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Abstract

Background: Next (second) generation sequencing is an increasingly important tool for many areas of molecular
biology, however, care must be taken when interpreting its output. Even a low error rate can cause a large number of
errors due to the high number of nucleotides being sequenced. Identifying sequencing errors from true biological
variants is a challenging task. For organisms without a reference genome this difficulty is even more challenging.

Results: We have developed a method for the correction of sequencing errors in data from the Illumina Solexa
sequencing platforms. It does not require a reference genome and is of relevance for microRNA studies, unsequenced
genomes, variant detection in ultra-deep sequencing and even for RNA-Seq studies of organisms with sequenced
genomes where RNA editing is being considered.

Conclusions: The derived error model is novel in that it allows different error probabilities for each position along the
read, in conjunction with different error rates depending on the particular nucleotides involved in the substitution,
and does not force these effects to behave in a multiplicative manner. The model provides error rates which capture
the complex effects and interactions of the three main known causes of sequencing error associated with the Illumina
platforms.

Background
The combination of a high read depth and the highly
expressed nature of some sequences can result in some
reads occurring millions of times in a next generation
sequencing data set. For these situations, even very low
error rates may still result in the presence of a multitude of
sequence variants. Distinguishing these variants from true
biological variants is a technological and computational
challenge. In many species, this difficulty is compounded
by the lack of an available reference genome.

The importance of identifying and correcting sequence
errors has been highlighted by the recent discussion
prompted by the report of the presence of widespread dif-
ferences between the human genome (DNA) and reads
derived from the corresponding RNA [1]. While it is
tempting to interpret such differences as being due to the
presence of RNA editing, a reanalysis of this same data set
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showed that the majority of the reported differences were
actually consistent with technical artefacts arising from
sequencing errors (see, e.g. [2]).

It goes without saying that when the genome of an
organism has not been sequenced and assembled, the dif-
ficulty of identifying possible sequencing errors is greatly
increased, necessitating the development of alternate
analysis methods.

Sequencing errors arising from the use of Illumina
sequencers, on which we concentrate, can occur for a
variety of reasons. One source of error originates from
a phenomena referred to as crosstalk. Crosstalk occurs
when there is an overlap in signals of the dye emission
frequencies used in sequencing machines.

This overlap can lead to confusion of the nucleotide
G with nucleotide T, and of A with C [3,4]. A second
cause of error is referred to as either dephasing or phasing.
Since sequencing is done in cycles, an error in an earlier
cycle may propagate to and affect later cycles. This usually
results in the errors appearing more frequently toward the
ends of the reads. T fluorophore accumulation is another
source of error, and results in more T’s being incorrectly
attributed towards the ends of reads. For an extensive
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review, see [5], which also discusses other possible sources
of sequencing errors such as signal decay, mixed clus-
ters and boundary effects. Additionally, sequence-specific
error patterns, including inverted repeats and the effects
of the nucleotide sequence GGC have been proposed
as an important cause of sequencing errors through
dephasing [6].

The issue of sequencing errors is so ubiquitous that
being able to detect and correct them is essential in many
areas of molecular biology, particularly in the identifi-
cation of miRNAs. In [7], the occurrence of errors and
their corresponding rates were investigated by looking
at Illumina data sets (2.8 million 27-base reads) taken
from Beta vulgaris and Helicobacter acinonychis. By align-
ing reads to the known genomes of these bacteria, error
rates were derived for each of the 12 possible nucleotide
substitutions.

This work is typical of procedures that rely on the avail-
ability of a reference genome and many methods and
software packages have been developed for the detection
and/or correction of sequencing errors in this setting [8].
One such method [9] is based on an algorithm for cor-
recting sequencing errors that uses a ‘generalized suffix
trie’. However, this method requires a reference genome
and assumes a uniformly distributed error rate. A simi-
lar method using suffix arrays is that of Ilie et al. [10]. An
alternative method for correcting short reads that takes
into account genomic repeats, is described in [11]. Based
on a position-dependent error model, error probabilities
are estimated for each nucleotide substitution type. The
method of [12] also requires a reference genome, has a
position dependent error model, but it is one that is not
base-specific.

A different approach, that does not rely on the exis-
tence of a sequenced genome, was adopted in [13]. Short
reads are clustered into trees where the most abundant
sequence is taken to be the root of a tree, and “children”,
who differ by n nucleotide substitutions, are placed at the
nth level. These children are classified either as sequenc-
ing errors or biological variants. This approach utilises
the Illumina quality scores, which are adjusted by means
of actual error rates determined by BAC sequencing data
used as a control. These error rates are used to estimate
the expected number of errors for a given position pos,
quality value Q, and substitution pattern R (e.g. A→C) by
calculating

Nerror(pos, Q, R) = Perror
1 − Perror(pos)

Ncorrect[Rate(Q, R)] (1)

where Perror is the overall probability of an error,
Perror(pos) is the adjusted probability of an error at each
position, and Rate(Q, R) gives the probability of pattern R
occurring when the quality score takes the value Q. For
each child, the expected number of errors are compared to

the actual frequency, using a Z-test with the null hypoth-
esis being that the sequence read contains a sequencing
error.

A probabilistic model for predicting the occurrence of
sequencing errors in short RNA reads proposed in [14]
does not rely on the availability of a sequenced genome
nor on platform-provided quality scores. Instead, it is
based on the observed frequencies of the sequence vari-
ants. A graph is constructed where reads are connected
if they differ by a single nucleotide substitution. Exam-
ples of a graph of this type can be seen in Additional
files 1 and 2. Next, the number of single nucleotide vari-
ants for each sequence is plotted against the abundance of
the sequence (see e.g. Figure 1). The appropriateness and
advantage of using graphs of connected single nucleotide
variants becomes apparent by studying the close relation-
ship between sequence abundance and the number of
vertices emanating from the corresponding node in the
graph. A probability, p, was obtained by fitting the data
with the curve describing the expected number of single
nucleotide variants for a sequence of given abundance X

Y = 3L[1 − (1 − p)X] (2)

where L is the length of the sequence. Children of a given
sequence are then classified as true biological variants if
their abundance is >> pX, where X is the abundance
of the ‘parent’ sequence. If their abundance is roughly
pX or less, they are considered to be sequencing errors.
Additionally, reads with an abundance of less than 12
are also removed. This approach has the advantages of
not requiring a reference genome or platform-provided
quality scores. However, a limitation of this model lies in
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Figure 1 Number of vertices plotted against sequence
abundance. Number of vertices for each parent node (Y) plotted
against abundance (X) for sequences of length 21. The theoretical
curve given by the function Y = 3L[ 1 − (1 − p)X ] ([14]), using
p = 0.0004 is shown in grey. This function explains the general trend
of the data but not the substantial variation in number of variants.
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the assumption of a constant error rate along the read.
While the number of sequence variants does increase with
increasing abundance of a sequence, there is considerable
variation (as seen in Figure 1) that cannot be explained by
a probabilistic model based on a constant error rate.

In the following sections we present a method for
modelling sequencing errors, extending the graph-based
approach described in [14] but incorporating position-
and substitution-specific error rates. Additionally, we do
not enforce these effects to be working multiplicatively,
and the method does not require a reference genome
or quality scores. Results are included that highlight the
advantages of the method in its ability to account for the
interactions between the different causes of sequencing
errors.

Methods
We extend the approach of [14] by allowing for error
rates that are both dependent on position along the read
and vary by each nucleotide substitution pattern (e.g.,
T→G). As stated earlier, we do not restrict ourselves to
the assumption that these two effects work in a multi-
plicative fashion. The method was tested on data sets
obtained from high-throughput sequencing of short RNA
reads extracted from the leaves and roots of three different
cultivars of wheat. For this purpose, the Illumina Solexa
sequencing technology was employed.

The number of reads for each sample and lane ranged
from 5 to 41 million reads, and several sequencing runs
were performed approximately two years apart. The first
samples were 36 base reads run on the Illumina Genome
Analyzer (GeneWorks Pty. Ltd., c. 2009) and the sec-
ond were 50 base reads from Illumina HiSeq with Illu-
mina TruSeq v3 reagents (Australian Genome Research
Facility Ltd., December 2011). What we term an indi-
vidual data set is the sequenced data from a particular
lane (numbered between 1 and 8), corresponding to their
physical locations on the flow cell. We refer to lanes 4
and 5 as being the innermost lanes and 1 and 8 as the
outermost.

Data processing and graph construction
Processing began with the 3′ adaptors being trimmed
from the sequences. A number of mismatches to this
adaptor were allowed depending on the length of the
matching sections, as described in [14]. Reads contain-
ing homopolymer tracts were not removed at this early
stage. Removal occurred as a final step after the error
model is built and the data corrected for sequencing
errors. This was done so as to prevent the removal of any
parent sequences of erroneous reads. Reads containing
undetermined nucleotides (denoted by the letter N) were,
however, excluded from our analysis. Sequences of length
outside the region of interest (20-24 nucleotides) were

not studied any further. Unique sequences were identified
along with the frequency (abundance) with which each
was seen in the data.

Graphs were constructed, according to the model of
[14], by joining sequences that are single nucleotide vari-
ants for each length of sequence. These graphs are then
decomposed to find the disconnected subgraphs. Table 1
contains details of the size and number of these discon-
nect subgraphs for one of the example data sets. An exam-
ple of two of these disconnected subgraphs are shown in
Additional file 1 and Additional file 2. Subgraphs such as
these, were analysed further to develop a model of the
error rates in their respective data sets and used to identify
sequencing errors.

Excluding adaptor trimming, the graphs are created in
approximately 40 minutes (on a single processor of a PC
running 32 bit Windows XP with 3.45GB of RAM) for
a file of 6 million 35-base reads. Our algorithm was not
parallelised, but can be, which would greatly reduce the
processing time. A similar amount of time is required for
the building of error models and correction of the graphs.
The full source code is publicly available [15].

Error model
More reliable error statistics can be extracted from
sequences that appear a large number of times and have
many sequence variants. Hence, for this purpose, we have
chosen to select a subset of large subgraphs based on a
user-defined threshold on the minimum number of nodes.
These large subgraphs are then used to build a model of
the error rate. Furthermore, to exclude as many graphs
containing a true biological variant as possible, we intro-
duce an additional series of thresholds, t, for how much of
the total abundance is attributable to the parent node

aparent
atotal

≥ t
100

t ∈ {30, 70, 75, 80, 85, 90}
where aparent is the number of times the parent sequence
appears in the data set and atotal is the sum of the frequen-
cies of sequences in the subgraph. Starting from graphs
satisfying the highest parental abundance threshold, we
analyse the children of the most abundant sequence,

Table 1 Properties of created subgraphs

Illumina GA lane 2

Length Frequency of subgraph sizes Largest

1 2-20 20-40 40 +

20 33,170 2,530 27 17 992

21 132,373 11,992 170 105 1,048

22 86,118 7,078 63 32 387

23 171,287 9,714 79 47 296

24 1,277,008 101,108 1,264 757 2,030
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recording the abundances of the sequence and each child
sequence, the position along the read where the child
differs from the parent, and the nucleotide substitution
that has occurred.

From this information we calculate, for each graph, a
probability of error for each combination of nucleotide
substitution pattern type and position along the read.
We use a weighted average (weighted on the basis of
the abundance of the parent sequence) of all the indi-
vidual probabilities, to determine our overall probability
estimates. For example, given estimates P̂k(posi, Rj), k =
1, . . . , K , for a position posi and substitution pattern Rj,
we would calculate our probability estimate using the
following formula

P̂error( posi, Rj) =
∑

k(aparentk × P̂k( posi, Rj))
∑

k aparentk

where aparentk is the parental abundance of the parent
sequence used to estimate P̂k( posi, Rj).

Using this estimate, and assuming that our data may be
modelled as coming from a binomial distribution B(n, p),
we calculate 95% confidence intervals. The parameters
used in the binomial distribution are n, being the number
of sequences, given by aparentk and p, being the error rate
P̂error(posi, Rj). Those estimates P̂k(posi, Rj) lying above
this confidence interval, and thus most likely to be derived
from biological variants, are precluded from being used in
the error model, and the weighted average and confidence
interval is then recalculated. To ensure that positions
with no sequencing errors and only biological variants
(which would not be removed by the confidence interval
method described above) did not contribute exceptionally

high data points, an additional smoothing technique was
employed. This involved adjusting probability estimates
that were greater than twice the average of their two near-
est neighbours. These unusually high values were replaced
with this average.

We perform these calculations, as described in the pre-
ceding paragraph, beginning at parental abundance ratio
90% and working downwards. While the higher thresholds
provide more reliable estimates, the number of graphs
selected is not large and therefore all possible nucleotide
substitutions are not seen at every position along the
reads. Thus, we employ an iterative process to fill gaps
in our estimates with probabilities derived from the sub-
set of graphs with the next highest proportion threshold.
Thereby, we have derived error probability estimates for
all or most of the nucleotide transitions at each position
along the read. We found that exponential curves pro-
vided a satisfactory fit to the data and provided the best
theoretical fit to the expected error increase due to the
phasing phenomenon. Consequently, we fitted exponen-
tial curves to these error estimates for each transition type
between positions 2 and 24. This helped to further elim-
inate any effects of outliers (i.e., true biological variants)
that were not rectified in the previous steps, and pro-
vided values for substitution-position combinations that
were not observed in previous steps. An example of this,
for Illumina GA data and the case of A being misread
as C, is shown in Figure 2(a). Corresponding error rates
for Illumina HiSeq data are an order of magnitude lower
(Figure 2(b)). The error rate in the first position along the
read is not fit to the exponential curve as, in the major-
ity of cases, it was found to be much higher than the
error rate in position 2. This is consistent with what was
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Figure 2 Example model fit. Data points and fitted model for the probability of an A being misread as a C, for (a) an Illumina GA data set and (b)
an Illumina HiSeq data set.
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observed by [16], who attributed this to the lower intensity
values that result from the longer handling time at the
commencement of a sequencing run.

Our method does not assume that position and error
type effects work multiplicatively. Our generalisation to
account for these effects is simply

Nerror(pos, R) = Perror(pos, R)

1 − Perror(pos, R)
× Ncorrect(pos, r1) (3)

where R is the nucleotide substitution pattern r1 → r2.
Note that we do not enforce that

Perror(pos, R) = Perror(R) × Perror(pos) (4)

and hence are able to model non-multiplicative effects.
The model described above is used to find and correct

sequencing errors by comparing the observed sequence

abundances with those predicted by the model. Statis-
tical hypothesis testing is used for this purpose with
the null hypothesis being that a given sequence is a
sequencing error. Sequences for which the null hypoth-
esis is rejected are classified as true biological variants,
the remaining sequences are classified as sequencing
errors.

Results and discussion
Modelled error rate results for a selection of data sets
are shown in Figure 3 and Table 1. For each figure
the y-axis represents the probability of an error occur-
ring as calculated by our model. Table 1 shows the
model parameter values corresponding to Figure 3, for
each of the nucleotide transitions for position 1, and
for the parameters of the fitted exponential curve,
Aebx.
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Figure 3 Modelled error rates. Modelled error rates from (a) an Illumina GA data set (lane 2), (b) an Illumina GA data set (lane 4) and (c) an
Illumina HiSeq data set (lane 2).
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Table 2 Summary of modelled error probabilities and model parameters

Illumina GA lane 2 Illumina GA lane 4 Illumina HiSeq lane 2

Error Position 1 A b Position 1 A b Position 1 A b

A→C 1.4E-03 1.4E-04 0.11 8.2E-04 2.2E-04 0.08 2.7E-04 3.7E-05 0.06

A→G 5.1E-04 2.0E-04 0.04 4.8E-04 1.7E-04 0.07 4.1E-04 1.5E-04 0.03

A→T 4.1E-04 3.4E-05 0.15 2.1E-04 5.8E-05 0.12 2.0E-04 5.6E-05 0.03

C→A 2.8E-03 4.3E-04 0.07 7.9E-04 3.9E-04 0.07 6.6E-05 6.9E-05 0.05

C→G 4.2E-04 8.0E-05 0.05 2.9E-04 5.3E-05 0.09 1.6E-04 5.2E-05 0.04

C→T 6.3E-04 2.1E-04 0.07 5.9E-04 1.9E-04 0.08 6.2E-04 3.1E-04 -0.01

G→A 4.3E-04 1.6E-04 0.05 3.7E-04 2.0E-04 0.03 6.1E-04 4.7E-04 -0.08

G→C 5.1E-04 1.4E-04 0.10 7.8E-04 1.3E-04 0.09 6.9E-05 3.1E-04 -0.11

G→T 1.5E-03 3.5E-04 0.10 1.0E-03 3.3E-04 0.08 1.2E-03 7.7E-04 -0.13

T→A 3.6E-04 7.4E-05 0.08 2.4E-04 1.0E-04 0.06 1.4E-04 5.4E-05 0.05

T→C 6.1E-04 3.5E-04 0.04 5.6E-04 3.6E-04 0.04 5.1E-04 1.4E-04 0.02

T→G 3.3E-04 2.8E-04 0.05 3.4E-04 2.7E-04 0.08 1.3E-04 2.0E-05 0.15

Probabilities for position 1 and exponents of the fitted exponential curves, Aebx , for positions 2 to 24 for the data sets corresponding to Figure 3.

Illumina GA
The G→T substitution error rate, which is the highest in
the Illumina GA data sets (Figures 3(a) and (b)) can be
attributed to the combined effects of cross-talk and T flu-
orophore accumulation. The transition C→A is also high,
which can also be attributed to cross-talk. From Table 2
we can see, however, that the A→T error rate is the one
that is increasing at the greatest rate at the ends of the
reads, indicated by the largest exponent b, and this can
be attributed to T fluorophore accumulation. The overall
error rates found for these data concur for the most part
with those reported in [7]. However, our model demon-
strates that the error rate effects of both position and
nucleotide transition type, do not work multiplicatively.
The main reason for this lack of factorisation appears to
be due to T fluorophore accumulation, which increases
toward the ends of the reads. Thus, a non-multiplicative
model, such as proposed here, is necessary to account for
this phenomenon.

By comparing Figure 3(a) with Figure 3(b), it can be
seen that in GA datasets there is a strong dependence of
overall error rate on the sequencing lane, with error rates
lowest in the inside lanes (Figure 3(b)). Whether this is a
more general phenomenon requires further investigation.
However, it highlights the necessity of processing lanes
separately.

Illumina HiSeq
The error profiles of the sequenced reads from lane 2
of the Illumina HiSeq data (Figure 3(c)) show a qualita-
tively different profile in that some error rates are initially
decreasing along the reads. Error rates along the read
are substantially lower overall. The substitution G→T is
higher at the beginning of the reads but becomes lower

moving along the read, which is in contrast to the reverse
error, T→G, which increases towards the end. The rea-
son for this phenomena is unclear but it is hypothesised
as due either to altered chemistry (the washing away
of T fluorophores becoming more (too) effective) or to
the changes in the different base calling algorithm (over-
compensation for the T fluorophore accumulation phe-
nomenon). We consider the latter scenario more likely
as we see similar patterns for many of the other corre-
sponding pairs of nucleotide substitutions. Moving along
the first 24 bases of the read, C→T, G→A and G→C

Table 3 Summary of model parameters resulting from
simulated data

Simulated data

Error Position 1 A b

A→C 1.4E-03 1.8E-04 0.10

A→G 6.8E-04 2.3E-04 0.04

A→T 4.6E-04 4.6E-05 0.15

C→A 3.0E-03 4.7E-04 0.07

C→G 4.3E-04 8.0E-05 0.08

C→T 8.3E-04 2.4E-04 0.06

G→A 4.9E-04 2.0E-04 0.06

G→C 5.3E-04 1.4E-04 0.11

G→T 1.8E-03 2.7E-04 0.14

T→A 4.1E-04 1.2E-04 0.06

T→C 5.9E-04 2.9E-04 0.06

T→G 3.9E-04 4.5E-04 0.02

Probabilities for position 1 and exponents of the fitted exponential curves, Aebx ,
for positions 2 to 24 for the simulated data set. The corresponding figure is
shown in Additional file 3.
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Table 4 Evaluation of error correction algorithm on PhiX
genomic sequences

Model prediction

Genome mapping Correct sequences Erroneous sequences

Exact match 10115 8

1 mismatch 2779 64137

2 mismatches 164 17636

3 mismatches 14 3217

Sequence counts comparing our model predictions of correct and erroneous
sequences to results obtained by mapping the sequences to the corresponding
genome.

also decrease, while their reversed substitutions T→C,
A→G and C→G increase. A lane trend is also observed
in the Illumina HiSeq data. However, it does not involve
all nucleotide transitions. The outer lanes, 2 and 8, have
significantly higher error rates for the G→T and T→G
transitions. These two error rates become progressively
lower toward the inside lanes. The other nucleotide tran-
sition error rates remain essentially constant across the
lanes.

Evaluation
To address the difficult matter of evaluation we under-
took two benchmarking analyses. Firstly, we applied our
model to a simulated data set and secondly we checked
the performance of our model by correcting reads from an
organism with a known reference genome.

In our creation of a simulated data set, for the sake of
comparison, we used the error probabilities from each
position and transition that were found in the Illumina GA
lane 2 data set. We then took a data set of short RNA reads
thought to contain no sequencing errors and randomly
simulated errors based on the given error rates and the
corresponding binomial distributions. The data set was
processed by our method in the same way as the other
data sets. The resulting error model parameters are sum-
marised in Table 3. A plot of this error model can also be
found in Additional file 3. By comparing Table 3 to the first
3 columns of Table 2, it can be seen that the reconstruction
of the error rates using the simulated data is very close.
The same parameters are highest in both data sets, and all
parameter values are of the same order of magnitude.

To further evaluate our model we studied HiSeq reads
from a publicly available PhiX data set (SRA accession
number SRS267273; SRX101468) [17]. After correcting
the reads using our algorithm as described in the Methods
section, we mapped our modelled correct and erroneous
reads to a copy of the PhiX genome [18], obtaining a sen-
sitivity measure of 99.29% and specificity of 96.64%. In
the context of our error correction problem, this means
that our algorithm retained 99.29% of correct sequenc-
ing reads, and identified 96.64% of the erroneous reads.

The mapping was performed only up to 3 mismatches due
to limitations of the mapping software. However, using
further mismatches may result in an increased speci-
ficity measure. The results of the evaluation are shown in
Table 4.

Conclusions
We have proposed a model of sequencing errors that is
flexible enough to incorporate known sources of error
intrinsic to the Illumina sequencing technologies and
that does not rely on the availability of a reference
genome for error detection. We have demonstrated the
advantages of using of a non-factorisable model, par-
ticularly necessitated by the presence of accumulated T
fluorophores in the Illumina GA data, and other unknown
non-multiplicative effects in the Illumina HiSeq data.
The method described herein is potentially applicable
not only to short RNA reads but also to other sequenc-
ing activities where a reliable sequenced genome is not
available, such as in the field of metagenomics, where
a mixed sample containing reads from many organisms
is sequenced, or when trying to distinguish sequenc-
ing errors from single nucleotide polymorphisms. While,
as discussed in the results section, our model performs
well in identifying sequencing errors (our method iden-
tifies at least 96.64% of errors in the example PhiX data
set), we note that our model may not account for some
errors that arise before the sequences enter a flowcell,
e.g. during reverse transcription or library amplification.
These errors may lack a highly abundant parent sequence
and thus are difficult to identify without a reference
genome.

A possible direction to improve this model is to include
the investigation of the role of single and multiple pre-
ceding or following bases in determining error rates. The
inclusion in the model of error prone positions, such
as those reported in [6,17] is an area of future interest.
Correcting for local variants in error rates within lanes,
possibly produced by bubbles in flowcells, also warrants
further investigation. Additionally, we note that the char-
acteristic phasing-related rise is not visible for all error
types in the first 24 bases of GA data. If one were to
model the error rate beyond this point one would have
to incorporate a second, increasing, exponential in the
fitting function or use a more flexible method, such as
fitting splines.

Additional files

Additional file 1: Connected subgraph of sequences. A connected
subgraph of sequences of length 21 from an Illumina HiSeq data set. The
most abundant sequence in this subgraph occurred 45,484 times and is
represented by the largest node (filled circle).

http://www.biomedcentral.com/content/supplementary/1471-2105-14-367-S1.eps
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Additional file 2: A larger connected subgraph. A connected subgraph
of sequences of length 21 from an Illumina GA data set. The most
abundant sequence in this subgraph occurred 165,504 times in the data
set. The size of the nodes (filled circles) representing each sequence is
proportional to their abundance. The edges connect sequences that vary
in one position only.

Additional file 3: Modelled error rates. Modelled error rates from a data
set with simulated errors according to the pattern found in the data set of
Figure 3(a).
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