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ABSTRACT  

Colloidal-suspension flow in porous media is modelled simultaneously by the large scale 

population balance equations and by the micro scale network model. The phenomenological 

parameter of the correlation length in the population balance model is determined from the 

network modelling. It is found out that the correlation length in the population balance model 

depends on the particle size. This dependency calculated by two-dimensional network has the 

same tendency as that obtained from the laboratory tests in engineered porous media.  

Keywords: Colloid, Suspension, Porous media, Size exclusion, Pore size distribution, Stochastic 

model 

 

Nomenclature 

 

C  suspended particle concentration distribution by sizes, L-4  

c  total suspended particle concentration, L-3      

cv  variance coefficient 

f  fractional flow function, dimensionless 

H  pore concentration distribution by sizes, L
-4

  

h  total pore concentration (density), L
-3

   

j  jamming ratio, dimensionless 

l  correlation length, L 

lp  particle penetration depth, L 

L  length of the core, L   

NL  size of the grid for the network 

p  pressure, ML
-1

T
-2

  

q  flow rate in a single pore, L
3
T

-1
  

r  radius of a particle or of a pore, L 

t  time, T  

U  total velocity of the flux, LT-1  

x  linear coordinate, L  

Z  coordination number, dimensionless 
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Greek letters 

σ   total concentration of captured particles, L-3 

Σ   captured particle concentration distribution by sizes, L-4 

µ   viscosity, ML
-1

T
-1

 

φ   porosity, dimensionless 

Subscripts 

a          accessible 

n         inaccessible 

p pore 

s suspended (solid) particle 

0 initial condition 

 

Superscripts 

0 boundary condition 

 

 

1. Introduction 

Straining-dominant colloidal-suspension transport in porous media occurs in numerous areas of 

chemical and environmental engineering. It includes industrial filtering, size exclusion 

chromatography, artesian wells exploitation, disposal of industrial wastes, etc. [1-5]. Often 

particle and pore size distributions overlap, and also the particles repel from the pore surfaces. In 

this case, the dominant particle capture mechanism is size exclusion (straining) where a small 

particle passes via a large pore, while a large particle is captured in a thin pore throat. The 

particle capture decreases the suspension concentration and the rock permeability [1,6,7]. 

Management and design of the processes involving colloid transport in porous media is based on 

reliable laboratory-based mathematical modelling. The classical deep bed filtration theory 

operates with averaged concentrations of suspended and retained particles [8-12]. The model 

contains the empirical filtration coefficient, which is determined from either micro-modelling or 

laboratory test data [10-14]. 

Since the capture criterion for size exclusion depends on the relationship between the particle 

and pore throat sizes, the adequate mathematical models should involve the probabilistic pore 

and particle size distributions.  The dynamics of natural pore throat and particle size distributions 

during flow and capture is described by population balance models [15-22]. Papers [15,16] 

present mass balance of suspended and captured particles with kinetic rate equations for different 

particle capture mechanisms; the capture system dispersivity (correlation length) is assumed to 

be equal to an effective pore length. Other approaches to pore and particle size distribution 
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modelling during suspension transport in porous media include trajectory analysis [11,23,24], 

random walk models [22,25-29] and mean-field description of the traps [30]. 

Two main features of the straining-dominant suspension transport in porous media are particle 

flow in larger pores and their capture in smaller pores. Both features are reflected in the 

geometrical porous media model of parallel tubes with mixing chambers (further in the text 

called by its abbreviation PTMC), see [17-21]. Both processes occur in real rocks simultaneously 

while they are separated in PTMC model: the particle straining occurs at the chamber exits only, 

while the particle motion in capillaries occurs between the chambers. The cross-section in Fig. 

1b corresponds to the bundle of capillaries after the first chamber in Fig. 1a. The simplified 

geometry of PTMC model allows for derivation of the integro-differential equations describing 

the suspension-colloidal transport in porous media. A major constituting parameter in these 

equations is the correlation mixing length that is equal to the distance between the mixing 

chambers. The system allows for exact upscaling from the pore scale to the core scale only in the 

case of mono dispersed filtration [19]. The upscaling for poly-disperse suspensions results in a 

separate system of partial differential equations for each particle size [22]. The upscaled 

equations generalise the classical large-scale system of deep bed filtration [1,8,9] introducing the 

physical phenomena that are specific for geometrical straining, i.e. the pore accessibility and flux 

reduction factor. The size exclusion factors of pore accessibility and flux reduction have been 

accounted for in the inlet and effluent boundary conditions, and also in the straining capture term 

in the equations of suspension transport in porous media [20]. 

The topology of the accessible sub-network strongly depends on percolation probability, i.e. on 

the particle size. Yet, the current population balance models assume a constant mixing 

(correlation) length for different size particles [15-21]. Besides the correlation length, these 

models contain the empirical functions of accessible fractional flow and porosity as functions of 

the particle radius. To the best of our knowledge, these functions have been obtained neither 

theoretically nor experimentally, apart from simple estimates based on the Poiseuille flow [18].  

In the present work, the correlation length of the large scale size exclusion suspension flow 

model is obtained from a micro scale network model. It is found that the correlation length in the 

model depends on the particle size. The properties of this dependence are analysed and 

explained. The particle size dependency of the correlation length as obtained from 2D network 

modelling and from laboratory tests with 3D flows shows the same trend.  

The structure of the paper is as follows. Brief description of the population balance equations for 

straining-dominant suspension flow (Section 2) is followed by that of the network model in 

Section 3. Section 4 explains how the correlation length is calculated from the network model. 

The results of numerical calculations are presented in Section 5. It is followed by the estimate of 

the porous media correlation length from the laboratory data (Section 6). The obtained 

correlation length dependency of particle size is analysed and explained in the Discussion 

section.  
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2. Population balance model for parallel tubes with mixing chambers 

In this section, the population balance equations for colloidal-suspension-emulsion transport in 

PTMC media are presented, and the empirical material functions of the model are introduced.  

Fig. 1 shows the geometrical PTMC model of the porous medium assumed in the model of the 

size-exclusion suspension transport [17,18]. The parallel tubes of different constant radii 
p

r  are 

connected by the mixing chambers (Fig. 1a). Complete mixing of the particles of the different 

sizes sr  occurs in the chambers (Fig. 1a). The particles exiting the mixing chambers are either 

captured by smaller pores at the chamber outlets or continue their motion along larger pores (Fig. 

1b). Concentration of the suspended particles C(rs,x,t) decreases along the particle paths due to 

straining. Correspondingly, the retained concentration at each point x of the porous domain 

Σ(rs,x,t) increases with time. From an assumption that one particle can be captured by one pore 

and, vice versa, that one pore can be plugged just by one particle, it follows that the 

concentration of the vacant pores in a cross-section H(rp,x,t) decreases with time at each point of 

the porous domain. 

Like in realistic porous media, in the PTMC model the particles are captured at the entrances of 

pores and continue moving through larger pores. Yet, the topology of the PTMC geometry is 

simpler: complete mixing occurs at the fixed discrete locations, while in real rocks it happens 

gradually at the distributed sites. The probability of a particle to get into a pore is equal to the 

fraction of the overall flux through this pore. The assumptions about complete mixing in 

chambers and about particle distribution proportionally to fluxes at the chamber exits are similar 

to the Boltzmann’s assumption of “molecular chaos” [31]. The particles entering the pores are 

distributed between the pores independently of the particle sizes and the pre-history. Before the 

“collision” between particles and pores at the chamber outlets, their behaviour is totally 

uncorrelated.  

Assuming the cylindrical pores, and neglecting the volume of the chambers, the expression for 

the porosity of a PTMC medium is 

( )2

0

, ,p p pr H r x t drφ π
∞

= ∫
         (1) 

Since the fraction of the porous space accessible to the particle with size rs consists of the pores 

larger than rs, porosity of the accessible pores is described by the following formula 

( )2 , ,

s

a p p p

r

r H r x t drφ π
∞

= ∫
         (2) 
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Particle concentration in suspension is defined as a particle number per unit of the accessible 

pore volume, so the basic concentration dependencies of density and viscosity are the same in 

porous media and in the bulk of the liquid. 

Let us assume that a particle flows in an accessible pore with an average Poiseuille velocity, i.e. 

that the velocity profile in a pore is negligible. Therefore, the fraction of the overall flow through 

the accessible pore system is 

[ ]
( )

( )

4

4

0

, ,

,

, ,

s

p p p

r

a s

p p p

r H r x t dr

f H r

r H r x t dr

∞

∞
=

∫

∫
        (3) 

while the fraction of the flow via the inaccessible pores is 

[ ]
( )

( )

4

4

0

, ,

,

, ,

sr

p p p

o

n s

p p p

r H r x t dr

f H r

r H r x t dr

∞
=
∫

∫         (4)

 

As it follows from (3) and (4), fa+fn=1.  

According to mass balance of the particles, the accumulation rate of the suspended and strained 

particles is equal to divergence of the advective particle flux, i.e.     

  

( ) ( )
( ), ,

, , , , s

a s s a

r x t
C r x t U C r x t f

t x t
φ

∂Σ∂ ∂
+ = −      ∂ ∂ ∂

 

    (5) 

Since the suspended concentration is defined as a number of particles per unit of the accessible 

pore volume, the accessible porosity is present in the accumulation term (5). Eq. (5) assumes that 

the dispersive flux of the particles is negligibly smaller than the advective flux.  

Consider a stream tube with the cross section A and its section adjacent to the mixing chamber 

(Fig. 1a). The volume of water that passes through the mixing chamber during time dt is UAdt. 

Since the particles are carried by accessible flux faU, the amount of particles that passes the 

mixing chamber during time dt is CfaUAdt. The particles can be strained in each smaller pore, so 

the capture probability is equal to fn, and the amount of captured particles is fnCfaUAdt. The 
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capture occurs in the volume Al adjacent to the chamber. So, the capture rate per unit of the 

volume and per unit of time is  

( ) ( )
[ ] [ ]

, , , ,
, ,s s

a s n s

r x t UC r x t
f H r f H r

t l

∂Σ
=

∂
 

      (6) 

The straining rate of rs-particles by smaller pores is proportional to the product of the accessible 

and inaccessible fractional flows. 

The correlation length l has the physical meaning of the minimum distance that the particles 

move until they meet the pores of all sizes, i.e. the particles forget the “flow history” after 

moving along the distance l. From the geometric model of porous space point of view, the 

correlation length l is the distance between the chambers. From the point of view of the 

mathematical model for suspension transport in porous media, invariability of l is an assumption. 

Further in the text it is shown that the correlation length depends on the particle size (Section 4). 

The probability for particle rs to meet pore rp is equal to the flux fraction via this pore. The pores 

can be strained by each larger particle. Therefore, the rate of the pore consumption by all larger 

particles is 

( )

( )
( ) ( ) [ ]

4

4

0

, ,
, , , , ,

, , p

p p

p s a s s

r
p p p

H r x t r
UH r x t C r x t f H r dr

t
r H r x t dr

∞

∞

∂
= −

∂ ∫
∫    (7) 

The initial conditions correspond to the absence of suspended and strained particles in porous 

media before the injection and to a given pore throat size distribution  

(((( )))) (((( )))) (((( )))) (((( ))))00 : , ,0 0, , ,0 0, , ,0 ,s s p pt C r x r x H r x H r x= = Σ = == = Σ = == = Σ = == = Σ = =      (8) 

For detailed derivation of Eqs. (1-8), see [17-19]. 

Now let us consider the inlet boundary condition. First we consider the particles smaller than the 

largest pore, i.e. those that can enter the rock. It is assumed that if a particle enters a pore with 

the throat smaller than the particle, it is captured by straining. A particle entering a larger pore 

passes. All the injected particles carried upstream the inlet face by the accessible flux move into 

larger pores, i.e. the fa-th fraction of the injected particles passes, and fn-th fraction is captured at 

the inlet. Since the flux of particles upstream the inlet is C
0
U, the downstream concentration is 

also C
0
:                 

(((( )))) (((( ))))00 : , ,0,
s s

x C r t C r t= == == == =                                                   (9) 
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This corresponds to the external cake formation in smaller pores from the very beginning of the 

suspension flow. Yet, further in the text we describe the flow in porous media only, assuming 

that the cake does not interfere with the inlet particle flow. 

 

The particles larger than the largest pore cannot penetrate the rock, and their inlet concentration 

in (9) is zero. 

 

Let us assume now that there is no capture at the outlet. The upstream particle flux is CfaU, the 

downstream flux is C
L
U. The outlet boundary condition follows the equality of the above fluxes: 

  

(((( )))) (((( ))))0: , , , ,
s a s s

x L C r L t f H r C r t= == == == =                 (10) 

Here C
L
 is the effluent concentration being measured downstream the core outlet. Thus, the 

dilution of the suspension flux via accessible larger pores in the overall carrier water flux occurs 

at the core outlet. 

Let us consider the flow of a diluted suspension or its transport with a low capture rate, where 

the initial concentration of the vacant pores highly exceeds the retained particle concentration. 

Under this assumption, the conditions of particle retention do not change with time and pore size 

distribution H(rp,x,t) remains the same, i.e. is equal to its initial value (see (8)). In this case, all 

fractional flow functions become particle-size dependent only, see (3,4). Estimates of low 

retention concentrations for conditions of laboratory corefloods by suspensions are presented by 

Chalk et al. (2012). 

For a steady state, the system of governing equations (5-7) is simplified to an ordinary 

differential equation  

( ) ( )
( )

( )
,

, s

s a s a n s

UC r x
U C r x f r f f r

x l

∂
= −  ∂

                                        (11) 

 

The solution of Eq. (11) provides the suspended particle concentration profile C(rs,x) along the 

distance x 

( ) ( ) ( ), ,0 exps s n s

x
C r x C r f r

l

 
= − 

 
                                                  (12) 

 

The normalised outlet concentration is obtained by applying x=L into the solution (12) 

( )
( )

( )
,

exp
,0

s

n s

s

C r L L
f r

C r l

 
= − 

 
                                                       (13) 
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Further, the normalised effluent concentration as measured in the produced samples C
L
(rs), i.e., 

the downstream suspended concentration, is derived by substituting boundary conditions (9,10) 

into (13) 

( )
( )

( ) ( )0
1 exp

L

s

n s n s

s

C r L
f r f r

C r l

 
= − −    

 
       (14)  

In the case of particles larger than the largest pore, the inlet concentration in (9) and (12) is zero, i.e. 

the suspension concentration along the core is zero too.  

If the particle size tends to the largest pore size from below, accessible fractional flow and 

accessible porosity tend to zero and inaccessible fractional flow tends to one. The suspended 

concentration in a “thin” accessible channel remains positive and does not tend to zero, although 

the suspended flux CfaU does tend to zero. The effluent concentration (14) tends to zero after 

dissolution in the overall water flux.  

In the case of the transport of poly dispersed suspension under low particle retention, the pore 

size distribution H(rp) is independent of time and fractional flow functions are only particle-size 

dependent. It separates equations (5-7) into the set of independent rs-dependent equations for 

each particle population. Solutions (12-14) are valid for each size particle in the suspension. As it 

follows from these solutions, the ensembles of particles with different radii filtrate 

independently. 

The average penetration depth, as it follows from (13), is [8] 

p

n

l
l

f
=

           (15) 

The mathematical model (5-7) subject to initial and boundary conditions (8,9) relies upon the 

initial pore throat size distribution H(rs,x,t=0) and the correlation length l. The initial pore throat 

size distribution can be measured in a laboratory (see the description of the mercury porosimetry 

method in [32]), while l is an effective (material) parameter of the model that can be determined 

only by tuning with laboratory or mathematical experiments. In this work the correlation length l 

will be determined by calculations using the network model, which is presented in the next 

Section.  

3. Micro scale network model 

The model for the non-inertial flow of viscous incompressible fluid in a regular square lattice 

consists of the Kirchhoff equations for volumetric balance at each vertex (pore body)  
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4

1

0i

i

q
=

=∑
           (16) 

and of the momentum conservation for each bond (pore throat), i.e. the Poiseuille equation 

4

8

pi i
i

r p
q

µ

∆
=

∆
           (17) 

where ∆ is the length of a bond (capillary). The pore radii rp are distributed as H(rp,x,t=0). Here 

the pore size distribution is independent of x: H(rp,x,t=0)= H
0
(rp). 

The flow field in the network is determined by the numerical solution of the system of linear 

equations (16, 17) with the boundary conditions of a given pressure drop across the flow domain 

in direction x (Fig. 2). In order to eliminate the boundary effects across the coordinate axes and 

to increase the network connectivity, periodical boundary conditions are applied: pressures at 

points (x,y=0) and (x,y=1) are considered to be equal. This corresponds to a periodical solution of 

system (16, 17), i.e. equations (16, 17) are solved on the cylindrical surface. This transformation 

introduces an additional connectivity if compared with a 2D network with impermeable 

boundaries and makes it “closer” to a 3D system.   

The initial linear stage of deep bed filtration, where the particle straining does not largely affect 

the flow in the network, is discussed. It takes place for injection of diluted suspensions with low 

retention rate at the beginning of suspension injection, where the retained particle concentration 

is significantly lower than the initial concentration of the vacant pores. So, the retention of new 

particles does not affect the filtration coefficient, i.e. the capture conditions remain the same. The 

solutions (12-14) have been obtained under this assumption. The particles in the ensemble filtrate 

independently; the system of governing equations (5-7) is linear. The above assumption allows 

for modelling of the random walks in the network as a sequence of independent events of passing 

and capturing - the particles are injected one-by-one and their trajectories are followed until 

capture. Compared to the simulation of ensemble of particles, the modelling of the individual 

particle motion and capture consumes significantly less computer time. Under the above 

assumption of the low retention concentration, the outlet concentration remains constant after the 

particle breakthrough [8]. 

It is also assumed that complete particle mixing takes place at vertices and their distribution 

between the exiting bonds is proportional to the fluxes via them, like for mixing chambers in the 

population balance equations (6, 7). 

The particles are injected sequentially into the network. Each particle keeps randomly walking 

on the percolation lattice until it is either captured inside the network or exits the network. This 
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allows calculating the ratio between the exiting and injected concentrations (the so-called 

normalised breakthrough concentration) and also the penetration depth of the retained particles. 

The maximum retention mechanism is considered in the model [42]. 

The above micro scale network model determines the large scale correlation length l, which is 

presented in the next Section. 

4. Modelling of deep bed filtration 

In the present paper, the phenomenological function of the large scale PTMC model – jamming 

ratio dependency of the correlation length - is determined from the micro scale network model. 

The dimensionless jamming ratio j is defined as the ratio between the particle sizes and the mean 

pore size:   

 

s

p

r
j

r
=             (18) 

The network model is used for a mathematical experiment; the data from this experiment are 

treated in order to determine effective parameters for the population balance model. The network 

size NL is 500. Let us check that the jamming ratio dependency of the correlation length l(j) is 

independent of the network size for large grids NL =500.  

The formula for normalised outlet concentration Eq. (13) indicates the exponential relationship 

between the outlet concentration and the core length. So, the network size dependency of the 

logarithm of the normalised breakthrough concentration is linear.  Let us check the linearity of 

this relationship. The network modelling is performed as described in the previous Section for 

ten different grid sizes 20, 50…500. The same pore size distribution has been used. The 

corresponding distributions of the pore size and of the rate via a single pore  

( )

( )

( )

( )

4

4

0 0

,
p p p

H q

p p p p p

H r H r r
f f

H r dr H r r dr

∞ ∞
= =

∫ ∫
       (19) 

are shown in Fig. 3a by solid and dashed curves, respectively. 

Fig. 3b shows zoom-in of the curves for small jamming ratios. As it follows from (19), the rate 

distribution curve is shifted to the right if compared with that for size distribution. For a given 

jamming ratio for a small particle, the fraction of the smaller pores may be significant but the 

flux through those pores is negligible and, therefore, the capture probability is small. Otherwise, 

the fraction of large pores can be small but the flux is large and the probability for a particle to 

pass is also large. 
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Fig. 3c shows the plot of the logarithm of the reciprocal to the normalised breakthrough 

concentration versus the network size NL, for three different size particles in the porous medium 

with lognormal pore size distribution; the mean pore size is equal to one and variance coefficient 

cv=0.15. According to (13), the relationship must be linear. Fig. 3c shows that the linear 

relationship is established for grids with NL>50, which is used for network modelling in Section 

5. Formula (13) shows that if the logarithm of the concentration ratio is proportional to the core 

length (network size) L, and the proportionality coefficient fn(rs)/l is independent of L. Since the 

same pore size distribution was used in all the network simulations, fn(rs) was also the same. 

Therefore, from the linearity of the L-dependency of ln(C(rs,L)/C(rs,0), it follows that the 

correlation length l is independent of the scale L.      

Fig. 3d shows the results of estimation of the particle penetration depth lp , which is a parameter 

(15) in the large scale model (5-7),  by the network modelling. The grid size is 500. The particle 

size is expressed by the dimensionless jamming ratio j . 
 

The blue dots correspond to the evaluation of the value of lp by the particle trajectory tracking 

until it is strained. The resulting penetration depth is an average over all the retained particles. 

This allows determining the correlation length for population balance model by the formula  

p n
l l f=

           (20) 

where the fractional flow via inaccessible pores is determined from the pore size distribution 

using Eq. (4). 

The retained concentration as calculated by the network model can be used for calculation of the 

penetration depths. The penetration depth for a small particle may exceed the core length L. 

Capture of such particles cannot be adequately modelled on a network of a limited size. 

Therefore, the small particles with longer penetration depths do not participate in the averaging; 

hence, the penetration depth by the network modelling is underestimated. Fig. 3d shows that the 

blue dots deviate from the green curve at low jamming ratios. This difficulty can be overcome by 

extending the network beyond the “core” length and counting the particles captured beyond the 

outlet, which would result in more intensive computations.   

As an alternative, the penetration depth lp can be calculated from the breakthrough 

concentrations by application of formula (13). The results are shown in Fig. 3d by the green dots:  

0

ln
p

n

L

L l
l

C f

C

= =           (21) 

Fig. 3d shows that for jamming ratios exceeding one, the penetration depths cannot be found 

from the effluent concentrations (green dots). The reason is that the two-dimensional network 
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model is used for computations. The percolation threshold for a 2D network is equal to 0.5, so 

there is no network connectivity for large particles with the percolation probability below 0.5 

[38-41]. The size of the largest particle that has a chance to reach the network outlet without 

being captured is equal to the mean value of fH distribution, which corresponds to j=1. Tending 

the network size and the number of injected particles to infinity yields tending green spots to a 

limit at j=1 and lp=1/NL. 

As it is shown in Fig. 3d, both curves overlap, and both values of the penetration depths coincide 

for the intermediate interval of jamming ratios. Further in the text, the estimates for larger 

particles are performed based on the particle trajectories and the estimates for smaller particles 

are performed using the inlet and outlet concentrations. The envelope curve is the best estimate 

of the penetration depth that can be obtained from the network modelling with a limited network 

size and injected particle number. 

Figs. 4 and 5 exhibit the breakthrough concentrations and the envelope curves lp(j) as a result of 

the network modelling on the grid with NL=500. The lognormal pore throat size distribution is 

assumed. Simulation of the flow and capture of million mono sized particles was carried out. 

Fifty runs with different particle sizes are performed. The pore distributions by sizes and by rates 

are presented in Figs. 4a and 4b, respectively. Using the dimensionless parameter of jamming 

ratio allows fixing the same mean pore sizes for three probabilistic distributions fH. Fig. 4c shows 

the normalised breakthrough concentration versus jamming ratio in three porous media with 

different micro heterogeneity described by the different variance coefficients Cv. The higher is 

the heterogeneity the lower is the breakthrough concentration and the higher is the capture. 

The plot of penetration depth versus jamming ratio is shown in Fig. 5 for three porous media 

with different covariance coefficients. The behaviour of the curves is explained in the next 

Section. 

5. Analysis of the numerical results    

Fig. 4c shows that the higher is the jamming ratio the lower is the effluent concentration. This 

plot can be explained by monotonically decreasing dependency of the right-hand side of Eq. (13) 

on fn. The higher is the jamming ratio the lower is the penetration depth (Fig. 5). Fig. 6 shows 

that the higher is the jamming ratio the higher is the fractional flow fn via the inaccessible pores, 

see also Eq. (4). The higher is the fractional flow fn, the lower is the reciprocal to normalised 

concentration in (13). This explains the low effluent concentrations for large particles and small 

pores exhibited in Fig. 4c.  

Fig. 4a shows pore size distributions for porous media with different variance coefficients. 

Distribution functions for rates in single pores are exhibited in Fig. 4b.  Fig. 4c also shows that 

the injected particle recovery is higher for the porous media with a lower micro-heterogeneity. 

The explanation of this effect is as follows. Figs. 6 and 7 show that for small particles the 
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fractional flow via the inaccessible pores is higher for more heterogeneous media. Since the 

right-hand side of Eq. (13) monotonically decreases with fn, the effluent concentration is lower 

for more heterogeneous media. On the contrary, for large particles, the fractional flow via 

inaccessible pores is higher for more homogeneous media. Since right-hand side of Eq. (13) 

monotonically decreases with fn, the effluent concentration is lower for more homogeneous 

media. Therefore, for small particles the inaccessible fractional flow curves for media with 

higher heterogeneity are located above those with lower heterogeneity; and it is the opposite for 

larger particles. It allows concluding that plots in Fig. 4 have been calculated for small particles. 

Every two curves corresponding to the different heterogeneities intersect at a single point j (Fig. 

6), so the effects of particle size on the effluent concentration are different for large and for small 

particles. The intersection point is common for all curves for symmetric pore throat size 

distributions H
0
(rp) since it corresponds to the mean value. Since lognormal pore size 

distributions applied at the present work are non-symmetric, curves in Fig. 6 intersect at different 

points. 

The results of network modelling of the particle random walks are presented in Figs. 5 and 6. 

The higher is the jamming ratio, the lower is the penetration depth (Fig. 5) and the higher is the 

inaccessible fractional flow (Fig. 6). For small particles, the higher is the micro heterogeneity the 

lower is the penetration depth lp. The effect is opposite for high jamming ratios. The explanation 

follows from distributions of single pore rates presented in Fig. 7. It shows that the capture 

probability of small particles rs1 is high in a porous medium with widespread pore sizes, while it 

is negligibly small in a porous medium with a low variance coefficient. The capture probability 

of large particles rs2 is lower in a porous medium with widespread pore sizes. 

The dependencies of the penetration depths on particle sizes in porous media with the different 

pore size distributions are shown in Fig. 5. The smaller is a particle, the lower is the inaccessible 

fractional flow (4), the smaller is the capture probability (6) and the longer is the trajectory 

before the capture. The penetration depth for small particles is smaller in highly micro-

heterogeneous porous media since the inaccessible fractional flow and the capture probability are 

higher too (Fig. 6). As follows from Fig. 6, the effect is opposite for large particles. Therefore, 

the curves for the inaccessible fractional flow fn for different variation coefficients intersect in 

some intermediate points.  

The correlation length l in Fig. 8 is determined from the penetration depth lp using the 

relationship (20). Fig. 8a shows the result of network modelling - the correlation length l 

increases with the capture probability and decreases with the micro-heterogeneity. Fig. 8b shows 

dependencies of the correlation length on the jamming ratio: the larger is a particle the larger is 

the correlation length. Let us explain this result. Geometry of the infinite cluster of accessible 

pores is shown in Fig. 9; here R is the correlation radius of the accessible sub-network [38-41]. 

The larger is a particle the smaller fraction of the overall network is accessible to it, and the 

larger is the correlation radius R of the accessible sub-network. The particle capture could occur 



14 

 

at any point of the infinite cluster where the outlet flow takes place via a pore thinner than the 

particle. Yet, the mixing takes place in the junction sites; it would take a larger travelling 

distance for the complete mixing of the large suspended particles. This explains the monotonic 

decrease of the correlation length with the jamming ratio decrease, as it is shown in Fig. 8b. 

The accessible sub-network tends to the overall network when the particle radius tends to zero.  

Therefore, the correlation radius tends to the cell size in the network, and all the curves in Fig. 8a 

sharply fall to 1/NL near to p=1. 

The PTMC model (5-7) with lognormal pore size distribution contains three independent tuning 

parameters: the mean pore throat size of the initial pore size distribution, its variance coefficient, 

and the correlation length l. The model assumes a simplified geometry of parallel tubes 

intercalated by the mixing chambers (see Fig. 1 and papers [15-18]). On the contrary, the model 

proposed in the present work is a PTMC model with the particle-size-dependent correlation 

length l=l(rs), which is calculated from network modelling. The pore network is determined by 

pore size distribution and the network coordination number Z. Therefore, the proposed model 

also contains three tuning parameters: mean pore throat size, the variance coefficient and the 

coordination number (if we do not only consider the square lattice). The proposed PTMC model 

with the varying correlation length as calculated from the network modelling, describes more 

general topology of the pore space. 

6. Determining the jamming ratio dependency of the correlation length from the 

laboratory test  

Let us determine the jamming ratio dependency on the correlation length, which was obtained in 

Section 4 from the network modelling, using the laboratory data on suspension transport in 

engineered porous media.  

The above proposed method for characterisation of the pore space geometry from the rejection 

challenge test [20,37] assumes the availability of the three-dimensional numerical network 

models with different coordination numbers. The development of a numerical 3D network model 

is outside the scope of the current work, which constricts the validation of the method from the 

laboratory data. Yet, the result of correlation length variation and its qualitative behaviour with 

increase of the jamming ratio (Fig. 8b), as obtained from 2D network modelling, can to some 

extent be checked in 3D natural pore space from laboratory data.  

The data on short time injection of a mono-sized suspension in engineered porous media have 

been presented in the paper [21]. Fig. 10a shows the normalised breakthrough concentration 

versus jamming ratio for different suspensions injected to the same medium PM1; particles of 

five different sizes have been injected. Fig. 10b shows a similar plot for another porous medium 

PM2, where particles of six different sizes have been injected. The laboratory conditions fulfil 

the requirements of low concentration; so that retention does not alter pore size distribution (see 

[20]). Applying the relationship (13), which is valid for the low concentration retention, we 
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calculate the penetration depth lp. The data are presented in Tables 1 and 2 for porous media 

PM1 and PM2, respectively.  

Two porous media have been engineered by packing the glass beads; the bead size distributions 

are the two right curves in Fig. 11. The algorithm based on the Descartes theorem allows 

calculating the pore size distribution from the bead size distribution (see [20, 33]). The calculated 

pore size distributions are shown by the two left curves in Fig. 11. The accessible fractional flow 

probabilities fa are calculated using formula (3); they are presented in Tables 1 and 2. The values 

of the correlation lengths (also presented in Tables 1 and 2) are calculated by (20) using the 

penetration depth and fractional flow for each value of the jamming ratio. The correlation length 

as obtained from the laboratory data has the same tendency of variation as that calculated from 

the 2D network model: it increases with the particle sizes. Yet, the values of the correlation 

length from the lab tests and the network are not comparable, because the 2D network is not a 

good representative of the porous media used in the above mentioned laboratory tests. The micro 

modelling using more realistic 3D network may allow for quantitative comparison between the 

data of micro modelling and those from the laboratory tests. 

7. Discussion     

Let us discuss the application of the proposed modelling procedure for the purpose of the pore 

space characterisation from the laboratory tests on colloidal-suspension flow. Characterisation of 

porous materials has been an active area of research for a long time. The morphology of porous 

media and, in particular, its pore throat size distribution strongly affects its transport and 

volumetric properties. The shortcomings of the widespread liquid porosimetry test have been 

reported in the literature [32], which motivates development of the methods for characterisation 

of the pore space geometry from deep bed filtration experiments. The rejection challenge test 

that has recently been significantly improved, may provide a valuable alternative to the liquid 

porosimetry tests (see [34-37]).     

In the current paper, it is proposed to calculate the correlation length for the population balance 

model from the mathematical experiment with the network model. Estimation of the mean 

penetration depth lp from the free run length underestimates lp, since it does not account for 

particles captured “outside” the network. The larger are the particles the lower is their fraction 

captured outside the network and the lower is the deviation between real lp and its free run 

length. The larger is the network the lower is the deviation. Therefore, the free run length method 

provides precise estimation of the “right” branch of the lp-j curve. The limitation of the method is 

a limited grid size as determined by the computational capacities. Estimation of the mean 

penetration depth lp from the effluent concentration requires the injection of a large number of 

large particles. The number of large particles passing the pores and appearing at the core effluent 

is small; thus the reliable determination of the outlet concentration (13) requires that a large 

number of particles are injected. Therefore, the limitation of the method is determined by the 

limited number of the injected particles. 
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A laboratory experiment can also be used for determining the correlation length. The penetration 

depth can be calculated from the retention profile, which is usually measured “post mortem”, 

after finishing the filtration experiment. The breakthrough concentration is measured at the core 

effluent. In the colloid transport tests with the packed sand columns [2,6,7,10-12], the retention 

profile is obtained after the column flooding by incrementally excavating sand from the column 

into vials and measuring the concentration of the retained colloids. In the coreflood filtration 

tests using the rock cores [42], a new experimental technique is applied to determine the 

retention profile from synchrotron energy-dispersive X-ray diffraction tomography (EDD-T) and 

from scanning electron microscopy—energy-dispersive spectroscopy (SEM-EDS) mapping data. 

However, the method to determine dependence l(j) from the breakthrough concentrations and the 

“post mortem” retention profile would have the same shortcoming as that with the network 

model. The correlation length as obtained from the retention profile in short cores would be 

underestimated for small particles, because some part of them would not be captured in the core, 

i.e. the passed particles would not contribute to the average penetration depth. Alternatively, 

calculation of correlation length for large particles would not deliver stable results due to small, 

sometimes undetectable effluent concentrations. 

The above investigation must be performed for three dimensional networks, which would more 

closely describe the topology of the pore space in natural porous media. Along with the moments 

for pore throat size distribution, the coordination number Z and the pore length become the 

independent parameters for tuning the 3D network model to the laboratory data. 

In [20], interpretation of the rejection challenge tests was based on the constant correlation 

length l  and the pore size distribution characterized by its moments. The present study shows, 

on the contrary, that the correlation length depends on the pore and particle sizes. The jamming 

ratio dependence of the correlation length can be determined by network modelling with a given 

coordination number Z. Since the coordination number Z is a fundamental characteristic of the 

pore space topology and can be independently determined by the petro-physical methods (see 

[32]), the proposed tuning procedure is more logically consistent. It is more appropriate for 

determining the pore throat size distribution by rejection challenge tests. Its determination from 

the deep bed filtration tests would shed more light into characterisation of the porous space 

geometry. Yet, the realisation of the above procedure requires 3D network models with different 

coordination numbers that are not readily available [40]. Although tuning of the coordination 

number from laboratory data using different networks is a cumbersome procedure, it is 

theoretically and technically possible.  

A known shortcoming of the rejection challenge test is the impossibility to determine the pore 

throat size distribution in large pores that do not form an infinite cluster (Fig. 9). They are not 

connected and cannot be reached by the injected particles. This shortcoming is opposite to that 

for the liquid porosimetry, where the small pores are undetectable due to high capillary pressure 

values. Application of slow displacement of water by gas, re-saturation of the core by water and 
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injection of aqueous particle suspension may combine the two methods and widen the reliable 

measured interval of pore sizes.   

Another possibility is the combination of the rejection challenge tests with the resistivity 

measurements across the core during suspension injection (see the related percolation modelling 

in [38-41]). 

The straining particle capture discussed in the model assumes the particle-grain repulsion, so no 

attachment occurs during the suspension transport. So, some minimum distance is always held 

between a strained particle and the matrix. The network model as well as the PTMC model 

assumes that if a particle enters a thinner pore it is captured there. This corresponds to the so-

called maximum capture mechanism [43]. Yet, a high velocity flux may take the particle from a 

large pore with a thin throat and redirect it into a pore with a larger throat, where it will not be 

captured. In this case, only the minimum capture mechanism, where the particle enters the 

whisker from the infinite cluster backbone, would occur [43].     

The PTMC model is in essence different from the network model or the real porous structure. 

However, the PTMC model is a simplified approximation which is valid and is convenient in 

engineering applications. The network model, on the other hand side, is more sophisticated and 

is closer to describing a realistic pore structure. The set-up of such a model is time consuming 

and differs from case to case. For realistic network calculations, the required computation time is 

by orders of magnitude far higher than that by the simple PDE models. Hence, the proposed 

simplified model (PTMC) can easily be implemented for real porous media. It is more 

sophisticated than the classical macro scale models, since it accounts for the randomness of real 

porous media and the stochastic particle capture. 

The main model assumption is the low retention concentration, if compared with the initial 

vacancy concentration. Low retention corresponds to the diluted suspension injection. It also 

occurs if the concentration of small retained particles is low if compared with the pore sizes. It 

occurs at the beginning of each filtration process too. The large scale solutions (12-14) have been 

obtained under this assumption. Particle injection one-by-one in a micro model is also valid for 

the above assumption. This assumption limits application of the results. Nevertheless, 

propagation of viruses, bacteria, oily contaminants in aquifers is usually considered under the 

low retention assumption. The same corresponds to the fines migration in natural reservoirs, as 

well as injection of low quality water in aquifers and oilfields. 

8. Conclusions 

Combination of the PTMC and network models provides a new methodology for modelling of 

the straining-dominant deep bed filtration in porous media with arbitrary pore space topology. 
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The PTMC model, as tuned from the micro scale pore network simulation exhibits varying 

correlation lengths for particles with different sizes. The correlation length decreases with the 

decrease in particle size due to increase of the density of accessible pore network.  

Two independent methods for determination of the correlation length l from the network 

modelling – one from the breakthrough concentrations and another one from the retained 

concentrations – have been proposed. The effluent-concentration-based method provides the 

valid values of the penetration depth lp for small jamming ratios while the method based on 

strained concentrations gives the valid lp -data for large jamming ratios. Both lp -estimates 

coincide for the intermediate-size particles. The combination of the two methods (the envelope 

curve) allows determining the penetration depth for the overall interval of jamming ratios. The 

correlation length is obtained from the penetration depth using the fractional flow via 

inaccessible pores fn. 

The higher is the variance coefficient of a pore size distribution, the smaller is the variation of 

the correlation length. It is minimal for porous media with high micro-heterogeneity. Hence, the 

PTMC model with a constant correlation length can be applied to a highly pore-scale 

heterogeneous medium with a wide range of particle sizes.  

The correlation length tends to the grid size for small particles with radii tending to the minimum 

pore size. The correlation length decreases to the grid size almost abruptly, in 1% neighbourhood 

of the point p=1.0. 
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Table 1 

Determining correlation length from laboratory tests with porous medium PM1 

j lnC
0
/C

1
 lp,m 1-fa l,m 

0.30 0.0141    3.5399 0 0 

0.41 0.0975 0.5131 8.68e-11 4.46e-11 

0.54 0.5114     0.0978 1.73e-06 1.69e-07 

0.60 0.9133     0.0548 5.12e-05 2.80e-06 

0.86 3.5229 0.0142 6.20e-02 8.80e-04 

 

 

Table 2 

Determining correlation length from laboratory tests with porous medium PM2 

j lnC0/C1 lp,m 1-fa l,m 

0.20 0.0030 16.3894 0 0 

0.37 0.0137 3.6560 2.00e-12 7.32e-12 

0.51 0.1022 0.4890 5.54e-07 2.71e-07 

0.67 0.1660 0.3012 7.50e-04 2.26e-04 

0.74 1.1549 0.0433 7.40e-03 3.21e-04 

1.06 5.1546 0.0097 4.40e-01 4.27e-03 
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a)                                                                                                b) 

Fig. 1. Schematic for geometric model of parallel-tubes-with-mixing-chambers for porous media: a) 

bundle of parallel tubes alternated with mixing chambers; b) cross-section of a chamber.  

 

Fig. 2. Schema for flow and deep bed filtration in the network.  
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c) 

 

d) 

Fig. 3. Validation of macro scale equation on the network scale: a) pore size distribution and rate 

distribution via a single pore; b) zoom-in for small jamming ratios; c) checking the validity of the 

analytical solution on different size grids; d) penetrated depth from network modelling as calculated by 

averaging the particle capture distance and from the effluent concentrations using the analytical 

solution. 
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c) 

Fig. 4. Breakthrough concentrations versus jamming ratio (network): a) pore size distribution; b) rate 

distribution via a single pore; c) normalised breakthrough concentration. 

 

Fig. 5. Particle penetration depths versus jamming ratio. 
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Fig 6. Fractional flow through inaccessible pores versus jamming ratio. 
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Fig. 7. Pore throat size distributions for porous media with high and low micro heterogeneity, large and 

small particles: the larger is the particle the smaller is the accessible fractional flow; accessible fractional 

flows for large and small particles porous media with high and low micro heterogeneity. 

 

0.1 0.3 0.5 0.7 0.9
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

j

f n

 

 

C
v
=0.15

C
v
=0.28

C
v
=0.47



28 

 

a)  

 

b) 

Fig.8. Correlation length l as calculated from the micro model for different Cv: a) versus passing 

probability (fraction of larger pores); b) versus jamming ratio. 
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Fig.9. The structure of the infinite cluster and its correlation radius R.  



30 

 

 

Fig. 10. Laboratory results of normalised breakthrough concentrations for flow of different size particles 

in the same porous media: a) for porous media PM1; b) for porous media PM2.

 

Fig. 11. Grain and pore size distributions for porous media PM1 and PM2. 
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