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ABSTRACT 

 

Rock slope stability is a particularly important topic in rock engineering. The circular 

failure of highly fractured rock slopes is a critical failure mode that can cause severe 

damage. Over the past decades, significant research has been devoted to soil slopes and 

failure modes of rock slopes controlled by discontinuities. However, there have been few 

attempts to systematically study the circular failure mode of rock slopes. 

Circular failure is controlled by the strength of the rock mass. While the strength of a rock 

mass is difficult to measure directly, the Hoek-Brown (HB) strength criterion has proved 

effective and convenient for its estimation.  

This research presents a systematic study of the stability of highly fractured rock slopes 

using the HB strength criterion. Both deterministic analyses and probabilistic analyses are 

included. The relationship between the input (GSI, mi, σci, and their variability) and the 

output, Factor of Safety (FS) and Probability of Failure (PF), is investigated. Slide6.0 and a 

limit equilibrium model programmed in Matlab are used for FS calculations; Monte Carlo 

simulations are applied for PF calculations. 

The deterministic analysis aims to characterise the sensitivity of FS to the changes in HB 

parameters (FS sensitivity). A sensitivity graph analysis and an equation fitting analysis are 

developed. The sensitivity graph analysis displays the relationship between HB parameters 

and FS directly. The equation fitting analysis fits a large amount of data generated by 

Slide6.0 with an equation connecting HB parameters and FS, and then determines FS 

sensitivity from the derivatives of this equation with respect to HB parameters. It is found 
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that slopes with the same geometry and the same FS (but different combinations of HB 

parameters) can have quite different sensitivity and GSI is the most critical parameter in 

this respect. With the increase in GSI, FS becomes increasingly sensitive to the change in 

GSI and that in σci.  

The probabilistic analysis investigates the relationship between the variability of HB 

parameters (quantified by the coefficient of variation COV and scale of fluctuation θ) and 

PF. Its effectiveness in assessing the impact of FS sensitivity on slope stability is also 

studied. A series of parametric studies are implemented. It is found that there is a strong 

relationship between FS sensitivity and PF: for slope cases with identical FS and the same 

COV of input HB parameters, a slope of higher FS sensitivity has a higher PF, indicating a 

higher risk. The relative contributions of the variability of HB parameters to PF are also 

compared. It is found that when the COV of GSI, mi, and σci are identical, the variability of 

GSI makes the largest contribution; however, when these COV are set to their upper-limit 

values observed in engineering practice, the high variability of σci makes the largest 

contribution. Finally, the investigation demonstrates that spatial variability of HB 

parameters (applicable to mi and σci in this study) has significant influences on slope 

stability. For a slope with FS > 1, the PF increases as the scale of fluctuation θ of HB 

parameters increases. Also, larger θ makes the effect of FS sensitivity on slope stability 

more significant.  
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T variance of the locally averaged random field (over distance T) 

ρ(τ) correlation function 

φ angle of friction 
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