RELATIONSHIP BETWEEN INPUT AND OUTPUT: A SYSTEMATIC STUDY OF THE STABILITY OF HIGHLY FRACTURED ROCK SLOPES USING THE HOEK-BROWN STRENGTH CRITERION

by

Qian Qian

A thesis submitted for the degree of

Masters of Engineering Science

The University of Adelaide

School of Civil, Environmental and Mining Engineering

December 2012

ABSTRACT

Rock slope stability is a particularly important topic in rock engineering. The circular failure of highly fractured rock slopes is a critical failure mode that can cause severe damage. Over the past decades, significant research has been devoted to soil slopes and failure modes of rock slopes controlled by discontinuities. However, there have been few attempts to systematically study the circular failure mode of rock slopes.

Circular failure is controlled by the strength of the rock mass. While the strength of a rock mass is difficult to measure directly, the Hoek-Brown (HB) strength criterion has proved effective and convenient for its estimation.

This research presents a systematic study of the stability of highly fractured rock slopes using the HB strength criterion. Both deterministic analyses and probabilistic analyses are included. The relationship between the input (GSI, m_i , σ_{ci} , and their variability) and the output, Factor of Safety (FS) and Probability of Failure (PF), is investigated. *Slide6.0* and a limit equilibrium model programmed in *Matlab* are used for FS calculations; Monte Carlo simulations are applied for PF calculations.

The deterministic analysis aims to characterise the sensitivity of FS to the changes in HB parameters (FS sensitivity). A sensitivity graph analysis and an equation fitting analysis are developed. The sensitivity graph analysis displays the relationship between HB parameters and FS directly. The equation fitting analysis fits a large amount of data generated by *Slide6.0* with an equation connecting HB parameters and FS, and then determines FS sensitivity from the derivatives of this equation with respect to HB parameters. It is found

that slopes with the same geometry and the same FS (but different combinations of HB parameters) can have quite different sensitivity and GSI is the most critical parameter in this respect. With the increase in GSI, FS becomes increasingly sensitive to the change in GSI and that in σ_{ci} .

The probabilistic analysis investigates the relationship between the variability of HB parameters (quantified by the coefficient of variation COV and scale of fluctuation θ) and PF. Its effectiveness in assessing the impact of FS sensitivity on slope stability is also studied. A series of parametric studies are implemented. It is found that there is a strong relationship between FS sensitivity and PF: for slope cases with identical FS and the same COV of input HB parameters, a slope of higher FS sensitivity has a higher PF, indicating a higher risk. The relative contributions of the variability of HB parameters to PF are also compared. It is found that when the COV of GSI, m_i , and σ_{ci} are identical, the variability of GSI makes the largest contribution; however, when these COV are set to their upper-limit values observed in engineering practice, the high variability of σ_{ci} makes the largest contribution. Finally, the investigation demonstrates that spatial variability of HB parameters (applicable to m_i and σ_{ci} in this study) has significant influences on slope stability. For a slope with FS > 1, the PF increases as the scale of fluctuation θ of HB parameters increases. Also, larger θ makes the effect of FS sensitivity on slope stability more significant.

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

Date:

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my principal supervisor, Associate Professor Chaoshui Xu, of the School of Civil, Environmental and Mining Engineering at the University of Adelaide. A/Prof Xu introduced me to the study and research opportunities available at the University of Adelaide and has provided me with extensive guidance since then. His support for my application to study here, guidance throughout the program, and help in editing this thesis are all gratefully acknowledged.

I also wish to thank Dr. Murat Karakus, of the School of Civil, Environmental and Mining Engineering. Dr. Karakus has been my co-supervisor since early 2011. He has provided considerable assistance to this research project, which is also much appreciated.

I would like to express my deep gratitude to Associate Professor Mark B. Jaksa, of the School of Civil, Environmental and Mining Engineering. A/Prof Jaksa became my cosupervisor in 2011. He has provided me with invaluable assistance in various aspects, including research guidance, emotional support, and the first tutoring opportunities which helped me in developing self-confidence. His warm personality towards every ordinary person will always serve as a role model to me in my future endeavours.

I would also like to extend my deep appreciation to my friend Dr. Alan F. Reid, AM, former Director of the CSIRO Institute of Minerals, Energy and Construction. Dr. Reid has assisted me significantly in the editing of this thesis (in accordance with Standards D and E of Australian Standards for Editing Practice) and has provided me with valuable help in practising English writing and speaking as well as in many other aspects of life for the past

two years. His kind nature, modesty, constant enthusiasm to help, and a deep sense of responsibility to society, will always be a source of inspiration to me.

I am deeply indebted to the School of Civil, Environmental and Mining Engineering and the University of Adelaide, who have provided me with a scholarship and many useful services and training opportunities throughout the program. My study and research here would not have been possible without the support of the scholarship. In addition, since recently commencing work as an engineer, I have more realised how valuable the research experience that I had here is. Sincere thanks are therefore given to School of Civil, Environmental and Mining Engineering and the University of Adelaide.

During my studies, considerable assistance has also been provided by my fellow postgraduate students. Among them, I particularly wish to thank Dr. Liang Huang, Mr. Jiayi Shen, and Miss Sarah Jewell. I wish every postgraduate student in our school a bright future and hope that our friendships will never fade.

Lastly, I would like to thank my parents and step parents, including Peidong, Pengyuan, Kemin, and Peter. Only after I have grown up did I realise how much I am like you. Thank you for bringing me into this world and the love ever since.

TABLE OF CONTENTS

ABSTRACT	i
STATEMENT OF ORIGINALITY	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vii
LIST OF FIGURES	xiii
LIST OF TABLES	xix
NOTATION (other than defined locally within equations)	xxiii
Chapter 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Scope of the Study	
1.3 Layout of the Thesis	4
Chapter 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Overview of Slope Stability Analysis	5
2.2.1 Slope Scale and Slope Failure	-
2.2.2 Rock Mass Strength	
	7
2.2.2 Rock Mass Strength	7 7
2.2.2 Rock Mass Strength2.2.3 Limit Equilibrium Method and Numerical Method	7 7 8
 2.2.2 Rock Mass Strength 2.2.3 Limit Equilibrium Method and Numerical Method 2.2.4 Deterministic Analysis and Probabilistic Analysis 	7 7
 2.2.2 Rock Mass Strength 2.2.3 Limit Equilibrium Method and Numerical Method 2.2.4 Deterministic Analysis and Probabilistic Analysis 2.2.5 Sensitivity Analysis and Parametric Study 	
 2.2.2 Rock Mass Strength 2.2.3 Limit Equilibrium Method and Numerical Method 2.2.4 Deterministic Analysis and Probabilistic Analysis 2.2.5 Sensitivity Analysis and Parametric Study 2.3 Hoek-Brown (HB) Strength Criterion 	

2.3.2.2 HB Constant: <i>m</i> _i	14
2.3.2.3 Uniaxial Compressive Strength (UCS): σ_{ci}	15
2.3.3 Converting HB Parameters to Equivalent MC Parameters	19
2.3.3.1 Accurate Solution	20
2.3.3.2 Approximate Solution	23
2.3.4 Application of the HB Strength Criterion	27
2.4 Limit Equilibrium Method (LEM)	27
2.4.1 Overview of LEM	27
2.4.2 Method of Slices	29
2.4.2.1 Ordinary Method of Slices	30
2.4.2.2 Bishop's Simplified Method of Slices	33
2.5 Probabilistic Slope Stability Analysis	34
2.5.1 Overview of Geotechnical Variability	34
2.5.2 Explicit Characterisation of Geotechnical Variability	37
2.5.2.1 Random Field Theory	37
2.5.2.2 Geostatistics	42
2.5.3 Probabilistic Analysis Techniques	45
2.5.3.1 First Order Second Moment Method	46
2.5.3.2 First Order Reliability Method	47
2.5.3.3 Point Estimate Method	48
2.5.3.4 Monte Carlo Simulation	48
2.5.3.5 Incorporating Spatial Variability in Probabilistic Analysis	49
2.5.4 Output Assessment	50
2.6 Previous Studies on Probabilistic Slope Stability Analysis	51
2.7 Summary	59

3.1 Research Objectives	61
3.2 Methodology for the Deterministic Analysis	63
3.2.1 Outline of the Methodology	63

3.2.2 LEM Model (<i>Slide6.0</i>)	64
3.2.2.1 Number of Slices	65
3.2.3 Sensitivity Graph Analysis	65
3.2.4 Equation Fitting Analysis	68
3.2.4.1 Data	68
3.2.4.2 Form of the Equation	69
3.2.4.3 Sensitivity Analysis	69
3.3 Methodology for the Probabilistic Analysis	70
3.3.1 Outline of the Methodology	70
3.3.2 Monte Carlo Simulation	73
3.3.2.1 Statistical Characteristics of HB Parameters	73
3.3.2.2 Issues in Simulation	74
3.3.2.3 Analysis of the Output	75
3.3.3 LEM model (Developed in Matlab)	76
3.3.3.1 Theory of the LEM Model	76
3.3.3.2 Validation of the LEM Model	79
3.3.4 Validation of the Random Field Generator	81
3.3.4.1 Introduction	81
3.3.4.2 Validation	81
3.4 Summary	

Chapter 4 DETERMINISTIC ANALYSIS	
4.1 Preliminary Analysis by Sensitivity Graphs	
4.1.1 Influence of Slope Geometry	
4.1.2 Initial Investigation of FS Sensitivity	
4.2 Sensitivity Analysis by Equation Fitting	
4.2.1 Equation Fitting	96
4.2.2 Derivative Based Sensitivity Analysis	
4.2.3 Discussions and Verifications	
4.2.4 Conclusions	

4.2.5 Case Study	
4.3 Summary	

Chapter 5 PROBABILISTIC ANALYSIS1115.1 Introduction1115.2 Simplified Probabilistic Analysis1135.2.1 Parametric Study I1135.2.2 Parametric Study II1185.2.3 Case Study1225.3 Spatial Probabilistic Analysis (Parametric Study III)1285.4 Summary132

Chapter 6 SUMMARY AND CONCLUSIONS	
6.1 Summary	
6.2 Recommendations for Further Research	
6.3 Conclusions	142

REFERENCES1	45

A.1 Introduction	157
A.2 Codes	160
A.2.1 QMslope_geometry	160
A.2.2 QMslope_bishop	163
A.2.3 QMslope_HBprobabilistic	164
A.2.4 QMslope_HBspatial	166
A.2.5 QMslope_FSdistribution	168
A.2.6 Codes for concerting HB parameters to MC parameters	172
A.2.6.1 cphi_bray	172

A.2.6.2 cphi_kumar	
A.2.6.3 cphi_hoek2002	
A.2.6.4 cphi_shen	175

APPENDIX B	DATA FOR	THE EQUATION FITTING	177

LIST OF FIGURES

Figure 2.1	Four basic failure modes for rock slopes (reproduced from Hoek 2009)	6
Figure 2.2	Conversion from HB parameters to MC parameters: a rock with GSI = 100, $m_i = 10$, and $\sigma_{ci} = 30$ MPa under a normal stress $\sigma_n = 10$ MPa	20
Figure 2.3	A typical slice in method of slices with forces acting on it	31
Figure 2.4	Example of two profiles of a chosen parameter λ with similar mean and COV values but exhibiting great differences	35
Figure 2.5 (a)	The random field shown in Figure 2.4 (a) being locally averaged over width $T = 10$	40
Figure 2.5 (b)	The random field shown in Figure 2.4 (a) being locally averaged over width $T = 20$	40
Figure 2.6	Correlation functions of Triangular, Markov and Gaussian models for $\theta = 1$	42
Figure 2.7	Variograms of Spherical, Exponential and Gaussian models for $C_0 = 0$, $C = 1$, and $a = 1$	44
Figure 3.1	Slope geometry and rock mass properties for examining the effect of changes in number of slices on FS	65
Figure 3.2	Sensitivity graph for the slope shown in Figure 3.1	67
Figure 3.3	MCS methodology for the probabilistic analysis (codes of the probabilistic analysis models are provided in Appendix A)	72
Figure 3.4	Algorithm of the LEM model developed in <i>Matlab</i> for the probabilistic analysis (codes given in Appendix A)	78
Figure 3.5	Slope geometry for validation of the LEM model developed in <i>Matlab</i>	80

Figure 3.6	Relative differences between the FS calculated by <i>Slide6.0</i> and by the LEM model developed in <i>Matlab</i>	80
Figure 3.7 (a)	Example of a random field with scale of fluctuation $= 0$	82
Figure 3.7 (b)	Mean values of the 40 random fields with scale of fluctuation $= 0$	82
Figure 3.8 (a)	Example of a random field with scale of fluctuation $= 10$	82
Figure 3.8 (b)	Mean values of the 40 random fields with scale of fluctuation = 10	82
Figure 3.9 (a)	Example of a random field with scale of fluctuation $= 40$	83
Figure 3.9 (b)	Mean values of the 40 random fields with scale of fluctuation = 40	83
Figure 3.10	Experimental and theoretical variograms for a generated random field with scale of fluctuation = 10 (the stars represent experimental variogram values and the solid line represents the theoretical variogram, Gamma represents the variogram γ_h , and a1 is the range)	85
Figure 3.11	Experimental variogram values for data set 1 (40 random fields with scale of fluctuation = 0) vs. the theoretical variogram	86
Figure 3.12	Experimental variogram values for data set 2 (40 random fields with scale of fluctuation = 10) vs. the theoretical variogram	86
Figure 3.13	Experimental variogram values for data set 3 (40 random fields with scale of fluctuation = 40) vs. the theoretical variogram	87
Figure 4.1	Generic form of the slope geometry for investigating the effect of varying slope geometry on FS sensitivity	90
Figure 4.2	Sensitivity graph for slope case 1 with HB parameters set 1 as mean values	91
Figure 4.3	Sensitivity graph for slope case 2 with HB parameters set 1 as mean values	91
Figure 4.4	Sensitivity graph for slope case 3 with HB parameters set 1 as mean values	91
Figure 4.5	Sensitivity graph for slope case 4 with HB parameters set 1 as mean values	91

Figure 4.6	Sensitivity graph for slope case 5 with HB parameters set 1 as mean values	92
Figure 4.7	Sensitivity graph for slope case 1 with HB parameters set 2 as mean values	92
Figure 4.8	Sensitivity graph for slope case 2 with HB parameters set 2 as mean values	92
Figure 4.9	Sensitivity graph for slope case 3 with HB parameters set 2 as mean values	92
Figure 4.10	Sensitivity graph for slope case 4 with HB parameters set 2 as mean values	93
Figure 4.11	Sensitivity graph for slope case 5 with HB parameters set 2 as mean values	93
Figure 4.12	Sensitivity graph for using HB parameters set 1 as mean values	94
Figure 4.13	Sensitivity graph for using HB parameters set 2 as mean values	94
Figure 4.14	Sensitivity graph for using HB parameters set 3 as mean values	94
Figure 4.15	Sensitivity graph for using HB parameters set 4 as mean values	94
Figure 4.16	Comparison between the true FS values (original data) and the fitted FS values (calculated by the fitted equation with coefficients <i>a</i> in Table 4.6)	98
Figure 4.17	Comparison between the true FS values (original data) and the fitted FS values (calculated by the fitted equation with coefficients a_1 in Table 4.7 and coefficients a_2 in Table 4.8)	100
Figure 4.18	Verification of situations where FS is highly sensitive to the change in GSI	104
Figure 4.19	Verification of situations where FS is highly sensitive to the change in σ_{ci}	106
Figure 5.1	Slope geometry for the probabilistic analysis	112
Figure 5.2	Example of the convergence of PF in a Monte Carlo simulation	113
Figure 5.3	Example of the output from a Monte Carlo simulation	113

Figure 5.4	PF values from Parametric study I: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables together and their COV are assumed to be equal and vary uniformly from 0.1 to 1	115
Figure 5.5 (a)	Statistical properties of FS for Case 1 with the COV of HB parameters $= 0.2$	116
Figure 5.5 (b)	Statistical properties of FS for Case 1 with the COV of HB parameters =1	116
Figure 5.6 (a)	Statistical properties of FS for Case 2 with the COV of HB parameters = 0.2	117
Figure 5.6 (b)	Statistical properties of FS for Case 2 with the COV of HB parameters = 1	117
Figure 5.7 (a)	Statistical properties of FS for Case 3 with the COV of HB parameters $= 0.2$	117
Figure 5.7 (b)	Statistical properties of FS for Case 3 with the COV of HB parameters = 1	117
Figure 5.8	PF values from Case 1 of parametric study II: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables individually and the COV varies uniformly from 0.1 to 1	120
Figure 5.9	PF values from Case 2 of parametric study II: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables individually and the COV varies uniformly from 0.1 to 1	120
Figure 5.10	PF values from Case 3 of parametric study II: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables individually and the COV varies uniformly from 0.1 to 1	121
Figure 5.11	Statistical properties of FS for Case 1 with the COV of HB parameters set to upper limit values in engineering practice	123
Figure 5.12	Statistical properties of FS for Case 2 with the COV of HB parameters set to upper limit values in engineering practice	123
Figure 5.13	Statistical properties of FS for Case 3 with the COV of HB parameters set to upper limit values in engineering practice	123

Figure 5.14	Example of a function plot demonstrating the concept of sensitivity of y to x	123
Figure 5.15	Spearman correlation coefficient r_s between GSI and FS from Case 1 in the case study of the simplified probabilistic analysis	125
Figure 5.16	Spearman correlation coefficient r_s between m_i and FS from Case 1 in the case study of the simplified probabilistic analysis	126
Figure 5.17	Spearman Correlation Coefficient r_s between FS and σ_{ci} from Case 1 in the case study of the simplified probabilistic analysis	126
Figure 5.18	Example of a random field realisation for σ_{ci} along the slip surface (mean = 133MPa, COV = 0.4, and θ = 50m)	129
Figure 5.19	PF values from parametric study III (based on spatial probabilistic analyses): m_i and σ_{ci} are modelled as random fields and GSI is modelled as a random variable; the scale of fluctuation θ of m_i and σ_{ci} varies from 1m to infinity	130

LIST OF TABLES

Table 2.1	Statistics of GSI based on published data	16
Table 2.2	Statistics of m_i based on published data	17
Table 2.3	Statistics of σ_{ci} based on published data	18
Table 2.4	Comparison of three approximate solutions for converting HB parameters to equivalent MC parameters	26
Table 2.5	Detailed conversion output for Case 5 (in Table 2.4)	27
Table 2.6	Static equilibrium conditions that commonly used method of slices satisfy (summarised based on Duncan & Wright 2005)	30
Table 2.7	Three correlation function models and the corresponding variance functions	41
Table 2.8	Three commonly used variogram models	43
Table 2.9	Selected previous studies on probabilistic slope stability analysis: scope	52
Table 2.10	Selected previous studies on probabilistic slope stability analysis: major research directions	57
Table 3.1	Effect of changes in number of slices on FS	65
Table 3.2	Ranges and the increment factor for HB parameters in sensitivity graphs	67
Table 3.3	Cases for validation of the LEM model developed in Matlab	79
Table 4.1	Cases for investigating the effect of varying slope geometry on FS sensitivity	90
Table 4.2	Mean values of HB parameters for investigating the effect of varying slope geometry on FS sensitivity	90

Table 4.3	Mean values of HB parameters for initial investigation of FS sensitivity	93
Table 4.4	Values of the data points of HB parameters for the equation fitting	96
Table 4.5	First twelve sets of data (out of 168) for the equation fitting (full sets of data are provided in Appendix B)	97
Table 4.6	Least square solutions for <i>a</i> in the linear equation system in Equation 4.4	98
Table 4.7	Least square solutions for a_1 in the linear equation system in Equation 4.12 (GSI \leq 70)	100
Table 4.8	Least square solutions for a_2 in the linear equation system in Equation 4.13 (GSI > 70)	100
Table 4.9	Contribution of each HB parameter to FS sensitivity (measured by the derivative)	102
Table 4.10	Selection criteria for the weight of contribution of each HB parameter to FS sensitivity	103
Table 4.11	Cases for verification of situations where FS is highly sensitive to GSI	104
Table 4.12	Cases for verification of situations where FS is highly sensitive to σ_{ci}	106
Table 4.13	Three cases with the same FS but different combinations of HB parameters (for verification of FS sensitivity)	108
Table 4.14	Demonstration of the effect of reducing all HB parameters by 10% on FS for the cases in Table 4.13	108
Table 5.1	Three sets of HB parameters for the probabilistic analysis	112
Table 5.2	Truncations of HB parameters for the probabilistic analysis	112
Table 5.3	PF values from Parametric study I: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables together and their COV are assumed to be equal and vary uniformly from 0.1 to 1	114
Table 5.4	Critical value of each HB parameter that makes the FS equal to 1 for slope cases given in Table 5.1	119

Table 5.5	PF values from parametric study II: three cases (Table 5.1) with the same FS but different FS sensitivity; HB parameters are modelled as random variables individually and the COV varies uniformly from 0.1 to 1	119
Table 5.6	Upper-limit COV values of HB parameters and resulting PF values from the case study of the simplified probabilistic analysis	122
Table 5.7	Spearman correlation coefficients r_s between GSI, m_i , σ_{ci} and FS in the case study of the simplified probabilistic analysis	125
Table 5.8	Variation of the scale of fluctuation θ (only applicable to m_i and σ_{ci}) in parametric study III and their relationships with the slope height H	130
Table 5.9	PF values from parametric study III (based on spatial probabilistic analyses): m_i and σ_{ci} are modelled as random fields and GSI is modelled as a random variable; the scale of fluctuation θ of m_i and σ_{ci} varies from 1m to infinity	130
Table A.1	Codes of models developed for the probabilistic analysis: functions	158
Table A.2	Codes of models developed for the probabilistic analysis: input specifications	158
Table A.3	Codes of models developed for the probabilistic analysis: output specifications	160
Table B.1	Full sets of data for the equation fitting	177

а	range of influence
$a_1,, a_9$	coefficients for the equation fitting
a	coefficient matrix for the equation fitting
A	HB parameter matrix for the equation fitting
ARD	absolute relative difference
b	width of a slice
С	cohesion
С	covariance matrix
C_0	nugget variance
С	a parameter, when added to C_0 , represents the <i>sill</i> of a variogram
COV	coefficient of variation
CSS	critical slip surface
$C(\tau)$	covariance between the data of two points separated by distance τ
D	rock mass disturbance factor
DF	driving force
$E_L; E_R; X_L; X_R$	normal and shear forces acting on both sides of a slice
FORM	first order reliability method
FOSM	first order second moment method
FS	factor of safety
GSI	Geological Strength Index
h _r	height of a slice
h_w	height of the water table

Н	height of the slope
HB	Hoek-Brown
i	increment factor for HB parameters in sensitivity graphs
Is ₅₀	point load index
LEM	limit equilibrium method
$m_b; s; a$	Hoek-Brown constants for the rock mass
m_i	Hoek-Brown constant for the intact rock
Μ	number of times that the system fails in a Monte Carlo simulation
MC	Mohr-Coulomb
MCS	Monte Carlo simulation
MPa	Mega-Pascal
N; N'	normal and effective normal forces acting on the base of a slice
Ν	total number of iterations in a Monte Carlo simulation
PDF	probability density function
PEM	point estimate method
PF	probability of failure
PF-GSI	probability of failure when only GSI is modelled as a random variable
$PF-m_i$	probability of failure when only m_i is modelled as a random variable
PF- σ_{ci}	probability of failure when only σ_{ci} is modelled as a random variable
PSSA	probabilistic slope stability analysis
r _r	unit weight of the soil/rock material
r _w	unit weight of water
RD	relative difference
RFEM	random finite element method
RF	resisting force
r_s	Spearman correlation coefficient

t	location in a random field
Т	local averaging distance
и	water pressure along the slip surface
UCS	uniaxial compressive strength (= σ_{ci})
W	weight of a slice
x	an arbitrary parameter or a random variable (often serves as input)
$x_1; x_2; x_3$	GSI, m_i , and σ_{ci} representations in the equation fitting
у	an arbitrary parameter or a random variable (often serves as output)
у	FS matrix for the equation fitting
α	base angle of a slice
β	slope face angle
β_r	reliability index
β_{HL}	Hansfor and Lind's reliability index
θ	scale of fluctuation
$\gamma_{\rm h}$	variogram (semivariogram)
γ_{h}^{*}	experimental variogram
$\gamma(T)$	variance function
λ	parameter for demonstrating the concept of spatial variability
μ	mean
σ	standard deviation
σ_1	major principal stress
σ_3	minor principal stress
σ^2	variance
σ'	effective normal stress acting on the base of a slice
σ_{ci}	uniaxial compressive strength (= UCS)
σ_n	normal stress

τ	shear stress
$ au_f$	shear strength
σ_t	tensile strength of the intact rock
$\sigma^2_{\rm T}$	variance of the locally averaged random field (over distance T)
$\rho(\tau)$	correlation function
arphi	angle of friction