exp

[
µt · Ait−1(p)

]
∑v
k=c exp [µt · Ait−1(k)]


where N is the total number of sellers in the experiments. In order to examine the

robustness of the estimates, we conduct estimations not only for the whole data set

(N = 124, nine sessions7), but also for two subsets with 40 sellers (three sessions) and

84 sellers (six sessions), respectively.

φ α β λ γ log(L)

Whole data set 0.838 1.303 0.236 0.079 0.034 -5674
(124 sellers) (0.051) (0.063) (0.027) (0.016) (0.011)

Subset I 0.847 1.254 0.333 0.063 0.041 -3784
(84 sellers) (0.047) (0.056) (0.033) (0.022) (0.020)

Subset II 0.813 1.392 0.129 0.093 0.026 -1873
(40 sellers) (0.066) (0.080) (0.042) (0.041) (0.037)

Table 4.4.1: Maximum likelihood estimates (standard errors in parenthesis)

Table 4.4.1 reports the maximum likelihood estimates. The numbers in the paren-

thesis are the standard errors obtained by numerical differentiation. The table also

includes the values of log likelihood function, log(L), at the estimated parameters. As

can be seen, the estimates are close across different data sets for all parameters and, the

values derived from the whole data set are roughly the average of those from the two

truncated data sets. The discount parameter φ̂ is about 0.8 which implies that the new

experience attracts a significant weight and thus affect the price decision substantially.

The sensitivity estimates α̂ = 1.303 and β̂ = 0.236 turn out to be small enough to ac-
7There were between 12 and 18 sellers in a session.
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count for the directional learning price adjustments. For unsuccessful sellers, based on

the model, downward adjustment of prices is obvious because only the lower prices may

attract positive forgone payoffs π̂it(p). For successful sellers, the estimate α̂ = 1.303

implies, at an aggregate level, a trend of upward adjustment of the prices, which is

less strong than the downward adjustment in the other case. To see this, consider an

example in which seller i has successfully sold at pit = 60. In this case, with α̂ = 1.303

the sum of π̂it(p) for prices higher than 60 is ∑100
p=61 π̂

i
t(p) = 746.4, which is much higher

than the sum of π̂it(p) for the lower prices (∑59
p=30 π̂

i
t(p) = 435). This indicates that for

seller i the impluse to increase the price is higher than the impulse to reduce the price.

This is the case for all winning prices that are below 70. Since we have rarely observed a

winning price greater than 70 in the experiments, we can safely say that the parameter

α̂ = 1.303 conforms to the observed directional learning price adjustment observed for

successful sellers. With β̂ = 0.236 the adjustment pressure is greater for unsuccessful

sellers. This is consistent with reference dependent preferences that weighs losses more

strongly than gains.
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Figure 4.4.1: Price Dispersion: Data observation and Model Prediction

Figure 4.4.1 presents a comparison between predicted price frequencies of the model
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(panel B) and the corresponding empirical frequencies (panel A). Overall, the model

organizes the data remarkably well. The model precisely predicts the tendencies of

relative frequency changes for most of the price clusters over time. The largest predic-

tion error of the model is that it overpredicts the frequencies of cluster 46 to 50 and

underpredicts those of cluster 51 to 55, especially for later periods.

Figure 4.4.2: Mean (A) and Variance (B) dynamics: Data Observation and Model
Prediction

Panel (A) of Figure 4.4.2 shows the time series of the mean price estimated by
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the model, together with the real dynamics of average prices. Panel (B) shows the

corresponding dynamics of price variances. Overall, we can see that the model does

rather well in tracking both the means and variances of the prices. The only problem

is that the model slightly overpredicts the mean prices for periods six to fifteen. We

ascribe the errors to the model’s overprediction of the frequencies for prices above

75. As showed in Table 4.4.2, for period six to period fifteen, the model predictions

of the total frequencies for prices above 75 are systematically higher than the actual

frequencies observed in the data (see also Figure 4.4.1).

period 6 7 8 9 10 11 12 13 14 15

Pr(p > 75) Model 0.027 0.023 0.021 0.019 0.018 0.017 0.016 0.016 0.016 0.016

Pr(p > 75) Data 0.008 0.008 0 0.016 0.008 0 0.016 0.08 0 0

Table 4.4.2: Time series of total probabilities for prices above 75

CRL and PAL models have advantages over the belief-learning models for allowing

players’ decisions to depend directly on their own past choices and payoffs. Our model

enables us to predict players’ idiosyncratic strategies for all but the first periods and

evaluate the model’s goodness of fit at an individual level.8 To assess how well the

model is tracking the individual’s price dynamics, we compare for all sellers the prices

they actually posted and the mode prices predicted by the model. There are 1760

(N × T ) pairs of posted prices and corresponding mode predictions. We then take the

differences of each pair (mode prediction minus observed price) and plot the histogram

of the frequencies for the pooled differences. Figure 4.4.3 shows the results. Overall,

the mode predictions of the model fit the posted prices excellently. The mean of the

differences is 0.52 and the median is zero. For about 41% of the cases, the predicted

modes are within 2 units of the actually posted prices. Therefore, we feel confident
8Wilcox (2006) shows that for empirical estimations, if the comparison between reinforcement

learning models and belief learning models are compared based only on the goodness of fit, the results
will be biased in favor of the reinforcement learning models. This is because the reinforcement learning
models manage to carry idiosyncratic information of players into the estimation, while the belief
learning models cannot.
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to conclude that our model also organizes the experimental data well at an individual

level.

Figure 4.4.3: Histogram for differences between predicted mode prices and posted prices

4.5 Conclusion

We have developed an extended payoff assessment learning model to explain pricing and

learning behaviour in experimental Bertrand markets with limited information. While

updating payoff assessments, the sellers not only change the assessments of the selected

price, but also adjust that associated with other prices. A key difference of our model to

the existing learning models is that we explicitly incorporate players’ ex-post inferences

for the forgone payoffs to unchosen strategies. For some prices, the forgone payoffs can

be directly calculated from the feedback received. For the remaining prices, however,

direct inference is not feasible. This is because the forgone payoffs for these prices are

subjective and determined by sellers’ beliefs about the opponents’ actions. We showed

that a simple parametric approach can help to estimate the subjective forgone payoffs
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straight from the data.

An interesting following up of our model is to ask whether the learning process will

approach to some stationary distribution of prices over time. For the original payoff

assessment model, Sarin & Vahid (1999) proved that if the players only choose the

strategies with the highest payoff assessments, and update only the assessments for the

chosen strategies, the learning process will converge to the maxmin choices. For the

Bertrand duopoly game we study, the maxmin prices are the marginal cost price and

thus constitute a Nash equilibrium. However, both of the assumptions that lead to the

maxmin result are relaxed in our extended model, which makes the Nash equilibrium

unlikely to be reached.

Impulse Balance Equilibrium (Selten & Chmura 2008), which is based on learning

directional theory, provides a clue to our context. According to the impulse balance

theory, when a player receives feedback, she is assumed to have an impulse to change in

the direction of higher payoffs. At an Impulse Balance Equilibrium (IBE), the expected

impulses for opposite directions of change are equal. In our environment, we might

have the case that a seller’s expected impulse to adjust prices upward after a successful

sale is balanced with the expected impulse to reduce prices after an unsuccessful sale.

Consequently, one can see how an IBE could come about. Simulation or experimental

investigation of the model is required in order to test whether the learning process will

converge in the long run. And, if the process does converge, whether the distribution

of prices are consistent with IBE or other stationary equilibrium concepts.
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