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ABSTRACT

Rock slope stability is a particularly important topn rock engineering. The circular

failure of highly fractured rock slopes is a cuicfailure mode that can cause severe
damage. Over the past decades, significant resémxteen devoted to soil slopes and
failure modes of rock slopes controlled by disawnties. However, there have been few

attempts to systematically study the circular f@&lmode of rock slopes.

Circular failure is controlled by the strength oé ttock mass. While the strength of a rock
mass is difficult to measure directly, the Hoek-Brno@B) strength criterion has proved

effective and convenient for its estimation.

This research presents a systematic study of #imlist of highly fractured rock slopes
using the HB strength criterion. Both deterministi@lgses and probabilistic analyses are
included. The relationship between the input (Gf),0c, and their variability) and the
output, Factor of Safety (FS) and Probability oifra (PF), is investigated&lide6.0and a
limit equilibrium model programmed iMatlab are used for FS calculations; Monte Carlo

simulations are applied for PF calculations.

The deterministic analysis aims to characterisestmesitivity of FS to the changes in HB
parameters (FS sensitivity). A sensitivity graphlgsis and an equation fitting analysis are
developed. The sensitivity graph analysis dispthgsrelationship between HB parameters
and FS directly. The equation fitting analysis fidarge amount of data generated by
Slide6.0with an equation connecting HB parameters and KR8, tahen determines FS

sensitivity from the derivatives of this equatioithwespect to HB parameters. It is found
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that slopes with the same geometry and the sam@Sdifferent combinations of HB
parameters) can have quite different sensitivitg &8l is the most critical parameter in
this respect. With the increase in GSI, FS becamsreasingly sensitive to the change in

GSIl and that im;.

The probabilistic analysis investigates the refetiop between the variability of HB
parameters (quantified by the coefficient of vaoiatCOV and scale of fluctuatio$) and
PF. Its effectiveness in assessing the impact ok&&itivity on slope stability is also
studied. A series of parametric studies are imptagte It is found that there is a strong
relationship between FS sensitivity and PF: fopsloases with identical FS and the same
COV of input HB parameters, a slope of higher FSigeitg has a higher PF, indicating a
higher risk. The relative contributions of the wadiity of HB parameters to PF are also
compared. It is found that when the COV of G&l,ando.; are identical, the variability of
GSI makes the largest contribution; however, whese COV are set to their upper-limit
values observed in engineering practice, the highablility of o makes the largest
contribution. Finally, the investigation demonstsatthat spatial variability of HB
parameters (applicable tm and o in this study) has significant influences on slope
stability. For a slope with FS > 1, the PF incrsaas the scale of fluctuatighof HB
parameters increases. Also, lar§emakes the effect of FS sensitivity on slope siigbil

more significant.
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NOTATION (OTHER THAN DEFINED LOCALLY WITHIN EQUATIONS)

ai, ..., do

ARD

DF

EL; Er; X1 Xr
FORM
FOSM

FS

range of influence

coefficients for the equation fitting

coefficient matrix for the equation fitting

HB parameter matrix for the equation fitting
absolute relative difference

width of a slice

cohesion

covariance matrix

nugget variance

a parameter, when addedGg represents thalll of a variogram
coefficient of variation

critical slip surface

covariance between the data of two points sepaufay distance
rock mass disturbance factor

driving force

normal and shear forces acting on both sides éa s
first order reliability method

first order second moment method

factor of safety

Geological Strength Index

height of a slice

height of the water table

XXili



XXIV Notation
H height of the slope

HB Hoek-Brown

[ increment factor for HB parameters in sensitigtaphs

ISs0 point load index

LEM limit equilibrium method

my; S, a Hoek-Brown constants for the rock mass

m Hoek-Brown constant for the intact rock

M number of times that the system fails in a Mdd#lo simulation

MC Mohr-Coulomb

MCS Monte Carlo simulation

MPa Mega-Pascal

N; N’ normal and effective normal forces acting on theebaf a slice

N total number of iterations in a Monte Carlo sintiola

PDF probability density function

PEM point estimate method

PF probability of failure

PF-GSI probability of failure when only GSI is mdldd as a random variable
PFm probability of failure when onlyn is modelled as a random variable
PFoqi probability of failure when only.; is modelled as a random variable
PSSA probabilistic slope stability analysis

re unit weight of the soil/rock material

Fw unit weight of water

RD relative difference

RFEM random finite element method

RF resisting force

I's

Spearman correlation coefficient
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t location in a random field

T local averaging distance

u water pressure along the slip surface

UCS uniaxial compressive strength ¢

W weight of a slice

X an arbitrary parameter or a random variable (cftames as input)
X1; X2; X3 GSI,m, ando; representations in the equation fitting

y an arbitrary parameter or a random variable (cfawes as output)
y FS matrix for the equation fitting

a base angle of a slice

B slope face angle

Br reliability index

BHL Hansfor and Lind’s reliability index

0 scale of fluctuation

Yh variogram (semivariogram)

Yh experimental variogram

v(T) variance function

A parameter for demonstrating the concept of spadiadbility
u mean

o standard deviation

o1 major principal stress

o3 minor principal stress

o° variance

o’ effective normal stress acting on the base slica

Oci uniaxial compressive strength (= UCS)

On normal stress
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T shear stress

T shear strength

ot tensile strength of the intact rock

o variance of the locally averaged random field (alistance T)

p(7) correlation function

o angle of friction



Chapter 1

INTRODUCTION

1.1 Introduction

Rock excavations are required in numerous engirngeawtivities. These include highways,
dams, urban or industrial constructions, and op#&nnpning. In the history of rock
engineering, the slope stability problem has attdenore attention than any other topics

and is still one of the most important issues is thscipline (Hudson and Harrison 2000).

Failures of rock slopes, varying from rock falls géobal slope instability, apart from
production losses and delays, can have severd smclaeconomic consequences. Around
2500 people in the Italian town Longarone wereekillwhen a wave produced by a
landslide overtopped the Vajont dam, in October31@8oek 2007). This is one of the
many examples that demonstrates the importanceredepsing and predicting slope

stability.

There are four basic failure modes for rock slopesnely circular, plane, wedge, and
toppling (further introduced in Section 2.2.1). Amgothese failure modes, the occurrences
of the latter three are dominated by the existaar strength of discontinuities. On the
other hand, circular failures occur in highly fiaretd rock slopes and are dominated by the
overall strength of rock masses (a rock mass is itiegration of intact rock and
discontinuities). Although any of these failure medtan cause severe damage, most of the
research effort in rock slope stability analysis baen devoted to discontinuity controlled

failure modes and the circular failure mode haslvetatively much less investigated.
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The stability of many rock engineering projectglualing highly fractured rock slopes, is
controlled by the strength of the rock mass. Snock mass strength is difficult to measure
directly, its estimation has become a critical topgh rock strength criterion, which is a
principle or statement defining the condition unddich the rock or rock mass reaches its
maximum strength, serves this purpose. Among tlok sbrength criteria in use, Hoek-
Brown (HB) is the one that has been widely recognised adopted by the rock
engineering community. The HB strength criterionk$ the descriptive rock mass
appearance, two basic intact rock parameters, landblasting or stress incurred damage
with the overall strength of the rock or rock maskjch provides great convenience for
rock engineering practitioners. Moreover, it isoatme of the non-linear criteria, which
allows more realistic estimates of the strengtla ebck or rock mass than the traditional

linear Mohr-Coulomb criterion.

The HB strength criterion can be used effectivelystiody the circular failure of highly
fractured rock slopes. However, although severalades have passed since its first
application, there have been few attempts to syaieally investigate the stability of
highly fractured rock slopes by using the HB strbngiterion. The present study seeks to

address this issue.

Another critical topic in rock engineering, or mdyoadly geotechnical engineering, is to
deal with uncertainty. Geotechnical engineeringaisubject particularly dominated by
uncertainty, mainly due to the highly variable pedpes of earth or rock materials.
Traditional deterministic analysis for slopes ishle to explicitly incorporate and evaluate
the impact of input uncertainty on slope stabilgince it is based on purely deterministic

constitutive relationships. Probabilistic analyswshich employs various probabilistic
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concepts and techniques that allow uncertaintyetaybantified and incorporated in one

way or another, has advanced significantly overpims 30 years.

A major source of uncertainty in geotechnical eeging is spatial variability, which
simply speaking, refers to the differences betwealues of a parameter at different
locations. In the early development of probabdistinalysis, spatial variability was
generally not considered, mainly due to the linotad of computation and simulation
techniques. However, it has been shown that theofifaving a slope failure can be either
substantially overestimated (when the FS for tlopeslis more than 1) or underestimated
(when the FS for the slope is less than 1) if gpafiriability is not considered (Griffiths et
al. 2009; Cho 2010). Hence, based on the rapid dpnednt of computation and
simulation techniques, great efforts have been t@elvdo investigate the influence of
spatial variability on slope stability in the pd&t years. Nevertheless, most of the attention

has been paid to soil slopes rather than rock slope

1.2 Scope of the Study

The present research aims to systematically inyastithe stability of highly fractured
rock slopes using the HB strength criterion. Theestigation is carried out under the
framework of first deterministic analyses, then @iffred probabilistic analyses without
considering the spatial variability, and finallyasial probabilistic analyses that explicitly

incorporate spatial variability.

Four parameters, namely the Geological StrengteXr@Sl, the HB intact rock constant
m, the uniaxial compressive strength of intact ragk and the blasting or stress

disturbance factor D, are used as input when the skiBngth criterion is applied to
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estimate the strength of a rock mass. This studyses on GSin, andog, since they are

considered as intrinsic parameters of a rock mass.

Specific objectives of the present research arengnmsed in Chapter 3 after a review of

the relevant literature in Chapter 2.

1.3 Layout of the Thesis

In Chapter 2, important publications that are remva this study are reviewed. Four parts
are included: an overview of slope stability aneslythe HB strength criterion, the Limit
equilibrium method (LEM), and probabilistic slopelsility analysis (PSSA). The aims of
the literature review are to provide necessary ¢pamknd knowledge and to identify

specific research gaps for this study.

In Chapter 3, specific research gaps forming ohjestof this study are identified based on
the literature review in Chapter 2. Subsequentlg, rttethodology for the current study is

specified. The models involved in the study are alsroduced and validated.

In Chapter 4, fractured rock slope stability is gsat within the framework of
deterministic analyses. In Chapter 5, fractured relope stability is analysed within the

framework of probabilistic analyses.

Finally, in Chapter 6, a summary and the conclusiohshis study are presented, and

recommendations for further research are given.



Chapter 2

L ITERATURE REVIEW

2.1 Introduction

This literature review aims to provide backgroumbwledge for the later chapters and
identify specific research gaps. Six sections auded: firstly, an overview of slope
stability analysis is given, where basic informatabout slope scale, failure modes, rock
mass strength, and common approaches for slopditgtabalysis are discussed. Secondly,
the Hoek-Brown (HB) strength criterion is introduckdterms of the criterion, input
parameters, and their conversion to the equivaMahr-Coulomb (MC) parameters.
Thirdly, the limit equilibrium method (LEM), whicls adopted in the present study for FS
calculations, is introduced in detail. Probabitissiope stability analysis (PSSA) is then
discussed in terms of input, methodology, and dutipallowing that, previous studies in
PSSA are reviewed, major research directions assified, and research gaps for the

present research are identified. Finally, a sumnsapyesented.

2.2 Overview of Slope Stability Analysis

2.2.1 Slope Scale and Slope Failure

Most of the rock slopes exist in open pits and dbale of such rock slopes is generally
much larger than that of soil slopes. Based on #ia diven by Wyllie and Mah (2004),

the height of most open pit rock slopes is betwEdm and 300m.
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Collapse/slide, lateral cracking, and large displacement of the rock material that constitutes
the slope body, can all be viewed as slope failures (Chen 1995). On the other hand,
depending on the scale of the failures relative to the slope size, slope failures include local
inter-ramp failures as well as overall failures. Generally, collapse/slide of the overall slope

1s most critical and is the definition of slope failure in the present study.

There are four basic failure modes for rock slopes, namely circular, plane, wedge, and
toppling (Hoek 2009). Illustrations of these failure modes are shown in Figure 2.1. Circular
failures occur in heavily jointed rock masses where slope stability is controlled by the
shear strength of the rock masses. Plane, wedge, and toppling failures occur in rock masses
where dominant discontinuities exist and slope stability is controlled by the existence and
the shear strength of the discontinuities. Most of the research effort in rock slopes has been
devoted to discontinuity controlled failures because of their common occurrences;
examples include: constitutive analysis (Low and Einstein 1992; Chen 2004), discontinuity
network modelling (Dowd et al. 2007; Grenon and Hadjigeorgiou 2008; Xu and Dowd
2010), and probabilistic analysis (Park and West 2001; Park et al. 2005; Low 2008;
Duzgun and Bhasin 2009; Park et al. 2011). On the other hand, although the rock mass

controlled circular failure is also a critical mode of failure, it has been much less studied.

NOTE:
This figure/table/image has been removed
to comply with copyright regulations.
It is included in the print copy of the thesis
held by the University of Adelaide Library.

Figure 2.1 Four basic failure modes for rock slopes (reproduced from Hoek 2009)
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2.2.2 Rock Mass Strength

Rock mass refers to the integration of intact rool discontinuities. The strength of a
rock mass is often necessary for carrying out Efabanalysis in rock engineering.
However, rock mass strength is difficult to measdneectly because of the problems
associated with obtaining undisturbed samples antpkes at the same scale as the failure
(Read and Stacey 2009). A widely used alternativio isse the Hoek-Brown strength
criterion to estimate rock mass strength (Cai e2@04; Priest 2005; Read and Stacey

2009).

2.2.3 Limit Equilibrium Method and Numerical Method

The limit equilibrium method (LEM) and the numeticaethod are two basic techniques

for slope stability analysis. A brief introductiemthese techniques is given below:

LEM treats the sliding part of a slope as a rigiiya It computes the driving force (DF)
and resisting force (RF) of the sliding body aldhg slip surface, and slope stability is
guantified by the factor of safety (FS), which dquaF/DF. The driving force is mostly
contributed by the weight of the sliding body anatev pressure, while the resisting force
is contributed by the cohesive and frictional fera@ong the slip surface. Most LEM
divide the sliding body into slices, based on whttle analysis is carried out. This

evaluation technique is termed the method of slices

LEM produces reasonably accurate results and faadiiantage of being relatively fast
and simple to use. It has been widely applied émegal decades and remains an effective
type of slope stability analysis method. Its majmadvantages include that the slip surface

is pre-determined and the sliding body is assurodaktrigid. LEM is therefore unable to
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analyse the deformation and displacement of a moags. In addition, various assumptions

are made for different types of LEM, which may @imsaccuracy in some situations.

The numerical method, on the other hand, dividesetftire slope into elements. Elements
are modelled with stress-strain relationships aefbrdhation properties that define how
the material behaves. After the stress states aomddary conditions are specified, the
numerical method is able to compute the deformadioeh displacement of a rock mass. It
can also compute the FS of a rock mass by appth@ghear strength reduction technique
(Read and Stacey 2009). Reviews of the numerical odefibr rock mass were given by

Jing and Hudson (2002) and Jing (2003).

The numerical method has two major advantagesthFiitis capable of computing the
deformation and displacement of a rock mass. Sdgoitg process of analysis is more
rigorous than that of LEM (e.qg. the failure surfa&sought out during the analysis instead
of being pre-assumed and FS is calculated by tharsttrength reduction technique). On
the other hand, the numerical method is slow coetpaith LEM, making it unsuitable
for certain types of analysis (such as sensitigitialysis or probabilistic analysis) where

stability analysis needs to be repeated many times.

2.2.4 Deterministic Analysis and Probabilistic AnaJsis

Slope stability analysis can be classified intoed®inistic analysis or probabilistic
analysis depending on how uncertainty is incorgatand evaluated. These two types of

analysis are briefly introduced below.

The input for a deterministic analysis is a sepafameters of fixed values (usually at the

mean values of the data obtained from site invastigs). The process of a deterministic
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analysis is one-off and is implemented by eitheML& the numerical method. The output

from a deterministic analysis is mostly FS.

In contrast, the input for a probabilistic analysimsists of parameters that are modelled as
random variables. Different types of uncertaintythed input, including spatial variability,
statistical uncertainty and systematic uncertaicgn be considered. In a probabilistic
analysis, slope stability is still analysed by LEM the numerical method. However,
probabilistic analysis techniques, common onesudeffirst order second moment method
(FOSM), first order reliability method (FORM), poiastimate method (PEM), and Monte
Carlo simulation (MCS), are used to evaluate theau@rfte of input uncertainty on slope
stability. The output from a probabilistic analy@smostly the probability of failure PF or

the reliability index;.

Deterministic analysis enjoys a long history of elepment and acceptable levels of FS
for various conditions are well established. It lhaen taken as a routine step for slope
stability analysis. However, deterministic analysses fixed input parameters and can
only cope with the risk of uncertainty by requiriagarge FS value. Thus the uncertainty is
not explicitly considered. Probabilistic analysis, the other hand, uses random variables
as input and considers uncertainty in a more expliay. However, the acceptable levels

of PF for various conditions are not as well esshleld as those for FS. Finally, neither FS

nor PF can be obtained with high precision.

Based on these circumstances, it is recognisedd#tatministic analysis with FS as the
output should remain a routine step for slope Btalainalysis, while probabilistic analysis
with PF as the output is viewed as an importantetigment that supplements

deterministic analysis (Christian et al. 1994; Dun2800).
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2.2.5 Sensitivity Analysis and Parametric Study

Sensitivity analysis and parametric study are temmonly used techniques to assess the
influence of the variation or variability of inpytarameters on the output. The most
common and simple form of a sensitivity analysieng-way sensitivity analysis. One-way
sensitivity analysis and parametric study are simih process: one parameter is changed
systematically within its range with other parametéxed, and the variation of the
corresponding output is evaluated. Sensitivity gses are mostly associated with physical
parameters, such as material strength, water peessy different courses of action.
Parametric studies are mostly associated withssitaell parameters, such as the coefficient
of variation (COV), scale of fluctuation, and coatén coefficient. Sensitivity analysis
and parametric study are useful as they can hedptfie parameter or the particular ranges

of parameters that have the most critical influemcelope stability.

2.3 Hoek-Brown (HB) Strength Criterion

This section consists of four parts: firstly, tlagelst version of the HB strength criterion is
introduced; secondly, input parameters involvethenHB strength criterion are discussed,
particularly in terms of their variability; thirdlynethods for converting HB parameters to
equivalent Mohr-Coulomb (MC) parameters, which asepsal for using the HB strength

criterion in conjunction with the LEM, are introded; and lastly, the application of the HB

strength criterion is briefly discussed.

2.3.1 HB Strength Criterion

The HB strength criterion was originally proposedha 1980s (Hoek and Brown 1980) to

provide input data for the analysis of undergro@xdavations. It has been continually
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reviewed and developed over the past three de¢pdesarily in 1983, 1988, 1992, 1995,
1997, and 2002) and has now become a widely ugedian for estimating the strength of
either an intact rock or a rock mass (Cai et al420G0iest 2005; Read and Stacey 2009). A
comprehensive review of the development of the H&ngth criterion was given by Hoek

and Marinos (2007).

The latest version of the HB strength criterion (Keeal. 2002) is expressed as

g, =0,+0, {[%j + s} (2.1)
aci

whereo; is the major principal stress at failusgjs the minor principal stress at failueg;
is the uniaxial compressive strength of the intaxtk material, andn,, s anda are
constants for the rock mass that can be calcufededthe following equations (Hoek et al.

2002):

rm:méiﬁﬁ 2.2)
= 2.3)

where GSI is the Geological Strength Index,is the Hoek-Brown constant for intact
rock, and D is a rock mass disturbance factor d#ipgnon the blast damage or stress

relaxation.

When the HB strength criterion is applied to a rowss, the input parameters are G/,

oci, and D. Among these parameters, Q8J,ando.; are intrinsic parameters of a rock



12 Chapter 2. Literature Review

mass and are introduced in details in Section 2I1B8should be noted that the HB strength
criterion is only applicable to the rock mass tbattains a sufficient number of randomly

oriented discontinuities such that it can be tréai® isotropic.

The HB strength criterion (Equation 2.1) is expresseprincipal stress space; (@ndos).
However, slope stability analyses are usually edrout in normal and shear stress space
(on andz). Therefore, it is necessary to employ certairhgues to transform the HB
strength criterion from principal stress represiéoma to normal and shear stress
representation in slope stability analysis. Thecexeansformation can be achieved by
Balmer’s solution (Balmer 1952), which is a genentuson that can be applied to any
non-linear strength criterion. Balmer’s solutiomdze written in the form of the following

equations (Hoek et al. 2002):

g =9t%; 0,70, Egal/ do,-1

" 2 2 do,/do,+1 (2:5)
\Jdo,/d
r#a;aﬁ[—lﬁ (2.6)
do,/do,+1
do,/do, =1+ am(mo,/o,+ ¥ (2.7)

where g, andz are the normal and shear stresses at failure.

A detailed discussion of Balmer’s solution was gibgrCarranza-Torres (2004).
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2.3.2 HB Input Parameters: GSI,m; and o

Three intrinsic rock mass parameters in the HB gtteariterion, i.e. GSIm, andog, are

discussed in this section.

2.3.2.1 Geological Strength Index (GSI)

GSI describes the blockiness and discontinuity neyatg conditions of a rock mass. It is
used in the HB strength criterion to scale down strength and other deformation
properties of the rock mass from intact rock. G@egged formally in 1995 (Hoek et al.
1995) and since then has undergone continuous ajgweht. Marinos et al. (2005)
provided a comprehensive review of GSI. On therolaad, it should be noted that GSl is
only applicable to the rock mass that contains ficeent number of randomly oriented
discontinuities such that it can be treated agaopat (as stated earlier, this is also the

prerequisite for applying the HB strength critertora rock mass).

The value of GSI extends from unity for an extremiehctured rock mass to 100 for an
intact rock. It can be estimated from charts (Masieet al. 2005) and Hoek (1998) stated
that it is desirable to assign a range of values {g the form of a normal distribution) to
GSI instead of a single value. In the early stalgin® development, GSI can be estimated
from adjusted RMR or Q (two popular rock mass classibn systems) values (Hoek and
Brown 1997). However, this procedure is no longeonemended, particularly for a weak
rock mass (Marinos et al. 2005). Marinos and H@&J00) discussed the ranges of GSI for
typical rock masses. Marinos et al. (2005) preskdetailed instructions for using GSl,
including its applicability and the influence ofckomass size, anisotropy, depth, ground
water, aperture, infilling, weathering, and softke on its value. There have been several

attempts to quantify GSI directly based on comm@tantinuities parameters (Sonmez
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and Ulusay 1999; Cai et al. 2004; Cai et al. 20BiBWwever, as pointed out by Marinos et
al. (2005), these GSI quantification methods shdaadused with caution when applied to

certain types of rock mass.

GSl is deemed to be the most important parametireiidB strength criterion (Marinos et
al. 2005; Fisher and Eberhardt 2012; Mao et al220Lhe variability of GSI is generally
low and Table 2.1 summarises the statistics of {8#h existing publications. It is shown

that the COV of GSl is between 0.035 and 0.15.

2.3.2.2 HB Constantm;

The HB constant is one of the two parameters in the HB strengtiewon that describes
the characteristics of the intact rock (the othee o). It is produced from curve fitting
of triaxial test data and does not have any spephiysical meaning. A recent reviewraf

was given by Richards and Read (2011).

Ideally, mi should be determined by regression analysis @xiali test data and the
corresponding procedures and specifications wevengby Hoek and Brown (1997).
Alternatively, my can be estimated from the lithology (Hoek 200MApwever, Mostyn and
Douglas (2000) stated that is not highly correlated to rock lithology based analyses

of a large amount of data they have collected.Heuranalyses carried out by Richards and
Read (2011) suggested that/o;, which is the ratio of uniaxial compressive stitangf
intact rock to the tensile strength of intact roska good indicator of they value. The
value ofm ranges from 3 for slate to 35 for granite (HoeRW20 However, based on the

data from Mostyn and Douglas (2000), the valumatanges from 1 to 40.
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The parametem is less important in the HB strength criterion ampared with GSI and
oci (Marinos et al. 2005; Fisher and Eberhardt 20120 Mt al. 2012). The variability of
is medium. Table 2.2 summarises the statistiog &fom existing publications. It is shown

that the COV ofn is between 0.039 and 0.25.

2.3.2.3 Uniaxial Compressive Strength (UCS);

The parametes.; (UCS) of a rock is the maximum axial stress thapecific sample of
such rock can sustain under a uniaxial compres$sading. It is one of the most important
rock parameters in rock engineering, as firstlisit critical indicator for the intact rock
strength and secondly it is an essential inputrfost rock strength criteria and many rock
classification systems. In this sectiafn; is discussed within the framework of the HB

strength criterion.

Ideally, the valuer;; should be obtained directly from laboratory tétidson and Harrison
2000). Alternatively, it can be determined from ®ath rebound hammer reading (Hudson
and Harrison 2000) or estimated from published @dtzek and Brown 1997). The value
of o ranges from 0.25MPa for some extremely soft rack50MPa for some highly

strong rocks such as the granite (Hoek and Browir)199

oqi 1S also an important parameter in the HB strengtbron (Marinos et al. 2005; Fisher
and Eberhardt 2012; Mao et al. 2012). The varighdf o is generally high. Table 2.3
summarises the statistics &f from previous publications. It is shown that th@\Cof o;

is between 0.1 and 0.4.



Table 2.1 Statistics of GSI based on published data

Source Project Mean GSI cov Distribution

Fisher éré(izl)iberhardt A dip slope located in southern California 49 0.12 Lognormal
LG and Low (2011) A horse-shoe shaped highwagelm China 25 0.2 Normal

Idris et al. (2011) A stope geometry in Canadiasbhole stoping operations 65 0.077 Truncated abrm

Sari et al. (2010) Estimating the rock mass propedf Ankara andesites 55.9-749 0.077 — 0.153undated normal

Fu et al. (2009) A cutting slope at the Laohuzudropower station in China 40 0.062 Truncated normal

Cai et al. (2004) Kannagawa underground powerhoasgern in Japan 54 -74 0.035 /

Cai (2011) .

Cai et al. (2004) Kazunogawa underground powerhouse cavern in Japan 6 - 6@ 0.035-0.042 Normal

Mao et al. (2012)
LG and Low (2011) Hypothetical slope and tunnel cases 25 0.1 Normal

Hoek (1998)




Table 2.2 Statistics ofn; based on published data

Source Project Meam Cov Distribution

Fisher (e;rcl)(:jLzl)Eberhardt A dip slope located in southern California 17 0.039 Normal
LG and Low (2011) A horse-shoe shaped highwageaum China 13 0.2 Normal

Idris et al. (2011) A stope geometry in Canadiasbhole stoping operations 28 0.071 Truncated abrm

Sari et al. (2010) Estimating the rock mass propedf Ankara andesites 4.1-10.5 0.15-0.25 Normal

Fu et al. (2009) A cutting slope at the Laohuzudrepower station in China 19.04 0.159 Truncatedanabr

Cai et al. (2004) Kannagawa underground powerhoasgern in Japan 9-22 0.125 \

Caci::l ;2|0(1210)0 2) Kazunogawa underground powerhouse cavern in Japan 9 1 0.125 Normal

Mao et al. (2012)
LG and Low (2011) Hypothetical slope and tunnel cases 8 0.125 Normal

Hoek (1998)




Table 2.3 Statistics o based on published data

Source Project (MPa) Ccov Distribution
Fisher ér(l)(izl)iberhardt A dip slope located in southern California 15 0.4 ormdal
LG and Low (2011) A horse-shoe shaped highwagelim China 160 0.25 Normal
Idris et al. (2011) A stope geometry in Canadiasbhole stoping operations 282 0.124 Truncateohalor
Sari et al. (2010) Estimating the rock mass progedf Ankara andesites 53-128 0.1-0.2 Truncatechab
Fu et al. (2009) A cutting slope at the Laohuzudrepower station in China 125 0.15 Truncated normal
Cai et al. (2004) Kannagawa underground powerhoasgern in Japan 48 -162 0.1-0.212 \
Cai (2011) Kazunogawa underground powerhouse cavern in Japan 08 1 0.389 Truncated normal

Cai et al. (2004)

Mao et al. (2012)
LG and Low (2011)
Hoek (1998)

Hypothetical slope and tunnel cases 10

0.25 Normal




Chapter 2. Literature Review 19

2.3.3 Converting HB Parameters to Equivalent MC Paameters

The Mohr-Coulomb (MC) strength criterion is a comnyoméed strength criterion for soil.
The MC strength criterion can be expressed in tmmaband shear stress spaegdndr)

as:

I, =c+o0, tang (2.8)

wherec is the cohesiory is the angle of frictiong, is the normal stress, amds the shear

strength (shear stress at failure).

Since, historically, rock mechanics was a branchsaf mechanics, the MC strength
criterion is also widely applied in rock enginegritMany slope stability analysis methods
(such as the LEM) and software are based on theski€hgth criterion and use MC
parameters, i.e& andg, as input. Therefore, to use the HB strength doitein conjunction

with the LEM, it is necessary to convert HB paramsete their equivalent MC parameters.

The principle of the conversion can be definediader a specified level of normal stress,
find the equivalent MC parameters c apdhat would give the same shear strength based
on the MC strength criterion as that based on thegttBngth criterion The conversion is
illustrated in Figure 2.2. The solid line represetiite failure envelope of the HB strength
criterion in normal and shear stress spageafdz) for a rock with the following HB
parameters: GSI = 1063 = 10, ands; = 30MPa. When the normal stress= 10MPa, the
HB strength criterion computes the shear strength 15.8MPa. The equivalent MC
parameters under normal stregss 10MPa that also give a shear strength of 15.8dPa
this rock is found to be = 7.3MPa andy = 40.2°, and the dashed line represents the

corresponding MC failure envelope.
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There are two types of solutions for the conversiam the accurate solution and the

approximate solution. These two types of solutiaresintroduced in the following sections.

25
MC failure envelope
20+ |
c = 7.3MPa HB . |
= o ailure envelope
< Shear strength 15.8MPa ®=40.2
S GSI = 100
2 15 : cs! -1 |
= Tangent | i~
2 " | o = 30MPa
g | %
. :
= 10 | |
2 |
5 |
7 l
St ! Specified normal stress 10MPa _
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Figure 2.2 Conversion from HB parameters to MC paraneters: a rock with GSI =

100,m; = 10, ande = 30MPa under a normal stress, = 10MPa

2.3.3.1 Accurate Solution

Accurate solutions, as implied by the name, compwad g that produce identical shear
strength from the MC strength criterion as that frhr@a HB strength criterion. This is
achieved by determining the tangent line to the liBufe envelope at the failure point
(Carranza-Torres 2004; Priest 2005). This tangem is the equivalent MC failure
envelope and the intercept and slope of this liree equal toc and tap respectively.
Therefore, Figure 2.2 shows precisely the convarstoategy of accurate solutions. Note
that thec and¢ found by this method change instantaneously with dpecified normal
stresson, and therefore they are usually termed the instemias cohesion and angle of

friction (Priest 2005).



Chapter 2. Literature Review 21

Three accurate solutions are introduced in thisiaecthey are Bray’s solution for the

intact rock, Kumar’s solution, and Priest’s solatio

Bray (reported by Hoek 1983) developed an accurdtgisn for the original HB strength
criterion (Hoek and Brown 1980). The latest versadbthe HB strength criterion (Hoek et
al. 2002) is only equivalent to the original HB swgéh criterion when GSI = 100 (which
represents an intact rock). Therefore, for thestatersion of the HB strength criterion,
Bray’s solution only produces accurate conversiorewisSl = 100. For GSI of other

values, the conversion error increases as GSI asesgKumar 1998).

Bray’s solution consists only of analytical equatiaand does not need further numerical
iterations. It is convenient to use and is stilpplar with research for the intact rock.

Bray's solution is given in the following equations:

16(rnoan + svci)

h=1+ anto. (2.9)
6= 1[90+ arctan\/=J (2.10)
= arctan\/ﬁ (2.11)
=(cotg - cogb)% (2.12)
c=r1, -0, tang (2.13)

where h and are intermediate parameters.



22 Chapter 2. Literature Review

Kumar (1998) developed an accurate solution thatuitable for the latest HB strength
criterion (although the latest HB strength criteriwas developed in 2002, it has the same
generic form as the 1997 version and therefore Kignmsolution can still be applied).

Kumar’s solution is given in the following equatson

2 Oy g0a) (1-sing) SINY , 4-a)
mDa(mo o +9 sing @+ " ) (2.14)
__ 0,C08p Ty, ga
f (rno_+ Q (215)

2(1+ S|n¢)a g
a
c=r1, —0,tang (2.16)

Kumar’s solution needs numerical iterations to elate from Equation 2.15.

Priest (2005) developed another accurate solutwnttie latest HB strength criterion
(Hoek et al. 2002). The strategy of Priest’s soluiis briefly introduced as follows. Firstly,
Priest’s solution introduces two normal stresgsesando,+ that are very slightly less and
more than the specified normal stregs Secondly, the failure points on the HB failure
envelope undes,- andont are found by a series of equations. Afterwartusse two points
are connected and the corresponding secant lingeid to approximate the tangent line at

the failure point ob,. Finally,c andg are calculated from this secant line.

It should be noted that Priest’s solution is nokeaact accurate solution, as it uses a secant
line to approximate the tangent line. However,dakulatedc, ¢, and shear strengthare
very close to those produced from the Kumar's smtutPriest’s solution consists of a
series of equations and needs the assistancee®f aumerical routines (such as the Excel

Solver). It is not further introduced here andiiested readers are referred to Priest (2005).
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Finding accurate shear strength for the failuréesaris critical for slope stability analysis.
The advantage of the accurate solution is thatavides accurate conversion from HB
parameters to MC parameters. However, accuratei@mtuthat are suitable for the latest
HB strength criterion need to apply additional stepsiumerical iterations, making the
conversion slower than approximate solutions. Tnavback is not evident for a single
conversion but may cause significant delays wherstiution is applied a large number of

times, e.g. in a Monte Carlo simulation.

2.3.3.2 Approximate Solution

Approximate solutions are generally developed fbciency purposes. In this section, two
solutions that are specifically developed for thest version of HB strength criterion are
discussed. They are Hoek’s solution and Shen’stisoluOn the other hand, Bray's
solution can also be regarded as an approximatdi@olfor the latest version of HB
strength criterion when GSI < 100, as it does motipce accurate conversion unless GSI =

100.

Hoek’s solution (Hoek et al. 2002) was developedcamjunction with the latest HB
strength criterion. It is derived from curve figinand is expressed in the following

equations:

6am,( s+ mos,)
2(1+a)(2+a)+ 6am ( s+ noy,)”
c= Jci |:(1+ 28) S+(l_ @ rra03n]( St I’EU-3n)a_1
@+ a)+a) 1+ 6am s+ v, [+ A+ 4

¢ =sin™"

(2.17)

(2.18)

USn = 0-3max/0-ci (219)
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-0.94
for tunnels Gamax = 0.47(%] (2.20)
Jcm yH

where H is the depth of the tunnel below surface yms the unit weight of the rock

material
O o -0.91
for slopes —Smax — 0.72{ﬂJ (2.21)
Ucm yl_|

where H is the height of the slope

o . :U.(mo+4s—a(rg—8$)( m 4+ B

Shen et al. (2012) developed an approximate solui@sed on genetic programming.

Shen’s solution is expressed in the following empunest

O—H
ai
%= Ja (2.23)
y :
¢ Jan -2
P:2+am(ng%+ ! (2.24)
@ = arcsin(l—% ) (2.25)
o,
s (M —"+9°
ro=g YP71 0, (2.26)
p ,Pat+P-2,,
——5)
aP

c=r1, -0, tang (2.27)
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A simple numerical experiment was carried out tamixe the accuracy of the above
approximate solutions (including Bray’'s solution).s€sa of rock masses with different
combinations of blockiness (characterised by Gi&tact rock strength (characterised by
m ando), and normal stress levels,( are designed. GSI values are selected to be 100,
70, and 30, which represent intact, fractured, laigtlly fractured rock mass respectively.
Intact rock parametersm{o;) are selected to be 32/175MPa and 10/30MPa, which
represent strong and soft rock respectively. Lasitly normal stress leve) is selected to

be 10MPa and 0.5MPa, which represent high and mmal stress levels in slope stability

analysis. Therefore, there are 3 x 2 x 2 = 12 casedal and they are shown in Table 2.4.

Kumar’s solution, Bray’'s solution, Hoek’s solutions(ng Equation 2.21 with the slope
height H set to 100m), and Shen’s solution areiegpb these cases. The output from
Kumar’s solution is used as a judgement, since drn accurate solution. The calculated
shear strengthy from these solutions for all 12 cases is comparethble 2.4, where RD

represents the relative difference. In additione thetailed output for Case 5 is

demonstrated in Table 2.5.

Based on Table 2.4, the following conclusions aeewdr Firstly, when Bray’s solution is
applied to the latest HB strength criterion, it proes systematic error, which gradually
increases with decreasing GSI; however, the esgayenerally not very large<(10%).
Secondly, Hoek’s solution produces the largestalerror; when GSI is less or equal to
70, the errors of; are mostly too large to be acceptable. LastlynShsolution produces
medium errors for low normal stress circumstanegs 0.5MPa) and small errors for high
normal stress circumstances, € 10MPa). It is therefore suitable for high norrstiess

conditions.



Table 2.4 Comparison of three approximate solutios for converting HB parameters to equivalent MC paameters

i o Kumar Bra Hoek Shen
Case| GSI m (I\/Tga) (Mlga) Rock mass and normal stress level + (MPa) RD of Tfy(%) RD ofz; (%) RD of 7 (%)
1 100 32 175 10 Intact/ strong rock/ high 40.62 0.00 -0.08 9.16
2 100 10 30 10 Intact/ soft rock/ high 15.77 0.00 6.07 3.15
3 100 32 175 0.5 Intact/ strong rock/ lew 20.11 0.00 -3.30 25.63
4 100 10 30 0.5 Intact/ soft rock/ lawy 6.22 0.00 -3.67 18.30
5 70 32 175 10 Fractured/ strong rock/ hsgh 23.05 0.10 8.81 0.52
6 70 10 30 10 Fractured / soft rock/ high 9.60 0.05 20.58 0.29
7 70 32 175 0.5 Fractured / strong rock/ kgw 4.25 0.26 8.24 17.80
8 70 10 30 0.5 Fractured / soft rock/ lew 1.60 0.25 5.71 11.63
9 30 32 175 10 Highly fractured/ strong rock/ high 14.38 3.66 15.07 1.56
10 30 10 30 10 Highly fractured / soft rock/ high 5.55 3.06 34.01 0.56
11 30 32 175 0.5 Highly fractured / strong rocky @, 1.63 7.06 20.78 6.23
12 30 10 30 0.5 Highly fractured / soft rock/ lew 0.73 6.90 8.38 4.57
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Table 2.5 Detailed conversion output for Case 5 (ifable 2.4)

Case 5 Kumar Bray Hoek Shen

GSI: 70 ¢ (MPa) 7.13 7.15 3.52 7.35

m: 32 ¢ (degree) 57.86 57.87 65.12 57.70
oci: 175MPa 7t (MPa) 23.05 23.07 25.08 23.17
on: 10MPa RD of z; (%) 0.00 0.10 8.81 0.52

2.3.4 Application of the HB Strength Criterion

The HB strength criterion and the corresponding G@tem provide a simple and
effective solution for rock slope stability analygPantelidis 2009). Examples of practical
engineering application of the HB strength criterioclude Hormazabal et al. (2009) and
Sjoberg (1997). Examples of probabilistic slopeb#ity analysis that employ the HB

strength criterion include Fu et al. (2009) andestriand Brown (1983). There are also
attempts to develop stability charts for rock skbpased on the HB strength criterion (Li et
al. 2008; Li et al. 2011); however, the reliabilby these stability charts needs further

confirmation.

2.4 Limit Equilibrium Method (LEM)

2.4.1 Overview of LEM

In the limit equilibrium method (LEM), analysis @arried out based on a slip surface,

which can be either circular or non-circular. TigfBr this slip surface is defined as

FS = RF/DF (2.28)
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where RF is the resisting force (available sheeength) and DF is the driving force

(equilibrium shear stress).

For a given slope, there are theoretically an itdimumber of possible slip surfaces.
Among these slip surfaces, the one with the low&stis termed the critical slip surface
(CSS). The CSS is considered to be the most likeffase along which the failure will
occur and is the one to be examined in most LEMh@aa and Wright 2005). Although in
reality there are also other slip surfaces of concie the present study, the CSS is the

focus.

The CSS is usually found by computer programs. vl lthat considers only circular slip

surfaces, the CSS can be found by systematicalletseg through various centres and
radii of slip circles. For LEM that considers nancalar slip surfaces, the CSS can be
found by searching techniques that involve optitiosaschemes (e.g. Baker 1980) or

random process schemes (e.g. Boutrup and Lovell)1980

There are three static equilibrium conditions tcshgsfied for LEM: (1) force equilibrium

in the vertical direction, (2) force equilibrium the horizontal direction, and (3) moment
equilibrium about any point. Some LEM implementasicatisfy all the three equilibrium
conditions; others satisfy only some of them. Hogvreun all circumstances, there are
always more unknown variables than the number afliegum equations, which makes
the problem statically indeterminate. Thereforesuagptions must be made for LEM to

balance the unknown variables with the equilibreguations.

There are two broad types of LEM. One is basedherentire slipping soil or rock mass
body and the other divides the slipping soil orkratass body into slices. The first type of

LEM can only be applied to slopes with certain getm (e.g. infinite slope method,
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Duncan and Wright 2005) or with a specific shapelgf surface (e.g. logarithmic spiral
method, Frohlich 1953). This type of LEM will noe Hurther discussed here, as it is
beyond the scope of this thesis. The latter typeeEd is termed the method of slices and

it is discussed in the following section.

2.4.2 Method of Slices

The method of slices divides the slipping soil/racliss body into slices, based on which
the analysis is carried out. Depending on the slodjike slip surface, there are methods
that can only be applied to circular slip surfaaad others that can be applied to arbitrary
(non-circular) slip surfaces. Table 2.6 (based amdan and Wright 2005) summarises

commonly used method of slices and the static i conditions that they satisfy.

In terms of simplicity and accuracy of various nueth listed in Table 2.6, methods that
can be carried out by hand calculations are coresid be “simple”; otherwise they are
“complicated”. Methods that satisfy all three eduribm conditions (e.g. Method 6, 7, and

8) are generally considered to be accurate (Fredima Krahn 1977).

Methods that assume circular slip surfaces arergbyesimple. Among all method of

slices, Method 1, the Ordinary method of sliceshesmost straightforward and is the only
one that does not need iterative calculations. Hewet is less accurate, particularly when
water pressure is involved in the calculation. Meit2, Bishop’s simplified method of

slices (Bishop 1955), is simple and accurate (Wrgglatl. 1973; Fredlund and Krahn 1977).
Its only limitation lies in the assumed circulaipssurface. Among methods that assume
arbitrary slip surfaces, Methods 3, 4, and 5 angpk but their accuracy is sensitive to
their corresponding assumptions (Duncan and W&6b6). Methods 6, 7, 8, and 9 satisfy

all three equilibrium conditions and are robust aoedurate (Fredlund and Krahn 1977;
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Duncan and Wright 2005). However, they are more pimated and have higher

computing cost compared with Methods 1 — 5.

Table 2.6 Static equilibrium conditions that commony used method of slices satisfy

(summarised based on Duncan and Wright 2005)

' Force equilibrium
Shape of slip Method of slices : au I_ u 'V"?F“e.”t
surface Vertical Horizontal €quilibrium
. (1) Ordinary x X N
circular _ D
(2) Bishop’s simplified \ x N
(3) Lowe & Karafiath \ \ x
(4) U.S. Army Corps of Engineers V x
_ (5) Janbu’s simplified v \ x
sty 00 ) Spence Cov
(7) Morgenstern and Price \ \/ v
(8) Chen and Morgenstern \ \ N
(9) Sarma \ \ \

For probabilistic slope stability analysis thatahxes MCS, Bishop’s simplified method of
slices is often used (unless the slip surface idikely to be circular) for its simplicity and
accuracy (ElI-Ramly et al. 2002; El-Ramly et al. 2Z0BBRamly et al. 2005; Wang et al.
2010). Bishop’s method of slices is further discdssedetail in a later section. Meanwhile,
as the Ordinary method of slices provides a singpletion for estimating the effective
normal stress along the slip surface (which is s&aey for converting HB parameters to

MC parameters, as described in Section 2.3.3)aiss introduced here.

2.4.2.1 Ordinary Method of Slices

Figure 2.3 depicts a typical slice in the methodslades, including its geometry and all

forces acting on it.
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Figure 2.3 A typical slice in method of slices witlfiorces acting on it

The Ordinary method of slices only satisfies thamant equilibrium condition. It assumes
that the normal and shear forces acting on bo#ssid the slice, including,, X, Er, and
Xgr (as shown in Figure 2.3), are equal to 0. Basethisrassumption, the effective normal

forceN’ acting on the base of the slice can be expressed a

N'=Wcosa -

2.29
cosa (2.29)

whereW is the weight of the slice, is the base angle,is the water pressure along the slip

surface, and is the width of the slicew andu can be calculated from the following

equations

W = h by (2.30)

U= hwrw (231)
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whereh; is the height of the slice; is the unit weight of soil/rock materidd, is the height

of the water table, ang, is the unit weight of water.
Based on Equation 2.29, the effective normal steésting on the base of the slice is

expressed as

,_Wcoga
og=—"""-u

. (2.32)

Equation 2.32 is the original expression of the&ffle normal forces’ for the Ordinary
method of slices. However, this equation may leadrirealistic low and even negative
values ofs’. A more reasonable expression of the effectivemad forceN’ is proposed by

Turnbull and Hvorslev (1967) as

N'=(W-ubcosa (2.33)

the updated effective normal stresss then expressed as

a'=(\%/—u)co§a (2.34)

Based on Equation 2.34, the MC strength criterioruéiign 2.8), and moment equilibrium

about the centre of rotation, the FS for the ondimaethod of slices is given by

oo Y (c+o'tang b/ cosx

> Wsina (2:35)

wherec andg are cohesion and angle of friction along the sliface.
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2.4.2.2 Bishop’s Simplified Method of Slices

In this section, Figure 2.3 is still used as th@esentation of a typical slice.

Bishop’s simplified method of slices satisfies wvaati force equilibrium and moment
equilibrium conditions. It assumes that the hortabiflorces acting on both sides of the

slice, includingX, andXg, are equal to 0.

The normal forceéN acting on the base of the slice for Bishop’s sifrgalimethod of slices

is expressed as

:W—(ll FS)(cb- uliang ) tana
cosa + (siy ta )FS

N

(2.36)

whereW is the weight of the slice and can be calculate&@uation 2.30, FS is the factor
of safety,c andg are cohesion and angle of friction along the slipface, andi is the

water pressure along the slip surface and canlbelated by Equation 2.31.
Based on Equation 2.36, the effective normal steésscting on the base of the slice is

given by

,_ Ncosa
o'= -u
b

(2.37)

Based on Equation 2.37, the MC strength criterioruéiign 2.8), and moment equilibrium

about the centre of rotation, Bishop’s simplifiedtirod of slices calculates the FS by

Z{ cb+(W- ubtang }

cosa + (six tap )FS
> Wsina

Foo (2.38)
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Since FS occurs at both sides of the above equaioiterative process is necessary to

compute the value of FS.

2.5 Probabilistic Slope Stability Analysis

Probabilistic Slope Stability Analysis (PSSA) idroduced in this section in terms of its
input, methodology and output. Firstly, the inpatluding geotechnical variability and its
characterisation, are discussed. Secondly, commadgl probabilistic analysis techniques,
including first order second moment method (FOSHKist order reliability method
(FORM), point estimate method (PEM), Monte Carlo datian (MCS), and associated
measures to incorporate and evaluate spatial vityalre introduced. Lastly, the output

assessment for PSSA is briefly discussed.

2.5.1 Overview of Geotechnical Variability

The inherent variability of geotechnical parametsr&a major source of uncertainty in
geotechnical engineering (Baecher and Christian 20d&gun et al. 2003; Christian
2004). Effective investigation and characterisatioin the variability of geotechnical

parameters can significantly improve the qualityaoélysis and design (Jaksa et al. 2005).

The variability of a geotechnical parameter is ofsemply quantified by the coefficient of

variation (COV), which is given by the following eafion

cov=2 (2.39)
U

whereo is the standard deviation ands the mean.



Chapter 2. Literature Review 35

On the other hand, although the COV is useful, itasable to characterise the important
spatial variability of geotechnical parameters. Erample, two soil or rock profiles can
have similar and COV but exhibiting significant differences. g 2.4 illustrates such
an example, where two profiles of a chosen paramie@ve similaru and COV values

but are very different in appearance.

— (a\]
& 2
S S
o o
< <
Location Location
(a) (b)

Figure 2.4 Example of two profiles of a chosen pamaeter 4 with similar mean and

COV values but exhibiting great differences

The two profiles have similar statistical paramef@or profile 1« = 1.02 and COV = 0.47;
for profile 2,4 = 1.16 and COV = 0.48), but it is apparent fromuFég2.4 that the two
profiles are very different. This is caused by thierent spatial variability of these two
profiles. Spatial variability refers to the diffei@es between values of a variable at
different locations. These values tend to be moreles when the distances between the
locations are smaller. Spatial variability of therth material has significant influences on

slope stability. Without proper considerations patsal variability, the risk of having a
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slope failure can be either overestimated (whenR&efor the slope is more than 1) or

underestimated (when the FS for the slope is less 1) (Griffiths et al. 2009; Cho 2010).

Spatial variability can be characterised by thdescé fluctuation6. Larger6 represents
low spatial variability and results in a less vhhkaprofile (such as that in Figure 2.4b) and
smaller6 represents high spatial variability and results imore variable profile (such as
that in Figure 2.4a). The equivalent measure ofiagpeaariability in geostatistics is the

rangea. Both these measures will be discussed in mordl deta

The variability of geotechnical parameters has beemstigated and summarised by
several researchers (Jaksa 1995; Phoon and Kulh888; Duncan 2000; EI-Ramly et al.
2003). However, most of the work has focused oh Boom the published work, the COV
of soil parameters show large variations in terrhslifferent materials, testing methods,
and locations. The scale of fluctuation for many parameters were found to be similar
and within the range of 40-60m in the horizontalediion and 2-6m in the vertical

direction.

For the present study, Tables 2.1, 2.2, and 2Seition 2.3.2 summarise the COV of HB
parameters from the literature. However, for thelesof fluctuation, only studies o
were found. Wang et al. (2000) investigated theigpaariability of the point load index
Isso of sandstone and claystone for an open-pit coalensiope project. The scale of
fluctuation of Igo for the sandstone and clay stone along the stik&ope (horizontal

direction) is found to be within 3-6m.
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2.5.2 Explicit Characterisation of Geotechnical Vaiability

Random field theory and geostatistics are two conmynosed techniques for the explicit

characterisation of geotechnical variability. Tteeg introduced in the following sections.

2.5.2.1 Random Field Theory

Random field theory was systematically established Manmarcke (1983). Being
restricted by the computation capability, the potdrof random field theory has not been
fully exploited until the most recent decade. Fanemd Griffiths (2008) re-elaborated
random field theory with some of its latest appimas. The above two publications form
the basis of our discussion in this section. Atke, discussion is mostly restricted to one-

dimensional stationary Gaussian random field.

(1) Basic Concepts and Common Assumptions

In random field theory, the point variability atyalocation t is characterised by a random
variableX(t) with the probability density function (PDEYX), and the entire random field
is characterised by the joint PDfaxz. (X1, %, ...) of all the random variables.
Theoretically, the PDF of the point variability camolve with location and it can take any

form. However, this would make the resultant rand@b impractical to use.

To simplify the problem, three assumptions, inahgdGaussian process, stationarity, and
isotropy, are usually made. Gaussian process nieahthe joint PDF of the random field

is a normally distributed random process. Such jpDF is expressed as

1

f Kgyoy X )= ————
><1><2...><K(X1 2 Xk) (Zﬂ)k/Z |C|1/2

exp{-—; (X=ujC™ (X~ U} (2.40)
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whereX is the input vectory is the mean vecto€ is the covariance matrix, and||is the
determinant ofC. Under the assumption of Gaussian process, a mandoiable at any

point of the random field follows a normal distritaun.

Stationarity means that the joint PDF of the randetd depends only on the relative
distances between the points rather than on thewlate positions. Under this assumption,

covariance and other higher order moments of théam field are constant in space.

Isotropy indicates that for a random field of higbdanensions% 2D), the joint PDF of the

random field is invariant with rotation.

Stationary Gaussian random field is the most widislyd random field in practice. Fenton
and Griffiths (2008) stated that since there waaguncertainty involved in the most basic

statistical parameters, it is “of little point id@pting other joint distributions”.

(2) Characterisation of Random Fields

A random field can be fully characterised by theddimearu and the covariance function
C(z), whereC(z) represents the covariance between two pointgathby distance C(z)
can be normalised into the correlation funciigr) by the following equation (Fenton and

Griffiths 2008)

C(1)
0.2

p(7) = (2.41)

whered? is the field variance.
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Under the assumption of stationarityands® of a random field are invariant in space and
the covariance function and correlation functiopeted only on the relative distance

between points.

A simple measurement of the spatial variabilityageindom field is the scale of fluctuation

8, which is mathematically defined as (Vanmarcke3)98

=2[ p@)dr (2.42)

As explained in Section 2.5.1, largémrepresents a less variable (i.e. highly correlated

random field.

(3) Spatial Averaging and Variance Reduction

Fenton and Griffiths (2008) stated that all engiimggproperties are virtually properties of
local average to a certain degree. For instanegjctlof a rock is measured at the scale of

the specimen rather than at the scale of rockgbesti

The local average of a one dimensional random fielsthg averaged over a window of

width T centred at location t is expressed as @reand Griffiths 2008)

t+T/2

X (©=2]7 X&) (2.43)

t-T/2
whereX+(t) is the local average over width T of the pointgadiesX(t).

For a stationary random field, the locally averafeltl preserves the mean of the original
field but significantly reduces the variance. Ttugtrate, Figures 2.5(a) and 2.5(b)

demonstrate the random field in Figure 2.4(a) beangraged over width 10 and 20
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respectively. It is apparent that the field mealaigely unaffected whereas the variance is

significantly reduced.

25 ‘ ‘ ‘ ‘ 25 ; ; ; ;
Spatia‘i averag?ng widtb T=10 i Spatia_ averag?ng width T=20 i

- : - :
@ : Q :
S ‘ 9 |
o o ;
< < !

Location Location

Figure 2.5 (a) The random field shown Figure 2.5 (b) The random field shown
in Figure 2.4 (a) being locally averaged in Figure 2.4 (a) being locally averaged
over width T =10 over width T = 20

The variance reduction caused by local averagingr avidth T is quantified by the

variance functiory(T) so that

o2 =0%y(T) (2.44)

wheres?; is the variance of the locally averaged field ahis the variance of the original
field. For a one-dimensional stationary randomdiiethe variance functiony(T) is

expressed as (Fenton and Griffiths 2008)

2 T
yM ==, T-n)px(r)ar (2.45)

wherepx() is the correlation function of the original ramadield.
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Furthermore, Vanmarcke (1983) suggested that foplgtity, the variance function can be

approximated by the following equation

1 ifesT
- 2.46
A" g it o>T (2.49)

(4) Some Commonly Used Correlation Function Models

Three commonly used correlation function modelsluiding their corresponding variance

functions, are presented in Table 2.7.

Table 2.7 Three correlation function models and thearresponding variance

functions
Model Correlation function / Variance function
Correlation (1) = 1-|7| if|r]<8@
function 0 if |7] > 6
Triangular -
1-— ifT<@
Variance
: y(T) =
function g[l_i} if|r|>6?
T 3T
Correlation (1) = exp _M
function Je]
Markov , | | | |
Variance 6° | 2T 2T
= |1 14 —_ 1 1{_
function AT) ZTZ[ L2 exp{ 12 !
lati T
oo o0 =expi - |
Gaussian
' 2 | T T 2
Variance S(T) = g | n |erf _afT] rexpl -2 L1
function T2 6 6 &’

where0 is the scale of fluctuation.
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The correlation functions in Table 2.7 fo= 1 are plotted in Figure 2.6. It is shown that

the correlations between points decrease as ttendes increases.

p(1)

Figure 2.6 Correlation functions of Triangular, Markov and Gaussian models fof = 1

2.5.2.2 Geostatistics

Geostatistics was originally developed for the psgg of mineral resource estimation
(Journel and Huijbregts 1978). It has later beepliegh to various disciplines including
geotechnical engineering, water engineering, anth@aake engineering (Wang et al.
2000; Webster and Oliver 2007). The discussioneafstatistics in this section is mostly

restricted to the variogram and its estimation.
(1) Vvariogram

In geostatistics, the variogram (semivariogramused to measure the auto-correlation

between points along a specific direction. Theogramy, is expressed as (Dowd 2006)

I :%E[( Xih = xi)z} (2.47)
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where X is the value of the point at location i,Xis the value of the point at location i+h,

and h is the distance between the two points.

In reality, it is impossible to obtain the valudsall points to determine the expectation by
Equation 2.47 and the variogram is usually estichateom available data by the

experimental variogram, . The experimental variogram is determined by

o= 2 (K= %) (2.48)

S i=1

where N is the number of data pairs that are separatetisbgnce h.

(2) Some Commonly Used Variogram Models

Experimental variograms are usually fitted withfeliént models. Three commonly used

variogram models are presented in Table 2.8.

Table 2.8 Three commonly used variogram models

Model Mathematical expression
3
. h:C(s—h— h )+CO when h< a
Spherical 2a
=C+GC, wherh= a
Exponential v, =C@l-e"*)+ G
Gaussian =Cc@-e"'*)+ G

The parameters involved in the above models arkigean below.

Co is the nugget variance. It represents the varigingearises within the distance that is

shorter than the sampling interval and is causedadniations of micro-structures within
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the material, statistical errors, and measurememrse (Jaksa 1995). Nugget variance
causes the variogram to go from zero to the let&,owvhen the distance h between two

points becomes non-zero.

C + Gy is the sill value. It measures half the maximurnasgd difference between point

pairs and is equal to the variance of the sampke da

a is the range of influence or simply range, whishai simple measurement of spatial
variability in geostatistics (equivalent to the lscaf fluctuation in random field theory).
For the spherical model, the variogramincreases to the sill (which indicates that the
auto-correlation between points diminishes to zerog¢n h reaches. For exponential and

Gaussian models;, reaches 0.95 + Co when h reachesazandv3.a respectively; thusa3

andv3.a are the effective ranges of the exponential@agssian models.

The variograms of the three models in Table 2.8pr 0,C = 1, anda = 1 are plotted in

Figure 2.7.

15

(=Y

Variogram, Vi

h h h

(@) (b) (©)

Figure 2.7 Variograms of Spherical, Exponential andsaussian models foiCy, = 0,C =

1, anda=1



Chapter 2. Literature Review 45

As they are two explicit methods for characterisggptechnical variability, there are
connections between random field theory and gesstat Specifically, many of the
correlation function models used in random fieleédly have equivalent geostatistics
variogram models. For instance, the Markov modalefg in Table 2.7) in random field
theory is equivalent to the exponential model (giwe Table 2.8) in geostatistics: if the
random field Markov model has a mean valueupfa variance ofs®, and scale of
fluctuation of6, the equivalent geostatistical exponential modalilel have the same mean
valuey, a sill valueC + Cy = o® (with Co = 0), and a ranga = ¥20. Similarly, the Gaussian
model (given in Table 2.7) in random field theosyaquivalent to the Gaussian model
(given in Table 2.8) in geostatistics: if the randbeld Gaussian model has a mean value
of 1, a variance o6, and scale of fluctuation & the equivalent geostatistical Gaussian
model would have the same mean valya sill valueC + Cy= ¢ (with Cp = 0), and a

rangea = (1NT) 6.

2.5.3 Probabilistic Analysis Techniques

After the variability of input parameters being cnaerised, the next step is to incorporate
and evaluate its influence on slope stability. Iprababilistic analysis, slope stability is

primarily quantified by the probability of failuf@F) or the reliability indeg;.

Suppose that the FS of a slope is a performanagifunwith n input parameterg, X, ...,

Xn such thaFS =f (x, %, ..., %), PF is then defined as

PF = Probability{ FS<1} (2.49)

andp, is defined as
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-1
p == (2.50)
Os

whereurs is the mean of FS angs is the standard deviation of FS.

Common probabilistic techniques to compute PIB;anclude first order second moment
method (FOSM), first order reliability method (FORNboint estimate method (PEM), and

Monte Carlo simulation (MCS). These techniquesiatreduced in the following sections.

2.5.3.1 First Order Second Moment Method

The basic concept of FOSM is that from the first @edond moments (i.e. mean and
variance) of the input variables, the first andosetmoments of FS can be estimated using

the first order items of the Taylor series expamg®aecher and Christian 2003), i.e.

Mes = T,y snlt,) (2.51)
, L OFS ,
—Z % (2.52)

wherex; is the input variable.

PF can then be estimated from, 6°rs, and the assumed distribution of FS (a normal or

lognormal distribution is commonly adoptefl) can be calculated by Equation 2.50.

Due to the complexity of slope problems, it is oftdifficult to evaluate the partial
derivatives of FS with respect to input variablesectly as required in Equation 2.52.
Under such circumstances, a finite difference ap@nois commonly adopted to

approximate the partial derivative.
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FOSM has the advantage of being efficient. It eemldensitivity analysis to be easily
carried out since the variance of FS is the surmootributions from the variances of the
input variables, as shown in Equation 2.52. HoweW&SM has several drawbacks, major
ones including: firstly, its results can be inaatarif the performance function cannot be
well approximated by the first order items of thaylbr series expansion; secondly, only
mean and variance of FS are estimated and othkethader moments are unknown; and

lastly, the calculated PF is sensitive to the asslidistribution of FS.

2.5.3.2 First Order Reliability Method

Another problem associated with FOSM is that itquaes inconsistent PF for the same
problem stated in equivalent performance functiomsof different forms. This is because
FOSM essentially calculates the distance from tle@ampoint to the failure surface in a
certain direction (the direction of the gradiem$tead of finding out the global minimum
distance (from the mean point to the failure swefatiasofer and Lind (1974) proposed
the First Order Reliability Method (FORM) as an impgment of FOSM to address this

problem.

The Hansfor and Lind’s reliability indeB¢, is defined as (Low 2003)

_min [x-m] o x=m
ﬁHL—Xw\/{ - }[C] [ . } (253)

wherex; is the input variablex is the vector of input variablesy is the mean of the input
variables,C is the covariance matrix, antl is the failure domain. FORM computes the
global minimum distance from the mean point tofdikire surface. Such process needs to

use an optimisation algorithm.
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FORM is more accurate than FOSM. However, the reqment of optimisation
algorithms reduces its efficiency. In addition, FORMased on normally distributed input
variables and modifications are necessary for itirtoorporate variables of other

distributions.

2.5.3.3 Point Estimate Method

Point estimate method (PEM) is a simple probaimligtchnique proposed by Rosenblueth
(1975; 1981) to estimate the mean, variance ohaghyer moments of a function. Christian
and Baecher (1999) presented a detailed explanafid®EM and demonstration of its

applications in geotechnical engineering.

PEM evaluates the values of the performance funaioa number of discrete points and
then uses these values to estimate the desired m®mEFS. In practice, if there are n
input variables, then the performance functionvislgated at 2points, which include alll

possible combinations of variables at one standawihtion above and below their means.

Christian and Baecher (1999) concluded that PEM sy éa use and is generally more
accurate than methods that are based on Tayl@ssexpansion (FOSM and FORM). Its
limitation lies in the significant increment of cpotation cost when the number of input

variables is large.

2.5.3.4 Monte Carlo Simulation

Monte Carlo simulation (MCS) establishes the distidouof FS from a large number of
random experiments in the form of numerical simafet. The PF and statistical properties
of FS can be obtained from the distribution of &S has a long history of application

and is discussed in detail by Baecher and Chris?@a3).
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The procedures of a MCS include four steps. Firstlg,probability density function (PDF)
of each input variable is determined. Secondlydoam values of the input variables are
generated based on their PDF. Thirdly, the systerfopnance (such as FS) is evaluated.
Finally, Steps 2 and 3 are repeated N times andsPgalculated from the following

equation

P =— (2.54)
where M is the number of times that the systens fail our case, FS < 1).

The advantages of MCS include the clear concepflsiprocess, and robust results. In
addition, MCS is the only probabilistic method tlwan explicitly incorporate random
fields, which are necessary for the explicit chaaasation of spatial variability. The
disadvantage of MCS is its high computation costisTiroblem, however, can be
effectively improved by various variance reducti@thniques (Baecher and Christian

2003).

2.5.3.5 Incorporating Spatial Variability in Probabilistic Analysis

Suchomel and MaSin (2010) concluded that theravemetypes of method to incorporate

spatial variability in probabilistic analysis: hythmethod and explicit method.

The hybrid method is adopted when FOSM, FORM, or REMpplied. It incorporates
spatial variability indirectly by reducing the vanice of input by Equation 2.44 or by
modelling the material by more than one randomaldeis and changing the correlation

matrix (C in Equation 2.53) of these random variables. Tx@i@t method can only be

! variance reduction here refers to the techniqud@s to reduce iteration numbers. It is differenni the
variance reduction in random field theory.
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adopted when MCS is applied. It incorporates spaiaiability directly by modelling
input variables as random fields. Two most rigorexglicit methods are the random finite
element method (RFEM) developed by Griffiths anchtbe (2004) and Random LEM

developed by Cho (2010).

The explicit method is expected to produce the raostirate results (Suchomel and Masin
2010). However, the implementation of MCS togeth&hwandom field generations is
very time consuming. On the other hand, the hybrethod indirectly takes into account
spatial variability and produces results of reabtmaccuracy. It is viewed as an effective
substitute for the explicit method when the compaotarequirement is unachievable (El-

Ramly et al. 2002; Suchomel and MaSin 2010).

2.5.4 Output Assessment

PF orp, is the final output from a probabilistic analys&everal acceptance criteria have
been developed for PF, including ones proposed fgstPand Brown (1983), SRK

consulting (Read and Stacey 2009), and Sullivan dRewl Stacey 2009). On the other
hand, Christian (2004) stated that it is often maseful to examine the comparative PF
values from various alternative courses of actimstdgad of relying on the absolute PF

values.

Apart from PF and,, a probabilistic analysis yields the mean andarare of FS. When
MCS is adopted, the distribution of FS can also b&ioed. The distribution of FS is

useful as it enables a detailed statistical analysiFS.
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2.6 Previous Studies on Probabilistic Slope Staliyi Analysis

Probabilistic Slope Stability Analysis (PSSA) haeb a primary area of research in slopes
for the past three decades. This section presengsiew of previous studies in PSSA,
with the aim of identifying specific research diiens and research gaps for the present

study.

A selection of literature on PSSA is presented hronological order inTable 2.9. The
information regarding these studies is divided isbo components. Firstly, the type of
project is either “Slope” or “Others” (such as tehror foundation). Most of the
investigations focus on slopes (29/33); otherssatected because methodologies similar
to PSSA were used. Secondly, the type of the nadteyieither “Soil” or “Rock”. The
focus of the research in the present thesis idyigictured rock slopes, whose failures are
similar to those of soil slopes. Therefore, muchhef research reviewed is in soil slopes.
Thirdly, the applied strength criterion is MC, HB, ahers. Fourthly, the analysis method
(for FS calculations) is LEM or the numerical methé&ifthly, the probabilistic analysis
technique is FOSM, FORM, PEM, MCS, or others. “Oghenere include those less
commonly used techniques, such as the second sed®nd moment method (SOSM).
Lastly, research is also tagged with None (whichamse spatial variability is not
considered), Hybrid method, or Explicit method, eleging on how spatial variability of

input parameters is quantified and evaluated.
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Table 2.9 Selected previous studies on probabilistedope stability analysis: scope

ID Year Reference Project
Slope Others
1 2012 (Fisher and Eberhardt 2012) N
2 2012 (Mao et al. 2012) V
3 2011 (Idris et al. 2011) V
4 2011 (Cai 2011) V
5 2011 (Wang et al. 2011) \
6 2011 (L and Low 2011) \
7 2010 (Suchomel and Masin 2010) \
8 2010 (Cho 2010) \
9 2009 (Fu et al. 2009) v
10 2009 (Griffiths et al. 2009) \
11 2008 (Hong and Roh 2008) \
12 2007 (Cho 2007) \
13 2007 (Low 2007) \
14 2006 (Hsu and Nelson 2006) \
15 2006 (El-Ramly et al. 2006) \
16 2005 (El-Ramly et al. 2005) \
17 2004 (Griffiths and Fenton 2004) \
18 2004 (Babu and Mukesh 2004) \
19 2003 (Low 2003) \
20 2003 (El-Ramly et al. 2003) \
21 2002 (El-Ramly et al. 2002) \
22 2000 (Duncan 2000) \ \
23 2000 (Wang et al. 2000) \
24 1999 (Hassan and Wolff 1999) \
25 1998 (Hoek 1998) V V
26 1997 (Low and Tang 1997a) \
27 1997 (Low and Tang 1997b) \
28 1995 (Chowdhury and Xu 1995) \
29 1994 (Christian et al. 1994) \
30 1992 (Chowdhury and Xu 1992) V
31 1987 (Li and Lumb 1987) \
32 1984 (Whitman 1984) V V
33 1983 (Priest and Brown 1983) V
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Table 2.9Continued

ID Material Strength criterion Analysis method

Soil Rock MC HB Others LEM Numerical
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Table 2.9Continued

FOSM

Probabilistic analysis technique
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Some trends are evident from Table 2.9. For ingtaings apparent that with the advance
in computer technology over the years, the numenethod, MCS, and explicit ways to
incorporate spatial variability have gained inchnegspopularity in PSSA. However, in
cases where the HB strength criterion is appligdh{lyhted), none has yet taken into

account spatial variability.

Further analysis was taken to identify specifieegsh directions arising from the selected
PSSA literature (Table 2.9). While it is impossilie exhaust all directions, six major
emphases have been identified, as shown in Talle. Zhese include firstly, input

parameters, which means that the research hasefbaussite investigations, studies of the
variability of geotechnical parameters, or data lys®s; secondly, improvement of
methodology, which means that the research haséacan improving the accuracy (e.g.
in identifying failure surfaces, incorporating gSphtvariability, or computing PF),

efficiency, or user-friendliness; thirdly, compamsof methodology, which means that the
research has focused on comparing the accuracyficiercy of different probabilistic

techniques or different ways to incorporate spatiafiability; fourthly, acceptance

criterion, which means that the research has fatosethe definition or acceptable values
of PF orpy; fifthly, engineering application of PSSA, whicheans that the research has
focused on demonstrating and promoting the ideastachniques of PSSA; and lastly,
input and output studies, where the research hasséa on systematic studies of the
relationship between the input parameters and tlipub for specific cases, mainly by

sensitivity analysis and parametric study.

Among these research directions, outcomes fromfitise five are largely universal,

meaning that the conclusion from one case is agipkcto other cases. On the other hand,
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the outcome from the sixth research direction secdependent, particularly on different

types of slopes and strength criteria.

The sixth research direction, i.e. the relationdfepneen input and output, can be further
divided into seven sub-areas, i.e. 1) COV (singlespeeter), where the research aims to
investigate the relative contribution of the vailiéy of each input parameter to PF; 2)
COV (multi-parameter), where the research aims\estigate the influence of changes in
the variability (usually quantified by the COV) aifput parameters on PF; 3) Distribution,
where the research aims to investigate the infleeridistributions of input parameters on
PF; 4) Cross-correlation, where the research aimsuvestigate the influence of cross-
correlations between input parameters on PF; 5}idpaariability, where the research
aims to investigate the influence of spatial valigbof input parameters on PF; 6)
Anisotropy, where the research aims to investighginfluence of anisotropy of input
parameters on PF and 7) Courses of action, whereefearch aims to investigate the
influences of various design decisions, such dgréifit slope geometry and supports, on

PF.

The selected literature in Table 2.9 is classifieth the above summarised research
directions and shown in Table 2.10, with reseahat employs the HB strength criterion

being highlighted.

Table 2.10 shows that all six major research dwasthave been intensively investigated
for soil slopes, where the MC strength criteriommiginly applied. However for fractured

rock slopes, where the HB strength criterion is @ygdl, there has been little research in
terms of the sixth research direction, i.e. thatrehship between input parameters and

output.
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Table 2.10 Selected previous studies on probabilistslope stability analysis: major

research directions

ID Major research directions (1-5)

Input Improvement Comparison  Acceptance Engineering
parameters of methodology of methodology  criterion application
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Table 2.10Continued
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2.7 Summary

In this chapter, slope stability analysis, the H&&wn (HB) strength criterion, the Limit
Equilibrium Method (LEM), and Probabilistic Slop¢aBility Analysis (PSSA) as well as
its applications, have been reviewed. The HB strewgterion is demonstrated to be an
effective tool for rock slope stability analysisowever, even though the relationship
between input and output has been an importanareserea for the last three decades,
there has been little research into the relatignbletween the input (HB parameters and

their variability) and the output (FS and PF) fagtty fractured rock slopes.






Chapter 3

RESEARCH OBJECTIVES AND M ETHODOLOGY

3.1 Research Objectives

Based on the literature review in Chapter 2, it wasidkd that the focus of the present
study would be to investigate the stability of Hygfractured rock slopes in terms of the
relationship between the input, Hoek-Brown (HB) paetars and their variability, and the
output, Factor of Safety (FS) and Probability ofilifa (PF). Five specific research

objectives are identified and given below:
1) to study the sensitivity of FS to the changes iHB parameters

Given the complexity of the slope problem, it ikely that the sensitivity of FS to the
changes in HB parameters (abbreviated as “FS satysitiis non-linear. Therefore, the
first objective is to find out whether there arey grarticular ranges of HB parameters that
cause high FS sensitivity and whether such rangesféected by different combinations

of HB parameters.

Additionally, for efficiency purposes, it is imparit to determine whether such FS
sensitivity is affected by slope geometry. If itnst, then the present research can be
carried out on a representative slope case anadiresponding conclusions should be

reasonably general.

61
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2) to investigate the influence of changes in theaxiability of HB parameters

(quantified by the COV) on PF

This objective corresponds to the “COV multi-paragnetesearch area in Table 2.10.

3) to evaluate the relative contribution of the vaiability of each HB parameter

(quantified by the COV) to PF

This objective corresponds to the “COV single-par@nigesearch area in Table 2.10 and

aims to identify the HB parameter whose variabititgkes the largest contribution to PF.

4) to investigate the influence of the spatial vaability of HB parameters (quantified

by the scale of fluctuation®) on PF

This objective corresponds to the “Spatial varigfSiresearch area in Table 2.10.

5) to explore the relationship between FS sensittyiand PF

Since PF is the probability of FS being less thathé&re should be a connection between
FS sensitivity and the value of PF. For a slopenhwpecific geometry, there are many
possible cases where different combinations of HEpaters (GSlm;, andog) can give
the same FS. A specific question to answer isftrahese cases with the same FS values,
if the variability of HB parameters (quantified dyetCOV) is also identical, what will be

the corresponding PF values?

Among the five objectives, the first four are se&elcwith the aim to provide a better
understanding about the input and output relatipngh the stability analysis of highly
fractured rock slopes. The results should helglémtify the most critical input parameters

or most critical ranges of input parameters so thbtvant precautions can be taken for
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slope designs and site investigations. The lastabilvp aims to compare the effectiveness
of PF as a safety index with that of FS. On theeothand, other research directions,
including “Input distribution” and “Cross correlatib (as discussed in Section 2.6), are not
included here since there have been few distribatiother than normal that have been
adopted for HB parameters and there have been feafsof cross correlations between

HB parameters.

Two major chapters are devoted to the study of aheve five objectives. The first
objective, which focuses on FS sensitivity, is stigated in Chapter 4. Since FS is the
output of a deterministic analysis, Chapter 4 isitledt “deterministic analysis”. The
remaining objectives are investigated in Chapterwhjch is entitled “probabilistic
analysis”. The methodologies for the deterministi@alysis and probabilistic analysis are

introduced in the following sections.

3.2 Methodology for the Deterministic Analysis

3.2.1 Outline of the Methodology

In the deterministic analysis, FS sensitivity i@exned as well as the influence of slope
geometry. A sensitivity graph analysis and an aqoditting analysis are developed here.
The software involved in the deterministic analysisludesSlide6.0(Rocscience 2011)

which is a limit equilibrium slope stability analgsoftware and/atlab.

For the sensitivity graph analysis, the relatiopshetween FS and HB parameters is
plotted in a series of figures. These figures aeduo determine whether FS sensitivity is
affected by slope geometry and to provide som@lnitsights into FS sensitivity. For the

equation fitting analysisSlide6.0is used to create large sets of data between HB
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parameters and FS based on wide combinations gb&t8meters. This data is then fitted
with a suitable equation (as FS €GSI, m, o¢i)), and FS sensitivity is analysed by taking
derivatives (rates of change) of this equation wikpect to HB parameters. Lastly,

sensitivity graphs are again used to provide aabigerification of the final conclusions.

The proposed methodology for the deterministic ysisl has the advantages of being

straightforward and precise, as both qualitative: gumantitative approaches are applied.

In the following sections, the Limit Equilibrium Nfeod (LEM) model used in the
deterministic analysisslide6.0Q is firstly introduced. The sensitivity graph aysa$ and the

equation fitting analysis are then discussed.

3.2.2 LEM Model (Slide6.0)

The LEM softwareSlide6.0is adopted for the deterministic analysis. Themre several
LEM models incorporated i8lide6.0 Among them, Bishop’s simplified method of slices
is chosen for the present study. Bishop’s modelyres reasonably accurate results and is
relatively simple. While some other LEM models, lsugs the Spencer (Duncan and
Wright 2005) and Morgenstern-Price (Duncan and Wrg005), have the advantages of
satisfying complete equilibrium (i.e. both forcedamoment equilibrium) and being able to
model irregular failure surfaces, they are compéidaand time-consuming, which are
significant drawbacks for the present study (esdlgcfor the later probabilistic analysis,

where Monte Carlo simulation, MCS, is applied).

The settings in the LEM model are given here. Tiipessirface is set to be “Circular” and
is found by the “Grid search” method. “General Hd&kwn” is selected as the “Strength

type” in “Material property” and the “Number of sfis” is set at 30.
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3.2.2.1 Number of Slices

Duncan and Wright (2005) stated that the changeumber of slices does not have a
strong impact on FS when the slope geometry anérrabbelow the slope surface have
been confirmed. In the present study, five caséls mentical slope geometry and material
properties but different number of slices are exauaito find out the sufficient number of

slices. The slope geometry and material propeatiesshown in Figure 3.1 and the results

are presented in Table 3.1.

H=100

Figure 3.1 Slope geometry and rock mass propertiéer examining the effect of

changes in number of slices on FS

Table 3.1 Effect of changes in number of slices on FS

Case 1 2 3 4 5
Number of slices 20 30 40 60 100
FS 1.289 1.284 1.282 1.282 1.282

The results in Table 3.1 confirm that when the nends slices i$> 30, its change has little
influence on the computed FS. Since a fewer nurobelices requires less computation

effort, 30 slices is selected for the present study

3.2.3 Sensitivity Graph Analysis

The sensitivity graph analysis presents the relatipp between FS and HB parameters in a

qualitative graphical form. The employment of thislysis serves three purposes:
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1. to examine whether FS sensitivity is affected lmpslgeometry

2. to provide some initial insights into FS sensiivit

3. to display and verify the final conclusions of theterministic analysis

The process of this analysis is given below:

Firstly, for a particular slope, a set of G8i, ando.; values are specified and denoted as

the “mean values”. The corresponding slope modeuik in Slide6.0.

Secondly, based on the mean values, a global mmim8 is calculated and this FS is

denoted as the “mean FS”.

Thirdly, for each of the input parameters, i.e. Q8| andogj, a range is specified. Each
parameter is then varied in uniform increments witts range (while all other parameters
are held constant at their mean values), and thatiwms of FS are calculated. This step is

implemented by the “sensitivity analysis” functionSlide6.0.

Finally, the resultant FS vs. the input HB paransetare plotted inMatlab, and the

relationship between FS and HB parameters can bgsada

The specified ranges of HB parameters are listedable 3.2. The changes of the
parameters are based on an increment factor ijméxtends from 0 to 1 in increments of

0.1.

For GSI andn, the ranges are selected based on their physiu&.| Foroy, its value can

be up to 200MPa; however, a range of 10 - 150MPaasonable for most types of rock.
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Table 3.2 Ranges and the increment factor for HB pameters in sensitivity graphs

Parameter Range Increment factori=0-1
GSI 10 - 100 10 + 90i
m 5-40 5 + 35i

oci (MPa) 10 - 150 10 + 140i

To illustrate, the sensitivity graph for the slapeFigure 3.1 is shown in Figure 3.2. The
slope face anglg, slope height H, mean values of HB parameters,thednean FS are
given at the top of the figure (slope an@lend slope height H are given in this and all
subsequent figures in the form PfH, in this case 55-100). Each line represents the
variation of FS corresponding to the change inldBegparameter, with others fixed at their

mean values.

55-100, GSI=30, mi213,cci:40, FS=1.28
25

——= 1 GSI=10+90i |

Factor of Safety FS

Increment Factor i

Figure 3.2 Sensitivity graph for the slope shown ifrigure 3.1
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To examine whether FS sensitivity is affected ke slope geometry, cases with the same
HB parameters but different geometry are designedsamsitivity graphs are generated.

The results are then compared to examine whetlyegeameral pattern exists.

The sensitivity graphs are also used to obtainmnedry information about FS sensitivity.
However, given the complexity of slope stabilityoplem, a quantitative approach is

deemed necessary.

3.2.4 Equation Fitting Analysis

The equation fitting analysis is developed to sapmnt the sensitivity graph analysis.
Slide6.0is used to generate a large number of data betw8eand HB parameters and the
data are fitted with a suitable equation (as FS(GSI, m, o). The sensitivity of FS is
then analysed by taking the derivatives of FS watspect to HB parameters based on the

fitted equation.

To implement this analysis, a large amount of @eid an effective form of equation are

required. Both of these requirements are discussiedvb

3.2.4.1 Data

The data should consist of sets of mappings from &S andog to FS, covering a wide
range of combinations between G881, ando.. For this purpose, data points that are
uniformly distributed within the range of each HBrgraeter are selected. Taking n data
points for GSI, m data points fan, and t data points foe, creates n x m x t
combinations of GSIm, ando¢ and corresponding FS values for the equatiomdttirhe

actual values of n, m, and t, are specified in Girat In addition, to make the derivatives
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of FS to the HB parameters comparable with eachroéiledata for the equation fitting,

including GSIm, o, and FS, are normalised into the interval [0, 1].

3.2.4.2 Form of the Equation

The equation used in this case needs to obey twmaiples. Firstly, it should be easy to
differentiate and the derivative of FS to each HBap®eter should be simple. Secondly, it
should satisfy the required precision. While equegiwith more complicated forms, such
as exponentials, may be more precise, they do aofoom to the first principle. A

candidate equation is proposed as follows:

y=ax+axtaxt af+t ak+t gkt axx ax¥ ax (3.1)
wherey represents FS, amnd, xp, X3 represent GSIn, o respectively.

The polynomial form is chosen as it is conveniendifferentiate. It should also allow a
high precision as three components are included:+ axx; + agXs is the linear component,
asx? + asx2 + agx? is the nonlinear component, amex;x, + agkXs + agXixz is the

component representing mutual influences.

3.2.4.3 Sensitivity Analysis

Once the coefficients for Equation 3.1 have bederdened and the precision has been
validated, the sensitivity analysis can be caraet For instance, the derivative of FS with
respect to GSI igy/ox; = a; + 2a4x; + azxo + agXs. The sensitivity of FS to GSI can then be

measured byy/ox; and it depends on two terms: oneist 2asx;, which represents the
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contribution from GSI itself, and the otherais, + agXs, which represents the contributions

from other parameters and thus reflects the degfreutual influences.

3.3 Methodology for the Probabilistic Analysis

3.3.1 Outline of the Methodology

The probabilistic analysis is carried out based/immte Carlo simulation (MCS) using two
probabilistic analysis models developedMatlab. Furthermore, sincglide6.0is not able
to incorporate spatial variability, a LEM modeldeveloped irMatlab based on Bishop’s
simplified method of slices for the probabilisticadysis. The outline of the methodology

for the probabilistic analysis is given below.

The first research objective in the probabilistialysis is to examine the influence of
changes in the variability of HB parameters on PRe Tnvestigation is based on a
parametric study where the COV of HB parameters sgsyematically from 0.1 to 1. All
three HB parameters are modelled as random varigbtedtaneously and for simplicity,

their COV are assumed to be the same.

The second research objective in the probabilighalysis is to evaluate the relative
contribution of the variability of each HB parameterPF. This is achieved through two
approaches. The first employs a parametric studhgrevthe COV of each HB parameter
again varies systematically from 0.1 to 1. HoweuwdB parameters are modelled as
random variables separately (i.e. one of them idethed as a random variable and others
are fixed at their mean values). The relative ¢buations from the variability of HB

parameters can then be related to the corresporfihgalues. The second approach

employs the Spearman correlation coefficigntvhich measures the monotonic correlation
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between two variables and has been used as amatodiof the contribution of the
variability of an input variable to the output ieveral studies (EI-Ramly et al. 2002; Fisher
and Eberhardt 2012). In particular, a probabilisialysis is implemented where all three
HB parameters are modelled as random variables thigir COV being set to the
maximum values observed in engineering practicee Bpearman ranking correlation
coefficients between the input HB parameters andotitput FS are then measured and

compared.

The third research objective in the probabilistelgsis is to examine the influence of the
spatial variability of HB parameters on PF. Thisealive is achieved through another
parametric study, where the scale of fluctuaioof HB parameters varies from a small
value to infinity. In the corresponding probabitistinalyses, HB parameters that are
considered as spatial random variables are modeledandom fields (while other
parameters are still modelled as random variablesjill be further discussed in Section

3.3.2.1 that which HB parameters will be consideredpatial variables.

The fourth research objective in the probabilisinalysis is to investigate the relationship
between FS sensitivity and PF. This requires ouésofrom the deterministic analysis and
will be carried out in conjunction with investigaiis of the previous three research

objectives.

In the present study, probabilistic analysis th@#sdor does not consider spatial variability
of input variables is termed “simplified probahtis analysis” or “spatial probabilistic

analysis” respectively.
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The methodology of the Monte Carlo simulation (MCSdliscussed in Section 2.5.3.4 and
our implementation is schematically illustrated Rigure 3.3. Codes of the developed

Matlab probabilistic analysis models are provided in Apgig A.

MCS Methodology for Probabilistic Analysis

Parametric Study
COV: 0.1 - 1.0 - Scale of Fluctuation: 0— co

N/ N

Input as Random Variable(s) Input as Random Fields
Together or Seperately and Random Variables

N/

LEM Model
(Developed in Matlab)

|

Factor of Safety (FS) [— M Times

/

Number of FS<1: N

Y/

Probability of Failure PF = %XIOO% Statistical Properties of FS

Parametric Study GSI m. G . —

Figure 3.3 MCS methodology for the probabilistic amlysis (codes of the probabilistic
analysis models are provided in Appendix A)
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3.3.2 Monte Carlo Simulation

3.3.2.1 Statistical Characteristics of HB Parameters

(1) Upper-Limit COV

In some of the probabilistic analyses, the COV of péBameters are set to their observed
upper limit values in engineering practice. For G variability is generally small
compared with that afy ando.. Based on the data in Section 2.3.2, 0.15 is szlext the
upper-limit COV for GSI. Similarly, 0.2 is selectéat m. The parametes;; has the largest
variability and in most circumstances its COV vdies between 0.1 — 0.25. However, Cai
(2011) showed that the COV af; can be up to 0.39. Since thg data in Cai (2011) were
obtained from measurement rather than estimatiah ame considered to be reliable.
Marinos et al. (2005) also stated that there endency to underestimate the importance of

oci. Based on these considerations, 0.4 is selectdgek agper-limit COV value fos;.

(2) Probability Distributions

Normal and lognormal distributions are the two magidely applied statistical
distributions for geotechnical parameters. For itiaahlly used soil or rock strength
parameters, such asand ¢ (MC parameters), lognormal distributions are comiyon
assumed, due to the need to avoid negative valtiess{ian 2004; Fenton and Griffiths
2008). However, two of the HB parameters GSI andot only have physical lower-limits
asc and¢ do, but also have physical upper-limits, which 488€ and 40 respectively.
Truncated normal distributions are therefore cagr&d to be more appropriate for them,

and this is consistent with the literature. bgrtest data shows that it also tends to follow
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a normal distribution (Ruffolo and Shakoor 2009; @&ill). Consequently, truncated

normal distributions are assumed for all three HEapeeters in this study.

(3) Spatial Variability

The influence of the horizontal spatial variabildfyHB parameters along the slip surface
on PF is investigated. The spatial variability iodelled by random fields, and is
characterised by the scale of fluctuatiéoniIn the current study, onlyn and o are
modelled as spatial variables, as they are intaak parameters, whose spatial variability
Is considered to be theoretically sound and redtieasy to measure. In contrast, GSl is a
measure for the blockiness of the entire rock mHsss it will not be modelled as a spatial
variable but a random variable. For simplicity, geale of fluctuatior® of m andoy; is

assumed to be equal.

The random field along the slip surface is modeliaded on the method of slices and each
slice is a unit for the random field. Based on @andield theory, the width of the slice
should not exceed the scale of fluctuation, othesvgipatial averaging needs to be applied
(Equation 2.46). Therefore, in the spatial probstid analysis, the number of slices for the

LEM model is set to 100.

3.3.2.2 Issues in Simulation

(1) Number of Iterations

Number of iterations directly relates to the accyraf a MCS. PF from a MCS only
stabilises after a certain number of iterations basn reached and this number, M, is

different from one case to another. Generally,stmaller the PF is, the higher number of
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iterations is required. A practical approach toueeghat the required number of iterations
has been reached is to plot M against PF and lysttaéck the stabilisation. This approach

is employed in the present study.

(2) Variance Reduction Technique

A major drawback of the MCS is the high computattost required for the iterations. In
the present research, MCS needs to be carried ot farge number of times in the

parametric studies, which can result in extensoramutation cost.

For efficiency purposes, a variance reduction teghanis applied here. Such technique is
commonly used in MCS to reduce the computation foost required level of accuracy, or
equivalently, to increase the accuracy for the sanmber of iterations. Common variance
reduction techniques include importance samplingthithetic sampling, correlated
sampling, controlled variates, and Latin Hypercubampling (Baecher and Christian
2003). Most techniques mentioned above requirettigaanalytical solution of the problem
to be exact or can be approximated. However, netththe two conditions applies to rock
slope stability problems. Latin Hypercubic samplaaes not have such restrictions and is

used in the present study.

3.3.2.3 Analysis of the Output

For a MCS based probabilistic analysis, the outpat large number of FS. Probability of
failure, PF, is the number of the FS less thandtive to the total number of iterations. In
some situations where PF is expected be very sthallnumber of iterations required to
stabilise PF can be too high to achieve (evenvém@ance reduction technique has been

applied). In such situations, a simple approaclemitty Fenton and Griffiths (2008) is
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applied to estimate the PF: firstly, as many iiera as possible are performed; afterwards,
the best fit statistical distribution is found fihie obtained large amount of FS; and finally,

PF is estimated from the fitted distribution of FS.

After PF is obtained, its absolute value can bduataed based on various acceptance
criteria. However, in the present study, the “Corapae PF” (Christian 2004), such as the
variation of PF corresponding to the changes inG®/ of input parameters, is more of

interest. Apart from PF, the distribution and statal properties of FS, including the mean,

standard deviation, and COV, will also be examined.

3.3.3 LEM model (Developed irMatlab)

A LEM model was programmed Matlab for the probabilistic analysis. The codes of this
model are given in Appendix A. In this section,dheand validation of this LEM model

are presented.

3.3.3.1 Theory of the LEM Model

The LEM model developed here uses the slip suifaperted from the prograr8lide6.0
and calculates FS by Bishop’s simplified methodlimes. Bishop’s simplified method of
slices is based on the MC strength criterion and M€ parameters as input. Therefore, to
use the HB strength criterion in conjunction withhgip’s simplified method of slices, an
additional step that converts HB parameters to edgimt MC parameters is necessary. For
the present study, Kumar’s solution (discussedeantiBn 2.3.3.1), which is an accurate

converting solution, is applied.

The algorithm of the LEM model is described belowd also shown in Figure 3.4.
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1. Calculatem,, s, anda from input HB parameters by Equations 2.2, 2.3, 2ddand
then calculate the effective normal stresses onstipe surface by the updated

Fellenius’s solution (Equation 2.34).

2. Convert HB parameters to equivalent MC parameters lynd€’s solution

(Equations 2.14, 2.15, and 2.16).

3. Give an initial input of FS (1 is selected for fhresent study).

4. Calculate the first FS by Equation 2.38.

5. Calculate a second FS based on the updated FS $fiepd) by Equation 2.38.

6. If the difference between the first and second &#ore than a threshold value
(0.001 is selected for the present study), retar8tep 4 and use the second FS as
input for the calculation. Repeat Steps 4 and 3 thwidifference between the last

two FS is less than the threshold value.

(End of the algorithm).
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Bishop's Simplified Method of Slices (Using HB Parameters as Input)

Effective N 1St
HB Parameters: GSI, m;, 6, and D e(cE(\]f:elaﬁc:)r:l 2a34) T

v

my, s, and a

N

Kumar's solution
(Equations 2.14, 2.15, and 2.16)

v

Angle of Friction ¢
and Cohesion ¢

v

Initial Input of FS (=1) |——» Fa:]tz(’qrut;fﬁsoﬂ:lﬂ?ztg é)FS)

v

FS (i)
(Equation 2.38) <

v

FS (i+1)
(Equation 2.38)

No
(Generally = 10 times)

v

Check Convergence
FS(i+1)-FS(i) < 0.001 ?

Final FS

Figure 3.4 Algorithm of the LEM model developed inMatlab for the probabilistic

analysis (codes given in Appendix A)
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3.3.3.2 Validation of the LEM Model

The accuracy of the LEM model developed here uslatjab needs to be validated as it is
the basis for the entire probabilistic analysise Thodel is validated againStide6.0by

comparing the output for a wide range of casesleTal3.

Seven combinations of arbitrarily selected HB patanseare applied to three slope cases
with the same height but different slope face angléequal to 40, 55, and 70). Therefore,

there are totally 21 cases, listed in Table 3. Jlbpe geometry is shown in Figure 3.5.

Table 3.3 Cases for validation of the LEM model deveped in Matlab

_ FS
Case | GSI m (I\/Tlga) asn'é’féﬁ SIiES&O Developed model <P (%)
1 10 5 10 40 0.58 0.58 0.08
2 30 13 40 40 1.96 1.96 0.14
3 50 21 70 40 3.69 3.70 0.25
4 75 30 100 40 8.01 8.92 0.12
5 100 40 150 40  37.22 37.22 0.01
6 100 5 10 40 6.89 6.89 0.06
7 10 40 150 40 239 239 -0.09
8 10 5 10 55 0.38 0.39 0.96
9 30 13 40 55 1.28 1.29 1.07
10 50 21 70 55 259 2.60 0.45
11 75 30 100 55 7.01 7.03 0.28
12 100 40 150 55  33.67 33.71 0.13
13 100 5 10 55 5.87 5.88 0.15
14 10 40 150 55 157 157 0.50
15 10 5 10 70 0.27 0.27 1.55
16 30 13 40 70 0.87 0.89 2.05
17 50 21 70 70 1.80 1.83 1.52
18 75 30 100 70 5.53 5.58 0.84
19 100 40 150 70  27.74 27.78 0.15
20 100 5 10 70 4.92 4.95 0.57
21 10 40 150 70 1.00 1.04 3.29
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H=100

Figure 3.5 Slope geometry for validation of the LEM nodel developed irMatlab

The FS calculated bglide6.0and by the developed LEM model are given in Tabhk

The relative differences are given in the righuooh of Table 3.3 and plotted in Figure 3.6.

Relative difference (%)
o
F]
=
]
=
H
Hl
I
L
TS
>
22
.

Cases

Figure 3.6 Relative differences between the FS calated by Slide6.0 and by the LEM
model developed inMatlab

Figure 3.6 shows that the FS calculatedStige6.0and by the developed LEM model are
very similar, with relative differences mostly lebsin 2%. The developed LEM model can

therefore be viewed as validated.
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3.3.4 Validation of the Random Field Generator

3.3.4.1 Introduction

The random field generator used in the preseniysiuas developed by Constantine (2010).
While this generator has the advantages of bemglsiand user-friendly, its accuracy has
not been fully validated yet. In this section, aailed validation of the random field

generator is given.

The Constantine random field generator is basedercovariance matrix decomposition
method (Davis 1987). Among the commonly used randield simulation methods, this
one has the appeal of accuracy and simplicity @remnd Griffiths 2008) but has the
drawbacks of being inefficient and difficult for mgrating large fields. However, these
drawbacks are not an issue for the current resesrt¢he random fields required here are
one dimensional and small in sizes. For the carogiastructure of the generated random
field, the Markov correlation function (Table 27as been widely applied in geotechnical

engineering and is adopted in the present study.

3.3.4.2 Validation

The validation of the random field generator fosuse the mean and covariance function,
since together they are able to characterise aomarfgtld completely. Three sets of data,
with the scale of fluctuatiof equal to O (or precisely, very close to 0), 10J &9, are

generated and used for the validation. In particidach set of data includes 40 1x100
random fields. The means and variances of thesdomanfields are set to 0 and 1

respectively.
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(1) Mean

The mean values of the generated random fieldsadceilated and plotted. Figures 3.7(a),
3.8(a), and 3.9(a) show one of the 40 random figldsach set of data, and Figures 3.7(b),
3.8(b), and 3.9(b) show the mean values of theeesl random fields (i.e. the mean value

of the random field in the left figure correspotd®ne of the circles in the right figure).

Scale of Fluctuation = 0 Scale of Fluctuation = 0
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Figure 3.7 (a) Example of a random Figure 3.7 (b) Mean values of the 40
field with scale of fluctuation =0 random fields with scale of fluctuation =0
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Figure 3.8 (a) Example of a random Figure 3.8 (b) Mean values of the 40

field with scale of fluctuation = 10 random fields with scale of fluctuation = 10
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Figure 3.9 (a) Example of a random Figure 3.9 (b) Mean values of the 40

field with scale of fluctuation = 40 random fields with scale of fluctuation = 40

From Figures 3.7(a), 3.8(a) to 3.9(a), the randmids become more and more smooth,
because as the scale of fluctuation increasegjatee(in the random fields) become more
correlated. On the other hand, the mean value®efrandom fields in Figures 3.7(b),
3.8(b), and 3.9(b) (represented by the circlestsmvenly at both sides of the horizontal
axes, suggesting that the mean values of the gederandom fields are unbiased and

equal to the theoretical value (0 in this case).

In addition, the circles in Figures 3.7(b), 3.8(@0d 3.9(b) become more spread out. This
is also caused by the increase of the scale ofuition: when the scale of fluctuation is
small, the data in the random field are less cateel and tend to self cancel each other
around the mean (as in Figure 3.9a); when the swfaf@ictuation becomes large, this
effect is less significant and therefore the meanes tend to be more variable and spread

out.

Based on the above discussions, we can concludgh®amneans of the random fields

generated by the Constantine algorithm are unbiasdaqual to the theoretical values.
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(2) Covariance Function

The covariance functions of the generated rand@&bdiare tested b§Swin (Xu and
Dowd 2005), which is a geostatistics modelling wafe. The Markov model (given in
Table 2.7) in random field theory is equivalenttiie exponential model (given in Table
2.8) in geostatistics. Specifically, if the randdield Markov model has a variance &t
and scale of fluctuation @ the equivalent geostatistical exponential modall have a
sill valueC + Cy = 6 (with Co = 0) and a ranga = %20 (the effective range would ba)3
In practice, the validation of the generated rand@tds is facilitated by comparing their

experimental variograms with the corresponding tbical variograms.

An example of the experimental variogram for a geteel random field is plotted in
Figure 3.10. The stars in the picture represenefperimental variogram values, while the
solid line represents the theoretical variograme Tistance ranges from 1 to 99, as the

dimension of the random field is 1x100.

The specific process of validation is given beldwstly, each set of data, including 40
random fields, are imported inGSwinand their experimental variograms are calculated.
Secondly, the experimental variogram values areomr&p into Matlab and arranged
together (thus there will be 40 variogram values daspecific distance h). Thirdly, the
maximum and minimum experimental variogram valumsefach specific distance h are
truncated (2 out of 40) and the remaining expertaderariogram values (95%) are plotted.
Lastly, the envelopes and means of the experimesatabgrams are drawn against the
theoretical variograms. In all, three figures alattpd for three sets of data, as shown in

Figures 3.11, 3.12, and 3.13.
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cO = 0.00%E-D2
cl = 100.00%E-D2
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Figure 3.10 Experimental and theoretical variogramdor a generated random field
with scale of fluctuation = 10 (the stars represengxperimental variogram values and
the solid line represents the theoretical variogramGamma represents the variogram

vh, and al is the range)

Based on Figures 3.11, 3.12, and 3.13, it is cleat the means of the experimental
variograms (the red solid lines in the middle) espond very well to the theoretical
variograms (the green circled lines). This demeauss that the covariance functions of the

simulated random fields are accurate.

Based on the above results, the Constantine randelch denerator can be viewed as

validated.
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Figure 3.11 Experimental variogram values for dataset 1 (40 random fields with scale

of fluctuation = 0) vs. the theoretical variogram
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Figure 3.13 Experimental variogram values for dateset 3 (40 random fields with scale

of fluctuation = 40) vs. the theoretical variogram

3.4 Summary

In this chapter, specific research objectives o thesis were proposed and methodologies
to achieve these objectives were developed. It demsded that a deterministic analysis
chapter and a probabilistic analysis chapter wdwd devoted to study the research
objectives. For the deterministic analysis, theolmed LEM softwareSlide6.0Q was firstly
introduced. Afterwards, a sensitivity graph anaysind an equation fitting analysis were
developed. For the probabilistic analysis, a senésparametric studies were firstly
designed. The methodology of the Monte Carlo sinaia(MCS) was then discussed in
detail, in terms of the input, process, and outBiriceSlide6.0is not able to incorporate
spatial variability, a LEM model based on Bishopisn@ified method of slices was

developed inMatlab for the probabilistic analysis. The algorithm bétdeveloped LEM



88 Chapter 3. Research Objectives and Methodology

model was given and its accuracy was validatedalkinthe random field generator used

for the probabilistic analysis was examined and/@dao be valid.



Chapter 4

DETERMINISTIC ANALYSIS

In this chapter, the sensitivity of FS to the clesyin HB parameters (FS sensitivity), and
whether such sensitivity is affected by slope gdoyneare studied. A sensitivity graph

analysis and an equation fitting analysis are eygaldo achieve the research objectives.

4.1 Preliminary Analysis by Sensitivity Graphs

4.1.1 Influence of Slope Geometry

This section aims to determine whether FS sensitia affected by slope geometry.
Sensitivity graphs are generated and comparedafescwith the same HB parameters but

different slope geometry.

Five cases with different combinations of slopeefamglep and slope height H are

designed and given in Table 4.1. The generic foirthe slope geometry for these cases is
shown in Figure 4.1. Two sets of HB parameters aeel @s mean values for the sensitivity
analysis (as explained in Section 3.2.3) and theygaven in Table 4.2. Thus there are 5 x

2 =10 cases in total. The sensitivity graphs iese cases are shown in Figures 4.2 to 4.11.

There are three lines in every figure. Each lirgesents the variation of FS corresponding

to the change in one HB parameter, with others fatetieir mean values.

89
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H (m)

Figure 4.1 Generic form of the slope geometry fomvestigating the effect of varying

slope geometry on FS sensitivity

Table 4.1 Cases for investigating the effect of vaiyg slope geometry on FS sensitivity

H (m
8 (degree) (m) 50 100 150
40 / Case 2 /
55 Case 1 Case 3 Case 5
70 / Case 4 /

Table 4.2 Mean values of HB parameters for investigatg the effect of varying slope
geometry on FS sensitivity

Parameter Setl Set 2
GSI 30 75
my 13 30
oci (MPa) 40 100

Comparing the five sensitivity graphs for each $é4B® parameters (i.e. comparing within

Figures 4.2-4.6 and within Figures 4.7-4.11), weeanle that although the sensitivity lines
within each graph show high degrees of complexiitg,relative positions of all three lines

and the pattern for each individual line are similatween cases. The only difference lies
in the scale of the vertical axes, which is causgthe influence of slope geometry on the
absolute values of FS. These suggest that thergéneral pattern of FS sensitivity exists,
which is independent of slope geometry. TherefBf®,sensitivity can be studied using a

representative slope case and Cage=83%5, H = 100) in Table 4.1 is selected here.



91

Chapter 4. Deterministic Analysis

1.96

13,oci:40, FS=

=30, m,

40-100, GSI

2.05

=30, mi:13,cci:40, FS=

56-50, GSI

25

ful L\A]
1T
*
(@]
+
0 et
“ﬂ H < 7T T A %‘1
by [] © | | |
n l_ s O | ! ! ki
O £ IS ” ” ”
+ \\\\\\ I Y M O R
| | | |
| | |
| % | | o A
| | | |
| | | |
\\\\\\\\\ - - - ___L_ 4
| | | |
| | | |
m m m m
o 0 o 7> =
N — —
SH A1vJes Jo J010e4
[t A
1
|
5
@
|
o
< Py e N Lfm T
— I ®© | | |
n o S O | | |
O g b g ” ” ”
+ “““ et e S
| %, | | |
| | | | e =
| | | | |
| | | | |
Lo - -4l ____ 41 —
| | | | |
| | | | |
| | | | |
” ” ” ” ”
o To) o T) o o
%] R\ « = —

S4 Aieyes jo JojoeH

0.6 0.8

0.4
Increment Factor i

0.2

0.8

0.6

0.4
Increment Factor i

0.2

Figure 4.2 Sensitivity graph for slope case IFigure 4.3 Sensitivity graph for slope case 2

with HB parameters set 1 as mean values with HB parameters set 1 as mean values

=0.87

13,0740, FS

=30, m,

70-100, GSI

1.28

=30, mi:13,o'ci:40, FS=

55-100, GSI

10+90i

GSI=
I;

i
—e
|
|
|
|
l
|
—8 -
|
|
|
|
|
|
|
|
R —
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
[
|
L

16
14 -

10+90i

GSI=

- 5

25

S4 Aiefes Jo Jo1oed

0.6 0.8

0.4
Increment Factor i

0.2

Increment Factor i

Figure 4.4 Sensitivity graph for slope case Figure 4.5 Sensitivity graph for slope case 4

with HB parameters set 1 as mean values with HB parameters set 1 as mean values



Chapter 4. Deterministic Analysis

92

=12.11

=100, FS

:30’oci

=30, mi:13’0ci:40’ FS=1.07 55-50, GSI=75, m,
60

55-150, GSI

10+90i

GSI=

R L

GSI=10+90i
m
(0}

sS4 Aivfes Jo Jo1oe

15
100~
5
0

0.8

0.6

0.4
Increment Factor i

0.2

Increment Factor i

Figure 4.6 Sensitivity graph for slope case 5Figure 4.7 Sensitivity graph for slope case 1

with HB parameters set 1 as mean values with HB parameters set 2 as mean values

:30,oci:lOO, FS=7.01

55-100, GSI=75, m,

:30,oci:100, FS=8.91

40-100, GSI=75, m,

Increment Factor i

s
(e}
+
o
F— ~—t
an
0
O]
o
o™
TS
-
SR TR
ilwm.u\fnv\tu \\\\\\\\\\\\\\\\\\
Lo 7
n I S O
O] m” o) m”
+ \\\\\ O B
| |
| %7
| |
| |
| |
| 000 ____d____4a_
| |
| |
| |
” ”
| |
Yo} o Ln
™ ™ N

sS4 Avjes Jo Jo1oe4

Increment Factor i

Figure 4.8 Sensitivity graph for slope case 2Figure 4.9 Sensitivity graph for slope case 3

with HB parameters set 2 as mean values with HB parameters set 2 as mean values



Chapter 4. Deterministic Analysis 93
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Figure 4.10 Sensitivity graph for slope case 4igure 4.11 Sensitivity graph for slope case 5

with HB parameters set 2 as mean values with HB parameters set 2 as mean values

4.1.2 Initial Investigation of FS Sensitivity

This section aims to provide some initial insightéo FS sensitivity by generating
sensitivity graphs for the representative slopeed@3ase 3 in Table 4.1) with different

combinations of HB parameters taken as mean values.

Four sets of mean values of HB parameters are chaseiisted in Table 4.3. The

sensitivity graphs for them are shown in Figurd40 4.15.

Table 4.3 Mean values of HB parameters for initial inestigation of FS sensitivity

Parameter Setl Set 2 Set3 Set4
GSl 30 50 75 100
m 13 21 30 40
oci (MPa) 40 70 100 150
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Discussions about these figures are given belowstl¥i the sensitivity lines for GSI are
generally steep, which suggests that GSI has @ laffuence on FS. However, the lines
also display large curvature, which suggests ttaioaship between FS and GSI is non-
linear. Secondly, the influence of on FS is small in Figures 4.12 and 4.13 but iDbees
much larger in Figures 4.14 and 4.15. Also, itdumrice on FS is positive in the first two
graphs and then becomes negative. These resuliesutpat the sensitivity of FS to the
change inm is affected by the mean values of other paraméiersGSI ands;), since
they are the only factors that have changed. Lagilys., the corresponding sensitivity
lines are also much steeper in Figures 4.14 arislthdn those in Figures 4.12 and 4.13. In

addition, the influence af;; on FS is always positive.

The above results confirm that the sensitivity 8ftb the change in HB parameters is non-
linear and it is affected by different combinationt HB parameters. However, the
sensitivity graphs alone are not sufficient to pdevconclusions for FS sensitivity and a

further analysis is necessary.

4.2 Sensitivity Analysis by Equation Fitting

This section aims to investigate FS sensitivity the equation fitting analysis. The
equation fitting, including the fitting data, resyl and errors are firstly discussed.

Sensitivity analysis is then conducted based offittieel equation.
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4.2.1 Equation Fitting

As discussed in Section 3.2.4.1, the data for theion fitting are generated 18fide6.0

It consists of sets of mappings from G8i, ando. to FS, covering a wide range of
combinations between GSh, ands. Based on the conclusions from Section 4.1, GSl is
the most influential parameter on FS, withthe second andh the last. Therefore, 7, 4,
and 6 data points are chosen for GfJ,ando; respectively, as listed in Table 4.4. Thus
there are 7 x 4 x 6 = 168 sets of data in total thedfirst 12 sets of them are shown in
Table 4.5 (full sets of data are provided in Apprm). After the data being generated, all
parameters, including GSin, o, and FS, are normalised to the range of [0, 1 Th
following polynomial form of equation (Equation 3.Will be used for the fitting, as

discussed in Section 3.2.4.2.

y=ax+taxtaxt axt gkt g%t 3 x¥ axyx ax 3.1

wherey represents FS, amnd, x;, X3 represent GS, o respectively.

Table 4.4 Values of the data points of HB parameter®r the equation fitting

Parameter Data point
GSl 10 25 40 55 70 85 100
m 5 17 28 40
oci (MPa) 10 35 65 95 120 150

The unknown items in Equation 3.1 are the 9 coeffits, i.e.a; to ag. They can be
represented by the 9x1 matrix in Equation 4.2. &ree 168 sets of data, which can be
represented by the HB parameter mathixand FS matrixy, as in Equation 4.1 and

Equation 4.3. Therefore, the task is to solve thear equation system in Equation 4.4.
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Table 4.5 First twelve sets of data (out of 168) fadhe equation fitting (full sets of data
are provided in Appendix B)

Data set GSlI m oci (MPa) FS

1 10 5 10 0.38
2 10 5 35 0.551
3 10 5 65 0.664
4 10 5 95 0.751
5 10 5 120 0.812
6 10 5 150 0.874
7 10 17 10 0.608
8 10 17 35 0.84
9 10 17 65 0.976
10 10 17 95 1.076
11 10 17 120 1.145
12 10 17 150 1.215

A=[x % % X % % %% %% X% (168x9) (4.1)

a=[a a & & a& 3 a g g (9x) (4.2)

y=[ FS ... FSGS]' (168x 1) (4.3)

Axa=y (4.4)

The least square solution for the linear equatigstesn in Equation 4.4 is presented in
Table 4.6. To examine the accuracy of the fittedagign, the 168 sets of GSh, andoq;
(original data for the equation fitting) are inpuoito the fitted equation to recalculate the FS.
These recalculated FS values are termed the fE®d The overall absolute relative
difference (ARD) between the fitted FS and the #8e(original data) is then calculated by

Equation 4.5.
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Table 4.6 Least square solutions for a in the lineagquation system in Equation 4.4

Coefficient a1 A as au as 35 &y ag ag

Value -0.364 0.067 0.006 0.551 0.075 -0.0210.260 -0.134 0.447

f FS(Fitted - F Tru
ARpo T FS(Trug
168

(4.5)

In this case, the overall ARD is 200%. The comparisetween the fitted FS and the true
FS is shown in Figure 4.16 (please note that aW&8es have been normalised into [0, 1]).
In Figure 4.16, the horizontal axis correspondsh& 168 sets of data, which are arranged
in the ascending order of GSI. The blue circle espnts the true FS, which gradually
increases with the growth of GSI (the abruptnessaised by the variations wf andoy)).

The red triangle represents the fitted FS.

1.2 \ I \
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Figure 4.16 Comparison between the true FS valuesr{ginal data) and the fitted FS
values (calculated by the fitted equation with coétients ain Table 4.6)
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The ARD between the fitted FS and true FS is qaitgd, as reflected by the poor overlap
between the circles and triangles shown in Figul#.40n the other hand, Figure 4.16
shows that in terms of FS (blue circles), therecangsiderable discrepancies between the
first 120 sets of data (corresponding to GSI170) and the next 48 sets of data
(corresponding to GSI > 70). The large ARD is likedybe caused by attempting to fit data

with such large differences into one equation.

A second version has been trialled, which fits Batigpns separately for the first 120 and
the next 48 sets of data. Two sets of linear egnaystems as shown in Equation 4.12 and

Equation 4.13 are solved. The least square sokifimnthese fittings are given in Tables

4.7 and 4.8.
A=lx % % X % % x% %% %3} ( GSt70 120x09) (4.6)
A=l % X% X % % X% %% X%} ( GS+70 48x09) (4.7)
a=[a a a& a a & & a 4 (GSk70 9x1) (4.8)
a,=[la & a& a & g a 3 & (GSk70 9x1) (4.9)
y,=[FS .. FS,]' (GSkK70 120x 1) (4.10)
¥, =[FS,, .. FSql' (GSB70 48x1) (4.11)
A xa =Yy (GSIs70) (4.12)

A,xa, =y, (GSI>70) (4.13)
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Table 4.7 Least square solutions foa; in the linear equation system in Equation 4.12
(GSI1<£70)

Coefficient a1 a as a a5 a5 &y ag g
Value -0.043 0.013 0.015 0.134 0.010 -0.0100.048 -0.018 0.117

Table 4.8 Least square solutions foa, in the linear equation system in Equation 4.13
(GSI > 70)

Coefficient a a a3 au a5 a5 ay ag ag
Value -0.545 0.754 -1.345 0.682 0.269 -0.003-1.128 -0.371 2.104

The ARD between the new fitted FS and true FS isnagalculated. For the first sets
(Equation 4.12), the ARD is 29%, while for the set@ets (Equation 4.13), the ARD is
25%. The comparison between the fitted FS andR&ies shown in Figure 4.17.

1.2 T \

o True FS (nomalised)
1 ~  Fitted FS (nomalised)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, c—-———__

o ————— o

Normalised FS

20 40 60 80 100 120 140 160
168 Cases (arranged in the ascending order of GSI)

Figure 4.17 Comparison between the true FS valuesr{ginal data) and the fitted FS
values (calculated by the fitted equation with coétients a; in Table 4.7 and

coefficientsa, in Table 4.8)
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Apparently, the accuracy is greatly improved, whishreflected by the good overlap
between the fitted FS and true FS in Figure 4.liveiithe complexity involved in slope
stability analysis, such ARD is considered acceptdbt sensitivity analysis purpose. In
addition, several other forms of equations and datangements have been tried, but this
one produced the best accuracy. Therefore, Equatibrwith the coefficients shown in

Tables 4.7 and 4.8 are used for the sensitivitgstigations.

4.2.2 Derivative Based Sensitivity Analysis

This section employs the equation fitted in thevfanes section to analyse FS sensitivity by

taking the derivatives (rates of change) of FS wetpect to HB parameters.

The derivatives of FS with respect to HB parameseesgiven in Equations 4.14 to 4.19
(both sides are multiplied by a factor of 100). fehare two sets of derivative equations,

which correspond to GS170 and GSI > 70 respectively.

100"LS|:_4,3+ 26.6SI- 4.8+ 114, GSk 7 (4.14)

0GS

10025213 agsi+ 1.99- 18, GSk 7« (4.15)

om

1005 - 15 11.851- 1.8~ 24, GSE T (4.16)

00.

Cl

100975 = 55 13@SI- 118+ 210, GSH 7 (4.17)

0GSI

1006F_S: 75- 118&Sl+ 54— 3d, GSPk 7( (4.18)

om
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10 ZFS:_135+ 21GSI- 3M- 06, GSb 7! (4.19)
g.

Cl

These equations show that the sensitivity of F&ach HB parameter (measured by the
derivative) is contributed not only by that paraemnatself but also by other parameters.
Such contributions can be measured by the correspgncoefficients. A positive

coefficient indicates that the corresponding patammakes a positive contribution, and

vice versa; while a large coefficient indicatesuaé contribution, and vice versa.

Table 4.9 summarises the contribution of each HBampater to the derivatives. In
particular, a plus sign represents a positive dauntion from that parameter and a negative
sign represents a negative contribution. Doubleedim® means that parameter makes a
large contribution. Single underline means a medoamtribution and no underline means
a small contribution. Lastly, if any coefficientegtremely small compared with others, the
corresponding parameter is ignored in Table 4.@. §élection criteria for the weight of the

contributions are given in Table 4.10.

Table 4.9 Contribution of each HB parameter to FS sesitivity (measured by the

derivative)

Sensitivity |  Weight of contribution (GS1 70) Weight of contribution (GSI > 70)

0FSPGSI - Constant, + GSFm, + ggi - Constant, + GSFm, +ggj

0FSPm; + Constant, - GSlI, #, - o¢i + Constant, - GSHm;, - ogi
0FSOo; + Constant, + GSFm, - a¢j - Constant+ GSI| - m,
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Table 4.10 Selection criteria for the weight of comibution of each HB parameter to

FS sensitivity

. Value of coefficient Value of coefficient . .
Weight (GSI< 70) (GSI > 70) Weight sign
Large > 20 > 200 double underline
Medium 10~ 20 100 ~ 200 single underline
Small 1~10 10~100 none
Ignored <1 <10 Ignored

4.2.3 Discussions and Verifications

Discussions and verifications of the informationTeble 4.10 are presented below.

For dFSPGSI (the derivative of FS with respect to GSI), @S¢lf has a large (GS{ 70)

or a medium (GSI > 70) positive contribution, whishggests that FS will become
sensitive to GSI when GSI itself is large. Thisl&snonstrated by the sensitivity graphs in
Section 4.1.2, i.e. Figures 4.12 to 4.15. In eddhese figures, theFSOGSI line (squared
line) becomes steeper as GSI increases. On the lndine,m; has a small (GSE 70) or
medium (GSI > 70) negative contributionaBSOGSI ands.; has a medium (GS{ 70) or
large (GSI > 70) positive contribution, which suggethat FS will become sensitive to
GSI whenm is small ando. is large. To verify this, three cases with diffare
combinations ofm ando.; values are tested, as shown in Table 4.11. Irethases, GSI
varies from 10 to 100 and the sensitivity lines F& to the change in GSI are compared.
Case 1 has a smalk but a larges.;, which corresponds to the most sensitive situation
while Case 3 is the opposite and thus it shoulchbddast sensitive. Case 2 is the medium
sensitive case. The sensitivity graph for theses&s given in Figure 4.18. It is apparent
that Case 1 is the most sensitive case (as thdiseydine for Case 1 is the steepest) and

Case 3 is the least sensitive case (as the setysiiing for Case 3 is the flattest).
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Table 4.11 Cases for verification of situations wherFS is highly sensitive to GSI

Predicted
Case GSI m oci (MPa) sensitivity
1 10-100 5 150 High
2 10-100 40 150 Medium
3 10-100 40 10 Low
sensitivity for FS-GSI m/o
80 : :5/150
70—t
) e L et
(%]
L 50 ,,,,,,,,,,,,,,,,,,,,,,,,,,
2
k3
©
A e R AR
o
5 140/150
G B0F -
LL
200 A
10F 4t VAR AR
I 140/10
===

0 0.2 0.4 0.6 0.8 1
Increment Factor i (GSI=10+90%)

Figure 4.18 Verification of situations where FS iighly sensitive to the change in GSI

Based on these observations, it can be concludeédhthassociation between FS and GSI
Is always positive (i.e. FS always increases asi@®éases). Three factors cause FS to be
sensitive to the change in GSI: large GSI, smmgllnd larges.i. Among these factors, GSI

ando. are the most influential.

For dFSPm; (the derivative of FS with respect ), when GSI< 70, both GSI and;
have small negative contributions. The constant amditself have small positive

contributions. Thus, the contributions of theserfdems are all small and effectively
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cancel each other. Therefore, FS should not betsento m when GSI< 70. This is
supported by Figures 4.12 and 4.13 in Section 4it.&hich the mean values of GSI are
< 70), where thedFSPm; sensitivity lines (triangular lines) are flat, segting low
sensitivity. On the other hand, when GSI > 70, 8& a medium negative contribution to
JFSPm ando. has a small negative contribution. This suggdstswhen GSI and,; are
both large, FS will decrease as increases and its sensitivity should be high. Tigis
supported by Figures 4.14 and 4.15 in Section 4id ®hich both GSI and; are large. In
these two figures, FS decreases with the increfss.Also, OFSOm; lines are steep,

suggesting large sensitivity.

Based on these discussions, it can be concluddhtaissociation between FS andis
positive (i.e. FS increases @sincreases) and FS is not sensitive to the changewhen
GSI< 70. When GSI > 70 andl; is large, the association between FS andg negative

(i.e. FS decreases agdecreases) and FS is sensitive to the change in

For 0FSPa. (the derivative of FS with respect ég), GSI has a medium or large positive
contribution, suggesting that FS will become séresito the change ia;; when GSI is
large. To prove this, several cases with diffe®® mean values are tested, as given in
Table 4.12. In these cases; varies from 10MPa to 150MPa. The sensitivity liries
these cases are shown in Figure 4.19. In Figur®, 4lie slopes of the lines increase
gradually as GSI increases, suggesting that FSnieexonore sensitive to the changedn

as GSl increases. In addition, these lines areslstoaight, which indicates th@ESOo.;

is not influenced much by the mean valuesgfitself. This is in good agreement with the
weight provided in Table 4.9, where the contribaitad o to dFSOo; is small (GSK 70)

or very small (GSI > 70) as such it can be ignored.
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Table 4.12 Cases for verification of situations wherFS is highly sensitive t@;

Case GSI m oci (MPa)
1-7 30, 40, 50, 60, 70, 80, 90, 100 5 10 - 150
B=55, GSI=50~100, m=5 GsI

«100

<90

Factor of Safety FS

%

70

«50
=30

0
0 0.2 0.4 0.6 0.8 1
Increment Factor i (oci:10+140*i)

Figure 4.19 Verification of situations where FS iighly sensitive to the change i

Based on the above discussions, it can be conclingedssociation between FS andis
always positive (i.e. FS always increases@asicreases) and FS becomes sensitive to the

change i when GSl is large.

4.2 .4 Conclusions

Conclusions regarding FS sensitivity with respeceach HB parameter are given here.
These address two aspects: firstly, for any pddrgoarameter, whether FS is sensitive to
its change; and secondly, how is the contributibthis parameter to the derivatives of FS

to other parameters.
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GSI is the most critical parameter in both aspektsstly, FS is very sensitive to the
change in GSI. This is reflected in Table 4.9 dreldensitivity graphs in Section 4.1.2. In
Table 4.9, the coefficients f@~SPGSI are positive and large, which results in adarg
OFSPGSI and indicates high FS sensitivity; while in diigs 4.12 to 4.15, FS increases
sharply as GSI increases. Secondly, GSI makes atgedt contribution t@FSOGSI,
OFSPm;, anddFSPo.. This is also reflected in Table 4.9, as the wemhcontribution
from GSI is generally large. Therefore, based endiscussions above and in Section 4.2.3,
it can be concluded that when GSI is large, FSxpeeted to be highly sensitive to the

change in GSI itself and that 4.

oqi IS also a critical parameter. FS becomes sendditiee change ia;; when GSl is large.
On the other handy; does not make as large contribution8fk&0m andoFSPo.; as does

GSI. Thuss; is only critical in this one aspect.

m; is the least important parameter. Firstly, they@ituation when FS is sensitive to the
change inm; is when GSI andy; are both large. However, in such a situation, RBeis
already very large (because of the large GSlaf@nd its high sensitivity tay is of less
importance. Secondlyn, makes the least contributiond8S0OGSI, dFSPmM;, anddFSPa;.

Thusm is the least important in both aspects.

Based on the above conclusions, a typical situatioare FS is highly sensitive would be

when GSl is large. In this situation, FS is semsitd the changes in both GSI and

A case study is presented below to demonstratetiig.
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4.2.5 Case Study

FS are calculated (b§lide6.0 for the slope in Figure 4.1 with= 55 and H = 100m based
on three different combinations of HB parameters,gasen in Table 4.13. These
combinations of HB parameters are specifically desigto produce the same FS (to the
second decimal place). The GSI values from CaseQate 3 are in a descending order.
Based on the conclusions in Section 4.2.4, Case dlcslhe the most sensitive case and

Case 3 should be the least.

To verify the sensitivity of FS, all HB parametensTiable 4.13 are decreased by 10%, as
shown in Table 4.14. FS are re-calculated for therehsed parameters, as given in Table

4.14. The percentage decreases of FS for the ¢thsss are also calculated.

Table 4.13 Three cases with the same FS but differeabmbinations of HB
parameters (for verification of FS sensitivity)

Case GSI m oci (MPa) FS gﬁg'&ig
1 69 13 10 1.63 High
2 38 13 50 1.63 Medium
3 23 13 132 1.63 Low

Table 4.14 Demonstration of the effect of reducingliBHB parameters by 10% on FS

for the cases in Table 4.13

Case GSI m o (MPa) FS FS decrease
1 62.1 11.7 9 1.33 18.4%
2 34.2 11.7 45 1.42 12.9%
3 20.7 11.7 118.8 1.44 11.7%

The decreases of FS for the three cases are in ggoeement with the sensitivity

descriptions. Specifically, Case 1 is the most sieestase and the decrease of FS for Case
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1 is much larger than those of Case 2 and Case 3ddt¢rease of FS for Case 2 is also
larger than that of Case 3, but not as signifieanthat in Case 1. This is because in Cases

2 and 3, GSI are generally small and hence thetsatyschange is also small.

4.3 Summary

The objectives of this chapter were to investighgesensitivity of FS to the changes in HB
parameters (FS sensitivity) and examine whetheh semsitivity is affected by slope
geometry. Qualitative sensitivity graphs and a gteative equation fitting analysis have

been used to achieve the research objectives.
Key conclusions of this chapter are as follows:

1. A general pattern of FS sensitivity exists andai te studied independent of slope

geometry.

2. The sensitivity of FS to the change in any particidB parameter depends on the
value of that parameter itself (the range withinialhit is changing) and on the

values of other HB parameters.

3. Slope cases with the same FS values but diffe@mbmations of HB parameters

can have different FS sensitivity.

4. GSI is the most critical parameter for FS sensytivkFS always increases with
increasing GSI. When GSI is large, FS becomes teangd the change in GSI
itself and that irv.. o is also a critical parameter with respect to A&gw®ity. FS
always increases with increasiag. FS becomes sensitive to the changes.in

when GSl is largan is the least critical parameter for FS sensitivity
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5. A typical situation where FS is highly sensitivewldbbe when GSI is large. In this

situation, FS is sensitive to the changes in bdh &do;.



Chapter 5

PROBABILISTIC ANALYSIS

5.1 Introduction

This chapter deals with the four remaining reseatglctives of this thesis: to investigate
the influence of changes in the variability of HBrgraeters (quantified by the COV) on
PF (Section 5.2.1); to evaluate the relative cbatron of the variability of each HB

parameter (quantified by the COV) to PF (Sectioris25and 5.2.3); to investigate the
influence of the spatial variability of HB parametéquantified by the scale of fluctuation
0) on the PF (Section 5.3); and to explore the imiahip between FS sensitivity and PF

(Sections 5.2.1 and 5.2.3).

To achieve these research objectives, a seriearafhfetric studies were carried out under
the framework of simplified probabilistic analysasd spatial probabilistic analyses. For
the simplified probabilistic analysis, HB parametare modelled as random variables and
their spatial variability is not considered; forettspatial probability analysis, spatial

variability of m ando.; is considered and these two parameters are mddadleandom

fields. Both analyses were based on a slope witlye¢loenetry shown in Figure 5.1

In Chapter 4, it has been demonstrated that slopesoaith different combinations of HB
parameters can have the same FS but differentisé@gsiThe study in this chapter extends
this conclusion. Specifically, three cases witliedt#nt combinations of HB parameters but
the same FS are designed, as shown in Table SekeTtases are similar to those studied

in Section 4.2.5 and thus similar sensitivity cqteecan be applied. All studies in this

111
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chapter are based on these cases. BSindo; are assumed to follow truncated normal

distributions (discussed in Section 3.3.2.1), drdttuncations are given in Table 5.2.

water level

H=100m

Figure 5.1 Slope geometry for the probabilistic anlgsis

Table 5.1 Three sets of HB parameters for the probabstic analysis

Case GSl m oci (MPa) FS FS sensitivity
1 69 13 10 1.64 High
2 38 13 50 1.64 Medium
3 23 13 133 1.64 Low

Table 5.2 Truncations of HB parameters for the probalistic analysis

Parameter GSI m o (MPa)

Truncation [1 100] [5 40] [1 200]

The output of a Monte Carlo simulation (MCS) baseagbpbilistic analysis includes PF
and statistical properties as well as the distidoubf FS. The convergence of PF in the
MCS is examined here by plotting the number of tters N against the PF value (Section
3.3.2.2). One example of such a convergence plah@wvn in Figure 5.2, where PF
gradually stabilises as N increases. The head&igufre 5.2 shows the case ID and the
COV for GSI,m, anda, based on which the probabilistic analysis isiedrout. If the
value of PF is too small to stabilise within therguutation time frame, it is then estimated
by the method given by Fenton and Griffiths (20083 introduced in Section 3.3.2.3).

After PF is calculated or estimated, the distribatiand statistical properties of FS,
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including the mean, standard deviation, and the C&a¥,also be obtained. An example of
the output from a MCS is shown in Figure 5.3, wh8i@-FS refers to the standard

deviation of FS and N is the number of iterations.

Casel COV=(0.20 0.20 0.20) FS=1.64 Casel COV=(0.20 0.20 0.20) FS=1.64
1.5 : : ‘ :
4 PF=2.67%
S mean-FS=1.87
w30 - SD-FS=0.84
o 21 COV-FS=0.45 -
b N
5 2.5 S
> >
& g 05
] 2 -
Q
<
& 15
0
Factor of Safety FS
Figure 5.2 Example of the convergence Figure 5.3 Example of the output
of PF in a Monte Carlo simulation from a Monte Carlo simulation

5.2 Simplified Probabilistic Analysis

The second, third, and fifth research objectiveshed thesis are studied in this section.
Two parametric studies and a case study basedngolifsed probabilistic analyses are

carried out.

5.2.1 Parametric Study |

The first parametric study addresses the secondfifthdresearch objectives, i.e. to
investigate the influence of changes in the valitgbdf HB parameters (quantified by the

COV) on PF and to explore the relationship betweén sensitivity and PF. In this
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parametric study, a series of simplified probatdisnalyses are carried out, where all
three HB parameters are modelled as random variablésheir COV are assumed to be

equal and vary uniformly from 0.1 to 1.

The results from the parametric study are shownhaible 5.3 and plotted in Figure 5.4. In
Table 5.3, the highlighted boxes indicate that ¢beresponding PF are obtained from
estimations instead of from direct simulationsFlgure 5.4, each line shows the variation

of PF for one case with changes in the COV of HB ipatars.

Table 5.3 PF values from Parametric study I: three ases (Table 5.1) with the same
FS but different FS sensitivity; HB parameters are nodelled as random variables

together and their COV are assumed to be equal anary uniformly from 0.1 to 1

Ccov

PE (%) 0.1 02 03 04 05 06 07 08 09 1

Casel | 1.39E-03 2.7 106 188 250 295 33.0 355 37.49 38
Case?2 | 1.74E-06 041 46 118 194 255 30.6 34.7 37.9340.
Case3 | 1.84E-09 0.22 35 102 17.7 239 294 338 37.4440.

Figure 5.4 shows that the PF for each case insegisslually as the COV increases,
which conforms with expectation. On the other hanekn though the three cases have the
same FS and identical COV for HB parameters, thdir de different. In most
circumstances (CO¥ 0.8), the PF for Case 1 is the largest and theoPE&se 3 is the
smallest. These differences are significant whenQ@V is small £ 0.6). As the COV
increases, the differences between PF for the taees become less and less and almost

diminish eventually.

The above phenomenon is caused by the differersteRSitivity for the three cases. Based

on the conclusions from Chapter 4, Case 1 is expdotég the most sensitive case and
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Figure 5.4 PF values from Parametric study I: threecases (Table 5.1) with the same
FS but different FS sensitivity; HB parameters are nodelled as random variables

together and their COV are assumed to be equal angary uniformly from 0.1 to 1

Case 3 is the least. When the COV is small, the mandariations of GSIm, ands; are
largely close to their mean values, which are #mgons within which the effect of FS
sensitivity is significant. Case 1 has the largdstsihce its corresponding FS are most
sensitive to the changes in HB parameters. Howegethe COV increases, HB parameters
of all the three cases begin to vary within theitire truncated ranges (Table 5.2) and
finally become almost evenly spread out. In thegeumstances, the effect of FS

sensitivity diminishes and thus the PF for thealozases become very close to each other.

The statistical properties of FS from some of thebpbilistic analyses in parametric study
| are obtained to demonstrate the above pointairégy5.5(a), 5.6(a), and 5.7(a) show the
statistical properties and distributions of FS foases 1 to 3, with the COV of HB

parameters equal to 0.2, and Figures 5.5(b), 5.6dbyl 5.7(b) show the statistical
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properties and distributions of FS for the thresesa with the COV of HB parameters

equal to 1.0.

As shown in Figures 5.5(a), 5.6(a), and 5.7(a) vér@bility of the calculated FS becomes
smaller and smaller from Case 1 to Case 2 and to éssethe distributions of FS become
narrower), causing the PF to decrease. On the b#ret, the distributions of FS in Figures
5.5(b), 5.6(b), and 5.7(b) are similar to each thmicating similar variability of FS and

thus similar PF. These observations are in goodesgent with discussions in the previous
paragraph: when the COV of HB parameters equal totlRe2variations of HB parameters
are small and close to their mean values and fieetedf FS sensitivity is significant; in

contrast, when the COV of HB parameters equal @ the variations of HB parameters
are so great that their values for all three casessimilarly spread out (almost evenly)

within their ranges and thus the effect of FS d@fitsi diminishes.

Casel COV=(0.20 0.20 0.20) FS=1.64 Casel COV=(1.00 1.00 1.00) FS=1.64

1.5 ‘ ‘ 1.5
PF=2.67% PF=38.92%
mean-F$:1.87 ; ; mean-F$:2.90
o SD-FS=0.84 o | | SD-FS=3.61
2 COV-FS=0.45-1 2 1----—- b oo COV-FS=1.24 -
& 5 | | N=20000
D D | | | |
> > | | | |
[S) Q | | | |
c [ _ | | | |
] [¢5) | | | |
=} > | | | |
g T o5l M\ = - - LE—
L L 1 1 1 1
0 : : | | 1
0 1 2 3 4 5
Factor of Safety FS Factor of Safety FS
Figure 5.5 (a) Statistical properties Figure 5.5 (b) Statistical properties
of FS for Case 1 with the COV of of FS for Case 1 with the COV of

HB parameters = 0.2 HB parameters =1
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Figure 5.6 (a) Statistical properties
of FS for Case 2 with the COV of

HB parameters = 0.2

Case3 COV=(0.20 0.20 0.20) FS=1.64
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Figure 5.7 (a) Statistical properties
of FS for Case 3 with the COV of
HB parameters = 0.2
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Figure 5.6 (b) Statistical properties
of FS for Case 2 with the COV of

HB parameters = 1
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Figure 5.7 (b) Statistical properties
of FS for Case 3 with the COV of
HB parameters = 1
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Based on the above results and discussions, keyustorts of this section are:

1. The probability of failure (PF) of a highly fracad rock slope increases as the

coefficient of variation (COV) of the input HB parat®es increase.

2. Even if their FS and variability of the input (qutidied by the COV) are identical,

cases with different combinations of HB parametangetdifferent PF.

3. For cases whose FS are highly sensitive to thegdsam HB parameters, their PF
are also large, indicating higher risks. Therefprepabilistic analysis is capable of

detecting the effect of FS sensitivity on slopdity.

5.2.2 Parametric Study Il

The second parametric study addresses the thishnas objective, i.e. to evaluate the
relative contribution of the variability of each Harameter (quantified by the COV) to PF.
This parametric study is also based on the thresmscayiven in Table 5.1 but HB
parameters are now modelled as individual randonehli@s. The COV again varies
uniformly from 0.1 to 1 and HB parameters are stisumed to follow truncated normal

distributions.

Since HB parameters are modelled as random variagparately, PF can simply be
calculated from probability theory instead of fradCS. For Case 1 for example, the
critical value of GSI (termed as Critical GSI) timatkes FS equal to 1 is 39. Therefore, the
PF of Case 1 when only GSI is modelled as a randanable (termed as PF-GSI) just
equals to the Probability [GSI < Critical G®i = 13,0, = 10MPa]. Similarly, PRy =
Probability [GSI = 69m < Critical m;, oci = 10MPa], and Ploz; = Probability [GSI = 69,

m = 13,0 < Critical o¢j.
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The critical values of GSm, ando; that make FS equal to 1 for each slope casesiesl i
in Table 5.4. In Table 5.4, N/A fan, denotes that whatever valoe takes, the FS of the
slope is always larger than 1. Thus A== 0 and the contribution aofy variability to PF is

considered to be very small.

PF-GSI and Pl are given in Table 5.5 and plotted in Figures 5.8, and 5.10.

Table 5.4 Critical value of each HB parameter that mkes the FS equal to 1 for slope

cases given in Table 5.1

Case Critical GSI Criticah Critical o¢; (MPa)
1 39 N/A 2.77
2 15.2 N/A 10.99
3 8 N/A 26.50

Table 5.5 PF values from parametric study Il: threecases (Table 5.1) with the same
FS but different FS sensitivity; HB parameters are nodelled as random variables

individually and the COV varies uniformly from 0.1 to 1

cov
Case PF (%)
0.1 0.2 0.3 0.4 0.6 0.8 1
PF-GSI 6.87E-04 1.5 7.4 139 234 293 332
1 PFm 0 0 0 0 0 0 0

PFoqi 241E-11 1.50E-02 0.80 3.5 11.4 183 235

PF-GSI 9.87E-08 0.13 2.3 6.7 159 227 274
2 PFm 0 0 0 0 0 0 0
PFoqi 3.05E-13 4.79E-03  0.47 2.6 9.7 165 218

PF-GSI 3.47E-09 5.55E-02 15 5.2 139 20.7 25.7
3 PFm 0 0 0 0 0 0 0
PFoqi 5.85E-14 3.12E-03 0.38 2.3 9.1 15.8 21.2
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Figure 5.8 PF values from Case 1 of parametric stydll: three cases (Table 5.1) with

the same FS but different FS sensitivity; HB paramedrs are modelled as random

£

PF-GSI

variables individually and the COV varies uniformly from 0.1 to 1
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Figure 5.9 PF values from Case 2 of parametric stly Il: three cases (Table 5.1) with

the same FS but different FS sensitivity; HB paramedrs are modelled as random

variables individually and the COV varies uniformly from 0.1 to 1
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Probability of Failure PF (%)

Figure 5.10 PF values from Case 3 of parametric sty Il: three cases (Table 5.1) with
the same FS but different FS sensitivity; HB paramedrs are modelled as random

variables individually and the COV varies uniformly from 0.1 to 1

Comparing the data in Table 5.5, we observe thaafgiven value of COV, the PF for
when only GSI is modelled as a random variable @3#} lies in the order Case 1 > Case
2 > Case 3, and similarly for Rir This again verifies the conclusion from the poes

section, i.e. a slope of high FS sensitivity giagsgh PF.

In addition, comparison of PF-GSI and Pfin Figures 5.8, 5.9, and 5.10 shows that for
all three cases, given a specific value of COV, Fi-& PFe,. This suggests that when
the COV of GSI andy; are identical, the variability of GSI makes a &rgontribution to
PF than that of.;. However, Section 3.3.2.1 shows thatgenerally has larger variability
(COV) than GSI in practice, with the upper limit C@Q¥GSI ands;; equal to 0.15 and 0.4

respectively. If these values are adopted, Fighr@s5.9, and 5.10 show that B&> PF-
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GSi for all three cases. This suggests that inns®ging practice, the high variability @f

will make a larger actual contribution to PF thhattof GSI.
Based on these discussions, the following conclssioa drawn:

1. When the COV of GSIm, ando; are identical, the comparison of contributions to

PF can be expressed as: GSI (variabilitg};Xvariability) >>m (variability).

2. When the COV of GSIn, ando.i are equal to the upper limit values observed in
practice (0.15, 0.2, and 0.4 respectively), the mamson of contributions to PF can

be expressed as; (variability) > GSI (variability) >>m (variability).

5.2.3 Case Study

To be consistent with engineering practice, thigtise is devoted to simplified
probabilistic analyses with the COV of HB parametses to their upper limit values
observed in practice (summarised in Section 3.B.ZHe study is again based on the three

slope cases given in Table 5.1.

The upper limit COV of the HB parameters and theesponding PF calculated by MCS
based on these COV are given in Table 5.6. Thesstati properties and distributions of

FS are shown in Figures 5.11, 5.12, and 5.13.

Table 5.6 Upper-limit COV values of HB parameters andesulting PF values from

the case study of the simplified probabilistic anaisis

Case FS sensitivity| COV-GSI  COWn COV -oq; PF (%)
1 High 5.5
2 Medium 0.15 0.2 0.4 3.2
3 Low 2.8
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Figure 5.11 Statistical properties of FS for
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Figure 5.12 Statistical properties of FS for

Case 1 with the COV of HB parameters se Case 2 with the COV of HB parameters set

to upper limit values in engineering practict to upper limit values in engineering practice
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Figure 5.13 Statistical properties of FS for
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Figure 5.14 Example of a function plot

demonstrating the concept of

sensitivity of y to x
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Table 5.6 shows that the PF of Case 1 is the la@®sing the three, which is in good
agreement with its degree of sensitivity. HoweWagure 5.11 shows that the mean value
of FS obtained from the MCS for Case 1 equals t® &Afid is much larger than 1.64
(which is the FS calculated based on the mean sadfi¢iB parameters). This suggests
that the FS of Case 1 tends to be overestimatedhatipe, although its actual risk is higher
(since the PF of Case 1 is the highest). On the ditved, the mean values of FS obtained

from the MCS for other two cases are close to 1.64.

The above phenomenon can be explained by Figude . vhichy (corresponds to FS) is
a chosen function af (corresponds to HB parametergjgure 5.14 shows that for this
function,y is not sensitive t& whenx is varying between 0 and 1. This is similar to the
conditions for Cases 2 and 3. On the other hphgcomes sensitive towhenx is varying
between 1 and 2. This is similar to the condition@ase 1. For 0 x; < X < 1, wherex;
andx, are two arbitrary values of the value of f{x;)+f(x2)]/2 would be close to that of
fl[(x1+x2)/2], as the curve in Figure 5.14 between 0 ansldlmost straight. However, for 1
< X1 < X2 < 2, the value off(x;)+f(x2)]/2 would be larger than that &i(x;+x2)/2], as the
curve in Figure 5.14 between 1 and 2 is concaverérbre, for Case 1, where FS is most
sensitive to changes in HB parameters, the mearsqbbtained from the MCS) is larger

than the mean FS (obtained from the determinisiadyais).

In addition to the output from the MCS, the Spearmamelation coefficientss between
GSI, m, o, and FS for each case are also computed. TheS8aeaworrelation coefficient
measures the monotonic correlation between vasabie has been used in several studies
as an indicator of contribution of the variabilioy an input variable to the output (El-

Ramly et al. 2002; Fisher and Eberhardt 2012).
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Table 5.7 shows the calculategdfor all three slope cases. Meanwhile, G8l, ando;
(20,000 random values) in Case 1 are plotted agdiastorresponding FS in Figures 5.15,

5.16, and 5.17.

Table 5.7 Spearman correlation coefficientss between GSIm;, 64, and FS in the case

study of the simplified probabilistic analysis

Spe?ér:fzgigﬁgselatlon Case 1 Case 2 Case 3
FS & GSI 0.73 0.57 0.53
FS&m 0.067 0.15 0.19
FS & o 0.61 0.76 0.78

Factor of Safety FS

30 40 50 60 70 80 90 100
GSI

Figure 5.15 Spearman correlation coefficients between GSI and FS from Case 1 in

the case study of the simplified probabilistic anaisis
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the case study of the simplified probabilistic anaisis



Chapter 5. Probabilistic Analysis 127

Table 5.7 shows that for all three cases,rtH@etween FS & GSI and FS &; are much
larger than those between FSn& which suggests that the variability of GSI andhas
much larger contributions to PF than that@fThis is consistent with the conclusion from
Section 5.2.2. For Cases 2 and 3, rthieetween FS & is larger than that between FS &
GSI, which suggests that for these two cases, dhahility of o has a larger contribution
to PF than that of GSI. This is also consistenhvilite conclusion from Section 5.2.2. On
the other hand, for Case 1, thebetween FS & GSI is slightly larger than thédetween
FS & o.i, suggesting that for Case 1, the variability of G&$ a slightly larger contribution
to PF than that of;. This contradicts the conclusion from SectionX(@vhere it has been
demonstrated that for all three cases, the PF smoreling to GSI with COV = 0.15 are
smaller than the PF corresponding 4¢ with COV = 0.4, which suggests that the
variability of GSI makes a smaller contribution R& than that oé.). Since in Section
5.2.2, the contributions are measured directly mdefling HB parameter as individual
random variables and then comparing the correspgrigF values whereasis a indirect
measurement, the contradiction suggestsrthaiay not always be a reliable predictor for
contribution of the variability of an input variglto the output and this is a topic that

needs additional study.

In this section, probabilistic analyses have besmied out from a practical engineering

perspective. Following conclusions are drawn:

1. For practical engineering cases, a slope of higlesensitivity gives a higher PF.

2. For a slope of high FS sensitivity (e.g. Case $)Fi6 tends to be overestimated,

suggesting a safer slope, but its actual risk (®Rjgher.
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3. The Spearman correlation coefficiendbetween GSImn, o, and FS show that the
comparison of contributions of the variability ofBHparameters to PF can be
expressed as follows: for Case 1 (the most sengitige), GSI (variability) >
(variability) >> my (variability); for Case 2 (the medium sensitive Qas®;
(variability) > GSI (variability) >>m (variability); and for Case 3 (the least
sensitive case).; (variability) > GSI (variability) >>m (variability). This partly
contradicts the conclusion from the previous secti®ince the measurement in the
previous section is considered to be more relidblke,contradiction suggests that
the Spearman correlation coefficient may not alwags reliable predictor for the

contribution of the variability of an input variabto the output.

5.3 Spatial Probabilistic Analysis (Parametric Stug IIl)

This section deals with the fourth research obyecti.e. to investigate the influence of the
spatial variability of HB parameters (quantified the scale of fluctuatio®) on PF. A

parametric study is carried out, where the scalfiuctuation of HB parameters changes
from a small value to infinity. The slope geomatryFigure 5.1 and the three cases shown

in Table 5.1 are again used as the basis for tra&iric study.

As discussed in Section 3.3.2.1, omly and o.; are regarded as spatial variables and
modelled by random fields. The Markov model is adddor the random field generation.
The mean values of the random fields are thosengivdable 5.1 and the COV af and

oci are set to their upper-limit values, i.e. 0.2 @mtirespectively. The truncations in Table
5.2 are again imposed. On the other hand, GSI defteal as a random variable for the
entire rock mass. The mean values of GSI are thiosa in Table 5.1 and the COV of GSI

is set to its upper limit value, i.e. 0.15.
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In practice, the random field is generated alorggdiip surface and each slice is a unit of
the random field. As discussed in Section 3.3.thé& number of slices for the LEM model
in the spatial probabilistic analysis is set to Ba0that spatial averaging does not need to
be applied. An example of a random field realisafiar o is shown in Figure 5.18 (with

mean = 133MPa, COV = 0.4, afid 50m).

The specific lengths fdi in the parametric study are given in Table 5.8 Télationships
between these lengths and the slope height aradagtayed. Except for the first and last

cases, i.e9 = 1m and — infinity, 6 gradually increases by factors of 2.

The results from parametric study Il are showiatle 5.9 and plotted in Figure 5.19.
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Figure 5.18 Example of a random field realisationdr o along the slip surface (mean
=133MPa, COV = 0.4, and® = 50m)
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Table 5.8 Variation of the scale of fluctuatior® (only applicable tom; and 6 in

parametric study Ill and their relationships with t he slope height H

0
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50m 100m 200m 500m 1000m oo

0-H

0.01H 0.1H

0.2H

0.5H H 2H S5H 10H

o0

Table 5.9 PF values from parametric study Il (basedn spatial probabilistic

analyses)m; and 6 are modelled as random fields and GSI is modelleaks a random

variable; the scale of fluctuation® of m; and o varies from 1m to infinity

0
PF (% 10m 20m 50m 100m 200m 500m 1000meo
Case 1 0.43 0.72 11 2.3 3.4 4.4 5.1 5.3 5.5
Case 2 1.26E-02 0.062 0.26 1.2 2.2 2.8 3.1 3.2 3.2
Case 3 2.99E-04 0.040 0.27 1.3 2.2 2.6 2.7 2.8 2.8
6

—=a—— Casel: High sensitivity

-— Case2: Medium sensitivity

Probability of Failure PF (%)
w

Low sensitivity

0.5H H
Scale of Fluctuation 8

Inf

Figure 5.19 PF values from parametric study Il (baed on spatial probabilistic

analyses)m; and o are modelled as random fields and GSI is modelleas a random

variable; the scale of fluctuation® of m; and 6 varies from 1m to infinity
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The results (shown in Table 5.9 and Figure 5.18)d&scussed below.

Firstly, Figure 5.19 shows that for all three ca$¥s values increase @sncreases, which
is consistent with the literature (EI-Ramly et 2002; Griffiths et al. 2009; Cho 2010). In
addition, whenf tends to infinity, theoretically, the spatial padiilistic analysis should
become identical to the simplified probabilisticabysis. For the current study, whén
tends to infinity, the PF for Cases 1 to 3 becond 3.2, and 2.8 respectively, which are
the same as the PF from the simplified probaliliatalyses (Table 5.6). Therefore, the

results from the current study are consistent Widory.

Secondly, Figure 5.19 shows that for all three £aB& is most sensitive to the changé in

between 1m and 500m.

Lastly, Figure 5.19 shows that for a particulargnof 6, the PF for Case 1 is always the
largest and the PF for Case 3 is generally the ssta{lwith a few exceptions). This
suggests that the relative sensitivity of FS fa tihree cases is not affected by the spatial
variability of HB parameters. On the other hand, dbsolute differences of PF between
the three cases increase tagicreases, suggesting that lar§gemakes the effect of FS

sensitivity on slope stability (measured by PF) ensignificant.

Based on the above discussions, following key canmhs can be made:

1. For a slope with FS > 1, the PF increases as tile st fluctuatiord (of my ando;)
increases. Whei tends to infinity, PF from the spatial probabitisanalyses

become identical to those from the simplified ptubstic analyses.

2. PF is most sensitive to the chang® wvithin the range of 0 — 500m.
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3. In most circumstances, for any specific valu®,0PF of the three cases of different
FS sensitivity can be expressed as: PF-Case 1 > B¢&Za PF-Case 3. However,
the absolute differences of PF between the threescancrease a3 increases,
suggesting that large® makes the effect of FS sensitivity on slope sitgbil
(measured by PF) more significant.
5.4 Summary

The studies in this chapter were based on thrgee stases with the same FS but different

sensitivity (following the primary conclusion of Qftar 4). Key conclusions of this

chapter are presented below:

1. FS sensitivity has a significant impact on slopabgity and probabilistic

analysis is capable of evaluating such impact. Eases with different
combinations of HB parameters, even if their FS #red variability of input
(quantified by the COV) are identical, their PF dam different. A highly

sensitive slope case gives a high PF and inditeddsrisk.

. PF of a slope increases as the COV of input HB paemmacrease.

. When the COV of GSim, ands.; are identical, the order of contributions to PF

can be expressed as: GSI (variabilityj.>(variability) >>m; (variability).

. When the COV of GSIm, ando; are set to the upper limit values found in

engineering practice (0.15, 0.2, and 0.4 respdgjivéhe order of contributions
to PF can be expressed ag:(variability) > GSI (variability) >>m; (variability).

This part is examined by two separate approach&eations 5.2.2 and 5.2.3,
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where slightly contradictory conclusions were fourfdr which detailed

discussions were given in Section 5.2.3.

5. For a slope with FS > 1, the PF increases as #ie st fluctuatiort (of my and
o) Increases. Whei® tends to infinity, PF from the spatial probabitst

analyses become identical to those from the simagliprobabilistic analyses.

6. PF is most sensitive to the changdifof m ando.) within the range of 0 —

500m.

7. Largerf makes the effect of FS sensitivity on slope siighihore significant,
i.e. the differences of PF between slopes of dfieFS sensitivity increase @s

increases.






Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Summary

In this study, the Hoek-Brown (HB) strength criteribas been used to investigate the
circular failure of highly fractured rock slopeshd overall focus has been on the
relationship between the HB input (G81, o., and their variability) and the output, Factor
of Safety (FS) and Probability of Failure (PF). Botleterministic analyses and
probabilistic analyses were carried out. A groupsensitivity analyses and parametric
studies were designed and implemented. The finedoowes of this study provide the
following knowledge: sensitive conditions (with eed to FS) of highly fractured rock
slopes are identified, the relationship betweensESsitivity and PF is defined, and the

effectiveness of probabilistic analysis is bettederstood.

In Chapter 2, relevant literature was reviewed with aims of providing background
knowledge and identifying specific research gapstifi@ study. The circular failure of
highly fractured rock slopes was identified as @ical failure mode but little research
effort has been devoted to it. The HB strength @atewas then discussed in detail and
verified as an effective tool for fractured rock stability analysis. Input parameters for
the HB strength criterion, including GSh, anda,;, were discussed; it was observed that
the variability of GSI is generally low (the COV &SI is between 0.15 and 0.35), the
variability of m is medium (the COV afn is between 0.039 and 0.25), and the variability

of o is generally high (the COV af is between 0.1 and 0.4). Methods for deriving

135
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equivalent Mohr-Coulomb (MC) parameters from HB paranmsewere also studied; three
approximate solutions were compared, as summarse&ection 2.3.3. The Limit
Equilibrium Method (LEM), particularly the method slices was discussed. It was shown
that Bishop’s method of slices is appealing for Mo&arlo simulation (MCS) based
probabilistic analysis because of its simplicitydaccuracy. Algorithms for the Ordinary
method of slices and Bishop’s simplified method lafes were presented. Subsequently,
Probabilistic Slope Stability Analysis (PSSA) wascdissed. It was shown that PSSA is a
critical development that supplements the detestimanalysis, and has become a primary
research area in slope stability analysis (Tal®¢ &ix major research directions of PSSA
were then summarised (Table 2.10). It was showhn firahighly fractured rock slopes,
where the HB strength criterion can be employeatiradly little research has been carried
out for one of the important research directioranaly the relationship between the input

(HB parameters and their variability), and the ot{pis and PF).

In Chapter 3, the methodology for determining tlektionship was proposed. The study
where FS was used as the slope stability measwsebban named the deterministic
analysis (Chapter 4) and the study where PF was ase¢de slope stability measure has
been named the probabilistic analysis (Chapter B). the deterministic analysis, a
sensitivity graph analysis and an equation fittangalysis were developed (Section 3.2).
Bishop’s simplified method of slices i8lide6.0(Rocscience 2011) was adopted as the
LEM model for the deterministic analysis. The probistic analysis was based on MCS.
A series of parametric studies were designed, dictu simplified probabilistic analyses
where the spatial variability of HB parameters wasaonsidered and spatial probabilistic
analyses where it was considered. It was deterntiregdruncated normal distributions are

suitable for HB parameters (i.e. G8t, anda). For the simplified probabilistic analysis,
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HB parameters were modelled as random variablastéigether and then separately. For
the spatial probabilistic analysis, it was decidbdt m and o would be modelled as
spatial variables by random fields, while GSI would modelled as an independent
random variable for the entire rock mass. It wa® alecided that the Latin Hypercubic
sampling technigque was to be applied to MCS whetlicgipe. SinceSlide6.0is not able

to incorporate spatial variability, a LEM model bdson Bishop’s method of slices was
developed irMatlab for the probabilistic analysis (Figure 3.4). Thaidity of this model
was examined by comparing its output with that frShde6.0 For a number of specific
cases, as shown in Table 3.3, the developed LEMehmmrdduced results with mostly less
than 2% differences with those 8lide6.0 The validity of the random field generator
adopted for the probabilistic analysis was alsomerad. It was demonstrated that the
mean and covariance function of the generated ranftkld are in good agreement with

the theoretical values.

Chapter 4 addressed the sensitivity of FS to thegd®win HB parameters (FS sensitivity)
and whether such sensitivity is affected by slopengetry. The sensitivity graph analysis
and the equation fitting analysis were applieddoieve the objectives. For the sensitivity
graph analysis, the relationship between HB paraseaied FS was plotted in a series of
figures. For the equation fitting analysis, a lasgeount of data between HB parameters
and FS were generated 8iide6.0and the data were fitted with a second order pmtyal
equation. FS sensitivity was then analysed by tpkie derivatives of FS with respect to
HB parameters based on the fitted equation (Sedtid12). The sequences of the study in
this chapter are as follows: firstly, sensitivitsaghs were employed to study whether FS
sensitivity is affected by slope geometry and tovmte some initial insights into the

problem; secondly, the equation fitting analysisvepplied to quantitatively analyse FS
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sensitivity and a series of conclusions were oktimext, sensitivity graphs were again
used to provide a visual verification of the cosahms; and finally, a case study was
undertaken to demonstrate the impact of FS sengithn slope stability. In summary,

Chapter 4 leads to the following conclusions:

1. There is a general pattern of FS sensitivity existéch can be studied independent

of slope geometry.

2. The sensitivity of FS to the change in any paréiciB parameter depends on the
value of that parameter itself (the range withinaliht is changing) as well as on

the values of other HB parameters.

3. Slope cases with the same geometry and the sameak®s (but different

combinations of HB parameters) have different FSisigity.

4. GSI is the most critical parameter for FS sensitivFS always increases with
increasing GSI. When GSI is large, FS becomes tsangd the change in GSI

itself and that irv;.

5. o¢ is also a critical parameter for FS sensitivityS Rlways increases with

increasing;. FS becomes sensitive to the changaiiwhen GSl is large.

6. m is the least critical parameter for FS sensitivity

Chapter 5 was devoted to the remaining four reseabpbctives, i.e. to investigate the
influence of changes in the variability of HB paraems (quantified by the COV) on PF; to
evaluate the relative contribution of the variapibf each HB parameter (quantified by the
COV) to PF; to investigate the influence of the mbatariability of HB parameters

(quantified by the scale of fluctuati®h on PF; and to explore the relationship between FS
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sensitivity and PF. As it was demonstrated in Clraptéhat slope cases with different
combinations of HB parameters can have the sameauF&fierent FS sensitivity, Chapter

5 was based on this conclusion. The sequences dttialy in this chapter are as follows.
Firstly, a parametric study was carried out to stigate the influence of changes in the
variability of HB parameters on PF and to define rilationship between FS sensitivity
and PF. In this parametric study, all three HB pat@ns were modelled as random
variables and their COV were assumed to be equalvand uniformly from 0.1 to 1.
Secondly, a parametric study was carried out topamthe contributions of the variability
of HB parameters to PF. In this parametric study,fdBameters were modelled as random
variables separately and the COV of each HB paranagi@n varied uniformly from 0.1

to 1. Afterwards, to be consistent with engineepnactice, a section was devoted to a case
study of simplified probabilistic analyses with tk®OV of HB parameters set to their
upper limit values observed in practice (SectioB.281). The Spearman correlation
coefficientsrs between GSIm, o, and FS were also computed as another approach to
evaluate the relative contributions of the varipibf HB parameters to PF. Lastly, a final
parametric study was carried out to investigatantfieence of the spatial variability of HB
parameters on PF. In this parametric study, thke sfafluctuationd of the corresponding
HB parametersng ando.) varied from a small value to infinity. In summa@hapter 5

leads to the following observations:

1. FS sensitivity has a significant impact on slo@b#ity and probabilistic analysis is
capable of evaluating such impact. For slope castisdifferent combinations of
input HB parameters, even if their FS and the COVhplit are identical, their PF
can be quite different. A slope of high FS sengjtiias a high PF value, indicating

a high risk.
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2. PF of a slope increases as the COV of input HB passacrease.

3. When the COV of GSIm, anda,; are identical, the comparison of contributions to

PF can be expressed as: GSI (variabilitg}Xvariability) >>m (variability).

4. When the COV of GSIm, ando are set to the upper limit values observed in
engineering practice (0.15, 0.2, and 0.4 respdgiveslative contributions to PF
can be expressed ag; (variability) > GSI (variability) >>m (variability). The
contributions were examined by two approaches ioti@es 5.2.2 and 5.2.3
respectively, where slightly contradictory conctuss were found and it was
inferred that the Spearman correlation coefficiergy not always be a reliable

predictor of the contribution of an input varialbdethe output.

5. For a slope with FS > 1, the PF increases as tile st fluctuatiord (of m ando.;)
increases. Whei tends to infinity, PF from the spatial probabitsanalyses

become identical to those from the simplified ptabstic analyses.

6. PF is most sensitive to the change in the scalleictuation6 (of m; andoi) within

the range of 0 — 500m.

7. Largerf makes the effect of FS sensitivity on slope sitgbihore significant, i.e.
the differences of PF between slopes of differeBt densitivity increase a8

increases.

6.2 Recommendations for Further Research

In Chapter 4, a large amount of data between HB petexsrand FS were fitted with a

polynomial equation for the purpose of sensitiatyalysis. The polynomial equation was
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adopted since it is relatively straightforward tdffedentiate and allows a ready
identification of self and mutual influences. Thaiglation showed that the fitted equation
can reproduce the relationship between HB parametaisFS with moderate accuracy,
and that it is able to characterise the overatidse It is possible that with a more advanced
technique, such as artificial neural network, teationship between HB parameters and
FS could be more accurately represented by a fimeind this would provide a useful tool

for the efficient assessment of rock slope stabilit

In Chapter 5, both a parametric study and the Spmaroorrelation coefficient were
applied to study the contributions of the variapibf HB parameters to PF. The outcomes
from these two methods did not support each otbempbetely. The contradiction suggests
that the Spearman correlation coefficient may motgs be a reliable measurement of the
contribution of an input variable to the output &hi is a topic that is worth additional

investigation.

In Chapter 5m ando.; were modelled as spatial variables by random digicthe spatial
probabilistic analysis. The scale of fluctuati@mf m ando; was assumed to vary from
very small to infinity in a parametric study. It svdemonstrated that the spatial variability
of HB parameters has significant influences on skipéility, and it would be worthwhile
to investigate the actual spatial variability of and o by random field theory or

geostatistics.

Lastly, since this study has focused on rock skipbility, the output has been restricted to
FS and PF. On the other hand, since the HB stremgénion is formulated to estimate the
strength parameters of a rock mass, including Yaumgpdulus E, cohesion, and angle of
friction, the methodology of the current study catso be applied to investigate

relationship between HB parameters and these skrg@agameters.



142 Chapter 6. Summary and Conclusions

6.3 Conclusions

The following conclusions are derived from the preasstudy.

1. For a highly fractured rock slope, the sensitiwatyFS to the changes in input HB
parameters (FS sensitivity) cannot be revealed dtgrohinistic analyses unless
sensitivity analyses are applied. Slope cases télsame geometry and the same
FS (but different combinations of HB parameters)ehdifferent FS sensitivity.
GSl is the most critical parameter in this resp@dth increasing GSI, the stability
(measured by FS) of a slope becomes more sensitihe change in GSI itself and

2. FS sensitivity has a significant impact on slo@dgity and probabilistic analysis is
capable of evaluating such impact. For slope casisdifferent combinations of
input HB parameters, even if their FS and the vditglof input (quantified by the
COV) are identical, their PF can be quite differehtslope of high FS sensitivity

has a high PF value, indicating a high risk.

3. It was found that when the variability of G®k, andog is identical, the order of
contributions to PF can be expressed as GSI (vbtyal>» o (variability) >>m
(variability); however, when the variability of GSh, andog; is set to their upper-
limit values observed in practice, the order of tabntions to PF becomes;

(variability) > GSI (variability) >>m (variability).

4. Spatial variability of HB parameters (for andoc) has significant influences on
slope stability (measured by PF). It was shown fiiaa slope with FS > 1, the PF
of this slope increases as the scale of fluctuatiohm ando increases and it is

most sensitive to the change€rwithin the range of 0 — 500m. Whéntends to



Chapter 6. Summary and Conclusions 143

infinity, PF from the spatial probabilistic analgskecome identical to those from
the simplified probabilistic analyses. In additidarger® makes the effect of FS
sensitivity on slope stability more significant.i.the differences of PF between

cases of different FS sensitivity increasé ascreases.
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APPENDIX A

MATLAB CODES OF M ODELS DEVELOPED FOR THE

PROBABILISTIC ANALYSIS

A.1 Introduction

The probabilistic analysis (Chapter 5) has beenezhisut based on models developed in
Matlab. In this appendix, codes of the LEM model (for f@babilistic analysis), the
simplified probabilistic analysis model, and theatig probabilistic analysis model are

provided.

Nine Matlab codes are given in total, includingMslope_geometryQMslope_bishop
QMslope_HBprobabilistic QMslope HBspatial QMslope_FSdistribution cphi_bray
cphi_kumay cphi_hoek2002andcphi_shen Specifications of these codes, including their
functions, input, and output, are firstly specifiedTables A.1, A.2, and A.3. Afterwards,

the codes are provided in Section A.2.
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Table A.1 Codes of models developed for the probalstic analysis: functions

Code

Function

QMslope_geometry

QMslope_bishop

QMslope_HBprobabilistic

QMslope_HBspatial

QMslope_FSdistribution

cphi_bray
cphi_kumar
cphi_hoek2002

cphi_shen

computing the geometry of slices and the forcesgan
them for the limit equilibrium analysis

implementing limit equilibrium analysis for a slopased on
Bishop’s method of slices (output fro@Mslope_geometrig
used in this code)

implementing simplified probabilistic analysis faslope
(QMslope_bishoys called in this code)

implementing spatial probabilistic analysis forl@pe
(QMslope_bisho@nd theConstantingandom field
generatorare called in this code)

plotting the distribution and statistical propestief FS;
plotting the convergence of PF (output from either
QMslope_HBprobabilistior QMslope_FSdistributiomns used
in this code)

converting HB parameters to equivalent MC parameters
by Bray's, Kumar's, Hoek's or Shen's solution

Table A.2 Codes of models developed for the probalstic analysis: input

specifications

Code

Input Specifications

QMslope_geometry

phi_face/H_slope slope face angle/slope height

nrslice number of slices
XIYIR/ centre and right and left boundaries of
LX/LY/RX/RY the slip surface (found b§lide6.0

specify whether to plot the slope

plot_geometry geometry (Y or N)

QMslope_bishop

thegeometryoutput from
QMslope_geometry

theforce output from
QMslope_geometry

cohesion and angle of friction of the
material

geometry

force

cohesion/friction
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Table A.2 Continued

Code

Input

Specifications

phi_face/H_slope

slope face angle/slope height

nrslice number of slices
centre and right and left boundaries
slipcircle of the slip surface (found by
Slide6.Q
QMslope_HBprobabilistiq HB mean mean values of HB parameters
— (GSI,m andoy)
HB_COV COV of HB parameters
HB_truncation truncations of HB parameters
D disturbance factor
N number of iterations
phi_face/H_slope slope face angle/slope height
nrslice number of slices
centre and right and left boundaries
slipcircle of the slip surface (found by
Slide6.Q
. HB mean values of HB parameters
QMslope_HBspatial _mean (GSI,m, oc)
HB_COV COV of HB parameters
SOF scale of fluctuatiot
HB_truncation truncations of HB parameters
D disturbance factor
N number of iterations
phi_face/H_slope slope face angle/slope height
GSI/mi/UCS HB parameters
cov_GSl/cov_mi/
cov_UCS COV of HB parameters
OMslope_FSdistribution distribution best fit distribution for FS
B specify whether the PF is obtained
POF . i S
from simulation or estimation
specify whether it is a simplified
type probabilistic analysis or a spatial
probabilistic analysis
CL scale of fluctuatio
cphi_bray GSl/mi/sigci/D HB parameters
cphi_kumar
cphi_hoek2002 . .
sign effective normal stress

cphi_shen
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Table A.3 Codes of models developed for the probalstic analysis: output

specifications

Code Output Specifications
geometry specific geometry of slices
QMslope_geometry . _
force forces acting on slices
QMslope_bishop FS Factor of Safety
PF_final Probability of Failure
QMslope_HBprobabilistic a file that contains all output from
XXX.mat . :
the Monte Carlo simulation
PF_final Probability of Failure
QMslope_HBspatial a file that contains all output from
XXX.mat : .
the Monte Carlo simulation
oo fi a figure that presents the distribution
o 9 and statistical properties of FS
QMslope_FSdistribution i
, a figure that plots the convergence
xxx.fig
of PF
cphi_bray c_i cohesion
cphi_kumar . -
cphi_hoek2002 phi_i angle of friction
cphi_shen chpi_method name of the conversion method
A.2 Codes

A.2.1 QMslope_geometry

0 ---
function  [geometry,force] =
QMslope_geometry(phi_face,H_slope,nrslice,X,Y,R,LX,

% this file is universal
% it calculates the geometry and basic forces for a

% hand input part
% --- ———
% --- ——

% coordinate and radius of the slip circle (hand in
center=[X,Y];

% left and right boundary of the slip circle (hand
P1_slip=[LX, LY]; P2_slip=[RX, RY];

% parameters for material

LY,RX,RY,plot_geometry)

given slope

put)

input)
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r_rock=27; % KN

r_water=9.81,; % KN
%
%

% automatic calculation part
%
%

% generate slope, slip surface, water table boundar
%
% boundary coordinates for the slope (H/automatic -
P1,P2,P5,P6 fixed)

P1_slope=[0 -60]; P2_slope=[300 -60]; P3_slope=[300
P4 _slope=[100+H_slope/tand(phi_face) H_slope]; P5_s
P6_slope=[0 O];

% boundary coordinates for the water (H/automatic -
distance between water table and slope fixed)
P1_water=P5_slope; P2_water=[P4_slope(1)+10 P4_slop
P3_water=[P3_slope(1) P3_slope(2)-10];
phi_water=atand((P2_water(2)-P1_water(2))/(P2_water
H_water=P2_water(2)-P1_water(2);

%dip of the water surface, degrees (automatic)
phi_water=atand((P2_water(2)-P1_water(2))/(P2_water

% Slice width, m; number of slices between toe and
deta_x=(P2_slip(1)-P1_slip(1))/nrslice;
nrslices_tc=round((P4_slope(1)-P5_slope(1 ))/deta_x

%info. for slide (for check)

P_center=[X,Y,R]; P_slip=[P1_slip;P2_slip];
P_slope=[P1_slope;P2_slope;P3_slope;P4_slope;P5_slo
P_water=[P1_water;P2_water;P3_water]; nrslice; deta

%

% X coordinates for slices
%
i=1:nrslice; % the serial number for each slice
xl_slices=zeros(nrslice,1); xr_slices=zeros(nrslice

x_slices=zeros(nrslice,1);
xI_slices(i)=P1_slip(1)+(i-1)*deta_x; xr_slices(i)
P1_slip(1)+i*deta_x;
x_slices(i)=(xI_slices(i)+xr_slices(i))/2;
%

%Y coordinates of slices and base angles for slices
%
y2l_slices= - sqrt(R"2-(xl_slices - X)."2) +Y; y2r
(xr_slices - X)."2) +Y;
slices

y1l_slices=(xI_slices-P5_slope(1)).*tand(phi_face);
y1l_slices(yll_slices>H_slope)=H_slope;

slices
y1r_slices=(xr_slices-P5_slope(1)).*tand(phi_face);
y1r_slices(ylr_slices>H_slope)=H_slope;

slices

% pre-allocating memory

y info.

-aslong as
H_slope];
lope=[100 0];

- as long as relative
e(2)-10];

(1)-P1_water(1)));

(2)-P1_water(1)));
crest (automatic)

);

pe;P6_slope];
_X

1);

%X Coordinate of the left and right of the slices
%X Coordinate of the slice

_slices= - sgrt(R"2-

%bottom coordinates of the left and right of the

%top coordinates of the left of

%top coordinates of the right of
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y1_slices=(yll_slices+ylr_slices)/2; %top coordinates of the middle of
the slices

y2_slices=(y2l_slices+y2r_slices)/2; %Dbottom coordinates of the middle of
slices

h_slice=yl slices-y2_slices; %height of slices
phi_base=atand((y2r_slices-y2I|_slices)/deta_x); %base angle of each
slices

%

% in this step, the height of water table are calcu lated

%
y1l water=(x|_slices-P5_slope(1)).*tand(phi_water);

y1l_water(yll_water>H_water)=H_water; %top coordinates of the left of

water

ylr water=(xr_slices-P5_slope(1)).*tand(phi_water);
ylr_water(ylr_water>H_water)=H_water; %top coordinates of the right of
water

yl water=(yll water+ylr water)/2; %top coordinates of the middle of water
y2_water=y2_slices; %bottom coordinates of the water

h_water=yl water-y2_water; h_water(h_water<0)=0; %height of water table
%

% calculate effective normal stress by Fellenius so lution

%
w_slice=r_rock.*h_slice.*deta_x;
u_water=r_water.*h_water;

sig_f=(w_slice/deta_x-u_water).*(cosd(phi_base))."2 ;. %input effective
normal stress

sig_f(sig_f<0)=0;

%

% write output information "geometry" and "forces"
%
geometry.nrslice=nrslice;
geometry.detax=deta_x;
geometry.phibase=phi_base;
geometry.hslice=h_slice;
geometry.hwater=h_water;

force.wslice=w_slice;
force.uwater=u_water;
force.sign=sig_f;

%

% plot slope, slip surface, water table boundary an d slices
%
if plot_geometry== y'

% generate points for the slip surface (automatic)

funl_slip=linspace(P1_slip(1),P2_slip(1),50); f un2_slip=-sqrt(R"2-
(funl_slip-X)."2)+Y;
figure,hold on, grid on
% plot the slope geometry
plot([P1_slope(1),P2_slope(1)],[P1_slope(2),P2_ slope(2)]),

plot([P2_slope(1),P3_slope(1)],[P2_slope(2),P3_slop e(2)]),plot([P3_slope(
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1),P4_slope(1)],[P3_slope(2),P4_slope(2)]),plot([P4 _slope(1),P5_slope(1)]
,[P4_slope(2),P5_slope(2)]),
plot([P5_slope(1),P6_slope(1)],[P5_slope(2),P6_slop e(2)])

% plot the water table

plot([P1_water(1),P2_water(1)],[P1_water(2),P2_wate r(2)]),plot([P2_water(
1),P3 water(1)],[P2_water(2),P3_water(2)])
% plot the slip surface
plot([X,P1_slip(1)],[Y,P1_slip(2)]),
plot([X,P2_slip(1)],[Y,P2_slip(2)]), plot(funl_slip fun2_slip)

% plot the slices
for i=1l:nrslice

plot([xl_slices(i),xl_slices(i)],[y1l_slices(i),y2l _slices(i)], ™)
end

titte_name=sprintf( 'Slope Geometry: \\beta=%.0f, H=%.0f' ,
phi_face,H_slope); % in sprintf, \\ to creat \

title(title_name), axis equal
elseif  plot_geometry == n'
else

error( 'Please specify whether slope geometry shall be plo tted' )
end
7

A.2.2 QMslope_bishop

% ______________________
function  FS=QMslope_bishop(geometry,force,cohesion,friction )

deta_x=geometry.detax;
phi_base=geometry.phibase;

w_slice=force.wslice;
u_water=force.uwater;

% first input FS

O —mmmmmm s e
FS_input=1;

O mmmmmmmmmm oo e

% interative process for calculating FS

O/ mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmeeem

Off) mmmmmmmmmmmmmmmmmmmmcmmmmmcmmmmmmmmeeee
FS_output=sum((cohesion.*deta_x+(w_slice-
u_water.*deta_x).*tand(friction))./(cosd(phi_base)+ sind(phi_base).*tand(f

riction)/FS_input))./sum(w_slice.*sind(phi_base));

while abs(FS_input-FS_output)>0.001
FS_input=FS_output;
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FS_output=sum((cohesion.*deta_x+(w_slice-
u_water.*deta_x).*tand(friction))./(cosd(phi_base)+ sind(phi_base).*tand(f
riction)/FS_input))./sum(w_slice.*sind(phi_base));

end
% --- —
0 --- —-

FS=FS_output;

% —-- S

A.2.3 QMslope_HBprobabilistic

% ---
function  [PF_final] = QMslope_HBprobabilistic(phi_face, H_s lope, nrslice,
slipcircle, HB_mean, D, HB_CQOV, HB_truncation, N)

% HB_mean: 1*3 matrix

% HB_COV: 1*3 matrix

% HB_truncation: 3*2 matrix

% the input for UCS should be kpa

% slip circle

% --- ——
X = slipcircle(1);

Y = slipcircle(2);

R = slipcircle(3);

LX = slipcircle(4);

LY = slipcircle(5);

RX = slipcircle(6);

RY = slipcircle(7);

0/0 — ———

% obtain the mean value of HB parameters
% —_— ———
mean_GSI| = HB_mean(1);

mean_mi = HB_mean(2);

mean_UCS = HB_mean(3);

mu = HB_mean;

0/0 — ———

% geometry and deterministic FS
% --- -

[geometry,force]=QMslope_geometry(phi_face,H_slope, nrslice,X,Y,R,LX,LY,RX
RY, 'n" )

[cohesion_dm,friction_dm]=cphi_kumar(mean_GSI,mean_ mi,mean_UCS,D,force.si
gn);

FS_dm=QMslope_bishop(geometry,force,cohesion_dm,fri ction_dm)

% —-- -

% obtain the COV and SD of HB parameters
0/0 —_— ———
COV_GSI =HB_COV(1);

COV_mi =HB_COV(2);

COV_UCS = HB_COV(3);
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SD_GSI = COV_GSI* mean_GSI;
SD_mi = COV_mi* mean_mi;
SD_UCS = COV_UCS* mean_UCS;

var = [SD_GSI*2 0 0;
0 SD_mi*2 0;
00 SD_ucCs”?];

%

% obtain the truncation of HB parameters
%
Truncation_GSI = HB_truncation(1,:);
Truncation_mi = HB_truncation(2,:);

Truncation_UCS = HB_truncation(3,:);
%

% generating HB random numbers
%
random_sample=lhsnorm(mu,var,N);

GSl=random_sample(;,1);
mi=random_sample(;,2);
UCS=random_sample(:,3);
%

% truncating HB random numbers
%
GSI(GSlI<Truncation_GSI(1))=Truncation_GSI(1);
GSI(GSI>Truncation_GSI(2))=Truncation_GSI(2);

mi(mi<Truncation_mi(1))=Truncation_mi(1);
mi(mi>Truncation_mi(2))=Truncation_mi(2);

UCS(UCS<Truncation_UCS(1))=Truncation_UCS(1);
UCS(UCS>Truncation_UCS(2))=Truncation_UCS(2);
%

% probabilistic analysis
%
rand( ‘twister' ,5489);randn( 'state’ ,0);

FS=repmat(1000,N,1);
PF=repmat(1000,N,1);

cohesion=repmat(-1,nrslice, N);
friction=repmat(-1,nrslice, N);

for i=1:N

[cohesion(;,i),friction(;,i)]=cphi_kumar(GSI(i),mi(
);

FS(i))=QMslope_bishop(geometry,force,cohesion(:,

i),UCS(i),D,force.sign

i),friction(:,i));
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If
i==N/10]||i==2*N/10]|i==3*N/10|[i==4*N/10||i==5*N/10 [[i==6*N/10||i==7*N/10
[li==8*N/10]|i==9*N/10][i==10*N/10;

process=i/N*100;

disp(sprintf( '%0.f%% completed’ ,process))

else

end

PF(i)=length(FS(FS<1))/i*100;
end

PF_final=PF(N);

f _name=sprintf( '‘QMslope_HBprobabilistic_%.0f %.0f %.0f %.0f %.0f % .0f %.0
f %.0f" ,phi_face,H_slope,mean_GSl,mean_mi,mean_UCS,COV_GSI *100,COV_mi*100

,COV_UCS*100)

save(f_name, 'phi face' , 'H_slope' , 'nrslice’ , 'slipcircle’ , 'HB_mean' , 'HB_COV
', 'HB_truncation’ ,'N'" ,'FS_dm' ,'geometry’ ,‘force’ ,’'cohesion_dm' , ‘friction_
dm', 'GSI' ,'mi' ,'UCS', 'cohesion' , ‘friction’ ,'FS" ,'PF" )

%

A.2.4 QMslope_HBspatial

%
function  [PF_final] = QMslope_HBspatial(phi_face, H_slope, nrslice,
slipcircle, HB_mean, D, HB_CQOV, SOF, HB_truncation, N)

% HB_mean: 1*3 matrix

% HB_COV: 1*3 matrix

% HB_truncation: 3*2 matrix

% the input for UCS should be kpa

% slip circle
%
X = slipcircle(1);

Y = slipcircle(2);

R = slipcircle(3);

LX = slipcircle(4);
LY = slipcircle(5);
RX = slipcircle(6);
RY = slipcircle(7);
%

% obtain the mean value of HB parameters
%
mean_GSI| = HB_mean(1);
mean_mi = HB_mean(2);
mean_UCS = HB_mean(3);
mu = HB_mean;

%

% geometry and deterministic FS
%
[geometry,force]=QMslope_geometry(phi_face,H_slope, nrslice,X,Y,R,LX,LY,RX
RY, 'n" ),
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[cohesion_dm,friction_dm]=cphi_kumar(mean_GSI,mean_

gn);

FS_dm=QMslope_bishop(geometry,force,cohesion_dm,fri
%

% obtain the COV and SD of HB parameters
%
COV_GSI = HB_COV(1);
COV_mi = HB_COV(2);

COV_UCS = HB_COV(3);

SD_GSI = COV_GSI* mean_GSl;
SD_mi = COV_mi* mean_mi;
SD_UCS = COV_UCS* mean_UCS;
%

% obtain the truncation of HB parameters
%
Truncation_GSI = HB_truncation(1,:);
Truncation_mi = HB_truncation(2,:);

Truncation_UCS = HB_truncation(3,:);
%

% generating HB random numbers
%
% GSI (no spatial correlation considered)

GSI = (lhsnorm(mean_GSI,SD_GSI*2,N))";
GSI = repmat(GSl,geometry.nrslice,1);

% generate mesh for mi and UCS
mesh=linspace(geometry.detax/2, geometry.detax/2+(g
1)*geometry.detax, nrslice)’;

% mesh needs to be a coloumb vector

cv_mi=@(x1,x2) gp_markov_cov(x1,x2,SOF,SD_mi);
cv_UCS=@(x1,x2) gp_markov_cov(x1,x2,SOF,SD_UCS);

mi=randomfield(cv_mi,mesh, ‘nsamples’ ,N)+mean_mi;
UCS=randomfield(cv_UCS,mesh, ‘nsamples’ ,N)+mean_UCS;

%

% truncating HB random numbers
%
GSI(GSlI<Truncation_GSI(1))=Truncation_GSI(1);
GSI(GSI>Truncation_GSI(2))=Truncation_GSI(2);

mi(mi<Truncation_mi(1))=Truncation_mi(1);
mi(mi>Truncation_mi(2))=Truncation_mi(2);

UCS(UCS<Truncation_UCS(1))=Truncation_UCS(1);
UCS(UCS>Truncation_UCS(2))=Truncation_UCS(2);
%

% probabilistic analysis
%

mi,mean_UCS,D,force.si

ction_dm)

eometry.nrslice-
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rand( ‘'twister' ,5489);randn(  'state’ ,0);

FS=repmat(1000,N,1);
PF=repmat(1000,N,1);

cohesion=repmat(-1,nrslice, N);
friction=repmat(-1,nrslice, N);

for i=1:N
[cohesion(:,i),friction(:,i)]=cphi_kumar(GSI(:,i),m i(:,i),UCS(:,i),D,forc
e.sign);
FS(i)=QMslope_bishop(geometry,force,cohesion(:, i),friction(:,i));
if
i==N/10]||i==2*N/10]|i==3*N/10|[i==4*N/10||i==5*N/10 [[i==6*N/10||i==7*N/10

[li==8*N/10]|i==9*N/10][i==10*N/10;
process=i/N*100;
disp(sprintf( '%0.f%% completed’ ,process))
else
end

PF(i)=length(FS(FS<1))/i*100;
end

PF_final=PF(N);

f_name=sprintf( '‘QMslope_HBspatial_%.0f %.0f %.0f %.0f %.0f %.0f %. Of %.0f
_%.0f" ,phi_face,H_slope,mean_GSI,mean_mi,mean_UCS,COV_GSI *100,COV_mi*100,
COV_UCS*100,SOF)

save(f_name, 'phi face' , 'H_slope' , 'nrslice , 'slipcircle’ , 'HB_mean' , '"HB_COV
", '"HB_truncation' ,'SOF' ,'N' ,'FS_dm' , 'geometry’ , ‘force’ ,'cohesion_dm' , 'fri
ction_dm' ,'GSI' ,'mi" ,'UCS', 'cohesion' , 'friction’ ,'FS' ,'PF" )

%

A.2.5 QMslope_FSdistribution

%
function

[mean_FS,SD_FS,fitting]=QMslope_FSdistribution(phi_ face,H_slope,GSI,mi,UC
S,cov_GSl,cov_mi,cov_UCS,distribution,POF,type,CL)

% this code plot the distribution of FS

% distribution can be gev, inversegaussian, lognorm al,
nakagami,tlocationscale, birnbaumsaunders, logistic , weibull, loglogistic
% POF can be 's'for simulated or 'e' for estimated or 'b' for both

% type can be 'threevari' or 'spatial’
% CL=10,20,50,100,200,500,1000,100000000
%

% round values
% this part round the input values *
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%
GSl=round(GSI); mi=(mi); UCS=round(UCS);
%

% type and load file name *
%
switch type

case ('threevart' )

fname=sprintf( '‘QMslope_HBprobabilistic_%.0f %.0f %.0f %.0f %.0f %

);

case ('spatial' )

fname=sprintf( '‘QMslope_HBspatial_%.0f_%.0f_%.0f_%.0f_%.0f_%.0f_%.

.0f_%.0f

_%.0f.mat" ,phi_face,H_slope,GSI,mi,UCS,cov_GSI*100,cov_mi*100 ,cov_UCS*100

Of_%.0f_

%.0f.mat" ,phi_face,H_slope,GSI,mi,UCS,cov_GSI*100,cov_mi*100 ,cov_UCS*100,

CL);
end

load(fname);
%

% bin information for histgram *
%
bin_width=0.1, % bin width

bin=0:bin_width:200; % this is the bin for hist
envelop_bhin=0:0.01:200; % this is for plotting the red curve

[histL, hist2]=hist(FS,bin);
%

% fit into theoretical distribution
%
% gev, inversegaussian, lognormal, nakagami, tlocat ionscale,
% birnbaumsaunders, logistic, weibull

switch  distribution
case ( 'gev' )
fitting=geVfit(FS, 0.05);

envelop = gevpdf(envelop_bin,fitting(1), fi tting(2), fitting(3));

PF_E=cdf( ‘gev' ,1,fitting(1), fitting(2), fitting(3))*100;

case ( 'inversegaussian' )

fitting=mle(FS, 'dist , 'inversegaussian' , ‘'alpha’ ,0.05);

envelop = pdf( 'inversegaussian’ ,envelop_bin,fitting(1),
fitting(2));

PF_E=cdf( 'inversegaussian’ ,1.fitting (), fitting(2))*100;

case ( 'lognormal’ )

fitting=mle(FS, 'dist  , 'lognormal’ , ‘'alpha’ ,0.05);

envelop = pdf( 'lognormal’ ,envelop_bin,fitting(1), fitting(2));

PF_E=cdf( ‘lognormal’ ,1,fitting(1), fitting(2))*100;

case ( 'nakagami' )

fitting=mle(FS, 'distt  , 'nakagami' , ‘'alpha’ ,0.05);

envelop = pdf( ‘nakagami' ,envelop_bin,fitting(1), fitting(2));

PF_E=cdf( ‘nakagami' ,1,fitting(1), fitting(2))*100;

case ( 'tlocationscale’ )

fitting=mle(FS, 'dist” , 'tlocationscale' , ‘alpha’ ,0.05);
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envelop = pdf( 'tlocationscale’ ,envelop_bin,fitting(1), fitting(2),
fitting(3));

PF_E=cdf( ‘tlocationscale’ ,1,fitting(2), fitting(2),
fitting(3))*100;

case ( 'birnbaumsaunders' )

fitting=mle(FS, 'dist' , 'birnbaumsaunders' , ‘alpha’ ,0.05);

envelop = pdf( 'birnbaumsaunders' ,envelop_bin,fitting(1),
fitting(2));

PF_E=cdf( 'birnbaumsaunders' ,1,fitting(2), fitting(2))*100;

case ( 'logistic' )

fitting=mle(FS, 'dist'" , 'logistic' , ‘alpha’ ,0.05);

envelop = pdf( 'logistic' ,envelop_bin,fitting(1), fitting(2));

PF_E=cdf( 'logistic' ,1,fitting(2), fitting(2))*100;

case ( ‘weibull )

fitting=mle(FS, 'dist' , 'weibull , ‘alpha’ ,0.05);

envelop = pdf( ‘weibull' ,envelop_bin,fitting(1), fitting(2));

PF_E=cdf( ‘weibull' ,1,fitting(1), fitting(2))*100;

case ( 'loglogistic' )

fitting=mle(FS, 'distt , 'loglogistic’ , ‘alpha’ ,0.05);

envelop = pdf( 'loglogistic’ ,envelop_bin,fitting(1), fitting(2));

PF_E=cdf( 'loglogistic’ ,1,fitting(1), fitting(2))*100;
end

%

% statistic information *
%
mean_FS=mean(FS);
SD_FS=sqrt(var(FS));
COV_FS=SD_FS/mean_FS;
PF_S=PF(N);

%

% following part is for adjusting picture size *

%

hFig=figure;

set(hFig, 'Units’ , 'centimeters' );

OldUnits=get(0, ‘Units'" ); % get unit

set(0, 'Units' , 'centimeters' ); % set unit to centimerters

ScreenSize=get(0, 'screensize’ ); % get original screen size
set(0, 'Units' ,0OldUnits); %

set(hFig, 'Units' , 'centimeters' ); %??7??7?°°°°°7? ?7?
FigWidth=8; %17/6

FigHeight=8; %11/ 10.5

StartX=(ScreenSize(3)-FigwWidth)/2; %?????2?2?7?X

StartY=(ScreenSize(4)-FigHeight)/2; %????2?7?2??Y

set(hFig, ‘position’ [ StartX StartY FigwWidth FigHeight]); %,??7?7?7?722,2?7?2?7?
%

% plot the histgram *
%
hFig=bar(hist2,hist1/N/bin_width, ‘hist'  );

set(hFig, ‘'FaceColor' |, 'none' , 'EdgeColor' ,[0.333333 0 0.666667],
'LineStyle' , -, 'LineWidth' ,1);

hold on, grid on
%
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% label, title and text *
%

xlabel(  'Factor of Safety FS' ), ylabel( 'Frequency Density' )
textl=sprintf( 'mean-FS=%.2f ,mean_FS); %text for mean FS
text2=sprintf( 'SD-FS=%.2f" ,SD_FS); %text for SD FS
text3=sprintf( 'COV-FS=%.2f" ,COV_FS); %textfor COV FS
text4=sprintf( ‘N=%.0f" ,N); %text for N

if PF_S<0.1

text5=sprintf( 'PF=%.2e%%" ,PF_S); %text for simulated PF

else

texts5=sprintf( 'PF=%.2f%%' ,PF_S); %text for simulated PF

end

if PF_E<0.1

text6=sprintf( 'PF-E=%.2e%%"' ,PF_E); %text for estimated PF

else

text6=sprintf( 'PF-E=%.2f%%' ,PF_E); %text for estimated PF

end

text7=sprintf( 'CL=%.0f" ,CL); %textfor CL

text(2.9,1.2,textl); text(2.9,1.1,text2); text(2.9, 1.0,text3);

text(2.9,0.9,text4);

switch POF
case ('e' )
text(2.9,1.3,text6); %text for estimated PF
case (b )
text(2.9,1.4,text5); %text for simulated PF
text(2.9,1.3,text6); %text for estimated PF
case ('s" )
text(2.9,1.3,text5); %text for simulated PF
end

switch type
case ( 'threevari' )
switch HB_mean(1)
case (69)
tname=sprintf( '‘Casel COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
case (38)
tname=sprintf( '‘Case2 COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
case (23)
tname=sprintf( '‘Case3 COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
end
case ( 'spatial )
switch HB_mean(1)
case (69)
tname=sprintf( '‘Casel COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
case (38)
tname=sprintf( '‘Case2 COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
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case (23)
tname=sprintf( '‘Case3 COV=(%.2f %.2f %.2f)
FS=1.64" ,cov_GSl,cov_mi,cov_UCS);
end

text(2.9,0.9,text7);
end

title(tname)
%

% plot the distribution envelop *

%

plot(envelop_bin,envelop, ‘Color' ,[100], .
'LineStyle' , =", 'LineWidth' , 1.5,
‘Marker' , 'none' , 'MarkerSize' ,6);

xlim([0 5]); ylim([O 1.5]);

%

% this part plot the convergence of PF

%

hFig=figure; hold on; plot(PF);grid on

if PF(N)~=0

ylim([PF(N)-sqrt(PF(N)), PF(N)+sqrt(PF(N))]);

else

end

xlabel(  'Number of Iterations N' ); ylabel( 'Probability of Failure PF (%)’ );

title(tname)
%

% following part is for adjusting picture size *

%

set(hFig, 'Units’ , 'centimeters' );

OldUnits=get(0, ‘Units'" ); % get unit

set(0, 'Units' , 'centimeters' ); % set unit to centimerters
ScreenSize=get(0, 'screensize’ ); % get original screen size
set(0, 'Units' ,0OldUnits); %

set(hFig, 'Units' , 'centimeters' ); %??7??7?°°°°°7? ?7?

FigWidth=8; %17/6
FigHeight=8; %11/ 10.5

StartX=(ScreenSize(3)-FigwWidth)/2; %?????2?2?7?X

StartY=(ScreenSize(4)-FigHeight)/2; %????2?7?2??Y

set(hFig, ‘position’ [ StartX StartY FigwWidth FigHeight]); %,??7?7?7?722,2?7?2?7?
%

A.2.6 Codes for concerting HB parameters to MC paraeters

A.2.6.1 cphi_bray

%
function  [c_i,phi_i,cphi_method] = cphi_bray(GSI,mi,sigci,D ,sign)
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% Bray's analytical method for calculating instanta
% c and phi change with normal stress

% [c_i,phi_i,cphi_method] = cphi_bray(GSI,mi,sigci,
% the input for UCS should be kpa

% Refer: Hoek & Marinos, 2007

% tested 20120716
% expand input parameters (GSl,mi,sigci)

%
nrslices=length(sign);

if length(GSIl)==1
GSl=repmat(GSI,nrslices,1);

elseif  length(GSI)~=1 && length(GSI)~=nrslices
error( ‘error in GSI length’ )

end

if length(mi)==1
mi=repmat(mi,nrslices,1);

elseif  length(mi)~=1 && length(mi)~=nrslices
error( ‘error in mi length'’ )

end

if length(sigci)==1
sigci=repmat(sigci,nrslices,1);
elseif  length(sigci)~=1 && length(sigci)~=nrslices
error( ‘error in sigci length’ )
end
%
mb=mi.*exp((GSI-100)./(28-14*D));
s=exp((GSI-100)./(9-3*D));
a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));
sig_cms=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s)."(a-1)

para_h=1+16*(sign.*mb+s.*sigci)./(3*mb."2.*sigci);
para_w=(90+atand(1./sqgrt(para_h."3-1)))/3;
phi_i=atand(1./sqrt(4.*para_h.*(cosd(para_w))."2-1)
tau_f=mb.*sigci.*(cotd(phi_i)-cosd(phi_i))/8;
c_i=tau_f-sign.*(tand(phi_i));

cphi_method= 'Bray1983" ;
%

A.2.6.2 cphi_kumar

%
function  [c_i,phi_i,cphi_method] = cphi_kumar(GSl,mi,sigci,

% Kumar's numerical method for calculating instanta
% c and phi change with normal stress

% [c_i,phi_i,cphi_method] = cphi_kumar(GSI,mi,sigci
% the input for UCS should be kpa

% Refer: Jiayi Shen

% tested - correct 20120716

neous c and phi

D,sign);

J(2*(1+a).*(2+a));

D,sign)
neous c and phi

,D,sign);
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% expand input parameters (GSI,mi,sigci)
0% --- -
nrslices=length(sign);

if length(GSI)==1
GSl=repmat(GSl,nrslices,1);

elseif  length(GSIl)~=1 && length(GSl)~=nrslices
error( ‘error in GSI length’ )

end

if length(mi)==1
mi=repmat(mi,nrslices,1);

elseif  length(mi)~=1 && length(mi)~=nrslices
error( ‘error in mi length’ )

end

if length(sigci)==1
sigci=repmat(sigci,nrslices,1);

elseif  length(sigci)~=1 && length(sigci)~=nrslices
error( ‘error in sigci length’ )

end

% --- ———

mb=mi.*exp((GSI-100)./(28-14*D));
s=exp((GSI-100)./(9-3*D));

a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));
sign(sign<0)=0;

for i=1:nrslices;

y(i)=fzero(@(sinphi)
(2/(mb(i)*a(i)))*(mb(i)*sign(i)/sigci(i)+s(i))(1-a
sinphi)/sinphi*(1+sinphi/a(i))*(1-a(i)),0.6);

% already double checked, only 0.6 as initial value

% when GSI<8 and UCS=1000 // GSI=1 and UCS<2800 err
% only possible solution to solve this problem is b

phi_i(i)=asind(y(i)); %phi
tau(i)=0.5*sigci(i)*cosd(phi_i(i))*((mb(i)*sign(i)/
1+sind(phi_i(i))/a(i)).”a();

c_i(i)=tau(i)-sign(i)*tand(phi_i(i));
end

c_i=c_i'; phi_i=phi_i";

cphi_method= 'Kumar1998' ;
0 --- -

(i)-(1-

gives right ans

or occurs
y truncation

sigci(i)+s(i))a(i))/(
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A.2.6.3 cphi_hoek2002

%
function  [c_i,phi_i,cphi_method] =
cphi_hoek2002(GSl,mi,sigci,D,r_rock,H_slope)

% Hoek 2002 analytical method for calculating insta
% c and phi do not change with normal stress

% [c_i,phi_i,cphi_method] = cphi_hoek2002(GSI,mi,si
% the input for UCS should be kpa

% Refer: Hoek & Marinos, 2007

% tested 20120716

mb=mi.*exp((GSI-100)./(28-14*D));
s=exp((GSI-100)./(9-3*D));

a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));
sig_cms=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s).*(a-1)

sig_0=r_rock*H_slope; % equal to rock*Hslope
sig_3max=0.72.*(sig_cm./sig_0)."(-0.91).*sig_cm;
sig_3n=sig_3max./sigci;
c_i=(sigci.*((1+2*a).*s+(1-a).*mb.*sig_3n).*(s+mb.*
1))./((1+a).*(2+a).*sqgrt(1+(6*a.*mb.*(s+mb.*sig_3n)
1))./[(1+a).*(2+a))));

phi_i= asind((6*a.*mb.*(s+mb.*sig_3n)."(a-
1))./(2*(1+a).*(2+a)+6*a.*mb.*(s+mb.*sig_3n)."(a-1)

cphi_method= 'Hoek2002' ;
%

A.2.6.4 cphi_shen

%
function  [c,phi,cphi_method] = cphi_shen(GSI,mi,sigci,D,sig

% Shen's analytical method for calculating instanta
% c and phi change with normal stress

% [c,phi,cphi_method] = cphi_shen(GSI,mi,sigci,D,si
% the input for UCS and sign should be kpa

% Refer: Shen 2012

% tested - correct 20120716

% expand input parameters (GSI,mi,sigci)
%
nrslices=length(sign);

if length(GSIl)==1
GSl=repmat(GSI,nrslices,1);

elseif length(GSI)~=1 && length(GSIl)~=nrslices
error( ‘error in GSI length’ )

end

ntaneous ¢ and phi

gci,D,r_rock,H_slope);

J(2*(1+a).*(2+a));

sig_3n)."(a-
MNa-
DE

n)

neous ¢ and phi

an);
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if length(mi)==1
mi=repmat(mi,nrslices,1);

elseif  length(mi)~=1 && length(mi)~=nrslices
error( ‘error in mi length’ )

end

if length(sigci)==1
sigci=repmat(sigci,nrslices,1);

elseif  length(sigci)~=1 && length(sigci)~=nrslices
error( ‘error in sigci length’ )

end

% --- ——

mb=mi.*exp((GSI-100)./(28-14*D));
s=exp((GSI-100)./(9-3*D));

a=0.5+ 1/6*(exp(-GSl/15) -exp(-20/3));
sig_cms=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s)."(a-1)

sig3_sigci=a.*sign./sigci./(sqrt(a.*(1+sqrt(mb))-si
P=2+a.*mb.*(mb.*sig3_sigci+s)."(a-1);

phi=asind(1-2./P);
tau=sigci.*sqrt(P-1)./P.*(mb.*sign./sigci+s).”a./((
c=tau-sign.*tand(phi);

cphi_method= 'Shen2012' ;
0 --- —-

J(2*(1+a).*(2+a));

gn./sigci));

P.*a+P-2)./a./P)."a;




APPENDIX B

DATA FOR THE EQUATION FITTING

The full sets of data (168 in total) generatedStige6.0for the equation fitting (discussed

in Section 4.2.1) are provided in this appendixnpaBable B.1.

Table B.1 Full sets of data for the equation fitting

Data set GSl m aci (MPa) FS
1 10 5 10 0.38
2 10 5 35 0.551
3 10 5 65 0.664
4 10 5 95 0.751
5 10 5 120 0.812
6 10 5 150 0.874
7 10 17 10 0.608
8 10 17 35 0.84
9 10 17 65 0.976
10 10 17 95 1.076
11 10 17 120 1.145
12 10 17 150 1.215
13 10 28 10 0.731
14 10 28 35 0.989
15 10 28 65 1.145
16 10 28 95 1.248
17 10 28 120 1.321
18 10 28 150 1.396
19 10 40 10 0.826
20 10 40 35 1.105
21 10 40 65 1.272
22 10 40 95 1.39
23 10 40 120 1.469
24 10 40 150 1.55
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Data set GSI m oc (MPa) FS

25 25 5 10 0.58
26 25 5 35 0.885
27 25 5 65 1.117
28 25 5 95 1.308
29 25 5 120 1.448
30 25 5 150 1.606
31 25 17 10 0.855
32 25 17 35 1.215
33 25 17 65 1.45
34 25 17 95 1.63
35 25 17 120 1.757
36 25 17 150 1.89
37 25 28 10 0.992
38 25 28 35 1.383
39 25 28 65 1.642
40 25 28 95 1.823
41 25 28 120 1.952
42 25 28 150 2.089
43 25 40 10 1.1
44 25 40 35 1.525
45 25 40 65 1.793
46 25 40 95 1.987
a7 25 40 120 2.121
48 25 40 150 2.262
49 40 5 10 0.776
50 40 5 35 1.287
51 40 5 65 1.742
52 40 5 95 2.15
53 40 5 120 2.452
54 40 5 150 2.798
55 40 17 10 1.065
56 40 17 35 1.574
57 40 17 65 1.958
58 40 17 95 2.28
59 40 17 120 2.523
60 40 17 150 2.785
61 40 28 10 1.221
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Data set GSI m oc (MPa) FS

62 40 28 35 1.754
63 40 28 65 2.13

64 40 28 95 2.434
65 40 28 120 2.659
66 40 28 150 2.903
67 40 40 10 1.338
68 40 40 35 1.898
69 40 40 65 2.287
70 40 40 95 2.587
71 40 40 120 2.797
72 40 40 150 3.034
73 55 5 10 1.053
74 55 5 35 2.015
75 55 5 65 2.958
76 55 5 95 3.87

77 55 5 120 4.587
78 55 5 150 5.446
79 55 17 10 1.314
80 55 17 35 2.121
81 55 17 65 2.824
82 55 17 95 3.46

83 55 17 120 3.947
84 55 17 150 4.482
85 55 28 10 1.471
86 55 28 35 2.245
87 55 28 65 2.904
88 55 28 95 3.451
89 55 28 120 3.882
90 55 28 150 4.377
91 55 40 10 1.602
92 55 40 35 2.374
93 55 40 65 2.996
94 55 40 95 3.523
95 55 40 120 3.911
96 55 40 150 4.355
97 70 5 10 1.592
98 70 5 35 3.627




180 Appendix B
Data set GSI m oc (MPa) FS

99 70 5 65 5.914
100 70 5 95 8.224
101 70 5 120 10.163
102 70 5 150 12.448
103 70 17 10 1.73
104 70 17 35 3.215
105 70 17 65 4.641
106 70 17 95 6.026
107 70 17 120 7.126
108 70 17 150 8.415
109 70 28 10 1.849
110 70 28 35 3.186
111 70 28 65 4.467
112 70 28 95 5.58
113 70 28 120 6.49
114 70 28 150 7.574
115 70 40 10 1.959
116 70 40 35 3.227
117 70 40 65 4.398
118 70 40 95 5.437
119 70 40 120 6.219
120 70 40 150 7.141
121 85 5 10 2.79
122 85 5 35 7.827
123 85 5 65 13.798
124 85 5 95 19.754
125 85 5 120 24.73
126 85 5 150 30.71
127 85 17 10 2.562
128 85 17 35 5.677
129 85 17 65 9.112
130 85 17 95 12.579
131 85 17 120 15.492
132 85 17 150 18.969
133 85 28 10 2.566
134 85 28 35 5.214
135 85 28 65 8.044
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Data set GSI m oc (MPa) FS

136 85 28 95 10.743
137 85 28 120 13.003
138 85 28 150 15.732
139 85 40 10 2.624
140 85 40 35 5.038
141 85 40 65 7.489
142 85 40 95 9.835
143 85 40 120 11.723
144 85 40 150 13.996
145 100 5 10 5.867
146 100 5 35 18.805
147 100 5 65 34.36
148 100 5 95 49.937
149 100 5 120 62.922
150 100 5 150 78.481
151 100 17 10 4.433
152 100 17 35 12.079
153 100 17 65 21.213
154 100 17 95 30.262
155 100 17 120 37.827
156 100 17 150 46.921
157 100 28 10 4.124
158 100 28 35 10.245
159 100 28 65 17.524
160 100 28 95 24.743
161 100 28 120 30.683
162 100 28 150 37.828
163 100 40 10 4.027
164 100 40 35 9.31
165 100 40 65 15.38
166 100 40 95 21.526
167 100 40 120 26.604
168 100 40 150 33.67
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