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ABSTRACT (≤ 250 words – Currently 250) 

Background: 

In health, the hormones amylin and glucagon-like peptide-1 (GLP-1) slow gastric 

emptying (GE) and modulate glycaemia. The aims of this study were to determine 

amylin and GLP-1 concentrations in the critically ill and their relationship with GE, 

glucose absorption and glycaemia. 

 

Methods: 

In fasted critically ill and healthy subjects (n=26 and 23 respectively) liquid nutrient, 

containing 100mg 
13

C-sodium octanoate and 3g 3-O-methlyglucose (3-OMG), was 

administered via a nasogastric tube. Amylin, GLP-1, glucose and 3-OMG 

concentrations were measured in blood samples taken during fasting, and 30 and 60min 

after the ‘meal’. Breath samples were taken to determine GE (Gastric Emptying 

Coefficient; GEC). Intolerance to intragastric feeding was defined as a gastric residual 

volume of ≥250ml and/or vomiting in the 24hours prior to the study. 

 

Results: 

Although GE was slower [GEC critically ill: 2.8±0.9 vs. health: 3.4±0.2; P=0.002], 

fasting blood glucose was higher [7.0±1.9 vs. 5.7±0.2mmol/l; P=0.005] and overall 

glucose absorption was reduced in critically ill patients (3-OMG) [9.4±8.0 vs. 

17.7±4.9mmol/l.60min; P<0.001], there were no differences in fasting or postprandial 

amylin concentrations. Furthermore, although fasting [1.7(0.4-7.2) vs. 0.7(0.3-

32.0)pmol/l; P=0.04] and postprandial [3.0(0.4-8.5) vs. 0.8(0.4-34.3)pmol/l; P=0.02] 

GLP-1 concentrations were increased in the critically ill and were greater in feed 

intolerant when compared with those tolerating feed [3.7(0.4-7.2) vs. 1.2(0.7-
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4.6)pmol/l; P=0.02], there were no relationships between GE and fasting amylin or 

GLP-1 concentrations. 

 

Conclusion: 

In the critically ill, fasting GLP-1, but not amylin, concentrations are elevated and 

associated with feed intolerance. Neither amylin nor GLP-1 appears to substantially 

influence the rate of GE. 

 

Key Words 

Gastric Emptying, Glucagon Like Peptide-1, Amylin, Critical Illness, Enteral Nutrition 
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INTRODUCTION 

In the critically ill, markedly delayed gastric emptying occurs frequently, which impairs 

delivery of intragastric nutrition
1,2

. The pathophysiology of delayed gastric emptying in 

the critically ill is multi-factorial but reflects, at least in part, a heightened feedback 

response to the presence of nutrients in the small intestine
3
. In health, hormones 

secreted from the stomach and small intestine play a pivotal role in the regulation of 

gastric emptying
4-7

. For example, cholecystokinin (CCK) and peptide YY (PYY) 

potently slow gastric emptying, while ghrelin may accelerate it
8
. Our group has reported 

that fasting and postprandial concentrations of CCK and PYY are elevated in the 

critically ill, particularly in patients intolerant to intragastric feed
4
. Conversely, the rate 

of gastric emptying is a determinant of CCK and PYY secretion in the critically ill, as it 

is in health
5,9,10

. Hence, there is evidence of disordered gastrointestinal hormone 

secretion in the critically ill, which may contribute to delayed gastric emptying. 

 

Amylin is a 37-amino acid polypeptide co-secreted with insulin
11

. In humans, 

exogenous administration of amylin and the amylin analogue, pramlintide, slows gastric 

emptying substantially
11

. Furthermore, at least in animal models, amylin appears to be a 

more potent physiological regulator of gastric emptying than other enterogastrones, 

including CCK and glucagon-like peptide-1 (GLP-1)
12

. Using gastric residual volumes 

(GRVs) to determine tolerance to intragastric feed, Mayer and colleagues reported that 

fasting plasma amylin concentrations were much higher in critically ill children who 

were intolerant of intragastric feed, when compared to the feed-tolerant 
13

, suggesting 

that endogenous amylin may contribute to slow gastric emptying in the critically ill. 

However, there is no information about fasting or nutrient stimulated amylin 

concentrations in adult critically ill patients. 
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GLP-1 is secreted from intestinal L-cells, predominantly from the ileum and colon, in 

response to intraluminal nutrient, stimulating glucose-dependent insulin secretion, and 

suppressing glucagon 
3
. In health and type 2 diabetes, the rate of nutrient delivery into 

the small intestine is a pivotal determinant of the magnitude of endogenous GLP-1 

secretion
9
. In health, endogenous GLP-1 slows gastric emptying

6
, while exogenous 

GLP-1 at pharmacological doses slows gastric emptying substantially in health, type 2 

diabetes and critical illness, leading to a reduction in postprandial glycaemic 

excursions
14,15

. The magnitude of the effects are dependent on the baseline rate of 

gastric emptying, such that GLP-1 has little, if any effect when gastric emptying is 

already delayed
14-16

. However, there is no information in adult critically ill patients 

about fasting or nutrient stimulated plasma GLP-1 concentrations and their relationship 

to gastric emptying. 

 

In health and diabetes, there is a complex relationship between upper gastrointestinal 

function and glycaemic control, such that postprandial glycaemia is both a determinant 

of, and determined by, gastric emptying
17,18

. Pre-prandial blood glucose concentrations 

influence gastric emptying in the critically ill, as is the case in diabetes
17

, while glucose 

absorption is reduced in these patients compared to health and is dependent on the rate 

of gastric emptying
19

. Glycaemic control appears to be a pivotal determinant of outcome 

in the critically ill, with marked hyperglycaemia and hypoglycaemia associated with 

adverse outcomes including increased mortality and hospital length of stay
20,21

. 

However, the relationship between endogenous secretion of GLP-1 and glycaemia in the 

critically ill is poorly defined
22

. 
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The primary objectives of this study were to quantify fasting and postprandial 

concentrations of amylin and GLP-1 in critically ill adult patients, and to determine 

whether there is a relationship between these concentrations and the rate of gastric 

emptying. As gastric emptying affects postprandial blood glucose concentrations which 

are, in turn, affected by small intestinal glucose absorption, secondary objectives were 

to quantify blood glucose and glucose absorption. 
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METHODS 

Subjects 

Critically ill patients were eligible for inclusion if aged ≥ 17 years, mechanically 

ventilated and receiving enteral nutrition. Exclusion criteria included pregnancy, pre-

existing diabetes and previous surgery on the oesophagus, stomach or duodenum. In 

patients receiving an insulin infusion (Actrapid; Novo-Nordisk, Denmark), this was 

ceased 3 hours prior to the commencement of the study. Healthy subjects were used as a 

comparator. In this group, exclusion criteria included pregnancy or breastfeeding, 

diabetes, contraindication to nasogastric feeding tube placement, previous 

gastrointestinal surgery, use of medications known to affect gastrointestinal motility, 

and current or previous gastrointestinal disease or major dysfunction. Critically ill 

patients were recruited between October 2008 and February 2010. A proportion of the 

data in this group (gastric emptying) have been reported previously as they provided 

baseline values in the placebo arm of a previous study
14

. Healthy subjects were studied 

between March 2010 and April 2011, and none of their data have previously been 

reported. 

 

Study Protocol 

Subjects were fasted for at least six hours. Following this a fasting blood sample, was 

obtained and a nutrient liquid test ‘meal’ of 100 ml Ensure® (Abbott, Victoria, 

Australia) (64% carbohydrate, 21% lipid, 13% protein, 1.06 kcal/ml) including 

100mg
13

C-sodium octanoate (Cambridge Isotope Laboratories, Andover, Mass., USA) 

and 3g of 3-O-methyglucose (3-OMG) (Sigma-Aldrich, Castle Hill, NSW, Australia) 

was administered over 5 min via a nasogastric tube with the end of the infusion 

designated as t=0 min. The nasogastric tube was already in situ in critically ill patient, 
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while in healthy subjects a 12F x 91cm nasogastric tube (Flexiflo, Abbott, OH, USA) 

was inserted into the stomach via an anaesthetised nostril, using topical Co-phenylcaine 

Forte spray (ENT technologies Pty Ltd, Victoria, Australia) and Lignocaine gel 2% 

(Orion Laboratories, Pty Ltd Western Australia, Australia). Correct nasogastric tube 

positioning was verified by measuring pH of aspirates and auscultation of air boluses. 

 

Arterial blood samples in critically ill patients and venous blood samples in healthy 

subjects were obtained during fasting and at 30 and 60 min following the test meal. 

Blood samples were collected into chilled ethylenediaminetetraacetic acid (EDTA) 

tubes containing 2000KIU aprotinin (Trasylol, Bayer Healthcare, NSW, Australia) for 

measurement of plasma total amylin, or 40ul dipeptyl-peptidase-4 (DPP-4) inhibitor 

(Millipore, Billerica, MA, USA) for the measurement of plasma active GLP-1. For the 

measurement of serum 3-OMG, blood samples were collected into 5mL serum tubes. 

Plasma/serum were separated by centrifugation (3,200 rpm for 15 min at 4 degree 

Celsius) within 30 min and subsequently stored at -70 degrees Celsius until assayed. 

 

Breath samples were collected at intervals (5 min for the first hour, 15 min for the 

subsequent 3 hours, and every 30 min until t = 330 min) from the expiratory limb of the 

ventilator tubing using an airway adapter (Smiths Medical, WI, USA) and venoject 

holder containing a needle (VenojectLuer Adapter; Terumo Corporation, Tokyo, Japan) 

in critically ill patients
23

.This technique allowed reliable filling of Exetainer (Labco 

Limited, Buckinghamshire, UK) for measurement of exhaled 
13

CO2. In healthy subjects, 

subjects exhaled completely through a straw into the Exetainer. 
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The protocols were approved by the Human Research Ethics Committee of the Royal 

Adelaide Hospital (RAH Protocol No: 061229c and 100208) and performed according 

to the National Health and Medical Research Council guidelines for the conduct of 

research on unconscious patients. Written, informed consent was obtained from healthy 

subjects directly, and from the next of kin for critically ill patients. 

 

Measurements 

Gastric emptying  

Breath samples were analysed to determine the percentage of 
13

C recovered per hour, 

plotted over time. The area under the recovery curve was used to calculate the gastric 

emptying coefficient (GEC), which is a global index of the gastric emptying rate that 

accounts for the rate of appearance and disappearance of tracer in the breath.  Greater 

GEC values indicate the emptying rate is more rapid
23

. 

 

Measurement of blood glucose, plasma amylin and GLP-1 concentrations and glucose 

absorption 

Blood glucose was measured at the bedside with a portable glucometer (Medisense 

Optimum, Abbott, IL, USA). Plasma total amylin was measured using the Milliplex kit, 

with an assay sensitivity of 13 pg/mL, and CVs were <5 % within, and <8 % between, 

assays. Plasma active GLP-1 was measured using an enzyme-linked immunosorbent 

assay (ELISA) (Epitope Diagnostics, CA, USA). The assay sensitivity and intra and 

inter run CV were 0.4pmol/l, and <4 % and <6 % respectively. Serum 3-OMG was used 

as an index of glucose absorption, measured using liquid chromatography/mass 

spectroscopy, with an assay sensitivity of 0.0103 mmol/l. 3-OMG is a monosaccharide 
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absorbed from the small intestine via the same transporters as glucose, however is not 

metabolised, providing an accurate measure of glucose absorption
24,25

. 

 

Statistical Analysis 

Data are presented as mean ± SD or median (range) as appropriate. Depending on data 

distribution, within-subject comparisons were made using Student’s t-test or Wilcoxon 

Signed Ranks tests and between-subject comparisons using Mann-Whitney U tests. 

Relationships were evaluated using Spearman correlation. The null hypothesis was 

rejected at a P value ≤0.05.  Statistical analyses were performed using SPSS (Version 

17.0; SPSS, IL, USA). 

 

Based on the study by Mayer and colleagues
13

 it was decided, a priori to classify 

patients as tolerant or intolerant to intragastric feed and perform subgroup analysis. 

Intolerance to intragastric feed was defined as a GRV of ≥250 mL and/or vomiting 

during feeding within the 24 hours prior to the study 
26

. One patient had not commenced 

enteral feeding prior to the study and, therefore, feed tolerance could not be classified. 

This patient was omitted from sub group analysis. As blood glucose concentrations 

were predictably different at baseline between critically ill patients and healthy subjects, 

these data are reported as change from baseline. The incremental area under the curve 

(iAUC) for blood glucose and area under the curve (AUC) for serum 3-OMG 

concentrations after the meal were calculated using the trapezoidal rule. 
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RESULTS 

Subjects 

Twenty-six critically ill patients [20M:6F; Age 51 (20-85) years; BMI 26 (17-36) 

kg/m
2
; APACHE II score on admission 22 (11-38); serum creatinine>120 umol/l 4/26 

(15%); 15 tolerating intragastric feed, 10 intolerant to intragastric feed, 1 fasted from 

admission] and twenty-three healthy subjects [19M:4F; Age 34(18-88) years; BMI 24 

(18-30) kg/m
2
] were studied. 

 

Gastric Emptying 

When compared to health, critical illness was associated with slower gastric emptying 

[GEC: critically ill: 2.8 ± 0.9 vs. health: 3.4 ± 0.2; P=0.002] (figure 1a). Gastric 

emptying was slower in patients classified as intolerant to intragastric feed [GEC: 3.1 ± 

0.8 in patients tolerating intragastric feed vs. 2.3 ± 1.0 in the intolerant; P=0.04] (figure 

1b). 

 

Plasma amylin concentrations 

During fasting, amylin concentrations were similar in critically ill and healthy subjects 

[critically ill: 12.0 (1.8-124.6) pmol/l vs. health: 7.8 (4.1-18.7) pmol/l; P=0.31] 

respectively. Fasting amylin concentrations were similar in patients tolerant and 

intolerant to intragastric feed [Feed tolerant: 15.4 (1.8-58.5) pmol/l vs. Feed intolerant: 

10.2 (3.8-124.6) pmol/l; P=0.37]. Amylin concentrations were also comparable in 

critical illness and health both 30 minutes [critically ill: 12.8 (2.2-121.4) pmol/l vs. 

health: 13.8 (7.4-30.0) pmol/l; P=0.89] and 60 minutes [critically ill: 30.0 (7.2-191.3) 

pmol/l vs. health: 13.4 (6.7-36.2) pmol/l; P=0.11] following the meal. Amylin 
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concentrations increased significantly postprandially in the critically ill and healthy 

subjects respectively [P=0.002 and P<0.001].  

 

Plasma Glucagon-like Peptide-1 concentrations 

In critical ill patients, GLP-1 concentrations were increased when compared to health 

during fasting [critically ill: 1.7 (0.4-7.2) vs. health: 0.7 (0.3-32.0) pmol/l; P=0.04], and 

30 minutes after the meal [critically ill: 3.0 (0.4-8.5) vs. health: 0.8 (0.4-34.3) pmol/l; 

P=0.02], but were similar at 60 minutes [critically ill: 1.1 (0.4-8.2) vs. health: 0.7 (0.4-

35.7) pmol/l; P=0.55]. Fasting GLP-1 concentrations were greater in patients intolerant 

to intragastric feed [Feed intolerant: 3.7 (0.4-7.2) pmol/l vs. Feed tolerant: 1.2 (0.7-4.6) 

pmol/l; P=0.02] (figure 2). GLP-1 concentrations increased postprandially in both the 

critically ill and healthy subjects [P=0.002 and P=0.03]. 

 

Blood glucose concentrations 

Fasting blood glucose concentrations were greater in critical illness than health 

[critically ill: 7.0 ± 1.9 vs. health: 5.7 ± 0.8 mmol/l; P=0.005]. The increment in blood 

glucose concentrations following the ‘meal’ was greater in healthy subjects than in the 

critically ill [iAUC; critically ill: 38.6 ± 63.3 mmol/l.min vs. health: 71.3± 38.0 

mmol/l.min; P=0.04] (figure 3). 

 

 Glucose absorption 

Glucose absorption was also reduced in critical illness compared to health [3-OMG 

AUC; critically ill: 9.4 ± 8.0 mmol/l.min vs. health: 17.7 ± 4.9 mmol/l.min; P<0.001] 

(figure 4), as was the peak 3-OMG concentration [critically ill: 0.27 ± 0.24 mmol/l vs. 

health: 0.48 ± 0.12 mmol/l; P<0.001]. 
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Relationships of glucose, amylin, GLP-1 and 3-OMG concentrations with gastric 

emptying 

In the critically ill, there was no association between gastric emptying (GEC) and either 

fasting amylin concentrations [rho=0.145; P=0.49] or fasting GLP-1 concentrations 

[rho=-0.10; P=0.66]. There were however strong relationships between gastric emptying 

(GEC) and glycaemia (iAUC) [rho=0.54; P=0.006], gastric emptying and glucose 

absorption (AUC for 3-OMG) [rho=0.73; P<0.001], and between glycaemia (iAUC) and 

AUC for 3-OMG [rho=0.59; P=0.002]. 

 

Similarly, in the healthy subjects, there was no association between gastric emptying 

(GEC) and either fasting amylin concentrations [rho= -0.13; P=0.56] or fasting GLP-1 

concentrations [rho=-0.28; P=0.10]. In health, there was also no relationship between 

gastric emptying and either glycaemia or glucose absorption, nor was there a 

relationship between glycaemia and glucose absorption (data not shown). 
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DISCUSSION 

This study was performed primarily to gain insights into whether elevated 

concentrations of amylin and GLP-1 have a potential role in the delayed gastric 

emptying that occurs frequently in adult critically ill patients. In the cohort studied, 

gastric emptying was much slower than in health, as would be predicted. Novel findings 

are that in the critically ill, fasting GLP-1 concentrations were greater than in healthy 

subjects, particularly in patients intolerant to intragastric feed, while fasting amylin 

concentrations were comparable between critical illness and health. However, the rate 

of gastric emptying was not related to fasting concentrations of either amylin or GLP-1, 

suggesting that they are not major determinants of gastric emptying in this group. 

Consistent with previous findings, the rate of glucose absorption was reduced
25

 and 

fasting blood glucose concentrations greater in critically ill patients when compared to 

health
25

. 

 

The observation that amylin concentrations did not appear to be a determinant of feed 

tolerance in this adult cohort differs from a previous report in critically ill children, in 

which increased serum amylin concentrations were associated with delayed gastric 

emptying
13

. However the latter study may have had methodological limitations 

including a small sample size and a heterogeneous cohort, including a wide age range
13

. 

While our cohort was not large, a substantial difference in amylin levels would appear 

unlikely to be found with even greater numbers. It is also possible that different factors 

influence gastric motility in critically ill children and adults.  

 

Potential limitations of the current study should be recognised. Metabolism and/or 

excretion of hormones is often reduced in the critically ill – especially in patients with 
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renal failure – and the use of plasma concentrations as an index of secretion in this 

group has inherent inaccuracies
27

. For this reason, we measured concentrations of the 

active form of GLP-1 (GLP-1 amide 7-36), as opposed to total GLP-1 which includes 

both the active form and the inactive form GLP-1 9-36. Furthermore GLP-1 9-36 has no 

effect on gastric emptying
28

 and measurement of total GLP-1 would accordingly also 

have compromised evaluation of the association with gastric emptying. It is somewhat 

surprising that there was no relationship between GLP-1 and gastric emptying, as 

intolerance to intragastric feed was defined by the presence of large gastric residual 

volumes, which is known to relate to the rate of gastric emptying as measured by 

scintigraphy
1
 and fasting GLP-1 concentrations were elevated in feed intolerant 

patients. Indeed, fasting GLP-1 concentrations in feed intolerant patients were almost 

three-fold greater than in patients tolerating intragastric feed and almost five-fold the 

concentrations observed in health. However, the radioisotope breath test used to 

measure gastric emptying, while validated in the critical care, is less precise than the 

‘gold-standard’ of scintigraphy
29

. In addition, the assigning of patients to a feed 

tolerance status by dichotomizing on the basis of GRVs, may have inaccuracies
30

. 

However, the use of a GRV of ≥250ml as an indication of feed intolerance is a clinical 

measure used by the centre at which the study was performed to indicate the 

requirement for therapies to treat failed intragastric feeding i.e. prokinetic therapy or 

small intestinal feeding catheters, and hence is of clinical significance to critically ill 

patients. 

 

The cohort studied was a heterogeneous sample of critically ill patients, and other non-

hormonal factors may have contributed to delayed gastric emptying, such as opiate 

administration
31

. Moreover, we have reported that pharmacological doses of GLP-1, the 
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peptide that profoundly slows gastric emptying in health, may not have an effect when 

gastric emptying is already delayed
14

.  For these reasons we cannot exclude the 

possibility that GLP-1 may play a role in the regulation of gastric emptying in the 

critically ill, with an effect on glucose absorption and postprandial glycaemia. We have 

previously demonstrated, using the specific GLP-1 antagonist exendin 9-39 amide, that 

endogenous GLP-1 slows GE in health, thereby attenuating postprandial glycaemia
6
. 

However, there are substantial logistical difficulties with undertaking a study using 

exendin 9-39 in the critically ill and there is no currently available amylin antagonist. 

Accordingly, although the current study may have failed to show an effect of GLP-1 

and/or amylin on gastric emptying because of type II error, we suggest that this study is 

the best currently available evidence.  

 

In conclusion, neither the endogenous secretion of amylin, nor GLP-1, appears to be a 

major determinant of gastric emptying in the critically ill. 
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FIGURE LEGEND 

Figure 1: a) Gastric emptying was slower in the critically ill; * indicates P=0.002. b) 

Gastric emptying was slower in patients intolerant to intragastric feed; ^ indicates 

P=0.04. Data are mean ± SD; comparisons calculated using Student’s t-test. 

 

Figure 2: In the critically ill fasting GLP-1 concentrations, were increased in patients 

classified as intolerant to intragastric feed when compared to feed tolerant patients: 

Individual patients fasting GLP-1 concentrations are displayed with black line 

representing the median; ** indicates P=0.02; calculated using Mann-Whitney U test. 

 

Figure 3: Postprandial glycaemic increment above fasting was attenuated in the 

critically ill; Data are mean ± SD; ∆ indicates P=0.02; calculated using Student’s t-test. 

 

Figure 4: Glucose absorption, as determined by serum 3-OMG concentrations, was 

reduced in critically ill patients in the period 60min following the intragastric meal; # 

indicates P=0.02; calculated using Student’s t-test. 

 

 

 

 


