

INFLAMMATORY CELLULAR RESPONSE AND CYTOKINES IL-1 β , IL-6 AND TNF α IN RAT AND HUMAN SPINAL CORD INJURY

by

Liqun Yang

Department of Surgery (Neurosurgery) University of Adelaide Adelaide, Australia

Department of Neuropathology Institute of Medical and Veterinary Science Adelaide, Australia

Submitted as part requirement for the degree of Doctor of Philosophy, June 2004

TABLE OF CONTENTS

ABSTRACT DECLARATION ACKNOWLEDGEMENTS FINANCIAL SUPPORT ABBREVIATIONS PUBLICATIONS, PRESENTATIONS AND PRIZE	iv vi vii ix x xiv
INTRODUCTION	1
 1. TRAUMATIC SPINAL CORD INJURY (TSCI) 1.1 EPIDEMIOLOGY 1.2 NATURE OF THE INJURY 1.3 SECONDARY SPINAL CORD INJURY 1.4 HISTOPATHOLOGICAL EVOLUTION 1.5 NEUROPROTECTIVE TREATMENT 1.6 ANIMAL MODELS 	1 1 2 3 14 19 25
 2. CYTOKINES 2.1 OVERVIEW 2.2 INTERLEUKIN-1β (IL-1β) 2.3 INTERLEUKIN-6 (IL-6) 2.4 TUMOR NECROSIS FACTOR-α (TNF-α) 	29 29 33 42 49
3. MICROGLIA 3.1 NOMENCLATURE 3.2 CLASSIFICATION 3.3 MICROGLIAL ACTIVATION 3.4 FUNCTIONS OF MICROGLIA IN SCI	57 57 57 60 62
AIMS AND HYPOTHESES	65

RAT SCI EXPERIMENTS	66
1. MATERIALS AND GENERAL METHODS	66
1.1 ANIMALS USED AND ETHICS APPROVAL	
1.1 ANIMALS USED AND ETHICS APPROVAL 1.2 ANAESTHESIA	66 68
1.3 SURGICAL PROCEDURE	68
1.5 SURGICAL PROCEDURE 1.4 NEUROLOGICAL EXAMINATION	69
1.5 PERFUSION-SACRIFICE	09 70
1.5 PERFUSION-SACRIFICE 1.6 TISSUE PROCESSING	70 70
1.7 PHOTOGRAPHY	70
1.7 PHOTOGRAPHY	/1
2. WEIGHT-DROP MODEL	72
2.1 METHODS	72
2.2 RESULTS	73
2.3 DISCUSSION	80
3. INFLAMMATORY CELLULAR RESPONSE	84
3.1 METHODS	84
3.2 RESULTS	86
3.3 DISCUSSION	106
4. UPREGULATION OF IL-1 β , IL-6 AND TNF α mRNAs AND	111
PROTEINS AFTER MILD AND SEVERE SCI	
4.1 METHODS	111
4.1 METHODS 4.2 RESULTS	111
4.3 DISCUSSION	140
4.5 DISCUSSION	140
5. TREATMENT OF NF-KB-SPECIFIC ANTISENSE	145
OLIGODEOXYNUCLEOTIDES AFTER SEVERE SCI	
5.1 METHODS	145
5.2 RESULTS	146
5.3 DISCUSSION	146

HUMAN SCI EXPERIMENTS	148
	148
1. MATERIALS AND GENERAL METHODS	140
1.1 SELECTION OF MATERIAL	148
1.2 TISSUE PREPARATION	149
2. INFLAMMATORY CELLULAR RESPONSE	151
2.1 METHODS	151
2.2 RESULTS	152
2.3 DISCUSSION	169
3. EARLY EXPRESSION AND CELLULAR LOCALIZATION	173
OF IL-1 β , IL-6 and TNF- α	173
3.1 METHODS	173
3.2 RESULTS	180
3.3 DISCUSSION	100
4. CO-LOCALIZATION OF IL-1β AND APP	182
4.1 METHODS	182
4.2 RESULTS	182
4.3 DISCUSSION	186
FINAL DISCUSSION	187
	187
1. SUMMARY 2. LIMITATION OF THIS PROJECT AND FUTURE WORK	194
2. EIMITATION OF THIS TROUZOF THE E	
CONCLUSION	195
APPENDICES	196
	196
1. FIXATIVES AND BUFFERS	
2. STATISTICAL ANALYSES	199
DEDENCES	218
REFERENCES	<u> </u>

ABSTRACT

The inflammatory response following spinal cord trauma plays an important role in the secondary SCI. The goal of this study was to characterize the posttraumatic inflammatory responses and localize cellular sources of IL-1 β , IL-6 and TNF- α following SCI. Thus, we hypothesized that the pro-inflammatory cytokines IL-1 β , IL-6 and TNF- α may act as messengers to coordinate the inflammatory cascade in the secondary SCI and that the cytokine response should be greater in severe than in mild injury.

One hundred and twenty-six rats were used and rat spinal cord contusions were induced by the weight drop device. Mild and severe SCIs were respectively produced by dropping a 10-g weight from 3.0 and 12.0 cm. Inflammatory cellular responses were studied using immunohistochemistry and expressions of IL-1 β , IL-6 and TNF- α mRNAs were analyzed by RT-PCR. Thirteen human spinal cords removed at autopsy were studied using immunohistochemistry and cellular sources of IL-1 β , IL-6 and TNF- α were localized using double-label fluorescent confocal imaging.

In experimental SCI, neutrophils started to infiltrate primarily around blood vessels in the central gray matter at 6 hrs and peaked at 1 day. Macrophages were noted at 6 hrs and then progressively increased for the first 3 days postinjury. Activated microglia were found as early as 1 h after contusion and frequently wrapped around axonal swellings and healthy neurons. RT-PCR showed an early and robust up-regulation of IL-1 β , IL-6 and TNF- α mRNAs in spinal cord after severe contusion injury, maximal at 6 h postinjury with return to control levels by 24 h postinjury, the changes being significantly less in mild injury. In human SCI, the inflammatory response paralleled the changes in experimental SCI, neurons and

microglia were identified as the cellular sources of IL-1 β , IL-6 and TNF- α , and IL-1 β coexisted with APP in the neurons and their axons.

RT-PCR analyses together with histological observations confirm that intrinsic CNS cells (neurons and microglia), not peripheral inflammatory cells, are the main source of cytokines because the peripheral inflammatory cells did not invade the injured spinal cord until 6 h postinjury, a time when cytokine mRNA levels had peaked and started to decline. Microglia around axons may have their possible beneficial effects on the injured axons by providing a trophic local environment to promote the regeneration of the injured axons and the co-existence of IL-1 β and APP indicates a possible role of IL-1 β in the production of APP. Furthermore, our comparative RT-PCR analyses, showing significantly increased expression of pro-inflammatory cytokine mRNAs in severe injury in contrast to mild injury, support the hypothesis that cytokine up-regulation is an important factor in the generation of the severity of the inflammatory response and thus a suitable target for pharmacological intervention to attenuate this response.