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ABSTRACT 

 

Rock slope stability is a particularly important topic in rock engineering. The circular 

failure of highly fractured rock slopes is a critical failure mode that can cause severe 

damage. Over the past decades, significant research has been devoted to soil slopes and 

failure modes of rock slopes controlled by discontinuities. However, there have been few 

attempts to systematically study the circular failure mode of rock slopes. 

Circular failure is controlled by the strength of the rock mass. While the strength of a rock 

mass is difficult to measure directly, the Hoek-Brown (HB) strength criterion has proved 

effective and convenient for its estimation.  

This research presents a systematic study of the stability of highly fractured rock slopes 

using the HB strength criterion. Both deterministic analyses and probabilistic analyses are 

included. The relationship between the input (GSI, mi, σci, and their variability) and the 

output, Factor of Safety (FS) and Probability of Failure (PF), is investigated. Slide6.0 and a 

limit equilibrium model programmed in Matlab are used for FS calculations; Monte Carlo 

simulations are applied for PF calculations. 

The deterministic analysis aims to characterise the sensitivity of FS to the changes in HB 

parameters (FS sensitivity). A sensitivity graph analysis and an equation fitting analysis are 

developed. The sensitivity graph analysis displays the relationship between HB parameters 

and FS directly. The equation fitting analysis fits a large amount of data generated by 

Slide6.0 with an equation connecting HB parameters and FS, and then determines FS 

sensitivity from the derivatives of this equation with respect to HB parameters. It is found 
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that slopes with the same geometry and the same FS (but different combinations of HB 

parameters) can have quite different sensitivity and GSI is the most critical parameter in 

this respect. With the increase in GSI, FS becomes increasingly sensitive to the change in 

GSI and that in σci.  

The probabilistic analysis investigates the relationship between the variability of HB 

parameters (quantified by the coefficient of variation COV and scale of fluctuation θ) and 

PF. Its effectiveness in assessing the impact of FS sensitivity on slope stability is also 

studied. A series of parametric studies are implemented. It is found that there is a strong 

relationship between FS sensitivity and PF: for slope cases with identical FS and the same 

COV of input HB parameters, a slope of higher FS sensitivity has a higher PF, indicating a 

higher risk. The relative contributions of the variability of HB parameters to PF are also 

compared. It is found that when the COV of GSI, mi, and σci are identical, the variability of 

GSI makes the largest contribution; however, when these COV are set to their upper-limit 

values observed in engineering practice, the high variability of σci makes the largest 

contribution. Finally, the investigation demonstrates that spatial variability of HB 

parameters (applicable to mi and σci in this study) has significant influences on slope 

stability. For a slope with FS > 1, the PF increases as the scale of fluctuation θ of HB 

parameters increases. Also, larger θ makes the effect of FS sensitivity on slope stability 

more significant.  
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Chapter 1  

INTRODUCTION 

1.1 Introduction 

Rock excavations are required in numerous engineering activities. These include highways, 

dams, urban or industrial constructions, and open pit mining. In the history of rock 

engineering, the slope stability problem has attracted more attention than any other topics 

and is still one of the most important issues in this discipline (Hudson and Harrison 2000).  

Failures of rock slopes, varying from rock falls to global slope instability, apart from 

production losses and delays, can have severe social and economic consequences. Around 

2500 people in the Italian town Longarone were killed when a wave produced by a 

landslide overtopped the Vajont dam, in October 1963 (Hoek 2007). This is one of the 

many examples that demonstrates the importance of preserving and predicting slope 

stability.  

There are four basic failure modes for rock slopes, namely circular, plane, wedge, and 

toppling (further introduced in Section 2.2.1). Among these failure modes, the occurrences 

of the latter three are dominated by the existence and strength of discontinuities. On the 

other hand, circular failures occur in highly fractured rock slopes and are dominated by the 

overall strength of rock masses (a rock mass is the integration of intact rock and 

discontinuities). Although any of these failure modes can cause severe damage, most of the 

research effort in rock slope stability analysis has been devoted to discontinuity controlled 

failure modes and the circular failure mode has been relatively much less investigated.  
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The stability of many rock engineering projects, including highly fractured rock slopes, is 

controlled by the strength of the rock mass. Since rock mass strength is difficult to measure 

directly, its estimation has become a critical topic. A rock strength criterion, which is a 

principle or statement defining the condition under which the rock or rock mass reaches its 

maximum strength, serves this purpose. Among the rock strength criteria in use, Hoek-

Brown (HB) is the one that has been widely recognised and adopted by the rock 

engineering community. The HB strength criterion links the descriptive rock mass 

appearance, two basic intact rock parameters, and the blasting or stress incurred damage 

with the overall strength of the rock or rock mass, which provides great convenience for 

rock engineering practitioners. Moreover, it is also one of the non-linear criteria, which 

allows more realistic estimates of the strength of a rock or rock mass than the traditional 

linear Mohr-Coulomb criterion.  

The HB strength criterion can be used effectively to study the circular failure of highly 

fractured rock slopes. However, although several decades have passed since its first 

application, there have been few attempts to systematically investigate the stability of 

highly fractured rock slopes by using the HB strength criterion. The present study seeks to 

address this issue. 

Another critical topic in rock engineering, or more broadly geotechnical engineering, is to 

deal with uncertainty. Geotechnical engineering is a subject particularly dominated by 

uncertainty, mainly due to the highly variable properties of earth or rock materials. 

Traditional deterministic analysis for slopes is unable to explicitly incorporate and evaluate 

the impact of input uncertainty on slope stability, since it is based on purely deterministic 

constitutive relationships. Probabilistic analysis, which employs various probabilistic 
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concepts and techniques that allow uncertainty to be quantified and incorporated in one 

way or another, has advanced significantly over the past 30 years. 

A major source of uncertainty in geotechnical engineering is spatial variability, which 

simply speaking, refers to the differences between values of a parameter at different 

locations. In the early development of probabilistic analysis, spatial variability was 

generally not considered, mainly due to the limitations of computation and simulation 

techniques. However, it has been shown that the risk of having a slope failure can be either 

substantially overestimated (when the FS for the slope is more than 1) or underestimated 

(when the FS for the slope is less than 1) if spatial variability is not considered (Griffiths et 

al. 2009; Cho 2010). Hence, based on the rapid development of computation and 

simulation techniques, great efforts have been devoted to investigate the influence of 

spatial variability on slope stability in the past 10 years. Nevertheless, most of the attention 

has been paid to soil slopes rather than rock slopes.  

1.2 Scope of the Study 

The present research aims to systematically investigate the stability of highly fractured 

rock slopes using the HB strength criterion. The investigation is carried out under the 

framework of first deterministic analyses, then simplified probabilistic analyses without 

considering the spatial variability, and finally spatial probabilistic analyses that explicitly 

incorporate spatial variability.  

Four parameters, namely the Geological Strength Index GSI, the HB intact rock constant 

mi, the uniaxial compressive strength of intact rock σci, and the blasting or stress 

disturbance factor D, are used as input when the HB strength criterion is applied to 
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estimate the strength of a rock mass. This study focuses on GSI, mi, and σci, since they are 

considered as intrinsic parameters of a rock mass.  

Specific objectives of the present research are summarised in Chapter 3 after a review of 

the relevant literature in Chapter 2.  

1.3 Layout of the Thesis 

In Chapter 2, important publications that are relevant to this study are reviewed. Four parts 

are included: an overview of slope stability analysis, the HB strength criterion, the Limit 

equilibrium method (LEM), and probabilistic slope stability analysis (PSSA). The aims of 

the literature review are to provide necessary background knowledge and to identify 

specific research gaps for this study.  

In Chapter 3, specific research gaps forming objectives of this study are identified based on 

the literature review in Chapter 2. Subsequently, the methodology for the current study is 

specified. The models involved in the study are also introduced and validated. 

In Chapter 4, fractured rock slope stability is analysed within the framework of 

deterministic analyses. In Chapter 5, fractured rock slope stability is analysed within the 

framework of probabilistic analyses. 

Finally, in Chapter 6, a summary and the conclusions of this study are presented, and 

recommendations for further research are given. 



 

5 
 

Chapter 2  

L ITERATURE REVIEW  

2.1 Introduction 

This literature review aims to provide background knowledge for the later chapters and 

identify specific research gaps. Six sections are included: firstly, an overview of slope 

stability analysis is given, where basic information about slope scale, failure modes, rock 

mass strength, and common approaches for slope stability analysis are discussed. Secondly, 

the Hoek-Brown (HB) strength criterion is introduced in terms of the criterion, input 

parameters, and their conversion to the equivalent Mohr-Coulomb (MC) parameters. 

Thirdly, the limit equilibrium method (LEM), which is adopted in the present study for FS 

calculations, is introduced in detail. Probabilistic slope stability analysis (PSSA) is then 

discussed in terms of input, methodology, and output. Following that, previous studies in 

PSSA are reviewed, major research directions are classified, and research gaps for the 

present research are identified. Finally, a summary is presented. 

2.2 Overview of Slope Stability Analysis 

2.2.1 Slope Scale and Slope Failure 

Most of the rock slopes exist in open pits and the scale of such rock slopes is generally 

much larger than that of soil slopes. Based on the data given by Wyllie and Mah (2004), 

the height of most open pit rock slopes is between 100m and 300m.  



6 Chapter 2. Literature Review

Collapse/slide, lateral cracking, and large displacement of the rock material that constitutes 

the slope body, can all be viewed as slope failures (Chen 1995). On the other hand, 

depending on the scale of the failures relative to the slope size, slope failures include local 

inter-ramp failures as well as overall failures. Generally, collapse/slide of the overall slope 

is most critical and is the definition of slope failure in the present study. 

There are four basic failure modes for rock slopes, namely circular, plane, wedge, and 

toppling (Hoek 2009). Illustrations of these failure modes are shown in Figure 2.1. Circular 

failures occur in heavily jointed rock masses where slope stability is controlled by the 

shear strength of the rock masses. Plane, wedge, and toppling failures occur in rock masses 

where dominant discontinuities exist and slope stability is controlled by the existence and 

the shear strength of the discontinuities. Most of the research effort in rock slopes has been 

devoted to discontinuity controlled failures because of their common occurrences; 

examples include: constitutive analysis (Low and Einstein 1992; Chen 2004), discontinuity 

network modelling (Dowd et al. 2007; Grenon and Hadjigeorgiou 2008; Xu and Dowd 

2010), and probabilistic analysis (Park and West 2001; Park et al. 2005; Low 2008; 

Duzgun and Bhasin 2009; Park et al. 2011). On the other hand, although the rock mass 

controlled circular failure is also a critical mode of failure, it has been much less studied. 

                                                                 

Figure 2.1 Four basic failure modes for rock slopes (reproduced from Hoek 2009)

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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2.2.2 Rock Mass Strength 

Rock mass refers to the integration of intact rock and discontinuities. The strength of a 

rock mass is often necessary for carrying out stability analysis in rock engineering. 

However, rock mass strength is difficult to measure directly because of the problems 

associated with obtaining undisturbed samples and samples at the same scale as the failure 

(Read and Stacey 2009). A widely used alternative is to use the Hoek-Brown strength 

criterion to estimate rock mass strength (Cai et al. 2004; Priest 2005; Read and Stacey 

2009).  

2.2.3 Limit Equilibrium Method and Numerical Method  

The limit equilibrium method (LEM) and the numerical method are two basic techniques 

for slope stability analysis. A brief introduction to these techniques is given below:  

LEM treats the sliding part of a slope as a rigid body. It computes the driving force (DF) 

and resisting force (RF) of the sliding body along the slip surface, and slope stability is 

quantified by the factor of safety (FS), which equals RF/DF. The driving force is mostly 

contributed by the weight of the sliding body and water pressure, while the resisting force 

is contributed by the cohesive and frictional forces along the slip surface. Most LEM 

divide the sliding body into slices, based on which the analysis is carried out. This 

evaluation technique is termed the method of slices. 

LEM produces reasonably accurate results and has the advantage of being relatively fast 

and simple to use. It has been widely applied for several decades and remains an effective 

type of slope stability analysis method. Its major disadvantages include that the slip surface 

is pre-determined and the sliding body is assumed to be rigid. LEM is therefore unable to 
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analyse the deformation and displacement of a rock mass. In addition, various assumptions 

are made for different types of LEM, which may cause inaccuracy in some situations.  

The numerical method, on the other hand, divides the entire slope into elements. Elements 

are modelled with stress-strain relationships and deformation properties that define how 

the material behaves. After the stress states and boundary conditions are specified, the 

numerical method is able to compute the deformation and displacement of a rock mass. It 

can also compute the FS of a rock mass by applying the shear strength reduction technique 

(Read and Stacey 2009). Reviews of the numerical method for rock mass were given by 

Jing and Hudson (2002) and Jing (2003). 

The numerical method has two major advantages. Firstly, it is capable of computing the 

deformation and displacement of a rock mass. Secondly, its process of analysis is more 

rigorous than that of LEM (e.g. the failure surface is sought out during the analysis instead 

of being pre-assumed and FS is calculated by the shear strength reduction technique). On 

the other hand, the numerical method is slow compared with LEM, making it unsuitable 

for certain types of analysis (such as sensitivity analysis or probabilistic analysis) where 

stability analysis needs to be repeated many times.  

2.2.4 Deterministic Analysis and Probabilistic Analysis 

Slope stability analysis can be classified into deterministic analysis or probabilistic 

analysis depending on how uncertainty is incorporated and evaluated. These two types of 

analysis are briefly introduced below.  

The input for a deterministic analysis is a set of parameters of fixed values (usually at the 

mean values of the data obtained from site investigations). The process of a deterministic 
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analysis is one-off and is implemented by either LEM or the numerical method. The output 

from a deterministic analysis is mostly FS.  

In contrast, the input for a probabilistic analysis consists of parameters that are modelled as 

random variables. Different types of uncertainty of the input, including spatial variability, 

statistical uncertainty and systematic uncertainty, can be considered. In a probabilistic 

analysis, slope stability is still analysed by LEM or the numerical method. However, 

probabilistic analysis techniques, common ones include first order second moment method 

(FOSM), first order reliability method (FORM), point estimate method (PEM), and Monte 

Carlo simulation (MCS), are used to evaluate the influence of input uncertainty on slope 

stability. The output from a probabilistic analysis is mostly the probability of failure PF or 

the reliability index βr.  

Deterministic analysis enjoys a long history of development and acceptable levels of FS 

for various conditions are well established. It has been taken as a routine step for slope 

stability analysis. However, deterministic analysis uses fixed input parameters and can 

only cope with the risk of uncertainty by requiring a large FS value. Thus the uncertainty is 

not explicitly considered. Probabilistic analysis, on the other hand, uses random variables 

as input and considers uncertainty in a more explicit way. However, the acceptable levels 

of PF for various conditions are not as well established as those for FS. Finally, neither FS 

nor PF can be obtained with high precision.  

Based on these circumstances, it is recognised that deterministic analysis with FS as the 

output should remain a routine step for slope stability analysis, while probabilistic analysis 

with PF as the output is viewed as an important development that supplements 

deterministic analysis (Christian et al. 1994; Duncan 2000). 
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2.2.5 Sensitivity Analysis and Parametric Study 

Sensitivity analysis and parametric study are two commonly used techniques to assess the 

influence of the variation or variability of input parameters on the output. The most 

common and simple form of a sensitivity analysis is one-way sensitivity analysis. One-way 

sensitivity analysis and parametric study are similar in process: one parameter is changed 

systematically within its range with other parameters fixed, and the variation of the 

corresponding output is evaluated. Sensitivity analyses are mostly associated with physical 

parameters, such as material strength, water pressure or, different courses of action. 

Parametric studies are mostly associated with statistical parameters, such as the coefficient 

of variation (COV), scale of fluctuation, and correlation coefficient. Sensitivity analysis 

and parametric study are useful as they can help find the parameter or the particular ranges 

of parameters that have the most critical influence on slope stability. 

2.3 Hoek-Brown (HB) Strength Criterion 

This section consists of four parts: firstly, the latest version of the HB strength criterion is 

introduced; secondly, input parameters involved in the HB strength criterion are discussed, 

particularly in terms of their variability; thirdly, methods for converting HB parameters to 

equivalent Mohr-Coulomb (MC) parameters, which are essential for using the HB strength 

criterion in conjunction with the LEM, are introduced; and lastly, the application of the HB 

strength criterion is briefly discussed. 

2.3.1 HB Strength Criterion 

The HB strength criterion was originally proposed in the 1980s (Hoek and Brown 1980) to 

provide input data for the analysis of underground excavations. It has been continually 
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reviewed and developed over the past three decades (primarily in 1983, 1988, 1992, 1995, 

1997, and 2002) and has now become a widely used criterion for estimating the strength of 

either an intact rock or a rock mass (Cai et al. 2004; Priest 2005; Read and Stacey 2009). A 

comprehensive review of the development of the HB strength criterion was given by Hoek 

and Marinos (2007). 

The latest version of the HB strength criterion (Hoek et al. 2002) is expressed as 

 3
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where σ1 is the major principal stress at failure, σ3 is the minor principal stress at failure, σci 

is the uniaxial compressive strength of the intact rock material, and mb, s, and a are 

constants for the rock mass that can be calculated from the following equations (Hoek et al. 

2002): 
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(2.4) 

where GSI is the Geological Strength Index, mi is the Hoek-Brown constant for intact 

rock, and D is a rock mass disturbance factor depending on the blast damage or stress 

relaxation. 

When the HB strength criterion is applied to a rock mass, the input parameters are GSI, mi, 

σci, and D. Among these parameters, GSI, mi, and σci are intrinsic parameters of a rock 
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mass and are introduced in details in Section 2.3.2. It should be noted that the HB strength 

criterion is only applicable to the rock mass that contains a sufficient number of randomly 

oriented discontinuities such that it can be treated as isotropic.  

The HB strength criterion (Equation 2.1) is expressed in principal stress space (σ1 and σ3). 

However, slope stability analyses are usually carried out in normal and shear stress space 

(σn and τ). Therefore, it is necessary to employ certain techniques to transform the HB 

strength criterion from principal stress representation to normal and shear stress 

representation in slope stability analysis. The exact transformation can be achieved by 

Balmer’s solution (Balmer 1952), which is a generic solution that can be applied to any 

non-linear strength criterion. Balmer’s solution can be written in the form of the following 

equations (Hoek et al. 2002): 

 1 3 1 3 1 3
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where  σn and τ are the normal and shear stresses at failure. 

A detailed discussion of Balmer’s solution was given by Carranza-Torres (2004).  
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2.3.2 HB Input Parameters: GSI, mi and σci 

Three intrinsic rock mass parameters in the HB strength criterion, i.e. GSI, mi, and σci, are 

discussed in this section. 

2.3.2.1 Geological Strength Index (GSI) 

GSI describes the blockiness and discontinuity weathering conditions of a rock mass. It is 

used in the HB strength criterion to scale down the strength and other deformation 

properties of the rock mass from intact rock. GSI emerged formally in 1995 (Hoek et al. 

1995) and since then has undergone continuous development. Marinos et al. (2005) 

provided a comprehensive review of GSI. On the other hand, it should be noted that GSI is 

only applicable to the rock mass that contains a sufficient number of randomly oriented 

discontinuities such that it can be treated as isotropic (as stated earlier, this is also the 

prerequisite for applying the HB strength criterion to a rock mass).  

The value of GSI extends from unity for an extremely fractured rock mass to 100 for an 

intact rock. It can be estimated from charts (Marinos et al. 2005) and Hoek (1998) stated 

that it is desirable to assign a range of values (e.g. in the form of a normal distribution) to 

GSI instead of a single value. In the early stage of the development, GSI can be estimated 

from adjusted RMR or Q (two popular rock mass classification systems) values (Hoek and 

Brown 1997). However, this procedure is no longer recommended, particularly for a weak 

rock mass (Marinos et al. 2005). Marinos and Hoek (2000) discussed the ranges of GSI for 

typical rock masses. Marinos et al. (2005) presented detailed instructions for using GSI, 

including its applicability and the influence of rock mass size, anisotropy, depth, ground 

water, aperture, infilling, weathering, and soft rocks on its value. There have been several 

attempts to quantify GSI directly based on common discontinuities parameters (Sonmez 
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and Ulusay 1999; Cai et al. 2004; Cai et al. 2007). However, as pointed out by Marinos et 

al. (2005), these GSI quantification methods should be used with caution when applied to 

certain types of rock mass.  

GSI is deemed to be the most important parameter in the HB strength criterion (Marinos et 

al. 2005; Fisher and Eberhardt 2012; Mao et al. 2012). The variability of GSI is generally 

low and Table 2.1 summarises the statistics of GSI from existing publications. It is shown 

that the COV of GSI is between 0.035 and 0.15.  

2.3.2.2 HB Constant: mi 

The HB constant mi is one of the two parameters in the HB strength criterion that describes 

the characteristics of the intact rock (the other one is σci). It is produced from curve fitting 

of triaxial test data and does not have any specific physical meaning. A recent review of mi 

was given by Richards and Read (2011).  

Ideally, mi should be determined by regression analysis on triaxial test data and the 

corresponding procedures and specifications were given by Hoek and Brown (1997). 

Alternatively, mi can be estimated from the lithology (Hoek 2007).  However, Mostyn and 

Douglas (2000) stated that mi is not highly correlated to rock lithology based on analyses 

of a large amount of data they have collected. Further analyses carried out by Richards and 

Read (2011) suggested that σci/σt, which is the ratio of uniaxial compressive strength of 

intact rock to the tensile strength of intact rock, is a good indicator of the mi value. The 

value of mi ranges from 3 for slate to 35 for granite (Hoek 2007). However, based on the 

data from Mostyn and Douglas (2000), the value of mi ranges from 1 to 40.  
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The parameter mi is less important in the HB strength criterion as compared with GSI and 

σci (Marinos et al. 2005; Fisher and Eberhardt 2012; Mao et al. 2012). The variability of mi 

is medium. Table 2.2 summarises the statistics of mi from existing publications. It is shown 

that the COV of mi is between 0.039 and 0.25. 

2.3.2.3 Uniaxial Compressive Strength (UCS): σci  

The parameter σci (UCS) of a rock is the maximum axial stress that a specific sample of 

such rock can sustain under a uniaxial compressive loading. It is one of the most important 

rock parameters in rock engineering, as firstly it is a critical indicator for the intact rock 

strength and secondly it is an essential input for most rock strength criteria and many rock 

classification systems. In this section, σci is discussed within the framework of the HB 

strength criterion.  

Ideally, the value σci should be obtained directly from laboratory test (Hudson and Harrison 

2000). Alternatively, it can be determined from Schmitt rebound hammer reading (Hudson 

and Harrison 2000) or estimated from published data (Hoek and Brown 1997). The value 

of σci ranges from 0.25MPa for some extremely soft rocks to 250MPa for some highly 

strong rocks such as the granite (Hoek and Brown 1997).    

σci is also an important parameter in the HB strength criterion (Marinos et al. 2005; Fisher 

and Eberhardt 2012; Mao et al. 2012). The variability of σci is generally high. Table 2.3 

summarises the statistics of σci from previous publications. It is shown that the COV of σci 

is between 0.1 and 0.4. 



 

 

Table 2.1 Statistics of GSI based on published data 

 

Source Project Mean GSI COV Distribution 

Fisher  and  Eberhardt 
(2012) 

A dip slope located in southern California 49 0.12 Lognormal 

Lü  and  Low (2011) A horse-shoe shaped highway tunnel in China 25 0.2 Normal 

Idris et al. (2011) A stope geometry in Canadian blast hole stoping operations 65 0.077 Truncated normal 

Sari et al. (2010) Estimating the rock mass properties of Ankara andesites 55.9 - 74.9 0.077 – 0.153 Truncated normal 

Fu et al. (2009) A cutting slope at the Laohuzui hydropower station in China 40 0.062 Truncated normal 

Cai et al. (2004) Kannagawa underground powerhouse cavern in Japan 54 - 74 0.035 / 

Cai (2011) 
Cai et al. (2004) 

Kazunogawa underground powerhouse cavern in Japan 46 - 60 0.035 – 0.042 Normal 

Mao et al. (2012) 
Lü  and  Low (2011) 

Hoek (1998) 
Hypothetical slope and tunnel cases 25 0.1 Normal 



 

 
 

Table 2.2 Statistics of mi based on published data 

 

 

Source Project Mean mi COV Distribution 

Fisher  and  Eberhardt 
(2012) 

A dip slope located in southern California 17 0.039 Normal 

Lü  and  Low (2011) A horse-shoe shaped highway tunnel in China 13 0.2 Normal 

Idris et al. (2011) A stope geometry in Canadian blast hole stoping operations 28 0.071 Truncated normal 

Sari et al. (2010) Estimating the rock mass properties of Ankara andesites 4.1-10.5 0.15-0.25 Normal 

Fu et al. (2009) A cutting slope at the Laohuzui hydropower station in China 19.04 0.159 Truncated normal 

Cai et al. (2004) Kannagawa underground powerhouse cavern in Japan 9 - 22 0.125 \ 

Cai (2011) 
Cai et al. (2004) 

Kazunogawa underground powerhouse cavern in Japan 19 0.125 Normal 

Mao et al. (2012) 
Lü  and  Low (2011) 

Hoek (1998) 
Hypothetical slope and tunnel cases 8 0.125 Normal 



 

 

Table 2.3 Statistics of σci based on published data 

Source Project 
Mean σci 
(MPa) 

COV Distribution 

Fisher  and  Eberhardt 
(2012) 

A dip slope located in southern California 15 0.4 Normal 

Lü  and  Low (2011) A horse-shoe shaped highway tunnel in China 160 0.25 Normal 

Idris et al. (2011) A stope geometry in Canadian blast hole stoping operations 282 0.124 Truncated normal 

Sari et al. (2010) Estimating the rock mass properties of Ankara andesites 53-128 0.1-0.2 Truncated normal 

Fu et al. (2009) A cutting slope at the Laohuzui hydropower station in China 125 0.15 Truncated normal 

Cai et al. (2004) Kannagawa underground powerhouse cavern in Japan 48 -162 0.1-0.212 \ 

Cai (2011) 
Cai et al. (2004) 

Kazunogawa underground powerhouse cavern in Japan 108 0.389 Truncated normal 

Mao et al. (2012) 
Lü  and  Low (2011) 

Hoek (1998) 
Hypothetical slope and tunnel cases 10 0.25 Normal 
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2.3.3 Converting HB Parameters to Equivalent MC Parameters 

The Mohr-Coulomb (MC) strength criterion is a commonly used strength criterion for soil. 

The MC strength criterion can be expressed in the normal and shear stress space (σn and τ) 

as: 

 tanf ncτ σ ϕ= +
 (2.8) 

where c is the cohesion, φ is the angle of friction, σn is the normal stress, and τf is the shear 

strength (shear stress at failure). 

Since, historically, rock mechanics was a branch of soil mechanics, the MC strength 

criterion is also widely applied in rock engineering. Many slope stability analysis methods 

(such as the LEM) and software are based on the MC strength criterion and use MC 

parameters, i.e. c and φ, as input. Therefore, to use the HB strength criterion in conjunction 

with the LEM, it is necessary to convert HB parameters to their equivalent MC parameters. 

The principle of the conversion can be defined as under a specified level of normal stress, 

find the equivalent MC parameters c and φ that would give the same shear strength based 

on the MC strength criterion as that based on the HB strength criterion. The conversion is 

illustrated in Figure 2.2. The solid line represents the failure envelope of the HB strength 

criterion in normal and shear stress space (σn and τ) for a rock with the following HB 

parameters: GSI = 100, mi = 10, and σci = 30MPa. When the normal stress σn = 10MPa, the 

HB strength criterion computes the shear strength τf = 15.8MPa. The equivalent MC 

parameters under normal stress σn = 10MPa that also give a shear strength of 15.8MPa for 

this rock is found to be c = 7.3MPa and φ = 40.2˚, and the dashed line represents the 

corresponding MC failure envelope.  
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There are two types of solutions for the conversion, i.e. the accurate solution and the 

approximate solution. These two types of solutions are introduced in the following sections. 

 

 

 

 

 

 

 

Figure 2.2 Conversion from HB parameters to MC parameters: a rock with GSI = 

100, mi = 10, and σci = 30MPa under a normal stress σn = 10MPa 

2.3.3.1 Accurate Solution 

Accurate solutions, as implied by the name, compute c and φ that produce identical shear 

strength from the MC strength criterion as that from the HB strength criterion.  This is 

achieved by determining the tangent line to the HB failure envelope at the failure point 

(Carranza-Torres 2004; Priest 2005). This tangent line is the equivalent MC failure 

envelope and the intercept and slope of this line are equal to c and tanφ respectively. 

Therefore, Figure 2.2 shows precisely the conversion strategy of accurate solutions. Note 

that the c and φ found by this method change instantaneously with the specified normal 

stress σn and therefore they are usually termed the instantaneous cohesion and angle of 

friction (Priest 2005). 
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Three accurate solutions are introduced in this section: they are Bray’s solution for the 

intact rock, Kumar’s solution, and Priest’s solution. 

Bray (reported by Hoek 1983) developed an accurate solution for the original HB strength 

criterion (Hoek and Brown 1980). The latest version of the HB strength criterion (Hoek et 

al. 2002) is only equivalent to the original HB strength criterion when GSI = 100 (which 

represents an intact rock). Therefore, for the latest version of the HB strength criterion, 

Bray’s solution only produces accurate conversion when GSI = 100. For GSI of other 

values, the conversion error increases as GSI decreases (Kumar 1998).  

Bray’s solution consists only of analytical equations and does not need further numerical 

iterations. It is convenient to use and is still popular with research for the intact rock. 

Bray’s solution is given in the following equations: 
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where h and θ are intermediate parameters. 
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Kumar (1998) developed an accurate solution that is suitable for the latest HB strength 

criterion (although the latest HB strength criterion was developed in 2002, it has the same 

generic form as the 1997 version and therefore Kumar’s solution can still be applied). 

Kumar’s solution is given in the following equations:  
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 tanf nc τ σ ϕ= −
 (2.16) 

Kumar’s solution needs numerical iterations to calculate φ from Equation 2.15. 

Priest (2005) developed another accurate solution for the latest HB strength criterion 

(Hoek et al. 2002). The strategy of Priest’s solution is briefly introduced as follows. Firstly, 

Priest’s solution introduces two normal stresses σn- and σn+ that are very slightly less and 

more than the specified normal stress σn. Secondly, the failure points on the HB failure 

envelope under σn- and σn+ are found by a series of equations. Afterwards, these two points 

are connected and the corresponding secant line is used to approximate the tangent line at 

the failure point of σn. Finally, c and φ are calculated from this secant line. 

It should be noted that Priest’s solution is not an exact accurate solution, as it uses a secant 

line to approximate the tangent line. However, the calculated c, φ, and shear strength τf are 

very close to those produced from the Kumar’s solution. Priest’s solution consists of a 

series of equations and needs the assistance of a few numerical routines (such as the Excel 

Solver). It is not further introduced here and interested readers are referred to Priest (2005). 
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Finding accurate shear strength for the failure surface is critical for slope stability analysis. 

The advantage of the accurate solution is that it provides accurate conversion from HB 

parameters to MC parameters. However, accurate solutions that are suitable for the latest 

HB strength criterion need to apply additional steps of numerical iterations, making the 

conversion slower than approximate solutions. This drawback is not evident for a single 

conversion but may cause significant delays when the solution is applied a large number of 

times, e.g. in a Monte Carlo simulation. 

2.3.3.2 Approximate Solution 

Approximate solutions are generally developed for efficiency purposes. In this section, two 

solutions that are specifically developed for the latest version of HB strength criterion are 

discussed. They are Hoek’s solution and Shen’s solution. On the other hand, Bray’s 

solution can also be regarded as an approximate solution for the latest version of HB 

strength criterion when GSI < 100, as it does not produce accurate conversion unless GSI = 

100.  

Hoek’s solution (Hoek et al. 2002) was developed in conjunction with the latest HB 

strength criterion. It is derived from curve fitting and is expressed in the following 

equations:  
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where H is the depth of the tunnel below surface and γ is the unit weight of the rock 
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where H is the height of the slope 
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Shen et al. (2012) developed an approximate solution based on genetic programming. 

Shen’s solution is expressed in the following equations: 
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A simple numerical experiment was carried out to examine the accuracy of the above 

approximate solutions (including Bray’s solution). Cases of rock masses with different 

combinations of blockiness (characterised by GSI), intact rock strength (characterised by 

mi and σci), and normal stress levels (σn) are designed. GSI values are selected to be 100, 

70, and 30, which represent intact, fractured, and highly fractured rock mass respectively. 

Intact rock parameters (mi/σci) are selected to be 32/175MPa and 10/30MPa, which 

represent strong and soft rock respectively. Lastly, the normal stress level σn is selected to 

be 10MPa and 0.5MPa, which represent high and low normal stress levels in slope stability 

analysis. Therefore, there are 3 × 2 × 2 = 12 cases in total and they are shown in Table 2.4.  

Kumar’s solution, Bray’s solution, Hoek’s solution (using Equation 2.21 with the slope 

height H set to 100m), and Shen’s solution are applied to these cases. The output from 

Kumar’s solution is used as a judgement, since it is an accurate solution. The calculated 

shear strength τf from these solutions for all 12 cases is compared in Table 2.4, where RD 

represents the relative difference. In addition, the detailed output for Case 5 is 

demonstrated in Table 2.5.  

Based on Table 2.4, the following conclusions are drawn. Firstly, when Bray’s solution is 

applied to the latest HB strength criterion, it produces systematic error, which gradually 

increases with decreasing GSI; however, the error is generally not very large (≤ 10%). 

Secondly, Hoek’s solution produces the largest overall error; when GSI is less or equal to 

70, the errors of τf are mostly too large to be acceptable. Lastly, Shen’s solution produces 

medium errors for low normal stress circumstances (σn = 0.5MPa) and small errors for high 

normal stress circumstances (σn = 10MPa). It is therefore suitable for high normal stress 

conditions. 

 



 

 

 Table 2.4 Comparison of three approximate solutions for converting HB parameters to equivalent MC parameters 

 

Case GSI mi 
σci 

(MPa) 
σn 

(MPa) 
Rock mass and normal stress level 

Kumar 
τf (MPa) 

Bray 
RD of τf (%) 

Hoek 
RD of τf (%) 

Shen 
RD of τf (%) 

1 100 32 175 10 Intact/ strong rock/ high σn 40.62 0.00 -0.08 9.16 

2 100 10 30 10 Intact/ soft rock/ high σn 15.77 0.00 6.07 3.15 

3 100 32 175 0.5 Intact/ strong rock/ low σn 20.11 0.00 -3.30 25.63 

4 100 10 30 0.5 Intact/ soft rock/ low σn 6.22 0.00 -3.67 18.30 

5 70 32 175 10 Fractured/ strong rock/ high σn 23.05 0.10 8.81 0.52 

6 70 10 30 10 Fractured / soft rock/ high σn 9.60 0.05 20.58 0.29 

7 70 32 175 0.5 Fractured / strong rock/ low σn 4.25 0.26 8.24 17.80 

8 70 10 30 0.5 Fractured / soft rock/ low σn 1.60 0.25 5.71 11.63 

9 30 32 175 10 Highly fractured/ strong rock/ high σn 14.38 3.66 15.07 1.56 

10 30 10 30 10 Highly fractured / soft rock/ high σn 5.55 3.06 34.01 0.56 

11 30 32 175 0.5 Highly fractured / strong rock/ low σn 1.63 7.06 20.78 6.23 

12 30 10 30 0.5 Highly fractured / soft rock/ low σn 0.73 6.90 8.38 4.57 
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Table 2.5 Detailed conversion output for Case 5 (in Table 2.4) 

Case 5  Kumar Bray Hoek Shen 

GSI: 70 
mi: 32 

σci: 175MPa 

σn: 10MPa 

c (MPa) 7.13 7.15 3.52 7.35 

φ (degree) 57.86 57.87 65.12 57.70 

τf (MPa) 23.05 23.07 25.08 23.17 

RD of τf (%) 0.00 0.10 8.81 0.52 

2.3.4 Application of the HB Strength Criterion 

The HB strength criterion and the corresponding GSI system provide a simple and 

effective solution for rock slope stability analysis (Pantelidis 2009). Examples of practical 

engineering application of the HB strength criterion include Hormazabal et al. (2009) and 

Sjöberg (1997). Examples of probabilistic slope stability analysis that employ the HB 

strength criterion include Fu et al. (2009) and Priest and Brown (1983). There are also 

attempts to develop stability charts for rock slopes based on the HB strength criterion (Li et 

al. 2008; Li et al. 2011); however, the reliability of these stability charts needs further 

confirmation. 

2.4 Limit Equilibrium Method (LEM) 

2.4.1 Overview of LEM 

In the limit equilibrium method (LEM), analysis is carried out based on a slip surface, 

which can be either circular or non-circular. The FS for this slip surface is defined as  

 FS = RF/DF (2.28) 



28 Chapter 2. Literature Review 
 

 

where RF is the resisting force (available shear strength) and DF is the driving force 

(equilibrium shear stress).  

For a given slope, there are theoretically an infinite number of possible slip surfaces. 

Among these slip surfaces, the one with the lowest FS is termed the critical slip surface 

(CSS). The CSS is considered to be the most likely surface along which the failure will 

occur and is the one to be examined in most LEM (Duncan and Wright 2005). Although in 

reality there are also other slip surfaces of concern, in the present study, the CSS is the 

focus.  

The CSS is usually found by computer programs. For LEM that considers only circular slip 

surfaces, the CSS can be found by systematically searching through various centres and 

radii of slip circles. For LEM that considers non-circular slip surfaces, the CSS can be 

found by searching techniques that involve optimisation schemes (e.g. Baker 1980) or 

random process schemes (e.g. Boutrup and Lovell 1980).  

There are three static equilibrium conditions to be satisfied for LEM: (1) force equilibrium 

in the vertical direction, (2) force equilibrium in the horizontal direction, and (3) moment 

equilibrium about any point. Some LEM implementations satisfy all the three equilibrium 

conditions; others satisfy only some of them. However, in all circumstances, there are 

always more unknown variables than the number of equilibrium equations, which makes 

the problem statically indeterminate. Therefore, assumptions must be made for LEM to 

balance the unknown variables with the equilibrium equations.   

There are two broad types of LEM. One is based on the entire slipping soil or rock mass 

body and the other divides the slipping soil or rock mass body into slices. The first type of 

LEM can only be applied to slopes with certain geometry (e.g. infinite slope method, 
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Duncan and Wright 2005) or with a specific shape of slip surface (e.g. logarithmic spiral 

method, Frohlich 1953). This type of LEM will not be further discussed here, as it is 

beyond the scope of this thesis. The latter type of LEM is termed the method of slices and 

it is discussed in the following section. 

2.4.2 Method of Slices 

The method of slices divides the slipping soil/rock mass body into slices, based on which 

the analysis is carried out. Depending on the shape of the slip surface, there are methods 

that can only be applied to circular slip surfaces and others that can be applied to arbitrary 

(non-circular) slip surfaces. Table 2.6 (based on Duncan and Wright 2005) summarises 

commonly used method of slices and the static equilibrium conditions that they satisfy. 

In terms of simplicity and accuracy of various methods listed in Table 2.6, methods that 

can be carried out by hand calculations are considered to be “simple”; otherwise they are 

“complicated”. Methods that satisfy all three equilibrium conditions (e.g. Method 6, 7, and 

8) are generally considered to be accurate (Fredlund and Krahn 1977).  

Methods that assume circular slip surfaces are generally simple. Among all method of 

slices, Method 1, the Ordinary method of slices, is the most straightforward and is the only 

one that does not need iterative calculations. However, it is less accurate, particularly when 

water pressure is involved in the calculation. Method 2, Bishop’s simplified method of 

slices (Bishop 1955), is simple and accurate (Wright et al. 1973; Fredlund and Krahn 1977). 

Its only limitation lies in the assumed circular slip surface. Among methods that assume 

arbitrary slip surfaces, Methods 3, 4, and 5 are simple but their accuracy is sensitive to 

their corresponding assumptions (Duncan and Wright 2005). Methods 6, 7, 8, and 9 satisfy 

all three equilibrium conditions and are robust and accurate (Fredlund and Krahn 1977; 
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Duncan and Wright 2005). However, they are more complicated and have higher 

computing cost compared with Methods 1 – 5. 

Table 2.6 Static equilibrium conditions that commonly used method of slices satisfy 

(summarised based on Duncan and Wright 2005) 

Shape of slip 
surface 

Method of slices 
Force equilibrium Moment 

equilibrium Vertical Horizontal 

circular 
(1) Ordinary × × √ 

(2) Bishop’s simplified √ × √ 

arbitrary (non-
circular) 

(3) Lowe & Karafiath √ √ × 

(4) U.S. Army Corps of Engineers √ √ × 

(5) Janbu’s simplified √ √ × 

(6) Spencer √ √ √ 

(7) Morgenstern and Price √ √ √ 

(8) Chen and Morgenstern √ √ √ 

(9) Sarma √ √ √ 

For probabilistic slope stability analysis that involves MCS, Bishop’s simplified method of 

slices is often used (unless the slip surface is not likely to be circular) for its simplicity and 

accuracy (El-Ramly et al. 2002; El-Ramly et al. 2003; El-Ramly et al. 2005; Wang et al. 

2010). Bishop’s method of slices is further discussed in detail in a later section. Meanwhile, 

as the Ordinary method of slices provides a simple solution for estimating the effective 

normal stress along the slip surface (which is necessary for converting HB parameters to 

MC parameters, as described in Section 2.3.3), it is also introduced here.  

2.4.2.1 Ordinary Method of Slices 

Figure 2.3 depicts a typical slice in the method of slices, including its geometry and all 

forces acting on it.  
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Figure 2.3 A typical slice in method of slices with forces acting on it 

The Ordinary method of slices only satisfies the moment equilibrium condition. It assumes 

that the normal and shear forces acting on both sides of the slice, including EL, XL, ER, and 

XR (as shown in Figure 2.3), are equal to 0. Based on this assumption, the effective normal 

force N’ acting on the base of the slice can be expressed as 

 ' cos
cos

ub
N W α

α
= −

 
(2.29) 

where W is the weight of the slice, α is the base angle, u is the water pressure along the slip 

surface, and b is the width of the slice. W and u can be calculated from the following 

equations 

 r rW h br=  (2.30) 

 w wu h r=  (2.31) 
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where hr is the height of the slice, rr is the unit weight of soil/rock material, hw is the height 

of the water table, and rw is the unit weight of water. 

Based on Equation 2.29, the effective normal stress σ’ acting on the base of the slice is 

expressed as 

 
2cos

'
W

u
b

ασ = −
 

(2.32) 

Equation 2.32 is the original expression of the effective normal force σ’ for the Ordinary 

method of slices. However, this equation may lead to unrealistic low and even negative 

values of σ’. A more reasonable expression of the effective normal force N’ is proposed by 

Turnbull and Hvorslev (1967) as 

 ' ( )cosN W ub α= −  (2.33) 

the updated effective normal stress σ’ is then expressed as 

 2' ( )cos
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(2.34) 

Based on Equation 2.34, the MC strength criterion (Equation 2.8), and moment equilibrium 

about the centre of rotation, the FS for the ordinary method of slices is given by  
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(2.35) 

where c and φ are cohesion and angle of friction along the slip surface.  
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2.4.2.2 Bishop’s Simplified Method of Slices 

In this section, Figure 2.3 is still used as the representation of a typical slice. 

Bishop’s simplified method of slices satisfies vertical force equilibrium and moment 

equilibrium conditions. It assumes that the horizontal forces acting on both sides of the 

slice, including XL and XR, are equal to 0. 

The normal force N acting on the base of the slice for Bishop’s simplified method of slices 

is expressed as 
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(2.36) 

where W is the weight of the slice and can be calculated by Equation 2.30, FS is the factor 

of safety, c and φ are cohesion and angle of friction along the slip surface, and u is the 

water pressure along the slip surface and can be calculated by Equation 2.31. 

Based on Equation 2.36, the effective normal stress σ’ acting on the base of the slice is 

given by  
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(2.37) 

Based on Equation 2.37, the MC strength criterion (Equation 2.8), and moment equilibrium 

about the centre of rotation, Bishop’s simplified method of slices calculates the FS by  
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Since FS occurs at both sides of the above equation, an iterative process is necessary to 

compute the value of FS. 

2.5 Probabilistic Slope Stability Analysis 

Probabilistic Slope Stability Analysis (PSSA) is introduced in this section in terms of its 

input, methodology and output. Firstly, the input, including geotechnical variability and its 

characterisation, are discussed. Secondly, commonly used probabilistic analysis techniques, 

including first order second moment method (FOSM), first order reliability method 

(FORM), point estimate method (PEM), Monte Carlo simulation (MCS), and associated 

measures to incorporate and evaluate spatial variability, are introduced. Lastly, the output 

assessment for PSSA is briefly discussed.  

2.5.1 Overview of Geotechnical Variability 

The inherent variability of geotechnical parameters is a major source of uncertainty in 

geotechnical engineering (Baecher and Christian 2003; Duzgun et al. 2003; Christian 

2004). Effective investigation and characterisation of the variability of geotechnical 

parameters can significantly improve the quality of analysis and design (Jaksa et al. 2005).  

The variability of a geotechnical parameter is often simply quantified by the coefficient of 

variation (COV), which is given by the following equation 

 COV
σ
µ

=
 

(2.39) 

where σ is the standard deviation and µ is the mean. 
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On the other hand, although the COV is useful, it is not able to characterise the important 

spatial variability of geotechnical parameters. For example, two soil or rock profiles can 

have similar µ and COV but exhibiting significant differences. Figure 2.4 illustrates such 

an example, where two profiles of a chosen parameter λ have similar µ and COV values 

but are very different in appearance.  

 

 

 

 

 

 

     (a)              (b) 

Figure 2.4 Example of two profiles of a chosen parameter λ with similar mean and 

COV values but exhibiting great differences 

The two profiles have similar statistical parameters (for profile 1, µ = 1.02 and COV = 0.47; 

for profile 2, µ = 1.16 and COV = 0.48), but it is apparent from Figure 2.4 that the two 

profiles are very different. This is caused by the different spatial variability of these two 

profiles. Spatial variability refers to the differences between values of a variable at 

different locations. These values tend to be more similar when the distances between the 

locations are smaller. Spatial variability of the earth material has significant influences on 

slope stability. Without proper considerations of spatial variability, the risk of having a 
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slope failure can be either overestimated (when the FS for the slope is more than 1) or 

underestimated (when the FS for the slope is less than 1) (Griffiths et al. 2009; Cho 2010).  

Spatial variability can be characterised by the scale of fluctuation θ. Larger θ represents 

low spatial variability and results in a less variable profile (such as that in Figure 2.4b) and 

smaller θ represents high spatial variability and results in a more variable profile (such as 

that in Figure 2.4a). The equivalent measure of spatial variability in geostatistics is the 

range α. Both these measures will be discussed in more detail.  

The variability of geotechnical parameters has been investigated and summarised by 

several researchers (Jaksa 1995; Phoon and Kulhawy 1999; Duncan 2000; El-Ramly et al. 

2003). However, most of the work has focused on soil. From the published work, the COV 

of soil parameters show large variations in terms of different materials, testing methods, 

and locations. The scale of fluctuation for many soil parameters were found to be similar 

and within the range of 40-60m in the horizontal direction and 2-6m in the vertical 

direction. 

For the present study, Tables 2.1, 2.2, and 2.3 in Section 2.3.2 summarise the COV of HB 

parameters from the literature. However, for the scale of fluctuation, only studies on σci 

were found. Wang et al. (2000) investigated the spatial variability of the point load index 

Is50 of sandstone and claystone for an open-pit coal mine slope project. The scale of 

fluctuation of Is50 for the sandstone and clay stone along the strike of slope (horizontal 

direction) is found to be within 3-6m. 
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2.5.2 Explicit Characterisation of Geotechnical Variability 

Random field theory and geostatistics are two commonly used techniques for the explicit 

characterisation of geotechnical variability. They are introduced in the following sections. 

2.5.2.1 Random Field Theory 

Random field theory was systematically established by Vanmarcke (1983). Being 

restricted by the computation capability, the potential of random field theory has not been 

fully exploited until the most recent decade. Fenton and Griffiths (2008) re-elaborated 

random field theory with some of its latest applications. The above two publications form 

the basis of our discussion in this section. Also, the discussion is mostly restricted to one-

dimensional stationary Gaussian random field.  

(1) Basic Concepts and Common Assumptions 

In random field theory, the point variability at any location t is characterised by a random 

variable X(t) with the probability density function (PDF) fX(x), and the entire random field 

is characterised by the joint PDF fx1x2…(x1, x2, ….) of all the random variables. 

Theoretically, the PDF of the point variability can evolve with location and it can take any 

form. However, this would make the resultant random field impractical to use. 

To simplify the problem, three assumptions, including Gaussian process, stationarity, and 

isotropy, are usually made. Gaussian process means that the joint PDF of the random field 

is a normally distributed random process. Such joint PDF is expressed as  

 1 2
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... 1 2 1/ 2/2

1 1 1
( , ,..., ) exp ( ) ( )

(2 ) 2K

T
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where X is the input vector, µ is the mean vector, C is the covariance matrix, and |C| is the 

determinant of C. Under the assumption of Gaussian process, a random variable at any 

point of the random field follows a normal distribution. 

Stationarity means that the joint PDF of the random field depends only on the relative 

distances between the points rather than on their absolute positions. Under this assumption, 

covariance and other higher order moments of the random field are constant in space.  

Isotropy indicates that for a random field of higher dimensions (≥ 2D), the joint PDF of the 

random field is invariant with rotation. 

Stationary Gaussian random field is the most widely used random field in practice. Fenton 

and Griffiths (2008) stated that since there was great uncertainty involved in the most basic 

statistical parameters, it is “of little point in adopting other joint distributions”. 

(2) Characterisation of Random Fields 

A random field can be fully characterised by the field mean µ and the covariance function 

C(τ), where C(τ) represents the covariance between two points separated by distance τ. C(τ) 

can be normalised into the correlation function ρ(τ) by the following equation (Fenton and 

Griffiths 2008) 

 2

( )
( )

C τρ τ
σ

=
 

(2.41) 

where σ2 is the field variance.  
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Under the assumption of stationarity, µ and σ2 of a random field are invariant in space and 

the covariance function and correlation function depend only on the relative distance τ 

between points.  

A simple measurement of the spatial variability of a random field is the scale of fluctuation 

θ, which is mathematically defined as (Vanmarcke 1983) 

 
0

2 ( )dθ ρ τ τ
∞

= ∫  
(2.42) 

As explained in Section 2.5.1, larger θ represents a less variable (i.e. highly correlated) 

random field. 

(3) Spatial Averaging and Variance Reduction 

Fenton and Griffiths (2008) stated that all engineering properties are virtually properties of 

local average to a certain degree. For instance, the σci of a rock is measured at the scale of 

the specimen rather than at the scale of rock particles. 

The local average of a one dimensional random field being averaged over a window of 

width T centred at location t is expressed as (Fenton and Griffiths 2008) 
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(2.43) 

where XT(t) is the local average over width T of the point properties X(t).  

For a stationary random field, the locally averaged field preserves the mean of the original 

field but significantly reduces the variance. To illustrate, Figures 2.5(a) and 2.5(b) 

demonstrate the random field in Figure 2.4(a) being averaged over width 10 and 20 
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Figure 2.5 (a) The random field shown 

in Figure 2.4 (a) being locally averaged 

over width T = 10 

Figure 2.5 (b) The random field shown 

in Figure 2.4 (a) being locally averaged 

over width T = 20 

respectively. It is apparent that the field mean is largely unaffected whereas the variance is 

significantly reduced. 

 

 

 

 

 

 

 

 

The variance reduction caused by local averaging over width T is quantified by the 

variance function γ(T) so that  

 2 2 ( )T Tσ σ γ=  (2.44) 

where σ2
T is the variance of the locally averaged field and σ

2 is the variance of the original 

field. For a one-dimensional stationary random field, the variance function γ(T) is 

expressed as (Fenton and Griffiths 2008) 

 2 0

2
( ) ( ) ( )

T

XT T d
T

γ τ ρ τ τ= −∫
 

(2.45) 

where ρX(τ) is the correlation function of the original random field. 
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Furthermore, Vanmarcke (1983) suggested that for simplicity, the variance function can be 

approximated by the following equation 

 

1  if 
( )

if 

T
T

T
T

θ
γ θ θ

≤
=  >  

(2.46) 

(4) Some Commonly Used Correlation Function Models 

Three commonly used correlation function models, including their corresponding variance 

functions, are presented in Table 2.7. 

Table 2.7 Three correlation function models and the corresponding variance 

functions 

Model Correlation function / Variance function 

Triangular 
 

Correlation 
function 

1 if
( )

0 if

τ τ θ
ρ τ

τ θ
 − ≤=  >  

Variance 
function 

1         if 
3

( )
1   if

3

T
T

T

T T

θ
θγ

θ θ τ θ

 − ≤= 
  − >     

Markov  

Correlation 
function 

2
( ) exp

τ
ρ τ

θ
 

= − 
   

Variance 
function 

2

2

2 2
( ) exp 1

2

T T
T

T

θγ
θ θ

  
= + − −  

     

Gaussian  

Correlation 
function 

2( ) exp ( )
τρ τ π
θ

 = − 
   

Variance 
function 

2 2

2 2

2
( ) erf exp 1

T T T
T

T

π πθγ
π θ θ θ

     = − + − −    
       

where θ is the scale of fluctuation. 
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The correlation functions in Table 2.7 for θ = 1 are plotted in Figure 2.6. It is shown that 

the correlations between points decrease as the distance τ increases.  

 

 

 

 

     (a)        (b)        (c) 

Figure 2.6 Correlation functions of Triangular, Markov and Gaussian models for θ = 1 

2.5.2.2 Geostatistics 

Geostatistics was originally developed for the purpose of mineral resource estimation 

(Journel and Huijbregts 1978). It has later been applied to various disciplines including 

geotechnical engineering, water engineering, and earthquake engineering (Wang et al. 

2000; Webster and Oliver 2007). The discussion of geostatistics in this section is mostly 

restricted to the variogram and its estimation. 

(1) Variogram 

In geostatistics, the variogram (semivariogram) is used to measure the auto-correlation 

between points along a specific direction. The variogram γh is expressed as (Dowd 2006) 

 ( )21

2h i h iE X Xγ +
 = −
   

(2.47) 
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where Xi is the value of the point at location i, Xi+h is the value of the point at location i+h, 

and h is the distance between the two points. 

In reality, it is impossible to obtain the values of all points to determine the expectation by 

Equation 2.47 and the variogram is usually estimated from available data by the 

experimental variogram γh
*. The experimental variogram is determined by 

 ( )2*

1

1

2

N

h i h i
is

X X
N

γ +
=

 = −
 ∑

 
(2.48) 

where Ns is the number of data pairs that are separated by distance h.  

(2) Some Commonly Used Variogram Models 

Experimental variograms are usually fitted with different models. Three commonly used 

variogram models are presented in Table 2.8. 

Table 2.8 Three commonly used variogram models 

Model Mathematical expression 

Spherical 

3

03

0

3
( )   when  
2 2

                    when  

h

h

h h
C C h a

a a
C C h a

γ

γ

= − + ≤

= + ≥  

Exponential /
0(1 )h a

h C e Cγ −= − +  

Gaussian 
2 2/

0(1 )h a
h C e Cγ −= − +  

The parameters involved in the above models are explained below. 

C0 is the nugget variance. It represents the variance that arises within the distance that is 

shorter than the sampling interval and is caused by variations of micro-structures within 
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the material, statistical errors, and measurement errors (Jaksa 1995). Nugget variance 

causes the variogram to go from zero to the level of C0 when the distance h between two 

points becomes non-zero. 

C + C0 is the sill value. It measures half the maximum squared difference between point 

pairs and is equal to the variance of the sample data.  

a is the range of influence or simply range, which is a simple measurement of spatial 

variability in geostatistics (equivalent to the scale of fluctuation in random field theory). 

For the spherical model, the variogram γh increases to the sill (which indicates that the 

auto-correlation between points diminishes to zero) when h reaches a. For exponential and 

Gaussian models, γh reaches 0.95C + C0 when h reaches 3a and √3.a respectively; thus 3a 

and √3.a are the effective ranges of the exponential and Gaussian models.  

The variograms of the three models in Table 2.8 for C0 = 0, C = 1, and α = 1 are plotted in 

Figure 2.7. 

 

 

 

 

       (a)           (b)           (c) 

Figure 2.7 Variograms of Spherical, Exponential and Gaussian models for C0 = 0, C = 

1, and a = 1 
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As they are two explicit methods for characterising geotechnical variability, there are 

connections between random field theory and geostatistics. Specifically, many of the 

correlation function models used in random field theory have equivalent geostatistics 

variogram models. For instance, the Markov model (given in Table 2.7) in random field 

theory is equivalent to the exponential model (given in Table 2.8) in geostatistics: if the 

random field Markov model has a mean value of µ, a variance of σ2, and scale of 

fluctuation of θ, the equivalent geostatistical exponential model would have the same mean 

value µ, a sill value C + C0 = σ2 (with C0 = 0), and a range a = ½ θ. Similarly, the Gaussian 

model (given in Table 2.7) in random field theory is equivalent to the Gaussian model 

(given in Table 2.8) in geostatistics: if the random field Gaussian model has a mean value 

of µ, a variance of σ2, and scale of fluctuation of θ, the equivalent geostatistical Gaussian 

model would have the same mean value µ, a sill value C + C0 = σ2 (with C0 = 0), and a 

range a = (1/√π) θ. 

2.5.3 Probabilistic Analysis Techniques 

After the variability of input parameters being characterised, the next step is to incorporate 

and evaluate its influence on slope stability. In a probabilistic analysis, slope stability is 

primarily quantified by the probability of failure (PF) or the reliability index βr.  

Suppose that the FS of a slope is a performance function with n input parameters x1, x2, …, 

xn  such that FS = f (x1, x2, …, xn), PF is then defined as 

 { }1PF Probability FS= <
 (2.49) 

and βr is defined as 
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1FS

r
FS

µβ
σ

−=
 

(2.50) 

where µFS is the mean of FS and σFS is the standard deviation of FS. 

Common probabilistic techniques to compute PF or βr include first order second moment 

method (FOSM), first order reliability method (FORM), point estimate method (PEM), and 

Monte Carlo simulation (MCS). These techniques are introduced in the following sections. 

2.5.3.1 First Order Second Moment Method 

The basic concept of FOSM is that from the first and second moments (i.e. mean and 

variance) of the input variables, the first and second moments of FS can be estimated using 

the first order items of the Taylor series expansion (Baecher and Christian 2003), i.e. 

 
1 2

( , , ..., )
nFS x x xfµ µ µ µ=  (2.51) 

 
2

2 2

1
i

n

FS x
i i

FS

x
σ σ

=

∂=
∂∑

 
(2.52) 

where xi is the input variable. 

PF can then be estimated from µFS, σ
2
FS, and the assumed distribution of FS (a normal or 

lognormal distribution is commonly adopted). βr can be calculated by Equation 2.50.  

Due to the complexity of slope problems, it is often difficult to evaluate the partial 

derivatives of FS with respect to input variables directly as required in Equation 2.52. 

Under such circumstances, a finite difference approach is commonly adopted to 

approximate the partial derivative. 
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FOSM has the advantage of being efficient. It enables sensitivity analysis to be easily 

carried out since the variance of FS is the sum of contributions from the variances of the 

input variables, as shown in Equation 2.52. However, FOSM has several drawbacks, major 

ones including: firstly, its results can be inaccurate if the performance function cannot be 

well approximated by the first order items of the Taylor series expansion; secondly, only 

mean and variance of FS are estimated and other higher order moments are unknown; and 

lastly, the calculated PF is sensitive to the assumed distribution of FS. 

2.5.3.2 First Order Reliability Method 

Another problem associated with FOSM is that it produces inconsistent PF for the same 

problem stated in equivalent performance functions but of different forms. This is because 

FOSM essentially calculates the distance from the mean point to the failure surface in a 

certain direction (the direction of the gradient) instead of finding out the global minimum 

distance (from the mean point to the failure surface). Hasofer and Lind (1974) proposed 

the First Order Reliability Method (FORM) as an improvement of FOSM to address this 

problem.  

The Hansfor and Lind’s reliability index βHL is defined as (Low 2003) 

 [ ] 1min
T

i i i i
HL

i i

x m x mβ
σ σ

−   − −=    ∈ Ψ    
C

x
 

(2.53) 

where xi is the input variable, x is the vector of input variables, mi is the mean of the input 

variables, C is the covariance matrix, and Ψ is the failure domain. FORM computes the 

global minimum distance from the mean point to the failure surface. Such process needs to 

use an optimisation algorithm.  
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 FORM is more accurate than FOSM. However, the requirement of optimisation 

algorithms reduces its efficiency. In addition, FORM is based on normally distributed input 

variables and modifications are necessary for it to incorporate variables of other 

distributions. 

2.5.3.3 Point Estimate Method 

Point estimate method (PEM) is a simple probabilistic technique proposed by Rosenblueth 

(1975; 1981) to estimate the mean, variance or any higher moments of a function. Christian 

and Baecher (1999) presented a detailed explanation of PEM and demonstration of its 

applications in geotechnical engineering. 

PEM evaluates the values of the performance function at a number of discrete points and 

then uses these values to estimate the desired moments of FS. In practice, if there are n 

input variables, then the performance function is evaluated at 2n points, which include all 

possible combinations of variables at one standard deviation above and below their means. 

Christian and Baecher (1999) concluded that PEM is easy to use and is generally more 

accurate than methods that are based on Taylor series expansion (FOSM and FORM). Its 

limitation lies in the significant increment of computation cost when the number of input 

variables is large. 

2.5.3.4 Monte Carlo Simulation 

Monte Carlo simulation (MCS) establishes the distribution of FS from a large number of 

random experiments in the form of numerical simulations. The PF and statistical properties 

of FS can be obtained from the distribution of FS. MCS has a long history of application 

and is discussed in detail by Baecher and Christian (2003). 
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The procedures of a MCS include four steps. Firstly, the probability density function (PDF) 

of each input variable is determined. Secondly, random values of the input variables are 

generated based on their PDF. Thirdly, the system performance (such as FS) is evaluated. 

Finally, Steps 2 and 3 are repeated N times and PF is calculated from the following 

equation 

 f

M
P

N
=

 
(2.54) 

where M is the number of times that the system fails (in our case, FS < 1). 

The advantages of MCS include the clear concept, simple process, and robust results. In 

addition, MCS is the only probabilistic method that can explicitly incorporate random 

fields, which are necessary for the explicit characterisation of spatial variability. The 

disadvantage of MCS is its high computation cost. This problem, however, can be 

effectively improved by various variance reduction techniques1 (Baecher and Christian 

2003).   

 2.5.3.5 Incorporating Spatial Variability in Probabilistic Analysis 

Suchomel and Mašín (2010) concluded that there are two types of method to incorporate 

spatial variability in probabilistic analysis: hybrid method and explicit method. 

The hybrid method is adopted when FOSM, FORM, or PEM is applied. It incorporates 

spatial variability indirectly by reducing the variance of input by Equation 2.44 or by 

modelling the material by more than one random variables and changing the correlation 

matrix (C in Equation 2.53) of these random variables. The explicit method can only be 

                                             
1 Variance reduction here refers to the technique in MCS to reduce iteration numbers. It is different from the 
variance reduction in random field theory. 
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adopted when MCS is applied. It incorporates spatial variability directly by modelling 

input variables as random fields. Two most rigorous explicit methods are the random finite 

element method (RFEM) developed by Griffiths and Fenton (2004) and Random LEM 

developed by Cho (2010). 

The explicit method is expected to produce the most accurate results (Suchomel and Mašín 

2010). However, the implementation of MCS together with random field generations is 

very time consuming. On the other hand, the hybrid method indirectly takes into account 

spatial variability and produces results of reasonable accuracy. It is viewed as an effective 

substitute for the explicit method when the computation requirement is unachievable (El-

Ramly et al. 2002; Suchomel and Mašín 2010).  

2.5.4 Output Assessment 

PF or βr is the final output from a probabilistic analysis. Several acceptance criteria have 

been developed for PF, including ones proposed by Priest and Brown (1983), SRK 

consulting (Read and Stacey 2009), and Sullivan (Read and Stacey 2009). On the other 

hand, Christian (2004) stated that it is often more useful to examine the comparative PF 

values from various alternative courses of action instead of relying on the absolute PF 

values. 

Apart from PF and βr, a probabilistic analysis yields the mean and variance of FS. When 

MCS is adopted, the distribution of FS can also be obtained. The distribution of FS is 

useful as it enables a detailed statistical analysis on FS.  
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2.6 Previous Studies on Probabilistic Slope Stability Analysis  

Probabilistic Slope Stability Analysis (PSSA) has been a primary area of research in slopes 

for the past three decades. This section presents a review of previous studies in PSSA,  

with the aim of identifying specific research directions and research gaps for the present 

study. 

A selection of literature on PSSA is presented in chronological order in Table 2.9. The 

information regarding these studies is divided into six components. Firstly, the type of 

project is either “Slope” or “Others” (such as tunnel or foundation). Most of the 

investigations focus on slopes (29/33); others are selected because methodologies similar 

to PSSA were used. Secondly, the type of the material is either “Soil” or “Rock”. The 

focus of the research in the present thesis is highly fractured rock slopes, whose failures are 

similar to those of soil slopes. Therefore, much of the research reviewed is in soil slopes. 

Thirdly, the applied strength criterion is MC, HB, or others. Fourthly, the analysis method 

(for FS calculations) is LEM or the numerical method. Fifthly, the probabilistic analysis 

technique is FOSM, FORM, PEM, MCS, or others. “Others” here include those less 

commonly used techniques, such as the second order second moment method (SOSM). 

Lastly, research is also tagged with None (which means spatial variability is not 

considered), Hybrid method, or Explicit method, depending on how spatial variability of 

input parameters is quantified and evaluated.  
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Table 2.9 Selected previous studies on probabilistic slope stability analysis: scope 

ID Year Reference Project 

   Slope Others 

1 2012 (Fisher and Eberhardt 2012) √  
2 2012 (Mao et al. 2012)  √ 
3 2011 (Idris et al. 2011)  √ 
4 2011 (Cai 2011)  √ 
5 2011 (Wang et al. 2011) √  
6 2011 (Lü and Low 2011)  √ 
7 2010 (Suchomel and Mašín 2010) √  
8 2010 (Cho 2010) √  
9 2009 (Fu et al. 2009) √  
10 2009 (Griffiths et al. 2009) √  
11 2008 (Hong and Roh 2008) √  
12 2007 (Cho 2007) √  
13 2007 (Low 2007) √  
14 2006 (Hsu and Nelson 2006) √  
15 2006 (El-Ramly et al. 2006) √  
16 2005 (El-Ramly et al. 2005) √  
17 2004 (Griffiths and Fenton 2004) √  
18 2004 (Babu and Mukesh 2004) √  
19 2003 (Low 2003) √  
20 2003 (El-Ramly et al. 2003) √  
21 2002 (El-Ramly et al. 2002) √  
22 2000 (Duncan 2000) √ √ 
23 2000 (Wang et al. 2000) √  
24 1999 (Hassan and Wolff 1999) √  
25 1998 (Hoek 1998) √ √ 
26 1997 (Low and Tang 1997a) √  
27 1997 (Low and Tang 1997b) √  
28 1995 (Chowdhury and Xu 1995) √  
29 1994 (Christian et al. 1994)  √ 
30 1992 (Chowdhury and Xu 1992) √  
31 1987 (Li and Lumb 1987) √  
32 1984 (Whitman 1984) √ √ 
33 1983 (Priest and Brown 1983) √  
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Table 2.9 Continued 

ID Material Strength criterion Analysis method 

 Soil Rock MC HB Others LEM Numerical 

1  √ √ √  √  
2  √  √  √  
3  √  √   √ 
4  √  √   √ 
5 √    √ √  
6  √ √ √ √ √ √ 
7 √  √   √ √ 
8 √  √  √ √  
9  √ √ √   √ 
10 √  √  √  √ 
11 √  √   √  
12 √  √   √  
13 √  √   √  
14  √ √    √ 
15 √  √   √  
16 √  √   √  
17 √    √  √ 
18 √  √   √  
19 √  √   √  
20 √  √   √  
21 √  √   √  
22 √    √ √  
23  √ √    √ 
24 √  √   √  
25  √ √ √  √  
26 √  √   √  
27 √  √   √  
28 √  √   √  
29 √  √   √  
30 √  √   √  
31 √  √   √  
32 √  √   √  
33  √  √  √  
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Table 2.9 Continued 

 

  

ID Probabilistic analysis technique Spatial variability 

 FOSM FORM PEM MCS Others None Hybrid Explicit 

1    √   √   
2    √   √   
3    √   √   
4   √ √   √   
5 √ √  √      √ 
6  √  √ √ √   
7 √   √   √ √ √ 
8    √      √ 
9   √    √   
10  √  √      √ 
11  √       √  
12  √  √      √ 
13  √  √     √  
14    √      √ 
15    √      √ 
16    √      √ 
17    √      √ 
18 √        √  
19  √  √     √  
20    √      √ 
21 √   √     √ √ 
22 √      √   
23    √     √  
24  √     √   
25   √ √   √   
26  √       √  
27  √     √   
28 √ √     √   
29 √        √  
30 √ √     √   
31  √       √  
32 √    √ √   
33    √   √   
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Some trends are evident from Table 2.9. For instance, it is apparent that with the advance 

in computer technology over the years, the numerical method, MCS, and explicit ways to 

incorporate spatial variability have gained increasing popularity in PSSA. However, in 

cases where the HB strength criterion is applied (highlighted), none has yet taken into 

account spatial variability. 

Further analysis was taken to identify specific research directions arising from the selected 

PSSA literature (Table 2.9). While it is impossible to exhaust all directions, six major 

emphases have been identified, as shown in Table 2.10. These include firstly, input 

parameters, which means that the research has focused on site investigations, studies of the 

variability of geotechnical parameters, or data analyses; secondly, improvement of 

methodology, which means that the research has focused on improving the accuracy (e.g. 

in identifying failure surfaces, incorporating spatial variability, or computing PF), 

efficiency, or user-friendliness; thirdly, comparison of methodology, which means that the 

research has focused on comparing the accuracy or efficiency of different probabilistic 

techniques or different ways to incorporate spatial variability; fourthly, acceptance 

criterion, which means that the research has focused on the definition or acceptable values 

of PF or βr; fifthly, engineering application of PSSA, which means that the research has 

focused on demonstrating and promoting the ideas and techniques of PSSA; and lastly, 

input and output studies, where the research has focused on systematic studies of the 

relationship between the input parameters and the output for specific cases, mainly by 

sensitivity analysis and parametric study.   

Among these research directions, outcomes from the first five are largely universal, 

meaning that the conclusion from one case is applicable to other cases. On the other hand, 
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the outcome from the sixth research direction is case dependent, particularly on different 

types of slopes and strength criteria.  

The sixth research direction, i.e. the relationship between input and output, can be further 

divided into seven sub-areas, i.e. 1) COV (single-parameter), where the research aims to 

investigate the relative contribution of the variability of each input parameter to PF; 2) 

COV (multi-parameter), where the research aims to investigate the influence of changes in 

the variability (usually quantified by the COV) of input parameters on PF; 3) Distribution, 

where the research aims to investigate the influence of distributions of input parameters on 

PF; 4) Cross-correlation, where the research aims to investigate the influence of cross-

correlations between input parameters on PF; 5) Spatial variability, where the research 

aims to investigate the influence of spatial variability of input parameters on PF; 6) 

Anisotropy, where the research aims to investigate the influence of anisotropy of input 

parameters on PF and 7) Courses of action, where the research aims to investigate the 

influences of various design decisions, such as different slope geometry and supports, on 

PF. 

The selected literature in Table 2.9 is classified into the above summarised research 

directions and shown in Table 2.10, with research that employs the HB strength criterion 

being highlighted. 

Table 2.10 shows that all six major research directions have been intensively investigated 

for soil slopes, where the MC strength criterion is mainly applied. However for fractured 

rock slopes, where the HB strength criterion is employed, there has been little research in 

terms of the sixth research direction, i.e. the relationship between input parameters and 

output.  
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Table 2.10 Selected previous studies on probabilistic slope stability analysis: major 

research directions 

ID Major research directions (1-5) 

 
Input  

parameters 
Improvement  

of methodology 
Comparison  

of methodology 
Acceptance  

criterion 
Engineering 
 application 

1       
2   √    
3      √ 
4 √    √ 
5   √ √   
6   √ √   
7    √   
8   √    
9      √ 
10   √ √   
11       
12   √    
13   √ √ √  
14 √     
15 √    √ 
16 √   √  
17   √    
18       
19   √ √   
20 √   √ √ 
21 √ √ √ √ √ 
22 √    √ 
23      √ 
24   √    
25      √ 
26   √    
27   √    
28   √  √  
29 √   √ √ 
30    √   
31   √    
32 √   √ √ 
33     √ √ 
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Table 2.10 Continued 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

ID 
Major research directions (6th) 

Input and output studies: sensitivity analysis or parametric study 

 
COV 

single-
parameter 

COV 
multi-

parameter 
Distribution 

Cross- 
correlation 

Spatial 
variability 

Anisotropy 
Courses  

of 
action 

1 √        
2 √ √ √ √   √ 
3       √ 
4         
5     √    
6   √ √   √ 
7  √   √    
8    √  √   
9         
10 √ √  √ √  √ 
11  √ √  √    
12 √    √ √   
13     √    
14         
15     √  √ 
16     √  √ 
17  √   √    
18     √ √ √ 
19   √      
20 √    √    
21 √        
22 √ √       
23         
24         
25         
26         
27       √ 
28         
29       √ 
30  √  √     
31  √   √  √ 
32  √       
33       √ 

  



Chapter 2. Literature Review  59 
 

 
 

2.7 Summary 

In this chapter, slope stability analysis, the Hoek-Brown (HB) strength criterion, the Limit 

Equilibrium Method (LEM), and Probabilistic Slope Stability Analysis (PSSA) as well as 

its applications, have been reviewed. The HB strength criterion is demonstrated to be an 

effective tool for rock slope stability analysis. However, even though the relationship 

between input and output has been an important research area for the last three decades, 

there has been little research into the relationship between the input (HB parameters and 

their variability) and the output (FS and PF) for highly fractured rock slopes.  
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Chapter 3  

RESEARCH OBJECTIVES AND METHODOLOGY 

3.1 Research Objectives 

Based on the literature review in Chapter 2, it was decided that the focus of the present 

study would be to investigate the stability of highly fractured rock slopes in terms of the 

relationship between the input, Hoek-Brown (HB) parameters and their variability, and the 

output, Factor of Safety (FS) and Probability of Failure (PF). Five specific research 

objectives are identified and given below: 

1) to study the sensitivity of FS to the changes in HB parameters  

Given the complexity of the slope problem, it is likely that the sensitivity of FS to the 

changes in HB parameters (abbreviated as “FS sensitivity”) is non-linear. Therefore, the 

first objective is to find out whether there are any particular ranges of HB parameters that 

cause high FS sensitivity and whether such ranges are affected by different combinations 

of HB parameters. 

Additionally, for efficiency purposes, it is important to determine whether such FS 

sensitivity is affected by slope geometry. If it is not, then the present research can be 

carried out on a representative slope case and the corresponding conclusions should be 

reasonably general. 
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2) to investigate the influence of changes in the variability of HB parameters 

(quantified by the COV) on PF 

This objective corresponds to the “COV multi-parameter” research area in Table 2.10.  

3) to evaluate the relative contribution of the variability of each HB parameter 

(quantified by the COV) to PF 

This objective corresponds to the “COV single-parameter” research area in Table 2.10 and 

aims to identify the HB parameter whose variability makes the largest contribution to PF.  

4) to investigate the influence of the spatial variability of HB parameters (quantified 

by the scale of fluctuation θ) on PF  

This objective corresponds to the “Spatial variability” research area in Table 2.10. 

5) to explore the relationship between FS sensitivity and PF 

Since PF is the probability of FS being less than 1, there should be a connection between 

FS sensitivity and the value of PF. For a slope with specific geometry, there are many 

possible cases where different combinations of HB parameters (GSI, mi, and σci) can give 

the same FS. A specific question to answer is that for these cases with the same FS values, 

if the variability of HB parameters (quantified by the COV) is also identical, what will be 

the corresponding PF values?  

Among the five objectives, the first four are selected with the aim to provide a better 

understanding about the input and output relationship in the stability analysis of highly 

fractured rock slopes. The results should help to identify the most critical input parameters 

or most critical ranges of input parameters so that relevant precautions can be taken for 
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slope designs and site investigations. The last objective aims to compare the effectiveness 

of PF as a safety index with that of FS. On the other hand, other research directions, 

including “Input distribution” and “Cross correlation” (as discussed in Section 2.6), are not 

included here since there have been few distributions other than normal that have been 

adopted for HB parameters and there have been few proofs of cross correlations between 

HB parameters. 

Two major chapters are devoted to the study of the above five objectives. The first 

objective, which focuses on FS sensitivity, is investigated in Chapter 4. Since FS is the 

output of a deterministic analysis, Chapter 4 is entitled “deterministic analysis”. The 

remaining objectives are investigated in Chapter 5, which is entitled “probabilistic 

analysis”. The methodologies for the deterministic analysis and probabilistic analysis are 

introduced in the following sections.  

3.2 Methodology for the Deterministic Analysis 

3.2.1 Outline of the Methodology 

In the deterministic analysis, FS sensitivity is examined as well as the influence of slope 

geometry. A sensitivity graph analysis and an equation fitting analysis are developed here. 

The software involved in the deterministic analysis includes Slide6.0 (Rocscience 2011) 

which is a limit equilibrium slope stability analysis software and Matlab. 

For the sensitivity graph analysis, the relationship between FS and HB parameters is 

plotted in a series of figures. These figures are used to determine whether FS sensitivity is 

affected by slope geometry and to provide some initial insights into FS sensitivity. For the 

equation fitting analysis, Slide6.0 is used to create large sets of data between HB 
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parameters and FS based on wide combinations of HB parameters. This data is then fitted 

with a suitable equation (as FS = f (GSI, mi, σci)), and FS sensitivity is analysed by taking 

derivatives (rates of change) of this equation with respect to HB parameters.  Lastly, 

sensitivity graphs are again used to provide a visual verification of the final conclusions. 

The proposed methodology for the deterministic analysis has the advantages of being 

straightforward and precise, as both qualitative and quantitative approaches are applied.  

In the following sections, the Limit Equilibrium Method (LEM) model used in the 

deterministic analysis, Slide6.0, is firstly introduced. The sensitivity graph analysis and the 

equation fitting analysis are then discussed.  

3.2.2 LEM Model (Slide6.0) 

The LEM software Slide6.0 is adopted for the deterministic analysis. There are several 

LEM models incorporated in Slide6.0. Among them, Bishop’s simplified method of slices 

is chosen for the present study. Bishop’s model produces reasonably accurate results and is 

relatively simple. While some other LEM models, such as the Spencer (Duncan and 

Wright 2005) and Morgenstern-Price (Duncan and Wright 2005), have the advantages of 

satisfying complete equilibrium (i.e. both force and moment equilibrium) and being able to 

model irregular failure surfaces, they are complicated and time-consuming, which are 

significant drawbacks for the present study (especially for the later probabilistic analysis, 

where Monte Carlo simulation, MCS, is applied). 

The settings in the LEM model are given here. The slip surface is set to be “Circular” and 

is found by the “Grid search” method. “General Hoek-Brown” is selected as the “Strength 

type” in “Material property” and the “Number of slices” is set at 30. 
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3.2.2.1 Number of Slices 

Duncan and Wright (2005) stated that the change in number of slices does not have a 

strong impact on FS when the slope geometry and material below the slope surface have 

been confirmed. In the present study, five cases with identical slope geometry and material 

properties but different number of slices are examined to find out the sufficient number of 

slices. The slope geometry and material properties are shown in Figure 3.1 and the results 

are presented in Table 3.1.  

 

 

Figure 3.1 Slope geometry and rock mass properties for examining the effect of 

changes in number of slices on FS 

Table 3.1 Effect of changes in number of slices on FS 

Case 1 2 3 4 5 

Number of slices 20 30 40 60 100 

FS 1.289 1.284 1.282 1.282 1.282 

The results in Table 3.1 confirm that when the number of slices is ≥ 30, its change has little 

influence on the computed FS. Since a fewer number of slices requires less computation 

effort, 30 slices is selected for the present study.  

3.2.3 Sensitivity Graph Analysis 

The sensitivity graph analysis presents the relationship between FS and HB parameters in a 

qualitative graphical form. The employment of this analysis serves three purposes: 
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1. to examine whether FS sensitivity is affected by slope geometry 

2. to provide some initial insights into FS sensitivity 

3. to display and verify the final conclusions of the deterministic analysis 

The process of this analysis is given below: 

Firstly, for a particular slope, a set of GSI, mi, and σci values are specified and denoted as 

the “mean values”. The corresponding slope model is built in Slide6.0. 

Secondly, based on the mean values, a global minimum FS is calculated and this FS is 

denoted as the “mean FS”. 

Thirdly, for each of the input parameters, i.e. GSI, mi, and σci, a range is specified. Each 

parameter is then varied in uniform increments within its range (while all other parameters 

are held constant at their mean values), and the variations of FS are calculated. This step is 

implemented by the “sensitivity analysis” function in Slide6.0. 

Finally, the resultant FS vs. the input HB parameters are plotted in Matlab, and the 

relationship between FS and HB parameters can be analysed. 

The specified ranges of HB parameters are listed in Table 3.2. The changes of the 

parameters are based on an increment factor i, which extends from 0 to 1 in increments of 

0.1. 

For GSI and mi, the ranges are selected based on their physical limits. For σci, its value can 

be up to 200MPa; however, a range of 10 - 150MPa is reasonable for most types of rock. 
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GSI=10+90i
mi=5+35i

σci=10+140i

Table 3.2 Ranges and the increment factor for HB parameters in sensitivity graphs 

Parameter Range Increment factor i = 0 - 1 

GSI 10 - 100 10 + 90i 

mi 5 - 40 5 + 35i 

σci (MPa) 10 - 150  10 + 140i 

To illustrate, the sensitivity graph for the slope in Figure 3.1 is shown in Figure 3.2. The 

slope face angle β, slope height H, mean values of HB parameters, and the mean FS are 

given at the top of the figure (slope angle β and slope height H are given in this and all 

subsequent figures in the form of β-H, in this case 55-100). Each line represents the 

variation of FS corresponding to the change in one HB parameter, with others fixed at their 

mean values. 

 

 

 

 

 

 

 

 

Figure 3.2 Sensitivity graph for the slope shown in Figure 3.1 
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To examine whether FS sensitivity is affected by the slope geometry, cases with the same 

HB parameters but different geometry are designed and sensitivity graphs are generated. 

The results are then compared to examine whether any general pattern exists.  

The sensitivity graphs are also used to obtain preliminary information about FS sensitivity. 

However, given the complexity of slope stability problem, a quantitative approach is 

deemed necessary. 

3.2.4 Equation Fitting Analysis 

The equation fitting analysis is developed to supplement the sensitivity graph analysis. 

Slide6.0 is used to generate a large number of data between FS and HB parameters and the 

data are fitted with a suitable equation (as FS = f (GSI, mi, σci)). The sensitivity of FS is 

then analysed by taking the derivatives of FS with respect to HB parameters based on the 

fitted equation.  

To implement this analysis, a large amount of data and an effective form of equation are 

required. Both of these requirements are discussed below.  

3.2.4.1 Data 

The data should consist of sets of mappings from GSI, mi, and σci to FS, covering a wide 

range of combinations between GSI, mi, and σci. For this purpose, data points that are 

uniformly distributed within the range of each HB parameter are selected. Taking n data 

points for GSI, m data points for mi, and t data points for σci, creates n × m × t 

combinations of GSI, mi, and σci and corresponding FS values for the equation fitting. The 

actual values of n, m, and t, are specified in Chapter 4. In addition, to make the derivatives 
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of FS to the HB parameters comparable with each other, all data for the equation fitting, 

including GSI, mi, σci, and FS, are normalised into the interval [0, 1]. 

3.2.4.2 Form of the Equation 

The equation used in this case needs to obey two principles. Firstly, it should be easy to 

differentiate and the derivative of FS to each HB parameter should be simple. Secondly, it 

should satisfy the required precision. While equations with more complicated forms, such 

as exponentials, may be more precise, they do not conform to the first principle. A 

candidate equation is proposed as follows: 

 2 2 2
1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 2 3 9 1 3y a x a x a x a x a x a x a x x a x x a x x= + + + + + + + +  (3.1) 

where y represents FS, and x1, x2, x3 represent GSI, mi, σci respectively. 

The polynomial form is chosen as it is convenient to differentiate. It should also allow a 

high precision as three components are included: a1x1 + a2x2 + a3x3 is the linear component,  

����
�
� ����

�
� ���	

�  is the nonlinear component, and a7x1x2 + a8x2x3 + a9x1x3 is the 

component representing mutual influences. 

3.2.4.3 Sensitivity Analysis 

Once the coefficients for Equation 3.1 have been determined and the precision has been 

validated, the sensitivity analysis can be carried out. For instance, the derivative of FS with 

respect to GSI is ∂y/∂x1 = a1 + 2a4x1 + a7x2 + a9x3. The sensitivity of FS to GSI can then be 

measured by ∂y/∂x1 and it depends on two terms: one is a1 + 2a4x1, which represents the 
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contribution from GSI itself, and the other is a7x2 + a9x3, which represents the contributions 

from other parameters and thus reflects the degree of mutual influences.  

3.3 Methodology for the Probabilistic Analysis 

3.3.1 Outline of the Methodology 

The probabilistic analysis is carried out based on Monte Carlo simulation (MCS) using two 

probabilistic analysis models developed in Matlab. Furthermore, since Slide6.0 is not able 

to incorporate spatial variability, a LEM model is developed in Matlab based on Bishop’s 

simplified method of slices for the probabilistic analysis. The outline of the methodology 

for the probabilistic analysis is given below. 

The first research objective in the probabilistic analysis is to examine the influence of 

changes in the variability of HB parameters on PF. The investigation is based on a 

parametric study where the COV of HB parameters vary systematically from 0.1 to 1. All 

three HB parameters are modelled as random variables simultaneously and for simplicity, 

their COV are assumed to be the same. 

The second research objective in the probabilistic analysis is to evaluate the relative 

contribution of the variability of each HB parameter to PF. This is achieved through two 

approaches. The first employs a parametric study, where the COV of each HB parameter 

again varies systematically from 0.1 to 1. However, HB parameters are modelled as 

random variables separately (i.e. one of them is modelled as a random variable and others 

are fixed at their mean values). The relative contributions from the variability of HB 

parameters can then be related to the corresponding PF values. The second approach 

employs the Spearman correlation coefficient rs, which measures the monotonic correlation 
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between two variables and has been used as an indicator of the contribution of the 

variability of an input variable to the output in several studies (El-Ramly et al. 2002; Fisher 

and Eberhardt 2012). In particular, a probabilistic analysis is implemented where all three 

HB parameters are modelled as random variables with their COV being set to the 

maximum values observed in engineering practice. The Spearman ranking correlation 

coefficients between the input HB parameters and the output FS are then measured and 

compared. 

The third research objective in the probabilistic analysis is to examine the influence of the 

spatial variability of HB parameters on PF. This objective is achieved through another 

parametric study, where the scale of fluctuation θ of HB parameters varies from a small 

value to infinity. In the corresponding probabilistic analyses, HB parameters that are 

considered as spatial random variables are modelled as random fields (while other 

parameters are still modelled as random variables). It will be further discussed in Section 

3.3.2.1 that which HB parameters will be considered as spatial variables. 

 The fourth research objective in the probabilistic analysis is to investigate the relationship 

between FS sensitivity and PF. This requires outcomes from the deterministic analysis and 

will be carried out in conjunction with investigations of the previous three research 

objectives.  

In the present study, probabilistic analysis that does or does not consider spatial variability 

of input variables is termed “simplified probabilistic analysis” or “spatial probabilistic 

analysis” respectively.  
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The methodology of the Monte Carlo simulation (MCS) is discussed in Section 2.5.3.4 and 

our implementation is schematically illustrated in Figure 3.3. Codes of the developed 

Matlab probabilistic analysis models are provided in Appendix A. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 MCS methodology for the probabilistic analysis (codes of the probabilistic 

analysis models are provided in Appendix A)
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3.3.2 Monte Carlo Simulation 

3.3.2.1 Statistical Characteristics of HB Parameters 

(1) Upper-Limit COV 

In some of the probabilistic analyses, the COV of HB parameters are set to their observed 

upper limit values in engineering practice. For GSI, its variability is generally small 

compared with that of mi and σci. Based on the data in Section 2.3.2, 0.15 is selected as the 

upper-limit COV for GSI. Similarly, 0.2 is selected for mi. The parameter σci has the largest 

variability and in most circumstances its COV value lies between 0.1 – 0.25. However, Cai 

(2011) showed that the COV of σci can be up to 0.39. Since the σci data in Cai (2011) were 

obtained from measurement rather than estimation and are considered to be reliable. 

Marinos et al. (2005) also stated that there is a tendency to underestimate the importance of 

σci. Based on these considerations, 0.4 is selected as the upper-limit COV value for σci.  

(2) Probability Distributions 

Normal and lognormal distributions are the two most widely applied statistical 

distributions for geotechnical parameters. For traditionally used soil or rock strength 

parameters, such as c and φ (MC parameters), lognormal distributions are commonly 

assumed, due to the need to avoid negative values (Christian 2004; Fenton and Griffiths 

2008). However, two of the HB parameters GSI and mi not only have physical lower-limits 

as c and φ do, but also have physical upper-limits, which are 100 and 40 respectively. 

Truncated normal distributions are therefore considered to be more appropriate for them, 

and this is consistent with the literature. For σci, test data shows that it also tends to follow 
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a normal distribution (Ruffolo and Shakoor 2009; Cai 2011). Consequently, truncated 

normal distributions are assumed for all three HB parameters in this study. 

(3) Spatial Variability 

The influence of the horizontal spatial variability of HB parameters along the slip surface 

on PF is investigated. The spatial variability is modelled by random fields, and is 

characterised by the scale of fluctuation θ. In the current study, only mi and σci are 

modelled as spatial variables, as they are intact rock parameters, whose spatial variability 

is considered to be theoretically sound and relatively easy to measure. In contrast, GSI is a 

measure for the blockiness of the entire rock mass. Thus it will not be modelled as a spatial 

variable but a random variable. For simplicity, the scale of fluctuation θ of mi and σci is 

assumed to be equal. 

The random field along the slip surface is modelled based on the method of slices and each 

slice is a unit for the random field. Based on random field theory, the width of the slice 

should not exceed the scale of fluctuation, otherwise spatial averaging needs to be applied 

(Equation 2.46). Therefore, in the spatial probabilistic analysis, the number of slices for the 

LEM model is set to 100.  

3.3.2.2 Issues in Simulation 

(1) Number of Iterations 

Number of iterations directly relates to the accuracy of a MCS. PF from a MCS only 

stabilises after a certain number of iterations has been reached and this number, M, is 

different from one case to another. Generally, the smaller the PF is, the higher number of 
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iterations is required. A practical approach to ensure that the required number of iterations 

has been reached is to plot M against PF and visually check the stabilisation. This approach 

is employed in the present study. 

(2) Variance Reduction Technique 

A major drawback of the MCS is the high computation cost required for the iterations. In 

the present research, MCS needs to be carried out for a large number of times in the 

parametric studies, which can result in extensive computation cost.  

For efficiency purposes, a variance reduction technique is applied here. Such technique is 

commonly used in MCS to reduce the computation cost for a required level of accuracy, or 

equivalently, to increase the accuracy for the same number of iterations. Common variance 

reduction techniques include importance sampling, anthithetic sampling, correlated 

sampling, controlled variates, and Latin Hypercubic sampling (Baecher and Christian 

2003). Most techniques mentioned above require that the analytical solution of the problem 

to be exact or can be approximated. However, neither of the two conditions applies to rock 

slope stability problems. Latin Hypercubic sampling does not have such restrictions and is 

used in the present study. 

3.3.2.3 Analysis of the Output 

For a MCS based probabilistic analysis, the output is a large number of FS. Probability of 

failure, PF, is the number of the FS less than 1 relative to the total number of iterations. In 

some situations where PF is expected be very small, the number of iterations required to 

stabilise PF can be too high to achieve (even if a variance reduction technique has been 

applied). In such situations, a simple approach given by Fenton and Griffiths (2008) is 
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applied to estimate the PF: firstly, as many iterations as possible are performed; afterwards, 

the best fit statistical distribution is found for the obtained large amount of FS; and finally, 

PF is estimated from the fitted distribution of FS. 

After PF is obtained, its absolute value can be evaluated based on various acceptance 

criteria. However, in the present study, the “Comparative PF” (Christian 2004), such as the 

variation of PF corresponding to the changes in the COV of input parameters, is more of 

interest. Apart from PF, the distribution and statistical properties of FS, including the mean, 

standard deviation, and COV, will also be examined.  

3.3.3 LEM model (Developed in Matlab) 

A LEM model was programmed in Matlab for the probabilistic analysis. The codes of this 

model are given in Appendix A. In this section, theory and validation of this LEM model 

are presented.  

3.3.3.1 Theory of the LEM Model 

The LEM model developed here uses the slip surface imported from the program Slide6.0 

and calculates FS by Bishop’s simplified method of slices. Bishop’s simplified method of 

slices is based on the MC strength criterion and uses MC parameters as input. Therefore, to 

use the HB strength criterion in conjunction with Bishop’s simplified method of slices, an 

additional step that converts HB parameters to equivalent MC parameters is necessary. For 

the present study, Kumar’s solution (discussed in Section 2.3.3.1), which is an accurate 

converting solution, is applied.  

The algorithm of the LEM model is described below and also shown in Figure 3.4. 
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1. Calculate mb, s, and a from input HB parameters by Equations 2.2, 2.3, and 2.4 and 

then calculate the effective normal stresses on the slip surface by the updated 

Fellenius’s solution (Equation 2.34).  

2. Convert HB parameters to equivalent MC parameters by Kumar’s solution 

(Equations 2.14, 2.15, and 2.16). 

3. Give an initial input of FS (1 is selected for the present study). 

4. Calculate the first FS by Equation 2.38. 

5. Calculate a second FS based on the updated FS (from Step 4) by Equation 2.38. 

6. If the difference between the first and second FS is more than a threshold value 

(0.001 is selected for the present study), return to Step 4 and use the second FS as 

input for the calculation. Repeat Steps 4 and 5 until the difference between the last 

two FS is less than the threshold value.  

(End of the algorithm). 
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Figure 3.4 Algorithm of the LEM model developed in Matlab for the probabilistic 

analysis (codes given in Appendix A)  
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3.3.3.2 Validation of the LEM Model 

The accuracy of the LEM model developed here using Matlab needs to be validated as it is 

the basis for the entire probabilistic analysis. The model is validated against Slide6.0 by 

comparing the output for a wide range of cases, Table 3.3. 

Seven combinations of arbitrarily selected HB parameters are applied to three slope cases 

with the same height but different slope face angles β (equal to 40, 55, and 70). Therefore, 

there are totally 21 cases, listed in Table 3.3. The slope geometry is shown in Figure 3.5.  

Table 3.3 Cases for validation of the LEM model developed in Matlab 

Case GSI mi 
σci 

(MPa) 
Slope 

angle β 
FS 

Slide6.0 
FS 

Developed model 
RD (%) 

1 10 5 10 40 0.58 0.58 0.08 

2 30 13 40 40 1.96 1.96 0.14 

3 50 21 70 40 3.69 3.70 0.25 

4 75 30 100 40 8.91 8.92 0.12 

5 100 40 150 40 37.22 37.22 0.01 

6 100 5 10 40 6.89 6.89 0.06 

7 10 40 150 40 2.39 2.39 -0.09 

8 10 5 10 55 0.38 0.39 0.96 

9 30 13 40 55 1.28 1.29 1.07 

10 50 21 70 55 2.59 2.60 0.45 

11 75 30 100 55 7.01 7.03 0.28 

12 100 40 150 55 33.67 33.71 0.13 

13 100 5 10 55 5.87 5.88 0.15 

14 10 40 150 55 1.57 1.57 0.50 

15 10 5 10 70 0.27 0.27 1.55 

16 30 13 40 70 0.87 0.89 2.05 

17 50 21 70 70 1.80 1.83 1.52 

18 75 30 100 70 5.53 5.58 0.84 

19 100 40 150 70 27.74 27.78 0.15 

20 100 5 10 70 4.92 4.95 0.57 

21 10 40 150 70 1.00 1.04 3.29 
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Figure 3.5 Slope geometry for validation of the LEM model developed in Matlab 

The FS calculated by Slide6.0 and by the developed LEM model are given in Table 3.3. 

The relative differences are given in the right column of Table 3.3 and plotted in Figure 3.6. 

 

 

 

 

 

 

 

Figure 3.6 Relative differences between the FS calculated by Slide6.0 and by the LEM 

model developed in Matlab 

Figure 3.6 shows that the FS calculated by Slide6.0 and by the developed LEM model are 

very similar, with relative differences mostly less than 2%. The developed LEM model can 

therefore be viewed as validated. 
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3.3.4 Validation of the Random Field Generator 

3.3.4.1 Introduction 

The random field generator used in the present study was developed by Constantine (2010). 

While this generator has the advantages of being simple and user-friendly, its accuracy has 

not been fully validated yet. In this section, a detailed validation of the random field 

generator is given. 

The Constantine random field generator is based on the covariance matrix decomposition 

method (Davis 1987). Among the commonly used random field simulation methods, this 

one has the appeal of accuracy and simplicity (Fenton and Griffiths 2008) but has the 

drawbacks of being inefficient and difficult for generating large fields. However, these 

drawbacks are not an issue for the current research as the random fields required here are 

one dimensional and small in sizes. For the correlation structure of the generated random 

field, the Markov correlation function (Table 2.7) has been widely applied in geotechnical 

engineering and is adopted in the present study. 

3.3.4.2 Validation  

The validation of the random field generator focuses on the mean and covariance function, 

since together they are able to characterise a random field completely. Three sets of data, 

with the scale of fluctuation θ equal to 0 (or precisely, very close to 0), 10, and 40, are 

generated and used for the validation. In particular, each set of data includes 40 1×100 

random fields. The means and variances of these random fields are set to 0 and 1 

respectively.
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Figure 3.7 (a) Example of a random 

field with scale of fluctuation = 0 

Figure 3.7 (b) Mean values of the 40 

random fields with scale of fluctuation = 0 

Figure 3.8 (a) Example of a random 

field with scale of fluctuation = 10 

Figure 3.8 (b) Mean values of the 40 

random fields with scale of fluctuation = 10 
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The mean values of the generated random fields are calculated and plotted. Figures 3.7(a), 

3.8(a), and 3.9(a) show one of the 40 random fields in each set of data, and Figures 3.7(b), 

3.8(b), and 3.9(b) show the mean values of the entire 40 random fields (i.e. the mean value 

of the random field in the left figure corresponds to one of the circles in the right figure).  
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Figure 3.9 (a) Example of a random 

field with scale of fluctuation = 40 

Figure 3.9 (b) Mean values of the 40 

random fields with scale of fluctuation = 40 
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From Figures 3.7(a), 3.8(a) to 3.9(a), the random fields become more and more smooth, 

because as the scale of fluctuation increases, the data (in the random fields) become more 

correlated. On the other hand, the mean values of the random fields in Figures 3.7(b), 

3.8(b), and 3.9(b) (represented by the circles) space evenly at both sides of the horizontal 

axes, suggesting that the mean values of the generated random fields are unbiased and 

equal to the theoretical value (0 in this case). 

In addition, the circles in Figures 3.7(b), 3.8(b), and 3.9(b) become more spread out. This 

is also caused by the increase of the scale of fluctuation: when the scale of fluctuation is 

small, the data in the random field are less correlated and tend to self cancel each other 

around the mean (as in Figure 3.9a); when the scale of fluctuation becomes large, this 

effect is less significant and therefore the mean values tend to be more variable and spread 

out. 

Based on the above discussions, we can conclude that the means of the random fields 

generated by the Constantine algorithm are unbiased and equal to the theoretical values.  
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(2) Covariance Function 

The covariance functions of the generated random fields are tested by GSwin (Xu and 

Dowd 2005), which is a geostatistics modelling software. The Markov model (given in 

Table 2.7) in random field theory is equivalent to the exponential model (given in Table 

2.8) in geostatistics. Specifically, if the random field Markov model has a variance of σ2 

and scale of fluctuation of θ, the equivalent geostatistical exponential model would have a 

sill value C + C0 = σ2 (with C0 = 0) and a range a = ½ θ (the effective range would be 3a). 

In practice, the validation of the generated random fields is facilitated by comparing their 

experimental variograms with the corresponding theoretical variograms.  

An example of the experimental variogram for a generated random field is plotted in 

Figure 3.10. The stars in the picture represent the experimental variogram values, while the 

solid line represents the theoretical variogram. The distance ranges from 1 to 99, as the 

dimension of the random field is 1×100.  

The specific process of validation is given below. Firstly, each set of data, including 40 

random fields, are imported into GSwin and their experimental variograms are calculated. 

Secondly, the experimental variogram values are exported into Matlab and arranged 

together (thus there will be 40 variogram values for a specific distance h). Thirdly, the 

maximum and minimum experimental variogram values for each specific distance h are 

truncated (2 out of 40) and the remaining experimental variogram values (95%) are plotted. 

Lastly, the envelopes and means of the experimental variograms are drawn against the 

theoretical variograms. In all, three figures are plotted for three sets of data, as shown in 

Figures 3.11, 3.12, and 3.13. 
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Figure 3.10 Experimental and theoretical variograms for a generated random field 

with scale of fluctuation = 10 (the stars represent experimental variogram values and 

the solid line represents the theoretical variogram, Gamma represents the variogram 

γh, and a1 is the range) 

Based on Figures 3.11, 3.12, and 3.13, it is clear that the means of the experimental 

variograms (the red solid lines in the middle) correspond very well to the theoretical 

variograms (the green circled lines). This demonstrates that the covariance functions of the 

simulated random fields are accurate.  

Based on the above results, the Constantine random field generator can be viewed as 

validated.  
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Figure 3.11 Experimental variogram values for data set 1 (40 random fields with scale 

of fluctuation = 0) vs. the theoretical variogram 

 

 

 

 

 

 

 

Figure 3.12 Experimental variogram values for data set 2 (40 random fields with scale 

of fluctuation = 10) vs. the theoretical variogram  
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Figure 3.13 Experimental variogram values for data set 3 (40 random fields with scale 

of fluctuation = 40) vs. the theoretical variogram 

3.4 Summary 

In this chapter, specific research objectives of this thesis were proposed and methodologies 

to achieve these objectives were developed. It was decided that a deterministic analysis 

chapter and a probabilistic analysis chapter would be devoted to study the research 

objectives. For the deterministic analysis, the involved LEM software, Slide6.0, was firstly 

introduced. Afterwards, a sensitivity graph analysis and an equation fitting analysis were 

developed. For the probabilistic analysis, a series of parametric studies were firstly 

designed. The methodology of the Monte Carlo simulation (MCS) was then discussed in 

detail, in terms of the input, process, and output. Since Slide6.0 is not able to incorporate 

spatial variability, a LEM model based on Bishop’s simplified method of slices was 

developed in Matlab for the probabilistic analysis. The algorithm of the developed LEM 
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model was given and its accuracy was validated. Finally, the random field generator used 

for the probabilistic analysis was examined and proved to be valid. 
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Chapter 4 

DETERMINISTIC ANALYSIS 

 

In this chapter, the sensitivity of FS to the changes in HB parameters (FS sensitivity), and 

whether such sensitivity is affected by slope geometry, are studied. A sensitivity graph 

analysis and an equation fitting analysis are employed to achieve the research objectives. 

4.1 Preliminary Analysis by Sensitivity Graphs 

4.1.1 Influence of Slope Geometry 

This section aims to determine whether FS sensitivity is affected by slope geometry. 

Sensitivity graphs are generated and compared for cases with the same HB parameters but 

different slope geometry. 

Five cases with different combinations of slope face angle β and slope height H are 

designed and given in Table 4.1. The generic form of the slope geometry for these cases is 

shown in Figure 4.1. Two sets of HB parameters are used as mean values for the sensitivity 

analysis (as explained in Section 3.2.3) and they are given in Table 4.2. Thus there are 5 × 

2 = 10 cases in total. The sensitivity graphs for these cases are shown in Figures 4.2 to 4.11. 

There are three lines in every figure. Each line represents the variation of FS corresponding 

to the change in one HB parameter, with others fixed at their mean values.  
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Figure 4.1 Generic form of the slope geometry for investigating the effect of varying 

slope geometry on FS sensitivity  

Table 4.1 Cases for investigating the effect of varying slope geometry on FS sensitivity 

H (m) 
β (degree) 

50 100 150 

40 / Case 2 / 

55 Case 1 Case 3 Case 5 

70 / Case 4 / 

Table 4.2 Mean values of HB parameters for investigating the effect of varying slope 

geometry on FS sensitivity 

Parameter Set 1 Set 2 

GSI 30 75 

mi 13 30 

σci (MPa) 40 100 

Comparing the five sensitivity graphs for each set of HB parameters (i.e. comparing within 

Figures 4.2-4.6 and within Figures 4.7-4.11), we observe that although the sensitivity lines 

within each graph show high degrees of complexity, the relative positions of all three lines 

and the pattern for each individual line are similar between cases. The only difference lies 

in the scale of the vertical axes, which is caused by the influence of slope geometry on the 

absolute values of FS. These suggest that there is a general pattern of FS sensitivity exists, 

which is independent of slope geometry. Therefore, FS sensitivity can be studied using a 

representative slope case and Case 3 (β = 55, H = 100) in Table 4.1 is selected here. 
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Figure 4.2 Sensitivity graph for slope case 1 

with HB parameters set 1 as mean values 

Figure 4.3 Sensitivity graph for slope case 2 

with HB parameters set 1 as mean values 

Figure 4.4 Sensitivity graph for slope case 3 

with HB parameters set 1 as mean values 

Figure 4.5 Sensitivity graph for slope case 4 

with HB parameters set 1 as mean values 
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Figure 4.6 Sensitivity graph for slope case 5 

with HB parameters set 1 as mean values 

Figure 4.7 Sensitivity graph for slope case 1 

with HB parameters set 2 as mean values 

Figure 4.8 Sensitivity graph for slope case 2 

with HB parameters set 2 as mean values 

Figure 4.9 Sensitivity graph for slope case 3 

with HB parameters set 2 as mean values 
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Figure 4.10 Sensitivity graph for slope case 4 

with HB parameters set 2 as mean values 

Figure 4.11 Sensitivity graph for slope case 5 

with HB parameters set 2 as mean values 
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4.1.2 Initial Investigation of FS Sensitivity 

This section aims to provide some initial insights into FS sensitivity by generating 

sensitivity graphs for the representative slope case (Case 3 in Table 4.1) with different 

combinations of HB parameters taken as mean values.  

Four sets of mean values of HB parameters are chosen, as listed in Table 4.3. The 

sensitivity graphs for them are shown in Figures 4.12 to 4.15. 

Table 4.3 Mean values of HB parameters for initial investigation of FS sensitivity 

Parameter Set 1 Set 2 Set 3 Set 4 

GSI 30 50 75 100 

mi 13 21 30 40 

σci (MPa) 40 70 100 150 
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Figure 4.12 Sensitivity graph for using 

HB parameters set 1 as mean values 

Figure 4.13 Sensitivity graph for using 

HB parameters set 2 as mean values 

Figure 4.14 Sensitivity graph for using 

HB parameters set 3 as mean values 

Figure 4.15 Sensitivity graph for using 

HB parameters set 4 as mean values 
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Discussions about these figures are given below. Firstly, the sensitivity lines for GSI are 

generally steep, which suggests that GSI has a large influence on FS. However, the lines 

also display large curvature, which suggests the relationship between FS and GSI is non-

linear. Secondly, the influence of mi on FS is small in Figures 4.12 and 4.13 but it becomes 

much larger in Figures 4.14 and 4.15. Also, its influence on FS is positive in the first two 

graphs and then becomes negative. These results suggest that the sensitivity of FS to the 

change in mi is affected by the mean values of other parameters (i.e. GSI and σci), since 

they are the only factors that have changed. Lastly, for σci, the corresponding sensitivity 

lines are also much steeper in Figures 4.14 and 4.15 than those in Figures 4.12 and 4.13. In 

addition, the influence of σci on FS is always positive.  

The above results confirm that the sensitivity of FS to the change in HB parameters is non-

linear and it is affected by different combinations of HB parameters. However, the 

sensitivity graphs alone are not sufficient to provide conclusions for FS sensitivity and a 

further analysis is necessary. 

4.2 Sensitivity Analysis by Equation Fitting  

This section aims to investigate FS sensitivity by the equation fitting analysis. The 

equation fitting, including the fitting data, results, and errors are firstly discussed. 

Sensitivity analysis is then conducted based on the fitted equation. 
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4.2.1 Equation Fitting 

As discussed in Section 3.2.4.1, the data for the equation fitting are generated by Slide6.0. 

It consists of sets of mappings from GSI, mi, and σci to FS, covering a wide range of 

combinations between GSI, mi, and σci. Based on the conclusions from Section 4.1, GSI is 

the most influential parameter on FS, with σci the second and mi the last. Therefore, 7, 4, 

and 6 data points are chosen for GSI, mi, and σci respectively, as listed in Table 4.4. Thus 

there are 7 × 4 × 6 = 168 sets of data in total and the first 12 sets of them are shown in 

Table 4.5 (full sets of data are provided in Appendix B). After the data being generated, all 

parameters, including GSI, mi, σci, and FS, are normalised to the range of [0, 1]. The 

following polynomial form of equation (Equation 3.1) will be used for the fitting, as 

discussed in Section 3.2.4.2.  

 2 2 2
1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 2 3 9 1 3y a x a x a x a x a x a x a x x a x x a x x= + + + + + + + +  3.1 

where y represents FS, and x1, x2, x3 represent GSI, mi, σci respectively. 

Table 4.4 Values of the data points of HB parameters for the equation fitting 

Parameter Data point 

GSI  10 25 40 55 70 85 100 

mi  5 17 28 40  

σci (MPa) 10 35 65 95 120 150  

The unknown items in Equation 3.1 are the 9 coefficients, i.e. a1 to a9. They can be 

represented by the 9×1 matrix in Equation 4.2. There are 168 sets of data, which can be 

represented by the HB parameter matrix A and FS matrix y, as in Equation 4.1 and 

Equation 4.3. Therefore, the task is to solve the linear equation system in Equation 4.4.
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Table 4.5 First twelve sets of data (out of 168) for the equation fitting (full sets of data 

are provided in Appendix B) 

Data set GSI  mi  σci (MPa) FS  

1 10 5 10 0.38 

2 10 5 35 0.551 

3 10 5 65 0.664 

4 10 5 95 0.751 

5 10 5 120 0.812 

6 10 5 150 0.874 

7 10 17 10 0.608 

8 10 17 35 0.84 

9 10 17 65 0.976 

10 10 17 95 1.076 

11 10 17 120 1.145 

12 10 17 150 1.215 

… … … … … 

 

 2 2 2
1 2 3 1 2 3 1 2 2 3 1 3[ ] (168 9)A x x x x x x x x x x x x= ×

r

 (4.1) 

 1 2 3 4 5 6 7 8 9[ ] ' (9 1)a a a a a a a a a a= ×v

 (4.2) 

 1 168[ ... ] ' (168 1)y FS FS= ×v

 (4.3) 

 A a y× =
v v v

 (4.4) 

The least square solution for the linear equation system in Equation 4.4 is presented in 

Table 4.6. To examine the accuracy of the fitted equation, the 168 sets of GSI, mi, and σci 

(original data for the equation fitting) are input into the fitted equation to recalculate the FS. 

These recalculated FS values are termed the fitted FS. The overall absolute relative 

difference (ARD) between the fitted FS and the true FS (original data) is then calculated by 

Equation 4.5. 
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Table 4.6 Least square solutions for a in the linear equation system in Equation 4.4 

Coefficient a1 a2 a3 a4 a5 a6 a7 a8 a9 

Value -0.364 0.067 0.006 0.551 0.075 -0.021 -0.260 -0.134 0.447 

 

 

168

1

( ) ( )
( )

168

i i

i i

FS Fitted FS True

FS True
ARD =

−

=
∑

 

(4.5) 

In this case, the overall ARD is 200%. The comparison between the fitted FS and the true 

FS is shown in Figure 4.16 (please note that all FS values have been normalised into [0, 1]). 

In Figure 4.16, the horizontal axis corresponds to the 168 sets of data, which are arranged 

in the ascending order of GSI. The blue circle represents the true FS, which gradually 

increases with the growth of GSI (the abruptness is caused by the variations of mi and σci). 

The red triangle represents the fitted FS. 

 

 

 

 

 

 

 

 

Figure 4.16 Comparison between the true FS values (original data) and the fitted FS 

values (calculated by the fitted equation with coefficients a in Table 4.6) 
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The ARD between the fitted FS and true FS is quite large, as reflected by the poor overlap 

between the circles and triangles shown in Figure 4.16. On the other hand, Figure 4.16 

shows that in terms of FS (blue circles), there are considerable discrepancies between the 

first 120 sets of data (corresponding to GSI ≤ 70) and the next 48 sets of data 

(corresponding to GSI > 70). The large ARD is likely to be caused by attempting to fit data 

with such large differences into one equation. 

A second version has been trialled, which fits 2 equations separately for the first 120 and 

the next 48 sets of data. Two sets of linear equation systems as shown in Equation 4.12 and 

Equation 4.13 are solved. The least square solutions for these fittings are given in Tables 

4.7 and 4.8. 

 2 2 2
1 1 2 3 1 2 3 1 2 2 3 1 3[ ] ( 70 120 9)A x x x x x x x x x x x x GSI= ≤ ×
v

 (4.6) 

 2 2 2
2 1 2 3 1 2 3 1 2 2 3 1 3[ ] ( 70 48 9)A x x x x x x x x x x x x GSI= > ×
v

 (4.7) 

 1 1 2 3 4 5 6 7 8 9[ ] ' ( 70 9 1)a a a a a a a a a a GSI= ≤ ×v

 (4.8) 

 2 1 2 3 4 5 6 7 8 9[ ] ' ( 70 9 1)a a a a a a a a a a GSI= > ×v

 (4.9) 

 1 1 120[ ... ] ' ( 70 120 1)y FS FS GSI= ≤ ×v

 (4.10) 

 2 121 168[ ... ] ' ( 70 48 1)y FS FS GSI= > ×v

 (4.11) 

 1 1 1 ( 70)A a y GSI× = ≤
v v v

 (4.12) 

 2 2 2 ( 70)A a y GSI× = >
v v v

 (4.13) 
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Table 4.7 Least square solutions for a1 in the linear equation system in Equation 4.12 

(GSI ≤ 70) 

Coefficient a1 a2 a3 a4 a5 a6 a7 a8 a9 

Value -0.043 0.013 0.015 0.134 0.010 -0.010 -0.048 -0.018 0.117 

Table 4.8 Least square solutions for a2 in the linear equation system in Equation 4.13 

(GSI > 70) 

Coefficient a1 a2 a3 a4 a5 a6 a7 a8 a9 

Value -0.545 0.754 -1.345 0.682 0.269 -0.003 -1.128 -0.371 2.104 

The ARD between the new fitted FS and true FS is again calculated. For the first sets 

(Equation 4.12), the ARD is 29%, while for the second sets (Equation 4.13), the ARD is 

25%. The comparison between the fitted FS and true FS is shown in Figure 4.17. 

 

 

 

 

 

 

 

 

Figure 4.17 Comparison between the true FS values (original data) and the fitted FS 

values (calculated by the fitted equation with coefficients a1 in Table 4.7 and 

coefficients a2 in Table 4.8)
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Apparently, the accuracy is greatly improved, which is reflected by the good overlap 

between the fitted FS and true FS in Figure 4.17. Given the complexity involved in slope 

stability analysis, such ARD is considered acceptable for sensitivity analysis purpose. In 

addition, several other forms of equations and data arrangements have been tried, but this 

one produced the best accuracy. Therefore, Equation 3.1 with the coefficients shown in 

Tables 4.7 and 4.8 are used for the sensitivity investigations. 

4.2.2 Derivative Based Sensitivity Analysis 

This section employs the equation fitted in the previous section to analyse FS sensitivity by 

taking the derivatives (rates of change) of FS with respect to HB parameters. 

The derivatives of FS with respect to HB parameters are given in Equations 4.14 to 4.19 

(both sides are multiplied by a factor of 100). There are two sets of derivative equations, 

which correspond to GSI ≤ 70 and GSI > 70 respectively. 

 100 4.3 26.9 4.8 11.7 ( 70)i ci

FS
GSI m GSI

GSI
σ∂ = − + − + ≤

∂  
(4.14) 

 100 1.3 4.8 1.9 1.8 ( 70)i ci
i

FS
GSI m GSI

m
σ∂ = − + − ≤

∂  
(4.15) 

 100 1.5 11.7 1.8 2.1 ( 70)i ci
ci

FS
GSI m GSIσ

σ
∂ = + − − ≤
∂  

(4.16) 

 100 55 136 113 210 ( 70)i ci

FS
GSI m GSI

GSI
σ∂ = − + − + >

∂  
(4.17) 

 100 75 113 54 37 ( 70)i ci
i

FS
GSI m GSI

m
σ∂ = − + − >

∂  
(4.18) 
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 100 135 210 37 0.6 ( 70)i ci
ci

FS
GSI m GSIσ

σ
∂ = − + − − >
∂  

(4.19) 

These equations show that the sensitivity of FS to each HB parameter (measured by the 

derivative) is contributed not only by that parameter itself but also by other parameters. 

Such contributions can be measured by the corresponding coefficients. A positive 

coefficient indicates that the corresponding parameter makes a positive contribution, and 

vice versa; while a large coefficient indicates a large contribution, and vice versa.  

Table 4.9 summarises the contribution of each HB parameter to the derivatives. In 

particular, a plus sign represents a positive contribution from that parameter and a negative 

sign represents a negative contribution. Double underline means that parameter makes a 

large contribution. Single underline means a medium contribution and no underline means 

a small contribution. Lastly, if any coefficient is extremely small compared with others, the 

corresponding parameter is ignored in Table 4.9. The selection criteria for the weight of the 

contributions are given in Table 4.10.  

Table 4.9 Contribution of each HB parameter to FS sensitivity (measured by the 

derivative) 

Sensitivity Weight of contribution (GSI ≤ 70) Weight of contribution (GSI > 70) 

∂FS/∂GSI - Constant, + GSI, - mi, + σci - Constant, + GSI, - mi, + σci 

∂FS/∂mi + Constant, - GSI, + mi, - σci + Constant, - GSI, + mi, - σci 

∂FS/∂σci + Constant, + GSI, - mi, - σci - Constant, + GSI, - mi 
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Table 4.10 Selection criteria for the weight of contribution of each HB parameter to 

FS sensitivity 

Weight 
Value of coefficient 

(GSI ≤ 70) 
Value of coefficient 

(GSI > 70) 
Weight sign 

Large ≥ 20 ≥ 200 double underline 

Medium 10 ~ 20 100 ~ 200 single underline 

Small 1~10 10~100 none 

Ignored ≤ 1 ≤ 10 Ignored 

4.2.3 Discussions and Verifications 

Discussions and verifications of the information in Table 4.10 are presented below. 

For ∂FS/∂GSI (the derivative of FS with respect to GSI), GSI itself has a large (GSI ≤ 70) 

or a medium (GSI > 70) positive contribution, which suggests that FS will become 

sensitive to GSI when GSI itself is large. This is demonstrated by the sensitivity graphs in 

Section 4.1.2, i.e. Figures 4.12 to 4.15. In each of these figures, the ∂FS/∂GSI line (squared 

line) becomes steeper as GSI increases. On the other hand, mi has a small (GSI ≤ 70) or 

medium (GSI > 70) negative contribution to ∂FS/∂GSI and σci has a medium (GSI ≤ 70) or 

large (GSI > 70) positive contribution, which suggests that FS will become sensitive to 

GSI when mi is small and σci is large. To verify this, three cases with different 

combinations of mi and σci values are tested, as shown in Table 4.11. In these cases, GSI 

varies from 10 to 100 and the sensitivity lines for FS to the change in GSI are compared. 

Case 1 has a small mi but a large σci, which corresponds to the most sensitive situation; 

while Case 3 is the opposite and thus it should be the least sensitive. Case 2 is the medium 

sensitive case. The sensitivity graph for these cases is given in Figure 4.18. It is apparent 

that Case 1 is the most sensitive case (as the sensitivity line for Case 1 is the steepest) and 

Case 3 is the least sensitive case (as the sensitivity line for Case 3 is the flattest).  
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Table 4.11 Cases for verification of situations where FS is highly sensitive to GSI 

Case GSI mi σci (MPa) 
Predicted 
sensitivity 

1 10-100 5 150 High 

2 10-100 40 150 Medium 

3 10-100 40 10 Low 

 

 

 

 

 

 

 

 

 

Figure 4.18 Verification of situations where FS is highly sensitive to the change in GSI 

Based on these observations, it can be concluded that the association between FS and GSI 

is always positive (i.e. FS always increases as GSI increases). Three factors cause FS to be 

sensitive to the change in GSI: large GSI, small mi, and large σci. Among these factors, GSI 

and σci are the most influential.  

For ∂FS/∂mi (the derivative of FS with respect to mi), when GSI ≤ 70, both GSI and σci 

have small negative contributions. The constant and mi itself have small positive 

contributions. Thus, the contributions of these four items are all small and effectively 
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cancel each other. Therefore, FS should not be sensitive to mi when GSI ≤ 70. This is 

supported by Figures 4.12 and 4.13 in Section 4.1.2 (in which the mean values of GSI are 

≤ 70), where the ∂FS/∂mi sensitivity lines (triangular lines) are flat, suggesting low 

sensitivity. On the other hand, when GSI > 70, GSI has a medium negative contribution to 

∂FS/∂mi and σci has a small negative contribution. This suggests that when GSI and σci are 

both large, FS will decrease as mi increases and its sensitivity should be high. This is 

supported by Figures 4.14 and 4.15 in Section 4.1.2, in which both GSI and σci are large. In 

these two figures, FS decreases with the increase of mi. Also, ∂FS/∂mi lines are steep, 

suggesting large sensitivity. 

Based on these discussions, it can be conclude that the association between FS and mi is 

positive (i.e. FS increases as mi increases) and FS is not sensitive to the change in mi when 

GSI ≤ 70. When GSI > 70 and σci is large, the association between FS and mi is negative 

(i.e. FS decreases as mi decreases) and FS is sensitive to the change in mi. 

For ∂FS/∂σci (the derivative of FS with respect to σci), GSI has a medium or large positive 

contribution, suggesting that FS will become sensitive to the change in σci when GSI is 

large. To prove this, several cases with different GSI mean values are tested, as given in 

Table 4.12. In these cases, σci varies from 10MPa to 150MPa. The sensitivity lines for 

these cases are shown in Figure 4.19. In Figure 4.19, the slopes of the lines increase 

gradually as GSI increases, suggesting that FS becomes more sensitive to the change in σci 

as GSI increases. In addition, these lines are almost straight, which indicates that ∂FS/∂σci 

is not influenced much by the mean value of σci itself. This is in good agreement with the 

weight provided in Table 4.9, where the contribution of σci to ∂FS/∂σci is small (GSI ≤ 70) 

or very small (GSI > 70) as such it can be ignored.  
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Table 4.12 Cases for verification of situations where FS is highly sensitive to σci 

Case GSI mi σci (MPa) 

1-7 30, 40, 50, 60, 70, 80, 90, 100 5 10 - 150 

 

 

 

 

 

 

 

 

Figure 4.19 Verification of situations where FS is highly sensitive to the change in σci 

Based on the above discussions, it can be concluded the association between FS and σci is 

always positive (i.e. FS always increases as σci increases) and FS becomes sensitive to the 

change in σci when GSI is large. 

4.2.4 Conclusions 

Conclusions regarding FS sensitivity with respect to each HB parameter are given here. 

These address two aspects: firstly, for any particular parameter, whether FS is sensitive to 

its change; and secondly, how is the contribution of this parameter to the derivatives of FS 

to other parameters.  
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GSI is the most critical parameter in both aspects. Firstly, FS is very sensitive to the 

change in GSI. This is reflected in Table 4.9 and the sensitivity graphs in Section 4.1.2. In 

Table 4.9, the coefficients for ∂FS/∂GSI are positive and large, which results in a large 

∂FS/∂GSI and indicates high FS sensitivity; while in Figures 4.12 to 4.15, FS increases 

sharply as GSI increases. Secondly, GSI makes the largest contribution to ∂FS/∂GSI, 

∂FS/∂mi, and ∂FS/∂σci. This is also reflected in Table 4.9, as the weight of contribution 

from GSI is generally large. Therefore, based on the discussions above and in Section 4.2.3, 

it can be concluded that when GSI is large, FS is expected to be highly sensitive to the 

change in GSI itself and that in σci. 

σci is also a critical parameter. FS becomes sensitive to the change in σci when GSI is large. 

On the other hand, σci does not make as large contributions to ∂FS/∂mi and ∂FS/∂σci as does 

GSI. Thus σci is only critical in this one aspect. 

mi is the least important parameter. Firstly, the only situation when FS is sensitive to the 

change in mi is when GSI and σci are both large. However, in such a situation, the FS is 

already very large (because of the large GSI and σci) and its high sensitivity to mi is of less 

importance. Secondly, mi makes the least contribution to ∂FS/∂GSI, ∂FS/∂mi, and ∂FS/∂σci. 

Thus mi is the least important in both aspects.  

Based on the above conclusions, a typical situation where FS is highly sensitive would be 

when GSI is large. In this situation, FS is sensitive to the changes in both GSI and σci. 

A case study is presented below to demonstrate this point. 
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4.2.5 Case Study 

FS are calculated (by Slide6.0) for the slope in Figure 4.1 with β = 55 and H = 100m based 

on three different combinations of HB parameters, as given in Table 4.13. These 

combinations of HB parameters are specifically designed to produce the same FS (to the 

second decimal place). The GSI values from Case 1 to Case 3 are in a descending order. 

Based on the conclusions in Section 4.2.4, Case 1 should be the most sensitive case and 

Case 3 should be the least. 

To verify the sensitivity of FS, all HB parameters in Table 4.13 are decreased by 10%, as 

shown in Table 4.14. FS are re-calculated for the decreased parameters, as given in Table 

4.14. The percentage decreases of FS for the three cases are also calculated. 

Table 4.13 Three cases with the same FS but different combinations of HB 

parameters (for verification of FS sensitivity) 

Case GSI mi σci (MPa) FS 
Predicted 
sensitivity 

1 69 13 10 1.63 High 

2 38 13 50 1.63 Medium 

3 23 13 132 1.63 Low 

Table 4.14 Demonstration of the effect of reducing all HB parameters by 10% on FS 

for the cases in Table 4.13 

Case GSI mi σci (MPa) FS FS decrease 

1 62.1 11.7 9 1.33 18.4% 

2 34.2 11.7 45 1.42 12.9% 

3 20.7 11.7 118.8 1.44 11.7% 

The decreases of FS for the three cases are in good agreement with the sensitivity 

descriptions. Specifically, Case 1 is the most sensitive case and the decrease of FS for Case 
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1 is much larger than those of Case 2 and Case 3. The decrease of FS for Case 2 is also 

larger than that of Case 3, but not as significant as that in Case 1. This is because in Cases 

2 and 3, GSI are generally small and hence the sensitivity change is also small. 

4.3 Summary 

The objectives of this chapter were to investigate the sensitivity of FS to the changes in HB 

parameters (FS sensitivity) and examine whether such sensitivity is affected by slope 

geometry. Qualitative sensitivity graphs and a quantitative equation fitting analysis have 

been used to achieve the research objectives. 

Key conclusions of this chapter are as follows: 

1. A general pattern of FS sensitivity exists and it can be studied independent of slope 

geometry. 

2. The sensitivity of FS to the change in any particular HB parameter depends on the 

value of that parameter itself (the range within which it is changing) and on the 

values of other HB parameters. 

3. Slope cases with the same FS values but different combinations of HB parameters 

can have different FS sensitivity. 

4. GSI is the most critical parameter for FS sensitivity. FS always increases with 

increasing GSI. When GSI is large, FS becomes sensitive to the change in GSI 

itself and that in σci. σci is also a critical parameter with respect to FS sensitivity. FS 

always increases with increasing σci. FS becomes sensitive to the change in σci 

when GSI is large. mi is the least critical parameter for FS sensitivity.  
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5. A typical situation where FS is highly sensitive would be when GSI is large. In this 

situation, FS is sensitive to the changes in both GSI and σci. 
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Chapter 5  

PROBABILISTIC ANALYSIS 

5.1 Introduction 

This chapter deals with the four remaining research objectives of this thesis: to investigate 

the influence of changes in the variability of HB parameters (quantified by the COV) on 

PF (Section 5.2.1); to evaluate the relative contribution of the variability of each HB 

parameter (quantified by the COV) to PF (Sections 5.2.2 and 5.2.3); to investigate the 

influence of the spatial variability of HB parameters (quantified by the scale of fluctuation 

θ) on the PF (Section 5.3); and to explore the relationship between FS sensitivity and PF 

(Sections 5.2.1 and 5.2.3).  

To achieve these research objectives, a series of parametric studies were carried out under 

the framework of simplified probabilistic analyses and spatial probabilistic analyses. For 

the simplified probabilistic analysis, HB parameters are modelled as random variables and 

their spatial variability is not considered; for the spatial probability analysis, spatial 

variability of mi and σci is considered and these two parameters are modelled as random 

fields. Both analyses were based on a slope with the geometry shown in Figure 5.1 

In Chapter 4, it has been demonstrated that slope cases with different combinations of HB 

parameters can have the same FS but different sensitivity. The study in this chapter extends 

this conclusion. Specifically, three cases with different combinations of HB parameters but 

the same FS are designed, as shown in Table 5.1. These cases are similar to those studied 

in Section 4.2.5 and thus similar sensitivity concepts can be applied. All studies in this 
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h=10m 

H=100m 

water level 

β=55 

chapter are based on these cases. GSI, mi, and σci are assumed to follow truncated normal 

distributions (discussed in Section 3.3.2.1), and the truncations are given in Table 5.2. 

 

 

 

Figure 5.1 Slope geometry for the probabilistic analysis 

Table 5.1 Three sets of HB parameters for the probabilistic analysis 

Case GSI mi σci (MPa) FS FS sensitivity 

1 69 13 10 1.64 High 

2 38 13 50 1.64 Medium 

3 23 13 133 1.64 Low 

Table 5.2 Truncations of HB parameters for the probabilistic analysis 

Parameter GSI mi σci (MPa) 

Truncation [1 100] [5 40] [1 200] 

The output of a Monte Carlo simulation (MCS) based probabilistic analysis includes PF 

and statistical properties as well as the distribution of FS. The convergence of PF in the 

MCS is examined here by plotting the number of iterations N against the PF value (Section 

3.3.2.2). One example of such a convergence plot is shown in Figure 5.2, where PF 

gradually stabilises as N increases. The header of Figure 5.2 shows the case ID and the 

COV for GSI, mi, and σci, based on which the probabilistic analysis is carried out. If the 

value of PF is too small to stabilise within the computation time frame, it is then estimated 

by the method given by Fenton and Griffiths (2008) (as introduced in Section 3.3.2.3). 

After PF is calculated or estimated, the distribution and statistical properties of FS, 
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Figure 5.2 Example of the convergence 

of PF in a Monte Carlo simulation 

Figure 5.3 Example of the output 

from a Monte Carlo simulation 
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including the mean, standard deviation, and the COV, can also be obtained. An example of 

the output from a MCS is shown in Figure 5.3, where SD-FS refers to the standard 

deviation of FS and N is the number of iterations.  

 

 

 

 

 

 

 

 

5.2 Simplified Probabilistic Analysis 

The second, third, and fifth research objectives of this thesis are studied in this section. 

Two parametric studies and a case study based on simplified probabilistic analyses are 

carried out.  

5.2.1 Parametric Study I 

The first parametric study addresses the second and fifth research objectives, i.e. to 

investigate the influence of changes in the variability of HB parameters (quantified by the 

COV) on PF and to explore the relationship between FS sensitivity and PF. In this 
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parametric study, a series of simplified probabilistic analyses are carried out, where all 

three HB parameters are modelled as random variables and their COV are assumed to be 

equal and vary uniformly from 0.1 to 1.  

The results from the parametric study are shown in Table 5.3 and plotted in Figure 5.4. In 

Table 5.3, the highlighted boxes indicate that the corresponding PF are obtained from 

estimations instead of from direct simulations. In Figure 5.4, each line shows the variation 

of PF for one case with changes in the COV of HB parameters. 

Table 5.3 PF values from Parametric study I: three cases (Table 5.1) with the same 

FS but different FS sensitivity; HB parameters are modelled as random variables 

together and their COV are assumed to be equal and vary uniformly from 0.1 to 1 

COV 
PF (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Case 1 1.39E-03 2.7 10.6 18.8 25.0 29.5 33.0 35.5 37.4 38.9 

Case 2 1.74E-06 0.41 4.6 11.8 19.4 25.5 30.6 34.7 37.9 40.3 

Case 3 1.84E-09 0.22 3.5 10.2 17.7 23.9 29.4 33.8 37.4 40.4 

Figure 5.4 shows that the PF for each case increases gradually as the COV increases, 

which conforms with expectation. On the other hand, even though the three cases have the 

same FS and identical COV for HB parameters, their PF are different. In most 

circumstances (COV ≤ 0.8), the PF for Case 1 is the largest and the PF for Case 3 is the 

smallest. These differences are significant when the COV is small (≤ 0.6). As the COV 

increases, the differences between PF for the three cases become less and less and almost 

diminish eventually.  

The above phenomenon is caused by the different FS sensitivity for the three cases. Based 

on the conclusions from Chapter 4, Case 1 is expected to be the most sensitive case and 
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Figure 5.4 PF values from Parametric study I: three cases (Table 5.1) with the same 

FS but different FS sensitivity; HB parameters are modelled as random variables 

together and their COV are assumed to be equal and vary uniformly from 0.1 to 1 

Case 3 is the least. When the COV is small, the random variations of GSI, mi, and σci are 

largely close to their mean values, which are the regions within which the effect of FS 

sensitivity is significant. Case 1 has the largest PF since its corresponding FS are most 

sensitive to the changes in HB parameters. However, as the COV increases, HB parameters 

of all the three cases begin to vary within their entire truncated ranges (Table 5.2) and 

finally become almost evenly spread out. In these circumstances, the effect of FS 

sensitivity diminishes and thus the PF for the three cases become very close to each other. 

The statistical properties of FS from some of the probabilistic analyses in parametric study 

I are obtained to demonstrate the above points. Figures 5.5(a), 5.6(a), and 5.7(a) show the 

statistical properties and distributions of FS for Cases 1 to 3, with the COV of HB 

parameters equal to 0.2, and Figures 5.5(b), 5.6(b), and 5.7(b) show the statistical 
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Figure 5.5 (a) Statistical properties 

of FS for Case 1 with the COV of 

HB parameters = 0.2 

Figure 5.5 (b) Statistical properties 

of FS for Case 1 with the COV of 

HB parameters =1 

properties and distributions of FS for the three cases, with the COV of HB parameters 

equal to 1.0.  

As shown in Figures 5.5(a), 5.6(a), and 5.7(a), the variability of the calculated FS becomes 

smaller and smaller from Case 1 to Case 2 and to Case 3 (as the distributions of FS become 

narrower), causing the PF to decrease. On the other hand, the distributions of FS in Figures 

5.5(b), 5.6(b), and 5.7(b) are similar to each other, indicating similar variability of FS and 

thus similar PF. These observations are in good agreement with discussions in the previous 

paragraph: when the COV of HB parameters equal to 0.2, the variations of HB parameters 

are small and close to their mean values and the effect of FS sensitivity is significant; in 

contrast, when the COV of HB parameters equal to 1.0, the variations of HB parameters 

are so great that their values for all three cases are similarly spread out (almost evenly) 

within their ranges and thus the effect of FS sensitivity diminishes. 
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Figure 5.6 (a) Statistical properties 

of FS for Case 2 with the COV of 

HB parameters = 0.2 

Figure 5.6 (b) Statistical properties 

of FS for Case 2 with the COV of 

HB parameters = 1 

Figure 5.7 (a) Statistical properties 

of FS for Case 3 with the COV of 

HB parameters = 0.2 

Figure 5.7 (b) Statistical properties 

of FS for Case 3 with the COV of 

HB parameters = 1 
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Based on the above results and discussions, key conclusions of this section are:  

1. The probability of failure (PF) of a highly fractured rock slope increases as the 

coefficient of variation (COV) of the input HB parameters increase. 

2. Even if their FS and variability of the input (quantified by the COV) are identical, 

cases with different combinations of HB parameters have different PF.  

3. For cases whose FS are highly sensitive to the changes in HB parameters, their PF 

are also large, indicating higher risks. Therefore, probabilistic analysis is capable of 

detecting the effect of FS sensitivity on slope stability.  

5.2.2 Parametric Study II 

The second parametric study addresses the third research objective, i.e. to evaluate the 

relative contribution of the variability of each HB parameter (quantified by the COV) to PF. 

This parametric study is also based on the three cases given in Table 5.1 but HB 

parameters are now modelled as individual random variables. The COV again varies 

uniformly from 0.1 to 1 and HB parameters are still assumed to follow truncated normal 

distributions.  

Since HB parameters are modelled as random variables separately, PF can simply be 

calculated from probability theory instead of from MCS. For Case 1 for example, the 

critical value of GSI (termed as Critical GSI) that makes FS equal to 1 is 39. Therefore, the 

PF of Case 1 when only GSI is modelled as a random variable (termed as PF-GSI) just 

equals to the Probability [GSI < Critical GSI, mi = 13, σci = 10MPa]. Similarly, PF-mi = 

Probability [GSI = 69, mi < Critical mi, σci = 10MPa], and PF-σci = Probability [GSI = 69, 

mi = 13, σci < Critical σci]. 
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The critical values of GSI, mi, and σci that make FS equal to 1 for each slope case are listed 

in Table 5.4. In Table 5.4, N/A for mi denotes that whatever value mi takes, the FS of the 

slope is always larger than 1. Thus PF-mi = 0 and the contribution of mi variability to PF is 

considered to be very small. 

PF-GSI and PF-σci are given in Table 5.5 and plotted in Figures 5.8, 5.9, and 5.10. 

Table 5.4 Critical value of each HB parameter that makes the FS equal to 1 for slope 

cases given in Table 5.1 

Case Critical GSI Critical mi Critical σci (MPa) 

1 39 N/A 2.77 

2 15.2 N/A 10.99 

3 8 N/A 26.50 

Table 5.5 PF values from parametric study II: three cases (Table 5.1) with the same 

FS but different FS sensitivity; HB parameters are modelled as random variables 

individually and the COV varies uniformly from 0.1 to 1 

Case PF (%) 
COV 

0.1 0.2 0.3 0.4 0.6 0.8 1 

1 

PF-GSI 6.87E-04 1.5 7.4 13.9 23.4 29.3 33.2 

PF-mi 0 0 0 0 0 0 0 

PF-σci 2.41E-11 1.50E-02 0.80 3.5 11.4 18.3 23.5 

2 

PF-GSI 9.87E-08 0.13 2.3 6.7 15.9 22.7 27.4 

PF-mi 0 0 0 0 0 0 0 

PF-σci 3.05E-13 4.79E-03 0.47 2.6 9.7 16.5 21.8 

3 

PF-GSI 3.47E-09 5.55E-02 1.5 5.2 13.9 20.7 25.7 

PF-mi 0 0 0 0 0 0 0 

PF-σci 5.85E-14 3.12E-03 0.38 2.3 9.1 15.8 21.2 
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Figure 5.8 PF values from Case 1 of parametric study II: three cases (Table 5.1) with 

the same FS but different FS sensitivity; HB parameters are modelled as random 

variables individually and the COV varies uniformly from 0.1 to 1 

 

 

 

 

 

 

 

 Figure 5.9 PF values from Case 2 of parametric study II: three cases (Table 5.1) with 

the same FS but different FS sensitivity; HB parameters are modelled as random 

variables individually and the COV varies uniformly from 0.1 to 1
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Figure 5.10 PF values from Case 3 of parametric study II: three cases (Table 5.1) with 

the same FS but different FS sensitivity; HB parameters are modelled as random 

variables individually and the COV varies uniformly from 0.1 to 1 

Comparing the data in Table 5.5, we observe that for a given value of COV, the PF for 

when only GSI is modelled as a random variable (PF-GSI) lies in the order Case 1 > Case 

2 > Case 3, and similarly for PF-σci. This again verifies the conclusion from the previous 

section, i.e. a slope of high FS sensitivity gives a high PF. 

In addition, comparison of PF-GSI and PF-σci in Figures 5.8, 5.9, and 5.10 shows that for 

all three cases, given a specific value of COV, PF-GSI > PF-σci. This suggests that when 

the COV of GSI and σci are identical, the variability of GSI makes a larger contribution to 

PF than that of σci. However, Section 3.3.2.1 shows that σci generally has larger variability 

(COV) than GSI in practice, with the upper limit COV of GSI and σci  equal to 0.15 and 0.4 

respectively. If these values are adopted, Figures 5.8, 5.9, and 5.10 show that PF-σci > PF-
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GSI for all three cases. This suggests that in engineering practice, the high variability of σci 

will make a larger actual contribution to PF than that of GSI.  

Based on these discussions, the following conclusions are drawn: 

1. When the COV of GSI, mi, and σci are identical, the comparison of contributions to 

PF can be expressed as: GSI (variability) > σci (variability) >> mi (variability). 

2. When the COV of GSI, mi, and σci are equal to the upper limit values observed in 

practice (0.15, 0.2, and 0.4 respectively), the comparison of contributions to PF can 

be expressed as: σci (variability) > GSI (variability) >> mi (variability). 

5.2.3 Case Study 

To be consistent with engineering practice, this section is devoted to simplified 

probabilistic analyses with the COV of HB parameters set to their upper limit values 

observed in practice (summarised in Section 3.3.2.1). The study is again based on the three 

slope cases given in Table 5.1. 

The upper limit COV of the HB parameters and the corresponding PF calculated by MCS 

based on these COV are given in Table 5.6. The statistical properties and distributions of 

FS are shown in Figures 5.11, 5.12, and 5.13. 

Table 5.6 Upper-limit COV values of HB parameters and resulting PF values from 

the case study of the simplified probabilistic analysis 

Case FS sensitivity COV - GSI COV - mi COV - σci PF (%) 

1 High 

0.15 0.2 0.4 

5.5 

2 Medium 3.2 

3 Low 2.8 
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Figure 5.11 Statistical properties of FS for 

Case 1 with the COV of HB parameters set 

to upper limit values in engineering practice 

Figure 5.12 Statistical properties of FS for 

Case 2 with the COV of HB parameters set 

to upper limit values in engineering practice 

Figure 5.13 Statistical properties of FS for 

Case 3 with the COV of HB parameters set 

to upper limit values in engineering practice 

Figure 5.14 Example of a function plot 

demonstrating the concept of 

sensitivity of y to x 
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Table 5.6 shows that the PF of Case 1 is the largest among the three, which is in good 

agreement with its degree of sensitivity. However, Figure 5.11 shows that the mean value 

of FS obtained from the MCS for Case 1 equals to 1.75 and is much larger than 1.64 

(which is the FS calculated based on the mean values of HB parameters). This suggests 

that the FS of Case 1 tends to be overestimated in practice, although its actual risk is higher 

(since the PF of Case 1 is the highest). On the other hand, the mean values of FS obtained 

from the MCS for other two cases are close to 1.64. 

The above phenomenon can be explained by Figure 5.14, in which y (corresponds to FS) is 

a chosen function of x (corresponds to HB parameters). Figure 5.14 shows that for this 

function, y is not sensitive to x when x is varying between 0 and 1. This is similar to the 

conditions for Cases 2 and 3. On the other hand, y becomes sensitive to x when x is varying 

between 1 and 2. This is similar to the condition for Case 1. For 0 < x1 < x2 < 1, where x1 

and x2 are two arbitrary values of x, the value of [f(x1)+f(x2)]/2 would be close to that of 

f[(x1+x2)/2], as the curve in Figure 5.14 between 0 and 1 is almost straight. However, for 1 

< x1 < x2 < 2, the value of [f(x1)+f(x2)]/2 would be larger than that of f[(x1+x2)/2], as the 

curve in Figure 5.14 between 1 and 2 is concave. Therefore, for Case 1, where FS is most 

sensitive to changes in HB parameters, the mean of FS (obtained from the MCS) is larger 

than the mean FS (obtained from the deterministic analysis). 

In addition to the output from the MCS, the Spearman correlation coefficients rs between 

GSI, mi, σci, and FS for each case are also computed. The Spearman correlation coefficient 

measures the monotonic correlation between variables and has been used in several studies 

as an indicator of contribution of the variability of an input variable to the output (El-

Ramly et al. 2002; Fisher and Eberhardt 2012). 
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Table 5.7 shows the calculated rs for all three slope cases. Meanwhile, GSI, mi, and σci 

(20,000 random values) in Case 1 are plotted against the corresponding FS in Figures 5.15, 

5.16, and 5.17. 

Table 5.7 Spearman correlation coefficients rs between GSI, mi, σci, and FS in the case 

study of the simplified probabilistic analysis 

Spearman correlation 
coefficient rs 

Case 1 Case 2 Case 3 

FS & GSI 0.73 0.57 0.53 

FS & mi 0.067 0.15 0.19 

FS & σci 0.61 0.76 0.78 

 

 

 

 

 

 

 

 

Figure 5.15 Spearman correlation coefficient rs between GSI and FS from Case 1 in 

the case study of the simplified probabilistic analysis 
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Figure 5.16 Spearman correlation coefficient rs between mi and FS from Case 1 in the 

case study of the simplified probabilistic analysis 

 

 

 

 

 

 

 

Figure 5.17 Spearman Correlation Coefficient rs between FS and σci from Case 1 in 

the case study of the simplified probabilistic analysis
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Table 5.7 shows that for all three cases, the rs between FS & GSI and FS & σci are much 

larger than those between FS & mi, which suggests that the variability of GSI and σci has 

much larger contributions to PF than that of mi. This is consistent with the conclusion from 

Section 5.2.2. For Cases 2 and 3, the rs between FS & σci is larger than that between FS & 

GSI, which suggests that for these two cases, the variability of σci has a larger contribution 

to PF than that of GSI. This is also consistent with the conclusion from Section 5.2.2. On 

the other hand, for Case 1, the rs between FS & GSI is slightly larger than the rs between 

FS & σci, suggesting that for Case 1, the variability of GSI has a slightly larger contribution 

to PF than that of σci. This contradicts the conclusion from Section 5.2.2 (where it has been 

demonstrated that for all three cases, the PF corresponding to GSI with COV = 0.15 are 

smaller than the PF corresponding to σci with COV = 0.4, which suggests that the 

variability of GSI makes a smaller contribution to PF than that of σci). Since in Section 

5.2.2, the contributions are measured directly by modelling HB parameter as individual 

random variables and then comparing the corresponding PF values whereas rs is a indirect 

measurement, the contradiction suggests that rs may not always be a reliable predictor for 

contribution of the variability of an input variable to the output and this is a topic that 

needs additional study.  

In this section, probabilistic analyses have been carried out from a practical engineering 

perspective. Following conclusions are drawn: 

1. For practical engineering cases, a slope of higher FS sensitivity gives a higher PF. 

2. For a slope of high FS sensitivity (e.g. Case 1), its FS tends to be overestimated, 

suggesting a safer slope, but its actual risk (PF) is higher. 
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3. The Spearman correlation coefficients rs between GSI, mi, σci, and FS show that the 

comparison of contributions of the variability of HB parameters to PF can be 

expressed as follows: for Case 1 (the most sensitive case), GSI (variability) > σci 

(variability) >> mi (variability); for Case 2 (the medium sensitive case), σci 

(variability) > GSI (variability) >> mi (variability); and for Case 3 (the least 

sensitive case), σci (variability) > GSI (variability) >> mi (variability). This partly 

contradicts the conclusion from the previous section. Since the measurement in the 

previous section is considered to be more reliable, the contradiction suggests that 

the Spearman correlation coefficient may not always be a reliable predictor for the 

contribution of the variability of an input variable to the output. 

5.3 Spatial Probabilistic Analysis (Parametric Study III) 

This section deals with the fourth research objective, i.e. to investigate the influence of the 

spatial variability of HB parameters (quantified by the scale of fluctuation θ) on PF. A 

parametric study is carried out, where the scale of fluctuation of HB parameters changes 

from a small value to infinity. The slope geometry in Figure 5.1 and the three cases shown 

in Table 5.1 are again used as the basis for the parametric study.  

As discussed in Section 3.3.2.1, only mi and σci are regarded as spatial variables and 

modelled by random fields. The Markov model is adopted for the random field generation. 

The mean values of the random fields are those given in Table 5.1 and the COV of mi and 

σci are set to their upper-limit values, i.e. 0.2 and 0.4 respectively. The truncations in Table 

5.2 are again imposed. On the other hand, GSI is modelled as a random variable for the 

entire rock mass. The mean values of GSI are those given in Table 5.1 and the COV of GSI 

is set to its upper limit value, i.e. 0.15. 
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σci along the slip surface

In practice, the random field is generated along the slip surface and each slice is a unit of 

the random field. As discussed in Section 3.3.2.1, the number of slices for the LEM model 

in the spatial probabilistic analysis is set to 100 so that spatial averaging does not need to 

be applied. An example of a random field realisation for σci is shown in Figure 5.18 (with 

mean = 133MPa, COV = 0.4, and θ = 50m).  

The specific lengths for θ in the parametric study are given in Table 5.8. The relationships 

between these lengths and the slope height are also displayed. Except for the first and last 

cases, i.e. θ = 1m and θ → infinity, θ gradually increases by factors of 2. 

The results from parametric study III are shown in Table 5.9 and plotted in Figure 5.19. 

 

 

 

 

 

 

 

 

Figure 5.18 Example of a random field realisation for σci along the slip surface (mean 

= 133MPa, COV = 0.4, and θ = 50m)
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Case1: High sensitivity

Case2: Medium sensitivity
Case3: Low sensitivity

Table 5.8 Variation of the scale of fluctuation θ (only applicable to mi and σci) in 

parametric study III and their relationships with t he slope height H 

θ 1m 10m 20m 50m 100m 200m 500m 1000m ∞ 

θ-H 0.01H 0.1H 0.2H 0.5H H 2H 5H 10H ∞ 

Table 5.9 PF values from parametric study III (based on spatial probabilistic 

analyses): mi and σci are modelled as random fields and GSI is modelled as a random 

variable; the scale of fluctuation θ of mi and σci varies from 1m to infinity 

θ 
PF (%) 

1m 10m 20m 50m 100m 200m 500m 1000m ∞ 

Case 1 0.43 0.72 1.1 2.3 3.4 4.4 5.1 5.3 5.5 

Case 2 1.26E-02 0.062 0.26 1.2 2.2 2.8 3.1 3.2 3.2 

Case 3 2.99E-04 0.040 0.27 1.3 2.2 2.6 2.7 2.8 2.8 

 

 

 

 

 

 

 

 

Figure 5.19 PF values from parametric study III (based on spatial probabilistic 

analyses): mi and σci are modelled as random fields and GSI is modelled as a random 

variable; the scale of fluctuation θ of mi and σci varies from 1m to infinity
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The results (shown in Table 5.9 and Figure 5.19) are discussed below. 

Firstly, Figure 5.19 shows that for all three cases, PF values increase as θ increases, which 

is consistent with the literature (El-Ramly et al. 2002; Griffiths et al. 2009; Cho 2010). In 

addition, when θ tends to infinity, theoretically, the spatial probabilistic analysis should 

become identical to the simplified probabilistic analysis. For the current study, when θ 

tends to infinity, the PF for Cases 1 to 3 become 5.5, 3.2, and 2.8 respectively, which are 

the same as the PF from the simplified probabilistic analyses (Table 5.6). Therefore, the 

results from the current study are consistent with theory. 

Secondly, Figure 5.19 shows that for all three cases, PF is most sensitive to the change in θ 

between 1m and 500m.  

Lastly, Figure 5.19 shows that for a particular length of θ, the PF for Case 1 is always the 

largest and the PF for Case 3 is generally the smallest (with a few exceptions). This 

suggests that the relative sensitivity of FS for the three cases is not affected by the spatial 

variability of HB parameters. On the other hand, the absolute differences of PF between 

the three cases increase as θ increases, suggesting that larger θ makes the effect of FS 

sensitivity on slope stability (measured by PF) more significant. 

Based on the above discussions, following key conclusions can be made: 

1. For a slope with FS > 1, the PF increases as the scale of fluctuation θ (of mi and σci) 

increases. When θ tends to infinity, PF from the spatial probabilistic analyses 

become identical to those from the simplified probabilistic analyses.  

2. PF is most sensitive to the change in θ within the range of 0 – 500m. 
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3. In most circumstances, for any specific value of θ, PF of the three cases of different 

FS sensitivity can be expressed as: PF-Case 1 > PF-Case 2 > PF-Case 3. However, 

the absolute differences of PF between the three cases increase as θ increases, 

suggesting that larger θ makes the effect of FS sensitivity on slope stability 

(measured by PF) more significant. 

5.4 Summary 

The studies in this chapter were based on three slope cases with the same FS but different 

sensitivity (following the primary conclusion of Chapter 4). Key conclusions of this 

chapter are presented below: 

1. FS sensitivity has a significant impact on slope stability and probabilistic 

analysis is capable of evaluating such impact. For cases with different 

combinations of HB parameters, even if their FS and the variability of input 

(quantified by the COV) are identical, their PF can be different. A highly 

sensitive slope case gives a high PF and indicates high risk. 

2. PF of a slope increases as the COV of input HB parameters increase. 

3. When the COV of GSI, mi, and σci are identical, the order of contributions to PF 

can be expressed as: GSI (variability) > σci (variability) >> mi (variability). 

4. When the COV of GSI, mi, and σci are set to the upper limit values found in 

engineering practice (0.15, 0.2, and 0.4 respectively), the order of contributions 

to PF can be expressed as: σci (variability) > GSI (variability) >> mi (variability). 

This part is examined by two separate approaches in Sections 5.2.2 and 5.2.3, 
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where slightly contradictory conclusions were found, for which detailed 

discussions were given in Section 5.2.3.  

5. For a slope with FS > 1, the PF increases as the scale of fluctuation θ (of mi and 

σci) increases. When θ tends to infinity, PF from the spatial probabilistic 

analyses become identical to those from the simplified probabilistic analyses.  

6. PF is most sensitive to the change in θ (of mi and σci) within the range of 0 – 

500m. 

7. Larger θ makes the effect of FS sensitivity on slope stability more significant, 

i.e. the differences of PF between slopes of different FS sensitivity increase as θ 

increases.
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Chapter 6  

SUMMARY AND CONCLUSIONS 

6.1 Summary 

In this study, the Hoek-Brown (HB) strength criterion has been used to investigate the 

circular failure of highly fractured rock slopes. The overall focus has been on the 

relationship between the HB input (GSI, mi, σci, and their variability) and the output, Factor 

of Safety (FS) and Probability of Failure (PF). Both deterministic analyses and 

probabilistic analyses were carried out. A group of sensitivity analyses and parametric 

studies were designed and implemented. The final outcomes of this study provide the 

following knowledge: sensitive conditions (with regard to FS) of highly fractured rock 

slopes are identified, the relationship between FS sensitivity and PF is defined, and the 

effectiveness of probabilistic analysis is better understood. 

In Chapter 2, relevant literature was reviewed with the aims of providing background 

knowledge and identifying specific research gaps for the study. The circular failure of 

highly fractured rock slopes was identified as a critical failure mode but little research 

effort has been devoted to it. The HB strength criterion was then discussed in detail and 

verified as an effective tool for fractured rock slope stability analysis. Input parameters for 

the HB strength criterion, including GSI, mi, and σci, were discussed; it was observed that 

the variability of GSI is generally low (the COV of GSI is between 0.15 and 0.35), the 

variability of mi is medium (the COV of mi is between 0.039 and 0.25), and the variability 

of σci is generally high (the COV of σci is between 0.1 and 0.4). Methods for deriving 
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equivalent Mohr-Coulomb (MC) parameters from HB parameters were also studied; three 

approximate solutions were compared, as summarised in Section 2.3.3. The Limit 

Equilibrium Method (LEM), particularly the method of slices was discussed. It was shown 

that Bishop’s method of slices is appealing for Monte Carlo simulation (MCS) based 

probabilistic analysis because of its simplicity and accuracy. Algorithms for the Ordinary 

method of slices and Bishop’s simplified method of slices were presented. Subsequently, 

Probabilistic Slope Stability Analysis (PSSA) was discussed. It was shown that PSSA is a 

critical development that supplements the deterministic analysis, and has become a primary 

research area in slope stability analysis (Table 2.9). Six major research directions of PSSA 

were then summarised (Table 2.10). It was shown that for highly fractured rock slopes, 

where the HB strength criterion can be employed, relatively little research has been carried 

out for one of the important research directions, namely the relationship between the input 

(HB parameters and their variability), and the output (FS and PF). 

In Chapter 3, the methodology for determining this relationship was proposed. The study 

where FS was used as the slope stability measure has been named the deterministic 

analysis (Chapter 4) and the study where PF was used as the slope stability measure has 

been named the probabilistic analysis (Chapter 5). For the deterministic analysis, a 

sensitivity graph analysis and an equation fitting analysis were developed (Section 3.2). 

Bishop’s simplified method of slices in Slide6.0 (Rocscience 2011) was adopted as the 

LEM model for the deterministic analysis. The probabilistic analysis was based on MCS. 

A series of parametric studies were designed, including simplified probabilistic analyses 

where the spatial variability of HB parameters was not considered and spatial probabilistic 

analyses where it was considered. It was determined that truncated normal distributions are 

suitable for HB parameters (i.e. GSI, mi and σci). For the simplified probabilistic analysis, 
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HB parameters were modelled as random variables first together and then separately. For 

the spatial probabilistic analysis, it was decided that mi and σci would be modelled as 

spatial variables by random fields, while GSI would be modelled as an independent 

random variable for the entire rock mass. It was also decided that the Latin Hypercubic 

sampling technique was to be applied to MCS when applicable. Since Slide6.0 is not able 

to incorporate spatial variability, a LEM model based on Bishop’s method of slices was 

developed in Matlab for the probabilistic analysis (Figure 3.4). The validity of this model 

was examined by comparing its output with that from Slide6.0. For a number of specific 

cases, as shown in Table 3.3, the developed LEM model produced results with mostly less 

than 2% differences with those of Slide6.0. The validity of the random field generator 

adopted for the probabilistic analysis was also examined. It was demonstrated that the 

mean and covariance function of the generated random field are in good agreement with 

the theoretical values.  

Chapter 4 addressed the sensitivity of FS to the changes in HB parameters (FS sensitivity) 

and whether such sensitivity is affected by slope geometry. The sensitivity graph analysis 

and the equation fitting analysis were applied to achieve the objectives. For the sensitivity 

graph analysis, the relationship between HB parameters and FS was plotted in a series of 

figures. For the equation fitting analysis, a large amount of data between HB parameters 

and FS were generated by Slide6.0 and the data were fitted with a second order polynomial 

equation. FS sensitivity was then analysed by taking the derivatives of FS with respect to 

HB parameters based on the fitted equation (Section 4.2.2). The sequences of the study in 

this chapter are as follows: firstly, sensitivity graphs were employed to study whether FS 

sensitivity is affected by slope geometry and to provide some initial insights into the 

problem; secondly, the equation fitting analysis was applied to quantitatively analyse FS 
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sensitivity and a series of conclusions were obtained; next, sensitivity graphs were again 

used to provide a visual verification of the conclusions; and finally, a case study was 

undertaken to demonstrate the impact of FS sensitivity on slope stability. In summary, 

Chapter 4 leads to the following conclusions: 

1. There is a general pattern of FS sensitivity exists, which can be studied independent 

of slope geometry. 

2. The sensitivity of FS to the change in any particular HB parameter depends on the 

value of that parameter itself (the range within which it is changing) as well as on 

the values of other HB parameters. 

3. Slope cases with the same geometry and the same FS values (but different 

combinations of HB parameters) have different FS sensitivity. 

4. GSI is the most critical parameter for FS sensitivity. FS always increases with 

increasing GSI. When GSI is large, FS becomes sensitive to the change in GSI 

itself and that in σci. 

5. σci is also a critical parameter for FS sensitivity. FS always increases with 

increasing σci. FS becomes sensitive to the change in σci when GSI is large. 

6. mi is the least critical parameter for FS sensitivity.  

Chapter 5 was devoted to the remaining four research objectives, i.e. to investigate the 

influence of changes in the variability of HB parameters (quantified by the COV) on PF; to 

evaluate the relative contribution of the variability of each HB parameter (quantified by the 

COV) to PF; to investigate the influence of the spatial variability of HB parameters 

(quantified by the scale of fluctuation θ) on PF; and to explore the relationship between FS 
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sensitivity and PF. As it was demonstrated in Chapter 4 that slope cases with different 

combinations of HB parameters can have the same FS but different FS sensitivity, Chapter 

5 was based on this conclusion. The sequences of the study in this chapter are as follows. 

Firstly, a parametric study was carried out to investigate the influence of changes in the 

variability of HB parameters on PF and to define the relationship between FS sensitivity 

and PF. In this parametric study, all three HB parameters were modelled as random 

variables and their COV were assumed to be equal and vary uniformly from 0.1 to 1. 

Secondly, a parametric study was carried out to compare the contributions of the variability 

of HB parameters to PF. In this parametric study, HB parameters were modelled as random 

variables separately and the COV of each HB parameter again varied uniformly from 0.1 

to 1. Afterwards, to be consistent with engineering practice, a section was devoted to a case 

study of simplified probabilistic analyses with the COV of HB parameters set to their 

upper limit values observed in practice (Section 3.3.2.1). The Spearman correlation 

coefficients rs between GSI, mi, σci, and FS were also computed as another approach to 

evaluate the relative contributions of the variability of HB parameters to PF. Lastly, a final 

parametric study was carried out to investigate the influence of the spatial variability of HB 

parameters on PF. In this parametric study, the scale of fluctuation θ of the corresponding 

HB parameters (mi and σci) varied from a small value to infinity. In summary, Chapter 5 

leads to the following observations: 

1. FS sensitivity has a significant impact on slope stability and probabilistic analysis is 

capable of evaluating such impact. For slope cases with different combinations of 

input HB parameters, even if their FS and the COV of input are identical, their PF 

can be quite different. A slope of high FS sensitivity has a high PF value, indicating 

a high risk. 
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2. PF of a slope increases as the COV of input HB parameters increase. 

3. When the COV of GSI, mi, and σci are identical, the comparison of contributions to 

PF can be expressed as: GSI (variability) > σci (variability) >> mi (variability). 

4. When the COV of GSI, mi, and σci are set to the upper limit values observed in 

engineering practice (0.15, 0.2, and 0.4 respectively), relative contributions to PF 

can be expressed as: σci (variability) > GSI (variability) >> mi (variability). The 

contributions were examined by two approaches in Sections 5.2.2 and 5.2.3 

respectively, where slightly contradictory conclusions were found and it was 

inferred that the Spearman correlation coefficient may not always be a reliable 

predictor of the contribution of an input variable to the output.  

5. For a slope with FS > 1, the PF increases as the scale of fluctuation θ (of mi and σci) 

increases. When θ tends to infinity, PF from the spatial probabilistic analyses 

become identical to those from the simplified probabilistic analyses.  

6. PF is most sensitive to the change in the scale of fluctuation θ (of mi and σci) within 

the range of 0 – 500m. 

7. Larger θ makes the effect of FS sensitivity on slope stability more significant, i.e. 

the differences of PF between slopes of different FS sensitivity increase as θ 

increases.  

6.2 Recommendations for Further Research 

In Chapter 4, a large amount of data between HB parameters and FS were fitted with a 

polynomial equation for the purpose of sensitivity analysis. The polynomial equation was 
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adopted since it is relatively straightforward to differentiate and allows a ready 

identification of self and mutual influences. The validation showed that the fitted equation 

can reproduce the relationship between HB parameters and FS with moderate accuracy, 

and that it is able to characterise the overall trends. It is possible that with a more advanced 

technique, such as artificial neural network, the relationship between HB parameters and 

FS could be more accurately represented by a function and this would provide a useful tool 

for the efficient assessment of rock slope stability. 

In Chapter 5, both a parametric study and the Spearman correlation coefficient were 

applied to study the contributions of the variability of HB parameters to PF. The outcomes 

from these two methods did not support each other completely. The contradiction suggests 

that the Spearman correlation coefficient may not always be a reliable measurement of the 

contribution of an input variable to the output and this is a topic that is worth additional 

investigation. 

In Chapter 5, mi and σci were modelled as spatial variables by random fields in the spatial 

probabilistic analysis. The scale of fluctuation θ of mi and σci was assumed to vary from 

very small to infinity in a parametric study. It was demonstrated that the spatial variability 

of HB parameters has significant influences on slope stability, and it would be worthwhile 

to investigate the actual spatial variability of mi and σci by random field theory or 

geostatistics. 

Lastly, since this study has focused on rock slope stability, the output has been restricted to 

FS and PF. On the other hand, since the HB strength criterion is formulated to estimate the 

strength parameters of a rock mass, including Young’s modulus E, cohesion, and angle of 

friction, the methodology of the current study can also be applied to investigate 

relationship between HB parameters and these strength parameters. 
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6.3 Conclusions 

The following conclusions are derived from the present study. 

1. For a highly fractured rock slope, the sensitivity of FS to the changes in input HB 

parameters (FS sensitivity) cannot be revealed by deterministic analyses unless 

sensitivity analyses are applied. Slope cases with the same geometry and the same 

FS (but different combinations of HB parameters) have different FS sensitivity. 

GSI is the most critical parameter in this respect. With increasing GSI, the stability 

(measured by FS) of a slope becomes more sensitive to the change in GSI itself and 

that in σci.  

2. FS sensitivity has a significant impact on slope stability and probabilistic analysis is 

capable of evaluating such impact. For slope cases with different combinations of 

input HB parameters, even if their FS and the variability of input (quantified by the 

COV) are identical, their PF can be quite different. A slope of high FS sensitivity 

has a high PF value, indicating a high risk. 

3. It was found that when the variability of GSI, mi, and σci is identical, the order of 

contributions to PF can be expressed as GSI (variability) > σci (variability) >> mi 

(variability); however, when the variability of GSI, mi, and σci is set to their upper-

limit values observed in practice, the order of contributions to PF becomes σci 

(variability) > GSI (variability) >> mi (variability). 

4. Spatial variability of HB parameters (for mi and σci) has significant influences on 

slope stability (measured by PF). It was shown that for a slope with FS > 1, the PF 

of this slope increases as the scale of fluctuation θ of mi and σci increases and it is 

most sensitive to the change in θ within the range of 0 – 500m. When θ tends to 
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infinity, PF from the spatial probabilistic analyses become identical to those from 

the simplified probabilistic analyses. In addition, larger θ makes the effect of FS 

sensitivity on slope stability more significant, i.e. the differences of PF between 

cases of different FS sensitivity increase as θ increases.  

 

 

 



 

 

 

 

 

 

 



 

145 
 

 

REFERENCES 

 

Babu, G., and Mukesh, M. 2004. Effect of soil variability on reliability of soil slopes. 

Geotechnique, 54(5): 335-337. 

Baecher, G., and Christian, J. 2003. Reliability and statistics in geotechnical engineering. 

John Wiley & Sons, Inc. 

Baker, R. 1980. Determination of the critical slip surface in slope stability computations. 

International Journal for Numerical and Analytical Methods in Geomechanics, 4(4): 333-

359. 

Balmer, G. 1952. A general analytical solution for Mohr's envelope. Am. Soc. Test. Mat, 

52: 1260-1271. 

Bishop, A. 1955. The use of the slip circle in the stability analysis of slopes. Géotechnique 

5: 7-17. 

Boutrup, E., and Lovell, C. 1980. Searching techniques in slope stability analysis. 

Engineering Geology, 16(1–2): 51-61. 

Cai, M. 2011. Rock mass characterization and rock property variability considerations for 

tunnel and cavern design. Rock Mechanics and Rock Engineering, 44(4): 379-399. 

Cai, M., Kaiser, P., Tasaka, Y., and Minami, M. 2007. Determination of residual strength 

parameters of jointed rock masses using the GSI system. International Journal of Rock 

Mechanics and Mining Sciences, 44(2): 247-265. 



146  References  
 

 

Cai, M., Kaiser, P., Uno, H., Tasaka, Y., and Minami, M. 2004. Estimation of rock mass 

deformation modulus and strength of jointed hard rock masses using the GSI system. 

International Journal of Rock Mechanics and Mining Sciences, 41(1): 3-19. 

Carranza-Torres, C. Some comments on the application of the Hoek-Brown failure 

criterion for intact rock and rock masses to the solution of tunnel and slope problems. In 

MIR 2004–X Conference on Rock and Engineering Mechanics, Torino, Italy2004, pp. 

285-326. 

Chen, Z. Recent developments in slope stability analysis. In 8th ISRM Congress, Tokyo, 

Japan1995. 

Chen, Z. 2004. A generalized solution for tetrahedral rock wedge stability analysis. 

International Journal of Rock Mechanics and Mining Sciences, 41(4): 613-628. 

Cho, S. 2007. Effects of spatial variability of soil properties on slope stability. Engineering 

Geology, 92(3-4): 97-109. 

Cho, S. 2010. Probabilistic assessment of slope stability that considers the spatial 

variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering, 

136(7): 975-984. 

Chowdhury, R., and Xu, D. 1992. Reliability index for slope stability assessment—two 

methods compared. Reliability Engineering and System Safety, 37(2): 99-108. 

Chowdhury, R., and Xu, D. 1995. Geotechnical system reliability of slopes. Reliability 

Engineering and System Safety, 47(3): 141-151. 

Christian, J. 2004. Geotechnical engineering reliability: How well do we know what we are 

doing? Journal of Geotechnical and Geoenvironmental Engineering, 130(10): 985-1003. 

Christian, J., and Baecher, G. 1999. Point-estimate method as numerical quadrature. 

Journal of Geotechnical and Geoenvironmental Engineering, 125(9): 779. 



References   147 
 

 
 

Christian, J., Ladd, C., and Baecher, G. 1994. Reliability applied to slope stability analysis. 

Journal of Geotechnical Engineering, 120(12): 2180-2207. 

Constantine, P. 2010. Random field simulation. http://www.mathworks.com. 

Davis, M. 1987. Production of conditional simulations via the LU triangular decomposition 

of the covariance matrix. Mathematical Geology, 19(2): 91-98. 

Dowd, P. 2006. Introduction to geostatistics. The University of Adelaide, Adelaide, 

Australia, p. 210. 

Dowd, P., Xu, C., Mardia, K., and Fowell, R. 2007. A comparison of methods for the 

stochastic simulation of rock fractures. Mathematical Geology, 39(7): 697-714. 

Duncan, J. 2000. Factors of safety and reliability in geotechnical engineering. Journal of 

Geotechnical and Geoenvironmental Engineering, 126(4): 307-316. 

Duncan, J., and Wright, S. 2005. Soil strength and slope stability. John Wiley & Sons, Inc. 

Duzgun, H., and Bhasin, R. 2009. Probabilistic stability evaluation of Oppstadhornet rock 

slope, Norway. Rock Mechanics and Rock Engineering, 42(5): 729-749. 

Duzgun, H., Yucemen, M., and Karpuz, C. 2003. A methodology for reliability-based 

design of rock slopes. Rock Mechanics and Rock Engineering, 36(2): 95-120. 

El-Ramly, H., Morgenstern, N., and Cruden, D. 2002. Probabilistic slope stability analysis 

for practice. Canadian Geotechnical Journal, 39(3): 665-683. 

El-Ramly, H., Morgenstern, N., and Cruden, D. 2003. Probabilistic stability analysis of a 

tailings dyke on presheared clay-shale. Canadian Geotechnical Journal, 40(1): 192-208. 

El-Ramly, H., Morgenstern, N., and Cruden, D. 2005. Probabilistic assessment of stability 

of a cut slope in residual soil. Géotechnique, 55(1): 77-84. 



148  References  
 

 

El-Ramly, H., Morgenstern, N., and Cruden, D. 2006. Lodalen slide: a probabilistic 

assessment. Canadian Geotechnical Journal, 43(9): 956-968. 

Fenton, G., and Griffiths, D. 2008. Risk assessment in geotechnical engineering. John 

Wiley & Sons, Inc. 

Fisher, B., and Eberhardt, E. 2012. Assessment of parameter uncertainty associated with 

dip slope stability analyses as a means to improve site investigations. Journal of 

Geotechnical and Geoenvironmental Engineering, 138(2): 166-173. 

Fredlund, D., and Krahn, J. 1977. Comparison of slope stability methods of analysis. 

Canadian Geotechnical Journal, 14(3): 429-439. 

Frohlich, O. The factor of safety with respect to sliding of a mass of soil along the arc of a 

logarithmic spiral. In 3rd International Conference on Soil Mechanics and Foundation 

Engineering, Switzerland1953, pp. 230-233. 

Fu, W., Liao, Y., and He, P. Reliability assessment of Hoek-Brown rock mass stability. In 

43rd U.S. Rock Mechanics Symposium and 4th U.S.-Canada Rock Mechanics Symposium, 

Asheville2009. 

Grenon, M., and Hadjigeorgiou, J. 2008. A design methodology for rock slopes susceptible 

to wedge failure using fracture system modelling. Engineering Geology, 96(1-2): 78-93. 

Griffiths, D., and Fenton, G. 2004. Probabilistic slope stability analysis by finite elements. 

Journal of Geotechnical and Geoenvironmental Engineering, 130(5): 507-518. 

Griffiths, D., Huang, J., and Fenton, G. 2009. Influence of spatial variability on slope 

reliability using 2-D random fields. Journal of Geotechnical and Geoenvironmental 

Engineering, 135(10): 1367-1378. 

Hasofer, A., and Lind, N. 1974. Exact and invariant second-moment code format. Journal 

of the Engineering Mechanics Division, 100(1): 111-121. 



References   149 
 

 
 

Hassan, A., and Wolff, T. 1999. Search algorithm for minimum reliability index of earth 

slopes. Journal of Geotechnical and Geoenvironmental Engineering, 125(4): 301-308. 

Hoek, E. 1983. Strength of jointed rock masses. Géotechnique, 33(3): 187-222. 

Hoek, E. 1998. Reliability of Hoek-Brown estimates of rock mass properties and their 

impact on design. International Journal of Rock Mechanics and Mining Sciences, 35(1): 

63-68. 

Hoek, E. 2007. Practical rock engineering. http://www.rocscience.com. 

Hoek, E. Fundamentals of slope design. In Slope Stability 2009, Santiago, Chile2009. 

Hoek, E., and Brown, E. 1980. Underground excavations in rock. Institution of Mining and 

Metallurgy, London. 

Hoek, E., and Brown, E. 1997. Practical estimates of rock mass strength. International 

Journal of Rock Mechanics and Mining Sciences, 34(8): 1165-1186. 

Hoek, E., and Marinos, P. 2007. A brief history of the development of the Hoek-Brown 

failure criterion. Soils and Rocks, 30(2): 85-92. 

Hoek, E., Kaiser, P., and Bawden, W. 1995. Support of underground excavations in hard 

rock. Balkema, Rotterdam. 

Hoek, E., Carranza-Torres, C., and Corkum, B. Hoek-Brown failure criterion-2002 edition. 

In 5th North American Rock Mechanics Symposium and 17th Tunneling Association of 

Canada Conference: NARMS-TAC2002, pp. 267-271. 

Hong, H., and Roh, G. 2008. Reliability evaluation of earth slopes. Journal of Geotechnical 

and Geoenvironmental Engineering, 134(12): 1700-1705. 



150  References  
 

 

Hormazabal, E., Rovira, F., Walker, M., and Carranza-Torres, C. 2009. Analysis and 

design of slopes for Rajo Sur, an open pit mine next to the subsidence crater of El Teniente 

mine in Chile, http://www.srk.co.za. 

Hsu, S., and Nelson, P. 2006. Material spatial variability and slope stability for weak rock 

masses. Journal of Geotechnical and Geoenvironmental Engineering, 132(2): 183-193. 

Hudson, J., and Harrison, J. 2000. Engineering rock mechanics. Pergamon. 

Idris, M., Saiang, D., and Nordlund, E. Numerical analyses of the effects of rock mass 

property variability on open stope stability. In 45th US Rock Mechanics/Geomechanics 

Symposium, San Francisco, California2011. 

Jaksa, M. 1995. The influence of spatial variability on the geotechnical design properties of 

a stiff, overconsolidated clay. Ph.D. Thesis, The University of Adelaide, Adelaide, 

Australia. 

Jaksa, M., Goldsworthy, J., Fenton, G., Kaggwa, W., Griffiths, D., Kuo, Y., and Poulos, H. 

2005. Towards reliable and effective site investigations. Géotechnique, 55(2): 109-122. 

Jing, L. 2003. A review of techniques, advances and outstanding issues in numerical 

modelling for rock mechanics and rock engineering. International Journal of Rock 

Mechanics and Mining Sciences, 40(3): 283-353. 

Jing, L., and Hudson, J. 2002. Numerical methods in rock mechanics. International Journal 

of Rock Mechanics and Mining Sciences, 39(4): 409-427. 

Journel, A., and Huijbregts, C. 1978. Mining geostatistics. Academic Press, London. 

Kumar, P. 1998. Shear failure envelope of Hoek-Brown criterion for rockmass. Tunnelling 

and underground space technology, 13(4): 453-458. 



References   151 
 

 
 

Li, A., Merifield, R., and Lyamin, A. 2008. Stability charts for rock slopes based on the 

Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining 

Sciences, 45(5): 689-700. 

Li, A., Merifield, R., and Lyamin, A. 2011. Effect of rock mass disturbance on the stability 

of rock slopes using the Hoek–Brown failure criterion. Computers and Geotechnics, 38(4): 

546-558. 

Li, K., and Lumb, P. 1987. Probabilistic design of slopes. Canadian Geotechnical Journal, 

24(4): 520–535. 

Low, B. Practical probabilistic slope stability analysis. In 12th Panamerican Conference on 

Soil Mechanics and Geotechnical Engineering and 39th U.S. Rock Mechanics Symposium, 

M.I.T., Cambridge, Massachusetts2003, pp. 2777–2784. 

Low, B. 2007. Reliability analysis of rock slopes involving correlated nonnormals. 

International Journal of Rock Mechanics and Mining Sciences, 44(6): 922-935. 

Low, B. 2008. Efficient probabilistic algorithm illustrated for a rock slope. Rock 

Mechanics and Rock Engineering, 41(5): 715-734. 

Low, B., and Einstein, H. Simplified reliability analysis for wedge mechanisms in rock 

slopes. In Sixth International Symposium on Landslides, New Zealand1992, pp. 499-507. 

Low, B., and Tang, W. 1997a. Probabilistic slope analysis using Janbu's generalized 

procedure of slices. Computers and Geotechnics, 21(2): 121-142. 

Low, B., and Tang, W. 1997b. Efficient reliability evaluation using spreadsheet. Journal of 

Engineering Mechanics, 123(7): 749-752. 

Lü, Q., and Low, B. 2011. Probabilistic analysis of underground rock excavations using 

response surface method and SORM. Computers and Geotechnics, 38(8): 1008-1021. 



152  References  
 

 

Mao, N., Al-Bittar, T., and Soubra, A. 2012. Probabilistic analysis and design of strip 

foundations resting on rocks obeying Hoek–Brown failure criterion. International Journal 

of Rock Mechanics and Mining Sciences, 49(0): 45-58. 

Marinos, P., and Hoek, E. GSI: a geologically friendly tool for rock mass strength 

estimation. In GeoEng2000: An International Conference on Geotechnical & Geological 

Engineering, Melbourne, Australia2000, pp. 1422-1442. 

Marinos, V., Marinos, P., and Hoek, E. 2005. The geological strength index: applications 

and limitations. Bulletin of Engineering Geology and the Environment, 64(1): 55-65. 

Mostyn, G., and Douglas, K. Shear strength of intact rock and rock masses. In 

GeoEng2000: An International Conference on Geotechnical & Geological Engineering, 

Melbourne, Australia2000, pp. 1389-1421. 

Pantelidis, L. 2009. Rock slope stability assessment through rock mass classification 

systems. International Journal of Rock Mechanics and Mining Sciences, 46(2): 315-325. 

Park, H., and West, T. 2001. Development of a probabilistic approach for rock wedge 

failure. Engineering Geology, 59(3-4): 233-251. 

Park, H., West, T., and Woo, I. 2005. Probabilistic analysis of rock slope stability and 

random properties of discontinuity parameters, Interstate Highway 40, Western North 

Carolina, USA. Engineering Geology, 79: 230-250. 

Park, H., Um, J., Woo, I., and Kim, J. 2011. The evaluation of the probability of rock 

wedge failure using the point estimate method. Environmental Earth Sciences: 1-9. 

Phoon, K., and Kulhawy, F. 1999. Characterization of geotechnical variability. Canadian 

Geotechnical Journal, 36(4): 612-624. 

Priest, S. 2005. Determination of shear strength and three-dimensional yield strength for 

the Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 38(4): 299-327. 



References   153 
 

 
 

Priest, S., and Brown, E. 1983. Probabilistic stability analysis of variable rock slopes. 

Trans. Instn. Min. Metall 92: A1-A12. 

Read, J., and Stacey, P. 2009. Guidelines for open pit slope design. CSIRO. 

Richards, L., and Read, S. A comparison of methods for determining mi, the Hoek-Brown 

parameter for intact rock material. In 45th U.S. Rock Mechanics/Geomechanics 

Symposium, San Francisco, California2011. 

Rocscience 2011. Slide6.0. http://www.rocscience.com. 

Rosenblueth, E. 1975. Point estimates for probability moments. Proceedings of the 

National Academy of Sciences, 72(10): 3812-3814. 

Rosenblueth, E. 1981. Two point estimates in probabilities. Applied Mathematical 

Modelling, 5(5): 329-335. 

Ruffolo, R., and Shakoor, A. 2009. Variability of unconfined compressive strength in 

relation to number of test samples. Engineering Geology, 108(1-2): 16-23. 

Sari, M., Karpuz, C., and Ayday, C. 2010. Estimating rock mass properties using Monte 

Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7): 959-969. 

Shen, J., Karakus, M., and Xu, C. 2012. Direct expressions for linearization of shear 

strength envelopes given by the Generalized Hoek–Brown criterion using genetic 

programming. Computers and Geotechnics, 44: 139-146. 

Sjöberg, J. 1997. Estimating rock mass strength using the Hoek–Brown failure criterion 

and rock mass classification—a review and application to the Aznalcollar open pit, 

Division of Rock Mechanics, Department of Civil and Mining Engineering, Lulea 

University of Technology. 



154  References  
 

 

Sonmez, H., and Ulusay, R. 1999. Modifications to the geological strength index (GSI) and 

their applicability to stability of slopes. International Journal of Rock Mechanics and 

Mining Sciences, 36(6): 743-760. 

Suchomel, R., and Mašín, D. 2010. Comparison of different probabilistic methods for 

predicting stability of a slope in spatially variable c-φ soil. Computers and Geotechnics, 

37(1-2): 132-140. 

Turnbull, W., and Hvorslev, M. 1967. Special problems in slope stability. Journal of Soil 

Mechanics & Foundations Div. 

Vanmarcke, E. 1983. Random fields: analysis and synthesis. The MIT Press. 

Wang, J., Tan, W., Feng, S., and Zhou, R. 2000. Reliability analysis of an open pit coal 

mine slope. International Journal of Rock Mechanics and Mining Sciences, 37(4): 715-721. 

Wang, Y., Cao, Z., and Au, S. 2010. Efficient Monte Carlo Simulation of parameter 

sensitivity in probabilistic slope stability analysis. Computers and Geotechnics, 37(7-8): 

1015-1022. 

Wang, Y., Cao, Z., and Au, S. 2011. Practical reliability analysis of slope stability by 

advanced Monte Carlo simulations in a spreadsheet. Canadian Geotechnical Journal, 48: 

162-172. 

Webster, R., and Oliver, M. 2007. Geostatistics for environmental scientists. John Wiley & 

Sons, Inc. 

Whitman, R. 1984. Evaluating calculated risk in geotechnical engineering. Journal of 

Geotechnical Engineering, 110(2): 143-188. 

Wright, S., Kulhawy, F., and Duncan, J. 1973. Accuracy of equilibrium slope stability 

analysis. Journal of the Soil Mechanics and Foundations Division, 99(10): 783-791. 

Wyllie, D., and Mah, C. 2004. Rock slope engineering: civil and mining. Taylor & Francis. 



References   155 
 

 
 

Xu, C., and Dowd, P. 2005. Geostatistics for Windows – the complete mineral resource 

evaluation package for the mining industry. 

Xu, C., and Dowd, P. 2010. A new computer code for discrete fracture network modelling. 

Computers & Geosciences, 36(3): 292-301. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

157 
 

APPENDIX A 

MATLAB CODES OF MODELS DEVELOPED FOR THE 

PROBABILISTIC ANALYSIS 

A.1 Introduction 

The probabilistic analysis (Chapter 5) has been carried out based on models developed in 

Matlab. In this appendix, codes of the LEM model (for the probabilistic analysis), the 

simplified probabilistic analysis model, and the spatial probabilistic analysis model are 

provided.

Nine Matlab codes are given in total, including QMslope_geometry, QMslope_bishop, 

QMslope_HBprobabilistic, QMslope_HBspatial, QMslope_FSdistribution, cphi_bray,  

cphi_kumar, cphi_hoek2002, and cphi_shen. Specifications of these codes, including their 

functions, input, and output, are firstly specified in Tables A.1, A.2, and A.3. Afterwards, 

the codes are provided in Section A.2.  
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Table A.1 Codes of models developed for the probabilistic analysis: functions 

Code Function 

QMslope_geometry 
computing the geometry of slices and the forces acting on 

them for the limit equilibrium analysis 

QMslope_bishop 
implementing limit equilibrium analysis for a slope based on 
Bishop’s method of slices (output from QMslope_geometry is 

used in this code) 

QMslope_HBprobabilistic 
implementing simplified probabilistic analysis for a slope 

(QMslope_bishop is called in this code) 

QMslope_HBspatial 
implementing spatial probabilistic analysis for a slope 
(QMslope_bishop and the Constantine random field 

generator are called in this code) 

QMslope_FSdistribution 

plotting the distribution and statistical properties of FS; 
plotting the convergence of PF (output from either 

QMslope_HBprobabilistic or QMslope_FSdistribution is used 
in this code) 

cphi_bray 
cphi_kumar 

cphi_hoek2002 
cphi_shen 

converting HB parameters to equivalent MC parameters  
by Bray's, Kumar's, Hoek's or Shen's solution 

Table A.2 Codes of models developed for the probabilistic analysis: input 

specifications

Code Input Specifications 

QMslope_geometry 

phi_face/H_slope slope face angle/slope height 

nrslice number of slices 

X/Y/R/ 
LX/LY/RX/RY 

centre and right and left boundaries of 
the slip surface (found by Slide6.0) 

plot_geometry 
specify whether to plot the slope 

geometry (Y or N) 

QMslope_bishop 

geometry 
the geometry output from 

QMslope_geometry 

force 
the force output from 
QMslope_geometry 

cohesion/friction 
cohesion and angle of friction of the 

material 
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 Table A.2 Continued

Code Input Specifications 

QMslope_HBprobabilistic 

phi_face/H_slope slope face angle/slope height 

nrslice number of slices 

slipcircle 
centre and right and left boundaries 

of the slip surface (found by 
Slide6.0) 

HB_mean 
mean values of HB parameters 

(GSI, mi and σci) 

HB_COV COV of HB parameters 

HB_truncation truncations of HB parameters 

D disturbance factor 

N number of iterations 

QMslope_HBspatial 

phi_face/H_slope slope face angle/slope height 

nrslice number of slices 

slipcircle 
centre and right and left boundaries 

of the slip surface (found by 
Slide6.0) 

HB_mean 
mean values of HB parameters 

(GSI, mi, σci) 

HB_COV COV of HB parameters 

SOF scale of fluctuation θ 

HB_truncation truncations of HB parameters 

D disturbance factor 

N number of iterations 

QMslope_FSdistribution 

phi_face/H_slope slope face angle/slope height 

GSI/mi/UCS HB parameters 

cov_GSI/cov_mi/ 
cov_UCS 

COV of HB parameters 

distribution best fit distribution for FS 

POF 
specify whether the PF is obtained 

from simulation or estimation 

type 
specify whether it is a simplified 
probabilistic analysis or a spatial 

probabilistic analysis 

 
CL scale of fluctuation θ 

cphi_bray 
cphi_kumar 

cphi_hoek2002 
cphi_shen 

GSI/mi/sigci/D HB parameters 

sign effective normal stress 
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Table A.3 Codes of models developed for the probabilistic analysis: output 

specifications 

A.2 Codes 

A.2.1 QMslope_geometry 

% ------------------------------------------------- ----------------------  
function  [geometry,force] = 
QMslope_geometry(phi_face,H_slope,nrslice,X,Y,R,LX, LY,RX,RY,plot_geometry)  
  
% this file is universal  
% it calculates the geometry and basic forces for a  given slope  
 
% hand input part  
% ------------------------------------------------- ----------------------  
% ------------------------------------------------- ----------------------  
% coordinate and radius of the slip circle (hand in put)  
center=[X,Y];  
  
% left and right boundary of the slip circle (hand input)  
P1_slip=[LX, LY]; P2_slip=[RX, RY];  
  
% parameters for material  

Code Output Specifications 

QMslope_geometry 
geometry specific geometry of slices 

force forces acting on slices 

QMslope_bishop FS Factor of Safety 

QMslope_HBprobabilistic 
PF_final Probability of Failure 

xxx.mat 
a file that contains all output from 

the Monte Carlo simulation 

QMslope_HBspatial 
PF_final Probability of Failure 

xxx.mat 
a file that contains  all output from 

the Monte Carlo simulation 

QMslope_FSdistribution 
xxx.fig 

a figure that presents the distribution 
and statistical properties of FS 

xxx.fig 
a figure that plots the convergence 

of PF 

cphi_bray 
cphi_kumar 

cphi_hoek2002 
cphi_shen 

c_i cohesion 

phi_i angle of friction 

chpi_method name of the conversion method 
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r_rock=27;  % KN 
r_water=9.81;  % KN 
% ------------------------------------------------- ----------------------  
% ------------------------------------------------- ----------------------  
  
% automatic calculation part  
% ------------------------------------------------- ----------------------  
% ------------------------------------------------- ----------------------  
 
% generate slope, slip surface, water table boundar y info.  
% ------------------------------------------------- ----------------------  
% boundary coordinates for the slope (H/automatic - - as long as 
P1,P2,P5,P6 fixed)  
P1_slope=[0 -60]; P2_slope=[300 -60]; P3_slope=[300  H_slope]; 
P4_slope=[100+H_slope/tand(phi_face) H_slope]; P5_s lope=[100 0]; 
P6_slope=[0 0];  
  
% boundary coordinates for the water (H/automatic - - as long as relative 
distance between water table and slope fixed)  
P1_water=P5_slope; P2_water=[P4_slope(1)+10 P4_slop e(2)-10]; 
P3_water=[P3_slope(1) P3_slope(2)-10];  
phi_water=atand((P2_water(2)-P1_water(2))/(P2_water (1)-P1_water(1))); 
H_water=P2_water(2)-P1_water(2);  
  
%dip of the water surface, degrees (automatic)  
phi_water=atand((P2_water(2)-P1_water(2))/(P2_water (1)-P1_water(1)));  
  
% Slice width, m; number of slices between toe and crest (automatic)  
deta_x=(P2_slip(1)-P1_slip(1))/nrslice;   
nrslices_tc=round((P4_slope(1)-P5_slope(1 ))/deta_x );   
  
%info. for slide (for check)  
P_center=[X,Y,R]; P_slip=[P1_slip;P2_slip]; 
P_slope=[P1_slope;P2_slope;P3_slope;P4_slope;P5_slo pe;P6_slope]; 
P_water=[P1_water;P2_water;P3_water]; nrslice; deta _x;  
% ------------------------------------------------- ----------------------  
  
% X coordinates for slices  
% ------------------------------------------------- ----------------------  
i=1:nrslice; % the serial number for each slice  
xl_slices=zeros(nrslice,1); xr_slices=zeros(nrslice ,1); 
x_slices=zeros(nrslice,1); % pre-allocating memory  
xl_slices(i)=P1_slip(1)+(i-1)*deta_x;  xr_slices(i) = 
P1_slip(1)+i*deta_x; %X Coordinate of the left and right of the slices  
x_slices(i)=(xl_slices(i)+xr_slices(i))/2; %X Coordinate of the slice  
% ------------------------------------------------- ----------------------  
  
%Y coordinates of slices and base angles for slices  
% ------------------------------------------------- ----------------------  
y2l_slices= - sqrt(R^2-(xl_slices - X).^2) + Y; y2r _slices= - sqrt(R^2-
(xr_slices - X).^2) + Y; %bottom coordinates of the left and right of the 
slices  
  
y1l_slices=(xl_slices-P5_slope(1)).*tand(phi_face);  
y1l_slices(y1l_slices>H_slope)=H_slope; %top coordinates of the left of 
slices  
y1r_slices=(xr_slices-P5_slope(1)).*tand(phi_face);  
y1r_slices(y1r_slices>H_slope)=H_slope; %top coordinates of the right of 
slices  
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y1_slices=(y1l_slices+y1r_slices)/2; %top coordinates of the middle of 
the slices  
y2_slices=(y2l_slices+y2r_slices)/2; %bottom coordinates of the middle of 
slices  
h_slice=y1_slices-y2_slices;  %height of slices  
  
phi_base=atand((y2r_slices-y2l_slices)/deta_x); %base angle of each 
slices  
% ------------------------------------------------- ----------------------  
  
% in this step, the height of water table are calcu lated  
% ------------------------------------------------- ----------------------  
y1l_water=(xl_slices-P5_slope(1)).*tand(phi_water);  
y1l_water(y1l_water>H_water)=H_water; %top coordinates of the left of 
water  
y1r_water=(xr_slices-P5_slope(1)).*tand(phi_water);  
y1r_water(y1r_water>H_water)=H_water; %top coordinates of the right of 
water  
  
y1_water=(y1l_water+y1r_water)/2; %top coordinates of the middle of water  
y2_water=y2_slices; %bottom coordinates of the water  
h_water=y1_water-y2_water; h_water(h_water<0)=0; %height of water table  
% ------------------------------------------------- ----------------------  
  
% calculate effective normal stress by Fellenius so lution  
% ------------------------------------------------- ----------------------  
w_slice=r_rock.*h_slice.*deta_x;  
u_water=r_water.*h_water;  
  
sig_f=(w_slice/deta_x-u_water).*(cosd(phi_base)).^2 ; %input effective 
normal stress  
sig_f(sig_f<0)=0;  
% ------------------------------------------------- ----------------------  
 
% write output information "geometry" and "forces"  
% ------------------------------------------------- ----------------------  
geometry.nrslice=nrslice;  
geometry.detax=deta_x;  
geometry.phibase=phi_base;  
geometry.hslice=h_slice;  
geometry.hwater=h_water;  
  
force.wslice=w_slice;  
force.uwater=u_water;  
force.sign=sig_f;  
% ------------------------------------------------- ----------------------  
 
% plot slope, slip surface, water table boundary an d slices  
% ------------------------------------------------- ----------------------  
if  plot_geometry== 'y'  
  
    % generate points for the slip surface (automatic)  
    fun1_slip=linspace(P1_slip(1),P2_slip(1),50); f un2_slip=-sqrt(R^2-
(fun1_slip-X).^2)+Y;  
    figure,hold on, grid on 
    % plot the slope geometry  
    plot([P1_slope(1),P2_slope(1)],[P1_slope(2),P2_ slope(2)]), 
plot([P2_slope(1),P3_slope(1)],[P2_slope(2),P3_slop e(2)]),plot([P3_slope(
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1),P4_slope(1)],[P3_slope(2),P4_slope(2)]),plot([P4 _slope(1),P5_slope(1)]
,[P4_slope(2),P5_slope(2)]), 
plot([P5_slope(1),P6_slope(1)],[P5_slope(2),P6_slop e(2)])  
    % plot the water table  
    
plot([P1_water(1),P2_water(1)],[P1_water(2),P2_wate r(2)]),plot([P2_water(
1),P3_water(1)],[P2_water(2),P3_water(2)])  
    % plot the slip surface  
    plot([X,P1_slip(1)],[Y,P1_slip(2)]), 
plot([X,P2_slip(1)],[Y,P2_slip(2)]), plot(fun1_slip ,fun2_slip)  
  
    % plot the slices  
    for  i=1:nrslice  
        
plot([xl_slices(i),xl_slices(i)],[y1l_slices(i),y2l _slices(i)], 'r' )  
    end  
  
    title_name=sprintf( 'Slope Geometry: \\beta=%.0f, H=%.0f' , 
phi_face,H_slope);  % in sprintf, \\ to creat \  
    title(title_name), axis equal  
  
elseif  plot_geometry == 'n'  
else  
    error( 'Please specify whether slope geometry shall be plo tted' )  
end  
% ------------------------------------------------- ----------------------  

A.2.2 QMslope_bishop 

% ------------------------------------------------- ----------------------  
function  FS=QMslope_bishop(geometry,force,cohesion,friction )  
 
deta_x=geometry.detax;  
phi_base=geometry.phibase;  
 
w_slice=force.wslice;  
u_water=force.uwater;  
 
 
% first input FS  
% ------------------------------------------------- ----------------------  
FS_input=1;  
% ------------------------------------------------- ----------------------  
  
% interative process for calculating FS  
% ------------------------------------------------- ----------------------  
% ------------------------------------------------- ----------------------  
FS_output=sum((cohesion.*deta_x+(w_slice-
u_water.*deta_x).*tand(friction))./(cosd(phi_base)+ sind(phi_base).*tand(f
riction)/FS_input))./sum(w_slice.*sind(phi_base));  
  
while  abs(FS_input-FS_output)>0.001  
FS_input=FS_output;  
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FS_output=sum((cohesion.*deta_x+(w_slice-
u_water.*deta_x).*tand(friction))./(cosd(phi_base)+ sind(phi_base).*tand(f
riction)/FS_input))./sum(w_slice.*sind(phi_base));  
  
end  
% ------------------------------------------------- ----------------------  
% ------------------------------------------------- ----------------------  
  
FS=FS_output; 
% ------------------------------------------------- ----------------------  

A.2.3 QMslope_HBprobabilistic 

% ------------------------------------------------- ----------------------  
function  [PF_final] = QMslope_HBprobabilistic(phi_face, H_s lope, nrslice, 
slipcircle, HB_mean, D, HB_COV, HB_truncation, N)  
  
% HB_mean: 1*3 matrix  
% HB_COV: 1*3 matrix  
% HB_truncation: 3*2 matrix  
% the input for UCS should be kpa  
 
% slip circle  
% ------------------------------------------------- ----------------------  
X = slipcircle(1);  
Y = slipcircle(2);  
R = slipcircle(3);  
LX = slipcircle(4);  
LY = slipcircle(5);  
RX = slipcircle(6);  
RY = slipcircle(7);  
% ------------------------------------------------- ----------------------  
  
% obtain the mean value of HB parameters  
% ------------------------------------------------- ----------------------  
mean_GSI = HB_mean(1);  
mean_mi = HB_mean(2);  
mean_UCS = HB_mean(3);  
mu = HB_mean;  
% ------------------------------------------------- ----------------------  
  
% geometry and deterministic FS  
% ------------------------------------------------- ----------------------  
[geometry,force]=QMslope_geometry(phi_face,H_slope, nrslice,X,Y,R,LX,LY,RX
,RY, 'n' );  
[cohesion_dm,friction_dm]=cphi_kumar(mean_GSI,mean_ mi,mean_UCS,D,force.si
gn);  
  
FS_dm=QMslope_bishop(geometry,force,cohesion_dm,fri ction_dm)  
% ------------------------------------------------- ----------------------  
  
% obtain the COV and SD of HB parameters  
% ------------------------------------------------- ----------------------  
COV_GSI = HB_COV(1);  
COV_mi = HB_COV(2);  
COV_UCS = HB_COV(3);  
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SD_GSI = COV_GSI* mean_GSI;  
SD_mi = COV_mi* mean_mi;  
SD_UCS = COV_UCS* mean_UCS; 
  
var = [SD_GSI^2 0 0;  
       0 SD_mi^2 0;  
       0 0 SD_UCS^2];  
% ------------------------------------------------- ----------------------  
  
% obtain the truncation of HB parameters  
% ------------------------------------------------- ----------------------  
Truncation_GSI = HB_truncation(1,:);  
Truncation_mi = HB_truncation(2,:);  
Truncation_UCS = HB_truncation(3,:);  
% ------------------------------------------------- ----------------------  
  
% generating HB random numbers  
% ------------------------------------------------- ----------------------  
random_sample=lhsnorm(mu,var,N);  
  
GSI=random_sample(:,1);  
mi=random_sample(:,2);  
UCS=random_sample(:,3);  
% ------------------------------------------------- ----------------------  
 
% truncating HB random numbers  
% ------------------------------------------------- ----------------------  
GSI(GSI<Truncation_GSI(1))=Truncation_GSI(1);  
GSI(GSI>Truncation_GSI(2))=Truncation_GSI(2);  
  
mi(mi<Truncation_mi(1))=Truncation_mi(1);  
mi(mi>Truncation_mi(2))=Truncation_mi(2);  
  
UCS(UCS<Truncation_UCS(1))=Truncation_UCS(1);  
UCS(UCS>Truncation_UCS(2))=Truncation_UCS(2);  
% ------------------------------------------------- ----------------------  
 
% probabilistic analysis  
% ------------------------------------------------- ----------------------  
rand( 'twister' ,5489);randn( 'state' ,0);  
  
FS=repmat(1000,N,1);  
PF=repmat(1000,N,1);  
  
cohesion=repmat(-1,nrslice, N);  
friction=repmat(-1,nrslice, N);  
  
for  i=1:N  
     
[cohesion(:,i),friction(:,i)]=cphi_kumar(GSI(i),mi( i),UCS(i),D,force.sign
);  
     
    FS(i)=QMslope_bishop(geometry,force,cohesion(:, i),friction(:,i));  
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If 
i==N/10||i==2*N/10||i==3*N/10||i==4*N/10||i==5*N/10 ||i==6*N/10||i==7*N/10
||i==8*N/10||i==9*N/10||i==10*N/10;  
        process=i/N*100;  
        disp(sprintf( '%0.f%% completed' ,process))  
    else  
    end  
     
    PF(i)=length(FS(FS<1))/i*100;  
end  
  
PF_final=PF(N);  
  
f_name=sprintf( 'QMslope_HBprobabilistic_%.0f_%.0f_%.0f_%.0f_%.0f_% .0f_%.0
f_%.0f' ,phi_face,H_slope,mean_GSI,mean_mi,mean_UCS,COV_GSI *100,COV_mi*100
,COV_UCS*100)  
  
save(f_name, 'phi_face' , 'H_slope' , 'nrslice' , 'slipcircle' , 'HB_mean' , 'HB_COV
' , 'HB_truncation' , 'N' , 'FS_dm' , 'geometry' , 'force' , 'cohesion_dm' , 'friction_
dm' , 'GSI' , 'mi' , 'UCS' , 'cohesion' , 'friction' , 'FS' , 'PF' ) 
% ------------------------------------------------- ----------------------  

A.2.4 QMslope_HBspatial 

% ------------------------------------------------- ----------------------  
function  [PF_final] = QMslope_HBspatial(phi_face, H_slope, nrslice, 
slipcircle, HB_mean, D, HB_COV, SOF, HB_truncation,  N)  
    
% HB_mean: 1*3 matrix  
% HB_COV: 1*3 matrix  
% HB_truncation: 3*2 matrix  
% the input for UCS should be kpa  
   
% slip circle  
% ------------------------------------------------- ----------------------  
X = slipcircle(1);  
Y = slipcircle(2);  
R = slipcircle(3);  
LX = slipcircle(4);  
LY = slipcircle(5);  
RX = slipcircle(6);  
RY = slipcircle(7);  
% ------------------------------------------------- ----------------------  
  
% obtain the mean value of HB parameters  
% ------------------------------------------------- ----------------------  
mean_GSI = HB_mean(1);  
mean_mi = HB_mean(2);  
mean_UCS = HB_mean(3);  
mu = HB_mean;  
% ------------------------------------------------- ----------------------  
  
% geometry and deterministic FS  
% ------------------------------------------------- ----------------------  
[geometry,force]=QMslope_geometry(phi_face,H_slope, nrslice,X,Y,R,LX,LY,RX
,RY, 'n' );  
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[cohesion_dm,friction_dm]=cphi_kumar(mean_GSI,mean_ mi,mean_UCS,D,force.si
gn);  
  
FS_dm=QMslope_bishop(geometry,force,cohesion_dm,fri ction_dm)  
% ------------------------------------------------- ----------------------  
 
% obtain the COV and SD of HB parameters  
% ------------------------------------------------- ----------------------  
COV_GSI = HB_COV(1);  
COV_mi = HB_COV(2);  
COV_UCS = HB_COV(3);  
  
SD_GSI = COV_GSI* mean_GSI;  
SD_mi = COV_mi* mean_mi;  
SD_UCS = COV_UCS* mean_UCS; 
% ------------------------------------------------- ----------------------  
 
% obtain the truncation of HB parameters  
% ------------------------------------------------- ----------------------  
Truncation_GSI = HB_truncation(1,:);  
Truncation_mi = HB_truncation(2,:);  
Truncation_UCS = HB_truncation(3,:);  
% ------------------------------------------------- ----------------------  
  
% generating HB random numbers  
% ------------------------------------------------- ----------------------  
% GSI (no spatial correlation considered)  
  
GSI = (lhsnorm(mean_GSI,SD_GSI^2,N))';  
GSI = repmat(GSI,geometry.nrslice,1);  
  
% generate mesh for mi and UCS  
mesh=linspace(geometry.detax/2, geometry.detax/2+(g eometry.nrslice-
1)*geometry.detax, nrslice)';  
% mesh needs to be a coloumb vector  
  
cv_mi=@(x1,x2) gp_markov_cov(x1,x2,SOF,SD_mi);  
cv_UCS=@(x1,x2) gp_markov_cov(x1,x2,SOF,SD_UCS);  
  
mi=randomfield(cv_mi,mesh, 'nsamples' ,N)+mean_mi;  
UCS=randomfield(cv_UCS,mesh, 'nsamples' ,N)+mean_UCS;  
% ------------------------------------------------- ----------------------  
 
% truncating HB random numbers  
% ------------------------------------------------- ----------------------  
GSI(GSI<Truncation_GSI(1))=Truncation_GSI(1);  
GSI(GSI>Truncation_GSI(2))=Truncation_GSI(2);  
  
mi(mi<Truncation_mi(1))=Truncation_mi(1);  
mi(mi>Truncation_mi(2))=Truncation_mi(2);  
  
UCS(UCS<Truncation_UCS(1))=Truncation_UCS(1);  
UCS(UCS>Truncation_UCS(2))=Truncation_UCS(2);  
% ------------------------------------------------- ----------------------  
 
% probabilistic analysis  
% ------------------------------------------------- ----------------------  
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rand( 'twister' ,5489);randn( 'state' ,0);  
  
FS=repmat(1000,N,1);  
PF=repmat(1000,N,1);  
  
cohesion=repmat(-1,nrslice, N);  
friction=repmat(-1,nrslice, N);  
  
for  i=1:N  
     
    
[cohesion(:,i),friction(:,i)]=cphi_kumar(GSI(:,i),m i(:,i),UCS(:,i),D,forc
e.sign);  
     
    FS(i)=QMslope_bishop(geometry,force,cohesion(:, i),friction(:,i));     
  
    if  
i==N/10||i==2*N/10||i==3*N/10||i==4*N/10||i==5*N/10 ||i==6*N/10||i==7*N/10
||i==8*N/10||i==9*N/10||i==10*N/10;  
        process=i/N*100;  
        disp(sprintf( '%0.f%% completed' ,process))  
    else  
    end  
     
    PF(i)=length(FS(FS<1))/i*100;  
end  
  
PF_final=PF(N);  
  
f_name=sprintf( 'QMslope_HBspatial_%.0f_%.0f_%.0f_%.0f_%.0f_%.0f_%. 0f_%.0f
_%.0f' ,phi_face,H_slope,mean_GSI,mean_mi,mean_UCS,COV_GSI *100,COV_mi*100,
COV_UCS*100,SOF) 
  
save(f_name, 'phi_face' , 'H_slope' , 'nrslice' , 'slipcircle' , 'HB_mean' , 'HB_COV
' , 'HB_truncation' , 'SOF' , 'N' , 'FS_dm' , 'geometry' , 'force' , 'cohesion_dm' , 'fri
ction_dm' , 'GSI' , 'mi' , 'UCS' , 'cohesion' , 'friction' , 'FS' , 'PF' ) 
% ------------------------------------------------- ----------------------  

A.2.5 QMslope_FSdistribution 

% ------------------------------------------------- ----------------------  
function  
[mean_FS,SD_FS,fitting]=QMslope_FSdistribution(phi_ face,H_slope,GSI,mi,UC
S,cov_GSI,cov_mi,cov_UCS,distribution,POF,type,CL)  
  
% this code plot the distribution of FS  
% distribution can be gev, inversegaussian, lognorm al, 
nakagami,tlocationscale, birnbaumsaunders, logistic , weibull, loglogistic  
% POF can be 's'for simulated or 'e' for estimated or 'b' for both  
% type can be 'threevari' or 'spatial'  
% CL=10,20,50,100,200,500,1000,100000000  
% ------------------------------------------------- ----------------------  
 
% round values  
% this part round the input values *  
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% ------------------------------------------------- ----------------------  
GSI=round(GSI); mi=(mi); UCS=round(UCS);  
% ------------------------------------------------- ----------------------  
  
  
% type and load file name *  
% ------------------------------------------------- ----------------------  
switch  type  
    case ( 'threevari' )  
        
fname=sprintf( 'QMslope_HBprobabilistic_%.0f_%.0f_%.0f_%.0f_%.0f_% .0f_%.0f
_%.0f.mat' ,phi_face,H_slope,GSI,mi,UCS,cov_GSI*100,cov_mi*100 ,cov_UCS*100
);  
    case ( 'spatial' )  
        
fname=sprintf( 'QMslope_HBspatial_%.0f_%.0f_%.0f_%.0f_%.0f_%.0f_%. 0f_%.0f_
%.0f.mat' ,phi_face,H_slope,GSI,mi,UCS,cov_GSI*100,cov_mi*100 ,cov_UCS*100,
CL);  
end  
  
load(fname);  
% ------------------------------------------------- ----------------------  
  
% bin information for histgram *  
% ------------------------------------------------- ----------------------  
bin_width=0.1; % bin width  
  
bin=0:bin_width:200; % this is the bin for hist  
envelop_bin=0:0.01:200; % this is for plotting the red curve  
  
[hist1,hist2]=hist(FS,bin);  
% ------------------------------------------------- ----------------------  
  
% fit into theoretical distribution  
% ------------------------------------------------- ----------------------  
% gev, inversegaussian, lognormal, nakagami, tlocat ionscale,  
% birnbaumsaunders, logistic, weibull  
  
switch  distribution  
    case  ( 'gev' )  
        fitting=gevfit(FS, 0.05);  
        envelop = gevpdf(envelop_bin,fitting(1), fi tting(2), fitting(3));  
        PF_E=cdf( 'gev' ,1,fitting(1), fitting(2), fitting(3))*100;  
    case  ( 'inversegaussian' )  
        fitting=mle(FS, 'dist' , 'inversegaussian' , 'alpha' ,0.05);  
        envelop = pdf( 'inversegaussian' ,envelop_bin,fitting(1), 
fitting(2));  
        PF_E=cdf( 'inversegaussian' ,1,fitting(1), fitting(2))*100;  
    case  ( 'lognormal' )  
        fitting=mle(FS, 'dist' , 'lognormal' , 'alpha' ,0.05);  
        envelop = pdf( 'lognormal' ,envelop_bin,fitting(1), fitting(2));  
        PF_E=cdf( 'lognormal' ,1,fitting(1), fitting(2))*100;  
    case  ( 'nakagami' )  
        fitting=mle(FS, 'dist' , 'nakagami' , 'alpha' ,0.05);  
        envelop = pdf( 'nakagami' ,envelop_bin,fitting(1), fitting(2));  
        PF_E=cdf( 'nakagami' ,1,fitting(1), fitting(2))*100;  
    case  ( 'tlocationscale' )  
        fitting=mle(FS, 'dist' , 'tlocationscale' , 'alpha' ,0.05);  
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        envelop = pdf( 'tlocationscale' ,envelop_bin,fitting(1), fitting(2), 
fitting(3));  
        PF_E=cdf( 'tlocationscale' ,1,fitting(1), fitting(2), 
fitting(3))*100;  
    case  ( 'birnbaumsaunders' )  
        fitting=mle(FS, 'dist' , 'birnbaumsaunders' , 'alpha' ,0.05);  
        envelop = pdf( 'birnbaumsaunders' ,envelop_bin,fitting(1), 
fitting(2));  
        PF_E=cdf( 'birnbaumsaunders' ,1,fitting(1), fitting(2))*100;  
    case  ( 'logistic' )  
        fitting=mle(FS, 'dist' , 'logistic' , 'alpha' ,0.05);  
        envelop = pdf( 'logistic' ,envelop_bin,fitting(1), fitting(2));  
        PF_E=cdf( 'logistic' ,1,fitting(1), fitting(2))*100;  
    case  ( 'weibull' )  
        fitting=mle(FS, 'dist' , 'weibull' , 'alpha' ,0.05);  
        envelop = pdf( 'weibull' ,envelop_bin,fitting(1), fitting(2));   
        PF_E=cdf( 'weibull' ,1,fitting(1), fitting(2))*100;  
    case  ( 'loglogistic' )  
        fitting=mle(FS, 'dist' , 'loglogistic' , 'alpha' ,0.05);  
        envelop = pdf( 'loglogistic' ,envelop_bin,fitting(1), fitting(2));   
        PF_E=cdf( 'loglogistic' ,1,fitting(1), fitting(2))*100;  
end  
% ------------------------------------------------- ----------------------  
 
% statistic information *  
% ------------------------------------------------- ----------------------  
mean_FS=mean(FS);  
SD_FS=sqrt(var(FS));  
COV_FS=SD_FS/mean_FS; 
PF_S=PF(N);  
% ------------------------------------------------- ----------------------  
 
% following part is for adjusting picture size *  
% ------------------------------------------------- ----------------------  
hFig=figure;  
  
set(hFig, 'Units' , 'centimeters' );  
OldUnits=get(0, 'Units' ); % get unit  
set(0, 'Units' , 'centimeters' ); % set unit to centimerters  
ScreenSize=get(0, 'screensize' ); % get original screen size  
set(0, 'Units' ,OldUnits); % 
set(hFig, 'Units' , 'centimeters' ); %??????????? ??  
FigWidth=8; % 17 / 6  
FigHeight=8; %11 / 10.5  
StartX=(ScreenSize(3)-FigWidth)/2; %????????X 
StartY=(ScreenSize(4)-FigHeight)/2; %????????Y 
set(hFig, 'position' ,[ StartX StartY FigWidth FigHeight]); %,???????,?????  
% ------------------------------------------------- ----------------------  
 
% plot the histgram *  
% ------------------------------------------------- ----------------------  
hFig=bar(hist2,hist1/N/bin_width, 'hist' );  
  
set(hFig, 'FaceColor' , 'none' , 'EdgeColor' ,[0.333333 0 0.666667], ...  
       'LineStyle' , '-' , 'LineWidth' ,1);  
    
hold on, grid on 
% ------------------------------------------------- ----------------------  
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% label, title and text  *  
% ------------------------------------------------- ----------------------  
xlabel( 'Factor of Safety FS' ), ylabel( 'Frequency Density' )  
  
text1=sprintf( 'mean-FS=%.2f' ,mean_FS); %text for mean FS  
text2=sprintf( 'SD-FS=%.2f' ,SD_FS);  %text for SD FS  
text3=sprintf( 'COV-FS=%.2f' ,COV_FS); %text for COV FS  
text4=sprintf( 'N=%.0f' ,N);  %text for N  
  
if  PF_S<0.1  
text5=sprintf( 'PF=%.2e%%' ,PF_S); %text for simulated PF     
else  
text5=sprintf( 'PF=%.2f%%' ,PF_S); %text for simulated PF  
end  
  
if  PF_E<0.1  
text6=sprintf( 'PF-E=%.2e%%' ,PF_E); %text for estimated PF  
else  
text6=sprintf( 'PF-E=%.2f%%' ,PF_E); %text for estimated PF  
end  
  
text7=sprintf( 'CL=%.0f' ,CL); %text for CL  
  
text(2.9,1.2,text1); text(2.9,1.1,text2); text(2.9, 1.0,text3); 
text(2.9,0.9,text4);  
  
 
switch  POF 
    case  ( 'e' )  
        text(2.9,1.3,text6); %text for estimated PF  
    case  ( 'b' )  
        text(2.9,1.4,text5); %text for simulated PF  
        text(2.9,1.3,text6); %text for estimated PF  
    case  ( 's' )  
        text(2.9,1.3,text5); %text for simulated PF         
end  
  
switch  type  
    case  ( 'threevari' )  
        switch  HB_mean(1)  
        case (69)  
            tname=sprintf( 'Case1 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
        case (38)  
            tname=sprintf( 'Case2 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
        case (23)  
            tname=sprintf( 'Case3 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
        end  
    case  ( 'spatial' )  
        switch  HB_mean(1)    
        case (69)  
            tname=sprintf( 'Case1 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
        case (38)  
            tname=sprintf( 'Case2 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
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        case (23)  
            tname=sprintf( 'Case3 COV=(%.2f %.2f %.2f) 
FS=1.64' ,cov_GSI,cov_mi,cov_UCS);  
        end  
  
        text(2.9,0.9,text7);  
end  
  
title(tname)  
% ------------------------------------------------- ----------------------  
 
% plot the distribution envelop *  
% ------------------------------------------------- ----------------------  
plot(envelop_bin,envelop, 'Color' ,[1 0 0], ...  
          'LineStyle' , '-' , 'LineWidth' ,1.5, ...  
          'Marker' , 'none' , 'MarkerSize' ,6);  
xlim([0 5]); ylim([0 1.5]);  
% ------------------------------------------------- ----------------------     
 
% this part plot the convergence of PF  
% ------------------------------------------------- ----------------------  
hFig=figure; hold on; plot(PF);grid on 
  
if  PF(N)~=0  
ylim([PF(N)-sqrt(PF(N)), PF(N)+sqrt(PF(N))]);  
else  
end  
  
xlabel( 'Number of Iterations N' ); ylabel( 'Probability of Failure PF (%)' );  
  
title(tname)  
% ------------------------------------------------- ---------------------- 
 
% following part is for adjusting picture size *  
% ------------------------------------------------- ----------------------  
set(hFig, 'Units' , 'centimeters' );  
OldUnits=get(0, 'Units' ); % get unit  
set(0, 'Units' , 'centimeters' ); % set unit to centimerters  
ScreenSize=get(0, 'screensize' ); % get original screen size  
set(0, 'Units' ,OldUnits); % 
set(hFig, 'Units' , 'centimeters' ); %??????????? ??  
FigWidth=8; % 17 / 6  
FigHeight=8; %11 / 10.5  
StartX=(ScreenSize(3)-FigWidth)/2; %????????X 
StartY=(ScreenSize(4)-FigHeight)/2; %????????Y 
set(hFig, 'position' ,[ StartX StartY FigWidth FigHeight]); %,???????,?????  
% ------------------------------------------------- ----------------------  

A.2.6 Codes for concerting HB parameters to MC parameters 

A.2.6.1 cphi_bray 

% ------------------------------------------------- ----------------------  
function  [c_i,phi_i,cphi_method] = cphi_bray(GSI,mi,sigci,D ,sign)  
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% Bray's analytical method for calculating instanta neous c and phi  
% c and phi change with normal stress  
% [c_i,phi_i,cphi_method] = cphi_bray(GSI,mi,sigci, D,sign);  
% the input for UCS should be kpa  
% Refer: Hoek & Marinos, 2007  
  
% tested 20120716  
  
% expand input parameters (GSI,mi,sigci)  
% ------------------------------------------------- ----------------------  
nrslices=length(sign);  
  
if  length(GSI)==1  
    GSI=repmat(GSI,nrslices,1);  
elseif  length(GSI)~=1 && length(GSI)~=nrslices  
    error( 'error in GSI length' )  
end  
  
if  length(mi)==1  
    mi=repmat(mi,nrslices,1);  
elseif  length(mi)~=1 && length(mi)~=nrslices  
    error( 'error in mi length' )  
end  
  
if  length(sigci)==1  
    sigci=repmat(sigci,nrslices,1);  
elseif  length(sigci)~=1 && length(sigci)~=nrslices  
    error( 'error in sigci length' )  
end 
% ------------------------------------------------- ----------------------  
mb=mi.*exp((GSI-100)./(28-14*D));  
s=exp((GSI-100)./(9-3*D));  
a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));  
sig_cm=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s).^(a-1) ./(2*(1+a).*(2+a));  
  
para_h=1+16*(sign.*mb+s.*sigci)./(3*mb.^2.*sigci);  
para_w=(90+atand(1./sqrt(para_h.^3-1)))/3;  
phi_i=atand(1./sqrt(4.*para_h.*(cosd(para_w)).^2-1) );  
tau_f=mb.*sigci.*(cotd(phi_i)-cosd(phi_i))/8;  
c_i=tau_f-sign.*(tand(phi_i));  
  
cphi_method= 'Bray1983' ;  
% ------------------------------------------------- ---------------------- 

A.2.6.2 cphi_kumar 

% ------------------------------------------------- ----------------------  
function  [c_i,phi_i,cphi_method] = cphi_kumar(GSI,mi,sigci, D,sign)  
  
% Kumar's numerical method for calculating instanta neous c and phi  
% c and phi change with normal stress  
% [c_i,phi_i,cphi_method] = cphi_kumar(GSI,mi,sigci ,D,sign);  
% the input for UCS should be kpa  
% Refer: Jiayi Shen  
% tested - correct 20120716  
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% expand input parameters (GSI,mi,sigci)  
% ------------------------------------------------- ----------------------  
nrslices=length(sign);  
  
if  length(GSI)==1  
    GSI=repmat(GSI,nrslices,1);  
elseif  length(GSI)~=1 && length(GSI)~=nrslices  
    error( 'error in GSI length' )  
end  
  
if  length(mi)==1  
    mi=repmat(mi,nrslices,1);  
elseif  length(mi)~=1 && length(mi)~=nrslices  
    error( 'error in mi length' )  
end  
  
if  length(sigci)==1  
    sigci=repmat(sigci,nrslices,1);  
elseif  length(sigci)~=1 && length(sigci)~=nrslices  
    error( 'error in sigci length' )  
end  
% ------------------------------------------------- ----------------------  
  
mb=mi.*exp((GSI-100)./(28-14*D));  
s=exp((GSI-100)./(9-3*D));  
a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));  
  
sign(sign<0)=0;  
  
for  i=1:nrslices;  
     
    y(i)=fzero(@(sinphi) 
(2/(mb(i)*a(i)))*(mb(i)*sign(i)/sigci(i)+s(i))^(1-a (i))-(1-
sinphi)/sinphi*(1+sinphi/a(i))^(1-a(i)),0.6);  
     
    % already double checked, only 0.6 as initial value  gives right ans  
     
    % when GSI<8 and UCS=1000 // GSI=1 and UCS<2800 err or occurs  
    % only possible solution to solve this problem is b y truncation  
     
    phi_i(i)=asind(y(i)); %phi  
    
tau(i)=0.5*sigci(i)*cosd(phi_i(i))*((mb(i)*sign(i)/ sigci(i)+s(i))^a(i))/(
1+sind(phi_i(i))/a(i)).^a(i);  
    c_i(i)=tau(i)-sign(i)*tand(phi_i(i));  
end  
  
c_i=c_i'; phi_i=phi_i';  
  
cphi_method= 'Kumar1998' ; 
% ------------------------------------------------- ---------------------- 
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A.2.6.3 cphi_hoek2002 

% ------------------------------------------------- ----------------------  
function  [c_i,phi_i,cphi_method] = 
cphi_hoek2002(GSI,mi,sigci,D,r_rock,H_slope)  
  
% Hoek 2002 analytical method for calculating insta ntaneous c and phi  
% c and phi do not change with normal stress  
% [c_i,phi_i,cphi_method] = cphi_hoek2002(GSI,mi,si gci,D,r_rock,H_slope);  
% the input for UCS should be kpa  
% Refer: Hoek & Marinos, 2007  
  
% tested 20120716  
  
mb=mi.*exp((GSI-100)./(28-14*D));  
s=exp((GSI-100)./(9-3*D));  
a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));  
sig_cm=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s).^(a-1) ./(2*(1+a).*(2+a));  
  
sig_0=r_rock*H_slope;  % equal to rock*Hslope  
sig_3max=0.72.*(sig_cm./sig_0).^(-0.91).*sig_cm;  
sig_3n=sig_3max./sigci;  
c_i=(sigci.*((1+2*a).*s+(1-a).*mb.*sig_3n).*(s+mb.* sig_3n).^(a-
1))./((1+a).*(2+a).*sqrt(1+(6*a.*mb.*(s+mb.*sig_3n) .^(a-
1))./((1+a).*(2+a))));    
phi_i= asind((6*a.*mb.*(s+mb.*sig_3n).^(a-
1))./(2*(1+a).*(2+a)+6*a.*mb.*(s+mb.*sig_3n).^(a-1) ));  
  
cphi_method= 'Hoek2002' ; 
% ------------------------------------------------- ----------------------  

A.2.6.4 cphi_shen 

% ------------------------------------------------- ----------------------  
function  [c,phi,cphi_method] = cphi_shen(GSI,mi,sigci,D,sig n)  
 
% Shen's analytical method for calculating instanta neous c and phi  
% c and phi change with normal stress  
% [c,phi,cphi_method] = cphi_shen(GSI,mi,sigci,D,si gn);  
% the input for UCS and sign should be kpa  
% Refer: Shen 2012  
  
% tested - correct 20120716  
  
% expand input parameters (GSI,mi,sigci)  
% ------------------------------------------------- ----------------------  
nrslices=length(sign);  
  
if  length(GSI)==1  
    GSI=repmat(GSI,nrslices,1);  
elseif  length(GSI)~=1 && length(GSI)~=nrslices  
    error( 'error in GSI length' )  
end  
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if  length(mi)==1  
    mi=repmat(mi,nrslices,1);  
elseif  length(mi)~=1 && length(mi)~=nrslices  
    error( 'error in mi length' )  
end  
  
if  length(sigci)==1  
    sigci=repmat(sigci,nrslices,1);  
elseif  length(sigci)~=1 && length(sigci)~=nrslices  
    error( 'error in sigci length' )  
end  
% ------------------------------------------------- ----------------------  
 
mb=mi.*exp((GSI-100)./(28-14*D));  
s=exp((GSI-100)./(9-3*D));  
a=0.5+ 1/6*(exp(-GSI/15) -exp(-20/3));  
sig_cm=sigci.*(mb+4*s-a.*(mb-8*s)).*(mb/4+s).^(a-1) ./(2*(1+a).*(2+a));  
  
sig3_sigci=a.*sign./sigci./(sqrt(a.*(1+sqrt(mb))-si gn./sigci));  
P=2+a.*mb.*(mb.*sig3_sigci+s).^(a-1);  
  
phi=asind(1-2./P);  
tau=sigci.*sqrt(P-1)./P.*(mb.*sign./sigci+s).^a./(( P.*a+P-2)./a./P).^a;  
c=tau-sign.*tand(phi);  
  
cphi_method= 'Shen2012' ;  
% ------------------------------------------------- ----------------------  
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APPENDIX B 

DATA FOR THE EQUATION FITTING 

 

The full sets of data (168 in total) generated by Slide6.0 for the equation fitting (discussed 

in Section 4.2.1) are provided in this appendix, as in Table B.1. 

 Table B.1 Full sets of data for the equation fitting 

Data set GSI mi σci (MPa) FS 

1 10 5 10 0.38 

2 10 5 35 0.551 

3 10 5 65 0.664 

4 10 5 95 0.751 

5 10 5 120 0.812 

6 10 5 150 0.874 

7 10 17 10 0.608 

8 10 17 35 0.84 

9 10 17 65 0.976 

10 10 17 95 1.076 

11 10 17 120 1.145 

12 10 17 150 1.215 

13 10 28 10 0.731 

14 10 28 35 0.989 

15 10 28 65 1.145 

16 10 28 95 1.248 

17 10 28 120 1.321 

18 10 28 150 1.396 

19 10 40 10 0.826 

20 10 40 35 1.105 

21 10 40 65 1.272 

22 10 40 95 1.39 

23 10 40 120 1.469 

24 10 40 150 1.55 
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Data set GSI mi σci (MPa) FS 

25 25 5 10 0.58 

26 25 5 35 0.885 

27 25 5 65 1.117 

28 25 5 95 1.308 

29 25 5 120 1.448 

30 25 5 150 1.606 

31 25 17 10 0.855 

32 25 17 35 1.215 

33 25 17 65 1.45 

34 25 17 95 1.63 

35 25 17 120 1.757 

36 25 17 150 1.89 

37 25 28 10 0.992 

38 25 28 35 1.383 

39 25 28 65 1.642 

40 25 28 95 1.823 

41 25 28 120 1.952 

42 25 28 150 2.089 

43 25 40 10 1.1 

44 25 40 35 1.525 

45 25 40 65 1.793 

46 25 40 95 1.987 

47 25 40 120 2.121 

48 25 40 150 2.262 

49 40 5 10 0.776 

50 40 5 35 1.287 

51 40 5 65 1.742 

52 40 5 95 2.15 

53 40 5 120 2.452 

54 40 5 150 2.798 

55 40 17 10 1.065 

56 40 17 35 1.574 

57 40 17 65 1.958 

58 40 17 95 2.28 

59 40 17 120 2.523 

60 40 17 150 2.785 

61 40 28 10 1.221 
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Data set GSI mi σci (MPa) FS 

62 40 28 35 1.754 

63 40 28 65 2.13 

64 40 28 95 2.434 

65 40 28 120 2.659 

66 40 28 150 2.903 

67 40 40 10 1.338 

68 40 40 35 1.898 

69 40 40 65 2.287 

70 40 40 95 2.587 

71 40 40 120 2.797 

72 40 40 150 3.034 

73 55 5 10 1.053 

74 55 5 35 2.015 

75 55 5 65 2.958 

76 55 5 95 3.87 

77 55 5 120 4.587 

78 55 5 150 5.446 

79 55 17 10 1.314 

80 55 17 35 2.121 

81 55 17 65 2.824 

82 55 17 95 3.46 

83 55 17 120 3.947 

84 55 17 150 4.482 

85 55 28 10 1.471 

86 55 28 35 2.245 

87 55 28 65 2.904 

88 55 28 95 3.451 

89 55 28 120 3.882 

90 55 28 150 4.377 

91 55 40 10 1.602 

92 55 40 35 2.374 

93 55 40 65 2.996 

94 55 40 95 3.523 

95 55 40 120 3.911 

96 55 40 150 4.355 

97 70 5 10 1.592 

98 70 5 35 3.627 
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Data set GSI mi σci (MPa) FS 

99 70 5 65 5.914 

100 70 5 95 8.224 

101 70 5 120 10.163 

102 70 5 150 12.448 

103 70 17 10 1.73 

104 70 17 35 3.215 

105 70 17 65 4.641 

106 70 17 95 6.026 

107 70 17 120 7.126 

108 70 17 150 8.415 

109 70 28 10 1.849 

110 70 28 35 3.186 

111 70 28 65 4.467 

112 70 28 95 5.58 

113 70 28 120 6.49 

114 70 28 150 7.574 

115 70 40 10 1.959 

116 70 40 35 3.227 

117 70 40 65 4.398 

118 70 40 95 5.437 

119 70 40 120 6.219 

120 70 40 150 7.141 

121 85 5 10 2.79 

122 85 5 35 7.827 

123 85 5 65 13.798 

124 85 5 95 19.754 

125 85 5 120 24.73 

126 85 5 150 30.71 

127 85 17 10 2.562 

128 85 17 35 5.677 

129 85 17 65 9.112 

130 85 17 95 12.579 

131 85 17 120 15.492 

132 85 17 150 18.969 

133 85 28 10 2.566 

134 85 28 35 5.214 

135 85 28 65 8.044 
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Data set GSI mi σci (MPa) FS 

136 85 28 95 10.743 

137 85 28 120 13.003 

138 85 28 150 15.732 

139 85 40 10 2.624 

140 85 40 35 5.038 

141 85 40 65 7.489 

142 85 40 95 9.835 

143 85 40 120 11.723 

144 85 40 150 13.996 

145 100 5 10 5.867 

146 100 5 35 18.805 

147 100 5 65 34.36 

148 100 5 95 49.937 

149 100 5 120 62.922 

150 100 5 150 78.481 

151 100 17 10 4.433 

152 100 17 35 12.079 

153 100 17 65 21.213 

154 100 17 95 30.262 

155 100 17 120 37.827 

156 100 17 150 46.921 

157 100 28 10 4.124 

158 100 28 35 10.245 

159 100 28 65 17.524 

160 100 28 95 24.743 

161 100 28 120 30.683 

162 100 28 150 37.828 

163 100 40 10 4.027 

164 100 40 35 9.31 

165 100 40 65 15.38 

166 100 40 95 21.526 

167 100 40 120 26.604 

168 100 40 150 33.67 
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