Genetic and Biological Characterisation of Resistance to Root Lesion Nematode *Pratylenchus thornei* in Wheat

by

Katherine Joanne Linsell

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Adelaide

> Discipline of Plant Breeding & Genetics School of Agriculture, Food & Wine Faculty of Sciences The University of Adelaide Waite Campus 2013

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Katherine Joanne Linsell and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Katherine Joanne Linsell

This thesis is submitted in a combination of conventional and publication format. The main body of work contains three manuscripts (Chapter 2, 3 and 4) and a conventional thesis chapter (Chapter 5). A literature review establishes the field of knowledge and provides a link between publications. A general conclusion shows the overall significance of the work and future directions. The manuscripts have been prepared in the formats outlined by the journals to which they are to be submitted (excluding line numbering, Americanised spellings, table and figure lists after literature cited and font size) and thus chapters contain different formatting. The manuscript - Characterisation of Resistance to *Pratylenchus thornei* in Wheat; Attraction, Penetration and Maturation

This manuscript will be submitted to the journal of Phytopathology. Outlined is the contributions made by each author in development of the manuscipt in terms of conceptual, experimental and documentation. The co authors give permission for this manuscript to be included in the thesis of Linsell, Katherine J. to be submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Adelaide.

First author

Linsell, Katherine J.

- Conceptualisation of the work
- Performed all experimental work
- Drafting text and composition of all tables and figures within manuscipt

Signature:....

Second author

Riley, I.T.

- Support with statistical analysis of data
- Assisted in manuscript editing

Signature:....

Third author

Davies, K.A.

- Advisory on nematology techniques
- Assisted in manuscript editing

Signature:....

Last author.

Oldach, K.H.

- Conceptualisation of the work
- Drafting and editing of the manuscript

Signature:....

and Reproduction

This manuscript will be submitted to the journal of Phytopathology. Outlined is the contributions made by each author in development of the manuscipt in terms of conceptual, experimental and documentation. The co authors give permission for this manuscript to be included in the thesis of Linsell, Katherine J. to be submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Adelaide.

First author

Linsell, Katherine J.

- Conceptualisation of the work
- Performed all experimental work
- Drafting text and composition of all tables and figures within manuscipt

Signature:....

Second author

Riley, I.T.

- Support with statistical analysis of data
- Assisted in manuscript editing

Signature:....

Third author

Davies, K.A.

- Advisory on nematology techniques
- Assisted in manuscript editing

Signature:....

Last author

Oldach, K.H.

- Conceptualisation of the work
- Drafting and editing of the manuscript

Signature:....

The manuscript - Quantitative Trait Loci for Resistance to Root Lesion Nematode,

Pratylenchus thornei, from a Synthetic Hexaploid Wheat Source

This manuscript will be submitted to the journal of Theoretical and Applied Genetics. Outlined is the contributions made by each author in development of the manuscipt in terms of conceptual, experimental and documentation. The co authors give permission for this manuscript to be included in the thesis of Linsell, Katherine J. to be submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Adelaide.

Firrt author

Linsell, Katherine J.

- Conceptualisation of the work
- Performed all experimental work (except first set of phenotypic data)
- Drafting text and composition of all tables and figures within manuscipt

Signature:....

Second author

Taylor, S.P.

- Responsible for the first phenotypic analysis of the population for genetic analysis
- Assisted in manuscript editing

Signature:....

Third author

Wallwork, H.

- Responsible for the generation of the mapping population
- Assisted in manuscript editing

Signature:....

Last author

Oldach , K.H.

- Conceptualisation of the work
- Drafting and editing of the manuscript

Signature:....

Table of Contents

Title Page	i
Declaration	ii
Table of Contents	vii
Glossary of Abbreviations	xii
Acknowledgements	xiv
Abstract	xv

Chapter 1 –	Literature	e Review	1
1.1	Introduction		
1.2	Life Cy	Life Cycle	
1.3	Histopathology		
	1.3.1	Probing and Root Exploration	5
		1.3.1.1 Mechanisms of Root Exploration	5
		1.3.1.2 Zones of Penetration and Entry	5
		1.3.1.3 Factors Affecting Selection of Penetration Site	6
	1.3.2	Stylet Penetration	7
	1.3.3	Salivation and Ectoparasitic Feeding	7
	1.3.4	Root Entry and Endoparasitic Feeding	7
		1.3.4.1 Numbers of Nematodes During Penetration	7
		1.3.4.2 Root Entry and Cortical Migration	8
		1.3.4.3 Cortical Feeding	8
		1.3.4.4 Endodermis and Vascular Tissue Penetration	9
		1.3.4.5 Reproduction	9
	1.3.5	Symptoms	10
1.4	Biological and Biochemical Resistance Mechanisms		11
	1.4.1	Resistance at Penetration	12
	1.4.2	Resistance to Motility and Feeding	12
		1.4.2.1 Chemical suppression of Motility	13
		1.4.2.1.1 Flavonoids	13
		1.4.2.1.2 Isoflavonoids	13
		1.4.2.1.3 Sesquiterpenes	13
		1.4.2.2 Suppression of Migration and Feeding	14
		1.4.2.2.1 Cinnamic Acids	14
		1.4.2.2.2 Phenolics and Necrosis	14
		1.4.2.2.3 Peroxidases and Lignification	16
	1.4.3	Resistance and Effects on Reproduction	16
	1.4.4	Timing and Types of Resistance	18
1.5	Geneti	ic Mapping in Plants and its Applications	18

	1.5.1	Molecular Markers	19
	1.5.2	QTL Mapping	20
		1.5.2.1 Mapping Populations	20
		1.5.2.2 Phenotypic Analysis	21
		1.5.2.3 Linkage Maps	24
		1.5.2.4 Comparative Mapping	25
		1.5.2.5 QTL Analysis	25
	1.5.3	Marker Assisted Selection	26
	1.5.4	Map-Based Cloning	27
	1.5.5	Association Mapping	29
	1.5.6	Marker Assisted Selection for Nematode Resistance	29
1.6	Nema	tode Resistance Genes	31
	1.6.1	Resistance Gene Clusters	33
1.7	Genet	ic Control of <i>Pratylenchus</i> Resistance and Tolerance in Wheat	33
	1.7.1	Tolerance	34
	1.7.2	Resistance	34
		1.7.2.1 GS50a	34
		1.7.2.2 Wild Wheat Relatives as Resistance Sources	34
		1.7.2.3 Synthetic Wheat	35
		1.7.2.4 Middle Eastern Landraces	36
		1.7.2.5 Pratylenchus neglectus Resistance	37
	1.7.3	Future Approaches to Identify Resistance To Pratylenchus	38
1.8	Conclu	usion	40
1.9	Aims		41
1.10	Literat	ture Cited	42
Chapter 2 – I	Manuscr	ipt 1	58
(Characte	erisation of Resistance to Root Lesion Nematode	
	Pratylen	chus thornei in Wheat; Attraction, Penetration and Maturation	
	Abstra	act	58
	Materi	al and Methods	61
		Nematodes	61
		Plant Material	61
		Nematode Inoculation/Extrapolation	61
		Attraction	62
		Attraction on Agar	62
		Attraction on Agar Across Root Exudate	63
		Attraction with Both Genotypes Present	63
		Penetration	64
		Rates of Penetration in Sand and on Agar	64

Penetration of Adults versus Juveniles on Agar	64
Root Penetration Zones	65
Reproduction and Development	65
Statistical Analysis	65
Results	66
Attraction	66
Attraction on Agar	66
Attraction on Agar Across Root Exudate	66
Attraction with Both Genotypes Present	66
Penetration	67
Rates of Penetration in Sand and on Agar	67
Penetration of Adults versus Juveniles on Agar	67
Root Penetration Zones	67
Reproduction and Development	67
Discussion	72
Root Attraction and Penetration	72
Penetration of Developmental Stages	74
Root Penetration Zones	75
Development and Reproduction	76
Acknowledgments	77
Literature Cited	78
Chapter 3 – Manuscript 2	81
Characterisation of Resistance to Root Lesion Nematode	
Pratylenchus thornei in Wheat; Motility and Reproduction	
Abstract	81
Material and Methods	84
Nematodes and Plant Material	84
Impact of Crushed Root Suspensions and Root Exudates	84
on Motility	
Root Exudates	84
Crushed Root Suspensions	85
Migration	85
Egg Deposition	86
Hatching	86
Statistical Analysis	86

	Result	S	87
		Motility and Migration	87
		Reproduction- Egg Deposition and Egg Hatch	89
	Discus	ssion	91
		Motility and Migration	91
		Reproduction- Egg Deposition and Egg Hatch	94
	Ackno	wledgements	97
	Literat	ure Cited	98
Chapter 4 –	Manuscr	ipt 3	102
	Quantita	tive Trait Loci for Resistance to Root Lesion Nematode,	
	Pratylen	chus thornei, in a Synthetic Hexaploid Wheat	
	Abstra	ict	102
	Introdu	uction	103
	Materi	al and Methods	105
		Plant Material	105
		Nematodes	105
		Phenotypic Screening of P. thornei Resistance	105
		Diversity Array Technology Map Construction	106
		and QTL Analysis	
		Genotyping and QTL Analysis	107
	Result	S	109
		Phenotypic Assessment	109
		Genotyping and Map Construction	110
		Marker Regression and QTL Analysis	117
	Discus	ssion	126
	Ackno	wledgements	133
	Refere	ences	134
Chapter 5 –		tion of QTL and Characterisation of Compounds Associated	139
	with Pra	atylenchus thornei Motility and Hatching Inhibition	
5.1	Introdu	uction	139
5.2	Materi	al and Methods	141
	5.2.1	Nematodes	141
	5.2.2	Plant Material and Phenotypic Analysis of <i>P. thornei</i> Motility and Hatching	141
	5.2.3	Marker Regression & QTL Analysis of <i>P. thornei</i> Motility & Hatching	141
	5.2.4	Temperature and Oxidation Treatment of Roots on Motility	141

	5.3 Results		143	
		5.3.1	Phenotypic Assessment	143
		5.3.2	QTL Analysis of <i>P. thornei</i> Hatching and Motility	145
		5.3.3	Temperature Stability of Root Exudate and Effects on Motility	154
	5.4	Discus	ssion	
		5.4.1	Pratylenchus thornei Hatching and Motility Suppression QTL	155
		5.4.2	Biochemical Characterisation of P. thornei Hatching and	157
			Motility Suppression	
		5.4.3	Co-located Defence Response and Resistance Genes and	159
			Possible Secondary Metabolites Involved in Pratylenchus	
			Hatching and Motility Suppression	
	5.5	Conclu	sion	164
	5.6	Refere	nces	165
Chapte	er 6 – G	General	Discussion and Future Directions	169

Glossary of Abbreviations

°C	Degrees Celsius
hð	Microgram
μ	Microlitre
μm	Micrometre
a.i.	After Inoculation
AUD	Australian dollars
AFLP	Amplified Fragment Length Polymorphism
BAC	Bacterial Artificial Chromosome
CCN	Cereal Cyst Nematode
сМ	CentiMorgan
CR	Crushed Root
d	Days
DArT	Diversity Array Technology
df	Degrees of Freedom
DH	Doubled Haploid
DNA	Deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-linked Immunosorbent Assay
EST	Expression Sequence Tag
F1	First Filial Generation
F2	Second Filial Generation
g	Grams
h	Hours
H2	Heritability
HF	Hatching Factor
н	Hatching Inhibitor
ITS	Internal Transcribed Spacer
J2	Juvenile Stage Two
J3	Juvenile Stage Three
J4	Juvenile Stage Four
kbp	Kilobase pair
kg	Kilogram
L	Litre
LOD	Logarithm of Odds
LRS	Likelihood Ratio Statistic
LSD	Least Significant Difference
М	Molar
MAS	Marker Assisted Select

mg	Milligram
mL	Millilitre
mm	Milimetre
mM	Millimolar
mRNA	Messenger Ribonucleic Acid
NIL	Near Isogenic Line
PCR	Polymerase Chain Reaction
Pg	Picogram
QTL	Quantitative Trait Loci
R ²	Correlation Coefficient
RAPD	Random Amplified Length Polymorphism
RE	Root Exudate
RFLP	Restriction Fragment Length Polymorphism
RIL	Recombinant Inbred Line
RIP	Ribosome Inactivating Protein
RLN	Root Lesion Nematode
RNAi	Ribonucleic acid interference
RNase	Ribonuclease
RO	Reverse Osmosis
ROS	Reactive Oxygen Species
RT	Room Temperature
S	Second
s.e.	Standard Error
SARDI	South Australian Research & Development Institute
SCAR	Sequence Characterised Amplified Region
SDS	Sodium dodecyl sulfate
SNP	Single Nucleotide Polymorphism
SSR	Simple Sequence Repeat
Таq	Thermus aquaticus DNA Polymerase
TE	Tris-EDTA
Tris HCI	Tris (hydroxymethyl) aminomethane hydrochloride
UV	Ultraviolet
W	Week
X ²	Chi-squared

Acknowledgements

I firstly want to express my deep and sincere gratitude to my principal supervisor, Dr. Klaus Oldach for his support and guidance throughout my PhD. I appreciate all his contributions of time and ideas to make my PhD experience productive and stimulating. His enthusiasm and encouragement were essential in keeping me motivated and he has been an excellent mentor and friend.

I wish to express my warm and sincere thanks to my co-supervisors Dr Ian Riley and Dr Hugh Wallwork and to my external advisor Dr Kerrie Davies, for their valuable advice and helpful discussions. I would also like to thank all the members of the SARDI Gene Function and Nematology labs for their continual advice and friendship.

I would like to acknowledge the South Australian Research and Development Institute (SARDI) and the Molecular Plant Breeding CRC (MPBCRC) for supporting the project and to the Grains Research and Development Corporation (GRDC) for providing a Grains Industry Research Scholarship.

I would like to thank my wonderful family. You have given so much and sacrificed without a second thought. Thankyou for your endless loving support and encouragement.

Finally, I would like to thank my beautiful and amazing Jason. Thankyou for being my rock and for giving me the strength and motivation to finish the journey. Thankyou for your nourishing and comforting love.

Abstract

Root lesion nematodes of the genus Pratylenchus feed and reproduce in the root cortex of many plant species, including wheat. Migration through root tissue causes extensive root damage, and in turn severe reductions in growth and yield. In Australia, one of the most prevalent and widespread species affecting wheat is Pratylenchus thornei. Due to the wide host range of *Pratylenchus* spp. and the restrictions and inefficiency of chemical pesticides, the development of resistant cultivars has become increasingly important. Despite the identification and investigation of several resistance sources and resistance quantitative trait loci (QTL), no P. thornei resistance has been integrated into commercial cultivars. In addition, prior to this study, the biological resistance mechanisms of wheat against P. thornei were not well characterised. The identification of novel sources of genetic resistance in wheat and understanding of the biological mechanisms will allow effective combinations of genes either to be used alternatively or pyramided to generate effective and stable Pratylenchus resistance. The major objectives of the study were to identify genetic loci associated with P. thornei resistance and to investigate the associated biological mechanisms in a double haploid wheat population developed from a cross between the synthetically derived Sokoll and the Australian adapted Krichauff parental lines.

The resistance to *P. thornei* observed in the Sokoll x Krichauff wheat population is complex and under the control of several loci which suppress all nematode developmental stages. The four main components of the root invasion process by *Pratylenchus*: root attraction, penetration, endoparasitic feeding and reproduction, were investigated to determine the location, timing and role of resistance against *P. thornei*. Through analysing root invasion by each nematode life stage, it was shown that resistance in the Sokoll x Krichauff population occurs post penetration to suppress *P. thornei* motility/migration and juvenile development causing reduced reproduction (egg deposition and hatch).

Attraction and penetration assays were conducted on seedlings grown both in sand and on agar. There was no significant difference in the rate at which *P. thornei* was attracted towards resistant or susceptible roots in sand. However on agar, when both genotypes were present, there was a significantly higher attraction towards the susceptible roots indicating resistant roots may secrete repellent or toxic compounds during pre-penetration or that susceptible roots secrete more attractants. The penetration rates of *P. thornei* in resistant and susceptible roots, both on agar and in sand, did not significantly differ. No preferred root penetration zone was observed with *P. thornei*, but penetration was not random as nematodes were attracted to root regions previously invaded. In concordance with other *Pratylenchus* studies, resistance to *P. thornei* in this Sokoll x Krichauff population acts post penetration.

Analysis of *P. thornei* development in the resistant and susceptible genotypes showed that significantly fewer *P. thornei* nematodes of all stages occurred in the resistant compared to the susceptible roots. Juvenile development was suppressed as no juvenile stage two nematodes (J2) were present 35 days after inoculation in resistant genotypes. At 45 days after inoculation, forty times more *P. thornei* juvenile stage three (J3) were present in the susceptible than the resistant parent. Unlike other studies where resistance against *Pratylenchus* caused nematodes to exit roots, in this study, similar numbers of *P. thornei* J2 were still present within the resistant roots 10 days after inoculation, indicating that resistance suppresses nematode development rather than causing nematodes to leave resistant roots.

The inhibition of juvenile development resulted due to the suppression of nematode migration/motility which suppressed feeding but also due to reduced egg deposition and hatch. Simple and inexpensive assays were designed to investigate P. thornei motility, egg hatch and deposition in root exudates/extracts and roots grown on agar. Significantly higher numbers of P. thornei nematodes became non-motile when exposed to root exudates from resistant (65%) versus susceptible (30%) roots after exposure for 3 days. The effects of these compounds were found to be reversible and to specifically affect P. thornei but not Pratylenchus neglectus. In migration assays, P. thornei only migrated a small distance through the resistant root cortex from the point of inoculation (10 mm), but further in the susceptible roots (70 mm). Pratylenchus thornei reproduction was also affected by resistance. Egg deposition was up to 30% less within resistant than in the susceptible lines. About 40% less hatch occurred from eggs within and adjacent to roots of resistant versus susceptible seedlings. Similarly, hatching was decreased by 10% in resistant root exudate compared to the susceptible after 10 days of exposure. An increased hatch after dilution of root exudates and a lower hatch in resistant versus the absence of roots, indicates the presence of hatching inhibitor compounds. As these root exudates were derived from plants not exposed to Pratylenchus/other pathogens, this indicates resistant genotypes constitutively produce compounds that inhibit motility and reproduction.

In order to identify QTL and develop molecular markers accounting for the observed resistance, a genetic map was constructed from the Sokoll x Krichauff doubled haploid population comprising 150 lines. A total of 860 Diversity Array Technology markers and 111 microsatellite markers were used to assemble the genetic map. Two highly significant *P. thornei* resistance QTL were identified on chromosomes 2BS and 6DS, *QRInt.sk-2B.1 and QRInt.sk-6D*, explaining 24 and 43% of the phenotypic variation, respectively. These QTL mapped to chromosome regions previously identified to be associated with *Pratylenchus* resistance, based on common marker locations. Two significant QTL were also identified on chromosomes 4A and 5A, explaining 6 and 9% of the phenotypic variation. The population was fixed for the effects of the highly significant QTL on 2BS and 6DS and further QTL were identified on chromosomes 2B, 2D, 3A, 5B and 6B. The *QRInt.sk-2B.1* and *QRInt.sk-6D*.

account for a large portion of the observed resistance, showing that in this population the Sokoll derived resistance to *P. thornei* is very strong and is controlled by a few loci with large effects.

There are considerable financial and labour costs associated with *Pratylenchus* phenotypic screening methods. Molecular markers employed through marker assisted selection will eliminate the need for large scale phenotyping in breeding programs and thus accelerate the development and availability of resistant cultivars. The microsatellite marker *barc183* linked to *QRInt.sk-6D* is also associated with *P. thornei* resistance in other mapping studies in different genetic backgrounds and thus highlights the potential benefit of this marker for use in marker assisted selection. However, the highly significant QTL on 2BS and 6DS currently span large chromosomal regions, thus fine mapping is required to delimit the QTL interval to establish more closely linked markers before they can be utilised in breeding programs.

The ultimate aim of this project was to correlate a biological role with an identified *P. thornei* resistance QTL. Thus, in order to identify whether the QTL linked to *P. thornei* were associated with the observed motility and hatch inhibition, a subset of the population was phenotyped using the motility and hatching assays designed in this study. Suggestive QTL were identified on chromosomes 2B, 5B, 6B and 6D linked to hatching and motility suppression, which co-located to the *P. thornei* resistance QTL identified in this and previous studies. Although only suggestive, alignment with other QTL indicates that these resistance QTL may play a role in inhibiting *P. thornei* motility or juvenile hatching. To further define and confirm these QTL, phenotypic analysis needs to be performed on the entire population.

The biochemical characteristics of the preformed resistant root compounds causing motility and hatching suppression were investigated. Root exudates that were subjected to heat/cold treatments caused less motility suppression than compared to the untreated control, indicating these resistant root compounds are water soluble and fairly stable in nature. Flavonoids, oxidised phenols and peroxidases associated with insect resistance genes that co-located with the hatching and motility suppression QTL and the *P. thornei* resistance QTL regions have been implicated in other *Pratylenchus*-plant resistance interactions. These results indicate a potential role for these compounds in the *P. thornei* resistance observed in Sokoll x Krichauff. Further investigation is required to define the chemical nature and specific roles of resistant root compounds in the suppression of nematode development.

The results of this study show that the resistance observed in the Sokoll x Krichauff wheat population to *P. thornei* is complex and under the control of two highly significant and several minor loci, which do not affect penetration but suppress nematode feeding, development and reproduction.