The Role of Vitamin D Receptor in

Osteoblasts and Bone Mineralisation

Nga Ngoc Lam

University of Adelaide Faculty of Health Science

School of Medical Sciences

Supervisors: Dr Peter O'Loughlin and Dr Paul Anderson

Musculoskeletal Biology Research Laboratory

SA Pathology, Adelaide

A thesis submitted for the degree of

Doctor of Philosophy to

The University of Adelaide

December 2012

TABLE OF CONTENTS

ABSTRA	CT	1
DECLAR	ATION	4
ACKNOV	WLEDGEMENTS	5
NATION	AL AND INTERNATIONAL MEETINGS, SCIENTIFIC ABSTRACTS	7
RESEAR	CH GRANTS AND AWARDS ARRISING FROM THIS THESIS	
1	CHAPTER 1: LITERATURE REVIEW: VITAMIN D RECEPTOR AND	9
	BONE HOMEOSTASIS	
1.1	INTRODUCTION	10
1.2	BONE BIOLOGY	11
1.2.1	Function and composition of bones	11
1.2.2	Skeletalgenesis	12
1.2.3	Structure of bone	12
1.2.3.1	Cortical bone	12
1.2.3.2	Trabecular bone	13
1.2.3.3	Surfaces of bone	14
1.2.4	Cellular composition and activity in bone	14
1.2.4.1	The osteoblast	14
1.2.4.1.1	Osteoblast origin and differentiation	14
1.2.4.1.2	Osteoblast structure	15
1.2.4.1.3	Osteoblast function	15
1.2.4.2	The osteoclast	18

ii

Osteoclast origin and differentiation	18
Osteoclast structure	19
Osteoclast function	19
The osteocyte	22
Osteocyte origin and differentiation	22
Osteocyte structure	23
Osteocyte function	23
Bone modelling and remodelling	27
Bone modelling	27
Bone remodelling	27
VITAMIN D METABOLISM	31
Renal vitamin D hydroxylases	31
Regulation of renal vitamin D hydroxylases	32
Calcium, phosphate, PTH and 1,25D	32
Fibroblast growth factor 23 (FGF23)	33
VITAMIN D RECEPTOR	36
Structure of VDR	36
Mechanism of actions	38
Positive gene regulation	38
Negative gene regulation	39
Non-genomic effects of VDR	40
VDR polymorphisms	40
BIOLOGICAL ACTIONS 1,25D-VDR ON BONE HOMEOSTASIS	41
1,25D-VDR actions on calcium homeostasis	42
Intestine	42
	Osteoclast structure Osteoclast function The osteocyte Osteoclast function Osteocyte origin and differentiation Osteocyte structure Osteocyte function Bone modelling and remodelling Bone modelling YTAMIN D METABOLISM Regulation of renal vitamin D hydroxylases Regulation of renal vitamin D hydroxylases Calcium, phosphate, PTH and 1,25D Fibroblast growth factor 23 (FGF23) VTAMIN D RECEPTOR Structure of VDR Negative gene regulation Non-genomic effects of VDR. VDR polymorphisms BIOLOGICAL ACTIONS 1,25D-VDR ON BONE HOMEOSTASIS

iii

1.5.1.2	Kidney	43
1.5.1.3	Parathyroid gland	43
1.5.2	1,25D-VDR direct actions on bone cells	44
1.5.2.1	Osteoblast	44
1.5.2.2	Osteoclast	45
1.5.2.3	Osteocyte	46
1.6	CLINICAL SKELETAL EFFECTS OF VITAMIN D DEFICIENCY	46
1.7	ANIMAL STUDIES FOR THE ACTIONS OF VITAMIN D ON BONE	48
	HOMEOSTASIS	
1.7.1	Vitamin D receptor knock-out mouse	48
1.7.2	CYP27B1 knock-out and VDR double knock-out mouse	50
1.7.3	Mature osteoblast-specific VDR transgenic mouse	51
1.8	AIMS AND HYPOTHESES	53
1.8.1	Specific aims	53
1.8.2	Significance of project	53
2	CHAPTER 2: MATERIALS AND METHODS	54
2.1	MATERIALS	55
2.2	ANIMALS	55
2.3	HOUSING	55
2.4	DIET	55
2.5	SEMI-SYNTHETIC DIET	56
2.6	BLOOD BIOCHEMISTRY	61
2.6.1	Blood sample collection	61
2.6.2	Serum calcium and phosphate	61

iv

2.6.3	Serum 1,25 dihydroxyvitamin D ₃	61
2.6.4	Serum 25 hydroxyvitamin D ₃	62
2.6.5	Serum parathyroid hormone	62
2.6.6	Serum fibroblast growth factor 23	62
2.7	BONE HISTOLOGY	63
2.7.1	Fluorochrome labelling injections	63
2.7.2	Bone preparation for dynamic histomorphometry	63
2.7.3	Tartrate resistant acid phosphatase (TRAP) staining of osteoclast	65
2.8	BONE MICRO-COMPUTED TOMOGRAPHY	65
2.9	TISSUE MESSENGER RNA ANALYSES	66
2.9.1	Extraction of total RNA	67
2.9.2	Quantification of messenger RNA	67
2.9.3	Synthesis of cDNA	67
2.9.4	Quantitative real-time PCR	68
2.10	WESTERN IMMUNOBLOTTING	72
2.10.1	Protein extraction	72
2.10.2	VDR protein immunoblotting	72
2.11	PRIMARY BONE CELL CULTURE	74
2.11.1	Cell preparation and culture conditions	74
2.11.2	Cell preparation for mineralisation assay	74
2.11.3	Alizaren red-calcium staining	75
2.11.4	Von Kossa-phosphate staining	75
2.11.5	Calcium quantification	76
2.12	STATISTICAL ANALYSES	76
2.12.1	Two-way analysis of variance	76

v

3	CHAPTER 3: CHARACTERISTION OF THE OSVDR TRANSGENIC	77
	MOUSE	
3.1	INTRODUCTION	78
3.2	METHODS	80
3.2.1	Animal housing	80
3.2.2	Micro-computed tomography	80
3.2.3	Serum biochemistry	81
3.2.4	Quantitative real-time PCR	81
3.2.5	Western blot of VDR proteins	81
3.2.6	Primary osteoblst cell culture	81
3.2.7	Preparation of cell for mineralisation assays	82
3.2.8	Detection of mineralisation	82
3.2.9	Statistical analysis	82
3.3	RESULTS	83
3.3.1	Analysis of transgene expression by quantitative real time RT-PCR	83
3.3.2	Expression of the VDR protein in bones	83
3.3.3	Effects of OSVDR transgene on serum biochemistry measurements	90
3.3.4	Characterisation of the OSVDR tibial bone volume at 6-weeks of age	90
3.3.5	Characterisation of the OSVDR tibial bone volume at 18-weeks of age	90
3.3.6	In vitro mineralisation of OSVDR osteoblast	94
3.4	DISCUSSION	96
3.4.1	Validation of human VDR transgene specific expression	96
3.4.2	Characterisation of the hemizygous and homozygous OSVDR transgenic	97

vi

76

animals

3.4.3	Effects of increased VDR in mature osteoblasts and mineralisation	99
4	CHAPTER 4: THE ROLE OF VITAMIN D RECEPTOR IN OSTEOBLASTS DURING VITAMIN D DEFICIENCY	102
4.1	INTRODUCTION	103
4.2	METHODS	106
4.2.1	Mice and dietary vitamin D restriction	106
4.2.2	Micro-computed Tomography	107
4.2.3	Dynamic histomorphometry	107
4.2.4	Serum Biochemistry	107
4.2.5	Messenger RNA analyses	107
4.2.6	1,25D and osteoblast mineralization	108
4.2.7	Statistical analysis	108
4.3	RESULTS	109
4.3.1	Serum Biochemistry	109
4.3.2	The role of osteoblastic VDR during vitamin D deficiency on cortical bone	111
	parameters	
4.3.3	The role of osteoblastic VDR during vitamin D deficiency on trabecular bone	111
	volume and bone cell activities	
4.3.4	Effects of enhanced osteoblastic VDR on FGF23 production and renal activity	116
4.3.5	Effects of increased osteoblastic VDR and 1,25D treatment on mineralisation	116
4.4	DISCUSSION	121
4.4.1	OSVDR cortical bone effects and vitamin D deficiency	121
4.4.2	OSVDR trabecular bone effects and vitamin D deficiency	123

4.4.3	Effects of increased osteoblastic VDR and FGF23 production	124
4.4.4	Effects of increased osteoblastic VDR and 1,25D treatment on mineralisation	125
5	CHAPTER 5: THE ROLE VITAMIN D RECEPTOR IN OSTEOBLASTS	128
	DURING DIETARY CALCIUM RESTRICTION	
5.1	INTRODUCTION	129
5.2	METHODS	132
5.2.1	Mice and dietary calcium restriction	132
5.2.2	Micro-computed Tomography	132
5.2.3	Dynamic histomorphometry	133
5.2.4	Serum Biochemistry	133
5.2.5	Messenger RNA analyses	133
5.2.6	Calcium and osteoblast mineralization	134
5.2.7	Statistical analysis	134
5.3	RESULTS	135
5.3.1	Serum biochemistry	135
5.3.2	Effects of calcium restriction on tibial bone volume and bone cell activities	135
5.3.3	Effects of calcium restriction on kidney gene expression and the contribution of	139
	osteoblastic VDR and circulating FGF23	
5.3.3.1	Cyp27b1 mRNA	139
5.3.3.2	Cyp24 mRNA	139
5.3.3.3	Napi2a and Napi2c mRNA	139
5.3.4	Effects of calcium restriction on Cabp9k and Trvp6 gene expression	140
5.3.5	Effects of calcium restriction and the contribution of osteoblastic VDR on bone	144
	cell activities as measured by qRT-PCR	

viii

5.3.5.1	Bone VDR mRNA	144
5.3.5.2	Osteoblastic genes	144
5.3.5.3	Osteoclastic genes	145
5.3.5.4	Osteocytic genes	145
5.3.6	Effects of increased osteoblastic VDR and calcium on mineralisation in vitro	150
5.4	DISCUSSION	152
5.4.1	VDR activity in osteoblasts is important for bone remodelling	152
5.4.2	VDR activity in osteoblasts mediate feedback for renal 1,25D synthesis by	154
	FGF23, impacting on intestinal calcium absorption	

6	CHAPTER 6: SUMMARY AND CONCLUSIONS	157
6.1	Introduction	158
6.2	Extent of the bone phenotype of the OSVDR mouse model.	159
6.3	Evidence for direct local effect of osteoblast-specific vitamin D activity	159
6.4	Endocrine effect of osteoblast-specific vitamin D activity	162
6.5	Limitations	163
6.6	Conclusion	166

BIBLIOGRAPHY

167

ABSTRACT

Age-related bone loss is associated with a change in bone remodelling characterised by decreased bone formation relative to bone resorption. It is well described that age-related bone loss is accelerated as a consequence of vitamin D deficiency, a process which can be replicated in rodent studies. While vitamin D has been shown to play important roles for adequate bone mineralisation and the prevention of osteoporosis, the exact mechanisms remain controversial. It is clear that vitamin D is necessary for the stimulation of intestinal calcium and phosphate absorption, maintenance of calcium homeostasis and supply of calcium and phosphate for bone mineralisation. However, vitamin D has also been shown to directly act on bone cells to promote mineralisation as well as regulate bone resorption. The question of the essential nature of the *in vivo* role for the direct actions of vitamin D on bone has proven to be difficult to resolve. The only published mouse model which addresses the direct actions of vitamin D in osteoblasts is the osteoblast-specific vitamin D receptor transgenic mouse, or OSVDR mouse. Using this transgenic mouse model, it has been reported that the enhanced vitamin D activity in osteoblasts promotes bone formation and mediates reduction in bone resorption most likely through reduced RANKL signalling of osteoclastogenesis. The reported overall bone phenotype of the OSVDR was increased vertebral trabecular bone as well as increased cortical bone volume leading to increased bone strength. In contrast to the findings in OSVDR mice, global VDR knockout mice can mineralise osteoid in the presence of high levels of dietary calcium and phosphate, therefore many have concluded that the role for direct vitamin D activity in bone cells is redundant. This view however, does not take into account the fact that vitamin D activity in bone cells may play a permissive role to optimise bone health by modulating mineralisation and bone resorption.

Thus, the studies conducted in this thesis are aimed to further address the role of osteoblastic VDR in bone remodelling and bone architecture. Specifically, these studies aimed to further

establish the phenotype of the OSVDR mouse model utilising 3D micro-CT analyses as well as establish the role of vitamin D activity in osteoblasts during vitamin D deficiency and dietary calcium depletion. The effects of these physiological interventions on OSVDR mice are described in terms of bone structure, cellular activities, biochemical parameters, and gene expression profiles of bone and other organs involved in calcium and phosphate homeostasis. The overall hypothesis is that VDR activity in mature osteoblast lineage is important to regulate processes of bone remodelling and maintenance of an optimal skeletal structure.

The data presented within these chapters showed that the phenotype of increased bone mineral volume is present in more regions of bone, which was not previously recognised. Furthermore, during vitamin D deficiency, while bone loss occurs in wild-type mice, OSVDR mice maintain both cortical and trabecular bone volume, indicating that bone loss due to vitamin D deficiency is due, at least in part, to reduced vitamin D activity in osteoblasts. In contrast to vitamin D deficiency, the effects of low calcium stress in OSVDR mice results in bone loss comparable to wild-type mice, which is likely to be due to a disruption of bone remodelling, since we observed lowered osteoblast, osteoclast and osteocytes activities. Intriguingly, low calcium fed OSVDR mice demonstrate a marked increase in serum fibroblast growth factor 23 (FGF23) levels, resulting in suppressed renal 1,25dihydroxyvitamin D (1,25D) synthesis, and reduced expression of intestinal calcium absorption genes. Thus, the inappropriately low 1,25D-mediated intestinal calcium absorption in OSVDR mice, fed low calcium, may further contribute to the reduction in bone mineralisation and bone volume. These data suggest that in addition to the reported direct action of vitamin D activity in osteoblasts to regulate bone turnover, VDR-mediated activity in osteoblast also plays a role in the endocrine feed-back mechanism of renal 1,25D synthesis, which may contribute to the maintenance of bone mineral and the resulting bone phenotype. In summary, the findings from this thesis implicate the essential role of vitamin D and VDR in osteoblasts either directly or indirectly impacts on bone homeostasis, including osteoclast activity, osteoblast differentiation, osteocyte activity, bone FGF23 production and renal feedback signalling.

DECLARATION

"This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to **Nga Ngoc Lam** and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text"

"I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968."

"The author acknowledges that copyright of the published work contained within this thesis (as listed in the – Publications arising from this thesis) resides with the copyright holder(s) of those works."

"I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time."

Nga Ngoc Lam

ACKNOWLEDGMENTS

Dr Paul Anderson

Thanks to my supervisor, Dr Paul Anderson who has provided me with support, enthusiasm and encouragement throughout my PhD study. It was a privileged to work in your laboratory and I have very much enjoyed the research project. Thank you for your advice, knowledge,

guidance and reassurance, all of which have been invaluable.

*

Dr Peter O'Loughlin

Thanks to Dr Peter O'Loughlin for being my supervisor. I truly appreciate all your advice and help with my PhD project and the thesis.

×

Prof Howard Morris

Thank you for your enthusiasm, encouragement and invaluable intellectual advice and

guidance throughout my studies and to the preparation of this thesis.

*

SA Pathology (IMVS)

To all the members of the Musculoskeletal Biology Research group, I offer sincere thanks for your advice and assistance, support and friendship throughout my PhD journey.

Garvan Institute

*

Thankyou to Dr Paul Baldock and Prof Edith Gardiner for providing the OSVDR transgenic

mouse model

*

Family and friends

I would like to express everlasting gratitude to my family and friends. My parents Hoan and Oanh who have raised me into the person I am today, who have always offered encouragement, advice and unconditional love. Thanks to my sisters and brother, Tien, Hao and Tra who have always been there for support and love. Thank you to my wonderful partner, Thien for all your patience, understanding, support and love throughout the years and for helping me fulfil my dreams and pursue happiness. I love you all.

INTERNATIONAL AND NATIONAL SCIENTIFIC MEETINGS AND AWARDS ARISING FROM WORK PRESENTED IN THIS THESIS

PRESENTATIONS

International

Oral: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Skeletal effects of increased osteoblastic VDR during calcium-deprivation in a mouse model. American Society for Bone and Mineral Research, Toronto, Canada, 2010

Poster: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Osteoblast-specific VDR over-expression protects against bone loss due to vitamin Ddeficiency. International Bone & Mineral Society combined with Australian & New Zealand Bone and Mineral Society conference, Sydney, Australia, 2009

National

Oral: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Increased bone VDR during low dietary calcium mediates renal negative feedback and impairs osteoclast and osteoblast activities in a mouse model. Australian Health and Medical Research Congress, Melbourne, 2010

Poster: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Skeletal effect of increased osteoblastic VDR during calcium-deprivation in a mouse model. Australian & New Zealand Bone and Mineral Society Conference, Adelaide, 2010 *Poster*: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Skeletal effect of increased osteoblastic VDR during calcium-deprivation in a mouse model. 6th Clare Valley Bone Meeting, McLaren Vale, 2010

Poster: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. Osteoblast-specific VDR over-expression protects against bone loss due to vitamin Ddeficiency. Australian Society for Medical Research Conference, Adelaide, 2009

Poster: Lam NN, Sawyer RK, Anderson SR, Morris HA, O'Loughlin PD, Anderson PH. The study of osteoblastic VDR in a mouse model. Australian & New Zealand Bone and Medical Society Conference, Melbourne, 2008

AWARDS

- American Society for Bone and Mineral Research: Young Investigator Travel Award, 2010
- Molecular and Experimental Pathology Society of Australasia: Travel Award, 2010
- Australian Society for Medical Research: *Best Poster Award in Healthy Aging*, 2009
- Australian & New Zealand Bone and Medical Society: *Travel Awards*, 2008 and 2009
- Department of Physiology, University of Adelaide. *Travel awards*, 2008-2010.