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Abstract

Many real-world problems can be modelled as a combination of several inter-

acting components. Methods based on Evolutionary Algorithms seem to be

appropriate for handling such problems, but they have not been extensively

researched in such domains. In this thesis we study the applicability of Evo-

lutionary Algorithms for today’s high complexity real-world problems which

consist of several interacting components. A natural source of such problems

emerged from supply chain management problems which consist of several inter-

acting components, and are also generally non-linear, heavily constrained, and

involve many variables. We aim to study possible approaches for supply chain

optimisation problems that seamlessly integrate algorithms addressing the local

components, under the framework of global optimisation.
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Chapter 1

Introduction

During the last few decades many algorithms were introduced that were inspired

by various processes in nature, ranging from mimicking the behaviour of animals

and cooling metals to immune systems and genetics. Many of them were based

on the fundamental principles of natural selection and survival of the fittest,

formulated by the nineteenth century naturalist Charles Darwin in his book “On

the Origin of Species” [53]. These fundamental principles were used to create

a family of new algorithms. Evolutionary Strategies invented by Rechenberg

[150], Evolutionary Programming by Fogel [65], Holland’s Genetic Algorithms

[82] and Koza’s Genetic Programming [93] were the first meta-heuristics inspired

by Darwin’s principles. These researchers were some of the pioneers of the field

of Evolutionary Computation (EC).

1.1 Motivation

Over the last two decades, the Evolutionary Computation (EC) community ex-

perienced significant growth. In 1990 there were no journals specially dedicated

to EC and there was just a single conference which ran every second year – the

International Conference on Genetic Algorithms (ICGA). At the ICGA’91, re-

search from all main EC branches was presented together for the first time. Since

then the community has been growing rapidly [49]: thousands of papers have

been written on evolutionary algorithms (with 40% annual growth during 1978

– 1998 [6]), journals dedicated to EC have emerged (IEEE Transactions on Evo-

lutionary Computation and Evolutionary Computation Journal being the main

15



16 CHAPTER 1. INTRODUCTION

two), and dedicated conferences (e.g. PPSN, IEEE CEC, GECCO) and special

tracks at most Artificial Intelligence and Operations Research conferences take

place. The number of practitioners of EC is also growing exponentially [85].

Many new variants of evolutionary algorithms were developed by incorporat-

ing new features into standard algorithms, such as different data structures for

solution representation, several subpopulations and migration between them,

various selection criteria, different recombination and mutation operators. The-

oretical research focussed on the properties of evolutionary algorithms (e.g con-

vergence rates, the balance between exploration and exploitation) as well as

on the behaviour of evolutionary algorithms in problems with different charac-

teristics (e.g. ruggedness of the landscape, deceptiveness). At the same time,

experimental research concentrated on standard problems from operations re-

search, such as many types of scheduling, travelling salesman, vehicle routing,

inventory management, stock cutting, packing, graph colouring and knapsack

problems. Many standard benchmarks were created to compare the performance

of different algorithms in relation to these problems [1, 39, 163].

1.2 Theory and practice of evolutionary algo-

rithms

Many claims have been made about the applicability of EC methods for solving

real-world problems in many domains: defence, finance, management, economics

[2, 37] and others. Despite the advances in EC research, growing interest in evo-

lutionary algorithms, and a desire to apply research in evolutionary algorithms

to real-world problems, some researchers, who are involved in real-world appli-

cations, have indicated that there is a significant and increasing gap between

the theory and practice of evolutionary algorithms. Dave Davis talked about

this gap 16 years ago at the Workshop on Evolutionary Algorithms, organised

by the Institute for Mathematics and Its Applications, University of Minnesota,

Minneapolis, Minnesota, October 21 - 25. Being one of the most recognised

practitioners of Evolutionary Algorithms at that time, he stated that theoreti-

cal results often are of very little use when applied to real-world applications.

Recent articles also mention the existence of this gap and its continuing growth

[119, 120].

Research in evolutionary algorithms has made quite substantial progress, but

the focus of most experimental research efforts in the EC community has re-
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mained almost the same for the last two decades – that is mostly on the classical

operations research problems mentioned earlier. These problems were relevant

to the real-world problems two decades ago, but since that time the complex-

ity of business problems has skyrocketed. Researchers still use the standard

experimental sets of functions for numerical optimisation (e.g. De Jong’s test

suite [57]) and standard benchmarks for combinatorial optimisation [39, 163].

Clearly these problems are NP-hard and very important for research, but they

do not fully reflect the complexity of today’s real-world problems [119, 120]. Due

to globalisation, integration and advances in technology, many real-world busi-

nesses are becoming more complex in structure, involving several components

with non-linear interactions between them. The larger the businesses grow, the

greater the need for systems that assist in decision-making activities – decision

support systems.

Consider the following example of a company that distributes water tanks.

Water tanks are transported to geographically dispersed clients via trucks (pos-

sibly with trailers) of different capacities. Efficient packing of water tanks into

trucks can be achieved by bundling smaller tanks inside the bigger ones as well

as stacking them together (see Figure 1.1). Tanks can only be unbundled at

certain locations prior to customer delivery and customers can be located at

quite a distance from each other. Truck drivers may have different driving li-

cences which allow them to drive only certain types of trucks (with or without

trailers). The company faces a problem with daily decisions as to how to load

trucks, whether to use additional trailers, which customer to serve, and what

roads to take to deliver products to different customers on time. The goal is

to minimise the overall cost of delivery. However, the calculation of cost is not

trivial because it includes the cost of total distance travelled, salaries of drivers

and the number of tanks delivered to customers on a trip.

To create a decision support system for this problem, the following problems

need to be considered:

• the packing problem, involving determining the optimal bundling and

stacking of tanks on the truck.

• the vehicle routing problem with pickup and delivery, to determine the

optimal routes and loading schedules for each truck once the tanks are

loaded.

• the problem of allocation of drivers to trucks.
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Figure 1.1: Packing of water tanks into the truck. The top picture presents the
side view, the bottom presents the top view of the truck.

• the truck/trailer selection problem

Each of the above problems is hard to solve on its own. However, they are in-

terrelated, so consideration of each of them in isolation will lead to a sub-optimal

result of the overall problem. For example, the classical packing problem, which

involves packing goods into a container to utilise container space as efficiently

as possible, is a very well studied problem. However, considering optimal pack-

ing of water tanks without taking into account which driver is going to drive

the truck and customer locations is useless as customers may reside in differ-

ent parts of the country and the distances can be quite large. Additionally, a

decision about using a particular truck with a trailer for a particular trip may

prevent another delivery which requires a driver with appropriate qualifications.

Thus, the optimal solution to the packing problem by itself has little practical

overall significance as it constitutes just one component of a larger problem and

any attempts to solve it in isolation are of little practical interest. From a busi-

ness perspective solving a single component of the problem in isolation is called

local optimisation, whereas consideration of all components of the problem will

be referred to in this thesis as global optimisation from the business perspec-

tive. Note that the concept of global versus local optimisation from a business

perspective is very different to the same concept from a classical mathematical

perspective.

The EC community has been studying each of these problems in isolation;

each of these problems represents only one aspect of the overall problem. All
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these components are interconnected and failure to consider any of these prob-

lems will result in a sub-optimal solution. In addition to all these problems there

are specific business rules and constraints that need to be satisfied, e.g. tanks

can be bundled and unbundled only at certain locations, the addition of the

trailer to the truck allows bundling of some special types of tanks. Usually these

types of constraints and business rules are not included in classical operations

research problems. To address the overall problem of optimal tank distribution,

all four components of the problem (packing, vehicle routing, driver allocation

and truck/trailer selection) need to be considered together, as decisions about

one component have immediate implications for the other components. This

problem illustrates the case of global optimisation from the business perspec-

tive. Ackoff [3] correctly identified this issue over 30 years ago:

Problems require holistic treatment. They cannot be treated effec-

tively by decomposing them analytically into separate problems to

which optimal solutions are sought.

While experimental research has focussed on the classical types of problems,

the real-world problems have increased in complexity many times, particularly

in consideration of the bigger scale of such problems. It should be noted that

several factors contribute to the complexity of classic operations research prob-

lems:

• size of the search space, which is the number of total possible candidate

solutions.

• constraints, which usually split the search space into feasible and infeasible

regions.

• multiple objectives, that have to be taken into account.

• variability, which requires algorithms to operate on probability distribu-

tions rather than on exact values.

• time-changing environments, which introduce a time dimension to static

problems.

The EC research community addressed all these factors [25, 58, 117, 91] well

but did so in isolation. However, when we consider real-world problems with

several components, each component includes several of these factors but on the
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top of that they expose additional issue of non-linear interaction between the

components. This brings all the classic factors to another level. In problems with

interconnected components the size of the search space becomes a multiplication

of the cardinalities of the search spaces of individual components. In the case

of the truck loading problem the search space becomes the multiplication of

search spaces for packing, vehicle routing and assignment problems. Constraints

may exist both on the component level as well as between the components;

objectives in multi-component problems become multi-level, as objectives need

to be satisfied on the components level, and in addition, the overall objectives

need to be considered; variability becomes more complex as well.

Even when researching a single-component problem there is still some small

mismatch between the research activities and practice. For example, the major-

ity of published research in evolutionary algorithms on time-varying problems

addresses the issue of time-varying objective functions. While these problems

clearly deserve research efforts, in the real-world environment the objective func-

tion does not change very often. In most cases, businesses face a problem of

time-varying constraints changing over time but the objective usually stays the

same (e.g. maximisation of profit or minimisation of delays).

1.3 Objectives

The main purpose of this thesis is to research models of today’s high complex-

ity real-world problems which consist of several interacting components. We

aim to study approaches that seamlessly integrate algorithms addressing the

local components, under the framework of global optimisation. What approach

should be taken to address problems of such complexity? Many papers by the

operations research community offer to simplify the problem to linear or integer

programming models. In this way a precise solution can be found using classical

operations research algorithms. However, the linear model cannot reflect all the

complexity of real-world problems and the solution to the linear model would

not be palatable. The EC methods, on the other hand, allow the retention of

all the non-linear interactions and constraints in the model and find a near-

optimum solution. Thus, the more complex the model, the greater is the need

for the EC methods.

We investigate algorithms based on cooperative coevolution for supply chain

problems as they seem to be a natural fit: each subpopulation is responsible
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for the component of the problem and cooperative coevolution is responsible for

the overall problem. In private conversation with Professor Kenneth De Jong,

one of the pioneers of cooperative coevolution, at the Congress on Evolutionary

Computation in 2010, he mentioned that to the best of his knowledge coopera-

tive coevolution has not been applied to the problems of optimisation of supply

chains. This research aims to bring the research in evolutionary algorithms one

step closer to the real-world applications which are sought today by many in-

dustries. The choice of environments, where problems of such complexity arise

in a natural way are supply chains.

Supply chains usually consist of multiple silos which are self-contained or-

ganisational entities. The silo is fundamental single component of any supply

chain (Figure 1.2). Any supply chain can be assembled by combining silos. A

special way of combining silos as a group of silos which share similar function-

ality and constitute a conceptual stage of a supply chain is called an echelon.

One way of thinking of echelons is as a grouping tool to illustrate a high level

structure of the supply chain.

Figure 1.2: A single silo.

In this thesis the term material flow is defined as the way the silos of the

supply chain are connected to each other. Several types of flows can be observed.

One simple type is a one-to-one flow where one silo is directly connected to

another. The first silo sends the output of its execution to the second silo.

This type of sequential flow is shown in Figure 1.3. In this and in other supply

chain diagrams of this thesis the direction of arrows representing flow shows the

direction of material flow.

Figure 1.3: Two-silo model.
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This two-silo model can also be thought of as a two-echelon model with one

silo in each echelon (Figure 1.4). Considering multiple silos in each echelon

leads us to more complex flows: one-to-many and many-to-one. In the former

case, products of the execution of a single silo in the first echelon are distributed

among multiple silos in the second echelon. The second case has several silos in

the first echelon and they ship all products to a single silo in the second echelon.

Other variations of flows between silos of two echelons may include a many-to-

many flow, with a special case of a multi-silo supply chain with one-to-one flows

between the silos. Diagrams of these flows are presented in Figure 1.5.

Figure 1.4: Two-echelon model with a single silo in each echelon.

Figure 1.5: Two-echelon models.

Very often flows can also be within the echelons – inter-echelon dependencies

(as distinct from intra-echelon dependencies which are dependencies between

echelons). An example of intra-echelon flow studied in this thesis is material

movement from one stockpile of a mine to another. The pictorial representation

of such a supply chain is presented in Figure 1.6 which presents two echelons

with inter- and intra- echelon dependencies.

Large enterprises often own many consecutive echelons of the supply chain.

The example of such a supply chain with five echelons is presented in Figure

1.7.

Some large supply chains can be of a very complex structure that do not fit

perfectly into the echelon model. An example of such a structure is shown in
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Figure 1.6: Two-echelon extended model

Figure 1.7: Five-echelon model

Figure 1.8. Silos with the same icons in this figure reveal similar functionality

(e.g. transportation silo, production silo). In such a model still some silos can

still be grouped into echelons, but we did not consider them in this model.

Figure 1.8: Multi-echelon supply chain with complex structure

The supply chain models mentioned earlier show the variety of different

supply chains, from the very simple single silo to the multi-echelon, with different

types of flows to supply chains that do not fit into the linear echelon model. In

this thesis we will focus only on these models. However, there are an infinite
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number of supply chain models with different structures, material flows and

constraints which we do not consider, and which will be considered in future

research.

1.4 Organisation

The thesis is organised in the following way. Chapter 2 explains the basic

concepts that are used throughout the thesis. We discuss basic terminology,

management strategies and global optimisation in supply chains. Then we pro-

vide background information on evolutionary algorithms and their variations.

Literature reviews of job shop scheduling and vehicle routing problems are pro-

vided in this chapter as some experiments in the further chapters are based on

these problems.

We review the issue of dynamic environments within a single silo in Chapter

3. We articulate that, from the business perspective a dynamic environment

in most cases implies time-varying constraints rather than a time-varying eval-

uation function. The review of the literature on evolutionary algorithms in

dynamic environments presented in this chapter shows the need to investigate

problems of time-varying constraints. The problem for the wine industry with

time-varying constraints is presented and the evolutionary algorithm that ad-

dresses it is discussed. Moreover, this problem is used as a building block for

the global optimisation of the whole wine supply chain in Chapter 7.

We investigate a one-to-one type of material flow based on an experimental

supply chain in Chapter 4 (see Figure 1.3). Production and distribution silos of

this supply chain are based on problems well-known in the operations research

community. The functionality of the first silo is based on job shop scheduling

and the functionality of the second silo is based on vehicle routing problems.

We show that it is important to have cooperation between the silos during the

optimisation in order to produce good results.

Chapter 5 presents a pair of examples of a supply chain with each echelon

containing more than one silo. Several more complex material flow models are

investigated within an experimental test bed. The second part of the chapter

presents a relatively simple real-world example of a two-echelon supply chain

with multiple silos within each echelon. The structural diagrams of these prob-

lems are shown in Figure 1.5.

Chapter 6 provides an extended real-world example of a two-echelon supply
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chain with a one-to-many material flow of silos in two echelons and additional

inter-echelon dependencies. The problem is taken from the mining industry and

involves scheduling of equipment in order to reach tonnage and quality targets

of iron ore. The product movement in this problem is more complex than in

the previous problems and involves many time-varying constraints.

Another real-world example, the wine supply chain consisting of five con-

secutive echelons, is presented in Chapter 7 (see Figure 1.7). Each echelon is

described in detail in this chapter. The bottling problem presented in Chapter

3 represents one of the echelons of this supply chain. We investigate methods

based on evolutionary algorithms to coordinate all the existing systems and

reuse decision support modules within each one for global optimisation.

The decision support of complex product movement between the silos of a

real-world supply chain is investigated in Chapter 8. An example of such a

supply chain is shown in Figure 1.8. We propose methods based on fuzzy logic

and evolutionary algorithms to address the complexity of the problem.

Finally, Chapter 9 summarises the results presented in this thesis and pro-

vides the directions for future research.

As the main contribution of this thesis, we have brought the research in

evolutionary algorithms one step closer to practice by undertaking the following:

• investigating problems that consist of two or more interacting components

• investigating different types of interactions between supply chain echelons

and silos

• showing that cooperation between silos during the optimisation results in

better quality solutions

• developing a framework that addresses the issue of global optimisation

from a business perspective by reusing the existing local silo algorithms

• successfully applying the global optimisation framework initially tested on

experimental problems to the problems from the real world

1.5 Publications

The results of some parts of this thesis have been reported in the following
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Chapter 2

Basic Concepts and

Literature Review

The first part of this chapter presents some background information on sup-

ply chains. It discusses basic terminology, push, pull and hybrid strategies for

supply chains, and the complexity involved in decision making. Many busi-

nesses focus on making decisions for just a part of their supply chain without

consideration of the whole supply chain (local optimisation), but often a much

better value can be extracted from the supply chain when focussing on a broader

subset of the supply chain using global optimisation. One of the reasons some

companies still run their businesses based on the locally optimal decisions is

that global optimisation comes with complex time-changing constraints and

non-linear relationships between the components. To address this complexity,

in further chapters of this thesis we use methods based on Computational Intel-

ligence. We will mainly concentrate on the subset of Computational Intelligence

– Evolutionary Algorithms. Background information on different classes of evo-

lutionary algorithms and a literature review of their application to supply chain

problems is provided in this chapter.

In the later we introduce experimental studies on two-echelon supply chains.

The functionality of silos is based on two well known problems: job shop schedul-

ing and vehicle routing problems under global optimisation based on cooperative

coevolution. Section 2.4 describes the scheduling problem and its varieties, then

provides a literature review focussing mainly on the Job Shop Scheduling Prob-

lem. Section 2.5 provides discussion on different types of the Vehicle Routing

29
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Problem and surveys some of the algorithms that address it. Section 2.6 gives a

review of basic concepts of cooperative coevolution and provides some literature

review. The final section summarises the chapter.

2.1 Supply Chain Management

Supply chain management (SCM) is a field that combines management of vari-

ous business functions with a broad range of theoretical domains such as systems

theory, inventory control, optimisation, logistics, mathematical and computer

modelling. A Global Supply Chain Forum defines Supply Chain Management

as the integration of key business processes across the supply chain for the pur-

pose of creating value for customers and stakeholders. The term supply chain

management was first mentioned in 1982 by Oliver and Webber [130], but the

concept of supply chain management was born long before in the early 20th

century with the creation of the assembly line. In the 1960s the appearance of

IBM computers helped raise interest in modern supply chain management.

Understanding and managing a company’s supply chain is one of the hardest

tasks procurement planners and supply chain managers face in today’s business

environment. Ideally, a supply chain is driven by demand generated by the

placing of orders by customers. An order may include one or many items which

are composed of processed and unprocessed raw materials and components. In

addition to the customers’ orders which, generally speaking, draw a final product

out of the supply chain network (pull factors), supply chain networks are often

subject to push factors which are caused by the feeding of raw material into

the supply chain by suppliers (push factors) [80]. In most cases, the supply

of unfinished goods is not able to be synchronised with the demand generated

at the other end of the supply chain, or an adjustment is delayed. Suppliers

constantly, periodically or spontaneously, deliver raw material or components

into the supply chain network. According to these factors, several traditional

supply chain strategies exist[158]:

• In push-based strategies, production and distribution decisions are based

on long-term forecasts using orders received from the retailer’s warehouses.

It is much harder for these strategies to react to changes in the market-

place.

• In pull-based strategies production and distribution are driven by true

customer demand rather than forecast. With pull strategies a company
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does not have an inventory and produces goods purely in response to

customer demand. Therefore, pull strategies become impractical when

times between order and production and then delivery of goods (lead time)

are long.

• push-pull strategies evolved to take advantage of both types of strategies

mentioned above. In this type of strategy, some stages of the supply chain

(normally first stages) are operated based on push strategies while the

remaining use pull strategies for operation.
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Figure 2.1: Schematic view of multi-echelon supply chain network

Reconciling supply and demand by determining the quantity of finished

goods to produce becomes a labour-intense and time-consuming endeavour. It

involves sourcing decisions when there are more than one internal or external

suppliers of raw material, factory management decisions to define production

plans and determine maintenance outages, and decisions on how to effectively

distribute the finished goods within the supply chain and to the end customer.

Generating an optimal plan which takes all the previous considerations into ac-

count becomes virtually impossible for human operators who are in most cases

equipped only with spreadsheet tools.

In managing the supply chain thousands of individual decisions have to be

made at regular intervals. These decisions are of different scope and significance

(e.g., operational, tactical, strategic); there are also countless trade-offs between

various decisions. Further, supply chain networks are extremely complex and

they are set in constrained and dynamic environments, with many (usually

conflicting) objectives. Moreover, most decisions should take variability into

account, that is the degree to which a certain value can change, e.g. the truck
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may arrive ten minutes earlier/later or customer demand may often vary from

the forecasted value. High demand variability may lead to the bullwhip effect

– larger and larger swings in inventory as it progresses through the supply

chain in response to changes in demand. Any successful implementation of an

Advance Planning System for such a complex network should be capable of

addressing several key issues; these include dealing with huge search spaces,

many objectives, complex constraints and variability.

Due to the high level of complexity, it becomes virtually impossible for deter-

ministic systems or human domain experts to find an optimal solution – not to

mention that the term “optimal solution” loses its meaning in a multi-objective

environment, as often we can talk only about trade-offs between different so-

lutions. Moreover, the manual iteration and adjustment of scenarios (what-if

scenarios and trade-off analysis), which is needed for strategic planning, becomes

an expensive, possibly unaffordable, exercise.

Various key performance indicators (KPI) of the supply chain are usually

measured in order to evaluate the quality of a particular activity in the supply

chain e.g. revenue, number of orders delivered in-full on-time (DIFOT), and

carbon emissions. Often in order to assess various KPIs of the decisions for a

certain supply chain a simulation is run on a computer for the solution (decisions

on how to run the supply chain), that is, an imitation of the behaviour of the

supply chain.

Note that every time we simulate a supply chain or solve a problem we

must realise that we are in reality only finding the solution or simulating only

a model of the problem. All models are a simplification of the real world -

otherwise they would be as complex and unwieldy as the natural setting itself.

Thus, the process of problem solving consists of two separate general steps: (i)

creating a model of the problem, and (ii) using that model to generate a solution

[121]:

Problem→Model → Solution.

Note that the “solution” is only a solution in terms of the model. If our model

has a high degree of fidelity, we can have more confidence that our solution and

its simulation results will be meaningful. In contrast, if the model has too

many unfulfilled assumptions and rough approximations, the solution may be

meaningless, or worse.

Many texts on Advanced Planning and Supply Chain Management (e.g.,
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[161]) describe several commercial software applications (e.g., AspenTech – as-

penONE, i2 Technologies – i2 Six.Two, Oracle – JDEdwards EnterpriseOne

Supply Chain Planning, SAP – SCM, and many others), which emerged mainly

in the 1990s. However, it seems that the areas of supply chain management

in general, and advanced planning in particular, are ready for a new genre of

applications which are based on Computational Intelligence methods. Many

supply chain related projects run at large corporations worldwide failed mis-

erably (projects that span a few years and cost many millions). In [161] the

authors wrote:

In recent years since the peak of the e-business hype Supply Chain

Management and especially Advanced Planning Systems were viewed

more and more critically by industry firms, as many SCM projects

failed or did not realise the promised business value.

The authors also identified three main reasons for such failures:

• the perception that the more you spend on IT (e.g., APS) the more value

you will get from it,

• an inadequate alignment of the SCM concept with the supply chain strat-

egy, and

• the organisational and managerial culture of industry firms.

While it is difficult to argue with the above points, it seems that a fourth (and

unlisted) reason is the most important: maturity of technology. Small improve-

ments and upgrades of systems created in 1990s do not any longer suffice for

solving companies’ problems in the 21st Century. A new approach is necessary,

an approach which would combine seamlessly the forecasting, simulation and

optimisation components in a new architecture. In this thesis we mainly focus

on simulation and optimisation aspects. Further, many existing applications are

not flexible enough in the sense that they cannot cope with any exceptions, i.e.,

it is very difficult, if not impossible, to include some problem-specific features;

most businesses have some unique features which need to be included in the

underlying model, and are not adequately captured by off-the-shelf standard

applications. Thus the results are often not realistic and the team of operators

return to their spreadsheets and whiteboards rather than relying on unrealistic

recommendations of the software.
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Several studies have investigated optimisation techniques for various sup-

ply chain components in isolation, including the job-shop scheduling problem

[38, 96, 55], planning and cutting problems [105, 104], routing problems [168],

allocation and distribution problems [44, 183], to name a few. Many algorithms

were developed to solve various supply chain components in a single silo environ-

ment [114, 171, 182]. However, the optimisation of each silo without considering

relationships with other silos usually does not lead to a globally optimal solu-

tion of the whole supply chain. Because of that, large businesses started to

become more interested in optimisation of their whole system rather than the

optimisation of single components of the system.

Large businesses typically breakdown their business into operational com-

ponents such as purchasing, production and distribution. In the past, organisa-

tions have concentrated their efforts on these single operational components of

the supply chain – silos (this term will be used interchangeably with the term

component in this thesis). As optimisation of each individual silo in isolation

may not lead to the global optimum, large businesses started to become more

interested in optimisation of their whole system rather than optimisation of sin-

gle components of the system. The first approach is commonly referred to in

the literature as coordinated supply chain management.

It becomes an even more challenging task to address a multi-echelon supply

chain. Recall that the term echelon refers to a group of silos which share similar

functionality and constitute a conceptual stage of a supply chain. For example,

all distribution units in the supply chain form one echelon, production plants

form another one. Originally, the term echelon was introduced by Clark [41]

instead of term “level” to avoid confusion with stock levels.

An example of a wine supply chain is presented in Figure 2.2. The dotted

components represent external components to the company, for example dry

goods suppliers, distribution companies, storages, etc. The components with

applications screenshots represent the vertically integrated wine supply chain,

all components of which belong to the given company. Material flow goes from

left to right on this figure, whereas information flows from right to left. The

vertically integrated supply chain on this figure is represented by five echelons:

Maturity Models, Vintage Intake Planning, Crushing, Tank Farm and Bottling.

These echelons will be described in detail later in Chapter 7.

The following section discusses the importance of optimal decisions from the

global perspective in coordinated supply chain management.
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Maturity Models Vintage Planning Crushing Tank Farm Bottling

Figure 2.2: Wine Supply Chain. Grey arrows on this diagram represent a
material flow. Black arrows represent information flow. The dotted components
represent external components to the company

2.2 Global Optimisation

The general problem of global optimisation, in the classical sense, is to find ~x

so as to

optimisef(~x), ~x = (x1, . . . , xn) ∈ F ⊆ S,

where S defines the search space and F defines feasible region which is bounded

by the set of m constraints: gj(~x), ∀j = 1, . . . ,m.

That is, one is seeking to find an element in the search space S that optimises

the objective function.

Usually, the search space S is quite simple: for numerical optimisation it

is S ⊆ R
n; for combinatorial optimisation problems, S is discrete in nature,

like a set of permutations, or a set of edges of a graph. An example of a

combinatorial optimisation problem that might be encountered in a commercial

setting is finding a permutation of n jobs to be executed on a machine that

would minimise the amount of time spent re-configuring the machine between

jobs (or from another perspective, maximises the amount of time the machine

is in use).

In silo-focused optimisation, the search space S is typically built from a single

type of variable. For example, as above, S may consist of all permutations of

the set {1, 2, . . . , n}. Business global optimisation problems, on the other hand,

typically have a more complex search space that consists of compositions of

simpler search spaces. We will refer to these types as single-silo and multi-silo

search spaces respectively.
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Many aspects of commercial and industrial processes are amenable to op-

timisation, and this fact has been the source of many applications of modern

heuristic methods. For example, the sequencing of jobs can be optimised in the

classical job shop scheduling problem [38, 96, 55]. There are many algorithms

that address different kinds of planning and cutting problems [105, 104], and

many methods have been developed to solve different types of transportation

[118], allocation [44, 183] and distribution problems. These are all examples

of problems in which a globally optimal solution is sought for a specific, fairly

narrow and focused problem. In real world business situations, however, it is

often the case that the potential for optimising operations and profits can be

increased by considering broader subsets of the business, and by looking at how

major processes affect each other, in addition to the traditional approach of

seeking independent opportunities for improvement. For example, in the case

of job shop scheduling, the logistics of the provision of raw materials to the

shop might be considered, as well as the details of post-production inventory

shipping, marketing and retailing. From a business perspective, this is global

optimisation.

Lawrence Davis, one of the experts in supply chain optimisation, describes

this situation as follows [56]:

. . . companies should be able to use solutions to optimise across their

sourcing and procurement, production and distribution processes all

at the same time. Instead, supply chain solutions tend to break those

functions out into separate modules, each of which runs separately

from the others. The answer you get when you first do production

and then do distribution or any of these functions independently is

not as good as the answer you get when you do them together.

Consider an example in which a company produces and distributes certain

types of goods. Suppose that the company’s factory is very efficient and, in a

given month, produces an exceptionally large quantity of finished goods. From

a local point of view this component (i.e. factory) of the supply-chain operation

has performed excellently, but if we look at the broader picture of global produc-

tion, if the excess goods are not readily distributed and consumed, the company

will need to use storage space which will cost extra money, thus making this

locally good production run sub-optimal, from a global point of view.

David Simchi-Levi characterised one of the objectives of supply chain man-

agement in the following way[158]:
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. . . the objective of supply chain management is to be efficient and

cost effective across the entire system; total system wide costs ,

from transportation and distribution to inventories of raw materials

, work in process and finished goods , are to be minimised . Thus, the

emphasisis not on simply minimising transportation cost or reducing

inventories , but rather on taking a systems approach to supply chain

management.

It is possible to take the idea of global optimisation from a business per-

spective to increasingly greater heights by including into consideration more

and more factors that affect a business’ profitability. However, practical limits

are often encountered when the scope of the optimisation problem begins to

encroach on boundaries of another business entity’s operations. For example, it

may be that the provision of raw materials to a job shop is a matter handled by

a different business entity (i.e. component) which may not be willing to divulge

minute details of its operations.

Some typical characteristics of a problem that suggest that there might be

an opportunity for global optimisation from a business perspective are as listed

below.

• Dependence or partial dependence among components (silos). Problem

specific constraints and business rules tie single silos together making de-

pendency connections between them. It is noted that constraints here can

be intracomponent constraints, which exist within a single component it-

self, and intercomponent constraints, that form the dependencies between

the silos. Intracomponent constraints are the classic type of constraints

encountered in many optimisation problems. Intercomponent constraints

have a slightly different purpose in global optimisation compare to the

classic intracomponent constraints.

• Multiple objectives. Having many single operational components in the

problem with each component having its own or even several objectives

yields the multiple objective optimisation problem. However, this multi-

objective optimisation problem stands at a higher level compared to the

classic multiobjective optimisation. Here an objective of each component

of the problem may have its own subobjectives.

• Need for understanding what-if scenarios. Businesses and their competi-

tors are rarely static; indeed, they are dynamic and business environ-
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ment is constantly changing. Thus, companies want to respond to these

changes by making more intelligent decisions and changes to their oper-

ations. There is a great need for businesses to foresee how a particular

change or decision will impact their priorities, profit and other objectives.

The complex multi-silo system with a large network of dependencies is a

lot harder to understand and predict than a single component one.

When we make the distinction between local and global optimisation from

a business perspective, the idea of global optimisation in the classical sense still

holds in both cases. If we try to optimise over the entire supply chain, then

in terms of the objective function being considered, we still seek a classical

global optimum. On the other hand, if we restrict our attention to optimising

the operations of a single factory, then this is local optimisation with respect

to the broader picture of the supply chain; nevertheless we also seek a classical

global optimum for the objective function associated with the optimisation of the

factory. The distinction between local and global optimisation from a business

perspective lies in the differences between their respective search spaces.

Although the field of supply chain management emerged recently, the idea

of coordinated planning had already been proposed in 1960 by Clark and Scarf

[42]. These authors investigated multi-echelon inventory problem based on se-

quential and tree-like models, and they approached the problem using a recur-

sive decomposition method. Vidal and Goetschalckx [172] provide a review of

strategic production-distribution systems with global integration. The authors

stress that very little research exists that addresses optimisation of the whole

supply chain rather than its single components. They mainly concentrate on

mixed integer programming models. Capar and Ulengin in [34] classify all SCM

literature by introducing special taxonomy.

The review by Thomas and Griffin [165] defines three categories of opera-

tional coordination: Buyer-Vendor coordination, Production-Distribution coor-

dination and Inventory-Distribution coordination. The model described later

in this chapter belongs to the second category. For the study of production-

distribution coordination category, several researchers approached it with dy-

namic programming heuristics, mixed integer programming and Markov chains.

The authors underline the complexity of problems of this category and discuss

strategic planning supply chain models, the majority of which are mixed integer

programming based models.

Aikens [4] presents a problem of the optimal location of warehouses starting
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with simple a uncapacitated single-commodity case with zero echelons and end-

ing with more complex capacitated multicommodity and multi-echelon facility

location models.

In one of the first papers on production-distribution coordination [77] the au-

thor considers several models with interacting silos and stochastic demands and

discusses an analytical approach to find optimum inventory levels. Production

orders are processed in weekly batches.

Pyke and Cohen [146] consider a single-product, three silo supply chain that

includes a factory, a finished goods stockpile and a distribution centre. The

whole model is demand driven and based on the Markov chain. The finished

goods stockpile in this model is used more like a buffer between production and

distribution silos. The authors present near-optimal algorithms to determine

batch size, normal reorder point, and expedite reorder point. The companion

paper [147] upgrades their system to support multi-product situations.

Chandra and Fisher [36] developed a two component demand driven model

where products are first produced at the production plant and then distributed

by the a fleet of trucks to a number of retail outlets (also known as a vehi-

cle routing problem). Then the authors compare two approaches: in the first

one they solve the production and vehicle routing problems separately, and then

together combined under a single optimisation algorithm. The production plan-

ning problem is solved optimally and the vehicle routing problem is solved using

heuristics. Their results show an the advantage of using the second approach.

However, the authors use relatively small datasets for their problem.

Multi-echelon inventory optimisation systems have been studied by various

researchers. Caggiano et al. [32] uses a greedy algorithm for his multi-item,

multi-echelon service parts distribution system, [33] solves his multi-item, two-

echelon problem with Lagrangian decomposition, [176] approaches the same

problem with a greedy algorithm. Song et al. in [160] use metamodel to study

the behaviour of the multi-echelon supply chain system.

Altiparmak et al. [8] propose algorithms using a mixed-integer, non-linear

programming model for multi-objective optimisation of a supply chain network

based on the real world problem of a company that produces plastic products.

They compare three approaches to find the set of pareto-optimal solutions and

discuss the pros and cons of each.

There are additional studies that address supply chain problems with the

use of evolutionary algorithms; these are discussed in section 2.3.
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2.3 Evolutionary Algorithms

This section provides background information on Computational Intelligence,

ways to model the problem and evolutionary algorithms.

There are two main branches that tackle the optimisation of complex prob-

lems: operations research and computational intelligence. Operations research

uses techniques such as linear programming, branch and bound, and dynamic

programming. In this chapter our methods, however, will be based on the meth-

ods of Computational Intelligence and in particular Evolutionary Algorithms.

Computational Intelligence is considered to be an alternative to classical op-

timisation and it relies on heuristic algorithms (such as in fuzzy systems, neural

networks and evolutionary computation). In addition, Computational Intelli-

gence also embraces techniques such as swarm intelligence, neural networks,

fractals and chaos theory, and artificial immune systems. Computational In-

telligence techniques often combine elements of learning, adaptation, evolution

and fuzzy logic to create programs that are, in some sense, intelligent.

An interesting question, which is raised from time to time, is concerned

with guidance on the types of problems for which Computational Intelligence

methods are more appropriate than standard operation research methods. From

our perspective, the best answer to this question is given in a single word:

complexity. Real-world problems are usually difficult to solve for several reasons:

• the number of possible solutions is so large as to forbid an exhaustive

search for the best answer.

• the evaluation function that describes the quality of any proposed solution

is noisy or varies with time, thereby requiring not just a single solution

but an entire series of solutions.

• the possible solutions are so heavily constrained that constructing even one

feasible answer is difficult, let alone searching for an optimum solution.

Naturally, this list could be extended to include many other possible obstacles.

For example, we could include noise associated with our observations and mea-

surements, uncertainly about given information, and the difficulties posed by

problems that have multiple and possibly conflicting objectives (which may re-

quire a set of solutions rather than a single solution). All these reasons are just

various aspects of the complexity of the problem.
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When solving a problem, in reality we are finding a solution to a model of the

problem as a simplification of a real-world. In solving such real-world problems

there are at least two ways to proceed [121].

1. We can try to simplify the model so that traditional methods might return

better answers, or

2. We can keep the model with all its complexities, and use non-traditional

approaches, to find a near-optimum solution.

In other words, the more complex the problem (e.g., size of the search space,

evaluation function, noise, constraints), the more appropriate it is to use a non-

traditional method, e.g. the Computational Intelligence method. Further, it

is difficult to obtain a precise solution to a problem because we either have to

approximate a model or approximate the solution. A large volume of experi-

mental evidence shows that the latter approach can often be used to practical

advantage: many Computational Intelligence methods have already been incor-

porated into software applications that handle levels of supply chain complexity

that are unapproachable by traditional methods (such as linear programming,

dynamic programming, and branch and bound).

2.3.1 Structure of the Evolutionary Algorithm

Evolutionary Algorithms (EA) are a subclass of Computational Intelligence, a

generic population-based metaheuristics, inspired by the principles of biological

evolution. They are built on abstractions of genetic inheritance and the Dar-

winian principle of survival of the fittest, mimicking the smartest system – that

of nature. In contrast with methods based on OR, these methods evolve the

solution instead of constructing it step by step, i.e. at any point of time the

algorithm has at least one complete solution (anytime response).

One of the best examples for illustrating how Evolutionary Algorithms work

is based on the population of rabbits from [118]:

...at any given time there is a population of rabbits. Some of them

are faster and smarter than other rabbits. These faster, smarter

rabbits are less likely to be eaten by foxes, and therefore more of

them survive to do what rabbits do best: make more rabbits. Of

course, some of them slower, dumber rabbits will survive just because

they are lucky. This surviving population of rabbits starts breeding.
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The breeding results in a good mixture of rabbit genetic material:

some slow rabbits breed with fast rabbits, some fast with fast, some

smart rabbits with dumb rabbits, and so on. And on the top of that,

nature throws in a ‘wild hare’ every once in a while by mutating some

of the rabbit genetic material. The resulting baby rabbits will (on

average) be faster and smarter than these in the original population

because more faster, smarter parents survived the foxes. (It is a

good thing that the foxes are undergoing similar process – otherwise

the rabbits might become too fast and smart for the foxes to catch

any of them).

Algorithm 1: The Structure of Generic Evolutionary Algorithm

generation← 0
initialise population
evaluate population
while not termination condition do
generation← generation+ 1
select individuals for reproduction
apply variation operators
evaluate newborn offspring
select individuals for survival

end while

Let E be a metric search space and F is an objective function that maps

E → R; the objective is to maximise F on E maxx∈EF (x). Evolutionary

Algorithms maintain a set of solutions for each of the iterations. As these

algorithms are inspired by nature, most of the terminology utilises biological

metaphors: each solution is referred to as an individual, a set of solutions –

a population and each iteration in which a population is updated is called a

generation. The raw data structure behind the individual is called a genotype

that consists of separate genes ; the decoded data from the genotype used for

evaluation is called a phenotype. Most Evolutionary Algorithms can be described

by Algorithm 1.

The first step of the EA is population initialisation. The population is usu-

ally initialised randomly, but some smart initialisation procedure that biases

individuals into some good regions may significantly improve the results of the

optimiser. The diversity of the population is of paramount importance for the

optimisation results as it lets the optimiser explore different regions of the search
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space. After the initialisation, each individual in the population is evaluated us-

ing the fitness function which returns the fitness of an individual i.e the quality

of the solution.

After the initialisation part the main loop iterates through generations ter-

minated by a termination condition. The basic termination condition is based

on the limit of number of generations to evolve. However, more sophisticated

conditions are possible; for example, measuring the diversity of population or

the progress of the best individual in the population.

The next step of the algorithm is to select parent individuals for breeding,

taking fitness into account – stronger individuals have more chances to produce

offspring for the next generation (survival of the fittest). Selection in the Evolu-

tionary Algorithms also occurs during the survival selection where it is respon-

sible for selecting individuals for the next generation. The two most commonly

used selection methods are roulette selection and tournament selection.

Evolutionary operators are responsible for constructing new offspring based

on the genetic material of parent individuals. These operators are always

stochastic and executed according to the algorithm specific probabilities. Two

common operators are:

• recombination: involves several parents (typically two) that exchange

genetic material to produce offsprings.

• mutation: involves one parent that makes one or more changes to its

genotype to produce an offspring.

The last part of the algorithm is the selection of individuals for survival.

The generational strategy fully replaces all individuals in the current generation

with new offspring. If new offspring replace only a few individuals in the current

population then the survival strategy is called steady-state.

2.3.2 Variants of Evolutionary Algorithms

This subsection provides an overview of some common classes of evolutionary

algorithms.

Evolution Strategies

One of the earliest Evolutionary Algorithms developed was Evolution Strate-

gies introduced by Ingo Rechenberg in early 1960’s and further developed by
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Rechenberg [150] and Schwefel [156]. The original algorithm was involved with

a single individual with real-valued vector encoding. Each of the real variables

is changed by Gaussian mutation with a mean of zero and standard deviation

σ. The mutated individual is accepted if it has better fitness than its parent

and does not violate any constraints.

A single individual ES evolved into (µ+ λ) and (µ, λ) forms. Here µ repre-

sents a number of solutions in the parent generation and λ a number of solutions

generated from the parent generation. In the first form (µ+λ) the new popula-

tion of µ individuals is selected from µ+λ individuals (new offspring plus parent

population). In the second form µ individuals of initial population produce λ

offspring (λ > µ) and then the new population of µ individuals is formed only

from offspring. This produces better results on problems where the optimum is

changing over time.

Genetic Algorithms

One of the most widely known types of Evolutionary Algorithms is the Genetic

Algorithm (GA). The initial genetic algorithm introduced by John Holland,

works on the binary genotype space. The phenotype of the algorithm can be

an arbitrary space that can be coded into the bitstring. The probability of

selection of a certain individual as a parent, is proportional to its fitness (for

example, roulette selection). Bitstring crossover and mutation are used. During

the survival phase all individuals in the population are replaced by newly created

offspring.

Later the research community realised that the bitstring genotype is not

universal and can be practically any space as long as genetic operators are

defined to execute on this genotype [118]. Other additions to the “classical”

genetic algorithm were tournament selection and elitism (the best individual is

preserved to the next generation).

Evolutionary Programming

Evolutionary Programming was introduced by Lawrence J. Fogel [65]. They

aimed to predict changes in an environment that consisted of sequences of sym-

bols, with the algorithm producing the next symbol of the sequence. The eval-

uation was based on the payoff function that measured the accuracy of the

prediction. Fogel used finite state machines as underlying chromosome repre-

sentation. A population of finite state machines was maintained and evolved.
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Evaluation of each state machine was based on running it against a sequence of

symbols and averaging the accuracy of the number of predictions.

Genetic Programming

One of the earliest applications of genetic programming was created by Lawrence

J. Fogel who applied it to the problem of discovering finite-state automata in

1964. Later it has been applied to the learning classifier systems and devel-

opment of sets of sparse rules describing optimal policies for Markov decision

processes. The first genetic programming approach that utilises procedural lan-

guages organised in tree-based structures was described by Nichael L. Cramer

in 1985 [50]. Genetic Programming has been popularised by John Koza [93].

The idea is that the program should evolve itself during the evaluation process.

The search space is a space of possible computer programs and the solution rep-

resentation is a hierarchically structured computer program which is basically

a tree. To evaluate a solution, a program-solution is run against a selected set

of test cases and the fitness function is a sum of distances between the correct

and produced results.

Evolutionary Algorithms with Multiple Populations

It is also possible to use more than one population in the run of algorithm, with

each evolving by its own rules.

Island model evolutionary algorithms exchange individuals between the sub-

populations throughout the optimisation to help maintain diversity, and to

spread to new, potentially good areas of the search space. Subpopulation is-

lands have a defined topology, so sending an individual is possible only between

certain islands.

Another type of multi-population Evolutionary Algorithm is the coopera-

tive coevolution. In coevolutionary algorithms, the subpopulations are called

species ; this approach borrowed from biology, where different species interact

in a common ecosystem. Two main kinds of coevolution exist: competitive and

coevolutionary. In the former, individuals from different species try to compete

with each other (the arms race concept), whereas in the second type individuals

from different species try to achieve a common goal of evolving together. Ex-

periments in the current thesis mainly involve cooperative coevolution. Section

2.6 describes coevolution in more detail and gives a brief literature review.

Other classes of algorithms that belong to Evolutionary Algorithms include
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Evolutionary Programming, Genetic Programming, Gene Expression Program-

ming and Differential Evolution.

Although there are differences between these evolutionary algorithms, they

are all share many commonalities. Many of them just use different terminol-

ogy for the same thing. All of them are based on fundamental principles of

Darwinian evolution; they maintain a population of solutions (in some cases

population size is one); each of the individuals of the population have finite

lifetime and stronger individuals produce offspring. In a broad sense, evolution-

ary algorithms provide a general framework for the way in which to approach

complex problems.

In recent years, there has been an increased interest in solving supply chain

management problems using evolutionary algorithms. David Naso et al. [125]

look at the problem of coordination of just-in-time production and transporta-

tion in a network of partially independent facilities of ready-mixed concrete.

They optimise the network of independent and distributed production centres

serving a number of customers distributed across a certain geographical area.

This problem, which has high complexity and strict time delivery constraints,

is approached with a meta-heuristic based on a hybrid genetic algorithm with

combined constructive heuristics.

Zhou et al. [182] present a novel genetic algorithm to solve bi-criteria, multi-

ple warehouse allocation problem. The proposed method finds the pareto-front

of a wide range of non-dominated solutions without the arbitrary determination

of weighting coefficients.

Vergara et al. [171] developed an evolutionary algorithm for dealing with

the coordination of supply chain flows between different members of the chain.

The authors of that paper recognise the importance of an overarching algorithm

that optimises the whole system. Their work looks at the flow of materials in

terms of supply and demand, but does not consider the intricacies of production

within each business silo.

Researchers had been working much earlier on supply chain problems as can

be seen in the following references. Lee and Choi [101] apply genetic algorithms

to solve a single machine scheduling problem with distinct dates, and they at-

tempt to minimise all penalties. This method produces near optimal solutions,

which they prove by comparison with an exact algorithm. Lee et al. [102]

address the problem of inventory management of a refinery that imports sev-

eral types of crude oil and proposes a mixed-integer linear programming model.

Martin et al. [114] create a linear programming model to optimise flat glass
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production.

2.4 Scheduling

Scheduling plays a fundamental role in many industries especially in manufac-

turing and service. It becomes even more crucial in the current competitive

environment, where it is almost impossible for human domain experts to take

into account all the information about deadlines, millions of customers and busi-

ness processes. Failure to meet customer expectations may result in significant

financial and credibility loss.

Many different types of scheduling problem exist. Some of the most popular

variations are listed below.

• Job Shop (JSSP). In this version of the scheduling problem there are m

machines and each job has a set of operations that need to be executed

on these machines in a certain order. JSSP is used in several experiments

in the current thesis.

• Flow Shop. Each of the jobs has to be processed on each machine fol-

lowing the same route, i.e M1, M2, . . . and so on.

• Flexible Flow Shop. This is a generalisation of the previous problem

where there are c stages in series with a number of identical machines in

parallel at each stage . Each job should be executed on the specific order

of stages, i.e stage 1, stage 2, etc.

• Open Shop. As with previous problems each job has to be executed on

each of the machines, but some execution time may be zero. There are no

restrictions enforced on the routing of each job through machines.

• Many other variations of scheduling problems include the addition of var-

ious constraints, such as deadlines, release dates, precedence constraints,

batch processing and machine breakdowns.

The job shop scheduling problem is a canonical example of a scheduling

problem. It is one of the most difficult combinatorial optimisation problems,

and as is the case with most scheduling problems, it is NP-complete [68]. A very

good survey of job-shop scheduling problems and different solution representa-

tions is given in [38]. Davis [55] discusses the application of genetic algorithms
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to the job-shop scheduling problem. Wang and Zheng solve it using a modified

genetic algorithm [174]. In their work, to avoid premature convergence and im-

prove neighbourhood search, the classical mutation operator is replaced by the

metropolis sample process of simulated annealing with a probabilistic jumping

property. A special crossover operator is used in the simulate annealing-based

main loop. The simulated annealing approach to tackle job-shop scheduling

problem is discussed by Laarohoven [96].

The job shop scheduling problem mathematically is formulated as follows.

There is a set of jobs J = {J1, . . . , Jn} and a set of machinesM = {M1, . . . ,Mn}

which these jobs can be executed on. Each job has a set of operations O and

a specific order of execution on each of the existing machines. Each operation

i of the job Jj on machine Mk takes a certain processing time and is denoted

by Pi,j,k. Two operations cannot be executed on a machine at overlapping

intervals of time. The goal is to find an ordering of these jobs on the machines

that minimises the total time needed to execute all the jobs.

As it is one of the most popular NP-hard problems, many evolutionary algo-

rithms have been proposed for its solution. Yamada and Reeves [178] propose

an evolutionary algorithm to solve the permutation flow shop problem. They

combine stochastic sampling and best descent methods into one unified method

to reach effective results. They use a multi-step crossover and mutation as well

as a representative neighborhood method, which is constructed by clustering the

original neighbourhood and choosing the best representative from each cluster.

This method is described by Nowicki and Smutnicki in their taboo search algo-

rithm for the flow shop problem [129].

There are also many published reports of the application of evolutionary

algorithms to solve scheduling problems in various domains of application.

Marchiori and Steenbeek [113] developed an evolutionary algorithm for the

real-world airline crew scheduling problem. Results of the real-world benchmark

instances are compared with the results produced by the commercial systems

and produce effective, competitive results.

Ponnambalam and Reddy [136] developed a multiobjective hybrid search

algorithm for lot sizing and sequencing in flow-line scheduling. The main idea is

to use the memetic type of algorithm that combines the genetic algorithm with

a local search procedure.

A practical problem of optimal oil production planning was discussed by

Ray and Sarker [149]. Production is based on several oil wells, from which a

crude oil is extracted by means of the injection of a high pressure gas. The goal
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of the problem was to optimise the amount of gas needed to be used in each of

wells to maximise output of oil, taking into account the limited amount of gas

each day. Single objective and multiple objective versions of the problems are

considered.

Burke and Smith [26] investigated a real-world problem that addressed the

maintenance problem of a British regional electricity grid. They compare the

performance of a proposed memetic algorithm with other methods.

Martinelli [115] showed the optimisation of time-varying objective functions

using a stochastic comparison algorithm. Values of the time-varying functions

are known through estimates. Noise filtering is introduced to decrease the prob-

ability of wrong moves.

Tinós in [166] introduced a self-organising random immigrants scheme for

algorithms in dynamic environments. Newly immigrated individuals are held in

the subpopulation for some time until they develop good fitness values.

Yang in his chapter [179] discussed a memory scheme approach as a method

of improving performance of evolutionary algorithms for dynamic environments.

Two kinds of memory schemes are described: direct and associative. These

schemes are applied to genetic algorithms and to univariate marginal distribu-

tion algorithms in dynamic environments. These algorithms are run on a set of

generated tests: cyclic, random and with addition of noise.

Lutz [155] considered the application of evolutionary strategies for numer-

ical optimisation problems in dynamic environment. The main parameters of

evolutionary strategies for problems in dynamic environments are presented.

Performance measures are discussed, with their advantages and disadvantages.

Several researchers considered scheduling problems in the mining industry.

Atashkin [9] looked at the problem of distribution of the loads on the faces

and of choosing the most effective technique and conditions for each face. The

problem is based on the mining of coal and the objective is to optimise the cost.

He proposes an algorithm based on passive stochastic programming.

In the last few years scheduling problems have been successfully solved by

the genetic programming approaches [90, 89, 12, 127, 128].

2.5 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is the combinatorial problem of finding

a set of delivery routes from the depot (or several depots for the multi-depot
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version) to customers, using a fleet of trucks and satisfying a number of con-

straints. Since it was first proposed by Dantzig and Ramser [52] five decades

ago, it has become one of the most famous combinatorial problems in operation

research. It was initially known as the Truck Dispatching Problem. The authors

described the problem of distributing gasoline between the terminal and the ser-

vice stations with a fleet of identical trucks. Many distribution management and

logistics problems can be modelled using the Vehicle Routing Problem.

The Vehicle Routing Problem is defined as follows. Let G = (V,E) is a graph

where V = {v0, . . . , vn} is a set of customer locations, and E = {e1, . . . , ek} is

the set of routes between the locations. For every route (i, j), where i 6= j, there

is a associated cost cij , which can be interpreted as travel cost or travel time.

There is as well a fleet of m trucks, where mL ≤ m ≤ mH , which are based

at the location v0 called depot (in some variations of the problem there maybe

more than one depot). Here, mL and mH define lower and upper truck number

limits respectively. In the case mL = mH the fleet is said to be fixed. When the

fleet is not fixed each truck has a fixed cost. The problem is to minimise the

cost of routes and trucks in such a way that:

• each city except for depot v0 is visited only once and by only one vehicle;

• each route starts and ends at the depot;

• additional capacity limitation constraints are satisfied. Depending on vari-

ations of the problem these constraints may include vehicle capacity con-

straints, route length constraints, time windows that customer needs to

be visited, and precedence constraints between customers.

Some of the most popular variations of the Vehicle Routing Problem listed

below.

• Capacitated Vehicle Routing Problem (CVRP). This is a basic

version of the problem where all trucks are identical, there is a single

depot and all the demands are deterministic and known in advance. The

only constraint imposed is a vehicle capacity limitation. If the problem

is constrained by the total distance of the route it is called a distance-

constrained Vehicle Routing Problem.

• Vehicle Routing Problem with time windows. This variation is

an extension of the previous problem with the additional constraint that

each customer vi should be visited only during an interval [ai, bi] called a
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time window. In case of the early arrival of the truck, it may wait at the

customer location.

• Vehicle Routing Problem with backhauls. This problem is also an

extension of the CVRP where two types of customers exist: linehaul cus-

tomers that require a certain quantity of product to be delivered, and

backhaul customers that require a given quantity of product to be picked

up. All linehaul customers need to be visited before any backhaul cus-

tomer. Additionally, this problem can be further complicated with the

inclusion of time windows.

• Vehicle Routing Problem with pickup and delivery. In this version

of the problem each customer has a quantity of product to pickup and to

deliver. At each location it is assumed that the delivery takes place before

pickup and at no point can the time total load of each truck be negative.

As with the previous variant of the problem this problem can be enhanced

with time windows.

• Multi-depot Vehicle Routing Problem. In this case the problem is

extended to determine the routes for several trucks from more than one

depot to transport the product to customers and then return to the same

depot.

The Vehicle Routing Problem is a combination of the Travelling Salesman

Problem and the Bin Packing Problem which are both known to be NP-hard.

Thus, the exact deterministic algorithms for the Vehicle Routing Problem are

only practical for small instances of the problem. Exact algorithms for the

VRP are mostly dominated by branch-and-bound [97, 63, 98] branch-and-cut

methods [10, 16] and integer programming [14].

An exact algorithm for the Capacitated Vehicle Routing problem using a

set partitioning formulation was proposed by Baldacci et al. [13]. Azi et al.

[11] described an algorithm for the VRP with time windows where one truck

may perform more than route. One of the best exact methods was created by

Fukasawa et al. [66] where authors hybridised branch-and-cut with the q-routes

approach.

For the big instances of the VRP, heuristics and metaheuristics based ap-

proaches are more practical. There are a few heuristics that have been popular

mainly due to their simplicity and speed. The Clarke and Wright [43] savings

based constructive heuristic uses simple merging rules to construct the routes.
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Sequential and parallel versions exist for this algorithm. It is used in several

algorithms presented in this thesis. The sweep mechanism of Gillett and Miller

[69], cluster-first route-second methods of Fisher and Jaikumar [64], and route-

first cluster-second methods by Beasley [18] are some other popular heuristics

which are often used for the population initialisation in population based meta-

heuristics.

Simulated Annealing and Tabu Search are one of the most popular and most

successful metaheuristics to solve the VRP. The unified tabu search algorithm

by Cordeau [45, 46] can be used for multi-depot and time window constrained

VRPs. It searches neighbourhood of solution by moving a vertex from its route

between two of its closest neighbours in another route.

Ergun et al. [62] uses a very large neighbourhood search to address the VRP.

At every iteration it searches a very large neighbourhood of solutions operating

on several routes simultaneously.

Many metaheuristics based on genetic algorithms were created as well. We

will be using Prins’ [145] algorithm in several experiments throughout the thesis.

It uses a local search technique to produce solutions, therefore it is classified as

a memetic algorithm. Another memetic algorithm was described by Berger and

Barkaoui [19] which uses two population with migration component in between

them.

Bouthillier and Crainic [100] in their paper describe a parallel asynchronously

cooperative multi-search algorithm for the VRP. The threads exchange informa-

tion through a special module which manages a pool of solutions. Each process

can be represented by a different meta-heuristic, such as evolutionary algorithms

and tabu search.

Alba and Dorronsoro [7] provide a solution to the VRP using a cellular

genetic algorithm. By adding local search and small overlapping neighbourhoods

the authors preserve population diversity and produce a good quality solutions.

In this algorithm the population is presented as a 2D toroidal grid and it uses

edge recombination and simple mutation operators to evolve new solutions.1

Reimann proposes savings algorithm based on ant colony optimisation [151].

A good survey on the latest VRP algorithms can be found in [47].
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2.6 Coevolution

Coevolution is a simultaneous evolution of several genetically isolated subpop-

ulations of individuals that exist in a common ecosystem. Each subpopulation

is called species and mate only within its species. In evolutionary computation

coevolution can be of two types: competitive and cooperative.

In competitive coevolution, multiple species coevolve separately in such a

way that fitness of individual from one species is assigned based on how well

it competes against individuals from the other species. One of the early exam-

ples of competitive coevolution is the work by Hillis [79], where he applied a

competitive predator-prey model to the evolution of sorting networks. Rosin

and Belew [153] used a competitive model of coevolution to solve a number of

game-learning problems including Tic-Tac-Toe, Nim and a small version of Go.

Cooperative coevolution uses a divide and conquer strategy: all parts of

the problem evolve separately, and the fitness of an individual of a particular

species is assigned based on the degree of collaboration with individuals of other

species. Individuals of each species evolve to contribute to their part within

the single ecosystem. Two different models of cooperative coevolution have

been proposed: the model by Potter [141] and the model by Moriarty and

Miikkulainen [123]. This thesis mainly focuses on the Potter model, which is

a more general model compared to the model proposed by Husbands and Mill

[86]. Also, a somewhat similar model of evolution was proposed previously by

Holland [83]. Potter applied cooperative coevolution artificial neural networks

[143] to concept learning for the construction of immune systems [144], and the

optimisation of some standard functions [142].

Wiegand analysed cooperative coevolution on several pseudo-boolean func-

tions, showing the relationship between cooperative coevolution and symmetric

games. He proposed the hierarchical categorisation of design choices for co-

evolutionary algorithms, performance effects on update timing, and analysis

methods, using evolutionary game theory and dynamic systems [175].

Popovici in her work used dynamical systems theory to analyse cooperative

coevolutionary evolutionary algorithms (CCEAs). She looked at the dynamics

of individuals using fitness landscapes, explained the problem of convergence

to the Nash Equilibrium with best response curves [139], analysed sequential

and parallel CCEAs [137], and investigated relationships between internal and

external metrics [140]. She used two dimensional fitness landscapes with the

parameter α to vary landscape surface in most of her work.
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Parameter setting issues of cooperative coevolution were explored by Luke et

al. [107], investigating how to choose collaboration methods, the number of pop-

ulations and number of trials per fitness evaluation. Some of their recommen-

dations were to use parallel update timing over sequential, more subpopulations

for strongly linked problems, and preferred use of shuffling methods.

A recent article by Popovici et al. [138] presented a wide survey of theoretical

and empirical issues in cooperative coevolution.

2.7 Summary

There exists a large body of research on the application of optimisation tech-

niques to highly-focused aspects of real-world business problems. This research

may be suitable for small businesses seeking to optimise their production effi-

ciency and profit. However for bigger businesses, especially ones that are verti-

cally integrated, optimisation needs to be examined from a much broader point

of view.

Optimisation of any of that business’ silos would definitely lead to an im-

provement in its operations in terms of time and money, and separate efforts

to optimise multiple silos would also yield benefits. But businesses should be

more interested in optimisation of their whole system rather than optimisation

of single components. A larger opportunity exists for global optimisation from

a business perspective. By modelling the situation in such a way as to have lim-

ited communications between those parts of the model representing the various

silos, we can achieve a level of optimisation that is better than that attainable

by isolating and optimising individual components.

From an abstract point of view, business-perspective global optimisation fits

into the framework of traditional global optimisation. What distinguishes it as

a subclass from traditional business optimisation scenarios is that its problems

can be formulated as objective functions with rather more complex-structured

search spaces. For example, whereas a traditional problem might have the set

of permutation of a finite number of objects as its search space, a business-

perspective global optimisation problem might instead have as its search space

the vector space of n elements, each of which is taken from the space of permu-

tations of a finite number of objects.

As several experimental studies in this thesis focus on job shop scheduling

and vehicle routing problems, their basic concepts and a relevant literature
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review was discussed in this chapter.
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Chapter 3

Single Silo Model

The dynamic nature of real-world problems is a key differentiator with respect to

more artificially formulated problems. It creates challenging variations on what

might otherwise be considered straightforward optimisation problems from an

evolutionary algorithms perspective. In this chapter we divide dynamic prob-

lems into three categories based on the characteristic that varies with time: the

objective function, the input variables, or the constraints. A review of the lit-

erature with regard to the way in which real-world problems in each of these

categories have been addressed shows that there is a need to investigate time-

varying problems of the third kind, that is, problems in which the constraints

are dynamic. While time-varying objective functions are an important direction

of research, in most real-world problems the objective function stays the same

(i.e. minimisation of cost or maximisation of profit). However, the dynamic en-

vironment from the business perspective usually implies constraints that change

over time. This appears to be another gap between theory and practice and in

this chapter we endeavour to shorten this gap by looking into this issue using a

problem from the wine industry.

In this chapter we present methods for dealing with time-varying constraints

within a single silo. We show how each challenge can be dealt with by making

adjustments to genotypic representation, phenotypic decoding, or to the evalu-

ation function itself. The ideas presented are exemplified by means of a single

silo case study of a real-world commercial problem, namely that of bottling

wine in a mass-production environment. Addressing the issues raised by this

problem is critical for a successful solution, especially when the evolutionary al-

gorithm being designed is for the purpose of driving a software application that

57
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must be robust enough to meet the demands and expectations of everyday use

by application domain specialists who are not necessarily optimisation experts.

The methods described in this chapter have the benefit of having been proven

by fully-fledged implementation into a software application. The application

undergoes continual and vigorous use in a complex production environment in

which time-varying constraints arising in multiple different combinations are

routinely present.

3.1 Introduction

The application of evolutionary algorithms to real-world problems brings us

face to face with some challenging issues related to the time-varying nature

of such problems. These issues are over and above the fundamental problems

being solved. In fact, they can be so critical from the standpoint of creating a

robust and truly usable software application that taking them into consideration

significantly alters the approach taken to solve the problem.

The issues in question arise because of the dynamic nature of real-world

problems. One hardly ever encounters a situation that is static for any signifi-

cant period of time. In everyday business life, things change almost constantly.

The number of orders to be scheduled in a factory changes, the run rate of a

machine varies due to environmental factors, the quantity of a particular item

ordered is modified after it has already been allocated, machines break down,

and delivery trucks arrive late.

Take scheduling problems as an example. Many factories deal with these

kinds of problems constantly. From a pure-problem perspective, evolutionary

algorithms have been used for quite a long time to solve scheduling problems

[55, 96, 174]. A general scheduling problem requires that we make decisions on

how to assign a number of tasks to a fixed set of machines able to perform those

tasks. The assignment must be done in such a way as to minimise the amount of

time required to complete all of the tasks (referred to as the makespan). There

are many variations to this problem; for example in some cases, the processing

of an object requires that it be processed in pre-defined phases, each possibly

taking place on a different machine. All of the variants however are equivalent

to the NP-Complete problem of job shop scheduling [68]. This of course makes

it virtually unsolvable in a reasonable amount of time using currently known

techniques, and so the usual approach is to look for an approximate solution
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using evolutionary algorithms. The essence of a straightforward evolutionary

approach is to represent a candidate solution as an ordered list of (machine,

job) pairs, with the natural order of the list being representative of the sequence

of job execution. Using a well-constructed fitness function that embodies the

problem constraints and parameters, and perturbing the representation using

simple operators will usually guide the population to a good solution.

This kind of approach is quickly seen to be insufficient when it comes to

creating a fully-fledged software application that is to be used in a real-world

business environment to manage the day-to-day scheduling needs of a large en-

terprise. There are many issues that intrude on the purity of a simple approach

such as the one described above. However these issues are usually critical and

require careful consideration so that the business needs can be satisfied in a

manner compatible with the architecture of the evolutionary algorithm.

This chapter continues with a classification of time-varying issues into three

categories, alongside a brief literature review of work in each category. An

industrial wine bottling problem is then elaborated in sufficient detail to enable

the reader to more easily visualise the kinds of problems being addressed by

this work. We go on to describe the real-world business issues that had to

be considered and resolved in order to build a software solution around an

evolutionary algorithm core. The design and construction of the EA itself is fully

specified and we illustrate how the various time-varying issues were resolved in

relation to the EA components.

3.2 Dynamic Optimisation Problems

The dynamic nature of real-world optimisation problems is well known, but a

closer examination reveals a few different aspects of the problem that can be

described as dynamic. In this section we introduce a classification of dynamic

optimisation problems into three categories, each of which is characterised by:

1. time-varying objective functions.

2. time-varying input variables.

3. time-varying constraints.

There is a large body of EA research literature that addresses the dynamic

property of such optimisation problems, and we present a brief review of work
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undertaken in each of the areas. It will be noticed that while there is an abun-

dance of work on problems fitting into the categories of time-varying objective

functions and time-varying input variables, there are relatively few published

reports dealing with dynamic optimisation problems of the third kind, that is

problems that deal with time-varying constraints.

3.2.1 Time-varying objective functions

These are problems in which the shape of the fitness landscape varies with time.

The location of the optimum value is continually shifting. The literature shows

that there has been a considerable amount of research done on this kind of

problem from the early days of evolutionary methods, to the present [24, 23,

124, 35, 180]. Some are based on artificially constructed objective functions and

others on real-world applications. In many published reports, situations were

set up wherein during a single run of an evolutionary algorithm, the location of

the optimum would move; researchers were therefore particularly interested in

developing EAs that could detect that there had been a change in the optimum

and could continue to alter their search to find the new optimum.

Some examples of the earliest papers related to dealing with time-varying

objective functions using evolutionary algorithms are by Pettit and Swigger [133]

and Krishnakumar [94]. These papers reported on attempts to track optima

in fluctuating, non-stationary environments (objective functions). Pettit and

Swigger studied environments that fluctuated stochastically at different rates

and they envisioned applications to areas such as voice recognition and synthesis.

Grefenstette extended the work of Krisnakumar [73], by pursuing ideas re-

lated to maintaining diversity. His work considered an abstract problem that

used an optimisation surface that would change randomly every 20 generations

of the genetic algorithm, with new peaks appearing and previous optima being

replaced by new ones. Although not addressed as an application in that pa-

per, reference was made to real-world dynamic problems such as optimising the

fuel mixture for a jet engine based on the measurement of engine output. This

problem is dynamic because of both slow and rapid changes; the components of

the engine slowly degrade over time and hence slowly alter the function being

optimised, and it is also possible to experience a rapid change due to the sudden

failure of a component. It was clear that the intent of the work was to serve as

a foundation for dealing with these types of problems.

Different authors have worked to create standard test suites that can be



3.2. DYNAMIC OPTIMISATION PROBLEMS 61

used to study time-varying objective functions. For instance, Branke [22] has

published a test function called the moving peaks benchmark (MPB) problem.

This is an abstract function that represents a landscape with several peaks.

Each peak is defined by a height, a width and a position in the xy-plane. The

function is dynamic because these three characteristics of each peak are altered

slightly as time progresses. It is easy to imagine this function surface slowly

changing with time, with the global optimum slowly moving its xy-coordinates,

so that eventually the global maximum may shift from one of the peaks to

another.

The case study that will be considered next in this chapter, does not fall into

the category of dynamic problems discussed in this section. When considered

from a broad perspective, the wine bottling problem can be thought of as having

a time-varying objective function, but it is not one that changes during the

course of an EA run, rather the objective function changes with each run of the

application as business conditions change.

3.2.2 Time-varying input variables

These are problems in which the input data being processed in the optimisation

scenario change from day to day, or in principle from run to run of the EA.

For example, if we are interested in optimising the production schedule of a

factory, then each day, or possibly each minute, the set of customer orders to be

allocated and sequenced on machines will change. This is because we are dealing

with a live business environment; as time passes, old orders are completed and

new ones arrive.

Johnston and Adorf [116] described how artificial neural networks can be

used to solve complex scheduling problems with many constraints; they reported

that the real-world problem of scheduling the assigned usage of the NASA/ESA

Hubble Space Telescope was solved using an application based on these tech-

niques.

Chryssolouris and Subramaniam [40] explored the dynamic job shop problem

where multiple criteria are considered and jobs may be processed by alternate

machines. Although they recognised the lack of work on dynamic constraints

such as random job arrival, in terms of input to the evolutionary algorithm,

their work primarily focused on multiple job routes.

Madureira, Ramos and Carmo Silva [111] used a genetic algorithm to study

how to produce schedules in a highly dynamic environment where new input
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variables require continual re-scheduling. Their work was based on an extended

job-shop in a dynamic environment with simple products requiring several stages

of assembly.

Another example of recent work done in this area include González et al.

[72]. They study the multimodal transport problem that searches for the most

economical route in the distribution of cast iron ductile piping.

3.2.3 Time-varying constraints

Problems involving time-varying constraints arise when the constraints of the

environment within which a solution must be found change over time. These

varying constraints add an additional level of complexity to the problem because

a good EA approach must be able to operate equally well regardless of how many

of these constraints are in place, and in what particular combination they occur.

In general, we do not know what the current schedule might be at any given

moment in time, yet we must create an EA that creates a new solution that

matches up with the existing one, and still produces an optimal result for the

long term.

Jain and Elmaraghy [88] discussed the types of problems that can be cat-

egorised as time-varying constraints;they described circumstances that require

the generation of regular new production schedules due to uncertainties (both

expected and unexpected) in the production environment. They touched on

typical examples such as machine breakdowns, increased order priority, rush

orders arrival and cancellations. All of these issues are also considered in this

chapter, from the perspective of an integrated evolutionary algorithms-based

software solution. There are many other example of works recognising this type

of problem (see [132, 95, 84]).

Based on our experience in solving real-world optimisation problems for

commercial organisations, we have found that the type of problems commonly

experienced in industry are those that belong to the second and third categories.

Interestingly we have also found that the vast majority of published research in

evolutionary algorithms addresses the first category and to a lesser extent the

second category. However, dynamic optimisation of the third kind, i.e. where

the problem involves time-varying constraints, although well-recognised in other

domains, has been the subject of relatively little investigation in evolutionary

algorithms literature. This observation is especially true when we extend our

search to the fully-fledged application of an EA to a dynamic real-world problem.
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Figure 3.1 illustrates some examples of issues that typically arise in real-

world problems.

Problem
Optimisation
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Orders
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Job Execution
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Figure 3.1: Typical Issues in Real-World Problems

3.3 Problem

Wine Manufacturing and Evolutionary Algorithms go particularly well together.

From the starting point of planting grape vines and reaping the mature fruit, all

the way through, crushing of the grapes, management of bulk tank movements

during the fermentation process, to bottling of the finished product and sales,

the wine manufacturing industry is a rich source of real-world application areas.

Many of these problems are based on classic optimisation problems, and on that

basis alone are quite difficult to solve. Evolutionary Algorithms of course by

their very nature are natural takers for these kinds of challenges. In this section,

we will examine what is involved in one of the wine manufacturing steps just

described, namely the bottling of the finished product.

Before getting to the point where wine is bottled into a finished product, the

liquid would have gone through a series of fermentation and other processing

steps. We will assume that we are at the point where the liquid is in a finished,

consumable state, and is residing in a bulk storage tank, which can be anywhere

from several tens of thousands of litres, up to more than one million litres in

volume. This bulk liquid remains in storage awaiting the bottling process during

which it is pumped into a bottling factory and put into consumer size bottles,

with a typical volume of less than one litre.
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A bottling factory houses several bottling lines. These are machines that are

connected to intermediate feeding tanks that contain finished wine, and are used

to transfer the wine into glass bottles and hence produce the items that everyday

consumers are accustomed to purchasing. The bottling lines also take care of

related tasks such as capping the bottle with a screw cap or a cork, applying a

label to the bottle, and packaging the bottles into cartons. Each bottling line is

capable of bottling a subset of the types of finished wine products manufactured

by the wine company.

These two elements, the bulk wine liquid, and the bottling lines, constitute

the basic working elements of the wine bottling problem. The bottling process

is illustrated in Figure 3.2. Which bulk wines are put into which bottles, and

the time at which this is done, are determined by customer orders. The wine

company receives orders for particular finished goods from their clients and it

is those orders that must be carefully considered in order to determine the best

way of running the bottling plant. In an ideal situation, customers place their

orders with sufficient notice to ensure timely bottling of their goods.

Large−Scale Bulk Storage
"Tank Farm"

Intermediate

Bottling Tank
Packaging (Boxes)Bottling Line

Figure 3.2: The Wine Bottling Process

The problem is to determine a sequence of orders to be carried out on each

bottling machine hence classifying it as a scheduling problem, so that optimal

use is make of the company’s resources, from the point of view of making maxi-

mum profit, and also maximising customer satisfaction. Hence a good schedule

will minimise production costs, and at the same time ensure that orders are
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produced in full, before their due dates. Deciding how to schedule production

so as to make the best use of limited resources is the fundamental part of the

wine bottling problem.

Wine making, as is the case in a multitude of other real-world applications,

is a highly variable and complex business; what, from the point of view of using

an evolutionary algorithm, would otherwise be considered a straightforward

scheduling application, presents a series of significant challenges. The practical

day-to-day business considerations are what make this problem highly dynamic.

We classify the problem as a dynamic optimisation problem of the third kind,

due to the fact that many of the issues are based on time-varying constraints.

Before discussing the business intricacies that give rise to the time-varying

constraints, we will first consider some more basic issues that affect the schedul-

ing problem.

• Due dates : When a customer places an order, the sales department will

assign it a due date that is acceptable to the customer, and which should

also be realistic taking into account the size of the order and available

resources at the bottling plant. Sometimes for various reasons due dates

are unrealistic, but nevertheless the scheduling application needs to em-

ploy techniques that strive to maximise the number of orders that are

delivered in full on time (this expression is sometimes abbreviated as DI-

FOT). In cases where it is impossible to have orders delivered on time,

the algorithm must strive to minimise the delays incurred in relation to

each order. This is a very important objective in the application, since in

business, it is of utmost important that customers not be displeased due

to the late delivery of orders.

• Bulk wine availability: Some orders may need to be inevitably delayed

due to the fact that the bulk wine needed to fill the bottles may not yet

be ready. This can easily happen since the process of creating wine is

quite variable, and batches may not have responded to the fermentation

process as expected, and may require additional processes to get the wine

to the required specification and taste. There are a number of other pro-

cesses involved in the preparation of the bulk wine, such as filtration and

temperature stabilisation, that can lead to delays.

• Dry Materials : In addition to the liquid wine, a few dry goods are required

to produce a finished bottle of wine. First there is the glass bottle, and
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its covering which may be a screw cap or a cork, and other items such

as labels, of which there may be several (for the front, back and possibly

neck of the bottle), and foils and wire hoods for sparkling wines. If an

order is scheduled at a particular time, then to proceed, the appropriate

amounts of each dry good must be ready for installation into the bottling

machine. Hence it is a requirement that the optimisation software look at

the availability of these materials in order to produce feasible schedules.

• Job run lengths : It is inefficient to have machines frequently changing from

one type of bottling job to another because this incurs set-up and take-

down time and reduces the overall utilisation of the machine. Hence, the

scheduling algorithm must attempt to group similar orders for sequential

execution so this type of inefficiency is avoided.

• Wine changeovers : Wines are categorised broadly in terms of their colour

– red, white, and rose (pink). Below this level of classification, there are

more detailed distinctions such as sweet red, dry red, aromatic white, full-

bodied white, sparkling red, sparkling white, and fortified wine. Even for

a very large wine company, it may not be the case that there is sufficient

production volume to justify dedicating individual machines exclusively

to the production of one type of wine. Hence the reality is that the same

machine must be used at different times to bottle different types of wine.

When a bottling line finishes working with one type of wine and switches

over to another type, this is referred to as a wine changeover. The bottling

line must be cleaned during changeovers, to varying degrees, depending on

the nature of the change. Certain types of wine changeovers are undesir-

able and need to be avoided where possible by the optimisation algorithm.

For example, if we are changing over from a run of white wine to a run of

red wine, then a relatively brief cleaning is required, since residual amounts

of white wine entering into red is not much of a problem. However, the

reverse situation where we go from a run of red to a run of white requires

a very extensive cleaning process, including sterilisation. Minute amounts

of red wine entering into a run of white is likely to cause a great deal of

damage.

• Other changeovers : Although wine changeovers incur the most often, there

are a variety of other changeovers that can happen, even within a run of

the same colour wine. Each different finished good that is being produced
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requires a particular size and type of glass bottle, as well as a particular

type of covering, which may be a screw cap or a cork, of which there are

several varieties, and as well as unique labels for each brand of wine. The

physical re-configuration of the bottling line hardware to accommodate

these items requires a strip-down time to remove the items used by the

previous run, and a set-up time to insert the new items required for the

next run. The optimisation algorithm needs to try to minimise these

changeovers as far as possible by appropriately grouping orders.

• Bottling line availability: Some industries use machines that are kept in

operation continuously. This is sometimes the case in large-scale wine

companies, but for only limited periods of time. In most scenarios, bot-

tling lines have typical hours of operation that correspond to an average

workday, which may be for example 8:00am to 6:00pm. The optimisation

algorithm needs to consider the availability of each machine in order to

make appropriate scheduling decisions since one of the critical factors af-

fecting the evaluation of a proposed schedule is the number of orders that

are satisfied on time. In computing machine availability must be factored

in relation to the amount of time that a job will take to perform and to

decision-making about where to assign it.

• Routings : Each product can be bottled on a number of different lines.

The choices however are usually a proper subset of all of the machines.

Although the same product could be bottled on a few different machines,

the performance characteristics of each machine are likely to be different,

sometimes significantly so. Set-up and strip-down time could vary, and

also the speed at which the bottles are processed can vary significantly

(this is called the run rate). Each possible assignment of a finished good

to a bottling line, together with its associated performance data is referred

to as a routing. The optimisation algorithm must strive to choose the best

routing to use under the circumstances. If all else is equal, then naturally

the fastest routing would be chosen, but this is often not the case as some

lines may be heavily loaded thus preventing such a choice from being

made. In order to achieve better load balancing between the machines,

alternate routings may have to be used.

Our work on the wine bottling problem resulted in a full-featured piece of

software integrated around a core evolutionary algorithm that deals with all
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of the above listed issues, and creates feasible, optimal schedules for satisfying

customer orders for wine. The application was launched for a major global wine

company, and it experiences heavy daily usage at international sites. It is a

cornerstone of their scheduling department, and we think it is a good example

of an integrated evolutionary algorithm serving robustly in prime time. The

main screen of the application is shown in Figure 3.3 with all confidential client

information removed. The area of horizontally adjacent rectangles shown in

the upper portion of the picture is a graphical representation of the schedule

produced by the software. Each rectangle corresponds to a customer order that

has been assigned to a bottling line at a particular time. The length of the

rectangle is indicative of the amount of time required to execute the job and its

colour coding lets the user know at a glance the type of wine being produced.

The graphical interface also allows the user to drag and drop the rectangles

to make manual adjustments to the schedule produced by the optimisation

algorithm.

Figure 3.4 shows the configuration interface of the software application that

allows the user to enter parameters that define the availability of each bottling

line. This interface needed to be completely flexible in terms of allowing the

user to specify any possible set of available and unavailable times for each line.

In this application the user is allowed to specify a typical weekly timetable, for

example a machine may be available from Monday to Friday from 8:00am to

6:00pm, and unavailable otherwise. It also allows the user to specify periods

of time in which there is a deviation from this typical schedule. For example,

ahead of a festive season, it might be desirable to make the machines work

longer hours, and possibly on weekends. This interface also allows the user to

allocate periods of time for regularly scheduled downtime for maintenance of

the machines.

Figure 3.5 shows a material requirements dialog that is part of the software

application. For any given order, the user may view the materials required to

produce the required number of bottles of wine, such as caps, corks, labels, and

so on. The application provides the user with information on the availability

of each material, based on knowledge of the opening inventory stock, that is

used for a running simulation over the time frame of the production schedule.

Additional knowledge of still-open purchase orders for additional materials, and

also knowledge of the lead times of various suppliers of these materials are

catered for; this allows the software’s underlying algorithm to make appropriate

scheduling decisions so as to best ensure that orders are sequenced in a feasible
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Figure 3.3: Visualisation of a schedule on multiple production lines in the soft-
ware application

manner. If scheduled too early, at a time when the materials would not be

available, an order would have to be passed over, possibly leading to other

disruptions in the schedule and hence in the factory itself.

3.4 Time-Varying Challenges in Wine Bottling

In this section, we will look at some business requirements that led to time-

varying constraints that had to be addressed in the software. Here we will only

consider the issues; their actual solution, including algorithmic details, will be

covered in a later section.

• Manual assignments : There are various scenarios in which the human

scheduler would need the ability to override the schedule that was pro-

duced by the evolutionary algorithm. For instance, it might be that some

of the information used as input by the algorithm may for some reason be
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Figure 3.4: Machine Availability Interface

Figure 3.5: Material Requirements Interface
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inaccurate; examples are the availability of dry goods and expected deliv-

ery times of raw materials, which are all imported automatically from the

company’s Enterprise Resource Planning (ERP) system. Hence the sched-

ule that is created may not be feasible and would need to be corrected by

the human scheduler. Another typical scenario is one where a very im-

portant customer makes a late, but urgent, request for a large quantity

of wine. Even if this causes severe disruptions to the smooth running of

the bottling plant, this type of request is usually accommodated due to

the high value placed on some customers, and the importance of main-

taining a good business relationship with them. In this kind of situation

the unusual placement of that urgent order in the production sequence is

not something that the evolutionary algorithm could perform because it

goes against most of the optimisation objectives that were trying to be

achieved in the first place. The software application that we developed

had to be flexible enough to allow its built-in evolutionary algorithm to

work in such a way that it could actively seek out an optimal solution that

satisfied the constraints described before, but at the same time allowed

inefficient manual overrides dictated by a human operator to co-exist with

the otherwise optimal solution. Another way of looking at this is that

the structure of the search algorithm had to be flexible enough to find lo-

cally optimal solutions in restricted neighbourhoods of the overall search

space, with those neighbourhoods being defined by user-specified manual

assignments.

As mentioned earlier, the application presents the schedule with both

graphical and tabular representations, each of which may be intuitively

manipulated by the user, simply by dragging and dropping graphical rect-

angles, or rows of a table. This provides the capability of altering the

sequencing of orders to suit a human users preference. Additionally, as

shown in Figure 3.6, there is a manual assignment interface that is ac-

cessed on a per-order basis and that allows the user to manually specify

all details about when and where a particular job should be scheduled.

• Machine breakdowns : From time to time, a bottling line will break down

and become unavailable for use. It may be that a solution found by the

optimiser previously would have been planned around that machine being

available during a period of time that has now become unavailable due

to the breakdown. The software must be flexible enough to repair the
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Figure 3.6: Manual Assignment Interface

previous solution to take into account the breakdown. A very simple

initial solution to this could be to merely shift the sequence of orders

previously assigned to a machine, starting at the point where the machine

breakdown started. All subsequent orders are scheduled later in time, by

an amount that roughly works out to be the duration of the breakdown

period. In some cases a more sophisticated approach is required where

a complete re-optimisation is performed to repair damage that was done

to the percentage of orders that will be delivered on time. This kind of

optimisation must attempt to keep as much of the existing schedule intact

while repairing the placement of the affected orders.

• Freeze periods : Every time the evolutionary algorithm is run, the possibil-

ity exists that a very different schedule could be produced when compared

to the one previously generated. This happens simply as a result of the

EA doing its job of finding an optimal solution as dictated by its objective

function (which changes each time new orders and constraints appear in

the system, which is virtually always). In a real-world application, it is

highly unlikely that this kind of approach could be tolerated. The pre-

ferred mode of operation is the following. The software is used to initially

create a schedule for a fairly long period of time, for example 2-4 months.

However, once that schedule is accepted and saved to an internal database,

subsequent daily use of the optimiser to schedule newly arriving customer

orders must be done in a controlled manner so that there is a buffer period
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at the beginning of the schedule that remains the same as it was the previ-

ous day. This unchanging portion of the schedule is referred to as a freeze

period. It is usually defined in terms of a number of days, for example 7

days. In order to achieve this effect, the evolutionary algorithm has to per-

form what we refer to as seamless meshing with an existing schedule. The

first 7 days of the existing schedule are frozen, and some of the previously

existing orders, along with new ones are re-shuffled by the optimisation

algorithm and attached in a neat continuous way with the orders in the

freeze period. The contents of the freeze period vary with time, as each

day some orders are executed and so are removed completely from the

schedule, and others that were once outside the freeze period gradually

move into it. This is referred to as a rolling time window.

On a more granular level, freeze periods are affected by live update feed-

back data coming from the factory floor. The current order on a given

bottling line is the first order showing up on the schedule. At any given

moment, it usually corresponds to an order that physically is in the process

of being executed in the factory. Our system is designed to receive updates

in near-real-time (every 5 minutes), thus letting it know how much of that

order has been carried out. That in turn affects the orders in the freeze

period because the size of the current order needs to be gradually reduced

to reflect what remains to be done, and consequently at the right-hand

end of the freeze period, more orders will come in. This sometimes leads

to a situation in which there is an order that straddles the freeze period

and the open-optimisation period.

Figure 3.7 shows a screen capture from our software application that il-

lustrates how the frozen period is managed. In the graphical area of the

window, where orders are represented by rectangles, on the left-hand side

of the screen there are a number of orders that are surrounded by a thick

bold border, indicating that they have been frozen. On the right-hand

side, are the orders that the optimiser is free to move around to find an

optimal schedule.

• Modified orders : Once a schedule has been created and saved, there might

be a situation in which the next time the software package is opened, it

realises that a modification has been made to one of the scheduled orders

in the database. This might be, for example, a change in quantity. More

or fewer bottles of wine may be required and, by adjusting the scheduled
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Figure 3.7: Freeze Period Illustration

order, the start and end times of all subsequent orders on the same bottling

line become affected.

• Poor/Excellent Job Execution: Due to a number of variables, the efficiency

of a bottling machine may be better or worse on any given day, and the

factory manager would expect the scheduling optimiser to take this into

account when creating a new schedule, or when adjusting an existing one.

A machine that is performing poorly will delay jobs scheduled further

down in time, and likewise a machine that is performing unusually well,

will bring jobs up earlier, which could in some cases have a detrimental

effect when we take into consideration the availability of dry goods. The

optimisation software must be able to deal with this time-varying issue by

re-adjusting the solution, or by re-optimising as necessary.

3.5 The Solution Using an Evolutionary Algo-

rithm.

In this section we will look at the structural, algorithmic and programmatic

details required to solve the problem using an evolutionary algorithm. We begin

by examining the representation of a candidate solution and then look at how

that abstract representation is converted (decoded) into an actual schedule with

dates and times. Next we look at the key operators employed to alter candidate

individuals. Finally we re-visit the time-varying problems described above and

describe how various elements of the evolutionary algorithm had to be modified
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to accommodate those issues.

3.5.1 Representation

One of the most important aspects to the solution of a problem using an evo-

lutionary algorithm is the representation used to encode a candidate solution.

Forcing the use of a particular representation may significantly impact on the

quality of the solutions found since many useful operators may be overlooked,

or may be cumbersome to program, thereby slowing down the execution of the

algorithm. For this application, we chose a representation that closely matched

the actual assignment of orders to machines.

For the wine bottling scheduling problem, the core of the problem was con-

ceptualised as having a number of orders that must be placed on a fixed number

of bottling machines in an efficient sequence. Hence the natural representation

to use is one of a mapping of lists of orders to machines. This can be visualised

as in Figure 3.8. The representation illustrated in this diagram is quite similar

to the final schedule presented visually in Figure 3.3 above. The difference is

that the actual decoding on the individual into a real-world schedule also takes

into consideration several other time-varying factors such as machine availabil-

ity, splitting of single orders into several sub-jobs and meshing with an existing

schedule.

The representation shown in Figure 3.8 is stored programmatically as a map

of machines to variable-length lists of orders. The list on any given machine is

sorted chronologically in terms of which orders will be carried out first. The

individual is constructed in such a way that the assignment of orders to ma-

chines is always valid, in other words the assigned orders always respect product

routings.

Machine 1

Machine 2

Machine 3

Machine n

Figure 3.8: Scheduling Individual Representation



76 CHAPTER 3. SINGLE SILO MODEL

3.5.2 Decoding

In order to manage the decoding process, we employed a concept we referred

to as time blocks. A time block, illustrated in Figure 3.9, is a data structure

that keeps track of a contiguous period of time. Each such block keeps track of

a start time, an end time and an activity that is performed during that time,

allow for the possibility that nothing is done actually done, in which case the

time block is referred to as an available time block. The link to the activity

performed during a time block may point to an external data structure that

contains any information on any level of detail that is required to accurately

model a scenario.

Job
Order
Customer
Product
...

Start 

Time

End

TimeTask

Associated

External Task Data Structure

Time Block Node

(May be null)

Figure 3.9: A Time Block Node

Decoding begins with a series of multiple linked lists of time block nodes

associated with each machine. Each machine has a list of available time blocks,

and occupied time blocks. At the outset, before anything is placed on a machine,

it would only contain a list of available time blocks, each representing a chunk of

time during which the machine is available for use. This is what would happen

in the nominal scenario. If there are manual decisions that were already made

by a human operator, then these would be reflected in the existence of some

occupied time blocks. More detail on this issue is given in section 3.5.4 below.

Decoding proceeds by going through all machine-job pairs found in the indi-

vidual representation and proceeding to the corresponding machine, finding an

available time block node, and marking it as occupied for the corresponding job.

Some jobs may not be able to fit in the first available time block, and may need

to be split into multiple parts. How this is done, indeed, if it is permissible at

all, depends on the policies of the business for which the scheduling application

is being created. In the case of the wine bottling application that we are con-
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sidering, orders were split across adjacent available time blocks. This process is

illustrated in Figure 3.10 below.

Machine 1

Machine 2

Machine 3

New Order to Schedule

Downtime

Downtime

Downtime

Figure 3.10: Illustration of the Decoding Process

An important issue that arises when decoding is performed in this way for a

scheduling problem is the question: in what order should the machine-job pairs

be considered? Should we select Machine-A first and process all of the orders

in its list, and then proceed to Machine-B and so on? Alternatively, should

we process one job from Machine-A’s list, then one job from Machine-B’s list

eventually cycling back to Machine-A, and keep on in that manner until all

jobs have been decoded? The answer to this question depends on the industry

being considered. For the wine bottling problem there are no dependency or

constraints between jobs running on different machines, and hence the former

approach was used. However, there are cases in which the second approach (or

possibly others) may be needed. For example in some industries there might

be a limit to the number of changeovers that are permitted to occur across an

entire plant in one day. In those cases, it is important not to bias the decoding

(or alternatively to deliberately and carefully bias it) to favor one machine, or

a group of machines.

3.5.3 Operators

A number of operators were used to manipulate the above representation. To

avoid the problem of having to perform extensive repairs based on invalid rep-

resentation states, crossover-type operators were avoided. Those listed below,

which are typical examples from the set used, may all be considered as mutation

operators.

• Routing Mutation: This operator modifies the machine that was selected
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to execute a job. An alternative is randomly chosen from the set of possible

options.

• Load Balancing Mutation: This is a variation to the routing mutation op-

erator which, instead of merely randomly choosing an alternative machine

for an order, could choose from a subset of machines that are under-loaded.

Such an approach would help with load-balancing of the machines.

• Grouping: This operator groups orders based on some common charac-

teristic, such as wine colour, bottle type, or destination export country.

There are several variants of the grouping operators. Some operate quite

randomly, looking for a group of orders based on some characteristic, and

then looking left or right for a similar group and then merging the two.

Other examples are given below.

• Recursive Grouping: A more directed variation on grouping is recursive

grouping. This operator seeks out an existing group of jobs based on

wine colour, then within that group performs random grouping based on

some other characteristic, such as bottle size. This process may then be

repeated inside one of the subgroups.

• Outward Grouping: Outward grouping is a term we use to describe the

process of identifying groups in a list of jobs based on a primary character-

istic, then randomly selecting one of them and from that location looking

left and right for another group with a common secondary characteristic

and finally bringing the two together. As a concrete example, we may

first identify groups based on a primary attribute, say closure type that

is, whether a screw cap or a cork is used to close the bottle – and then

randomly select a group that uses screw caps as a starting point. Next a

secondary attribute such as wine colour is considered. Suppose the group

of screw caps involves white wines, then we look randomly to the left or

to the right for a group based on the primary attribute that also involves

white wines. In the end we may end up merging with a group of jobs that

involves corks, but which happens to involve only white wines. The end

result is we have a larger contiguous group of white wine, with two sub-

groups, one with screw caps, the other with corks. The process of finding

a starting point and then looking outwards for subgroups to merge with

gave rise to the term outward grouping.



3.5. THE SOLUTION USING AN EVOLUTIONARY ALGORITHM. 79

• Order Prioritisation: Orders that may be showing up as being produced

late after decoding an individual are stochastically prioritised by moving

them left in the decoding queue. Again, this type of operator could be

made more intelligent than random by moving groups of jobs along with

the one that is identified as being late. As a result the job gets priori-

tised, but at the same time disruption to the grouping is minimised. This

operator works on one of the most important objectives of the solution,

namely to maximise DIFOT.

3.5.4 Solving the Dynamic Issues

We will now look at how we dealt with the time-varying issues that were iden-

tified in section 3.4. As will be observed, the problems were addressed by a

combination of modifications made to the initial time block node linked-lists,

to the decoding process, by altering the input variables to the optimiser, and

by introducing a step between the optimiser and the human user called solution

re-alignment.

• Solving Manual Overrides : This problem was solved by applying a con-

straint to the decoding process, and indirectly affecting the fitness func-

tion. The software application allows the user to select a particular order,

and to specify which machine it should be done on, as well as the date

and time of assignment. This becomes a timetable constraint for the geno-

type decoder. When a candidate individual is being decoded, the initial

state of the machine time block usages includes the manually assigned

orders as part of the list of occupied time blocks. Subsequent decoding of

non-manually-assigned jobs would take place as usual using the remaining

available time blocks.

The fitness function would then evaluate how well the individual was de-

coded into the partially occupied initial machine state. As in the case

where there are no manual assignments, it is up to the evolutionary oper-

ators to modify the individual in such a way that its decoded form meshes

well with the fixed orders to reduce changeovers and so on. The initial

state of available time blocks used for decoding is illustrated in figure 3.11.

In this approach, it is primarily the fitness function that would guide the

search to a relatively good solution built around the manual assignment.

However it is also important to de-emphasise some of the more structured
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and aggressive operators such as recursive grouping and outward group-

ing, which were designed with a clean slate in mind. They would still

contribute toward the search for a good solution in parts of the time pe-

riod that do not contain manual assignments, but the main evolutionary

algorithm loop should keep track of the performance of these operators

and adjust their probability of application accordingly.

Machine 1

Machine 2

Machine 3 Downtime

Downtime

Downtime

Manually Locked

Figure 3.11: Modified Initial Time Blocks for Manual Locks

• Solving Freeze Periods : The application allows the user to select a freeze

date and time on each machine used in the bottling plant. During an

optimisation run, all assignments in the existing schedule that are before

the freeze period cutoff are internally marked as manual assignments, and

therefore behave in exactly the same way as described above for user-

defined manual assignments.

It is also important to pay attention to jobs that might straddle the freeze

period cutoff date. Such orders need to be fully frozen to ensure correct

results. Another situation that needs attention is where a job may be split

into several pieces, due, for example, to relatively low machine availability

on consecutive days, with some of those split pieces falling into the frozen

period. Care must be taken to also freeze the parts that are outside of the

freeze period, but which belong to the same order.

• Solving Machine Breakdowns, Modified Orders, and Poor/Excellent Job

Execution: These three problems were solved using a similar approach.

In the case of Modified Orders, when the application re-loads and realises

that an existing order has been modified, for example its quantity has

been increased or decreased, then the necessary action to be taken is at

the level of modifying the existing solution, before it is fed back into the

next run of the evolutionary algorithm. This was accomplished using a

process call solution re-alignment.
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Essentially, on each machine, all assigned orders, sorted in order by start

date, are examined for any changes to the underlying orders. A new

instance of an available time block nodes linked-list is created and the

assigned orders are then re-inserted into it. By reviewing each order as

it last existed in the schedule, with the order record coming from the

company’s ERP system, it is possible to allow assignments to be short-

ened or lengthened as needed. Following the re-insertion of a modified

assignment, all subsequent assignments are modified to fit in the resulting

changed available space. This process has a direct effect on the number

of orders ending up in the freeze period, and therefore on the amount of

available time that the optimiser has at its disposal for the next run. The

process of solution re-alignment is illustrated in figure 3.12

Machine 1

O−2

O−3 O−4

O−2 O−3 O−4 O−4

Modified Order (expansion)

Solution 

Re−alignment
DowntimeO−1

DowntimeO−1 O−2 Available

Figure 3.12: Realigning a Solution

Solution re-alignment is a step that links the internal decoded representa-

tion of an individual with the dynamic world of the human operator in which

multiple constraints can vary from one use of the application to another. It

allows an existing solution to be adapted to match constraints that may have

changed, and possibly subsequently allow the evolutionary algorithm to run with

a freeze period that now accurately reflects the effect of the changed constraints.

Re-alignment can be thought of as a second-level decoding process that works

with an already decoded representation as opposed to working with a genotypic

representation.

As we already mentioned earlier in chapter, the system has been deployed

into a live production environment at a few locations, and is in daily use.
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3.6 Summary

In this chapter, we looked at issues that arise when dealing with dynamic op-

timisation problems in real-world applications within a single silo. A literature

review was presented in line with our classification of dynamic problems ac-

cording to time-varying objective functions, input variables and constraints.

An important consideration, that was emphasised throughout the chapter, was

that complexities arising due to time-variability had be dealt with adequately

in order to ensure that the solution produced is usable in an actual business

environment. Given that a large real-world software application was presented

as the main outcome of the research presented here, the need to ensure that

those issues were resolved in a practical way that still allowed the power of

evolutionary algorithms to be applied was a main theme.

From the three types of dynamic optimisation problems, we identified the

need for algorithms addressing the issue of time-varying constraints when deal-

ing with real-world applications. The majority of research on dynamic optimi-

sation problems is focussed mainly on time-varying objective functions, which

clearly deserve research efforts. However, from the business perspective the

main issue of a dynamic environment are the constraints that change over time.

The issues raised were exemplified by a case study based on an evolutionary al-

gorithm scheduling optimiser that was implemented for use in the wine bottling

industry. The software, having been deployed and put into daily use in a live

production environment, serves as empirical evidence that the approaches put

forward in this chapter have passed the litmus test of suitability for real-world

applications.

One of the key issues was the need to be able to allow a human operator to

manually decide certain parts of the eventual solution. In effect, what this does

is modifies the search space explored by the evolutionary algorithm. Although

there are undoubtedly better solutions that exist in the unconstrained search

space, when we take into account these so-called manual assignments, the opti-

mal solution based on those restrictions must be found; this would satisfy the

immediate business needs that gave rise to the need for human intervention into

the search process.

Another key issue that was explored was the need to ensure that future

schedules mesh seamlessly with existing ones. This was handled by extending

the concept of manual-assignments to the concept of a freeze period in which

existing schedule assignments are treated as unchanging, and therefore tanta-



3.6. SUMMARY 83

mount to numerous manual assignments. This has the benefit of allowing factory

operators to continue working with the assurance that preparations made for

the next few days will not be disrupted, and planning can proceed in a smooth

and normal manner.

Overall, what has been illustrated is that in implementing a scheduling evo-

lutionary algorithm for use in a practical commercial application, it is necessary

to design almost everything, from the representation, the decoding process, the

operators and the solution structure. This must be done in such a way that

maximum flexibility is maintained with respect, first, to allowing time-varying

constraints to be easily considered by the core algorithm that finds an optimal

schedule, and second, to allowing an easy and natural flow between data struc-

tures used directly by the optimisation algorithm and the user interface that is

manipulated by the human operator.

From the supply chain perspective, this chapter provided an example of a

single silo problem. However, as have been mentioned before, the real business

value of optimisation is evident when the optimisation is done in the context

of the whole supply chain. In Chapter 7 this bottling system is used as a part

of the whole wine supply chain to find a global optimum from the business

perspective.
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Chapter 4

Two-silo Supply Chain

This chapter considers an artificial two-silo supply chain and compares several

techniques for global supply chain optimisation. One technique employs sequen-

tial evolutionary optimisation of silos, that is, one silo is optimised and its out-

put is then used as an initial input parameter for the optimisation of the second

silo. This technique is compared with several techniques based on cooperative

coevolution, which employ optimisation of both silos in parallel with periodic

cooperation between the silos. Each technique is tested on an experimental sup-

ply chain. The results show that parallel optimisation with cooperation yields

higher quality solutions.

4.1 The Problem

A simulated supply chain with two silos has been built to investigate the issues

connected with its global optimisation (see Figure 4.1). The first silo (S1) is a

production silo that assembles goods and then ships these finished products for

consideration into the second silo. The second silo (S2) serves as a distribution

component. It transports goods to customers using a fleet of trucks. This

simulates processes in real-world supply chains. The goal of optimisation for

this supply chain is to minimise overall expenses that occur with production

and distribution. Below is a more detailed description of functionality of each

silo.

The first component in the supply chain is a production scheduling silo,

and it is represented in the literature as a job-shop scheduling problem (JSSP).

85
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S1 S2

Figure 4.1: Simulated two-silo supply chain

This problem consists of a set of jobs J = {J1, . . . , Jn} and a set of machines

M = {M1, . . . ,Mn} on which these jobs can be executed. Each job has a set of

operations O and a specific order of execution on each of the existing machines.

Each operation i of the job Jj on machine Mk takes certain processing time and

is denoted by Pi,j,k. Two operations cannot be executed on a machine at the

overlapping intervals of time. The goal is to find such ordering of these jobs to

minimise the total time needed to produce all of them.

The second component of the system is a distribution silo and it represents

the vehicle routing problem (VRP). The basic VRP is defined as follows. Given

the undirected graphG = (V,E) where V = {0, . . . , n} is the set of vertices, each

vertex v ∈ V \{0} represents a customer destination with non-negative demand

qi and vertex 0 represents a depot. E = {(i, j) : i, j ∈ V, i < j} is a set of edges

which serve as routes between destinations with travel cost cij . The depot has

a fleet of m identical vehicles each with a maximum vehicle capacity of Q and

a maximum route length of L. The goal of the problem is to find a set of m or

at most m routes with the minimal total travel cost such that each customer is

visited exactly once and each route starts and ends at the depot. The solution

needs to satisfy maximal capacity and maximal route length constraints.

The combination of these two components yields our simulation of the supply

chain system: one silo is producing goods, and the other one is responsible for

distributing them to customers. The overall supply chain works as follows.

After an order is produced at the production silo it is moved to the distribution

centre’s second silo depot. The depot then assigns a truck and selects a route

for delivery to the customer. To make this model closer to the real world, trucks

deliver goods to customers by the end of each production period of length τ .

For example if τ = 7 then delivery of goods starts at the end of the week for

products produced during the week. If during the production week, products a

and b have been produced, then both are shipped to customers at the end of the

week. Later in the chapter we will refer to orders produced within one τ -period

as a bucket.
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The performance of the first silo is measured in time units, while the per-

formance of the vehicle routing problem is measured in kilometres. In order

to view the global performance of the supply chain, all this is converted to a

money equivalent:

Cost = αX + β
∑

Yi (4.1)

where X is a makespan of the produced schedule in time units, and Yi is a

total trip length of all trucks during the production period i. Thus αX is a

production cost and β
∑

Yi – a transportation cost. The goal of the problem on

this supply chain is to minimise Cost. Although this problem can be considered

as a multi-objective optimisation problem in this thesis we will be aggregating

the objectives into a single value.

For the optimisation of the VRP silo, we use Prins’ algorithm [145] and a

customised algorithm based on common techniques cited in the literature [38]

for optimisation of JSSP silo. Using these algorithms as building blocks, two

different approaches to solving the problem are discussed in the next section: a

sequential evolutionary approach and an approach based on cooperative coevo-

lution [141].

4.2 Algorithms

Two local algorithms to address JSSP and VRP are described in this section.

Later in the section, we explain how to use these algorithms as building blocks

to construct algorithms that solve the problem of global optimisation from the

business perspective of this supply chain.

Sequential and cooperative coevolutionary (parallel) approaches are shown

in this section. The sequential approach uses the optimal solution of the first silo

to feed into the second silo as input, and based on that, produce a solution for

the second. Several variations based on cooperative coevolution are proposed:

basic coevolutionary, coevolutionary based on pareto front selection, and an

approach with immediate evaluation based on Clarke and Wright’s algorithm

[43].

4.2.1 Algorithm for the JSSP

The following version of the evolutionary algorithm was used for this problem.
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Each solution in a chromosome is encoded as a permutation in the following

way:

X = (x1, . . . , xnm) (4.2)

where n is the number of jobs and m is the number of machines with a total of

n×m genes. This representation is and operation-based representation, which

means that each gene in the chromosome is one operation and each job appears

in the chromosome exactly m times. An advantage of this representation is that

all permutations make a valid schedule. This representation was proposed by

Gen et al. [108]. An example of such representation is chromosome

(1, 2, 1, 2, 3, 3, 2, 1, 3).

which means that operations will be executed in the following order: O11, O21,

O12, O22, O31, O32, O23, O13, O33. Here Oij is j-th operation of the job Ji. To

build a schedule from this sequence we start from m empty machines with no

orders on them and then add operations in the order specified by the chromo-

some. Each operation is assigned greedily to its machine in such a way that it

is executed as soon as possible without violating these constraints: operation

Oi,j+1 cannot be executed before operation Oij is finished and no two jobs can

be executed on the same machine at the same time.

The operators that follow were used for the algorithm:

• Partially mapped crossover (PMX). This operator can be thought of as a

crossover for permutations as it preserves a count of each element in the

permutation. This operator has been proposed by Goldberg and Lingle

[71] to address the blind travelling salesman problem. The basic algorithm

under PMX is the following. Firstly, two chromosomes are aligned and

two cut points are selected at random. Sections between these cut points

are swapped. In the matching section, numbers that stand across each

other define the numbers to be swapped in each chromosome. Figure 4.2

shows an example of insertion mutation.

• Insertion Mutation. This operator selects a gene at random and then

inserts it to another random position. Figure 4.3 shows an example of

insertion mutation.

• Inversion Mutation. This operator [70] randomly selects two points in the
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0 0 0 2 2 2 1 1 1

0 2 1 1 2 0 2 0 1

0 0 1 1 2 2 0 2 1

1 1 0 2 2 0 2 0 1

Figure 4.2: Partially mapped crossover (PMX)

0 1 1 2 2 2 1 0 0 0 0 0 1 2 2 2 0 0

Figure 4.3: Insertion mutation

chromosome and inverts all values in between these points. Figure 4.4

shows an example of this operator.

• Swap Mutation. This operator, also known as a reciprocal exchange mu-

tation operator, selects two genes in the chromosome at random and then

swaps them. Figure 4.5 shows an example of this mutation.

The first step of the algorithm is population initialisation which creates a

population with random individuals. Each individual is assigned a fitness value

by an evaluation function which is designed so that its value is indicative of how

well the individual solves the problem. For this problem the evaluation function

is a makespan of the schedule created from the chromosome taken with the

negative sign: FitnessSched = −Makespan(schedule)

During the main algorithm loop, individuals with higher fitness values are

given more chances to reproduce. The reproduction process is carried out with

the help of operators which take one or two individuals and produce offspring.

In every generation each of the operators are executed with specified probability.

This algorithm uses a steady state population and the tournament selection of

size two.

0 0 0 1 1 1 2 2 2 0 0 2 2 1 1 1 0 2

Figure 4.4: Inversion mutation
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0 0 0 1 1 1 2 2 2 0 2 0 1 1 1 0 2 2

Figure 4.5: Swap mutation

4.2.2 Algorithm for the VRP

An evolutionary algorithm was used to solve the VRP problem. This algorithm

is based on a memetic algorithm created by Prins [145].

Each chromosome of the population is the permutation of n clients. In con-

trast of some algorithms [109] for the VRP this permutation does not contain

trip delimiters. The order of genes in the chromosome represents order in which

these customers would be visited by a single truck. The optimal splitting proce-

dure Split is then used to produce the best partitioning of the trips. It is based

on finding the shortest path on the auxiliary graph, as in the work of Beasley

[17] about the route-first cluster-second heuristic.

This weighted auxiliary graph H = (X,A,Z) contains a set of n + 1 nodes

X = {0, . . . , n}, a set of edges between nodes A and the trip cost of the edge

zij . Here, edge (i, j), where i < j, exists if the trip from customer i + 1 to j is

feasible, that is, it does not violate the capacity and route length constraints.

An optimal route partition corresponds to the shortest path from the depot,

which is node 0, to the customer n in the auxiliary graph. The shortest path

can be computed sufficiently fast using Dijkstra’s algorithm. A good description

of this algorithm can be found in Cormen et al. [48].

The current implementation does not actually build H in memory but rather

builds it online getting the list of all neighbouring edges only when needed.

The operators discussed below were used for the algorithm.

• Order Crossover (OX). Since each chromosome of the population is a

simple permutation, a classic permutation operator such as OX can be

applied. It was first proposed by Davis [54]. Basically, it builds offspring

by choosing a subsequence from one parent and preserving the relative

order of genes from the other. Firstly, two cut points are selected at

random, and segments between these points are copied to the offspring.

Next, starting from the second cut point of one parent, genes from the

second parent are copied in the same order, omitting the symbols already

present in the first parent. After reaching the end of the sequence, we

continue from the start of the string. Figure 4.6 shows an example of this
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3 2 4 5 1 3 2 4 1 5

Figure 4.6: Order crossover (OX)

operator.

• Local Search Operator (LS). This operator, using the Split procedure, first

converts the genotype (permutation) to the phenotype which is a set of

truck routes. Then, it looks at certain O(n2) neighbourhoods generated

with 9 different trip modifications. For details of these modifications see

[145]. Each iteration of LS stops at the first improving modification. After

this modification is applied the process is repeated until no modification

can be found.

The fitness value of an individual in the population would be a sum of all

route lengths taken with the negative sign. In order to avoid premature conver-

gence a special dispersal property is maintained in the population. The basic

idea of the dispersal property is to have the population sorted in increasing order

of fitness values, and the fitness difference between two consecutive individuals

set to at least ∆ > 0.

∀P1, P2 ∈ Π : P1 6= P2 ⇒ |F (P1)− F (P2)| ≥ ∆ (4.3)

where Π is a population and F is the evaluation function for the chromosome.

The initial population consists of σ chromosomes generated at random in

such a way that they comply with the dispersal property 4.3. They are generated

one at a time, and if the new chromosome has a difference with one of the

chromosomes already in the population of less than ∆ it gets dropped and a

new one is generated, otherwise it is inserted into the specific position in the

population to keep the population sorted.

During the main algorithm loop, individuals with higher fitness values are

given more chances to reproduce. The selection of parents is made with a

tournament selection of size two. Every generation two parents are selected,

run through the OX operator and then one of the offspring produced is selected.

This offspring is improved by the LS operator with a certain probability pm.

After this, if the created offspring does not violate the dispersal property 4.3, it

replaces an individual from the second half of the population, i.e the individual
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with an index greater or equal than ⌊σ/2⌋. A steady state population is used

for this evolutionary algorithm.

4.2.3 Sequential Approach

The two algorithms discussed above (for JSSP and VRP) produce reasonably

good solutions to the problems. They were checked against the standard data

sets. These algorithms are used to optimise the proposed model of the supply

chain.

For the actual supply chains, the production silo has a manager who is in

charge of optimal scheduling of operations and the distribution silo has another

manager who tries to minimise transportation costs of the goods received from

the first silo. Both managers try to optimise their work thinking only about

their own silo without much exchange of information.

In this experiment a simulated supply chain is created that mimics this

process. The JSSP algorithm will be run on the dataset of the first silo producing

an optimal production schedule. The produced schedule will then be fed into

the algorithm of the second silo. In the production silo, the whole makespan is

divided into intervals of length τ . These intervals correspond to the production

periods when trucks start to deliver goods produced during this period. For

orders of each period (bucket), the VRP algorithm is run and results of each

run are summed. The total performance of the supply chain is computed using

equation 4.1. This method will produce a global solution of the supply chain

and will be referred to further in this chapter as the sequential approach and

abbreviated as SEQ.

4.2.4 Cooperative Coevolutionary Approach

Another approach to tackle the aforementioned supply chain problem is based

on cooperative coevolution. In this method two algorithms, each corresponding

to a single silo, are run in parallel. Cooperation between silos occurs during

evaluation of individual solutions. Solutions from one silo are evaluated based

on their performance when combined with a representative solution from the

other silo and vice versa. The JSSP and VRP algorithms described above are

for silos 1 and 2 respectively.

The main difference of the cooperative coevolutionary algorithm from oth-

ers is the way it evaluates individuals. In order to evaluate the fitness of the

individual, several partner representatives from another species are selected and
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combined with the individual, thus forming the global solution for the supply

chain. The fitness of the best combination is then assigned to the individual

and this partner is saved in the chromosome.

The question here is how to combine the two individuals? A scheduling

individual produces a product order in which goods are made. From this product

order, job order buckets are extracted. Each job order in a bucket has a customer

and each gene of the VRP individual also corresponds to a customer. Therefore

job order buckets can be combined with a VRP individual to produce truck

routes. To get routing information from a VRP individual corresponding to a

particular bucket, only genes that refer to customers from job orders of that

bucket need to be considered. All other genes are ignored. Suppose, we have

a bucket with orders that need to go to customers 2, 5 and 7 and our VRP

chromosome is (5, 2, 3, 4, 6, 1, 7, 8). The modified chromosome for this bucket

is (5, 2, 7), so to these orders will be distributed in this exact order. The Split

is then applied to form the routes. The same combining procedure is applied

to all the buckets, then distances of all routes are added and multiplied by the

coefficient β to get the total transportation cost. The global cost of the solution

is transportation cost plus production cost computed with the equation 4.1.

In the beginning, each of the species is initialised with the random individuals

by procedure initialise(). As with the VRP algorithm, random initialisation

in the VRP species should be done in such a way that the population of VRP

species complies with the dispersal property 4.3.

During the main algorithm loop, the JSSP algorithm evolves the schedul-

ing species and VRP algorithm evolves the VRP species in exactly the same

way as in the single silo optimisation, with a few exceptions. One difference

is that fitness evaluation is done in a cooperative way, as was described above

rather than in the sequential way. Each species uses the same operators as

were used in the original algorithms, except additional InsertionMutation, In-

versionMutation and SwapMutation are applied and the LS operator improves

routes only after solutions are combined and routes created. The function

applyOperators(species) applies operators relevant to each species.

The selection of partner representatives is done by the procedure

selectPartnerIndividuals() in the following way. For representatives from

scheduling species, 3 individuals are selected: the best, and two random ones.

For partner representatives from VRP species, te population is divided into three

equal intervals and a random individual from each interval is chosen. Since in-

dividuals in the population are sorted by fitness values, this approach makes



94 CHAPTER 4. TWO-SILO SUPPLY CHAIN

sure that a diverse range of individuals is selected. In addition to 3 random

individuals the best individual (the first individual in population) is also se-

lected. Due to the high dependency between the two silos the strictly greedy

algorithm of choosing just the best individuals will not produce good results.

This dependency effect was studied by Potter [141] and may be explained that,

with a best partner strategy, the algorithm gets frozen in the Nash equilibrium.

To give each species some time to adapt to representatives of the other

species, partner representatives are not selected every generation; instead they

are selected every certain number of generations, called freezing time and stored

in memory. Each species has its own representative freezing time.

During the evolutionary loop both species use steady state populations and

tournament selection of size two for parent selection, as in the original JSSP

and VRP algorithms.

Algorithm 2: Coevolutionary global optimisation

gen← 0
for species ∈ allSpecies do
initialise(species)

end for
for species ∈ allSpecies do
evaluate(species)

end for
while gen < maxGen do
gen← gen+ 1
selectPartnerIndividuals()
for species ∈ allSpecies do
applyOperators(species)
evaluateNewIndividuals()

end for
end while

In the remaining part of this chapter this algorithm will be referred to with

the abbreviation B+2R (best plus two random).

4.2.5 Cooperative Coevolution with Non-dominated Par-

ent Selection

One of the main decisions when designing an evolutionary algorithm based on

cooperative coevolution is the choice of the method of selecting partner indi-

viduals. The approach discussed in this subsection employs an algorithm very
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similar to the one discussed in the previous subsection, with the difference be-

ing the way the partner individuals are selected. This method is based on a

non-dominated sorting procedure, that is, sorting all solutions by the level of

their dominance relative to the other solutions. With this algorithm, all non-

dominated solutions are of level one, then these solutions are disregarded, and

with this consideration all non-dominated solutions from the rest of the popula-

tion are assigned a level two. This procedure is repeated until all solutions are

assigned a dominance level.

Each silo in the supply chain can be treated as a separate problem without

considering the other silos and, hence has its own objective. The production

makespan is the individual objective for the first silo without considering the

second one. For the VRP problem the total length of the route is calculated as

its objective. However, the objective of the second silo considers orders grouped

in time buckets from the random individual of the first production silo. In this

way each global solution (i.e. the combination of solutions from the first and

second silo) apart from the combined fitness have two additional independent

fitnesses.

Partner selection with the current approach works as follows. At each gen-

eration all current global solutions are put on the plane according to their two

objectives. Then the first non-dominated set of solutions is found. A partner

individual is randomly chosen from this set.

In the remaining part of this chapter this algorithm will be referred to with

the abbreviation NDPS (non-dominated partner selection).

4.2.6 Cooperative Approach with On-the-fly Partner Gen-

eration

This algorithm addresses the two-silo problem with a variation of the cooper-

ative coevolutionary algorithm described above. The scheduling individual is

produced in the same way and a population of scheduling individuals is stored.

In contrast to the previous algorithm, VRP individuals are not stored, and are

generated on the fly using Clarke and Wright algorithm [43].

Clarke andWright’s algorithm for n customers starts with n routes, one route

per customer. Then the algorithm tries to merge routes to create routes that

serve several customers per route, thus reducing the total cost of the solution.

This procedure is continued until no further route merge can be made.

In the current approach, the solution for the scheduling problem using an
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evolutionary algorithm is described in subsection 4.2.1. As with the coopera-

tive coevolutionary approach, evaluation of a scheduling individual is done by

combining it with the partner vehicle routing individual. However, in this algo-

rithm a partner vehicle routing individual is produced deterministically during

each evaluation, based on the scheduling individual, so the population of VRP

individuals is not stored.

When a particular scheduling individual needs to be evaluated, its schedule

is divided into time buckets. Then a vehicle routing problem for each bucket is

solved and the result is added to the total fitness of the vehicle routing individual

and then total fitness is calculated according to the formula 4.1.

In the remaining part of this chapter this algorithm will be referred to by

the abbreviation FLY.

4.3 Experiments and Results

This section presents the results of experimental runs of the sequential and

coevolutinary approaches to the two-silo supply chain problem.

The evolutionary algorithm for this problem was implemented in Java. A

set of tests was developed based on the standard data sets for vehicle routing

and job-shop scheduling problems. JSSP data sets were taken from instances

proposed by Taillard in [163]; in particular ta11, ta35, ta51, ta70 and ta71 were

used. For the VRP test cases instances proposed by Christofides et al. [39] were

taken, in particular CMT-1, CMT-2 and CMT-3. In table 4.1 the column Size

corresponds to the number of customers and hence the number of orders in the

experiment.

In order to make a data set for the supply chain model one instance of

the JSSP data set for the first silo and one instance from the VRP dataset

for the second silo, were taken. The following combinations were used: ta11

with CMT-1, ta35 with CMT-1, ta51 with CMT-2, ta70 with CMT-2 and ta71

with CMT-3. This defines job orders, depot location, customers and customer

coordinates. The missing link between the two silos is the mapping between job

orders and customers that was developed for each data set.

Due to the stochastic nature of evolutionary algorithms, each experiment

was executed 50 times, so as to allow for statistically accurate results. The

average, standard deviation, minimal and maximum of all runs were recorded.

For the total price evaluation from equation 4.1 α = 1.0 and β = 2.0 were taken.
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Parameters for the sequential approach are the following:

• JSSP algorithm:

– Number of generations = 1000000

– Population size = 50

– PMX operator probability = 0.7

– InsertionMutation operator probability = 0.3

– InversionMutation operator probability = 0.3

– SwapMutation operator probability = 0.3

• VRP algorithm:

– Number of generations = 10000

– Population size = 30

– Crossover operator was executed every generation

– Local search probability = 0.2

– ∆ = 0.5

Below are parameters for the coevolutionary approach:

• Number of generations = 200000

• Parameters used for scheduling species:

– Species size = 20

– Freeze time = 50

– PMX operator probability = 0.7

– InsertionMutation operator probability = 0.5

– InversionMutation operator probability = 0.5

– SwapMutation operator probability = 0.5

• The following parameters were used for the VRP species:

– Species size = 20

– Freeze time = 50

– Order crossover operator probability = 1.0
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– InsertionMutation operator probability = 0.5

– InversionMutation operator probability = 0.5

– SwapMutation operator probability = 0.5

– ∆ = 0.5

These parameters were chosen by the series of manual exploratory experiments.

Table 4.1 shows the comparison of the results. In all the data sets we can see

that all coevolutionary approaches (B+2R, NDPF, FLY) produce better results

on average with smaller standard deviation. In the first dataset B+2R and FLY

produce very similar averages (2446.19 and 2442.85) with different standard de-

viations. The two-tailed p-score of this case is 0.50. This is due to the small data

set size. The number of fitness evaluations in the coevolutionary approach is

about 1.4 times larger than in the sequential one. However, an increasing num-

ber of fitness evaluations in the latter method would not produce significantly

better results, as after a number of generations used in the current algorithm it

converges to the local optimum. Another issue with the cooperative approach is

that fitness evaluation of each pair of individuals is a much more computation-

ally expensive simulation. With the sequential approach, the simulation needs

to be run only for the evaluation of VRP individuals.

After comparing the coevolutionary approaches, despite our hopes, the NDPS

did not produce solutions of as good quality as B+2R and the FLY. It was also

the most computationally expensive approach as a pareto front needs to be

recreated (at least partially) for each generation. The advantage of the FLY

algorithm is that it is much quicker than the B+2R, due to the deterministic

Clarke and Wright heuristic, but it was not superior to the simple B+2R ap-

proach, except being slightly superior in the first test case (size 20). But if we

take into account its standard deviation, B+2R is a clear winner; in most of

the experiments it has a significantly lower standard deviation than the other

approaches. This experiment shows also that very often a simple methodol-

ogy (in this case the selection mechanism) creates better solutions than more

sophisticated algorithms.

This experiment confirms our initial hypothesis that cooperation between

components while optimisation produces higher quality solutions. Figure 4.7

shows the visual representation of the solution produced by the coevolutionary

approach. Figure 4.8 illustrates the solution produced by the sequential ap-

proach on the same dataset. It is clear that the second picture has a better

quality solution for the JSSP, whereas routings for the VRP are very chaotic;
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Experiment Size Average Min Max StdDev
SEQ 20 2603.28 2407.01 2800.69 93.57
B+2R 20 2446.19 2395.45 2484.06 32.07
NDPS 20 2527.40 2375.39 2702.21 78.69
FLY 20 2442.85 2285.76 2653.84 83.62

SEQ 30 3761.86 3451.21 4127.81 105.98
B+2R 30 3514.18 3389.71 3597.83 68.16
NDPS 30 3569.85 3336.29 3798.74 115.41
FLY 30 3530.78 3358.27 3732.18 89.19

SEQ 50 5941.21 5453.55 6390.89 205.68
B+2R 50 5658.66 5372.54 5969.93 157.08
NDPS 50 5840.32 5463.54 6215.18 142.15
FLY 50 5760.12 5447.79 6164.37 170.89

SEQ 50 6387.10 6046.69 6729.65 156.76
B+2R 50 6103.58 5732.16 6452.84 144.94
NDPS 50 6287.59 5997.84 6575.29 141.08
FLY 50 6169.14 5785.13 6582.39 170.41

SEQ 100 11859.45 11205.47 12532.39 295.91
B+2R 100 10844.74 10788.89 10900.58 55.84
NDPS 100 11265.19 10733.88 11791.87 245.41
FLY 100 10863.28 10782.85 11795.49 267.23

Table 4.1: Run results of the two-silo experiment

customers within the same road are located at quite a distance from each other.

Regarding the solution produced by the cooperative coevolutionary approach,

the routings are more clustered for a specific area, and the total cost of exe-

cution of the second scenario is lower than the first. Here the second solution

cooperated with the first to reach a better overall solution.

4.3.1 Optimal Parameter Setting in the Two-silo Experi-

ment

One of the characteristics of algorithms based on cooperative coevolution is

that they make it very hard to understand population dynamics and parameter

choice. From our experimentation species size was found to be the parameter

that most affected the result of the algorithm.

The following experiment has been conducted in order to find out the best

parameter setting for the cooperative coevolutionary algorithm that has been

used. The experiment was run for all parameter combinations in the range
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Figure 4.7: Solutions produced by cooperative coevolutionary approach

Figure 4.8: Solutions produced by sequential approach
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Figure 4.9: 3D grid for parameter setting

from 5 to 100 with a step of 5 for both species sizes. For each parameter pair,

the experiment was run 10 times and the results of each parameter set were

accumulated and analysed. Ten runs of experiment were conducted for species

size pairs (5, 5), (5, 10), (5, 15), . . . , (5, 95), (5, 100), (10, 5), (10, 10), . . . , (10,

100), . . . (100, 100). Here a pair (x, y) means that for the given experiment

population size for the first species was x, and for the second was y.

The aggregated result of the experiment has been plotted on the 3D grid

and shown in figure 4.9. X and Y coordinates on the plot represent species sizes

of scheduling and vehicle routing problems respectively, and the Z axis shows

the fitness.

The results show that using a small population size for the scheduling silo

produces significantly better results than for other population sizes. Another

observation from this grid is that a change in population size of the first species

has a more significant effect on optimisation than the second parameter.

4.4 Summary

In this chapter we considered a two-silo simulated supply chain problem with the

production and distribution components. Several approaches were employed: a

sequential evolutionary and a few variations of cooperative coevolutionary ap-

proach. The latter produced higher quality solutions due to the use of cooop-

eration between supply chain silos. Differences between cooperative approaches

were discussed.
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The next chapter upgrades the existing two-silo model to support multiple

silos and uses similar techniques based on cooperative coevolution to produce

good quality results.



Chapter 5

Two-echelon Multi-silo

Supply Chain

The previous chapter described an experimental supply chain with a relatively

simple structure – two connected silos. This two-silo model can also be thought

of as a two-echelon model with one silo in each echelon. This chapter enhances

the previous supply chain by having several silos in each of two echelons with

more complex flows between the echelons. The first section presents an artificial

multi-silo two-echelon supply chain, and compares several techniques for global

supply chain optimisation similar to the ones presented in the previous chap-

ter. One technique employs a sequential evolutionary optimisation of silos, that

is, the output of one silo is used as initial input parameter for the connected

silos of the next echelon. It is compared with the cooperative coevolutionary

approach which optimises all silos in parallel with periodic interaction between

the participating components. Each technique is tested on an experimental

supply chain. Two principal flow structures of the supply chain are explored:

one-to-many and many-to-one flows. Results show that parallel optimisation

with cooperation yields higher quality solutions.

Since supply chain models have different types of flows and many silos, it

becomes complicated to run, test and analyse these models. The right software

design decisions need to be made in order to easily modify different experimen-

tal runs with the same codebase. Hence, the simulation framework has been

developed to address these challenges, and is discussed in subsection 5.1.3.

The second part of the chapter describes a real-world example of multi-silo

103
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two-echelon optimisation with slightly different flows between the silos of the two

echelons: each silo of the first echelon has one-to-one flow with another silo of

the second echelon. This problem is based on an existing Australian company

that specialises in producing sheet steel. A proposed solution based on the

variation of the cooperative approach with on-the-fly partner generation (FLY),

and the experiments conducted, are presented. It also shows the importance

of global optimisation from the business perspective: in this problem optimal

batching by itself, without consideration of customer locations does not bring

much value to the final solution, so the overall supply chain is considered during

the optimisation.

5.1 Two-echelon Experimental Model

The following subsection describes an experimental two-echelon supply chain,

flows between the components, proposed algorithms and presents a comparison

of the results of running these algorithms.

5.1.1 Introduction

The previous chapter discussed the two-silo supply chain which represents one

type of material flow between silos in supply chains: a one-to-one flow. This is

the simplest type of sequential supply chain. However, real-world supply chains

may contain more sophisticated kinds of flows where several silos of one echelon

process materials concurrently. One of these sorts of flows is the many-to-one

(MTO) flow. An example of such a supply chain is presented in Figure 5.1. In

this figure three silos of the first echelon (S1, S2, S3) process material and then

send the product produced to the single silo (S4) of the second echelon. Another

type of multi-silo supply chain is the one-to-many (OTM) flow. An example

of such a supply chain is presented in Figure 5.2. Here, one silo of the first

echelon (S1) is connected with three silos from the second echelon (S2, S3, S4).

The one-to-many is somewhat more complicated than the many-to-one supply

chain, since, apart from decisions made within silos, additional decisions should

be made on where in the second echelon to route products of the silo from the

first echelon.

Understanding these two types of material flows lets us produce more com-

plex structures, such as the many-to-many type of flows in multi-echelon supply

chains. This chapter investigates methods of optimal decision support in OTM
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S1

S2

S3

S4

Figure 5.1: Simulated two-echelon supply chain with many-to-one flow

and MTO supply chains so they can be used as building blocks to tackle the

complexity of the real-word problems. The ability to apply the right techniques

to address problems in these systems is of paramount importance when the or-

ganisation wants to take into account larger scale aspects of the supply chain

rather than focussing on its particular component. It is a way to move from

local to global optimisation, thus taking one step further towards closing the

gap between theoretical research and real-world problems.

S1

S2

S3

S4

Figure 5.2: Simulated two-echelon supply chain with one-to-many flow
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5.1.2 Problem

The two experimental supply chains that will be described in this chapter are

based on the two-silo model described in Chapter 4. Each silo of the first

production echelon is represented by the job shop scheduling problem, while

the function of the second echelon is distribution, so each silo represented by

the vehicle routing problem.

The first experiment involves an experimental supply chain model with two

echelons and MTOmaterial flow between silos, i.e several production silos, based

on job shop scheduling problem, of the first echelon send produced products to

the distribution silo based on the vehicle routing problem (second echelon). The

description and algorithms for JSSP and VRP were presented in the previous

chapters.

The overall MTO supply chain works as follows. There is a set of customers,

with their locations and orders they wish to receive. These orders are sched-

uled at one of the production silos. When the order is ready it is moved to

the distribution depot. For this problem it is assumed that it is already known

in advance which production plant should be used to produce a particular or-

der. The distribution silo ships goods to customers using a fleet of trucks with

the predefined frequency τ (measured in days). The goal of optimisation is to

minimise overall expenses that occur during production and distribution, i.e.

to minimise the total makespan of all production silos and the total distance

travelled by trucks. The total performance of the production silos is measured

in time units, and the performance of the distribution silo in kilometres. The

overall performance of the solution is calculated converting both measures to

the money equivalent:

Cost = α
∑

Xi + β
∑

Yi (5.1)

where Xi is a makespan of the produced schedule of silo i in time units, Yi

is a total trip length of all trucks during the production period i, and α and β

are conversion coefficients. The goal of the problem is to minimise Cost.

The second experimental supply chain model has a very similar functionality

of echelon silos but has an OTM topological setup. The production echelon has

only one production silo that sends produced items to one of several silos of the

distribution echelon.

The overall OTM supply chain functionality is similar to the previous model

(MTO). Given a set of customers and their orders, these are scheduled to be
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produced in the production plant, then the decision has to be made as to which

of several existing distribution depots a produced order to be sent for further

delivery to the customer. All the distribution silos ship orders to customers with

time intervals of τ days. As with the MTO model, the production silo’s perfor-

mance is based on the production makespan and distribution centres measure

their performance in the distance travelled by trucks. These two measures are

converted to a monetary value by a formula similar to 5.1:

Cost = αX + β
∑

i

∑

j

Y j
i (5.2)

where X is the makespan of the produced schedule in time units, Y j
i is a

total trip length of all trucks of echelon j during the production period i, and α

and β are conversion coefficients. The goal of the problem is to minimise Cost.

5.1.3 Simulation Framework

An important part of both algorithms presented in this section is simulation,

which helps in evaluation of global solutions. In this chapter we will refer to

the global solution as a combination of decisions from the local solutions, i.e

decisions across the whole supply chain.

A special simulation framework has been implemented to model the processes

in the supply chain. The supply chain in this framework is represented as a

directed graph with silos as nodes and dependencies between silos as edges. All

silos have a set of incoming and outgoing edges and know what silos are on the

other end of the edge. Each silo implements a silo specific functionality based

on the local solution and sends its output to the virtual object called the switch.

The purpose of the switch is to implement the logic behind the distribution of the

output to the connected set of silos. In the case where there is a single connected

silo then the switch just forwards the output to this connected silo (forwarding

switch); in the case where there are several connected silos, it uses a heuristic

(or even a metaheuristic) to control the distribution of outputs (distributing

switch).

The processing logic of each silo accepts an input from three sources: from

the predecessor silos, the silo specific data model and the silo solution. The input

from the predecessor silos is stored in special input buffers and retrieved only

when the silo gets its order to be executed. The silo specific data model stores

information about the silo itself, for example the number of production lines
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(for the JSSP), or the coordinates of depot and customers (for the VRP). The

last part, the silo solution, represents the decisions made by the local optimiser.

Before the start of the simulation, the supply chain graph is topologically

sorted and silo execution is done in this order. Next, the local solutions are

attached to the corresponding silos and execution starts at each silo, one by

one, in the topological order. The results of the execution are collected by the

global module and can be accessed when needed.

One of the main advantages of creating the simulation framework for these

supply chains is its reusability. The framework helps us quickly model and eval-

uate different types of supply chain – from simple two-silo to more complicated

OTM and MTO supply chains with varying numbers of silos in each echelon.

In Chapter 7 we successfully reuse the same framework to model five sequential

echelons of the wine supply chain.

An additional advantage of the framework is that it provides a single point

of evaluation of the quality of solutions. Therefore a solution evaluation of the

two approaches discussed in this chapter will be done using the same evaluation

model despite the difference in nature of these two algorithms. Before running

the experiments, the simulation framework was thoroughly tested for correct-

ness. If a separate evaluation procedure would have to be written for each

experiment (of which there are 12 in this chapter) each one of them would need

to be tested separately, but we would still use potentially different evaluation

models when comparing the solution quality of the two approaches.

5.1.4 Algorithm

The two supply chain models that have been described are based on two clas-

sical problems: JSSP and VRP. There are many algorithms that address these

problems. These two problems and the algorithms tackling them will be used as

basic building blocks for global optimisation algorithms that address the supply

chain as the whole that most large enterprises require. For both JSSP and VRP,

the same algorithms as in the preceding chapter, will be used (see subsections

4.2.1 and 4.2.2). Both algorithms produce reasonably good results on the stan-

dard data sets. As in the preceding chapter the algorithmic focus is not to be

able to solve the local problems with the best result, but rather to be able to

use the existing components to build an optimisation mechanism on top of these

components.

Two approaches are taken for both supply chain models: sequential and
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cooperative coevolutionary. The next subsections describe them in detail.

The first approach for tackling optimisation in these two supply chain models

is based on the sequential approach. In many real-world supply chains each silo

is operated by a manager who sends the produced product to the manager of

the next silo in the chain. In this way they execute sequential optimisation:

from one silo to the next one with the optimal solution within each silo.

The sequential approach follows the same sequential pattern. The JSSP op-

timisation starts running for all silos of the production echelon (just one instance

in the case of OTM), one at a time. Each time period the production silos send

the produced items to the distribution silo. In case of the OTM, where there

are several distribution silos, a decision has to be made as to which distribution

depot items are to be sent. For this problem a simple closest distance measure

has been implemented, i.e the item is sent to the distribution point which is

the closest to the client. Prince’s VRP algorithm [145] is executed at each dis-

tribution centre for each time period. The results of all silo optimisations are

combined using formula 5.1 for the MTO and formula 5.2 for the OTM supply

chain model.

The second approach to address the problem of multi-silo optimisation within

the two supply chain models is based on cooperative coevolution. For this global

optimisation coevolutionary algorithm, each silo has a corresponding algorithm

that runs in parallel with the other algorithms and is managed by the global

module. The global module coordinates the parallel run of the algorithms, ex-

changes partner representatives from the species (populations of algorithm at

each silo) and controls the termination of the execution of all silo algorithms.

Each silo of the first echelon (production) has a corresponding evolution-

ary algorithm solving the job shop scheduling problem (algorithm described in

subsection 4.2.1). Similarly, each silo of the distribution echelon has an evolu-

tionary algorithm for VRP (Prince’s algorithm discussed in subsection 4.2.2).

The only change made in these local algorithms is the way the individuals are

evaluated. The fitness evaluation is based on the performance of the individual

when combined with representative individuals from the other silos.

Representative individuals from other silos are distributed through the global

module in the following way. When the population is initialised at each silo, a

random individual representative is sent to the global module. When the global

module gathers representative individuals from all local optimisers, it then dis-

tributes all individuals between the local optimisers. In this way every local

optimiser has a copy of the representative individual and starts the solution
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evaluation. The procedure of exchanging representative individuals will be re-

ferred further to in this chapter as representative synchronisation. Evaluation

is done combining representative individuals, putting them into simulation and

executing the simulation. When completed the simulation returns the fitness.

After the initial population evaluation the algorithm starts running. At ev-

ery specified number of generations, the global module kicks off representative

synchronisation, but this time local algorithms send one best and one random

representative. When running the simulation, the optimiser randomly chooses

one of them to put into the simulator. Each such synchronisation represents a

start of the new epoch of the algorithm.

The reason local algorithms send two representatives instead of one is to

provide the diversity. If just the best representative is sent, the global algorithm

converges too quickly to the Nash equilibrium. On the other hand, the reason

only one random representative is put into the simulation is that simulation is

a very computationally expensive process, and the number of evaluations of all

combinations would be 2S , where S is the total number of silos in the supply

chain.

Convergence to the Nash equilibrium is one of the biggest issues when deal-

ing with cooperative coevolution. Preliminary test runs of the algorithm have

shown that the current implementation of the algorithm still converges prema-

turely. Some sort of shuffling of populations needs to be done in order to break

out from the Nash equilibrium. To achieve this, a special PopulationEvolver

operator has been created. It kicks off when there is no improvement can be

found for a certain number of generations. It takes half of the current population

and tries to evolve it for a specified number of generations using a local fitness

function. The local fitness function only evaluates the quality of the local solu-

tion without considering cooperation with solutions from the other silos. After

the local population is evolved it is then put back into the original population

and the changed individuals are re-evaluated by the simulation framework (now

considering the cooperation with the other solutions).

This cooperative coevolutionary algorithm is run for a certain number of

eras. It is general enough to apply to both MTO and OTM models. The

following section reports on the results of both the cooperative and sequential

algorithms.
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5.1.5 Experiments and Results

The described algorithms were implemented in Java. A set of test cases rep-

resenting both MTO and OTM models was developed based on the standard

data sets for the VRP (instances proposed by Christofides et al. [39]) and JSSP

(instances proposed by Taillard [163]). Three tests were created for the MTO

and another three for the OTM. The following data sets were developed:

• OTM: one JSSP silo + two VRP (1+2). The JSSP silo is represented by

ta40 data set and data sets for VRP are vrp1, vrp2. Total of 30 orders.

• OTM: one JSSP silo + three VRP (1+3). The JSSP silo is represented

by ta70 data set and data sets for VRP are vrp1, vrp2 and vrp3. Total of

50 orders.

• OTM: one JSSP silo + three VRP (1+3). The JSSP silo is represented

by ta100 data set and data sets for VRP are vrp1, vrp2 and vrp3. Total

of 100 orders.

• MTO: one JSSP silo + two VRP (2+1). The JSSP silos are represented

by ta01 and ta02 data sets and vrp1 for the VRP. Total of 50 orders.

• MTO: one JSSP silo + three VRP (3+1). The JSSP silos are represented

by ta01, ta02 and ta03 data sets and vrp1 for the VRP. Total of 50 orders.

• MTO: one JSSP silo + three VRP (4+1). The JSSP silos are represented

by ta01, ta02, ta03 and ta04 data sets and vrp2 for the VRP. Total of 60

orders.

The parameters used for the sequential approach are the same as in the

previous chapter. For the coevolutionary approach the following parameters

were used:

• Number of generations = 100,000 with new epoch coming every 30 gener-

ations

• Population size of 20 was used for all species.

• These parameters were used for the JSSP species:

– PMX operator probability = 0.7

– InsertionMutation operator probability = 0.3
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Experiment Silos Orders Average Min Max StdDev
OTM1 Seq 1 + 2 30 3097.68 2874.09 3458.18 195.54
OTM1 CC 1 + 2 30 2893.16 2829.20 3412.79 163.93
OTM2 Seq 1 + 3 50 5893.44 5512.92 6329.40 139.18
OTM2 CC 1 + 3 50 5801.19 5480.85 6333.76 156.53
OTM3 Seq 1 + 3 100 10342.17 10029.78 11087.40 314.44
OTM3 CC 1 + 3 100 10240.56 9755.64 10987.63 265.92
MTO1 Seq 2 + 1 50 3933.92 3694.37 4221.76 132.50
MTO1 CC 2 + 1 50 3782.48 3657.42 4193.67 121.17
MTO2 Seq 3 + 1 50 6043.88 5822.95 6390.01 189.03
MTO2 CC 3 + 1 50 5853.14 5635.36 6200.22 139.66
MTO3 Seq 4 + 1 60 7801.37 7318.77 8077.48 247.64
MTO3 CC 4 + 1 60 7514.68 7178.61 7892.87 152.71

Table 5.1: Run results of the multi-silo experimental supply chain

– InversionMutation operator probability = 0.3

– SwapMutation operator probability = 0.3

• The following parameters were used for the VRP species:

– Order crossover operator probability = 0.7

– InsertionMutation operator probability = 0.3

– InversionMutation operator probability = 0.3

– SwapMutation operator probability = 0.5

– ∆ = 0.5

These parameters were chosen by the series of manual exploratory experi-

ments. For each of the datasets two algorithms were executed: coevolutionary

and sequential (total of 12 experiments). Each experiment was executed for

50 times for stochastically correct results. Result average, standard deviation,

minimum and maximum values are reported in Table 5.1. Here suffix CC cor-

responds to the cooperative coevolutionary approach and Seq to the sequential

approach. The bold font shows better result. There is a tie in the second data

set. Two tailed p-value for this case is 0.002. This may have happened because

of relatively small data set size, all larger datasets have clearly better results for

the coevolutionary algorithm.

The results of these experiments confirm that the communication between

the components during the cooperative coevolution produces higher quality so-

lutions. Maximum and standard deviation of the second data set are slightly
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better for the sequential case, but minimum and average are better for the

coevolutionary approach.

5.2 Two-echelon Case Study

This section provides an example of real-world supply chain with two echelons.

To protect the privacy of the company it will be called Global Steel in this

chapter.

5.2.1 Problem

Global Steel has several plants across Australia and specialises in producing

sheet steel. Sheet steel products are basically thin sheets of steel that have

been coiled into rolls. The company can manufacture many different types of

products, that differ in chemical composition, density and width. Furthermore,

the rolls can be configured with different diameters and cores (see Figure 5.3).

When a plant manufactures a roll of steel, the width of the roll cannot be

changed. However, customers typically place orders for a smaller width, and

so, large rolls must be cut into pieces along their width to satisfy these orders.

This requires orders of similar configuration to be grouped together before the

cutting of the sheets (see Figure 5.4).

The constraints and business rules of this problem are listed below; many of

them are similar to the previous problem.

• Each plant’s daily work hours are limited.

• Each plant can produce a subset of all possible goods. Some products

can be produced at multiple plants, but the cost and rate of production

is different at different plants.

• Each plant is equipped with a particular number of ‘knives’, which are

used to cut large rolls into smaller ones. Each plant can only produce

sheets of fixed width and has special knives to cut to the width needed.

• Each plant has a fixed daily operating cost which is the cost of running

the plant, and does not depend on the actual products produced.

• After production, products are delivered to customers, and this incurs a

transportation cost. There are defined transportation costs between each
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customer and plants. Some plants cannot ship to some customers due to

specific business rules.

• Due to shipping constraints, export orders must be produced and shipped

from a single plant, whereas for others orders, part of the order can be

produced at one plant and other parts at other plants.

• Orders are produced in batches by the plants; this will be explained in

detail later in this section.

diameter

width

core

Figure 5.3: A roll of sheet steel.

In order to understand the problem better, let us look at a simplified exam-

ple. Suppose we have 5 plants: P1, P2, P3, P4, P5 and 7 customers C1, C2, . . . ,

C7. Let us say that customer C2 has an order for 5 tonnes of product I1, and 8

tonnes of I3. Customer C6 wants 15 tonnes of I1, 3 tonnes of I2, and 10 tonnes

of I3. I1 can be produced only at P2, I2 can be produced at P1 and P4 and I3

can be produced at P2, P3 and P5 although with different costs of production.

(See Table 5.2(a)). Table 5.2(b) shows the products that can be produced at

each plant, as well as the tonnes per hour rate of production for each.

Suppose that we have to complete these orders in a time frame of 100 hours.

Let us look at one possible way of distributing this workload amongst the plants.

As I1 can only be produced at plant P2 we are forced to assign all 100 tonnes of

I1 there. This then implies that the required 30 tonnes of I2 must be produced

at P4, using up 20 hours of the available time. 280 tonnes of I3 still need to

be produced. P2 could produce 200 tonnes of it, P3 could produce 150 tonnes

and P4, because it only has 80 hours of available time left, could produce 120

tonnes. Thus the 280 required tonnes of I4 can be split amongst these three

plants in various ways.

Plants can produce rolls of sheet steel of a certain width only, which is

generally much larger than the widths typically required by customers, and

therefore, ordered items that have the same type, core, and diameter must be
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Product
Customer I1 I2 I3

C2 50 180
C6 50 30 100

Total 20 3 18

Plant
Product P1 P2 P3 P4

I1 1.0
I2 1.0 1.5
I3 2.0 1.5 1.5

(a) (b)

Table 5.2: (a) Demand table: The quantity of each item ordered by each cus-
tomer. (b) Production capacity table: Tonnes per hour production rates of each
plant for different products.

batched into a single roll. Then a large roll is cut into pieces to satisfy these

orders. This is illustrated in Figure 5.4(a).

This process of batching sometimes results in wastage. To illustrate, suppose

that customers C1 and C2 need rolls of product I1, of the same diameter and

with the same type of core. C1 needs 2 rolls of width 500 mm, and C2 needs 4

rolls of width 600 mm. Let us assume that the only plant that can produce I1,

must produce rolls of steel of width 2000 mm. In this situation, batching can be

done as shown in Figure 5.4(b). The plant can produce two rolls of I1 of width

2000mm. One can be cut into 4 pieces: 3 pieces of 600mm and 1 piece of 200mm.

The 3 pieces of 600mm can be used for orders, but the remaining 200mm is

wasted. It may be recycled, but a loss is incurred nevertheless. The second roll

of 2000mm can be cut into widths of: 600mm, 500mm, 500mm, 400mm, the

first 3 of which would go towards satisfying orders, and the last piece ends up

as wastage. Some wastage is unavoidable, but clearly it is desirable to have as

little wastage as possible in order to maximise production efficiency and hence

profit. Intelligent grouping of orders can minimise wastage.

Plants use cutting tools called knives, physically arranged in parallel, to cut

large rolls into smaller ones. Different plants are equipped with different num-

bers of knives, and this presents another constraint to consider when batching

orders. A plant equipped with n knives can cut a roll into at most n+1 pieces.

In the above example (Figure 5.4(b)) cutting a large roll into four small ones,

would have required three cuts and hence three knives.

The goal of the problem is to find a set of assignments of orders to plants

that optimises the overall profit of the company. Profit is determined by the

following formula:
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Order B Order C

Order A

600

600 500 500

600

Wastage

600 200

400

(a) (b)

Figure 5.4: (a) Batching of orders into a single roll. (b) Wastage resulting from
the batching process. 4 rolls of 600mm, and 2 of 500mm needed.

Profit = S − Cm − Ct (5.3)

where S is selling price of the goods produced, Cm is the cost of manufacturing

those goods, and Ct is the cost of transporting the goods to customers. Selling

prices may vary for the same product depending on the market in which it is

being sold. The cost of manufacturing a particular order item is the sum of the

cost per hour of producing that grade of sheet steel, and the fixed hourly cost of

running the relevant plant for the time it takes to produce the required tonnage.

Transportation costs vary with the destination address of the customer. Export

orders naturally incur higher transportation costs. These last two components

are the negative components of the profit; the bigger they are, the less is the

profit. The selling price is the positive component of profit; it is known before

hand, and does not depend on which plant an order is allocated to. Therefore,

the goal of the problem is to minimise the transportation and manufacturing

costs.

This problem is a typical example of the multi-silo two-echelon supply chain.

All production activities within plants form the first echelon and each plant can

be treated as a single production silo. The next echelon is comprised of batching

and distribution silos where, firstly, rolls are cut, and then the cut pieces dis-

tributed to the customers. Each pair of the production and the corresponding

batching and distribution silos is very similar to the two-silo concept described

in chapter 4, except that the current model puts more emphasis on the batch-
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ing process rather than the distribution (which is straightforward and does not

present optimisational complexity). Since the current model consists of sev-

eral production silos, the original two-silo model is upgraded to a two-echelon

model with one-to-one dependencies between components. Figure 5.5 shows the

diagram of this supply chain.

The next section describes the algorithm to address the problem of steel pro-

duction. The approach is based on the on-the-fly (FLY) cooperative approach

described in Chapter 4.

P3 BD3

P2 BD2

P1 BD1

Production
Echelon

Batching & Distribution
Echelon

Figure 5.5: Two-echelon multi-silo supply chain with one-to-one dependencies
between components

5.2.2 Solution

The software created for this problem used an evolutionary algorithm to find a

solution. It is shown in Figure 5.6. The software is fully configurable to cater

for various selling prices, transportation and manufacturing costs. Given the

projected orders for an upcoming month, it seeks an optimal set of assignments

that maximises the profit of the company. Being a decision support tool, the

software also provides financial comparisons with human-proposed allocations.

In practice, the software suggests decisions that have better financial bottom

lines.

The algorithm can be divided into two parts, one for each echelon. The first

part seeks the optimal allocation of all orders to plants, whereas the second

provides support for batching of orders and their further distribution.
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Figure 5.6: Steel optimiser’s main screen.

The representation used for the evolutionary algorithm consists of two parts.

The first part is a string of quantities assigned to each capable plant for various

order items. Figure 5.7 illustrates the structure of this representation hierar-

chically. It can be visualised as a string of s records, one for each order being

considered. In turn, each order record can be thought of as consisting of a num-

ber of smaller records, one for each item in that order. And finally, each order

item record can be thought of as consisting of a number of allocation records,

one for each plant that is capable of producing the item under consideration.

Such a lowest-level record is called a plant quantity allocation (PQA). More

formally, assuming that there are s orders to be satisfied, a candidate solution

is represented as X = (x1, . . . , xs), where for 1 ≤ i ≤ s, xi = (y1, . . . , ymi
),

where mi is the number of items in order i. And further, for 1 ≤ j ≤ mi,

yj = (z1, . . . , zkij
), where kij is the number of plants capable of producing item

j of order i. Each zij is a tuple (OIji , p, q); it is a plant quantity allocation in

which plant p is allocated q rolls of item j in order i.

The second part of the representation is a string of permutations of the plants

in the system. Each permutation represents the preferred order of the plants

for use in export orders. This can be formalised as Xpref = {xpref1 , . . . , xprefs},

where each element xprefi is a permutation of the set of plants associated with

order i. Figure 5.8 illustrates the second part of the representation.
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Order nOrder 2Order 1 ...

...

...

Ordered Item 2

PQA2 PQAj

Order Item m2Ordered Item 1

PQA1 =

(OI2

2
, P1, q1)

Figure 5.7: First part of the representation of an individual.

Order nOrder 2 ...

...

Order 1

Permutation of plants

Plant φ2(2)Plant φ2(1) Plant φ2(p)

Figure 5.8: Second part of the representation of an individual.

At the start of the evolutionary algorithm, a population of randomly ini-

tialised individuals is created. First, each order item cell in Figure 5.7 is ini-

tialised by uniformly randomly dividing the number of rolls of steel required for

that order item into the PQA cells lower down in the hierarchy. Second, each

order cell in Figure 5.8 is assigned a randomly generated permutation of the

steel plants.

After the population of individuals is initialised, the evolutionary algorithm

enters the main loop in which the population is evolved until a specific criterion

is satisfied. Each individual is assigned a fitness value by an evaluation function

which is designed so that its value is indicative of how well the individual solves

the problem. The evaluation functions in our work make use of penalty functions

which essentially assign a value to an individual in proportion to how badly the

individual violates some constraint.

During the main loop, individuals of higher fitness are probabilistically given

more chances to reproduce, i.e. to make modified copies of themselves to replace

them if the modified copies have better fitness values. The changes to be made
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to an individual are accomplished by means of operators, which are functions

that take one or more individuals and combine, alter and manipulate their

structures in a partially random way. After operators are applied, some of the

resulting new individuals are passed through repair functions, that attempt to

randomly, but intelligently alter their structure so as to reduce the extent of

their constraint violations.

Not every candidate solution, that can be constructed as described above,

would represent a feasible solution. For example, if in a candidate solution, a

plant is assigned more work than it could possibly produce in the time frame

under consideration, then the solution is infeasible. Many techniques are known

to handle different types of constraints [122] and most of them are based on

penalty functions. The approach used for this algorithm is also based on penalty

functions. Penalties were used to deal with both hard and soft constraints.

Penalty functions for hard constraints were given larger weights than those for

soft constraints. The penalty functions developed were:

• the quantity production penalty: This penalty is used to avoid underpro-

duction or overproduction of an ordered item. If an order item requires N1

rolls of a given product, and the sum of the PQA quantities for this order

item is N2, then this penalty function returns a value that is proportional

to |N1 − N2|. This is a soft constraint because it is not always possible

to produce the exact amount demanded, as plant capabilities are limited

and fixed.

• the plant capacity violation penalty: If the amount of work allocated to a

plant exceeds its capacity for the time period, then this function penalises

the solution in proportion to the over-allocation. This is a hard constraint

because a plant cannot produce more than its capacity.

• the wastage penalty: Wastage is possible as a result of the batching proce-

dure that occurs during production. This function penalises in proportion

to the number of tonnes of wastage. This is also a soft constraint.

• the export order single source penalty: Orders for export customers should

be produced at the same plant, and this function penalises export orders

that use multiple plants. This is a hard constraint.

Each candidate solution is assigned a fitness value by an evaluation function

that returns a value that is indicative of how well that candidate solves the
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problem. For this problem, the fitness function is defined as:

f(X) = Profit(X)−
∑

i

(Ri × Penaltyi(X)) (5.4)

where X is a candidate solution, and Ri is the coefficient of the penalty

function Penaltyi(X). Profit(X) is calculated using three components: man-

ufacturing cost, transportation cost and selling price, as described previously.

Our evolutionary algorithm tries to maximise this function f(X), i.e. maximise

profit, and minimise constraint violations.

An evolutionary operator takes one or more candidate solutions and trans-

forms it (or them), into a new candidate solution. This is typically done by

using partially random manipulations of the representation. Operators are em-

ployed probabilistically. We used several operators to solve this problem. Some

of them look like the classic mutation and crossover, and some of them are

modified versions of these two. The operators used are the following:

• Quantity crossover: This is a classic crossover-like operator. It takes two

individuals, randomly chooses a crossover point at the boundary of an

order item cell, and performs a crossover at this point.

• Quantity mutation: This operator is similar to the classical mutation. It

takes an individual, and probabilistically chooses several PQA cells and

changes their quantity values by random amounts within a certain range.

The changed amount is chosen randomly in the range [−α, α], where

α =
quantityOrdered− quantityAllocated

|λ(OI)|
(5.5)

where λ(OI) is the quantity required for a particular order item.

• PQA Shuffling: This operator randomly chooses one or several ordered

items and shuffles quantities assigned to plants within each ordered item.

It preserves the sum of quantities within one ordered item before and

after the shuffling. So, if we randomly choose ordered item OIk then

G(OIk) = G′(OIk), where G is the sum of all quantities of ordered item

OIk assigned to all capable plants before applying the shuffling operator,

and G′ is the sum after applying it.

• Preferred plant operator: This operator looks at the second part of the

representation of an individual, namely the permutation of plants, and
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performs a random transposition on it, i.e. it randomly swaps two elements

of the permutation.

A repairer is an operator that tries to modify a candidate solution in such

a way as to eliminate or reduce the number of constraints that it violates. In

our evolutionary algorithm we use a set of problem-specific probabilistic repair-

ers. The main difference between these and the classical repairers is that they

are not executed each time a solution gets evaluated, but instead are applied

probabilistically, which allows for tuning for better performance. The repairers

used are:

• the quantity allocation repairer: This repairer tries to fix errors in over-

and under- allocation of a particular order item amongst capable plants. It

works in the following way. We choose an order which has underproduction

or overproduction and increase or decrease the quantity produced at each

plant. The increment or decrement are not random. The algorithm decides

on the changes to be made. This will increase the fitness of individual,

but being a random change, some diversity will be maintained.

P1 P2 P3 P4 Total

Quantity before repair 6 13 16 9 44

Quantity after repair 5 11 15 8 38

For instance, suppose that for a particular order item, 36 rolls are needed,

but according to an individual about to be repaired, the capable plants

have been allocated 44 rolls. The second row shows what might be the

result of applying the quantity allocation repairer. Some values increased,

some decreased. The new solution is still not perfect, but overproduction

has been reduced.

• the overallocation repairer: This repairer is different from the quantity

allocation repairer. It checks the total workload allocated to a plant, to

see if it exceeds that plant’s capacity for the time period. If it does, the

repairer randomly chooses some order item that uses the plant in question,

and reduces its quantity allocation by one. It repeats this procedure until

the plant can produce its assigned amount in the given time period.

• the export order source repairer: This operator checks for export orders

in the individual that use multiple plants, and performs repairs according
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to the preferred plant permutation. For any such order, it tries to assign

the whole work to the first capable plant in the permutation list.

• the final repairer: Unlike previous repairers, this repairer is run only at

the end of evolutionary algorithm to “polish” the solution. It uses non-

probabilistic versions of previous algorithms, since at the end of the algo-

rithm, we want to make solutions as good as possible without worrying

about diversity of individuals.

One of the challenges of this problem is grouping ordered items into batches;

which is a second echelon of the supply chain. The problem is known in the

literature as the stock cutting problem. Recall that the problem is the following.

We have a set of ordered items all with the same product, core, and diameter,

but with different widths. These must be allocated to a plant that can produce

rolls of a fixed width which can later be cut into smaller rolls to satisfy the

orders. For convenience, let us refer to these large fixed-width rolls as max-

rolls. We need to group the ordered items into batches in such a way that the

number of max-rolls produced by the plant is minimised, thus minimising the

wastage.

For this problem, a greedy deterministic approach was taken. The algorithm

looks at all order items that are assigned to a particular plant, groups those that

are compatible (i.e. that share the same product, diameter and core) and forms

batches in the following way. The order item with the largest width is assigned

to the first max-roll. Some of the width of this max-roll may be unassigned. The

next largest order item is considered next. If there is a max-roll in which it can

fit, it will be placed there, otherwise a new max-roll will be created. The same

procedure is repeated for all order items. The pseudo-code of this algorithm is

shown below:

The procedure canFindAvailableSpaceInMaxRolls(orderItem) iterates through

all available max-rolls and checks if the given orderItem can be placed in a

max-roll. If it can find such a max-roll, it will return true, if no such max-

roll is available, the procedure returns false. The procedure placeItemInAvaila-

bleSpace(item) places a given item in the available roll that has been found by

canFindAvailableSpaceInOrders.

The batching algorithm is executed for every individual fitness evaluation

and contributes to several penalty functions. This is the same concept as was

applied in the two-silo model in Chapter 4 where Clarke and Wright was exe-

cuted at every fitness evaluation instead of the batching algorithm. The next
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Algorithm 3: Batching algorithm

maxRolls← ∅
for group ∈ orderItemGroups do
sortByWidth(group)
for orderItem ∈ group do
if canFindAvailableSpaceInMaxRolls(item) then

placeItemInAvailableMaxRoll(item)
else

newMaxRoll← createNewMaxRoll()
newMaxRoll.add(orderItem)
maxRolls.add(newMaxRoll)

end if
end for

end for

section presents results of the current evolutionary algorithm and compares the

produced results with the company’s production solution.

5.2.3 Experiments and Results

The evolutionary algorithm in this study was implemented in Java, and was

tested on real world industrial data. The purpose of the software is to provide

decision support to business managers who approve production allocation.

In this subsection we present the results of experimental runs of this algo-

rithm with a view to gaining an understanding of how the algorithm solves the

problem.

An experiment was performed on a set of real-world data for a particular

month. Due to the stochastic nature of evolutionary algorithms, the experi-

ment was executed 90 1 times so as to allow for statistically accurate results.

The specific parameters used for the experiment are shown below. The penalty

coefficients were tuned for the business entity under consideration, and would

perhaps not be ideal if this algorithm were to be replicated for another industry

or business environment. In such a case, it is likely that re-tuning of the coeffi-

cients would be necessary. As such, it would not be prudent to try to interpret

the significance of these penalty coefficient values.

• Population size = 250

1It was meant to be 100 runs but my mistake we put 90 and we realised this only when
the experiment finished and the results were automatically computed.
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Figure 5.9: Sample run. Profit over generations.

• Number of trials = 90

• Mutation probability = 0.3

• Overallocation repair probability = 0.1

• Underproduction penalty coefficient = 10 000 000

• Overproduction penalty coefficient = 100 000

• Wastage penalty coefficient = 1

• Plant capacity violation penalty coefficient = 1 000 000 000

• Export order multi source penalty coefficient = 10 000 000 000

• Transportation penalty coefficient = 1

• Tournament selection of size 2

• A steady state population is used

Figure 5.9 illustrates the evolution of the profit variable during the lifetime

of a single run of the experiment. From time to time, there is a decrease in the

profit value; this corresponds to instances where the algorithm is able to find

a solution that dramatically reduces constraint violations, but at the expense

of less profit being generated. However, based on the penalty values being

generated, the solution is still considered to be superior to what was previously
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Figure 5.10: Sample run. Penalty function over generations.

in hand. However, the algorithm is eventually able to produce highly profitable

solutions.

Figure 5.10 shows the decrease in the summed penalty function values over

the lifetime of a single run of the experiment.

A 90 run execution shows median 1.18E+07 and 52110.52404 standard de-

viation of profit.

The assignments generated by our software system produces financial results

that are 4% better than those produced manually by the company’s experienced

team of planners.

5.3 Summary

In this chapter we have considered a more sophisticated supply chain with mul-

tiple silos and one-to-many and many-to-one flows. As in the previous chapter

the functionality of the supply chain was based on scheduling and distribution.

Special attention is devoted to the architecture of the optimisation system.

A simulation framework is built for evaluation of global solutions. Two main

advantages of the simulation framework are the reusability of the framework

for different supply chains, and a single point of evaluation; this makes a fair

comparison of models. The software architecture of the optimisation systems is

often neglected in the research publications but it is of paramount importance

when dealing with optimisation in real-world applications. Applying the right
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software architecture for the optimisation systems speeds up the development,

makes it easier to experiment with different variations of the problem, reduces

chances of error and in this way lets the architected software solution be more

naturally applied for the real-world systems.

Two algorithms addressing the presented supply chain models are discussed:

sequential and cooperative coevolutionary. Six different supply chains are con-

sidered for experimentation, both MTO and OTM. Each of the two algorithms

were executed on these supply chains and the results show that cooperative

approach beats the sequential.

The second part of the chapter presents a two-echelon supply chain based on

real-world problem from the industry that produces sheet steel. It has multiple

silos within each echelon with one-to-one flows between the silos of the first

and second echelons. A variation of the FLY algorithm is proposed to tackle

this problem. The solution produced satisfactory results, beating the current

production schedule by 4%.
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Chapter 6

Two-echelon Multi-silo

Real-world Case Study

The previous chapter presented a multi-silo two-echelon supply chain with dif-

ferent material flows between the silos. This chapter describes a two-echelon

supply chain problem from the mining industry. It is a mine planning problem

which involves the existence of several diggers in the mine and a few plants that

crush, process or store ore. The problem is how to schedule diggers, trucks, and

plants, and how to route the ore in order to get enough tonnage of a product of a

required quality. The supply chain is two-echelon with a one-to-many flow, but

the difference between the previous supply chains is that there are dependencies

between the silos of the second echelon.

The first section of the chapter presents some basic concepts about mining

and provides a literature review. Section 6.2 explains a mine planning prob-

lem in detail, and the following section 6.3 explains the mathematical model

of the problem as well as a model from the supply chain perspective. The al-

gorithm used to tackle the mine planning problem is described in section 6.4,

and the following section shows the results. Section 6.6 gives an overview of the

functionality of the built software. The last section concludes the chapter.

6.1 Basic Concepts and Literature Review

Mining is the process of the extraction for profit of valuable minerals or other

geological materials from the earth. The following major types of minerals are

129
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commonly mined.

• Metallic ores. These include the ferrous metals (iron, manganese), the

base metals (copper, lead, zinc), the precious metals (gold, silver, plat-

inum) and the radioactive metals (uranium, radium).

• Nonmetaillic minerals. These include phosphate, limestone and sul-

phur.

• Fossil fuels. These include coal, petroleum, and natural gas. Extraction

of petroleum and gas which have different physical characteristics requires

a different mining technology.

Mining is amongst the most profitable of industries, and therefore proper

planning and scheduling is vital for optimal mine exploitation. There are two

main ways to recover materials from the ground: surface mining and under-

ground mining. In this chapter we will be focusing on the former. Many prob-

lems arise in open pit mining: orebody modelling, creation of the life-of-mine

(LOM) schedule, determination of mine equipment requirements and optimal

operating layout, and the optimal transportation of ore from pit to port. Each

one of these problems is very complex so the operation of a large open pit mine

is an enormously difficult task.

In terms of the time horizon, there can be operational, short term, medium

term, long term planning (LTP), and life of mine (LOM) planning. The oper-

ational and short term planning involve a very detailed scheduling of processes

and equipment, where it is important to know what each piece of equipment

should be doing during each day and even each hour. It also operates based on

fairly precise data. In contrast, the LTP involves looking at a global picture,

working with estimated data, various uncertainties, risk analysis, and evolv-

ing economic criteria. This research is mostly focused on the LTP, but future

developments may include short term planning as well.

Hustrulid and Kuchta [87] identified five important stages of mining.

1. Prospecting. At this stage geologists use rough methods to discover

mineral deposits such as a visual examination of earth and gravitational,

seismic and magnetic measurements.

2. Exploration. This stage uses more refined techniques to determine the

size and the value of a mineral deposit.
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3. Development. This stage involves obtaining rights for the land and

solving additional legal issues regarding the mining. The mine is prepared

for excavation by stripping the overburden and other kinds of preparation

for the main digging phase.

4. Exploitation. During this phase the actual recovery of minerals from the

earth takes place; this is normally either surface mining or underground

mining.

5. Reclamation. At the last stage the area mined is restored to its natural

state.

In their book Hustrulid and Kuchta [87] provide detailed description and de-

scribe the challenges of each of these stages. Optimisation techniques have been

applied mostly during the development and exploitation stages. Researchers

started to get interested in mining from the early 60s.

Caccetta and Hill [30] discuss some techniques for LOM optimal production

schedule. They describe mixed integer linear programming (MILP) model and

give a survey of several methods to address the problem, including parametri-

sation method and a method based on Lagrangian relaxation. This model has

some basic elements of the model proposed in the current research. The au-

thors also review some commercial systems including Earthworks NPV Sched-

uler, MineMax and XPAC. Several heuristic based approaches are reviewed (for

example [167]). However, they acknowledge that real world problems are too

large for the model based on MILP. The authors explain their method based on

the branch and cut algorithm and compare results with the ones produced by

MineMax. In their later work Caccetta and Hill [31] use the branch and bound

method to solve the problem based on MILP. They use a combination of best

first search and depth first search to achieve a “good spread” of possible pit

schedules whilst benefiting from using depth first search. Good lower bounds

are obtained using the LP-Heuristic. The authors use CPLEX to solve LP sub-

problems. Bley et. al [20] use the same model formulation as Caccetta and Hill

while strengthening the problem by adding inequalities derived by combining

the precedence (knapsack substructure) and production constraints. The goal

is to maximise the net present value (NPV).

Lizotte and Elbrond [106], and Yun and Yegulalp [181] tackle the mine

scheduling problem with techniques based on the dynamic programming. Smith

and Tao [159] address the multi-objective phosphate mine scheduling problem
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via goal programming techniques.

Handling uncertainty and risk analysis is another important topic in mining.

Dimitrakopoulos and Ramazan [59] address a problem of complex multi-element

scheduling in nickel-cobalt open pit mining with uncertainty in block grades,

equipment access, mobility, blending and other aspects. The formulation is

based on expected block grades and the probabilities of grades being above

required cutoffs. Their approach mines the more certain areas of the deposit in

earlier time periods, leaving uncertain areas for later when more information on

them is available. The objective function does not directly maximise the NPV,

but rather does it indirectly while creating a feasible schedule.

In the current chapter, we will mostly focus on the extended version of the

block sequencing problem i.e what blocks to dig at what time. Dagdelen and

Johnson [51] propose an algorithm based on Lagrangian relaxation for max-

imising NPV with constraints. The extension of this work has been done by

Akaike and Dagdelen [5] by iteratively changing the values of Lagrangian mul-

tipliers, until the solution satisfies the constraints. Another extension has been

done by Kawahata [92] in his doctoral thesis. He added variable cutoff grades,

stockpiling and wastedump restrictions.

Busnach et al. [27] propose a heuristic algorithm that addresses a block

sequencing problem for a phosphate mine in Israel. Samanta et. al [154] apply

a genetic algorithm to the problem of grade control planning in a bauxite mine.

The problem that is discussed in this paper has grade control planning problem

as its part. The goal of the problem is to minimise quality deviations of two

elements: silicon and aluminium.

Another important problem in mining is the problem of ultimate pit limits

that is finding a shape of the mine at the the end of its life that provides the max-

imum profit. This problem is also efficiently solved by Lerchs-Grossman graph

theoretic algorithm [103] and Picard’s network flow method [134]. Caccetta and

Giannini [28, 29] describe some approaches to other problems. Hochbaum and

Chen [81] review most of the commonly used methods for this problem.

Osanloo et al. [131] has a good review of long-term optimisation models for

open-pit mining. A very good review on operations research methods in mine

planning (both surface and underground) is provided by Newman et al. [126].

Many problems in the mining industry can be classified as scheduling prob-

lems. The problem that is discussed in this chapter also belongs to this category.

Several different types of scheduling problems exist, such as job-shop schedul-

ing, flow-shop, flexible flow-shop and open-shop. These are described in detail
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in [135]. Many other algorithms for different types of scheduling problems were

developed, for example [38, 68, 178, 129, 174, 136, 26, 149, 113, 96, 9, 152].

6.2 Problem Description

Since prehistoric times people have been mining different ores and minerals to

produce various goods for their lives. Mining goes hand in hand with human

history, and so even major cultural eras are called by various metals mined: the

Bronze Age (4000 to 5000 BC), the Iron Age (1500 BC to 1780 AD), the Steel

Age (1780 to 1945), and the Nuclear Age (1945 to the present). In the modern

world mining is still one of the most important and advanced fields of industry.

There are several main types of mining, and in this case study the open pit type

of mining problem will be described. In particular, a metal ore mining system

will be discussed.

A typical mine has a hierarchical structure. At the top level the mine is

divided into several sub-mines called models. Typically each model is an island

separated by non-ore material. Each model consists of one or several pits. Each

pit in turn is sliced into horizontal layers called benches. Each bench contains

multiple blocks (which is the last level of hierarchy). Each block has specific

information about its coordinates, tonnage, characteristics, percentage of dif-

ferent metals and non-metals (e.g. iron, aluminum, phosphorus) and waste. A

block can fully consist of waste, or it can contain certain metals of high or low

grade.

There are two main types of plants on the mining site: crushers and wash-

plants (sometimes referred to as a beneficiation plant). Depending on the nature

of the mine there can be other types of plants, however, in this chapter only

these two are considered.

A crusher is a plant designed to reduce large block chunks into smaller

rocks for further processing. Different crushers have different crushing speeds

measured in tonnes crushed per hour. Two main types of crushers considered

in this chapter are high grade crushers and low grade crushers that are designed

to operate with high and low grade materials respectively.

In order to improve low grade ore it needs to be processed by the washplant.

The process of washing removes contaminations, impurities, and other things

that lower the quality of the ore. Several methods are known to achieve this

task: magnetic separation, advanced gravity separation, jigging, washing and
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Figure 6.1: Product movement for mine planning.

others.

There are two types of mobile equipment available for mining: diggers and

trucks. Trucks are used to transport material from one place to another. One

or several fleets of trucks can be available. Each fleet has a number of trucks of

the same type with same speed and load capacity. Diggers are used to excavate

material and load it to trucks. Each digger has its own digging rate measured in

tonnes of material per hour. They normally have a very low speed (2 km/hr).

Mine models, pits, benches, crushers, washplants, stockpiles and waste-

dumps are connected by the road network. Materials are transported by a

means of trucks through this network. Each pit has one or several pit exits

through which trucks enter the pit. Each bench has one or several starting

blocks, called toe blocks, with the road connected to them.

The mining process as follows. First, a block is blasted by explosives, then

a digger enters the blast area and excavates the blasted material. It loads the

material onto trucks which drive it to the next destination. The destination

can be different depending on the type and quality of material. All high grade

materials from the excavated block are transported to high grade crushers and

then the crushed product is shipped to customers. The low grade material is

transported first to the washplant to purify it, then to the low grade crusher

and only after that shipped to customers. All excavated waste is taken to wast-

edumps which are basically piles of waste material. Along with the destinations

mentioned above, excavated material can also go to stockpiles which can be

thought of as temporary places to put material that can be used in the future.

Figure 6.1 shows the movement of ore from the block to the customer. The cur-
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rent mine planning problem covers (shaded region) movement from the block

to the product stockpile. After this process, ore from the product stockpile is

transported by trains to the port and put into ships.

The current problem is a long term planning and scheduling problem. De-

cisions have to be made the order in which blocks of the mine should be exca-

vated, and how to utilise the equipment, crushers, washplants, stockpiles and

truck fleets. In order to understand the objectives of the problem, a mining time

period concept needs to be discussed. As a long term scheduling problem, op-

eration decisions should be made in a time horizon which is a few times smaller

than the life of the mine term (which is the long term planning horizon). The

whole decision time horizon is divided into smaller time periods which. The

number of diggers and digging rates, and the crusher and washplant operating

rates, capacities of wastedumps and stockpiles can be different across time pe-

riods. In addition, each time period has its targets which can be understood as

a milestone to be reached at the end of the period.

• Tonnage target. As has been described earlier each block contains a

certain tonnage of desired metal. A block can also consist of total waste,

which will not be accounted for in reaching the targets.

• Quality target. All mining blocks have metal ore of a different quality.

However, clients want ore of a predefined quality. This means that during

a time period a set of blocks should be excavated such that, after the

blending of all the excavated blocks during the time period, the blended

quality should be close to reaching the desired quality. It is very hard to

match the quality target exactly; this is a reason a quality tolerance is

introduced, measured in percentage from the target. All qualities within

this tolerance level are considered to be acceptable.

The objective is to generate a plan that meets these targets by utilising

the provided equipment and machines. However, this problem is even more

complicated than is described so far, due to additional constraints.

The addition of time periods to the problem adds an issue of time-varying

constraints and time-varying objectives to the problem.

6.2.1 Constraints and Business Rules

This subsection describes different types of problem specific dependencies and

business rules. Most of them fall into one of two categories: dependency con-
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straints and capacity constraints. The current formulation of the problem recog-

nises two types of dependency constraints: block dependencies and area depen-

dencies. Block dependency is the basic constraint of the problem. There are

three types of block dependencies:

• clear Above Dependencies. Due to the physical nature of the mine, a

block cannot be excavated before the block on top of it is cleared. It can

be thought of as a vertical dependency.

• clear Ahead Dependencies. This is a horizontal type of dependency.

When digging the bench all side blocks should be excavated first before

getting to the inner ones.

• user Defined Dependencies. Sometimes due to certain business rules

or specific circumstances there is a need to define custom dependencies

between blocks.

Another type of dependency constraint is area dependency. An area is ba-

sically an arbitrary collection of user-defined blocks. It can be an arbitrary

collection of blocks but usually it involves a few adjacent pits that share a cer-

tain characteristic. The concept of an area gives a flexibility to the define custom

dependencies. To indicate that one part of the mine should be excavated before

another one, these two parts should be marked as different areas and connected

by the dependency.

Capacity constraints, on the other hand, are the type of constraints that deal

with the physical workload of machines and equipment. All of them are hard

constraints, meaning violation of any of them will render a solution infeasible.

A number of these hard constraints are:

• digger capacity constraint. Each digger can excavate only a certain

tonnage per time period.

• truck constraints. There are speed and capacity constraints for each

type of truck. Furthermore, the speed of the truck depends on whether it

is loaded with ore, waste or unloaded, and also on the slope of the road.

• crusher constraints. As mentioned before crushers can operate with a

limited speed and have processing capacity limits.

• stockpile constraints. Each stockpile has a limited capacity.
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• wastedump constraints. Each wastedump has a limited capacity.

There are also some other constraints defined in this application, for example:

• pit tonnage limits. There is a limit on how much maximum tonnage

can be excavated from each pit. Some pits may not have any limits.

• digger proximity constraint. Due to safety reasons, two diggers cannot

operate too close to each other.

6.2.2 Overall Objectives

Taking into account all the dependency, capacity and other constraints described

above, the problem becomes a highly complex combinatorial optimisation prob-

lem. The system that addresses the described mining problem has been im-

plemented with an optimisation component based on a population based meta-

heuristic. This system was built for a large mining company, and it is currently

in the process of being integrated into the existing IT structure. The key fea-

tures of the system are as follows:

• meeting targets. The system is taking into account all constraints,

configuration and targets and on that basis produces a 5 year plan for the

way to utilise diggers, plants and other equipment, and for the block at

which each digger should operate at a given time.

• tradeoff analysis. There are some configurations where it is not possible

to satisfy both tonnage and quality targets. Then the system produces a

set of solutions which show different tradeoffs in tonnage and quality

• manual changes and what-if scenarios. Numerous business rules are a

predominant feature of many real-world systems. It is not always possible

to incorporate all business rules into the software. That is why for any

given solution produced by the system the operator can manually override

decisions made by the system and see the impact of the changes instantly.

Apart from the flexibility of manual changes this also reveals another

interesting feature of the application: the ability to analyse various what-

if scenarios. In a matter of minutes the user can see the result of adding

or removing a digger or building another crusher on the mining site.
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6.3 The Model

This section firstly describes the model of the current problem from the supply

chain point of view, explaining the two echelon inter- and intra- echelon depen-

dencies. The second part of the section presents the mathematical model of the

current problem.

6.3.1 Supply Chain Model

Looking at this problem from the supply chain perspective, a two-echelon supply

chain can be identified. The first is an ore digging echelon, and the second is

an ore processing echelon.

Crusher

Figure 6.2: Mining supply chain with inter- and intra-echelon interactions

The ore digging echelon is responsible for finding the correct bench in the

mine that would contribute to the total tonnage and quality targets and for

selecting the correct digger. Depending on the resolution of the supply chain,

each digger can be treated as a separate silo or, alternatively, all diggers can

be aggregated into one digging silo. In this chapter we use the second model,

treating all diggers as a single silo. The mining supply chain diagram on Figure

6.2 describes the second option.

The ore processing echelon consists of different crushers, stockpiles and wash-

plants. The ore dug in the first echelon can take different routes depending on

how far the actual quality and tonnage from the desired tonnage. For example,

if tonnage and quality targets are satisfied during the current time period, it
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makes sense to send the ore to one of the stockpiles, so it can be reclaimed at

later time periods; if quality needs to be improved, ore can go through the wash-

plant or the ore can go straight to the crusher avoiding all the stockpiles. Since

all crushers, stockpiles and washplants share the common property of processing

ore (hence the name ore processing echelon) but, on the other hand, implement

different behaviour in terms of functionality, they are considered to be different

silos within one echelon with inter-echelon interactions.

Taking into account the two-echelon model of the supply chain, the approach

presented in section 6.4 addresses each echelon separately: module 1 (initialisa-

tion) and module 2 (evolutionary algorithm) assign diggers to work on a specific

set of benches while module 3 (decoder) makes deterministic decisions based on

input from the first echelon.

The rest of the section presents the mathematical model of the problem

proposed above.

6.3.2 General Notations

The following basic sets are defined for the mine Mine:

• Blocks B = {B1, . . . , B|B|} in the ore body. Each block is determined

by the following characteristics: geometrical coordinates of the block are

given; tonnage(Bi, el, gr) is a tonnage of material el of grade gr.

• Benches Ben = {Ben1, . . . , Ben|Ben|}. A bench is represented as a set

of blocks Beni = {x : x ∈ B}. Each bench has a toe block defined as

b0(Beni).

• Pits P = {P1, . . . , P|P |}. A pit consists of set of benches Pi = {x : x ∈

Ben}.

• Model M = {M1, . . . ,M|M|}. A model contains a set of pits Mi = {x :

x ∈ P}. The top level hierarchy is the mine which contains a set of models

Mine = {x : x ∈M}.

• Areas A = {A1, . . . , A|A|}. An area is a set of blocks Ai = {x : x ∈ B}.

Additionally, an area may have the earliest start date esd(Ai) and latest

end date led(Ai). Each area has a set of dependent areas defined as

Dep(Ai) = {x : x ∈ A}. If area Aj is dependent on area Ai then
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∀Bk, Bl : (α(Bk) = Ai, α(Bl) = Aj)

⇒ tl(Bk) < ts(Bl)
(6.1)

where ts(Bi) is a start time of digging block Bi, te(Bi) is an end time of

digging block Bi and α(Bi) is an area to which the block belongs. This

dependency relation is expressed as Ai ≺ Aj .

• Time periods T = {T1, . . . , T|T |}. Each time period is determined by

its start date and end date. Each period has information about various

aspects such as the capacities of diggers, crushers, targets, and limits.

• Diggers D = {D1, . . . , D|D|}. Each digger has own specific characteristics.

cost(Di) is a cost of operating a digger. speed(Di) is a digger tramming

speed. location(Di) ∈ B is an initial block of the digger. rate(Di, Tj) –

how many tonnes of ore a digger can excavate per hour. utilisation(Di, Tj)

– effective utilisation, which determines the percentage of the maximum

rate the digger can operate in the real world due to day/night shifts,

maintenance and other factors. Speed and cost remain fixed during the

whole process, but utilisation and rate change across time periods.

• Crushers C = {C1, . . . , C|C|}. Each crusher has its own characteristics.

Its location is given by geometrical coordinates. capacity(Ci, Tj) is a feed

capacity, i.e. number of tonnes it can process per hour. utilisation(Ci, Tj)

– effective utilisation, which determines what percent of the maximum rate

the crusher can operate in the real world.

Qk(Ti) is a k-th quality target for time period Ti with the tolerance qi. For

each time period Ti there are total of K(Ti) targets. Ω(Ti) is a tonnage target

for time period Ti

6.3.3 Objectives of the Optimiser

The goal is to find a vector X = {X1, . . . , X|B|} that minimises

min∆T =
∑

Ti∈T

|ΩT (Ti)− Ω(Ti)| (6.2)

and
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min∆Q =
∑

Ti∈T

∑

1≤k≤K(Ti)

ρ(k)χ(|QT (Ti)−Qk(Ti)| − qi) (6.3)

Here each element of X is a tuple Xi = (st, digger, block) corresponding to

digging start time, digger and block to be dug respectively. The end time can

be calculated in the following way

endT (Xi) = startT + weight(block)/rate(digger, Tk) (6.4)

where weight(block) corresponds to the physical weight of the block and

rate(digger, Tk) defines rate (in tonnes per hour) in time period Tk during which

the digging of the block occurs.

ΩT (Tk) is a total tonnage of ore excavated during time period Tk and defined

as follows: for each time period Tk,

ΩT (Tk) =
∑

Xi∈Tk

tonnage(Xi.block, el, grade) (6.5)

Thus, the first objective is to minimise total deviation from the desired

tonnage

The second objective defined by 6.3 is to minimise total deviation from the

desired quality across all time periods. In the equation 6.3 χ(x) is a positive

indicator function which returns 0 if x is negative and the actual argument

x otherwise. Since there are several quality targets, each target has its own

priority which is determined by the coefficient ρ(k).

6.3.4 Constraints

λAH(Bi, Bj) – clear ahead dependency, 1 if dependency violated, 0 otherwise

λAB(Bi, Bj) – clear above dependency, 1 if dependency violated, 0 otherwise

The solution made with the vector X should comply with the clear ahead

and clear above constraints, so

∑

i,j

λAH(Bi, Bj) +
∑

i,j

λAB(Bi, Bj) = 0

Also, no two blocks could be executed simultaneously on the same digger:

∀i, j|Xi.digger = Xj .diggerXi ∩Xj = ∅
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here Xi ∩ Xj operation returns the intersection between time intervals Xi

and Xj .

All the constraints described above are hard dependencies.

∀Xk.block ∈ Ai, Xm.block ∈ Aj |Ai ≺ Aj

The following holds Xm.st ≤ endT ime(Xk). Here relation Ai ≺ Aj defines

the area dependency that area Ai should be mined before area Aj .

6.4 Approach

This section describes a proposed algorithm for the described problem. Firstly,

the representation of the solution is described, then the evaluation quality score

is explained, and lastly, the three stages of the proposed optimiser are shown.

6.4.1 Structure of a Solution

The structure of a solution for the optimiser is as follows. For each time period

a table stores a set of benches that are scheduled to be dug in this time period.

If only a part of the bench is scheduled during the selected time period, then the

fraction of the bench is recorded. Table 6.1 illustrates this concept. The first

column in this table lists all available benches. The other columns represent

time periods when a particular bench is scheduled. For example, bench B3 is

scheduled for digging in the 3rd time period and bench B4 is scheduled as follows:

60% during the 4th and 40% during the 5th time periods. We refer to this data

structure as a Tonnage Schedule (TS). During the execution of the optimiser,

the Tonnage Schedule is initialised and later modified at every iteration of the

process; special operators make sure that clear above and area dependencies

are not violated (i.e. that the solution is feasible from the perspective of these

dependencies).

The size of the search space is quite significant; for example, for 20 time

periods (this would correspond to 5 years, assuming quarterly time periods),

with 500 benches available in total and 150 benches available per time period

(due to various dependencies), and at least 10 benches fully allocated for a time

period, the number of possible solutions is in the order of 10240. Note that if

the number of allocated benches is higher (say, 25), the size of the search space

grows dramatically much further. Note also that, to compare the number of
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Bench TP1 TP2 TP3 TP4 TP5 TP6 TP7
B1 1
B2 1
B3 1
B4 0.6 0.4
B5 1
B6 0.5 0.5
B7 1

Table 6.1: Solution representation

solutions in the search space, the current calculations of the number of atoms

in the observable universe is close to 1080.

6.4.2 The Quality Score of the Solution

The quality score of a solution is based on a combination of various penalty

functions:

• Quality violation penalty. This penalty is calculated as a sum of deviations

from the desired qualities of each quality target.

• Tonnage violation penalty. This penalty is calculated as a deviation of

actual tonnage from the desired tonnage.

• Digger workload violation penalty. This penalty represents how much

total digger workload exceeds the maximum digger workload. If total

digger workload does not exceed the maximum workload the penalty is 0.

• Haulage workload violation penalty. This penalty represents how much

total haulage workload exceeds the maximum haulage workload. If total

haulage workload does not exceed the maximum workload the penalty is

0.

6.4.3 The Optimiser

The optimiser used in the system consists of 3 modules:

• Module 1: Initialisation

• Module 2: Problem-specific Evolutionary Algorithm

• Module 3: Decoder
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which are executed sequentially. These three modules are discussed in turn.

Module 1: Initialisation

As the size of the search space for the planning problem is prohibitive, module

1 is responsible for creating the initial set of candidate solutions. The main

parameters that control the execution of this algorithm are: n - population size,

m - the number of offspring produced by a parent, k - the elitism factor (the

number of the best individuals to maintain), and g - the diversity factor (to

generate a pool of diverse solutions).

This module initialises the pool of candidate solutions in a few stages. It

starts with a pre-distribution that considers the frozen time period, where all

parts of the solution that fall into the frozen time period are copied from a pre-

viously generated solution (if it exists) into the new one. Then a pre-distribution

of dependency chains is performed by analysing the pits’ dependency chains for

possible bottlenecks. A certain number of pits are selected and pre-distributed

over several time periods to release bottleneck dependencies early. Many dif-

ferent arrangements (e.g. a different number of selected pits, different distri-

butions over time periods) are possible. At this stage we have a population of

size n, which consists of n (incomplete) solutions created during the first two

stages. During the third stage of initialisation the module allocates benches to

all considered time periods taking into account (a) all available benches from all

pits that are not held by any dependencies (area dependencies and clear above

dependencies), (b) pit limits (if specified), (c) the target tonnage, and (d) the

target quality. Such allocation is run in a loop while at least one of the following

conditions holds:

1. actual tonnage is greater than that desired

2. haulage workload capacity is exceeded for the benches scheduled for the

current time period

3. digger workload capacity is exceeded for the benches scheduled for the

current time period

By eliminating these violations the algorithm makes sure that, after exiting

the loop, none of the hard constraints are violated i.e. the solutions are feasible.

Further, spare digger capacity is assigned to dig waste benches by rescheduling

some waste benches - during such rescheduling, the algorithm checks that no

haulage workload and digger workload limits are violated.
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The above steps are performed m times for each individual in the current

population to produce an array of solutions. Elitist selection is then performed

on this array with the elitism factor of k, i.e. k individuals with the best fitness

are then selected from this array as a population for the next time period. This

means that for all time periods except for the first, k solutions are selected from

m × k candidate solutions for further processing. The quality measure of an

individual solution is based on penalties (as discussed earlier). The selection

algorithm maintains the diversity of the population by eliminating solutions

that are too similar to other solutions - this is controlled by the diversity factor

g.

At the final stages of the initialisation, reclaiming from stockpiles is per-

formed in order to bring the quality closer to the desired levels. If the actual

quality is within the desired quality tolerance range, this stage is skipped. The

tonnage to be reclaimed is calculated in such a way that digger workload and

haulage workload are not violated.

Module 2: Problem specific Evolutionary Algorithm

The main parameters that control the execution of this algorithm are: nea -

population size, mea - the number of offspring per parent, kea - the elitism

factor (the number of the best individuals to maintain), gea - diversity factor.

A population of solutions generated during the initialisation phase is fed into

the evolutionary algorithm that improves the population during the iterative

process by applying variation operators to existing candidate solutions thus

generating new offsprings. Sample variation operators include:

• move right operator. This operator reschedules a selected bench to the

next time period. The operator is performed in such a way that no clear

above rule is violated.

• move left operator. This operator does the same job as the previous

one except that it reschedules benches to the previous time period instead.

• repair operators. These operators restore the feasibility of the solution

after modification.

The evolutionary algorithm uses steady state tournament selection with oper-

ators that have the adaptive probabilities of being applied. The diversity of

population is preserved by ignoring solutions that lie within a certain distance

of each other.
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Module 3: Decoder

The decoding phase consists of 2 parts:

• Converting from Tonnage Schedule into Bench Schedule.

• Converting from Bench Schedule into Block Schedule.

The module uses solutions generated by the previous module for making deci-

sions on digger assignments and further material movements. During this stage

only deterministic decisions are made. For example, the module decides where,

to which crusher, stockpile, or waste dump, the excavated material (low grade,

high grade, and waste) should be sent.

6.5 Results

The implemented optimiser can be run in different modes, with certain optimiser

options being chosen or not chosen. The available options are to:

1. continue equipment utilisation after targets achieved, i.e use all spare dig-

ger capacity to dig more blocks and send to stockpiles.

2. allow or deny stockpile reclamation.

3. use total truck capacity as a hard constraint.

4. use top ranked quality target only.

5. enforce area dates.

6. enforce or ignore pit tonnage limits.

Each one of these points can be selected or deselected independently of the

others. This gives a flexibility in varying different types of limitations during

the run (total number of choices 26 = 64).

Each of the optimiser executions has been run on live mine data provided by

the mining company. The production schedule developed by the company’s ex-

pert schedulers team has been analysed as well. However, a much more narrow

quality tolerance boundary of 0.4% has been enforced in our system in contrast

with the expert quality tolerance of 1.5%. The software produced a valid sched-

ule within approximately 5 minutes and has been evaluated as fully operational

by the expert team. The expert team used their own software suite based on
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Figure 6.3: Result of the optimiser.

the XPAC mining system that has various scripts which help to find a solution.

Building a solution with their system requires the operation of several systems

from the suite to produce even one solution. The approximate time to build one

solution can be around a day which is significantly slower than software based

on our metaheuristics. Any variation in the schedule, such as the changing of

business rules or the testing of what-if scenarios would incur a full schedule

creation process.

Figure 6.3 shows the quality results of the first quality target with optimiser

options 1, 2 and 4 selected. Tonnage targets were matched with zero total

deviation from the desired tonnage. This configuration produced best results

on both tonnage and quality objectives. The blue line on the graph represents

the desired quality, red line shows the actual quality of the schedule, green and

yellow lines show higher and lower tolerance levels (of 0.4%).

The addition of optimiser option 3 (enforce truck capacity) has an impact

on the solution quality. Tonnage and quality graphs are shown on figures 6.4

and 6.5. This was achieved with the setting of 31 standard trucks working fully

per time period. This result shows that it is very hard (if not impossible) to

produce a sufficiently good schedule with this quantity of trucks and the current

configuration. Both the previous results of a good schedule without constraining

truck capacity, together with the current result, should tell schedulers to change

certain values, the most likely being to increase the number of trucks in the

problematic time periods and then to rerun the optimiser to see the result.

This experiment shows the strengths of the software in quickly analysing various

what-if scenarios.

The next experimental run of the optimiser allowing the utilisation of the

stockpiles, i.e. options 1 and 2 were enabled. This optimiser configuration uses

all quality targets prioritising them by rank. Here we set the priority to high and
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Figure 6.4: Result of the optimiser. Quality of the first objective with the
limited truck capacity.

Figure 6.5: Result of the optimiser. Tonnage graph with the limited truck
capacity.
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Figure 6.6: Result of the optimiser. Tonnage graph.

Figure 6.7: Result of the optimiser. Graph of quality of Iron.

low quality iron ore over other materials. This will assign the highest coefficient

to iron ore quality deviation while evaluating the solution. In the real world

schedulers are interested in both optimisations: the optimisation that considers

only the first quality target, and the optimisation that considers all quality

targets with priorities.

Results presented in figures 6.6, 6.8 and 6.8 show that considering all quality

objectives makes the first objective worse while improving on other objectives.

This converts the current problem from a 2 objective problem into a 9-objective

problem, as the default configuration consists of 8 quality targets per quarter.

As with the previous optimiser run, the results give schedulers knowledge of

what happens with the current configuration. By changing certain values and

rerunning the optimiser, they were able to see the impact of the change within

5-10 minutes. Previously, it would take at least one day to see the results of

the change. Additionally, the client utilised several systems to produce the

result and had to feed the output of one system manually into another as well

as manually configure each system for current settings. This, certainly, would

increase the chance of making an error.
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Figure 6.8: Result of the optimiser. Graph of quality of Silicon.

A very powerful tool for the guiding optimisation in the desired direction is

the ability to set minimum and maximum pit limits. However, the outcome of

some unconsidered settings can be very dangerous, as slowing down certain parts

of the mine can cause other parts of the mine to be blocked due to dependencies.

The use of area dates also allows an experienced scheduler to force the system

to obtain a required result. However, each of these configurations may cause

complications from failing to meet targets.

The described results show 2 main strengths of the system not found in most

of the other systems:

• quick optimisation.

• powerful what-if analysis.

The next section describes the main functionality and configuration settings

of the system.

6.6 Functionality

This section describes the main software functionality of the system. It has been

developed in Java. The developed software has several main tabs: Hierarchy,

Map, Configuration, Optimisation and Dashboard. These will be described in

the following subsections.

6.6.1 Hierarchy Tab

The hierarchy tab presents the mine in the hierarchical view: Mine - Model - Pit

- Bench - Block. As has been described in the previous sections the basic unit of

the mine is a block. Each block is specified by its geometrical coordinates and
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Figure 6.9: Screenshot presents the hierarchy tab with coordinates and tonnages
of a selected block and its dependencies.

tonnages of certain material type and grade (for example high grade iron ore),

which are exported from file. From the geometrical coordinates clear above and

clear ahead dependencies are calculated.

The road network of the whole mine can be exported from the file as well.

Each road consists of road segments which are represented by the geometrical

coordinates. All parts of the mine, such as plants, crushers, stockpiles and

wastedumps, are connected by the road network, and therefore it is possible to

calculate the shortest distances between each block and destination. Users of the

software can manually override the shortest path destination. The situations

where some types of business rules override decisions of the system are very

common for real world problems, and they are normally not considered in the

classical research problems. Figure 6.9 shows the screenshot of the hierarchy tab

with one block selected. On the right side of the screen the user is presented

with all characteristics of the block including its dependencies.

6.6.2 Map Tab

The map tab presents the user with the an interactive 3D map of the mine, the

road network and ore destinations fully constructed from the raw geometrical

coordinates. The software provides the ability to “fly” over the mine, zoom
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Figure 6.10: Screenshot presents the 3D view of the mine and map controls.

in and out and explore the structure. It also provides a user friendly way of

assigning toe blocks, the setting of destinations and the visual exploration of

the contents of the block. Different colour schemes visualise the mine by the

concentration of iron in the blocks (the higher concentration the more intense

is the colour), by pit, by model, by the time period planned for mining, and

whether the block is going to the crusher or the stockpile. Figure 6.10 shows

the screenshot of the map tab. The main part of the screen is a described 3D

interactive map, where the right panel allows users to perform operations such

as to hide or show various elements of the map, to change colour schemes, or to

filter specific parts of the mine.

6.6.3 Configuration Tab

This is one of the most important tabs in the software as the configuration of

all different parts of the mine and optimiser is presented here. Configuration

is split into several categories: dependencies, plants, mobile equipment, wast-

edumps, stockpiles, scenario and time period configuration. This part of the

system contains most of the constraints and business rules. The time period

configuration category defines dynamic constraints i.e. they change over the

time periods. These two types of constraints in the configuration are described

below.
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Static Configuration

The dependencies in the system are area dependences, clear above and clear

ahead dependencies (see section 6.2). The first step in configuring an area is

to create a master record in the area configuration screen. Once the area has

been defined, the planner can then configure the area within the map screen

by adding a set of blocks, a bench, a pit or even a model. The next step is to

configure the area dependencies based on the defined areas. The dependencies

category also allows a change of settings of values of clear above and clear ahead

dependencies (for example, how many blocks should be cleared before a certain

block can be mined in the clear ahead dependencies screen). Additionally, each

area can be set to be mined after a certain time period, before the certain time

period, or in between two time periods according to a certain business rule.

The dependencies concept in mining is very essential and allows schedulers to

restrict excavation of one part of the mine before the other one is excavated or to

excavate it before or during certain time periods. From the optimisation point

of view it significantly constrains the search space and in many cases makes

finding even one feasible solution a very challenging problem.

The plant category lets users add or remove plants and crushers available

in the system. At the static stage of the configuration plants and crushers are

defined by their coordinates on the plane.

The mobile equipment configuration category lets the scheduler set the num-

ber of diggers, their type, speed and operating cost. Each digger may have

different settings, so the configuration is not homogeneous. An additional con-

straint for diggers is their starting position on a certain block. As the travelling

speed of each digger is very limited (typically around 2 kph), each digger is

limited to excavating only a specified part of the mine because it is normally

not optimal to spend most of the time in a time period transporting the digger.

Transportation of the ore from the mine to crushers, plants and stockpiles

is done via trucks over the road network. This is represented in the system

as fleets of homogeneous trucks. Each fleet defines parameters for each of the

trucks in the fleet. Some of the parameters include the capacity of truck loaded

with ore, and the capacity loaded with waste (as ore and waste have different

densities). The speed of each truck depends on the slope of the road and type

of material loaded on the truck. The calculation of speed is based on rimpull

curves - a mathematical curve used to lookup the speed based on slope and load

of the truck. As road segments have geometrical coordinates the slope can be
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Figure 6.11: Screenshot presents the configuration tab.

easily calculated. The time it takes to travel a certain route of the network can

be calculated summing travel times for road segments of that route. Note that

the speed of the truck over a road segment is different if the truck is loaded with

ore, waste or if it is unloaded.

The wastedumps and stockpiles category lets users define wastedumps and

stockpiles that exist in the mine. Apart from their geographical coordinates the

total capacity and opening balance of the structure are given.

The scenario category lets users define various optimiser configurations. If

the equipment utilisation after targets achieved flag is blank then the optimiser

will not attempt to plan any unused capacity that is available once the specified

targets have been achieved.If this flag is selected then it will attempt to utilise

diggers and trucks on waste blocks which will not affect the tonnage targets.

If the allow stockpile reclamation flag is not selected then the system will not

reclaim any tonnage from the stockpile to the crusher in generating a plan. If

the constrain optimisation by haulage capacity is blank then the optimiser will

not attempt to constrain the optimiser by exceeding specified truck capacity. If

this flag is selected then the optimiser will not exceed truck capacity for each

time period. If the use top ranked quality target is selected the optimiser will

only focus on achieving the top weighted quality target for each time period. If

this flag is not selected it will attempt to reach all quality targets according to

the priority set by the weighting settings in the time period configuration. If
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the enforce area dates is selected the optimiser will respect the area dates set in

the configuration screen. If this flag is not selected it will ignore the area dates

in the optimisation process. If the enforce pit tonnage limits is selected the

optimiser will respect the specified limits set in the time period configuration

screen. If this flag is not selected it will ignore the limits in the optimisation

process.

There is the capability of setting a time where the optimiser will not optimise

prior to this date. Therefore the mine sequence that exists in the plan will

remain unchanged up until the date specified. Note that there is an option of

No Freeze where the optimiser will reschedule from the current date and not

apply any freeze during the optimisation process.

Dynamic Constraints Configuration

The dynamic constraints configuration can be achieved configuring each time

period with its own parameters.

The following parameters can be changed over the time periods: rate and

utilisation of diggers, feed capacity (in tonnes per hour) and utilisation of crush-

ers, input capacity (in tonnes per hour) and effective utilisation of plants, ca-

pacity of wastedump (it is limited per time period and different from the total

capacity of the wastedump), maximum and minimum capacity of stockpiles,

number of trucks in the fleet and their effective utilisation. Additionally, each

pit has a minimum and maximum tonnage that should be excavated.

The main part of the time period configuration is the configuration of targets.

As has been described in section 6.2, two types of targets exist: tonnage targets

and quality targets. Each time period has its own setting for both.

6.6.4 Optimisation Tab

The optimisation tab presents optimisation results. It has 2 main graphs that

show actual and desired tonnage and quality targets. The quality graph also

has two tolerance lines so it is very obvious if the solution is within the tolerance

range or not. Figure 6.13 shows the screenshot of this tab. The top part shows

a detailed breakdown of the parts of the mine to be dug during each quarter,

the bottom part displays desired and actual graphs on tonnage and quality,
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Figure 6.12: Screenshot presenting the dynamic configuration by time period
tab.

Figure 6.13: Screenshot of the optimisation tab with the performance graphs
and detailed schedule.
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Figure 6.14: Screenshot of the dashboard tab.

6.6.5 Dashboard Tab

The last tab is the dashboard tab which presents the user with various kinds of

reports, showing different KPIs, error and diagnostic information. For example,

equipment utilisation, haulage reports, various aggregated and material flow

reports, coordinate, dependency and other violations and data exceptions.

6.6.6 What-if Functionality

The software is allowsg the user to configure hypothetical mine and equipment

configurations and then run sequencing optimisations and view KPI reports,

thereby enabling an evaluation of what would happen if those scenarios were

actually implemented. The factors with which the user would be able to exper-

iment under what-if scenarios are:

• changing the location of a stock pile or dump

• changing equipment capacity and / or availability

• changing quality & tonnes targets

• reacting to events such as slope failure or flooding
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6.7 Summary

In this chapter we considered a highly constrained mining problem. Firstly,

the description of the problem was presented, followed by the approach based

on metaheuristics, and then there is a description of the functionality of the

software along with its configuration and constraints.

Each of the configuration categories presented in section 6.6 present addi-

tional constraints to the problem, which makes it extremely hard to find even

one feasible solution. The complexity of the problem can be thought of from

several perspectives. If we take, for example, such NP-hard problems as the trav-

elling salesman problem, vehicle routing problem, various scheduling problems

and other classical optimisation problems, they present very hard combinatorial

complexity. Further, normally they are not very constrained, which makes them

hard to apply in practical applications. The real-world problems usually have

an additional layer of complexity – complexity by constraints. In addition to an

enormous number of constraints, they are also non-linear and very often change

over time. This chapter shows that the methods of computational intelligence

are appropriate to solve highly constrained problems such as mining.

This work concentrated on optimal scheduling within a single mine. How-

ever, the concepts described here can be extended to multiple mines. This

problem is known as integrated planning in the mining industry.

The following chapter describes a five echelon vertically integrated supply

chain from the wine industry.



Chapter 7

Multi-echelon Supply Chain

In this chapter a wine supply chain of five echelons is described. Section 7.1

briefly discusses different components of the wine supply chain, three of which

are described in consecutive sections. Section 7.2 explains vintage intake plan-

ning which is a process of harvesting grape blocks from vineyards, and carrying

the grapes into wineries where they will be further processed. Section 7.3 intro-

duces the tank farm process of the supply chain. The last section concludes the

chapter. The bottling component of the supply chain has already been described

in detail in Chapter 3.

7.1 Wine Supply Chain

A wine supply chain is a complex multi-component system with various kinds of

inter- and intra- component dependencies. A typical supply chain may consist of

components such as maturity models, vintage intake planning, crushing, tank

farm, bottling, supply of dry goods (for example bottles, corks, and bottle

labels), various distribution components (such as distribution depots and hubs),

storage components (warehouses), and external sourcing of raw materials. In

[161] Stadler and Kilger explain that a

“...supply chain consists of two or more legally separated organiza-

tions, being linked by material, information and financial flows.”

In order to reduce the complexity of this large supply chain, a company may

concentrate on the subset of the supply chain that belongs to this company.

159
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This type of management control where several consecutive stages of a supply

chain are operated by a single company is called vertical integration, and a sup-

ply chain with this style of management is called a vertically integrated supply

chain. In Figure 7.1 the dotted components represent components external to

the company, for example dry goods suppliers, distribution companies, and stor-

ages. The components, with applications screenshots, represent the vertically

integrated wine supply chain, all components of which belong to the given com-

pany. Material flow goes from left to right in this figure, whereas information

flows from right to left. The vertically integrated supply chain in this figure

is represented by five components: Maturity Models, Vintage Intake Planning,

Crushing, Tank Farm and Bottling. These components will be described in

detail later in this section.

From the broader perspective, these entities may not be legally separated, es-

pecially in vertically integrated supply chains, as they are within the jurisdiction

of a single wine company. In the more generic sense, a supply chain consists of

generally separate entities (within one structure) involved in the production and

distribution of a certain commodity, with possibly different key performance in-

dicators (KPIs), being linked by material, information and financial flows. This

vertically integrated system can have two types of KPIs: global, which reflect a

measure of the supply chain as a whole, and local, which show the performance

of the individual component.

Focussing on the vertically integrated supply chain, which is a core element in

the whole system, rather than on the individual components offers many benefits

from the financial and business points of view for the company. A software

application has been developed for each of the components. All these software

applications were based on the paradigms of Computational Intelligence. When

deployed together, these applications can optimise all planning and scheduling

activities across a winery’s entire supply chain, and can help wineries to optimise

various business processes, predict and deal with unexpected events, and address

key operational issues, such as:

• creating optimal harvest schedules that can accommodate last-minute

changes.

• maximising the utilisation of crushers, pressers, and fermenters.

• optimising tank farm transfers and activities.

• dealing with sudden changes (e.g., delayed transport, demand spikes,
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equipment failure, extreme weather conditions)

• improving resource allocation under risk and uncertainty.

• minimising transportation and other logistics costs.

• improving the accuracy of demand forecasts.

Maturity Models Vintage Planning Crushing Tank Farm Bottling

Figure 7.1: Wine Supply Chain. Grey arrows on this diagram represent a
material flow. Black arrows represent information flow.

Having a system that controls the whole supply chain becomes even more

essential because of the dynamic nature of the market and constantly arriving

and changing customer orders with many, often conflicting, objectives. Apart

from finding the globally optimal solution of how to run the supply chain in a

relatively short period of time, this vertically integrated system has additional

benefits such as the ability to quickly react to dynamic changes to the schedule

giving the company a highly competitive advantage, as well as the ability to

quickly identify bottlenecks and problems, thereby significantly decreasing the

chance of human error. One of the most significant benefits is the possibility of

a global what-if scenario analysis, enabling the quick analysis of the impact of

certain changes in one or several parts of the supply chain on other parts. Such

analysis is essential for schedulers and analysts. Looking at KPIs (both global

and local) schedulers can evaluate whether a certain change had a positive or

negative effect on the whole system.

This section briefly describes five components of a vertically integrated wine

supply chain. These software applications include predictive modelling for grape

maturity (using weather forecasts and readings on Baum, PH, and TA), vintage

planning, crush scheduling, tank farm optimisation, bottling-line sequencing,
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and demand forecasting. In the later sections, due to space limitations, only

three of these components are described in detail.

All the systems are coordinated by the global module which makes possible

the cooperation between the components for the whole vertically integrated

supply chain. The global module was implemented with algorithms based on

cooperative coevolution [141] as described in previous chapters, and is further

discussed in section 7.4.

7.1.1 Maturity Models

Vintage intake plans are heavily dependent on the

prediction of expected grape maturity dates. It is

possible to export the prediction dates from some

external system that functions as a black box pro-

viding only one date when it believes the harvest-

ing should occur. However, limited visibility into

the prediction process often prompts requests to revisit the prediction function-

ality of this process. So the maturity models deploy a new prediction module

that provides improved prediction dates and the visibility of the prediction-

calculation provided.

Grape maturity can be defined as the physiological age of the berry on the

vine. It is important to define the optimal grape maturity for wine production

and to develop clear chemical or biochemical traits that can be used to define

the peak of ripeness. The definition of optimal maturity will vary depending

upon the style of wine being made; the working definition of quality; varietal;

rootstock; site; interaction of varietal, rootstock and site; seasonal specific fac-

tors; viticultural practices; and downstream processing events and goals. If a

clear descriptive analysis of the quality target exists, then the time of harvest

can be optimised to meet those goals. Several grape and cluster characteristics

have been used to assess ripeness (e.g. sugar, pH, acidity, berry metabolites,

berry proteins, taste). There are, of course, other non-compositional factors

that influence the decision to harvest, including labour availability; seasonal

changes such as rainfall; heat waves; tank space limitations; and other factors

beyond the winemaker’s control.

A “black box” prediction approach provides no audit capability for the user,

making it difficult to detect and promptly address issues related to accuracy of

prediction. These factors can easily cause errors in forecasting maturity dates to
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go unnoticed and unrectified for prolonged periods of time. Decisions on when to

book certain grapes for harvesting and crushing rely heavily on the experience of

the personnel involved in the process, and may result in a non-optimal allocation

of harvesting and crushing resources. Each of these situations could result in

higher costs for harvesting, transportation, and crushing, and reduction in grape

quality.

7.1.2 Vintage Intake Planning

Vintage intake planning manages the grape sup-

ply intake from the “vineyard to the weigh-

bridge”. The functionality of this module sup-

ports the creation and maintenance of vintage in-

take plans that satisfy capacity constraints and

facilitate the harvesting of grapes during periods

of time when the quality is the highest. This stage is described in detail in

section 7.2.

7.1.3 Crushing

Crushers are used to process wine grapes and are

often connected to different types of pressing ma-

chines, The optimal processing capacity of the

crushing machines is about 40-45 tons per hour.

However, if necessary, it may be increased to 60-

80 tons per hour. The most important limiting

factor is the capacity of the pressing machines and fermentation containers.

The processing capacity for the pressing machines ranges from 4 to 12 tonnes

per hour depending on the type of grapes. It is important to generate optimal

schedules for all crushers over some time horizon. However, the generated weekly

schedule may incur frequent changes due to contractual influences, weather con-

ditions, seasonal influences, and daily production variances. When the changes

occur, the Crush Scheduler re-optimises and generates alternative schedules to

fill available capacity. Also, a variety of constraints are present in this part of

the wine supply chain, including:

• constraints in time (e.g., not processing fruit during the hottest part of

the day).
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• constraints in the throughput of presses.

• constraints in the throughput of fermentation vessels.

• the throughput of trucks via the crusher to be a continuous flow.

• scheduled repairs and maintenance of equipment.

• scheduled changeover and clean up (white to red, or lower grade grape-to-

higher grade grape).

• special demand-fulfilling variety shortages to address meeting capacity

needs.

7.1.4 Tank Farm

Wineries make daily decisions on the processing

and storage of wines and juices in their tank

farms, with major wineries having several hun-

dred tanks that have differing capacities and at-

tributes. These tanks may be insulated or refrig-

erated, for instance, and could have an agitator.

Some of these tanks might be used to store juice after the grapes are crushed,

fermented, and pressed, while others might be primarily designated for blending.

Different types of juices may also require specific tank attributes for processing,

such as refrigeration jackets or agitators. This stage is described in detail in

section 7.3.

7.1.5 Bottling

The primary task of the Bottling-Line Scheduler

is to generate optimal production schedules for

the wineries’ bottling operations. The software

uses advanced optimisation techniques for gener-

ating optimal production schedules. Opportuni-

ties for optimisation include manipulating the se-

quencing order, selecting which bottling lines to

use, consolidating similar orders within the planning horizon, and suggesting

changes to the requested dates that improve the overall schedule. Some of the

key objectives are to maximise export and domestic service levels (i.e. DIFOT),
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maximising production efficiency, and minimising cost. This stage is described

in detail in Chapter 3.

7.2 Vintage Intake Planning

This section describes the Vintage Intake Planning component of the wine sup-

ply chain in detail.

7.2.1 Description of the Problem

The aim of the vintage intake is to harvest grape blocks from vineyards, and

to carry the grapes into wineries where they will be further processed. Vintage

intake planning, within the scope of this chapter, describes the planning of all

necessary actions for bringing wine grapes from vineyards into wineries and the

immediate subsequent grape processing steps within the winery. The vintage in-

take planning finishes once the juice’s fermentation is over, after which the wine

will be refined in the tank farm (described in section 7.3). Parties involved in the

intake process are harvesting and carrier companies and the winery personnel.

While wineries and the winery equipment such as crushers, presses, cen-

trifuges and fermenters are owned by the wine producing company, the harvest-

ing and transportation of grapes into the winery is carried out by contractors.

Those contractors usually provide their services to many wine producers. Due to

the nature of the ripening process of grapes and the inherent variations caused

by different grape varieties, locations of the blocks and constantly changing

weather conditions during the maturity process, the availability of contractors

such as harvesters or truck providers fluctuates significantly, and is often un-

known until very close to the actual date when their services become necessary.

Both the uncertainty about logistics resources and the inability to control

them by vintage planners demand a constant update of the plans. The further

uncertainty imposed by sudden unpredicted weather changes, which impacts on

the grape maturity and thus the preferred wine intake da,y limits the planning

horizon to only one or two weeks. These short-term plans are created in the

week before the planning week commences, but do not get locked in until two

days prior. At this point in time, the logistics manager for a particular region

will have finished the process of requesting the required capacities to harvest

and carry the grapes, and the service providers will have responded with their

offer of available resources that meet or lower the necessary requirements. This
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process will continue until all resource requirements are met. Or until none of

the available providers within the region has any capacities left. The resources

will be booked and locked in to the plan. After locking in the available re-

sources, only unexpected events such as technical problems or human error can

compromise the plan.

Harvesters and trucks are not the only resources to take into consideration

when drafting a vintage intake plan. The intake does not finish at the arrival at

the winery, but after the wine grapes have been processed. At the winery the

processing of the grapes begins:

• the grapes get weighted on weighbridges.

• the grapes will be pressed depending on which process for the harvested

grapes is followed (usually only red grapes get pressed).

• some crushed grapes may require to stay together with the stalks and

skins for a few days.

• the grapes get pressed (usually whites).

• the resulting press cut juices are centrifuged.

• finally, the juice is fermented in fermenters for about 1-2 weeks.

The above steps are by no means a complete list of possible processes, but

they represent steps that pose major constraints on the grape intake. They

represent the constraints that human planners would take into account when

assessing the winery intake capacity for drafting an intake plan.

7.2.2 Constraints

The logistic constraints during peak season of the vintage are probably the most

pressing capacity constraints faced by a vintage intake planner. Not only do they

take into account the growers’ preferred harvesters, but also they compete with

other wine producing companies in allocating and booking carrier capacities.

The first resource at the winery to pose a capacity bottleneck is the weigh-

bridge as in most cases it can only be used sequentially. In some instances, it

may be connected with the crushers in which case grapes will be loaded into

special bins which incorporate a weighing machine. The filled bin will be subse-

quently tipped into the crushers which grind the grapes. Prior to the crushing,

the winemaker undertakes a final assessment of the quality of the grapes and
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Figure 7.2: Grape Flow at intake. Note that not all grape processing steps
within a winery are mandatory.

classifies the grapes into their final usage. This final usage determines the pro-

cesses the grapes go through in the manufacturing network all the way to the

final bottling of the product.

Figure 7.3: Screenshot of the Vintage Intake Planning System

Depending on the quality of the grapes and the intended final product to

which they contribute, the grapes will be routed through different processing

states.

Presses pose the next potential bottleneck in the grape processing pipeline.

Presses are also used to extract juice from grapes, but they use a much finer ex-

traction technique than crushers. By pressing, the winemaker is able to extract

different quality grades from the grapes, the so-called press cuts or pressings.

They are constrained by the capacity of grapes they can be filled (typically



168 CHAPTER 7. MULTI-ECHELON SUPPLY CHAIN

around 40 tonnes) and the actual time it takes to carry out the pressing (ap-

proximately six hours, depending on the load and type of press).

Further clarification prior to fermentation is carried out in the centrifuges.

Unlike presses, centrifuges are able to process a constant stream of juice. De-

pending on the type of centrifuge and the state of the infeed, centrifuges can

reach a rate of 60, 000L of juice per hour [21].

The last step of the intake is the fermentation of juice. Fermenters can be

filled over a period of days. It takes approximately 10-14 days for the fermen-

tation to be finished; the fermentation vessel is then available for new juice. In

some instances, however, the fermentation tank is also used for storage, so it

will not return to the pool of empty tanks. This may be the case when capacity

shortages in the tank farm occur, and which may be for reasons the planner

cannot anticipate.

The above mentioned winery equipment has a physical processing capac-

ity limit. Those limits vary only rarely so that planning of their usage and

anticipated completion time can be easily determined. Issues arise if winery

equipment is not functional (unplanned outages), or personnel who operate the

equipment are not available. In these cases subsequent assignments become in-

feasible as they rely on the operation of the now unavailable equipment. The

next weekly plan has to take into account and adapt to the change in operational

resources.

Figure 7.3 shows the screenshot of the Vintage Intake Planning system illus-

trating the flow of material and the conversion from grapes to juice to wine by

various processing steps. The figures in the table represent the quantity of grapes

being harvested, carried and crushed. From the press stage on downwards, the

values are shown in litres. Note that constraint violations are highlighted in the

upper overview table (red background cell colour). A selection of the violating

cell will bring up the below detailed table with all necessary information on the

root cause of the violation.

7.3 Tank Farm

This section describes the Tank Farm component of the wine supply chain in

detail.
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7.3.1 Description of the Problem

The tank farm of a large winery is a major and integral part of the successful and

efficient wine manufacturing enterprise. It interfaces with all the other major

processes, by: accepting juice and wine from the intake process, providing wine

for bottling, and being the source and destination of the company-level activities

of inter-winery transfers, bulk wine exports, and wine purchased for blending.

It is also the scene for wine production through the carrying out of additive,

maturation, fermentation and blending tasks. The complexity and range of the

varied products and activities in the tank make it a significant planning problem,

and one operating at a wide range of time scales, thus needing to adapt to a

dynamically changing environment.

The tank farm itself is generally a large area containing many (in the order

of several hundred to a thousand) wine tanks in a range of sizes. At any given

time a proportion of these tanks will be empty in order to provide spare capacity

for receiving wine and to increase the flexibility for blending and other tasks

that may require transfers between tanks. Within the tank farm there may

be groupings of tanks by function (for example, an area with tanks receiving

intake; or an area for storing wines ready for bottling) but overall the tank farm

is usually in a relatively compact area (e.g. in an approximate square) in order

to allow relatively flexible transfers between any pair of tanks, without incurring

the penalty of needing to transfer over extremely large distances.

Apart from size variations, some tanks are distinguished by having specific

features, such as agitators, refrigeration, insulation, or provision for oaking wine.

Apart from the tanks themselves, the tank farm may include a number of ad-

ditional elements. These include various types of equipment (such as filters,

centrifuges or heat exchangers); some of this equipment is portable, but some

is at fixed locations within the tank farm. In addition the tank farm may have

a a fixed piping and manifold system for transferring wine between tanks, sup-

plemented with portable ground pipes for the same purpose, providing more

flexibility but with higher labour and setup costs.

Tank Selection

Overall there are two main optimisation tasks for organising activities within

the tank farm, and these can be simply described as relating to which tank(s)

should be chosen, and when a specific operation on the tanks (such as a transfer)

should occur. The first of these activities can be divided between the two quite
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distinct tasks of Source Tank Selection and Destination Tank Selection.

Obviously the primary constraint in source tank selection concerns the actual

content of a tank from which we plan to draw. If we need to bottle an order

for 5,000 litres of 2009 Shiraz, then we must draw from source tanks with the

correct variety and vintage year. This constraint is common to any system of

warehousing or stocking of multiple types of product. What is specific to the

wine industry, and the tank farm situation in particular, is the need to do this

in a way that avoids oxidation of wine through contact with the air. If wine

is left in a partially filled tank, then, over time, the wine will degrade and lose

significant value. It is such a serious problem in the wine industry that it has

specific terms: ullage is the proportion of air within a wine tank, and being on

ullage refers to a tank and its content having non-zero ullage.

For destination tank selection, we are frequently dealing with empty tanks.

An important rule for optimising the global behaviour is to ensure that specialist

tanks are not selected if not needed - for example, fermentation tanks should

not be selected as a destination for a generic transfer (particularly during the

vintage season) unless other tanks are not available.

Other rules that relate equally to source and destination tank selection,

revolve around reducing the costs associated with the execution of the transfers.

A transfer over a longer distance is more expensive, due to increased setup times

(for example to lay out a ground pipe) and the additional wastage and water

use that is required for cleaning out the longer pipe. In a similar way, having

many transfers to or from many smaller tanks will be more expensive than a

single transfer involving a single pair of tanks.

Labour and Resource Scheduling

Once the operations of the tank farm, and the selection of tanks have been

decided, there remains the scheduling issue of when the operation will occur, by

whom, and with what specific equipment resources.

Each operation can be divided into a number of subtasks, such as setup,

start-up, execution, and finish-up. For each such task fixed amounts of time,

labour and, potentially, equipment, are required. With an execution task, such

as a transfer between tanks, there may also be a variable cost in time, depending

on the number of litres being transferred.

For routine planning, a standard schedule of times of various shifts of tank

farm workers is defined, and the various types and number of equipment can
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Figure 7.4: Tank Farm Map View Screenshot. The circles represent phyisical
layout and contents (by colour). An Activities popup shows the transactions on
a single tank

be acquired. But in the dynamic real world, this is not sufficient: workers can

call in sick and pieces of equipment can become unavailable for maintenance or

repair. Such variations need to be handled by a real-world system.

7.3.2 Functionality

The Tank Farm Optimiser is designed to deal with all the tank farm issues of

tank selection, and resource scheduling, across the full range of scenarios, includ-

ing receiving vintage intake, wine manufacturing operations, servicing bottling

requests, as well as blend planning and management of bulk wine transfers

(inter-winery, export and purchasing.) We describe some major features, with

particular emphasis on optimisation and dealing with dynamic changes.

The Tank Farm Optimiser is arranged via a series of tabs that allow access to

the main planning activities (intake, operation, bottling, bulk wine movement

and blending) as well more generic informational screens (tank farm maps and

schedule, capacity plan, the vintage plan, and the long term production plan).

This arrangement allows customising of the interface for specific user roles: for

example, an intake planner may just have the vintage plan, intake, and tank

farm map/schedule tabs.

The Tank Farm Map and Table give two distinct visual representations of
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the contents and events of the tanks in the tank farm (see Figure 7.4 and 7.5).

In Figure 7.4 the Map view gives a graphical layout of the tanks on a specific

date. The key is quite intuitive: the sizes of the tanks circles reflect the total

capacity of the tanks; the colours reflect the type of content (this is customisable,

and might represent the grape variety, such as Shiraz or Chardonnay); and the

proportions that are coloured indicate how full the tanks are. Tanks that are

all full or all white (empty) would represent a situation where no tank is left

on ullage. Arrows between tank circles represent scheduled transfers, whilst

warning markers indicate the presence of issues at some point in the tank’s

timeline (details of which are revealed by clicking on the system)

Simply clicking on a tank circle reveals other basic facts about the contents of

the tank, displayed in the lower part of Figure 7.4, including the precise varieties,

vintage years, exact volume, status of the wine (e.g. ready for bottling) and a

succinct representation of analysis results (such as current measurements of

the wine sweetness and alcohol levels). By opening up any tank,an activities

screen for the tank is displayed (visible in the upper part of the figure). This

screen displays the sequence of all transactions that relate to that tank in the

model, such as transfers of fluids in or out, operations (such as additives), and

synchronisations with updated content information.

The table view (see Figure 7.5) is similar to the map view, but the tanks

are listed in a tabular form, rather than arranged by geographical location.

Each row presents data for a single tank, and the various textual and numerical

columns (visible on the left of the figure) give various attributes of the tank and

its contents for a specific date (these columns are particularly useful for sorting

and filtering for tanks having specific properties.) On the right of Figure 7.5 we

see the timeline of the contents of the tank represented, providing a graphical

view of the dynamic changes of the tank, both historical and planned for the

future. The colour of each bar represents the type of content (using the same

colour mapping as used in the map view colouring of the circles) and the height

of the bar represents the proportion of the tank that is filled. Transfers are

represented as icons on the bars. Scrolling the right side of this table allows

the timeframe of these timelines to be altered. A wide range of filters can be

applied to both views, and the selection context and filtering is maintained as

the user switches between map and table views.

In the lower left of Figure 7.5 a warning icon on a row has been opened to

a warning details panel, giving information about constraints that have been

violated on the tank on that row. These constraints may be volume violations
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Figure 7.5: Tank Farm Table View Screenshot. Timelines for the tanks are
visible on the right, coloured by the wine variety

(e.g. an attempt to transfer more from a tank than it contains at the time that

transfer is scheduled) or contents violations (e.g. the mixing of the contents of

one tank into another tank, which would break configured rules of the varieties

that may be mixed.)

The underlying model of tank transfer events is an effective way of dealing

with the dynamic temporal aspects. For example, the tank model may show

that a 20,000 tank T100 has 10,000 litres of 2009 Shiraz. Let us suppose that

this is precisely what is required for us to service a bottling request for the

next two days. A manual operator may be tempted to use this for the bottling;

but instead, the optimiser might suggest to only take 4,000 from T100, whilst

taking the remaining 6,000 from a small 6,000 litre tank, full of 2009 Shiraz. It

seems like a worse solution, since T100 now continues to be left on ullage, with

4,000 litres. The explanation is that there is already a booking in the system

that will take 6,000 from T100 in several days’ time. In this way, the optimiser

is looking ahead at the existing scheduled transfer bookings, and selecting to

ensure that we do not take too much from a tank (leaving an already scheduled

and approved transfer infeasible.)

The tank selection algorithm (either for source or destination) primarily

works by evaluating each tank as a potential candidate. Firstly, infeasible tanks
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are rejected, and a reason for rejection is recorded for such tanks. For the feasible

tank, a weighted set of penalties is calculated and recorded. The weighting cov-

ers the various requirements for tank selection listed before: minimising transfer

distance, avoiding ullages, and avoiding fermenter tanks when fermentation is

not required. There are also penalties that aim to improve the future efficiency

of the tank farm, such as by encouraging clustering of tanks of the same type

of wine in the same area. The highest weighted tank is the one selected. If

that tank does not completely satisfy the requirement (e.g. it does not provide

enough for a large export order) then the values are recalculated, as the previ-

ously second-ranked tank may not be the most appropriate given that the first

tank is now being used. For example, it is quite likely that the second tank

might be left on ullage, and so a smaller tank that more closely matches the

outstanding requirement would now be preferable.

The optimisation of the schedule relies on tracking the resources, and plac-

ing earliest due tasks earlier that later tasks. However there can occur task

order inversion, on the basis of availability of specific resources. Furthermore

the algorithm assesses the costs of varied resources, aiming to use lower cost

resources in preferences.

7.3.3 Results

Both the tank selection and the labour and resource optimisation features of

the Tank Farm Optimiser system provide effective and timely solutions, and

adapt well to real world, dynamic changes. An important aspect of the utility

of the system is how it interacts with the workflows of the users and with their

individual planning.

Tank Selection

As new orders and requests enter the system, via a batch loading system, they

are automatically optimised together. This provides new tank selection allo-

cations without disrupting existing allocations. This is important to help pro-

vide the users with stability in relation to the tank farm, and to preserve the

additional planning information already added for existing allocations. When

requests are revised, particularly in relation to volume, this situation is visually

highlighted for users, but does not result in an automated re-optimisation. This

is because the users may still wish to use existing tank allocations, and will

merely add or remove tanks from the existing assignment.
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A particularly important aspect of the use of the tank selection has been

the presentation of the penalties and constraints involved with tank selection,

when demanded by the user. Users have needed to be able to refer to such

decision making data, in order to trust in the choices made by the Tank Farm

Optimiser. We believe that this may be partly due to the traditional basis

of the wine making process, where individual winemakers have been used to

considerable personal control and responsibility with all aspects of the process;

hence ther may be a relative unwillingness to give up some aspects of this control,

particularly if the optimisation appears as a black box. Another important

factor in presenting the optimisation reasoning, is that of enabling users to deal

better with the effects of dynamic changes. For example, a user who is allocated

a tank which appears “inferior” to that allocated to someone who books after

them, can sense an aspect of unfairness - and perhaps suboptimality - in the

system. However, once the optimisation records are presented, they can see that

at the time of their booking, their selection was indeed optimal.

Since the incremental approach of allocating tanks is not guaranteed to be

globally optimal, users also make use of other features that give extra flexibility.

These include reoptimising selections that occurred previously, and manually

stipulating tank selection, by-passing the optimiser. One of the noted results of

manual bypassing of the optimiser is that the users’ deliberate choices can work

to undermine the global goals of the optimisation program - such as reducing

the clustering of tanks for the same or similar wines.

Tank Farm Resources Scheduling

The labour and resource scheduling is carried out automatically, at the same

time as the tank selection, when records needed for the tank operation files are

loaded into the system.

Interestingly, although the Tank Farm Optimiser does not provide a rationale

for its resource scheduling, this does not seem to be a major concern to users.

This may be because they have less inherent interest in exactly when and by

which cellar hand the work will be carried out; or it may be because in a visual

presentation of the schedule, the interlinked and cross-dependent complexity of

the problem is more evident, leading to less obvious substitute solutions.

As a result, the changes that are made to the schedule appear more in

the nature of refinements and improvements, constructively using the existing

schedule as a basis. Examples of such changes may arise in a situation where



176 CHAPTER 7. MULTI-ECHELON SUPPLY CHAIN

the users note that the setup time for a following task maybe reduced, or even

eliminated, since it may be possible to use the equipment setup up for the

preceding task and thus reflect a global optimisation that is not yet accessible

to the Tank Farm Optimiser.

7.4 Algorithm for the Global Module

Previous sections of this chapter described the wine supply chain and discussed

each silo in detail. Scheduling, planning and forecasting decisions for each of

these silos produced by the systems were mentioned above. In this section we

will refer to each of these systems as a silo system. These silo systems, apart from

local optimisation, confer an additional advantage as they provide the ability

to analyse various what-if scenarios. However, the challenge for the companies

owning a vertically integrated supply chain, such as the one being considered

here, is to have a decision support system that covers all the aspects of the supply

chain – globally optimal decisions, taking into account intra-silo constraints of

each particular silo system, as well as higher level inter-silo constraints that set

the dependencies between the silos.

Additional challenge is to reuse the existing decision support modules of each

of the developed silo systems, so the global optimisation module has to exploit

and coordinate the execution of the existing local modules as the building blocks.

7.4.1 Algorithm

There are several goals for the decision support system to address in this supply

chain: the maximisation of profit, the maximisation of customer satisfaction

(for example, providing high quality product, delivering orders on time), and

the possible minimisation of carbon emissions – this list can easily be extended

with 5-10 additional KPIs. The need to address such a multiplicity goals really

creates a multi-objective optimisation problem. To the best of our knowledge,

no decision support system exists that addresses, from the global perspective,

even one of the objective mentioned above. The algorithm described in the next

subsection collects the solution quality measures from the solutions of each of

the silos and links them into a single fitness via the linear combination:

fitness = k1f1 + k2f2 + k3f3 + k4f4 + k5f5
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where ki are the coefficients and fi are the fitness values of each of the silo

solutions. This can be viewed as a problem with multiple objective but in this

thesis we will be considering an aggregation of the objective into a single value.

The proposed algorithm that addresses the problem of optimal decision sup-

port for the wine supply chain is based on cooperative coevolution. It aligns

very well with the algorithms discussed in previous chapters, especially in Chap-

ters 4 and 5. Solutions in each of the five silo systems represent a species of a

wine supply chain ecosystem. The evaluation of each of the solutions is based

on how well this solution performs in cooperation with representative solutions

of other species.

The evaluation of solutions is based on the supply chain simulation. It uses

the simulation framework used for the experiment in Chapter 5. A chain of

five silos is constructed in the framework, and each simulation silo implements

a functionality based on the solution it is using. The first silo, responsible for

maturity models, constructs a forecast for the second silo which is responsible

for the vintage intake planning. It uses this forecast to construct the schedule

from the genotype of the individual. This schedule is then fed into the third

silo responsible for the crushing process. The crushing schedule (phenotype)

is decoded from the crushing individual (genotype). The fourth silo, which is

responsible for the tank farm, uses this information to decode its solution for the

logistical decisions. The last silo (bottling) has information on customer orders

as well as knowledge of the wine supply from the tank farm, and additional

material requirements (such as bottles, labels, and corks) to construct a bottling

schedule from the genotype provided by its individual.

A Global Module (GM) coordinates all the activities of the species. It first

commands each silo system to initialise the individuals of its species. Then it

asks for representative partner individuals from each and shares them between

all the participant silo systems. From time to time the GM asks silo systems to

provide partner representatives and shares them again. Each of these exchanges

will be referred to as an epoch. These are done asynchronously, i.e a number

of generations between two epochs is not fixed for each of the species. In the

current implementation it is done based on time – each T seconds (T = 30 for

this algorithm). This runs for nEpoch times (nEpoch = 100 for this algorithm)

after which it asks each of the silo systems for the best result and presents the

user with the one with the highest fitness.
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7.4.2 System Design and Communication Protocol

The cooperative coevolutionary global module needs to be designed keeping in

mind that the systems at local silos need to have a minimal number of changes.

There is need for a communication protocol that will allow the silo systems and

a global module to communicate. In our implementation this communication is

based on the Java RMI.

Each of the solutions produced by the silo systems implement the Individual

interface which has the following methods:

• Set<Individual> getPartnerIndividuals() returns the set of all part-

nering individuals. The encoding of this set is a global solution.

• double getFitness() returns the fitness of individual based on coopera-

tion with other partners

• double getSelfFitness() returns the fitness of individual based on local

evaluation without cooperating with all the partners

Each of the silo systems produces a solution that implements this interface:

MMIndividual for Maturity Models, VipIndividual for the Vintage Intake Plan-

ner, CrushingIndividual for the Crushing system, TfIndividual for the Tank

Farm optimiser, and BottlingIndividual for the Bottling system.

Maturity Models

Global Module

CGEMCGEMCGEMCGEMCGEM

Vintage Planning Crushing Tank Farm Bottling

Figure 7.6: The design of the wine supply chain with global optimisation

The overall design of the supply chain under the control of global opti-

misation is shown in Figure 7.6. Each of the silo systems has an additional
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Communication and Global Evaluation Module (CGEM) attached which is re-

sponsible for instantiation of communications with the Global Module and also

evaluation the solution in conjunction with the partner solutions. When the

system is deployed with the CGEM, it can switch to the server mode which

lets the silo system to receive commands from the GM. GM can request the

silo system through CGEM to initialise the session and optimisation, return the

best results so far, and update partner representatives and certain variables. As

this communication is based on Java RMI all silo systems can reside on differ-

ent computers and are connected through the network. This turns the global

supply chain optimisation to the distributed system and presents an additional

advantage of utilising concurrency.

The process of communication involves the following steps:

1. Initialise Session. This is done when the GM invokes the initSession()

method. When received the system initialises all variables for the session

and returns its unique name so the GM verifies the identity of the silo.

2. Initialise Optimiser. This stage is only done when the response for

initSession() is received from all the systems. Then it invokes the ini-

tOptimisation() method to initialise optimiser modules on each of the silo

systems and then initialise the population (in case of non population based

optimisers a single solution is created). The system responds with the OK

or FAIL message.

3. Request Partner Individuals. After all systems return OK to initialise

the optimiser, the next step is to request the partner individual from each

of the silo systems via getPartner() remote method.

4. Set Partner Individuals. When all the partner individuals are re-

ceived, the GM distributes all of them to all silo systems via the set-

Partners(individuals) remote method. If this is done the first time in the

current session, this method kick starts the optimiser. CGEM then re-

turns an OK message to confirm that partner individuals were set. After

that GM waits for T seconds and calls step number 3 (Request Partner

Individuals) again. This loop is repeated nEpoch times.

5. Stop Optimisation. The method stopOptimisation() stops the optimiser

in silo systems, then the best so far individual is returned as the result of

the call and then closes the session.
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This process controls the execution of algorithms at each of the silo systems

guided by the GM. After the nEpoch partner synchronisations the GM gathers

the best individuals from all the silo systems and presents the user with the one

with the highest fitness.

7.4.3 Results

After the GM was implemented, each of the silo systems was deployed with the

CGEM module on separate computers. The systems were run and the server

mode was turned on. The GM, run on different computers on the network,

started to manage the optimisation execution of the silo systems. It was config-

ured to run for 100 epochs and the result was produced within one hour. After

a careful examination of the solution by the domain expert, it was concluded

that “this solution can be used to provide the decision support process”. It is

hard to compare this solution with the current production solution as there is

no system that would gather all the pieces of the local solution in one to produce

a global solution.

An additional benefit of the global optimisation is the global what-if scenario

analysis. The operator can change almost any setting of any of the silo systems

as well as “freeze” a solution at a particular silo system and run a global optimi-

sation around that fixed solution to produce the result. This would significantly

improve the decision process, not only as to how to operate the supply chain,

but also as to what short and long term decisions or investments could be made

to improve it.

7.5 Summary

Previous sections described five components of the vertically integrated supply

chain. The decision support of each system is coordinated by the global module

which makes possible the cooperation between the components of the whole

supply chain. The existence of the global module makes possible the existence

of several significant benefits in optimising the vertically integrated wine supply

chain – these include:

• better use of available production capacity.

• reduced risk of late deliveries due to production capacity issues, supply

issues, or scheduling errors, and better visibility of potential risk.
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• the ability of schedulers to quantify the relative merits of different sched-

ules, and make informed decisions as to which scheduled to choose.

• higher confidence in production schedules may allow running at lower in-

ventory levels.

• long-term planning from sales forecasts (e.g. assist with production ca-

pacity planning and production smoothing, supply planning for long lead-

time items, and inventory planning, what-if scenarios for strategic and

operational planning, testing the impact of changes on business rules, in-

frastructure investment, overtime or extra shifts).

• reporting on production (e.g. identification of capacity problems, identifi-

cation of production or supply bottlenecks, high-level overview as well as

information on specific orders).

• reduction in labour requirements through labour balancing, a reduction

in labour-intensive operations, and a reduction in overall transfers.

• reduction in “free working space” on the tank farm, leading to increased

tank utilisation, capacity, and throughput.

• process improvement in the area of work order handling, by reducing paper

handling and data duplication.

• provision of centralised applications that are maintained and supported.

• provision of a scalable platform for future extensions.

• straightforward integration with other applications for prediction and op-

timisation.

• provision of integrated views (carrier, winery, etc.)

• provision of integrated inputs (e.g. for Grower Liaison Officers and Logis-

tics Coordinators).

• provision of optimised capacity planning (i.e. automated “smoothing”).

• automatic generation of robust, optimised production schedules that max-

imise service levels and utilisation, while minimising cost.

• faster feedback to production planners, management, sales, and other in-

terested parties for placing orders or requesting changes.
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There are also a number of flow-on benefits, e.g. less time required by planners

to produce bottling plans, less chance of human error, identification of potential

data problems, ability to handle dynamic changes to the schedule, at the same

time minimisation of the impact on existing work orders near their production

date. All the above listed benefits are possible due to the global module which

coordinated optimisation in between the components.

An additional benefit of the design described in this chapter is that the

global optimisation relies very little on the design of the systems that make silo

based decisions and systems can be “plugged in” or “pulled out” of the global

optimisation relatively easily.

To realise all these benefits, the Computational Intelligence method must

play a central role in the development of the software. It would be very difficult,

for example, to build a linear model of such a whole supply chain, representing

all objectives, constraints, and dependencies – indeed, most standard software

packages have failed in this complex environment over the last 15 years.



Chapter 8

Multi-silo Supply Chain

with Complex Structure

Due to the nature and complexity of some supply chains, evolutionary compu-

tation algorithms are not sufficient to produce a good solution for them. This

chapter presents a multi-silo supply chain with complex dependencies. A fuzzy-

evolutionary algorithm is proposed to address the complexity of this supply

chain.

8.1 Introduction

This chapter presents ways to synchronise and reconcile the drivers of multi-

echelon supply chain networks as demonstrated on a real-world example of an

Australian manufacturer of agricultural chemicals. Although the model pre-

sented in this chapter aims to represent a specific supply chain model of a

particular manufacturer, the components on which the network is based repre-

sent supply chain entities as can be found in many other businesses. We present

two approaches which generate optimised production and material procurement

plans. The system will facilitate the planning process, which is currently a two

week task for a planning team of two down to a matter of hours. The opera-

tors will have the opportunity to regenerate plans as soon as the environment

changes, thus obtaining a response within a few minutes. The prompt genera-

tion of plans allows for strategic planning which could not be achieved by the

previous mode of operation. The power of what-if-scenarios can be harnessed

183
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to benefit from early structural decisions of the supply chain, such as added

production, storage or transportation capacities.

This chapter details two approaches on how to balance the output of produc-

ing entities such as plants and factories with storage facilities like tanks, stock

piles or silos. The aim is to generate an optimised production plan for each site,

including decision making about such aspects as the sourcing of raw material

and production rates while honouring storage capacity constraints.

Although both approaches employ a simulation as part of the solution eval-

uation, the type of simulation differs. In the first approach, an Evolutionary

Algorithm tries to find a sequence of events. An event is defined by the date

it occurs and an impact it has on the simulation state. The events are stored

in a priority queue and executed in chronological order. An event could, for

instance, cause a material changeover or a wind down of the production rate

of a plant. An actual simulation only occurs at these discrete events (Discrete

Event Simulation); in between any two adjacent sample points (events), the sys-

tem’s state is assumed to be linearly changing, which means a tank’s level can

be inferred at any given time between two sequential events. In this particular

implementation, the reduction of the plant’s utilisation in order to comply with

capacity constraints is performed deterministically by taking the excess produc-

tion of a storage and propagating it back to its supplying nodes reducing their

production proportionally to their share of the excess amount.

The second approach presented in this chapter does not use events to change

the state of the system. As opposed to the previous approach, it tries to find

the underlying rules that will balance the supply chain’s producers and prod-

uct changeovers. During the optimisation process, an evolutionary algorithm

generates a rule base and compares its performance on the simulation run at a

predefined interval.

The above two approaches are compared in terms of their overall perfor-

mance, comprising violation of hard constraints such as storage capacity, total

final product yield at the end of the run, and satisfaction of demand.

This chapter is structured as follows. After this introduction, the description

of the problem is presented in detail. After a literature review in section 8.3,

the approaches used to tackle the stated problem are discussed in section 8.4.

Experimental results are given in the following section 8.5 and finally the chapter

finishes with a conclusion.
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8.2 The Problem

In many industries which base their operations on multi-echelon production

systems, procurement planners and factory operators often face the same sort

of problems when they create production plans for a short, mid-term planning

horizon:

• What is the best supplier of raw materials (in terms of reliability, contrac-

tual bindings, availability, costs)?

• How much of it should be sourced in a given period?

• How much finished or intermediate product should be produced?

• When is the best time to schedule maintenance outages?

There are many more questions that can be considered. The bottom line is that

the problem is rather complex, and involves trade-offs which cannot be made in

isolation, that is, disregarding processes that happen further down the supply

chain; indeed all decisions are heavily interdependent. Applying rule-of-thumb

reasoning will not lead to an optimal or even to a feasible plan if hard-constraints

such as capacity limits are violated.

In order to understand the complexity of the presented problem and the

manual interaction involved, let us consider the following example. A factory

plan is supposed to be developed that balances the production and storage

capacities of the supply chain presented in figure 8.1.

The network is composed of three plants (P1...P3) producing material M1,

M2 and M3 (P1 produces M1, P2 M2 and P3 M3) at a rate of 50 units per time

unit t and three storage tanks (S1 and S3). Assume that all tanks’ capacity is

100 units and S1 and S3 are already filled to 80% of their maximum capacity.

The planner tries to run the plants as hard as possible – that is, it is desired to

run them on maximum production capacity. Running P1 hard within a period

of t means it produces 50 units of M1 which are stored into S1. Since there is

a constant consumption of M1 by plant P3 an overflowing ot the tank does not

occur. P2 also produces its material M2 and conveys it into its tank S2. P3 is

sourcing its two input products and converting it at a ratio of 1:1 (which means

we obtain 50 units at the end of t from P3). Since storage tank S3 is already

filled by 80 units (assume no consumption at this point), an excess amount of

30 units has been produced at the end of the time period. Since the excess
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P1
S1

P3

P2
S2

S3

Figure 8.1: Simple supply chain example to demonstrate complexity of balancing
the components involved.

amount cannot be stored elsewhere, the production of the plant feeding into S3

has to be reduced. In this example, a utilisation of 40% would avoid the excess

capacity to be created and storage S3 to containing 100 units at the end of the

period. Winding down the production in P3 however, reduces the demand of

M1 which is produced in P1. The planner has to go back to the producer of

M1 and also reduce the production rate of this plant, as the material cannot

be stored in S1 (which is also filled to 80% of its capacity). This process of

propagating back the plant utilisation has to be done for every storage facility

that is exceeding its capacity. In this case, only two plants were affected, but

for multi-echelon networks, it is easy to imagine that the amount of work that

has to be done once a storage constraints is violated is enormous. The dynamics

of the environment in which the plan is going to be implemented, often forces

the planners to re-create a plan multiple times (imagine outages of production

plants). Figure 8.2 shows the screenshot of the system with all the confidential

client information removed. This screenshot shows the number of silos in the

supply chain and the complexity of relationships between them.

In essence, the process of creating such a plan can be very labour intensive

in a dynamically changing environment. It becomes even more tedious when

consideration has to be given to a long term planning horizon, which bears a lot

of uncertainty towards its end. The benefit of long term planning, the ability to

strategically plan by evaluating what-if-scenarios, becomes virtually impossible

when plans are generated manually. For a given industry example, it took no less
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Figure 8.2: Diagram, configuration and production details of the supply chain

than two weeks for the planning team to sketch a plan which took into account

storage constraints and currently firmed orders. Running a what-if-scenario

analysis to determine the impact of say a corroded storage tank which is likely

to leak in the next couple of weeks would be almost pointless, as the event is

more likely to occur by the time the planner finishes his what-if-evaluation.

The proposed system automates the planning process to the extent that

constraints are entered via an intuitive user interface and a plan is delivered

within minutes after the optimisation process has been started. This allows for

strategic planning as well as a prompt update as soon as new orders are placed,

thus impacting on the production schedule.

8.3 Related Work

The optimisation of supply chain networks has been an ongoing research topic

for many years. The research work can be categorised into two major streams.

Either a supply chain has to be built from scratch with optimal location of

production facilities or storage and distribution centres, or an existing supply

chain has to be managed in order to make decisions that pertain to factors such

as the sourcing of raw materials and the amount of production. A combination

of both is also possible in which case an existing supply chain is supposed to
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be structurally altered (e.g. by adding new sites or negotiating new supply

contracts). Structural or management decisions can also be considered with

regard to their planning horizon. While structural decisions impact on longer

planning horizons, management decisions deal with day-to-day operations. The

former decisions are of a strategic and the latter of tactical and operational

nature. Depending on the planning horizon for which the supply chain has to

be optimised, different categories of questions become important. While the

factory manager is most likely be interested in a plan that tells the personnel at

which rates the production is supposed to run for the coming weeks (short term,

operational planning), a manager is interested in the bigger picture; questions

about the impact of a new production site may be more relevant to him than

the current factory plan in the plant (long term, strategic planning) [15].

An approach that addresses long and short term planning questions is pre-

sented by Truong and Azadivar [169]. In that paper, the authors describe a

system that uses a hybrid technique of mixed integer programming, genetic

algorithm and discrete event simulation to make the optimal decision about

where to produce (internally or externally), production planning, transporta-

tion as well as strategic decisions on the location and capacity of facilities.

While the genetic algorithm is employed to optimise sourcing policies and qual-

itative variables, mixed integer programming reduces computational costs by

solving quantitative variables. The effectiveness of the obtained supply chain

configuration is evaluated by a simulation.

In [170], a discrete-event simulation facilitates the evaluation of supply chain

scenarios of a food supplier. The results obtained from the simulations suggest

ways to improve the supply chain by changing inventory strategies. As a result,

the stock level could be reduced, and this was beneficial to the freshness of the

products, also allowing additional products to be introduced as shelf space was

freed.

Other researchers concentrate only on isolated parts of the supply chain.

Ding et al. [60] describes a hybrid simulation-optimisation approach with the

objective of selecting the best supplier of a supplier portfolio (in a strategic

way rather than for daily sourcing; the supplier found is used throughout the

planning horizon). A genetic algorithm is employed to search for possible config-

urations of suppliers. As with the previous approach, a discrete-event simulation

determines the key performance indicators (KPIs) that form the input for the

evaluation function.

Another approach concentrating on parts of the supply chain in isolation
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is discussed by Xie and Petrovic [177]. They analyse research work done on

the problem of stock allocation and conclude that, for most of the strategies

given, the rules for cost optimal allocation policies are derived from mathe-

matical models for the considered distribution systems. Their approach defines

a new decision-making system for stock allocation that is based on fuzzy IF-

THEN rules. Initially, the rule base is generated by domain experts, but they

allow for alteration by changing the rule’s weights. A simulation on a 2-echelon

supply chain (one warehouse and multiple retailers) is run to demonstrate the

effectiveness of this approach.

Fuzzy set theory is also applied in Wang and Shu [173]. Unlike Xie and

Petrovic [177], Wang and Shu use fuzzy logic to model uncertainty such as de-

mand, processing time and delivery of supplies. The objective of their work is

to develop a supply chain model that minimises the inventory costs by meeting

demand. A genetic algorithm tries to find the optimal order-up-to levels for all

stock-keeping units. Again, this approach only looks at one objective (minimi-

sation of inventory costs) and one method to achieve this objective (reduction

of inventory).

The common denominator of the above papers is the application of a simu-

lation (mostly DES) in order to obtain the properties of the supply chain and to

evaluate the performance of the optimisation method. This observation is also

supported by several surveys (such as [157, 74, 164]). Methods used to obtain

inputs for the simulation are mainly genetic algorithms (GA). However, even

though GAs seem to dominate, recent publications indicate the appearance of

fuzzy logic systems as drivers for the simulation process.

Another aspect that is important to consider when building a solution, that

is meant to be reusable, is the building blocks of the supply chain, that is,

the model. Many attempts have been made to develop a unified supply chain

model and terminology. Some of them (for example [162]) represent common

terminology, or others (see [148]) emphasise configurability and propose event-

discrete simulation as a means to analyse supply chains. This work, however,

places its emphasis on business processes rather than the definition of reusable

components as these processes are desirable in the creation of a programming

model. Others (see [110, 61, 67]) use special modelling languages to express the

complexity of business processes and automatically generate simulation models.

Although all of them suggest that we employ simulation to analyse supply chain

networks, they require expert knowledge of modelling languages like Rockwell

Software’s ARENA, one of the prevalent languages for model supply chain net-
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works. The resulting models may be generated in a programming language that

is incompatible with the rest of the system. We believe that a generic supply

chain model can be developed that supports both flexibility and ease of use

when creating the model without the necessity of acquiring expert knowledge

of simulation languages. The ideas presented in this chapter are implemented

in a framework which is employed to model the supply chain operations of a

real-world business.

8.4 The Approach

In this section we describe two approaches that we developed to optimise the

supply chain of the given business. Both approaches perform a simulation in

order to determine the quality (or fitness) of the solution. The first approach

generates a sequence of events and applies these to a discrete event simulation

(DES). We call this an “Event-Based Optimisation” approach. A simulation

is performed at any event that occurs (next-event time advance, [99]). In con-

trast, the second approach uses rules to make decisions for factory utilisation

and sourcing. The “Rule-Based Optimisation” approach also uses a simulation

to evaluate evolved solutions, but advances the time at a fixed interval (fixed-

increment time advance [99]). In addition to the supply chain model that is

being used, and the common parts of the evolutionary algorithm, this section

describes both approaches in detail, and lists their advantages and disadvan-

tages.

8.4.1 The Supply Chain Model

When modelling a real-world system, careful attention has to be paid to the level

of abstraction of the model. On the one hand, a high level of detail improves

the fidelity of the examined properties of the system, but on the other hand, the

simulation process becomes computationally expensive, which prolongs the run-

time of the optimisation process. A trade-off has to be made between reflecting

as much as possible so as to draw the required conclusions from the system, and

the minimisation of details. The model we employ for both of our optimisation

approaches is described below.

The supply chain network can be thought of as a directed graph G = (V,E)

with V = {0, ..., n} as a set of vertices and E = {0, ...,m} as the set of edges.

Each vertex/node can be of any of the three following types:
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• plant

• storage

• switch

Although the type of node determines the different way nodes process mate-

rial, the three node types have common properties. Each node contains a set

of predecessors on which it depends with respect to its source products. These

predecessors are defined by the incoming edges of the vertex. Figure 8.3 illus-

trates a very simple supply chain network. Plant A produces two products,

stores both of them in separate storages and Plant B converts Product A into

Product C which is finally stored in Storage C. Note, that in this simplified ver-

sion, Plant A has no predecessors, whereas Plant B’s predecessor is Storage B.

The conversion from a raw material into an intermediate or final product can

be thought of as a chemical reaction with arbitrary input and output products.

Plant A

Plant B

Storage A

Storage B

Product A

Product B

Product A

Storage C

Product C

Figure 8.3: Supply Chain model showing material flow between supply chain
nodes

A switch, the third kind of supply chain node, is not a physical entity,

but it serves to route the material through the supply chain network. Due

to the internal design and the paradigm to keep functional units as simple

as possible, plants and storages are only allowed to source a material from one

predecessor node. In case there is more than one predecessor node which outputs

the same product, a switch has to be inserted which controls the material flow

(see Figure 8.4). A switch can either implement a local heuristic to determine

which successor to deliver to, or it may be controlled by the optimiser which

evolves the routing as part of its usual individual reproduction process (the

switch becomes part of an individual’s genotype). An example of the former

may be that Switch A is implemented in a way such that it always exhausts the
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capacity of a tank before it starts filling up another tank (see Figure 8.4, Switch

A). The local deterministic heuristic incorporated into Switch B may reduce the

storage’s level, evenly draining all tanks at the same time.

Plant A Plant B

Storage B

Storage A

Product A

Storage C

Product A
Switch A

Switch B

Figure 8.4: Supply Chain illustrating material flow routed by Switches

In addition to nodes having predecessors, nodes also contain output buffers

(one per product) in which the products they produce or store and their quan-

tity are temporarily kept. Switches do not contain output buffers, but delegate

requests for material to their predecessors depending on their implemented rout-

ing logic.

The previously described node-predecessor relationship only works for con-

tinuous material flow such as for liquids that are pumped from a producing plant

into a storage tank. In many supply chain networks the distribution of material

is done via transportation means with limited capacity or infrequent trans-

portation times (trucks, ships, air planes or railway). Therefore, an additional

property of the edge between two nodes is a schedule defining the availability of

the transportation means and its capacity. Only when a means of transporta-

tion available at the plant or storage, can it empty the node’s buffers and store

the material temporarily in its own buffer. Plants either have to shut down

or store their products in adjacent tanks at times at which the transportation

means is not available.

Given the supply chain network of the particular business, a simulation pro-

cess can be performed that is mostly similar for both optimisation approaches.

The only difference is in the way in which the decisions that change the state

of the supply chain network are inferred.

Before the simulation is started, the supply chain nodes have to be initialised

and then a list of the sample points (event queue) will be created. During the
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initialisation process of the nodes, the buffers of some storage entities are filled

to simulate an opening stock. The next step is to determine the points of the

planning horizon at which the system is sampled. These points are the set of

all events that occur during the planning horizon, such as

• change of availability of a plant (plants may run at a reduced run rate due

to partial maintenance or outages).

• product changeovers.

• arrival/departure of transportation means travelling between two nodes.

It is of paramount importance to the validity of the simulation to add all events

that cause a discontinuous change of the supply chain network’s state to this

event queue. Otherwise a change that is non-linear would prevent any infer-

ence of nodes’ properties in between two adjacent sample points. If desired,

additional sample points can be added to verify the simulation’s result.

Once the event queue is filled, the nodes are sorted by precedence. Nodes

without predecessors occur first, whereas terminal nodes that base their buffer’s

material and quantity on the result of all previous components’ production are

located last in this list. The next step is to iterate through the list of predecessors

(beginning with the least dependant node) and process the node. Processing a

node breaks down into three steps:

1. pull resources (raw material, intermediate material, final product, etc)

from predecessor.

2. apply conversion rule.

3. push converted material into output buffer(s).

The first step is straight-forward: since each nodes knows about its predecessors

and the material it requires, it pulls the maximum amount of this material from

each of its predecessor nodes. Switches forward the call to their pull method

the appropriate predecessor. The pull step basically boils down to copying the

content of the predecessor’s output buffers and passing it on to the conversion

step.

In the conversion step, the actual business logic for each plant is imple-

mented. If we consider a chemical formula like 1A + 2B → 2C + 1D with

hypothetical elements A, B, C and D, the factory that processes this formula

would source all the material it could get for Product A and B and determine
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the quantities of resulting Product C and D (taking into account the ratio of

A:B=1:2). The amount of input material, which has actually been used during

the conversion process, is reduced from the predecessor’s output buffers to ac-

count only for the actual consumption and to determine overproduction. While

switches do not implement a conversion routine, they pass on the incoming

materials to their output buffers.

Finally in the last step, the produced material is stored in its output buffers

to be available for the successor node’s processing procedure. At the end of

the sample cycle, that is once all nodes have been processed, the simulator

captures the state of the system by storing the buffers which contain the quan-

tity/products tuple for each node. The final buffer capacity allows for deter-

mining the plants’ utilisation or the storages’ remaining capacity.

The simulation terminates once the planning horizon’s end date is reached.

8.4.2 Features of the Optimiser

The meta-heuristic used to optimise the supply chain network is a steady state

Evolutionary Algorithm (EA); only one individual alteration occurs at each

generational step. Evolutionary algorithms are well understood, are reliable,

and they can be customised to solve a variety of problems of different domains.

They have been applied to other problems of a similar level of difficulty and

performed satisfactorily. This section recapitulates the general working principle

of the EA and elaborates on the specific implementation that contributes to the

success of the search process. A description of the operation of the EA follows.

The population contains a number of individuals (approx. 100 individuals)

which encode a solution in their genotype. After initialising and evaluating the

individuals of the population, the recombination process is started. As part of

this process, an operator from the set of available operators is chosen to alter the

individual. These operators are application specific as their operation strongly

depends on the encoding chosen as well as the particular business problem they

try to solve. Some operators may have the ability to consider certain business

constraints to operate in a feasible search space which reduces the search space

and leads to faster convergence. The specific operators used for both optimisa-

tion approaches are explained in the following sections.

After the operator changed the individual, the new individual is immediately

evaluated. A self-tuning procedure compares the fitness value of the individ-

ual before and after the operation, and adjusts operator weights according to
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whether the new individual yields a better solution or not. The weight is taken

into account at the previous step of selecting the operator. In case an operator

performed poorly, it is less likely to be selected for evolving the next individuals

(similar to roulette-wheel selection). After a defined number of generations, the

weights are reset, so dominating operators have to again proove their perfor-

mance. This is particularly important if the optimiser prematurely converges

and the optimisation process gets stuck at a local optimum. The previously pre-

ferred operator would not contribute to improving the solution’s quality which

means other (potentially more explorative) operators come into play.

The evaluation procedure uses application specific measures to determine

the fitness of the individual. For this particular optimisation problem, both

optimisation approaches use an identical fitness evaluation function. Part of

the evaluation is the simulation. Once finished, the system state is evaluated.

Objectives of the optimisation process for supply chains include but are not

limited to :

• maximisation of product yield.

• minimisation of product changeovers.

• adherence to a specified product ratio for the remaining planning period.

• satisfaction of demand.

• minimising transportation, inventory, backlogging costs.

A comprehensive list of measures of supply chains can be found at [75].

The optimisation process is terminated once a pre-defined number of gen-

erations is reached or if the search stagnates over a certain period of genera-

tions. The best individual found throughout the optimisation process is returned

(keep-the-best strategy [118]).

Both techniques used in this chapter leverage off the same optimisation en-

gine described in this section. Different business rules are encoded in the in-

dividual and the operators which make the EA reusable for other optimisation

problems.

8.4.3 Event-Based Optimisation

The event-based optimisation approach tries to determine a sequence of events

that, when applied to the simulation, result in an optimal solution. Events
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are defined by the date they occur and the action they perform, i.e. the state

change they cause to the system. An example could be a changeover event in

a factory which causes a factory to produce a different product, a change in

the factory’s utilisation, a change of the availability of the factory or a factory

specific event such as a cleanout of storage tanks. The event-based approach

has a very shallow hierarchy of representations. From the event sequence (which

can be understood as the genotype) a conversion into the final solution is made

by means of the simulation.

At the start of the optimisation run, each individual is initialised with a

random sequence of events. The operators alter the event queue in different

ways. They change the type of event (which changes the action they perform)

or the date of their occurrence as illustrated in figure 8.5. Some of them insert

a delay at a specific time which causes all subsequent events to be delayed. A

cross-over operator randomly determines an event of the event queue of two

individuals and swaps all of the following events with the other individual,

similar to the classical cross-over operation for genetic algorithms.

Part of the evaluation process is to transform the genotype of the individual

(the representation of the solution to which we apply the operators) into a repre-

sentation that can be evaluated (the other part is to aggregate the fitness value

components). The transformation is done by running the simulation according

to the encoded sequence of events. At each of the event dates, a simulation

is executed which samples the state of the system (fill level of storage tanks,

excess level, utilisation, amount of raw material sourced). After the event date,

the system state will change non-linearly (for instance, a different product is

produced; a plant shuts down its operation). Once the first simulation pass is

completed a repair function is triggered. Before the repair, the produced prod-

ucts of each plant are consumed by their subsequent storages, disregarding the

current available storage capacity.

The repair function deterministically winds down the producers (the plants)

in order to balance the production with the available storage capacity. This

process starts at the last storage in the supply chain, i.e. the one that relies

on all of the previous nodes, and works back to the first node in the supply

chain (i.e. the one without any predecessor nodes). The excess amount of an

overflowing storage is proportionally reduced from the previous producers in

order to determine the appropriate production rate (planned utilisation). Each

time a plant’s utilisation is adjusted, a partial simulation has to be performed

again as the minimised production has implications for other supply chain nodes
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(a) Event queue before mutation

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EB EC ED

(b) Mutation operator in action changing date of EC to t3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

EA EBEC ED

(c) Event queue after mutation. EC now alters the state at t3 according to its encoded
type.

Figure 8.5: Timeline of the simulated horizon illustrating the impact of the date
mutation operator on the event queue (dashed lines indicate the time events
occur, i.e. when their they cause a change of the state of the simulated system).

downstream in the supply chain network. The advantage of this deterministic

method to determine the utilisation is that these kind of events do not fall into

the search process and hence decrease the search space.

On the other hand, this way of adjusting the plant’s utilisation is rather

expensive as the simulation is rerun every time the utilisation is changed. An

optimisation process not honouring the storage constraints, that is, with a dis-

abled repair function was able to evaluate about 1500 individuals per minute,

whereas a normal optimisation (repair enabled) could only evaluate a maxi-

mum of 150 to 200 individuals on the same machine and the same supply chain

network (this comparison of course is not exact as violated storage constraints
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result in more raw material being available and this skews the production plan

and the obtained product yield).

8.4.4 Rule-Based Optimisation

The approach proposed in this section is based on a combination of fuzzy logic

and evolutionary algorithms. Rather than directly evolving decisions made dur-

ing the simulation of the supply chain (in form of events), rules are generated

which drive the decision making process.

Since the main focus of this thesis is the application of evolutionary algo-

rithms, a very short introduction to Fuzzy Logic is given in this section. There-

after, the application of fuzzy logic to the subject of this chapter, optimising

supply chains, is demonstrated and the particular implementation is discussed

by providing examples of encoding and decoding of the individual’s genotype.

Fuzzy Logic

Fuzzy logic is based on the fuzzy set theory in which values are expressed as a

degree of membership rather than as crisp inputs like discrete measurements.

If we were to classify the age of a person having two categories (young and

old), classical boolean logic would either map a given age to young or old. Let

us say the cut-off point separating old from young is exactly forty years of

age. In boolean logic, every person below 40 years would be young, whereas

everyone greater or equal to forty is classified as old. Instead, in fuzzy logic

an age can belong to multiple categories (or degrees of membership). The

degree of membership is denoted by a number between 0 and 1. Given the two

membership functions young and old, a person aged thirty years would be young

to the degree of 0.8 and old to the degree of 0.3. A fuzzy term such as “age

is young” is called a linguistic term (“age” is a linguistic variable and “young”

a linguistic value). Those terms can be combined by fuzzy-and or fuzzy-or (or

other fuzzy operators, or T-Norms [76]) and further extended to IF-THEN rules

of the form “IF age IS old AND health is bad THEN health-insurance-premium

IS high” (IF part is called “antecedent” and THEN part is named “consequent”).

Many of these rules can make up a rule base.

The type of fuzzy logic system (FLS) used for this approach is called Mamdani-

type FSL [112]. The fuzzy inference process can be decomposed into three major

steps. First of all, the crisp input data obtained by measurements is transformed

into fuzzy sets (fuzzification step) by determining the degree of membership of
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the fuzzy terms specified in the fuzzy rule that is applied. The next steps com-

bine the degrees of the fuzzy sets by the given fuzzy-operators and summarise

each term into a rule weight. This rule weight is used to determine the output

of the rule by limiting the shape of the output function. The last steps, the

defuzzification, combine all reshaped output functions and applies a defuzzifi-

cation function in order to obtain a crisp output value. This function is usually

centre of mass or a weighted average function.

Application of Fuzzy Logic to Supply Chain Optimisation

Translated to our actual problem of generating decisions to drive a supply chain

simulation, the fuzzy rules determine in their consequent part when to schedule

product changeovers (or which products are produced at which time) or the

utilisation of the factories (utilisation of the facility). The advantage of using

fuzzy logic to encode the rules driving supply chain decisions is that these natural

language rules facilitate diagnostics and audit features of the system. A planner

controlling the system can deduct the reasoning of the system by analysing the

rule bases; this is more intuitive than the previous event-based approach.

Another downside of the event-based approach is also that the EA has to

find the correct event for each time, although the conditions may be similar to a

previous point in the plan at which the correct decision was made. Say a product

changeover has to be triggered every time a storage tank is about to overflow, as

the product is consumed from the overflowing tank as soon as the changed over

product is produced. This changeover may not be triggered at another point in

time as the EA has not yet generated such an event at this time. It may or may

not randomly generate such an event at the particular time. The rule-based

system however would have developed a rule that triggers a changeover upon

reaching the maximal storage capacity of the tank, which means every time

the condition holds (storage tank is high), the changeover is triggered. The

application of rules makes the generated plan more predictive and coherent. In

addition, the underlying logic can be investigated and manually fine tuned.

The individuals evolved in the evolutionary process encode the rule base.

We decided to generate the rules by the EA as they may differ for different set-

tings and different products; evolving the rule base by the EA allows adaptation

to the current constraints and environment. There are many other means to

combine evolutionary algorithms with fuzzy logic. They differ in the part of the

fuzzy inference system that is subject to the optimisation. Genetic tuning, for
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instance, changes the database (shape or number membership functions, linguis-

tic terms) of the fuzzy inference system. Other methods evolve the knowledge

base or generate new knowledge base components. An elaborate taxonomy and

survey of methods to combine genetic algorithms and fuzzy logic systems (GFS)

can be found [78].

Consider a fuzzy rule of the structure (consider this example for explanatory

purposes: IF Level_Of_Tank IS high THEN Utilisation_Of_Plant is low)

consists of an antecedent part (IF ...) and a consequent part (THEN ...).

The antecedent can contain multiple linguistic terms (Level_Of_Tank IS high)

which can be combined by different operators (T-Norm). For our purposes,

Fuzzy-And and Fuzzy-Or were sufficient. A linguistic term has two parts, the

linguistic variable (Level_Of_Tank) and the linguistic value (high). The num-

ber of linguistic values can be arbitrary, but in order to reduce complexity, we

opted for 5 linguistic values and triangle membership functions (see figure 8.7).

0
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Very Low Low Medium High Very High

Degree of
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Fill Level

b
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Figure 8.6: Overlay of 5 membership functions denoting the fill level of a tank.
At a level of 740l, the tank level is a member of the “low” function by 0.15 and
a member of the “medium” function by 0.85. For each storage, the parameters
for each membership function are different as the maximum capacity may differ
(and hence ”very high” would relate to a different maximal level).

The possible linguistic variables are the level of each storage tank, the cur-

rently produced product of a plant and previous utilisation. A set of rules forms

a rule base. For the proposed system, a number of rule bases is created, one

rule base per possible consequent part. Since the linguistic variable for all the

rules of a rule base are the same (that is, all rules in one rule base pertain to

the utilisation of a specific plant), the only additional information that needs

to be encoded in the chromosome is the linguistic value of the consequent part.

Figure 8.6 displays the integer number vectors encoding each rule. A rule base

contains up to n rules; the first index represents whether the rule is enabled, the
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second specifies the fuzzy operation which combines the linguistic terms (Fuzzy-

and or Fuzzy-or) and the following pairs of integer values contain a pointer to

a look-up-table of linguistic variables and linguistic values. The last cell holds

the linguistic value for the rule base’s consequent part.

Enable/disable rule

Linguistic
Variable V1

Linguistic
Value v1

Linguistic
Variable V2

Linguistic
Value v2

Linguistic value
of consequent

Rule Base 1

Rule Base 2

Figure 8.7: Encoding the rule bases. Elements in squares are of type integer
number and stand either for booleans or indices in look-up-tables that hold
linguistic variables and values.

Generation of Rules

As in the previous section, the same evolutionary algorithm with its self-calibrating

capabilities is employed. The only difference is the specifics of the evaluation –

that is how the simulation is carried out, and the set of operators used to evolve

the individuals (as the encoding of the individuals). The evaluation function

itself is exactly the same. It takes into account the maximal production yield, a

penalty is deducted in case storage constraints are violated, and also a penalty

is applied in case of a delay in providing enough final product to satisfy firmed

orders.
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Unlike the event-based optimisation, the rule-based approach samples the

system at pre-defined intervals. At these sample points, all properties of the

simulated system are evaluated and actions are derived from the current state.

These actions are triggered by the rules described above. A rule may pertain to

the fill level of a storage shed and cause a reduction of the feeding plant upon

reaching a “high” fill level.

Different operators modify the genotype of the individual at each recombina-

tion step. A mutation operator randomly changes bits of the genes by honouring

the feasible maximal possible integer number value at the position in the chro-

mosome. The meaning of such a mutated chromosome changes in the decoding

step which leads to different rules, and thus different decisions in the simulation

step (see figure 8.8).

1 2 3 -1 4 1

1 2 3 -1 4 4

(a) Mutation of chromosome (before and
after mutation)

Before: IF Level(TankC) IS

high

THEN Util.(PlantA) IS low

After : IF Level(TankC)

IS high

THEN Util.(PlantA) IS very

high

Index Ling. Variable Ling. Term

0 Level(TankA) very low
1 Level(TankB) low
2 Level(TankC) medium full
3 Level(TankD) high
4 Level(TankE) very high
5 Level(TankF)
7
...

(b) Phenotype decoding

Figure 8.8: Impact of mutation on decoded phenotype (“-1” means the term is
not considered in the rule)

Another typical operator for genetic algorithms was also adapted and imple-

mented. Two flavours of the single point crossover are employed. One of them

cuts the individual rules of two parent individuals into two pieces (at a random

crossover point) and swaps its right-hand part with the other parent. The other

crossover operator swaps entire rules at once, by determining again a crossover

point and replacing one part with the parent’s rule set.
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8.5 Experimental Results

We have tested the two approaches on two identical supply chain networks. The

aim was to maximise production while honouring storage constraints. The EA

was configured to terminate its search after a maximum of 5000 generations, or

prematurely if the search would not yield any improvement within 1000 gen-

erations. By virtue of the system, the event-based approach runs a simulation

whenever an event occurs. The rule-based approach was configured to sample

the system at a fixed interval of one day and change the system state by applying

its rules.

Both algorithms were able to generate feasible solutions without violating

constraints. The quality of the averaged solutions of each approach, however,

differed significantly. While the event-based approach managed to fill up the

final product storage shed to 172, 000 tonnes (see figure 8.9), the rule-based

approach exceeded this value by 37% (233, 000 tonnes). In addition, the search

procedure of the latter terminated much earlier (on average at about 1300 gen-

erations) while the event-based algorithm used up the full span of available

generational cycles. Another interesting observation is that the time it takes to

evaluate an individual is much less for the rule based approach (approx. 800

individuals per minute vs. 150 i/min). This and the premature termination

caused the rule-based approach to find a (even better) solution after a few min-

utes of run-time only.

As already stated in the introduction to this chapter, the system presented

is applied to a real-world problem and as such it is difficult to compare it to

synthetic problems as they are usually used as a baseline in academia. The only

plausible baseline can be obtained by comparing the factory planner’s schedule

and the expected product yield with the schedule generated by the system.

Preliminary test results indicate a high degree of similarity between human

and system generated factory schedule with respect to the length of product

runs (or in other words, with the date of scheduled product changeovers) and

accumulated product yield at the end of the planning horizon. Taking only

these few measures into account, one can conclude that the model adequately

represents the supply chain. The time it takes to planning personnel to generate

a yearly plan is substantial. It takes at least 14 days of planning for a team

of two to come up with a plan that does not violate any capacity constraints.

A what-if-scenario analysis becomes virtually impossible. Unless we deal with

strategic what-if-scenarios, the result of such a scenario would become obsolete
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by the time it is obtained. Using the proposed system, an optimal plan for an

entire year could be create in less than 10 minutes for the event-based approach,

and in about 2 minutes for the rule-based approach respectively (carried out on

a standard Dual Core 1.6GHz computer optimising a 5-echelon supply chain).

Another observation worth mentioning is that, in some instances, the opti-

miser made decisions that were, by a human operator, hard to justify. These

decisions dealt with production trade-offs that were done early in the planning

period in order to benefit from an event that happened later, with the aim to

increase the overall production. This may be a valid decision with respect to

the evaluation function (higher production means a fitter individual), but, since

we deal with a real-world environment, one has to consider the uncertainties

that the future may bring (especially for long plans). The future benefit the

optimiser was speculating on may in reality never materialise; this would result

in an overall inferior plan (compared to one that would not have made the trade-

off decision in the first place). As a result, we introduced a staged optimisation

that partitions the planning horizon in periods which are optimised in isolation.

Once a period has been optimised, the resulting stock is carried over into the

next period, thus serving as an opening stock.

We ran a trial to determine the impact of partitioning the optimisation. To

obtain a normalised result we limited each period’s run-time according to its

share on the overall planning horizon. Optimising the whole period at once

took about 8 minutes. For the test case with two periods, a maximum optimi-

sation time of 4 minutes was allocated for each of the periods. Essentially, this

means we allocated the processing time evenly, as opposed to allowing the EA

to exhaust the maximum of 2000 generations for each period (in which case the

result would be skewed as the search space is only half the size, but the same

amount of computational resources is applied to optimise). The simulation was

run four times over the whole period and the planning horizon split into 2, 4

and 8 periods. Figure 8.10 confirms our initial assumption. The total yields di-

minished by about 25%, after comparing an average optimisation run over the

entire period to the averaged result obtained by subsequent optimisation over 8

periods. This implies that the search space for an entire year is too vast for the

EA to converge to an optimal solution. It seems to be better to abandon the

advantages of a ”global optimisation” of the entire horizon by optimising only

reduced areas of the search space so as to eventually combining the solution.
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8.6 Summary

In this chapter, we presented two approaches to simulating and optimising multi-

echelon supply chain networks. Production rates and optimal dates for product

changeovers are determined by a hybrid discrete-event simulation, and a fuzzy-

rule based decision making system, which are both incorporated into an Evo-

lutionary Algorithm that was tailored to the problem domain of supply chain

optimisation. The results obtained meet, and in some instances exceed manually

created plans. The real improvement, however, is the improvement of speed at

which the system is able to churn out high level production plans. While manual

creation of these plans took about 10 to 14 days, the implemented system is able

to produce a plan within minutes, allowing what-if-analysis and comparison of

different scenarios.

In this chapter we looked at the application of an evolutionary algorithm to

the problem of optimising the key decision points in the supply chain network of

a major real-world agricultural chemicals company. Modelling the highly com-

plex nature of that company’s operations was the first part of the challenge of

successfully accomplishing this endeavour. A balanced mix of discrete and con-

tinuous event simulation had to be used. Furthermore, the model was designed

in such a way as to be amenable to use within the framework of an evolutionary

algorithm.

Of key importance was the development of the ability to represent the de-
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cision points in the supply chain network simulation as entities that could be

manipulated by evolutionary operators. This was achieved in different ways.

For the event-based approach, this was done firstly by allowing the timing of

decision events to be determined by values within the candidate individual rep-

resentation, and also the types of those decision events. Thus, for example, a

candidate individual could specify that the operation of “change from product A

to product B” could be scheduled to happen in a particular part of the network

on a given date and time. Secondly, the processing logic of “switching” nodes

of the network could be manipulated by evolutionary operators. For example,

the production of a particular chemical could employ materials from a variety

of sources, with the existing complex business contractual rules associated with

each source. In some cases, it might be easy to determine a set of rules to spell

out the correct routing logic to use. In other situations, it may not be obvious,

and thus it would be preferable to let the individual represent the decision mak-

ing logic as part of the encoding, and then evaluate the performance of evolved

logic as a component of the overall fitness evaluation process.

The rule-based approach abandons the idea of having isolated nodes that

handle the sourcing. In contrast to the event-based system, a decision is made

at each sample point based on the current state of the system. The resulting

plan produces consistent and traceable decisions. Despite the fact that this

approach adds the process of balancing supply and storage capacities to the

search space (as opposed to running a deterministic repair function), it is able to

find a solution much faster while generating even better solutions. The reasons

for this observation may be that the search space of the event-based approach,

that is all combinations of type and date of events, seems to be larger than

the permutation of rules used in the rule-based approach. In addition, many

infeasible solutions seem to be generated, which demands for repair by running

a costly re-evaluation. Using rules to make decisions constricts the search space.

However, only those potential solutions that are less viable seem to be neglected,

as indicated by the better solutions obtained. The reason is less surprising when

considering the nature of the problem. Changeovers, reduced plant production

and sourcing of material are based on rules. A changeover occurs once a tank

is reaching its maximum capacity, the production is reduced upon downstream

bottlenecks and a sourcing decision depends on minimal procurement costs.

Trying to find these decisions without understanding their natural cause is more

expensive and results in many lost opportunities compared to a supply chain

that is driven by a condition-decision scheme such as we presented to it.
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The results presented in this chapter also illustrate the trade-off that is fre-

quently accepted by business managers in practice. By running the software in

a global mode over a large time-frame, a relatively high optimal result could

be achieved, but the validity of such a result could be called into question by

human managers who would rightly point out that the further out into the fu-

ture assumptions are made about supply chain conditions, the less reliable those

assumptions would be. Hence we chose to apply the simulation/evolution algo-

rithm over the whole time-frame in phases, starting with a short term phase of

a few months, and then looking further into the future. This gave our approach

the benefit of seeking higher levels of optimisation in the short term, wherein

knowledge of conditions is quite firm, and then freezing those results and pro-

gressively expanding the scope of inclusion to seek out optimisation further into

the future.

As constructed, the software application arising from the rule-driven simu-

lation model and the evolutionary algorithm presented in this chapter, was able

to provide invaluable insight and speculative modelling (“what-if”) capabilities

to managers of the client company, allowing them to find ways to optimise their

supply chain network, and of course maximise production. This is the litmus

test of the value of this application, and it is a rewarding application of the

power of evolutionary computation to a real-world business.

In addition to our work presented in this chapter, several promising ideas

may improve the results obtained. As an example, we aim to expand the lin-

guistic terms that can be taken into account by adding future availability of

plants as well as past utilisation to smoothen the plant’s overall utilisation.

A promising method to improve the evolution of the rule bases is to employ

a co-evolutionary approach in which rule bases would be developed in isolation.

An instance of an EA would only concentrate on its designated rule base (i.e.

one EA instance could be employed per plant to evolve rules for its utilisation,

one EA instance for sourcing) passing on the best of its rule bases to form the

overall solution rule bases.

This chapter presents only the current state of our endeavour to find a com-

mon model and methodology for optimising supply chain networks which cater

for many business cases and industries. We expect the current method to be

fine tuned and extended to allow maximal generalisation and applicability.



Chapter 9

Concluding Remarks and

Future Work

In this thesis we studied complex real-world problems involving multiple inter-

connected components usually set in a time-changing environment. Many prob-

lems from classical operations research that were studied by the EC community

(such as scheduling, vehicle routing, travelling salesman, inventory manage-

ment, stock cutting, and packing among other problems) represent just isolated

components of today’s many real-world problems. Decisions in each isolated

component may not lead to the optimal overall decisions and require a “holistic

treatment” [3]. In this thesis we selected the supply chain domain to study prob-

lems that consist of several interacting components. We investigated different

types of interactions between the components, created a framework based on

cooperative coevolution and showed that cooperation between the components

during the optimisation process lead to better quality solutions.

9.1 Main contributions

Initially, we observed issues of time varying constraints within a single silo,

based on a case study from wine bottling in a mass-production environment.

An important consideration that was emphasised was that complexities arising

due to time-variability have to be dealt with adequately in order to ensure that

the solution produced is usable in an actual business environment. We explored

different issues, such as manual assignments and the ability to create schedules

209
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that seamlessly mesh with the existing ones, arising in the production environ-

ment. Methods for dealing with time-varying constraints as well as detailed

description of the algorithm were presented in Chapter 3.

Then we moved to a basic two-silo experiment (see Chapter 4) where each

silo was modelled based on the classical problem from operations research. We

described details of the model and employed two techniques to it: sequential

optimisation of silos and cooperative coevolutionary approach with silo decisions

evolving based on the overall quality of solutions. An important part of both

algorithms is that they “reuse” algorithms that address problems in local silos

as building blocks of the algorithm. They create a global optimisation layer

that manages the cooperation and execution of the silo algorithms. Several

variations of cooperative algorithms were investigated; the compared results

have shown that the cooperation between silos led to better quality solutions.

An additional experiment was conducted to determine the optimal parameter

set for population sizes.

We extended the two-silo experiment to investigate different types of flows

between multiple components of a two-echelon supply chain: one-to-many and

many-to-one (see Chapter 5). As in the previous two-silo experiment, the exist-

ing silo algorithms were combined under the management of the global module,

based on sequential and cooperative coevolutionary approaches. The same algo-

rithms for JSSP and VRP were used as building blocks for the local algorithms

in each of the silos, thus proving the extensibility of the framework to tackle

even more complex supply chain models. Although additional enhancements to

the algorithm were incorporated (for example, a special operator that permits

avoidance of convergence to the Nash equilibrium), as with the two-silo model,

the cooperative coevolutionary approach yielded better results.

One of the reasons for the exploration of the experimental supply chains, was

to define some common material flow types between the silos, and to explore

whether the algorithms used for these supply chains can be carried to the real-

world problems. These common patterns explored from these problems were

applied (with some customisations) to the real-world problems discussed in the

previous chapters.

We described a multi-silo two-echelon supply chain based on an existing

Australian company that produces sheet steel. Despite the multiple silos in

each echelon, the components have one-to-one flow: one silo of the first echelon

connected to only one silo of the second echelon. The problem is described in

detail and an algorithm based on variation of the on-the-fly partner generation
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(FLY) technique that we investigated (see Chapter 4) has been used. The

comparison of the solution generated by the proposed algorithm with the current

production solution created by the company’s planning expert team resulted in

a considerable profit increase.

The supply chain presented next comes from the mining industry (Chapter

6). Many mining companies struggle with the problem of the planning and

scheduling of equipment in iron ore mines, and are subject to numerous time-

varying constraints and conflicting objectives. The supply chain is modelled

as multi-silo two-echelon with inter- and intra-echelon dependencies. The in-

teractions within one echelon (ore processing echelon) occur due to the ability

to move ore from one stockpile to another or from stockpiles to the crusher.

A detailed mathematical model of the problem was described, followed by the

three stage algorithm that addressed the problem. We outlined main function-

ality, screens, an analysis and the what-if tools implemented in the system. The

analysis of the produced solution becomes much easier with the help of reports

that show the KPIs of the produced decisions.

A more complex five-echelon wine supply chain is presented in Chapter 7.

The described supply chain consisted of the following silos: maturity models,

vintage intake planning, crushing, tank farm and bottling. Each of the five silos

were described in detail in this chapter, as well as a brief description of the

algorithms used to address the optimisation in each silo. The bottling silo of

this supply chain has been described in detail in Chapter 3.

Although each of the silo problems of the wine supply chain present a large

number of difficulties, the main goal was to combine all the existing local al-

gorithms under the framework of the global module that provides optimisation

across the whole supply chain. The global module is based on cooperative co-

evolution. Since the systems and algorithms at local silos are very complex,

the communication architecture was revised. A special communication protocol

was designed which allowed not only the bridging of separate systems but also

produced advantages of distributed computing (each system can reside on a

separate machine on the local network). The solution produced by this system

has been evaluated by the domain expert as a good quality set of decisions.

When dealing with the supply chains with more complex dependencies often

evolutionary algorithms are not sufficient. The discussion of multi-silo sup-

ply chains in Chapter 8 led us to a real-world problem in the business of the

production of agricultural chemicals. A hybrid algorithm combining elements

from evolutionary computation and fuzzy logic was employed to address all the
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complexities of the described supply chain. In addition to the algorithms, the

architectural decisions of a discrete event simulator are discussed.

We emphasised the importance of the software design decisions made dur-

ing the implementation of the algorithms and frameworks, in particular the

supply chain simulation framework used for the evaluation of the quality of

solutions and the design of the cooperative coevolutionary global module and

its communication protocol (see Chapter 7). The software architecture of the

implemented algorithms or their components often gets very little attention in

papers describing optimisation problems. Part of the reason is because the re-

searchers are mainly interested in the algorithm description and the results.

However, the the correct architectural decisions involved in the implementation

of algorithms leads to less error in experiments, and provides reusability which

lets researchers do many more experiments in less time.

9.2 Future work

The research that has been conducted in this thesis left a few issues which

are worth exploring. We mentioned that usually supply chains have several,

often conflicting, objectives. Cooperative coevolutionary approaches described

in this thesis can be extended to tackle the multi-objective optimisation of

supply chains. A very difficult issue of cooperative coevolution is its convergence

to the Nash equilibrium [141], especially since there is a high level of dependency

between the components. In this thesis we used a special shuffling operator

which temporarily evolves part of the population using a local fitness function;

however, we believe it might be worthwhile to study other methods of shuffling

populations in order to break out of the Nash Equilibrium.

Many of the algorithms described in this thesis use cooperative coevolu-

tionary approaches to address the problem of global optimisation. The global

optimisation module runs several optimisations simultaneously and coordinates

the evaluation. A very promising idea for the global optimisation is the use of

approaches based on hierarchical optimisation. Very often it is almost impossi-

ble to solve a problem at the required level of detail with the optimise-all-at-once

approach. Instead, it is possible to zoom out of the problem to look at it at a

very high level without paying much attention to the details. In this way the

search space is decreased at the price of the precision or loss of some potentially

good solutions. However, it is possible to look at a more detailed model of the
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problem using the created high level solution as a guide. With this hierarchical

structure it is possible to do a staged optimisation for each level of the hierarchy

in a top-down manner.

This approach is widely used in mine planning where a life of mine plan is

first created, then, based on it, planners create a long term plan. After that

a medium term, a short term and finally operational plans are created based

on the predecessor plan. Another example of this approach can be seen in

the way governments plan their budget. At a very high level they allocate a

certain percentage to each industry (such as military, education and healthcare)

and then people in charge of each industry make further decisions on how to

optimally spend it.

Another enhancement to the optimal decision support in supply chains can

be the addition of the prediction component. One of the drivers of a supply chain

is customer demand. The ability to forecast such demand based on historical

data can lead to more optimal scheduling and planning decisions. In addition

to the pull factor (customer demand), a supply chain can also be affected by the

push factors, such as the supply of raw materials, which also can be forecasted

and used in the optimisation process.
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