RELATIONSHIP BETWEEN INPUT AND OUTPUT: A
SYSTEMATIC STUDY OF THE STABILITY OF HIGHLY
FRACTURED ROCK SLOPES USING THE HOEK-BROWN
STRENGTH CRITERION

by

Qian Qian

A thesis submitted for the degree of

Masters of Engineering Science

The University of Adelaide

School of Civil, Environmental and Mining Engineegi

December 2012



ABSTRACT

Rock slope stability is a particularly important topn rock engineering. The circular

failure of highly fractured rock slopes is a cuicfailure mode that can cause severe
damage. Over the past decades, significant resémxteen devoted to soil slopes and
failure modes of rock slopes controlled by disawnties. However, there have been few

attempts to systematically study the circular f@&lmode of rock slopes.

Circular failure is controlled by the strength oé ttock mass. While the strength of a rock
mass is difficult to measure directly, the Hoek-Brno@B) strength criterion has proved

effective and convenient for its estimation.

This research presents a systematic study of #imlist of highly fractured rock slopes
using the HB strength criterion. Both deterministi@lgses and probabilistic analyses are
included. The relationship between the input (Gf),0c, and their variability) and the
output, Factor of Safety (FS) and Probability oifra (PF), is investigated&lide6.0and a
limit equilibrium model programmed iMatlab are used for FS calculations; Monte Carlo

simulations are applied for PF calculations.

The deterministic analysis aims to characterisestmesitivity of FS to the changes in HB
parameters (FS sensitivity). A sensitivity graphlgsis and an equation fitting analysis are
developed. The sensitivity graph analysis dispthgsrelationship between HB parameters
and FS directly. The equation fitting analysis fidarge amount of data generated by
Slide6.0with an equation connecting HB parameters and KR8, tahen determines FS

sensitivity from the derivatives of this equatioithwespect to HB parameters. It is found
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that slopes with the same geometry and the sam@Sdifferent combinations of HB
parameters) can have quite different sensitivitg &8l is the most critical parameter in
this respect. With the increase in GSI, FS becamsreasingly sensitive to the change in

GSIl and that im;.

The probabilistic analysis investigates the refetiop between the variability of HB
parameters (quantified by the coefficient of vaoiatCOV and scale of fluctuatio$) and
PF. Its effectiveness in assessing the impact ok&&itivity on slope stability is also
studied. A series of parametric studies are imptagte It is found that there is a strong
relationship between FS sensitivity and PF: fopsloases with identical FS and the same
COV of input HB parameters, a slope of higher FSigeitg has a higher PF, indicating a
higher risk. The relative contributions of the wadiity of HB parameters to PF are also
compared. It is found that when the COV of G&l,ando.; are identical, the variability of
GSI makes the largest contribution; however, whese COV are set to their upper-limit
values observed in engineering practice, the highablility of o makes the largest
contribution. Finally, the investigation demonstsatthat spatial variability of HB
parameters (applicable tm and o in this study) has significant influences on slope
stability. For a slope with FS > 1, the PF incrsaas the scale of fluctuatighof HB
parameters increases. Also, lar§emakes the effect of FS sensitivity on slope siigbil

more significant.
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NOTATION (OTHER THAN DEFINED LOCALLY WITHIN EQUATIONS)

ai, ..., do

ARD

DF

EL; Er; X1 Xr
FORM
FOSM

FS

range of influence

coefficients for the equation fitting

coefficient matrix for the equation fitting

HB parameter matrix for the equation fitting
absolute relative difference

width of a slice

cohesion

covariance matrix

nugget variance

a parameter, when addedGg represents thalll of a variogram
coefficient of variation

critical slip surface

covariance between the data of two points sepaufay distance
rock mass disturbance factor

driving force

normal and shear forces acting on both sides éa s
first order reliability method

first order second moment method

factor of safety

Geological Strength Index

height of a slice

height of the water table

XXili



XXIV Notation
H height of the slope

HB Hoek-Brown

[ increment factor for HB parameters in sensitigtaphs

ISs0 point load index

LEM limit equilibrium method

my; S, a Hoek-Brown constants for the rock mass

m Hoek-Brown constant for the intact rock

M number of times that the system fails in a Mdd#lo simulation

MC Mohr-Coulomb

MCS Monte Carlo simulation

MPa Mega-Pascal

N; N’ normal and effective normal forces acting on theebaf a slice

N total number of iterations in a Monte Carlo sintiola

PDF probability density function

PEM point estimate method

PF probability of failure

PF-GSI probability of failure when only GSI is mdldd as a random variable
PFm probability of failure when onlyn is modelled as a random variable
PFoqi probability of failure when only.; is modelled as a random variable
PSSA probabilistic slope stability analysis

re unit weight of the soil/rock material

Fw unit weight of water

RD relative difference

RFEM random finite element method

RF resisting force

I's

Spearman correlation coefficient



Notation XXV

t location in a random field

T local averaging distance

u water pressure along the slip surface

UCS uniaxial compressive strength ¢

W weight of a slice

X an arbitrary parameter or a random variable (cftames as input)
X1; X2; X3 GSI,m, ando; representations in the equation fitting

y an arbitrary parameter or a random variable (cfawes as output)
y FS matrix for the equation fitting

a base angle of a slice

B slope face angle

Br reliability index

BHL Hansfor and Lind’s reliability index

0 scale of fluctuation

Yh variogram (semivariogram)

Yh experimental variogram

v(T) variance function

A parameter for demonstrating the concept of spadiadbility
u mean

o standard deviation

o1 major principal stress

o3 minor principal stress

o° variance

o’ effective normal stress acting on the base slica

Oci uniaxial compressive strength (= UCS)

On normal stress



XXVi Notation
T shear stress

T shear strength

ot tensile strength of the intact rock

o variance of the locally averaged random field (alistance T)

p(7) correlation function

o angle of friction
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