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Chapter 6 

 

SPATIAL INDICATORS OF FIRE RISK 

IN 
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Abstract 

Fire plays a role in determining the shape of the earth’s ecosystems, impacts socio-economic 

issues, and influences our climate. In arid and semi-arid Australia (70% of the continent), 

individual fires frequently exceed 1 million ha, and have collectively burnt up to 9% of the total 

area in a single year, associated with antecedent periods of above average rainfall which boost the 

fuel load. People affected by these fires - Federal and State governments, pastoralists, Aboriginal 

communities, larger towns, conservation park managers and tourist operators - all have different 

outlooks and priorities about these phenomena. Little objective information about the fire regime 

and its drivers has been available for this vast area with its very low population density. A 

predictive understanding of the spatial and temporal pattern of risk of large uncontrollable fires is 

needed to promote pro-active management. 

We present a conceptual framework which serves both to summarise existing knowledge and to 

reduce the complexity for a quantitative statistical analysis. This conceptual framework contains 

four main groups of independent variables; biomass, curing, ignition source, and fire weather. For 

these groups of variables we identified direct data sources or spatial surrogates. To quantify 

different aspects of the fire regime, interpretation of NOAA-AVHRR satellite imagery was 

employed, which identifies both fire hotspots (FHS) and fire affected area (FAA). For temporal 

variables, we present a surface displaying relationships for different combinations of lag/phase. 

This highlights different patterns for each region, and the most appropriate timeframes to use in 

modelling. 

Results of exploratory regression analysis in arid and semi-arid Australia show that the strongest 

influence is exerted by biomass or fuel load. As this is highly dependent on antecedent rainfall, we 

can anticipate a strong effect of climate change on the fire regime. The strongest combinations of 

relationships may be used as spatial indicators in the development of long-lead fire risk models for 

these areas. This can help improve the timing of pro-active strategies to manage fire, and in the 

allocation of sparse funds and resources. Our analysis has highlighted regional patterns of fire 

across different land tenures. Heightened awareness of these patterns may encourage a more 

cooperative and coordinated approach to fire management amongst stakeholders. 
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6.1 Introduction 

Few studies (Holm et al., 2003; Jafari et al., 2008; Ludwig et al., 2007; Odeh and Onus, 2008; 

Southgate and Carthew, 2007) have used Geographical Information Systems (GIS) and remotely 

sensed data to create spatial indicators of ecological conditions or processes in arid or semi-arid 

Australia, despite the fact that this can be the most cost- and time-effective method of accessing 

these vast, remote and under-populated areas, comprising 70% (5.5 million km²) of the continent. 

Fire is one of the pivotal processes in these landscapes, affecting the distribution and abundance of 

a unique and diverse range of plants and animals (Kershaw et al., 2002). Historically, lightning and 

burning by Aboriginal people produced a fine grain mosaic of burnt patches at different seral states 

(Bowman, 1998; Burrows et al., 2006a; Latz and Griffin, 1978). Fire regimes have changed with 

the cessation of traditional Aboriginal burning over large areas, and are now characterised by 

pulses of large intense wildfire following above average rainfall (Allan and Southgate, 2002; 

Bradstock and Cohn, 2002; Craig, 1999), ranging between a few years to over 20 years apart (Allan 

and Southgate, 2002; Edwards et al., 2008). 

Over 9% of arid and semi-arid Australia burned in both 2000 and 2001, and 7% in 2002 (Chapter 5, 

see also Turner et al., 2008). Fires threatened homesteads, sacred and cultural sites, damaged 

infrastructure, destroyed pasture and fences, killed cattle and other animals, and posed health risks 

to the public (Allan and Tschirner, 2009; Edwards et al., 2008; Ellis et al., 2004). They also killed 

mature mulga plants, increasing the opportunity for spinifex to invade these fire sensitive 

communities, and they contributed to soil erosion and significant greenhouse gas emissions. Fire 

age was homogenised over very large areas, which may lead to significant biodiversity problems. 

A pro-active burning program in the preceding years could have mitigated many of the adverse 

impacts of these fires (Edwards et al., 2008). However, as these periods of large intense wildfire are 

infrequent in these environments, it is difficult for individuals to develop skills to manage them, 

and few explicit fire management strategies have been developed. Fire management is also 

constrained by limited resources of manpower and equipment, the vastness and remoteness of 

many areas, poor accessibility, and imperfect knowledge of fire behaviour and fire effects 

(Edwards et al., 2008; Ellis et al., 2004). Here, if a large fire develops, it is often next to impossible 

to contain it. 

Fire forecasting tools, such as the widely used Fire Danger Index (FDI) for eucalypt forest or 

continuous grasslands (Cheney et al., 1998; McArthur, 1966, 1967), or the recently developed fire 

danger rating system for discontinuous spinifex grasslands (Burrows et al., 1991; Burrows et al., 

2006c), are largely based on empirical data from experimental fires, but few of these experiments 

have been conducted in arid or semi-arid environments. Predictions are specific for a particular 

time and place, and are updated daily. Short-term predictions like these are most useful as a 
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decision support mechanism for tactical planning of management fires, or the allocation of 

resources for firefighting by operational fire fighting centers, of which there are very few in arid 

and semi-arid Australia. 

What has been lacking is a means to predict when fire risk warrants, or necessitates, early pro-

active intervention in these areas. An ability to predict wildfire variability with long-lead 

forecasting (seasonal to annual leads) at a regional and national level can assist strategic long-term 

planning, and the chance of timely and cost-effective intervention initiatives such as patch-burn 

strategies and buffer burns, to benefit biodiversity and limit the impact of wildfires, while 

maximizing the limited available funding and resources.  

This approach has recently been adopted throughout Australia, with the inaugural Seasonal 

Bushfire Assessment produced for 2006-2007 (Lucas et al., 2006). Each year, following a number 

of workshops around the country, a report and map are produced indicating the fire potential during 

the active part of the upcoming fire season for a given region (Bushfire CRC, 2007, 2008; Lucas et 

al., 2006). These outlooks are based on considered expert assessments from climatologists, 

meteorologists and state-based fire-agency personnel. 

But, little objective information about the fire regime and its drivers has been available for arid and 

semi-arid Australia in the past. One of the first attempts to characterise the causes, seasonal 

incidence, distribution and size of wildfires in central Australia was carried out by Griffin et al. 

(1983), using statistics from records of fires reported on pastoral properties between 1970 and 

1980. They found that the total area burnt was best explained by the rainfall of the preceding 2 

years. An assessment of fire patterning, using the fire affected area (FAA) and fire hotspot (FHS) 

data derived from National Oceanographic and Atmospheric Administration’s (NOAA) Advanced 

Very High Resolution Radiometer (AVHRR) imagery (Craig et al., 2002; Marsden et al., 2001), 

has recently been completed by Russell-Smith et al. (2007b) for all of Australia from 1997 to 2005. 

In this study, statistical modelling was used to relate the spatial variation of fires to a variety of 

static biophysical variables. This revealed that rainfall seasonality substantially explains fire 

patterns at a continental scale. Temporal variations were modelled using measurement of 

antecedent rainfall, Normalized Difference Vegetation Index (NDVI), and prior fire. In the arid and 

semi-arid regions, annual rain in the preceding year explained most variance. The current authors 

have demonstrated that the main trends in fire distribution follow latitudinal rainfall and 

temperature in arid and semi-arid Australia, and also established a broad-scale positive temporal 

relationship between categorised antecedent rainfall and area burnt in the following year, as part of 

their initial analysis of regional fire patterns in these areas, using the NOAA-AVHRR FAA data 

between 1998 and 2004 (Chapter 5, see also Turner et al., 2008). 

Building on our earlier work (Chapter 5, see also Turner et al., 2008), this paper reports the results 

of finer-scaled and more extensive exploratory analysis and modelling in the entire arid and semi-
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arid regions of Australia. We use computational experimentation to test how varying model 

scenarios drive model outcome, in an effort to better understand the complex system. This 

predictive understanding of the independent variables behind the spatial and temporal pattern of 

risk of large uncontrollable fires is needed to promote pro-active management. We examine the 

feasibility of long-lead fire prediction in these regions, in the hope that automatic seasonal forecasts 

could eventually be developed, to support the current system which is based largely on expert 

opinion. 

In this paper, we present a conceptual framework which serves to summarise existing knowledge of 

the climatic, edaphic and anthropogenic factors which affect fire risk. This conceptual framework 

contains four main groups of independent variables. Indices for biomass, curing, and ignition 

source are developed using the NOAA-AVHRR FAA dataset , while the fire weather index uses 

the FHS data as the dependant variable, as the exact date of fires is unknown from the FAA data.  

We elucidate the relative strength of influence, and predictive capability, of 140 independent 

variables (antecedent rainfall, recent rainfall and temperature, soil, vegetation, land use, NDVI, 

lightning, road networks, population density, land tenure, and current temperature, wind, relative 

humidity and rainfall) on 7 years of fire data, at both a continental and regional scale, throughout 

arid and semi-arid Australia. We present a surface displaying 40 relationships between antecedent 

rainfall and FAA (combining lags of 0, 3, 6, 9 and 12 months, and phases in 3 month increments 

from 3 to 24 months) for the entire study area, and for each region. This serves to highlight the 

different patterns for each region, and the most appropriate timeframe to use in modelling. A 

similar methodology is used when modelling NDVI. The strongest combinations of relationships 

are used as spatial and temporal indicators of the risk of large fires, both overall and on a regional 

basis, in the final models. 

6.2 Study site 

Our study area is delineated by the Australian Bureau of Meteorology’s ‘dry climate’ zones. This 

uses a modification of Köppen’s classification of world climates, based upon differences in the 

seasonal distribution of mean annual temperature and precipitation measured over 30 years (figure 

6.1) (Stern et al., 2000).  

These arid and semi-arid lands, often referred to as rangelands, occupy 70% of Australia (5.5 

million km2) and are inhabited by less than 3% of the population (over 500,000 people) (Brown et 

al., 2008). They are characterised by low average rainfall which is highly variable (Bureau of 

Meteorology, 2005), infertile soils over extensive areas (Bureau of Rural Science, 1991), and 

sparse vegetation (National Land and Water Resources Audit, 2001). Fire is characterised by pulses 

of large intense wildfire following above average rainfall in preceding years (Allan and Southgate, 

2002; Edwards et al., 2008). 
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Figure 6.1 Australian dry climate zones 

Based on Stern et al. (2000) 

 

6.3 Conceptual framework and data 

We present a conceptual framework (figure 6.2) which serves both to summarise existing 

knowledge and to reduce the dimensionality for a quantitative statistical analysis. This conceptual 

framework contains four main groups of independent variables; biomass, curing, ignition source, 

and fire weather.  

Biomass (fuel load) is a product of the amount of vegetation that has grown in an area, and any 

intervention on that vegetation through management practices or disturbances such as fire or flood 

(Bowman et al., 2007; Dyer and Stafford Smith, 2003). The rate of plant growth depends on the 

type of vegetation in question, the underlying soil type and conditions, and climatic conditions 

(particularly antecedent rainfall) (Orians and Milewski, 2007; Winslow et al., 2003).  

On pastoral lands, grazing by animals, including termites, generally keeps the fuel loads low. In the 

perennial tussock grasslands (e.g. Mitchell grass (Astrebla spp.), palatable annuals and ephemerals 

will normally be eaten out leaving bare ground between tussock (Cheney and Sullivan, 2008). After 

extended periods of widespread rain however, growth can far exceed consumption (Hodgkinson, 

2002). In the drought-resistant, unpalatable, perennial hummock grasses - commonly soft spinifex 
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(Triodia pungens), hard spinifex (Triodia basedowii), or feathertop spinifex (Triodia schinzii) - fuel 

loads accumulate in association with the variable rainfall (Allan and Southgate, 2002). Hummocks 

grow up to 30-60 cm high and 30-100 cm in diameter, and occupy 30-50% of the ground area, with 

the ground between them normally bare. While highly flammable, fire spread is normally restricted 

by wind speeds capable of spreading flames at a low angle across the hummocks. After rain 

however, a sparse cover of short grasses or forbes may grow between the hummocks, facilitating 

rapid fire spread (Cheney and Sullivan, 2008).  

On pastoral land, fire suppression has been the main focus of management, for protection of people 

and assets (Edwards et al., 2008; Griffin et al., 1983), although fire has been used for fuel reduction 

and pastoral land management to a limited extent in recent years (Craig, 1999; Letnic, 2004; Myers 

et al., 2004; Vitelli and Pitt, 2006). Traditionally, Aboriginal communities used fire in hunting and 

“fire-stick” farming, as well as for cooking, warmth and signalling (Bird et al., 2005; Bowman, 

1998; Fensham, 1997; Latz, 1995). Although fire management is still culturally important today, 

the opportunities for getting out on country to burn are constrained (Edwards et al., 2008). This 

being said, roadside ignitions by Aboriginal travellers were responsible for many of the fires in 

Central Australia during the 2000-2002 fire events, causing considerable animosity from 

pastoralists (Edwards et al., 2008). In conservation areas, fire management is aimed at protecting 

physical assets, cultural sites and human life, as well as protecting biodiversity from wildfire, and 

enhancing biodiversity through prescribed burning (Duguid et al., 2009; Edwards et al., 2008; Gill 

et al., 2002a; Keith et al., 2002) 

.The Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) has been used for many 

years to measure and monitor plant growth (vigour), vegetation cover, and biomass production 

from multispectral satellite data. It is based on brightness values of the near-infrared and red bands, 

and is a representation of the "greenness" of vegetation at the time the satellite passes over a 

designated area. NDVI is now calculated fortnightly for the entire country, and has been utilised in 

a number of arid and semi-arid environments (Hobbs, 1995; Holm et al., 2003; Jafari et al., 2007).  

Curing is also a measure of pasture ‘greenness’, and is defined as the percentage of material in the 

sward that is dead. Following the growth season and seed production, pastures die or become 

dormant and dry out. The degree of curing has an effect on flammability and the potential rate of 

fire spread (Cheney and Sullivan, 2008). The curing process is affected by variable characteristics 

such as rainfall and temperature, as well as vegetation and soil types (Allan et al., 2003; Cheney 

and Sullivan, 2008). Hummock grasses become particularly flammable, as they accumulate a dense 

core of coarse dead material over a number of years. 
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A number of studies have derived relationships between NDVI and ground-based estimates of 

curing within Australia (Allan et al., 2003; Chladil and Nunez, 1995; Dilley et al., 2004; Paltridge 

and Barber, 1988), though not in the dry climate zones. Grassland curing indices are now produced 

for a number of areas (for southeast Australia by the Bureau of Meteorology, and for the Kimberly 

and southwest region of Western Australia by Landgate, Western Australian Land Information 

Authority), using the same basic algorithms as the NDVI. Currently, the most common method for 

quantifying curing is still visual estimation in the field, although the Bushfire Cooperative Research 

Centre is in the process of developing a new satellite vegetation index to access grassland curing 

across Australia and New Zealand (Bushfire CRC, 2009).  

Fire ignition sources can be from either lightning or humans. There is a high level of lightning 

activity in the northern parts of Australia, and a decrease in total flash density occurs southward 

(Kuleshov et al., 2006). Lightning tends to strike higher ground along peaks and ridges (Kilinc and 

Beringer, 2007), while anthropogenic fires are more likely to occur near settlements and along 

roads and tracks (Burrows et al., 2006a; Edwards et al., 2008). Fires can be lit for traditional 

purposes, fuel hazard reduction, sustainable land use, or ecosystem management. Others may be lit 

maliciously, or simply burn out of control. In arid and semi-arid Australia, it is difficult to know for 

certain how many fires are started by lightning and how many by humans, as many are not 

attended, or reported in official statistics. 

Weather conditions such as low relative humidity, high temperatures, strong winds, and lack of rain 

all contribute to increased fire danger. These factors contribute to the rate of spread and intensity of 

a fire, which affects the total area burned. They are used in the Fire Danger Index (FDI), widely 

used throughout the country in areas of eucalypt forest or continuous grassland (Cheney et al., 

1998; McArthur, 1966, 1967). In patchy fuels such as spinifex, fire spread can usually only be 

sustained if conditions are such that the flames from burning hummocks can breach the inter-

hummock gaps and ignite the adjacent hummock (Cheney and Sullivan, 2008). A number of 

models to predict rate of spread in discontinuous spinifex communities have been developed in 

Australia (Burrows et al., 1991; Burrows et al., 2006c; Griffin and Allan, 1984, 1993), but none of 

these models are currently operational.  

The datasets used in our analysis are summarised in table 6.1. Land tenure is used as an indicator or 

of the type of fire management that is most likely to be employed. Because the fire datasets only 

cover 7 years, it was not possible to calculate the time since last burnt for most locations, so this 

variable was not included in our analysis. The real-time ground-based detection data, Lightning 

Positioning and Tracking System (LPATS), used by Kilinc and Beringer (2007) for their analysis 

was unfortunately not available for our use. Instead we used the Bureau of Meteorology’s average 

annual lightning ground flash density data (1995-2002) (Kuleshov et al., 2006).  
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Table 6.1 Project datasets 

Name Custodian Description 
Climate Zones Met. Bureau Köppen Climate Classification. 
Fire Affected Areas 
(FAA) 

Landgate The areal extent of large fires (> 4 km2) derived from daytime 
NOAA-AVHRR satellite imagery 1998 – 2004. Mapped 
every 9 days. 

Fire Hot Spots (FHS) Landgate Locations of active fires mapped from night-time AVHRR 
imagery (1.1 km resolution) 1998 – 2004. Mapped daily. 

Monthly Rainfall Met. Bureau  Monthly rainfall gridded 1995 – 2004. Generated using the 
Barnes two-dimensional analysis. The grid point resolution of 
the data is 0.25° (approximately 25 km). All available rainfall 
stations were used in the analyses. 

Monthly Maximum 
Temperature 

Met. Bureau Monthly maximum temperature gridded 1995 – 2004. 
Datasets were generated using the Barnes two-dimensional 
analysis. The grid point resolution of the data is 0.25° 
(approximately 25 km). All available temperature stations 
were used in the analyses. 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

Dept. of 
Environment and 
Heritage 

Environmental Resources Information Network (ERIN) 
NOAA AVHRR 1 km (0.01°) NDVI 14 Day Data 
(1995-2004). Data received from Satellite Remote Sensing 
Services, Landgate (Western Australian Land Information 
Authority). The compositing of the daily AVHRR overpasses 
to 14 day data is undertaken by the suppliers and uses a 
maximum NDVI method to reduce cloud contamination. 

Soils Bureau of Rural 
Sciences 

The Atlas of Australian Soils (a 14 class soils map of 
Australia showing the major soils) was compiled by CSIRO 
in the 1960’s to provide a consistent national description of 
Australia’s soils and digitised in 1998. As used in the 
Australian Natural Resources Atlas. 

Vegetation Dept. of 
Environment and 
Heritage 

The National Vegetation Information System (NVIS) stores 
data on the type and extent of vegetation compiled by the 
individual states and territories using a nationally consistent 
framework. As used in the Australian Natural Resources 
Atlas. 

Land Tenure 
 

Bureau of Rural 
Sciences  

Australian Land Tenure 1996 contains boundaries and 
attribute information on public and private land tenure. It is 
part of the 1996/97 Land Use of Australia, Version 2, 
National Land and Water Resources Audit. As used in the 
Australian Natural Resources Atlas. 

Population Density Australian Bureau 
of Statistics 

1996 and 2001 Census data.  

Road Network GISCA, University 
of Adelaide 

Road networks as used in ARIA (Accessibility/Remoteness 
Index of Australia) (Endorsed by the Australian Bureau of 
Statistics). 

Lightning 
(average number of 
ground flashes per 
km2 per year) 

Met. Bureau  Average annual lightning ground flash density map of 
Australia. Analysis generated from NASA Optical Transient 
Detector and Lightning Imaging. Sensor data (0.5° grid 
resolution) averaged over the 8-year period 1995-2002. The 
satellite data were calibrated against the ground-based 
Lightning Flash Counter data and adjusted accordingly. 

Daily Precipitation Met. Bureau From daily weather observations 1998 – 2004. 
Daily Relative 
Humidity 

Met. Bureau From daily weather observations 1998 – 2004. 

Daily Maximum 
Temperature 

Met. Bureau From daily weather observations 1998 – 2004. 

Daily Minimum 
Temperature 

Met. Bureau From daily weather observations 1998 – 2004. 

Daily Wind Speed 
 

Met. Bureau From daily weather observations 1998 – 2004. 
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6.4 Methodology 

The accuracy of the NOAA-AVHRR FAA and FHS datasets has been assessed in arid and semi-

arid regions using Landsat-derived interpretations by the authors (Chapter 4, see also Turner et al., 

2009a).  

6.4.1 FAA indicators 

Fire affected area (FAA) was used for the biomass, curing, and ignition source indices. The FAA 

dataset contains mapped burnt patches from 1998 to 2004, and the dates of detection. The data 

were aggregated to 50 km x 50 km grids (2,096 cells), giving the percentage of each cell burnt for 

each year/month (2,096 cells x 7 years x 12 months = 176,064 records). The climate zone of each 

cell was also included (figure 6.1). 

Monthly rainfall data were aggregated to 50 km x 50 km grids, using mean values. This was then 

summed in various combinations to form a 5 x 8 matrix for each cell, with lags of 0, 3, 6, 9 and 12 

months and phases in 3 month increments from 3 to 24 months, for inclusion in the biomass index. 

For example, a lag of 0 and a phase of 6 shows the cumulative rainfall for 6 months before the 

year/month in question, while a lag of 3 and a phase of 12 shows the cumulative rainfall between 3 

and 15 months before the year/month in question.  

Cumulative values for the previous 1, 2, and 3 months were calculated for both monthly rainfall 

and monthly maximum temperature data, for inclusion in the curing index. 

To model a separate NDVI-based biomass index, the maximum NDVI was calculated for each 

month at the 1 km resolution. This monthly maximum NDVI data were then aggregated to 50 km x 

50 km grids, using mean values. A 40 variable matrix similar to the rainfall data was formed. 

To model a separate NDVI-based curing index, the NDVI value in the previous month was 

subtracted from the highest value for the previous 12 months (50 km x 50 km grid values), as an 

indication of ‘loss of greenness’.  

These 87 dynamic variables were then linked to the FAA data by cell location/year/month. 

A separate 50 km x 50 km grid was created for each of the 11 soil types, 23 vegetation types, and 

16 land tenure classes present in the study area, calculating the percentage of that type or class in 

each cell. Lastly, 50 km x 50 km grids were created of the mean number of lightning ground 

flashes per km2, as well as the total length of road, and the total population per cell. These 53 static 

variables were linked to the FAA data by cell location.  

The resulting GIS file of 176,064 records was imported into the S-PLUS (MathSoft, 1999) 

statistical software package for modelling, with the percentage of area burnt (PercentFAA) as the 
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dependent variable, and 140 possible independent variables. Examination of the data suggested the 

use of a generalised linear model (McCullagh and Nelder, 1989). 

For the biomass index, the first step was to establish the rainfall lag/phase that was the best 

predictor or indicator of PercentFAA for the entire area, and also for each of the nine climate zones 

(figure 6.1). A glm model was fitted for each of the 40 lag/phase independent variables in turn, 

using the Poisson family with a log link.  

The percentage of deviance explained by each model was calculated using the formula: 

 % deviance explained = 

              (null deviance – residual Deviance)/ null deviance x 100 

Analysis by individual climate zones revealed that there was insufficient fire data in some zones for 

the results to be statistically significant (p < 0.05). The data were re-grouped into four climate 

categories - north (hot, winter drought, zone 13 and 22), west (hot, summer drought, zone 14 and 

23), central (hot, persistently dry, zone 15 and 24), and south (warm, summer drought or 

persistently dry, zones 11, 12 and 21). 

The models were then run for each climate category, and for the entire area, as were all other 

models thereafter. 

The same methodology was used to establish the cumulative NDVI lag/phase that was the best 

predictor of PercentFAA. 

Glm models were run using rainfall and maximum temperature in the previous 1, 2 and 3 months, 

and curing NDVI. 

An individual glm model was run for each of the soil types, measuring the relationship between 

PercentFAA and the percentage of the soil type in each cell. Variables were considered significant 

if they had a p value < 0.05. As the data had been aggregated up to 50 km x 50 km grids, soil types 

with small areas gave some meaningless results and were not included in further analysis. Stepwise 

glm models were then run, using only the most common soil types (up to a total of six types).  

The same process, as for soil, was followed for the vegetation types and tenure classes. 

A separate glm model was run for each of the other three variables – population totals, road length 

and lightning ground flash density. 
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6.4.2 FHS indicators 

For the fire weather index, the fire hotspot (FHS) dataset was employed, as the exact date of the 

detected fires is known, unlike the FAA data (Craig et al., 2002; Yates and Russell-Smith, 2002). 

Unfortunately, many fires miss detection due to the timing of the satellite overpass or atmospheric 

conditions on the day (Craig et al., 2002; Gill et al., 2002b; Chapter 4, see also Turner et al., 

2009a). 

Daily observations of precipitation, relative humidity, maximum and minimum temperatures and 

mean wind speed from the Australian Bureau of Meteorology weather stations were used in 

creating the fire weather index. While there were almost 2,000 locations recording rainfall, only 

178 of these also recorded the other measurements. For each of these stations, a record was created 

for each day that all five observations were recorded. The average of the (usually 3 hourly) daily 

relative humidity readings was used for our analysis. Very few sites have a complete unbroken 

record of climate information, which resulted in a total of 404,612 records.  

To avoid error introduced by extrapolation, the presence or absence of fire hotspots within a 25 km 

radius of the weather stations was calculated for the daily records at each site.  

A glm regression was fitted for each of the five weather variables, for the entire study area and 

each climate category, using the binomial family with a logit link.  

6.4.3 Complete model 

Transformations of the independent variables, and interactions between variables were examined.  

Finally, stepwise glm models were run for each index, using the combination of variables deemed 

most suitable (see section 6.5), for the entire study area and each climate category. 

6.5 Results 

The distribution, seasonality, frequency and minimum return value, and number and extent of our 

FAA and FHS datasets are described in detail in our initial analysis of the data (Chapter 5, see also 

Turner et al., 2008). 

6.5.1 FAA indicators 

In this section the term ‘current year’ refers to the previous 12 months.  
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6.5.1.1 Fire affected area 

Between 1998 and 2004 almost 27% (over 1.5 million km2) of arid and semi-arid Australia was 

mapped as burnt at least once. This ranged from a low 1.6% in 2003, to over 9% in both 2000 and 

2001, with some areas burnt repeatedly (figure 6.3).  

0 500 1,000250 Kilometers

years     % of study area

0     73

1     18

2       6

3       2

4       0.7

5       0.1

6       0.02

7       0.001

study area

 

Figure 6.3 Number of times area burnt between 1998 and 2004 

 

6.5.1.2 Rainfall and temperature 

The average annual rainfall ranges from ~800 mm in the north, 250 mm in the south and 500 mm 

in the east, but can be very variable with up to 2,000 mm in the north at times. Mean annual daily 

maximum temperatures are hottest in the north (over 30° Celsius), graduating to warm in the south 

(in the low 20s) (Bureau of Meteorology, 2005).  

For the entire study area, cumulative rainfall between 3 and 12 months beforehand (lag of 3, and 

phase of 9), is the best predictor of percentage of area burnt, with 22.8% of the deviance explained 

(Table 6.2 and 6.3, Figure 6.4). But cumulative rainfall in the previous 2 years is almost as good a 

predictor - lag/phase 3/18, 3/21, 6/15 and 6/18 all explain over 20% of the deviance. By 

comparison, cumulative rainfall in the previous quarter (0/3) explains less than 2%, and cumulative 

rainfall in the previous year (0/12) only 16%.  
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Table 6.2 Percentage of deviance explained by antecedent rainfall using glm regression for all regions 

Dependent variable = PercentFAA 

Independent variables = cumulative rainfall for each lag/phase period (see text for details) 

The best result is highlighted 

* = negative relationship with PercentFAA 

                 Lag 
Phase 0 3 6 9 12 

3 *1.88 2.20 19.52 4.59 * 0.23 
6 0.13 16.48 19.47 1.74 0.06 
9 11.24 22.81 16.00 2.54 7.91 
12 16.63 18.86 16.19 12.92 10.50 
15 10.05 13.99 22.26 11.61  5.33 
18 8.74 20.45 20.45 7.31 4.47 
21 16.06 21.60 16.48 6.93 9.13 
24 17.30 17.70 15.52 11.79 9.42 

 

Figure 6.4 highlights a number of different patterns when modelling antecedent rainfall by climate 

category. The best predictive power for each region ranges from 11% of deviance explained in the 

south and 15% in the north, to 22 % and 23% in the mid and west. Rainfall in the north is most 

reliable, producing adequate biomass to burn each year, while in the south, rainfall is consistently 

low, resulting in little biomass and very infrequent fires. It is in the mid and west, where rainfall 

can be highly variable, that a stronger relationship between percentage burnt area and antecedent 

rainfall can be established. 

Rain in the north is influenced by the Top-End’s very distinctive monsoonal wet season (about 

October to April in the Northern Territory, but shorter in other areas). Above average rainfall 

events in the mid region also tend to be associated with the summer monsoon season (Bureau of 

Meteorology, 2005). The greatest percentage of area burnt in both the north and mid regions 

occurred between September and November at the end of the dry season (Chapter 5, see also 

Turner et al., 2008). The best predictor of PercentFAA is from the current year’s wet season (15% 

in the north, and over 21% in the mid region). The lag of 3 to 6 months indicates that the vegetation 

in these regions can reach critical mass in a short time following rain. Lags of 9 and 12 months 

have very little predictive power, particularly in the north, where they correspond to the dry season. 

In the mid region, cumulative rainfall in the previous 24 months with a lag of 3 or 6 months still 

explains 15-20% of the deviance. 
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Figure 6.4 Percentage of deviance in PercentFAA explained by antecedent rainfall and NDVI using 

glm regression 

(See Table 3 caption for details)
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Table 6.3 Percentage of deviance explained individually by each independent variable using glm 

regression for dependent variable PercentFAA 

The best results for recent rainfall, recent temperature, soil, vegetation, and land tenure are highlighted 

* = negative relationship with PercentFAA 

ns – result not significant, p value < 0.05 

Independent variables  North   West  Mid  South  All  
Antecedent Rainfall  
Cumulative rainfall (best lag/phase) 15.14 23.47 22.17 10.70 22.81 
Recent Rainfall  
Total rainfall in previous 1 month * 6.79 * 2.89 * 3.26 * 1.78 * 3.41 
Total rainfall in previous 2 months * 6.14 * 5.75 * 4.37 * 1.30 * 2.88 
Total rainfall in previous 3 months * 4.78 * 8.99 * 5.72 * 2.49 * 1.88 
Recent Temperature 
Mean maximum temp in previous 1 month * 0.01 7.94 0.29 7.38 1.97 
Mean maximum temp in previous 2 months * 1.37 4.99 * 0.06 4.46 0.52 
Mean maximum temp in previous 3 months * 4.51 2.62 * 0.71 1.98 0.04 
NDVI 
Biomass NDVI (best lag/phase) 13.20 3.57 4.93 9.96 8.99 
Curing NDVI (Loss of vegetation greenness) 0.28 1.27 0.78 *0.09 0.88 
Percentage of Soil Type 
1 Sands 1.75 * 0.90 4.92 6.79 4.96 
2 Massive and structured earths 0.50 * 0.83 * 0.11 ns 0.12 
3 Loams * 0.61 1.74 * 0.06 * 0.91 * 1.22 
4 Cracking clays * 3.75 2.68 * 3.47 * 3.67 * 1.36 
5 Red duplex soils * 0.52 0.07 * 1.01 * 0.24 * 1.89 
6 Calcerous earths * 0.15 ns * 2.36 ns * 2.64 
7 Yellow duplex soils 0.06 * 0.50 * 0.05 0.55 0.01 

Percentage of Vegetation Type 
1 Hummock grasslands 0.11 18.94 8.04 * 0.21 3.57 
2 Acacia shrublands 0.42 * 1.66 * 0.53 * 0.73 * 0.68 
3 Acacia forests and woodlands 0.35 * 6.98 0.02 * 1.69 * 0.41 
4 Chenopod, samphire * 1.23 * 3.23 * 4.20 * 4.54 * 5.61 
5 Tussock grasslands * 3.00 2.29 * 2.64 * 6.65 * 0.42 
6 Eucalypt woodlands 0.31 * 0.07 * 1.70 4.60 0.12 
7 Eucalypt open woodlands 0.17 * 1.31 * 0.16 2.78 1.06 
8 Mallee woodlands and shrublands * 0.01 * 0.60 * 0.11 * 2.71 * 0.85 
9 Acacia open woodlands * 1.07 * 0.67 * 0.35 * 0.81 * 0.81 
10 Other shrublands * 0.30 * 4.47 * 0.47 9.02 * 0.87 
Percentage of Land Tenure Class 
1 Private leasehold * 0.02 * 1.00 * 3.87 * 3.09 * 0.47 
2 Other crown land, vacant ns 3.65 1.32 10.84 0.29 
3 Private freehold * 1.16 * 1.38 * 0.96 * 6.52 * 1.72 
4 Private freehold, Aboriginal, non-agri. 0.63  1.56 * 0.11 2.11 
5 Nature conservation areas * 0.01 * 0.15 * 0.29 0.73 * 0.87 
6 Reserved crown land, Aborig. reserve * 0.23 * 0.08 1.50  0.05 
7 Reserved crown land, not elsewh. class. * 0.08 ns * 0.02 * 1.73 * 0.02 
8 Private leasehold, Aboriginal 0.20 0.86 ns * 0.16 0.52 
9 Private leasehold, Aboriginal, non-agri. * 0.01 ns 0.68  0.03 
10 Private freehold , Aboriginal  ns * 0.09 * 0.74 * 0.11 
Other Independent Variables      
Total road length *2.01 *3.33 *3.60 *9.89 *4.72 
Total population *0.02 0.09 *0.00 *2.99 *0.12 
Lightning ground flash density 1.34 9.00 1.30 0.87 6.75 
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Cumulative rainfall and mean maximum temperature in the previous 1, 2 and 3 months were 

examined as variables for the curing index (table 6.3). For all categories, rainfall in the previous 1, 

2 or 3 months has a negative impact on PercentFAA, as rainfall during this period adversely affects 

curing. Generally, rainfall in the previous 3 months explains the most deviance (2-9%), except in 

the north where rainfall in the previous month is a better indicator. 

The relationship with temperature is more complex. In the west and south it is a positive 

relationship, with the previous month explaining the greatest amount of deviance (7-8%). There is a 

much greater range of temperature in these regions (from below 20 degrees Celsius in the winter to 

mid 30’s in the summer.) The greatest area burnt occurs in the hot summer months in these regions. 

In the north and mid regions the relationship between PercentFAA and temperature is generally 

negative (expect for the previous month in the mid region). Here the hottest months occur during 

the rainy season, while more area is burnt at the end of the dry season, when it is slightly cooler. 

Cumulative rainfall and mean maximum temperature in the previous 1, 2 and 3 months were 

examined as variables for the curing index (table 6.3). For all categories, rainfall in the previous 1, 

2 or 3 months has a negative impact on PercentFAA, as rainfall during this period adversely affects 

curing. Generally, rainfall in the previous 3 months explains the most deviance (2-9%), except in 

the north where rainfall in the previous month is a better indicator. 

The relationship with temperature is more complex. In the west and south it is a positive 

relationship, with the previous month explaining the greatest amount of deviance (7-8%). There is a 

much greater range of temperature in these regions (from below 20 degrees Celsius in the winter to 

mid 30’s in the summer.) The greatest area burnt occurs in the hot summer months in these regions. 

In the north and mid regions the relationship between PercentFAA and temperature is generally 

negative (expect for the previous month in the mid region). Here the hottest months occur during 

the rainy season, while more area is burnt at the end of the dry season, when it is slightly cooler. 

6.5.1.3 NDVI 

NDVI values are scaled between -1 and 1. Water typically has an NDVI value less than 0, bare 

soils between 0 and 0.1 and vegetation over 0.1, with values over 0.5 indicating dense vegetation. 

In our data, the mean value for monthly maximum NDVI for the entire study area is 0.17 (0.20, 

0.18, 0.17 and 0.22 in climate categories 1, 2, 3, and 4 respectively). Only 4% of NDVI values are 

above 0.3, and 0.5% have values greater then 0.4, while there are few values between 0.5 and 0.6 in 

any climate category. Approximately 6% of all the maximum monthly NDVI values are less then 

0.1. 

Cumulative NDVI is used as an indicator of biomass.  
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For the entire study area, cumulative NDVI from 3 to 6 months beforehand (lag of 3, and phase of 

3), is the best predictor of PercentFAA, with almost 9% of the deviance explained (Table 6.3, 

Figure 6.4). The previous 6 or 9 months cumulative (without any lag), and a lag/phase of 3/6 all 

explain ~8% of the deviance.  

The best lag/phase period of cumulative NDVI for each climate category explains 13% of the 

deviance in PercentFAA in the north, 4% in the west, 5% in the mid climate category, and 10% in 

the south. For both the north and south, the results are similar to those for cumulative rainfall (15% 

and 11%). For the west and mid climate categories however, cumulative rainfall is a far better 

predictor of PercentFAA (23% and 22%) than cumulative NDVI. The surfaces of NDVI lag/phase 

results do not show as strong patterns as those for rainfall (Figure 6.4). 

In the north, NDVI peaks during the first half of the dry season, generally between April and June. 

In years of above average rainfall, the NDVI values are greater and the growing season longer. This 

is than followed by more FAA than normal in the late dry season (Chapter 5, see also Turner et al., 

2008). The cumulative NDVI reflects this with the best lag /phase value of 3/3, and those for 3/6, 

0/6, and 0/9 almost as good. Lags of 6 and 9 months have little predictive powers, as these 

correspond to the wet season.  

Similarly, in the mid region, NDVI also tends to peak in the winter months (between April and 

July), and FAA in September to November. The pattern is influenced by the above average rainfall 

events of 1999-2001. In this region, the best predictor of percentage area burnt is from the previous 

year’s cumulative NDVI (lag/phase 12/6 explains 5% of the deviance). There is not a great 

variation in % deviance explained between the lag/phase results however, with the majority 

between 2.5% and 4%. 

In the west, NDVI generally peaks in late winter/early spring (July-September). Rainfall was 

generally less than 400mm per annum throughout our study period for this area. Values for 

cumulative NDVI here show little pattern, and have very poor predictive power, with the majority 

ranging from almost 0% to 2%. The best predictor of PercentFAA is lag/phase 12/9 which explains 

less than 4% of the deviance. 

NDVI peaks in the spring in the south (September-October) and FAA in summer (December-

February). Cumulative NDVI in the previous 3 to 21 months (lag/phase 3/18) is the best predictor 

of FAA in this region, explaining 10% of the deviance. Those with a lag of 0 or 3 and a phase 

between 12 to 24 months all have values between 8% and 10%. This, like the cumulative rainfall 

results, reflects the fact that vegetation takes longer to grow in these cooler areas. 
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Loss of greenness was examined as a possible indicator of curing. The results of fitting maximum 

NDVI in the previous 12 months minus the previous month’s NDVI as the independent variable are 

displayed in Table 6.3. 

For the entire area, almost 85% of records had a reduction in NDVI of less than 0.1 (~70% for the 

north and south climate categories, 80% for the west, and 90% in the mid region). The predictive 

capability of this data was very poor. For the complete study area it explained less than 1% of the 

deviance. The best result was for the west (1.3%), with the worst in the south (0.1%) 

6.5.1.4 Soil, vegetation and land tenure 

Generally, less than 5% of deviance is explained by any individual soil, vegetation or land tenure 

variable with a few exceptions (Table 6.3). 

Over a third of the study area is composed of sands, the most fire prone soil (Figure 6.5a and b). 

Approximately 30% burnt once, and a further 16% twice or more, accounting for over 61% of the 

total FAA. Almost 30%, 20% and 10% of the areas covered by massive and structured earths, 

loams, and cracking clays burned at least once, resulting in ~ 20% 9% and 4% respectively of the 

total FAA. In the low fire years of 1998 and 2003, generally less than 3% of each soil type burnt, 

but with proportionally more fire on sands, and massive and structured earths (Figure 6.5c). In the 

high fire years, up to 16% of sands and 12 % of massive and structured earths burnt, with maxima 

of 4-8% on most other soils.  

Sands explained the greatest percentage of the deviance in PercentFAA amongst the individual soil 

types for the entire area, and in the mid and south regions (5-7%) (Table 6.3). While sands are the 

most common soil type in the north, it is cracking clays which explained more of the deviance in 

PercentFAA, with a negative relationship. Cracking clays also explained the greatest percentage of 

the deviance of individual soil types in the west, but they cover a very small area and were not 

included in further analysis, leaving loams as the best indicator of PercentFAA (Table 6.3 and 6.4). 

Massive and structured earths explained little deviance in any region. 

Eucalypt open woodlands, hummock grasslands and eucalypt woodlands were the most fire prone 

vegetation types (Figure 6.6a and b). Almost half the hummock grasslands (30% of the study area) 

were burnt at least once, accounting for 50% of the total FAA, while 42% of the eucalypt open 

woodlands contributed a further10%. In tussock grasslands 14% burned (4% 2-3 times), producing 

almost 5% of the total FAA. The chenopod shrubs, samphire shrubs and forblands occupy almost 

10% of the study area, but less than 3% of these burned, accounting for only about 1% of the total 

FAA. In the low fire years, less than 2% of most vegetation types burned, but up to 5% of eucalypt 

woodlands and eucalypt open woodlands (Figure 6.6c). While approximately the same proportion 

of hummock and tussock grasslands burnt in the low fire years (~2%), 6 times proportionately 

more hummock grasslands burnt in 2000 (3% vs. 18%).  
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Hummock grasslands in the west explained the most deviance (19%) of any of the individual 

independent vegetation variables, and were also the best predictor in the mid region and overall 

(Table 6.3). In the north, although hummock grasslands were extensively burnt, tussock grasslands 

explained more of the deviance, while in the south other shrublands were the most important 

vegetation type, explaining 9% of the deviance. 

Together, private leasehold and private freehold land tenures comprise 62% of arid and semi-arid 

Australia, vacant crown land 16%, Aboriginal tenures 14%, and nature conservation areas a further 

7% (Figure 6.7a and b). Aboriginal lands were the most fire prone tenures with 43-61% burnt at 

least once, and some more frequently (Figure 6.7b). The exception was Aboriginal private freehold 

land, where only 1% of the land burnt in total. On vacant crown lands 31% burnt once and another 

9% twice or more, while 14% of conservation areas burnt at least once. Almost 44% of the total 

FAA was on private leasehold property, although only 22% of this land was burnt. Most of the 

other fire occurred on vacant crown land and Aboriginal non-agricultural private freehold (~20% 

each of the total FAA). Regardless of the year, a far greater proportion of Aboriginal private 

leasehold burnt than any other land tenure (from 7% to 23%) (Figure 6.7c). Between 1% and 3% of 

most other tenures burnt in the low fire years. In other years, high percentages burnt on Aboriginal 

non-agricultural private leasehold (33%), Aboriginal non-agricultural private freehold (26%), 

Aboriginal reserves (23%) and vacant crown land (17%). 

The individual land tenure that explained the most deviance in the percentage of area burnt was 

vacant crown land in the south (almost 11%) (Table 6.3). It was also the best indicator of 

PercentFAA in the west. Private freehold explained most in the north, private leasehold in the mid 

region, (both negative relationships), while non-agricultural Aboriginal private freehold was best 

for the entire study area. Nature conservation areas explain less than 1% of the deviance in all 

areas. 

Table 6.4 shows the formulae output from stepwise glms of the six most common soil types, 

vegetation types and land tenure classes, the percentage deviance explained by the first three 

variables from each formula, as well as the total. Invariably, adding more than three variables did 

not increase the deviance explained by more than 0.5%. 

When combined in the stepwise glm, the first three soil variables explain more than vegetation or 

tenure in the north, while vegetation is the best indicator of percentage area burnt in the west, mid 

and south, and similar to soil for the entire study area (Table 6.4). In the north, the first variable in 

each formula has a negative relationship with percentage area burnt. As so much of the north was 

burnt, the best explanation of the percentage of deviance came from those areas less prone to fire 

(cracking clays, tussock grass, or private freehold). 
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Table 6.4 Percentage of deviance explained by soil, vegetation and land tenure using stepwise glm 

models 

Dependant variable = PercentFAA 

Independent variables = % of up to 6 most common soil types, vegetation types or land tenure classes 

* negative relationship with PercentFAA 

See table 6.3 for legends of soil, vegetation and tenure 

Region 
Independent variables  
passed to stepglm 

Independent variables 
output from stepglm  

% dev explained 
by first 3 variables 

Total % dev  
explained 

 Most common soils    
North 1 + 4 + 2 + 3 + 5 + 7 4 + 3 + 2 + 7 + 1 4.65 4.85 
West 3 + 2 + 1 + 5 3 + 1 + 2 2.77 2.77 
Mid 1 + 2 + 3 + 4 + 5 + 6 1 + 4 + 6 + 5 7.85 7.97 
South 6 + 3 + 5 + 1 + 4 + 2 1 + 4 + 3 9.34 9.34 
All  1 + 2 + 3 + 4 + 5 + 6 1+ 2 + 6 + 5 + 4 7.72 7.88 
 Most common veg    
North 1 + 5 + 7 + 6 + 2 + 3 5 + 1 + 2 + 3 + 7 + 6 3.66 4.13 
West 3 + 2 + 1 + 10 + 7 + 4 1 + 2 + *10 + 4 + 3 20.30 20.77 
Mid 1 + 2 + 4 + 3 + 5 + 6 1 + 3 + 2 + 4 + 5 + 6 10.17 10.49 
South 8 + 4 + 6 + 7 + 10 + 2 10 + 6 + 7 + 8 + 2 + 4 17.59 18.17 
All  1 + 2 + 3 + 4 + 5 + 6 1 + 4 + 6 + 3 + 2 + 5 7.54 7.75 
 Most common tenure    
North 1 + 2 + 4 + 3 + 8 + 6 3 + 4 + 8 + 6 + 2 + 1 1.81 2.07 
West 1 + 2 + 3 2 + 3 + 1 5.57 5.57 
Mid 1 + 2 + 3 + 4 + 5 + 6 1 + 3 + 5 + 2 + 6 6.94 7.21 
South 3 + 1 + 2 + 5 2 + 5 + 3 15.25 15.25 
All  1 + 2 + 3 + 4 + 5 + 6 4 + 3 + 5 + 1 + 2 + 6 4.15 4.80 
 

6.5.1.5 Other variables 

The relationship of PercentFAA with total population, total road length, and lightning ground flash 

density were also examined (table 6.4). 

Arid and semi-arid Australia is characterised by a low population density (Brown et al., 2008). In 

the 2001 census, there were 265 population centres with over 200 people, half of them in the south 

climate category. Six major towns had populations of 20,000-30,000, while another 48 centres had 

over 2,000 people (figure 6.8). Outside of the major service centres and mining towns, the majority 

of the population is indigenous. Much of the population is very mobile, and there has been a recent 

emergence of numerous, dispersed, small and discrete settlements on Aboriginal lands (outstations) 

(Brown et al., 2008).  

The road network is most dense around the population centres and in pastoral areas. There are few 

roads through Aboriginal lands, vacant crown land or conservation areas (figure 6.8). 
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Figure 6.8 Population and road density 
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Figure 6.9 Average number of lightning ground flashes per km2 per year 1995-2002 

Based on Kuleshov et al. (2006) 

 

There was generally a negative relationship of the percentage of area burnt with both the total 

population and the total length of roads, the exception being population in the west (table 6.4). The 

relationship with population density explained practically none of the deviance, while that with 

roads explained 2-10%.  

Although the greatest density of lightning is in the north (figure 6.9), the most deviance in 

percentage area burnt was explained by lightning in the west (9%), with only ~1% for the north, 

mid and south. All were positive relationships.  

6.5.2 FHS indicators 

Of over 400,000 daily weather observation records, 5,077 had associated fire hotspots spread 

across 170 of the 178 weather station locations (Figure 6.10). 

Daily precipitation readings ranged from 0 to 366mm. Almost 85% of observations recorded no 

precipitation, 10% less than 5mm, with less than 1% over 30mm. On fire days, the values ranged 

from 0 to 80mm, with over 95% with 0 precipitation, and 3.5% less than 5mm. 

  
                                          NOTE:   
   This figure is included on page 185 of the print copy of  
     the thesis held in the University of Adelaide Library.
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weather stations

climate categories

 

Figure 6.10 Weather stations used in FHS analysis with 25 km buffer 

 

Mean relative humidity had a normal distribution with values between 2% and 100%, a standard 

deviation (SD) of 19.6% and a mean of 51.8%. Values on fire days ranged from 7% to 100%, but 

were skewed towards the lower values with a mean of 41.4%. 

Results of glm regression reveal negative relationships with both precipitation and relative 

humidity in all regions (table 6.5). Relative humidity is a better predictor than rainfall, but still 

explains only 4% of the deviance at most (in the north).  

Maximum temperatures ranged from 6.50C to 50.50C with a normal distribution (mean and median 

~28.50C, SD = 7.60C). The maximum temperatures on fire days varied between 13.10C and 

46.30C, with a mean of 32.30C and SD of 5.60C, with a slight skew towards the higher 

temperatures with a median of 29.70C. 

Daily minimum temperatures ranged from -6.10C to 35.50C with a normal distribution (mean = 

14.20C, median = 14.70C, SD = 7.20C). The records associated with fires had values between -

5.60C and 31.40C, a mean of 16.40C and SD of 6.00C. The distribution is skewed slightly towards 

the higher temperatures with a median of 12.90C. 

Both maximum and minimum temperature had a positive relationship with fire hotspot incidence, 

apart from minimum temperature in the north (table 6.5). Maximum temperature explains more of 
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the deviance in fire occurrence, but no more than 2%. Minimum temperature explains less than 1% 

of the deviance in any area, with results for the south not significant. 

Daily mean wind speeds as fast as 86.3 km/h were recorded, but less than 2% are above 30 km/h 

and the mean is 12.0 km/h. The fire related records show a very similar pattern with less than 1% 

above 30 km/h and a mean of 11.5 km/h. Wind speed did not prove to be a good indicator of fire in 

arid and semi-arid Australia, explaining a maximum of 0.1% of the deviance in any region (table 

6.5). 

6.5.3 Complete model 

Both the dependant and independent variables input into the stepwise glm regressions, used to 

construct the biomass, curing, ignition source, and fire weather indices, are listed in table 6.5. A 

decision was made not to use NDVI derived data for the final biomass or curing model, as the other 

independent variables which contribute to biomass and curing are better predictors of fire extent. 

Transformations of the variables were examined. Where a single term model of the transformed 

independent variable improved the deviance explained by 2% or more, from that of a single term 

model of the un-transformed variable, the transformation was included in the final model. 

Including these 15 transformations in the final models improved them by between 2-8% overall. 

The percentage of deviance explained by interactions between rain, soil and vegetation were also 

examined as part of the biomass index, and between rain, temperature, soil and vegetation for the 

curing index. As stepwise glm calculates the main terms first, interactions contributed little extra to 

the deviance explained by the main terms, and were not included in the final models. 

The results of the final models are reported in table 6.6. Only the first three terms output from the 

stepwise glm are listed, as there is little extra deviance explained by addition of more terms. 

Overall, the biomass indices explained the highest proportion of deviance in PercentFAA (22% in 

the north, and 27% to 32% in the other regions). Regardless of the region, antecedent rainfall, with 

either vegetation or soil, explains the vast majority of deviance.  

The curing index explains 13% of the deviance in the north, 32% in the west, 24% and 31% in the 

mid and south regions, and 21% overall. Recent rainfall (a negative relationship with percentFAA), 

in combination with either the first vegetation or soil type, has the best predictive power, except in 

the south where recent temperatures are more influential than recent rainfall. 

The first tenure class, and/or lightning strike density, are among the first two terms output by the 

stepwise glm regression for all of the ignition source indices. A negative relationship between 

roads and percentFAA is most important in the north, although individually it only explains 2% of 

the deviance. These ignition source indices explain 4-17% of the deviance. 



 

 

Table 6.5 Percentage of deviance explained by individual variables used in full model, including transformations 

Dependant variable for Biomass, Curing and Ignition Indices = PercentFAA 

Dependant variable for Weather Index = Burnt(Y/N) FHS 

Transformations: L = log(1+X), S = Sqrt(X), 2 = X^2 

* negative relationship with PercentFAA 

ns – result not significant, p value < 0.05 

See table 6.3 for legends of soil, vegetation and tenure 

  North  West  Mid  South  All 

Independent Variables Var %  Var % Var %  Var %  Var %  

 

Biomass index 

Rain lag/phase L 3/9 17.95 6/18  23.47 6/6 22.17 9/15 10.70 L 3/9 27.41 

1st soil 4 *3.75 2 3 3.02 1 4.92 L 1 9.39 1 4.96 

2nd soil 3 *0.61 1 *0.90 4 *3.47 4 *3.67 2 0.12 

3rd soil 2 0.50 2 *0.83 6 *2.36 3 *0.91 6 *2.64 

1st vegetation 5 *3.00 1 18.94 L 1 10.47 10 9.02 1 3.57 

2nd vegetation 1 0.11 L 2  *4.24 3 0.02 L 6 8.56 4 *5.61 

3rd vegetation 2 0.42 L 10  *6.66 2 *0.53 7 2.78 6 0.12 

1st tenure 3 *1.16 2  3.65 1 *3.87 2 10.84 4 2.11 

2nd tenure 4 0.63 3 *1.38 3 *0.96 5 0.73 3 *1.72 

3rd tenure 8 0.20 1  *1.00 5 *0.29 3  *6.52 5 *0.87 
  



 

 

Table 6.5 Continued 

  North  West  Mid  South  All 

Independent Variables Var %  Var % Var %  Var %  Var %  

 

Curing index 

Recent rain 1mth *6.79 L 3mth  *16.44 L 3mth *13.49 3mth *2.49 L 1mth *8.96 

Recent temp 3mth *4.51 1mth 7.94 3mth *0.71 1mth 7.38  1mth 1.97 

1st soil 4 *3.75 2 3 3.02 1 4.92 L 1 9.39 1 4.96 

2nd soil 3 *0.61 1 *0.90 4 *3.47 4 *3.67 2 0.12 

3rd soil 2 0.50 2 *0.83 6 *2.36 3 *0.91 6 *2.64 

1st vegetation 5 *3.00 1 18.94 L 1 10.47 10 9.02 1 3.57 

2nd vegetation 1 0.11 L 2  *4.24 3 0.02 L 6 8.56 4 *5.61 

3rd vegetation 2 0.42 L 10  *6.66 2 *0.53 7 2.78 6 0.12 

 

Ignition index 

1st tenure 3 *1.16 2  3.65 1 *3.87 2 10.84 4 2.11 

2nd tenure 4 0.63 3 *1.38 3 *0.96 5 0.73 3 *1.72 

3rd tenure 8 0.20 1  *1.00 5 *0.29 3  *6.52 5 *0.87 

Road length Rds *2.01 Rds *3.33 Rds *3.60 Rds *9.89 Rds *4.72 

Pop. total Pop *0.02 Pop 0.09 Pop *0.00 Pop *2.99 Pop *0.12 

Lightning Lgt 1.34 Lgt 9.00 Lgt 1.30 Lgt 0.87 Lgt 6.75 

 

Weather index 

Precipitation P *1.68 P *0.22 P *0.44 P *ns P *0.68 

Relative Humidity RH *4.17 RH *1.75 RH *0.51 RH *0.56 RH *2.75 

Maximum Temp MaxT ns MaxT 1.63 MaxT 1.77 MaxT 0.73 MaxT 2.60 

Minimum Temp MinT *0.75 MinT 0.30 MinT 0.46 MinT ns MinT 0.86 

Wind Speed WS 0.11 WS *ns WS ns WS *0.14 WS *0.04 
  



 

 190 

Table 6.6 Full Model - Percentage of deviance explained using stepwise glm models for each index 

Dependant variable for Biomass, Curing and Ignition Indices = PercentFAA 

Dependant variable for Weather Index = FHS (Y/N) 

Transformations: L = log(1+X), S = Sqrt(X) 

* negative relationship with dependant variable 

See table 6.5 then table 6.3 for legends of soil, vegetation and tenure 

Model Output North West Mid South All 

 

Biomass index 

Term 1 L Rain lag/phase Rain lag/phase Rain lag/phase 1st veg  L Rain lag/phase 

Term 2 1st soil* 1st veg L 1st veg Rain lag/phase 1st soil 

Term 3 2nd tenure L 2nd veg 2nd veg 3rd veg 2nd soil 

# other terms 7 other terms 6 other terms 6 other terms 4 other terms 6 other terms 

      

% explained 21.93 31.84 29.30 26.95 31.61 

 

Curing index 

Term 1 Recent rain* 1st veg L Recent rain* 1st veg L Recent rain* 

Term 2 1st soil* L Recent rain* L 1st veg Recent temp 1st soil 

Term 3 Recent temp* Recent temp 2nd veg L 2nd veg Recent temp 

# other terms 4 other terms 5 other terms 4 other terms 4 other terms 5 other terms 

      

% explained 13.25 32.46 23.57 31.09 20.59 

 

Ignition index 

Term 1 Road length* Lightning 1st tenure* 1st tenure Lightning 

Term 2 Lightning 1st tenure 2nd tenure* 2nd tenure 1st tenure 

Term 3 2nd tenure Road length*  Lightning Lightning Road length* 

# other terms 2 other terms 3 other terms 3 other terms 3 other terms 3 other terms 

      

% explained 4.49 11.62 8.11 16.90 13.24 

 

Weather index 

Term 1 Rel. Humidity* Rel. Humidity* Max Temp Max Temp Rel. Humidity* 

Term 2 Precipitation* Max Temp Min Temp* Min Temp* Max Temp 

Term 3 Min Temp* Min Temp* Rel. Humidity  Wind Speed* 

# other terms 2 other term No other terms 2 other terms  2 other terms 

      

% explained 4.59 2.38 2.79 1.08 3.80 
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The fire weather indices add little to the explanation of deviance. The highest percentage of 

deviance explained is for the north (over 4.5%), and the lowest for the south (1%). Relative 

humidity explains most of the deviance in the north, west and overall, while maximum temperature 

explains most in the mid and south regions. 

In general, although a greater percentage of the northern region was burnt, the indices (apart from 

the fire weather index) were able to explain less of the deviance for this region than any other. 

6.6 Discussion  

Results of our analysis show that the strongest influence on the percentage of area burnt 

(PercentFAA) is exerted by biomass or fuel load, with a strong dependence on antecedent rainfall, 

and then either vegetation or soil. Surfaces, developed from a matrix of rainfall lag/phase periods, 

highlighted discernable regional differences. In the north and mid climate categories, the best 

predictor of FAA extent is from rainfall in the previous 12 months, while in the west and south 

cumulative rainfall in the previous 24 months is the best predictor (with differing lag/phases). 

These results are in general agreement with findings from other studies.  

Russell-Smith et al. (2007b) performed a quantitative assessment of the spatial variance (using 

static variables) of the FAA and FHS data, on a similar scale to this study (0.50° × 0.50°, n = 

3,025), with reference to broad seasonal rainfall classes (10 classes derived from unsupervised 

classification of 35 years of quarterly rainfall data). They found that RAINCLASS alone explained 

~60% of the deviance in annual average FAA extent for the entire country in their best landscape 

model, with measures of dominant fuel type and land parcel size explaining a further 10%.  

Griffin et al. (1983) found that total area burnt by fires in central Australia (the southern half of the 

Northern Territory) between 1970 and 1980 was best explained by rainfall in the preceding 2 years. 

However, they only included fires that had been reported on pastoral properties, and fire regimes in 

this area have changed in recent years (Edwards et al., 2008). In contrast, Turner et al., (2008)  

(Chapter 5) examined temporal variations in fires on a broad scale between 1998 and 2004 

throughout all arid and semi-arid Australia, and established a positive linear relationship between 

annual rainfall categories (10 categories at 200 mm intervals) and the percentage of FAA in each 

category the following year (n = 41, r2 = 0.86). While not the main focus of their study, Russell-

Smith et al. (2007b) also examined temporal variation in fire extent for each RAINCLASS. They 

modelled the dynamic variables rainfall, NDVI and prior fire against variations in annual FAA. 

Annual rain in the preceding year (not the same year as the fire) explained the most deviance in fire 

extent in the northern semi-humid, central arid and southern arid RAINCLASS categories (which 

correspond generally to our study area). Coupled with various combinations of prior fire, annual 

rain in the preceding year explained 21% of deviance in the north, 18% in the centre, and 11% in 

the south.  



 

 192 

This compares well with our biomass index results. Using a different approach (we did not include 

prior fire, but did include both spatial (static) and temporal (dynamic) indicators of the risk of fire), 

we were able to improve on the results of Russell-Smith et al. (2007b). Antecedent rainfall, with 

either vegetation or soil, explained the majority of deviance (22%, 32%, 29% and 27% of deviance 

explained in our north, west, mid and south climate categories respectively). We have demonstrated 

the importance of employing a systematic comparison of different lag/phase combinations to find 

the best predictor for each region (lag/phase 3/9 explained 18% of deviance in the north, 6/18 23% 

in the west, 6/6 22 % in the mid, and 9/15 11% in the south). This variable alone produced similar 

results to the temporal models of Russell-Smith et al. (2007b) for these areas. Displaying this type 

of analysis as a surface for the first time has revealed the patterns for each region. Our analysis has 

shown that simply choosing cumulative rainfall from one season, or an entire year, does not 

adequately reflect the differences in rainfall, vegetation growth, curing, and fire seasonality 

between regions (see results section for details).  

Various combinations of soil, vegetation and tenure accounted for the remainder of deviance 

explained by the biomass index. We have also illustrated that the relationship with the dominant 

soil, vegetation or tenure in a region is not necessarily the best predictor of fire extent. For 

example, while hummock grasslands and sands dominate the north and are the most fire prone 

areas, it is the individual negative relationships with tussock grasslands and cracking clays which 

are better predictors of fire extent. Once again, this shows the importance of a systematic 

examination of all major variable types within a region when building a model. 

The curing index we developed (based on recent rainfall, recent temperature, soil, and vegetation 

type) was able to explain 13% of deviance in the north, and ~30% of deviance in all other regions. 

There would be some overlap with the biomass index however, as they both use soil and vegetation 

types as independent variables. There are no other studies modelling curing in arid and semi-arid 

Australia with which to make comparisons.  

The ignition source index explained between 5% (north) and 17% (south) of deviance in fire extent. 

The lightning data explained little of the deviance, except in the west. Unfortunately, our data does 

not indicate the timing of the lightning (Kuleshov et al., 2006). Using real-time lightning data from 

the World Wide Lightning Location Network (Lay et al., 2004), Russell-Smith et al. (2007b) found 

poor temporal associations comparing FAA and lightning seasonality in their northern semi-humid 

region, better in the central arid region, and relatively good in the southern arid region. 

One hypothesis is that anthropogenic fires are more likely to occur near settlements and along 

roads and tracks. However, Russell-Smith et al. (2007b) hypothesised that the use of fire as a 

management tool is expected to be greater in landscapes where property sizes are large, and that 

wildfire would also be greater here, as the capacity to exclude or control it is lower. They modelled 

this using property sizes over 40 ha to eliminate most urban developments. Our modelling of 



 

 193 

population and road density seems to support this theory at first glance, with negative relationships 

with FAA, apart from population density in the west. However, the deviance explained by 

population density is minimal, and although the relationships with road density were all negative, 

examination of the individual FAA records revealed that while a few fires were more than 100 km 

from the nearest road, over 50% of mapped burnt patches were in contact with a road, a further 

10% within 1 km (the pixel size of the original FAA data), and yet another 10% within 3 km. In 

Central Australia, during the 2000-02 fire event, roadside ignitions by Aboriginal travellers were 

responsible for many of the large fires (Edwards et al., 2008). 

The weather index explained least deviance in fire occurrence overall. The current fire danger 

indices based on empirical analysis are still the most appropriate for short-term predictions 

(Cheney et al., 1998; McArthur, 1966, 1967). These however could be improved for our study area 

by incorporating research already carried out in some areas of arid and semi-arid Australia 

(Burrows et al., 1991; Burrows et al., 2006c; Griffin and Allan, 1984, 1993), as well as new 

research. 

Measurements of NDVI were treated as separate models, to test if NDVI captures variation in 

seasonal shifts in vegetation condition (biomass accumulation and curing) better than combinations 

of other variables. The best result for an NDVI biomass index was the 13% deviance explained in 

the north. For the NDVI curing index, the best result was 3% in the west. It should be remembered 

that a loss of greenness does not necessarily indicate curing, it could also be reflecting other factors 

such as consumption of vegetation by animals (domestic livestock, native or feral), or removal by 

humans or fire. This NDVI curing index presented here (highest value for the previous 12 months 

minus value from previous month) would only apply to annual vegetation species. No attempt was 

made to model curing in perennial vegetation. Compared to both the NDVI biomass and NDVI 

curing indices, previous rainfall alone, proved to be a far better indicator of PercentFAA. Russell-

Smith et al. (2007b) also found variations in rainfall to be a better predictor in these regions, 

although NDVI was better in some other environments (e.g. southern mesic and east coast semi-

humid).  

NDVI and many other widely used vegetation indices are inappropriate in arid and semi-arid 

environments of Australia where perennial vegetation dominates. These plants often lack the 

contrast between red and infrared reflectance upon which the common vegetation spectral indices 

are based, making them difficult to distinguish from red coloured soils (Jafari et al., 2007). Several 

alternative multispectral indices that place less emphasis on vegetation infrared response may be 

more appropriate (O'Neill, 1996; Pickup et al., 1993). The new index under development by the 

Bushfire Cooperative Research Centre, to access grassland curing across Australia and New 

Zealand, will also hopefully prove to be more useful (Bushfire CRC, 2009). 
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Overall, our rigorous, systematic, exploratory approach to modelling, making few pre-conceived 

assumptions about relationships between the fire data and independent variables, has proved very 

useful in building the best model possible from the available data. 

As an exploratory exercise, the findings of this research are not intended to be used directly in 

predicting future large wildfire events. But they can serve as a basis for dialogue about which 

climatic, edaphic and anthropogenic factors are most important for assessment of fire risk in 

different regions of arid and semi-arid Australia during the seasonal bushfire assessment workshops 

(Bushfire CRC, 2007, 2008; Lucas et al., 2006). Our models have shown some skill in forecasting, 

which demonstrates that further research in this direction is worth pursuing. This research provides 

guidelines for the development of the structure and spatial detail of more robust long-lead 

predictive models, following refinement of the techniques put forward in this paper.  

Our research has highlighted areas where better data is required. It was fortunate that the Bureau of 

Meteorology’s lightning data coincided fairly closely with the timeframe of our fire data (Kuleshov 

et al., 2006), although it does not contain information on the seasonality and timing of lightning 

strikes. The on-going development of the LPATS system in more remote areas should see the 

availability of far more accurate lightning data in the not too distant future. Within the vegetation 

dataset, buffel grass (cenchrus ciliaris) is not yet mapped. This perennial grass, which was 

introduced to Australia for pasture and landscape rehabilitation, is rapidly taking over new 

environments, and has the potential to change fire regimes in many areas (Butler and Fairfax, 2003; 

Friedel et al., 2006; Pitt, 2004). As already stated, vegetation indices more suited to arid and semi-

arid environments should be investigated. The most obvious limitation of this study however, is 

that the fire data covers only seven years, while fire return intervals in much of this dry country can 

vary from a couple of years to 30-50 years. We were fortunate in the fact that the data does cover 

years of average fire activity, as well as a period of widespread fires following above average 

rainfall in parts of the country, and that it covered all of arid and semi-arid Australia. While we 

were unable to model past fire (time since last burnt), the fire data does show that, given adequate 

rainfall, even in arid regions biomass accumulation can be sufficient to burn again soon after a 

previous fire (figure 6.3). This has important implications for strategic long-term management. A 

longer time series of fire data will provide further insight. 

Long-lead forecasts can help mitigate the effects of large wildfire seasons by offering a window of 

opportunity for strategic planning. With a better understanding of the factors in play, we may also 

be better able to predict when prescribed fires will burn effectively but not uncontrollably. It may 

also be possible to alter and manipulate some of the environmental and social factors that play a 

part in the process.  

The goal of developing a better awareness of regional patterns across different land tenures, can 

hopefully be utilised to encourage a more cooperative and coordinated approach to fire 
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management between political jurisdictions, landowners and managers, cultures and individuals, 

and prevent the animosity which arose between Aboriginal land owners and pastoralists during the 

2000-02 fires. There is the opportunity to actively involve the many Aboriginal communities 

throughout these lands, who have a great desire to care for country, in fire management. The 

challenge is for conservation and land management agencies to develop processes that enable 

Aboriginal people to participate in land management in a meaningful and mutually beneficial 

manner (Burgess et al., 2005; Burrows et al., 2006c). 

This work may also serve as the foundation for simulation models of future wildfire distribution, to 

test the effects of changes in climate, vegetation, land tenure, population demographics, or 

management strategies on the fire regimes in different areas. The fire regime has already been 

altered significantly in parts of the country following the departure of Aboriginal people and the 

cessation of traditional burning (Burrows and Christensen, 1991). Evolution is continuing, and 

even since the previous large fire event in central Australia in the 1970’s much has changed. 

Australia has experienced increases in rainfall across the north-west, but decreases over much of 

the south-east, and a rise in average temperatures (Pittock, 2003). There has been an invasion of 

fire-prone buffel grass (Cenchrus ciliaris), which has the potential to change fire regimes in many 

areas (Butler and Fairfax, 2003; Friedel et al., 2006; Pitt, 2004). A substantial amount of land has 

been transferred back to Aboriginal ownership or stakeholder interest, and more is likely through 

future land purchase and native title claims (Pollack, 2001). With this has come the emergence of 

numerous outstations (dispersed, small and discrete settlements on Aboriginal lands) (Brown et al., 

2008). Between the 1996 and 2001 population census, the overall indigenous population of arid and 

semi-arid Australia grew, while the non-indigenous population declined, although patterns are 

vastly different in various regions (Brown et al., 2008), and there has been an increase in 

accessibility to remote areas (Edwards et al., 2008). In central Australia, there was an increase in 

fire activity in the cooler months of March-August during the 2000-02 fires, compared to those of 

1974-77. Most of these cool season fires originated along roads, and were likely to have been 

started by human ignition, given the absence of storms (Edwards et al., 2008). All of these changes 

have the potential to alter fire regimes. Research must continue, and better databases need to be 

developed. Basing predictions of what is likely to happen in the next severe fire season in arid and 

semi-arid Australia, purely on what happened in 2000-02, would be very short sighted! 
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Chapter 7 

 

CONCLUSIONS 
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7.1 Conclusions 

As discussed in the introduction to this dissertation, due to the lack of objective knowledge of past 

and current fire regimes in arid and semi-arid Australia, and the complicated relationships 

between fire regime and its drivers, management of fire in these areas has been hampered. This 

dissertation makes a marked contribution to this knowledge gap. After validating the NOAA 

AVHRR fire databases in the arid and semi-arid areas for the first time, significant advances are 

made in describing the current patterns of fire for the entire area, as well as in experimental 

modelling of spatial indicators of the processes involved in producing these patterns. These will 

be discussed below within the context of the aims and objectives of this dissertation. 

Arid and semi-arid Australia are remote and sparsely populated areas, where rainfall is low and 

unpredictable, and the terrain is too inhospitable for sustainable cropping or timber harvesting. 

The pastoral industry is the major land user, utilising the saltbush, mulga and grassy plains. 

Aboriginal lands are most often associated with the spinifex-covered sand plains and stony 

deserts, while nature conservation parks and reserves form another significant landuse. Pulses of 

heavy rain over weeks at a time occur rarely, but can lead to widespread wildfires following 

increased fuel loads and fuel continuity. Although little knowledge has been gained about past fire 

regimes in these dry climate zones, it is believed that both natural and Aboriginal burning created 

fire regimes upon which many of the areas highly unique and diverse range of plants and animals 

from these regions depend.  

Since European settlement, fire regimes have altered, and are continuing to do so, through 

changes in landuse and tenure, vegetation, population demographics and accessibility. 

Management priorities and objectives (including traditional Aboriginal management, suppression, 

or prescribed burning for fuel reduction, sustainable land use, biodiversity or research) are 

different for the major stakeholders, and also vary between regions. But these too have changed 

over time. Many Aboriginal communities are now at risk of loosing their knowledge of traditional 

burning, while other Australians struggle to understand the processes at work, and adapt their 

management styles with increasing knowledge.  

Much of arid and semi-arid Australia is now suffering from severe degradation or desertification, 

with the replacement of perennial grasses by inedible woody shrubs a major problem in many 

pastoral areas. It has also been affected with major extinctions and contractions of range among 

its native biota. Nearly half of the rangelands’ original native mammals are now gone, and some 

birds and reptiles are declining. There has been a gradual loss of fire sensitive woodland and 

shrubland that is being replaced by spinifex grassland in many areas. These problems are due in 
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part to the altered fire regimes. But it is now recognised that prescribed fire is one of the few cost-

effective tools available for maintaining that biological diversity, and controlling woody weeds.  

Formal fire management acts, policies, guidelines and plans have evolved greatly in the last few 

decades nationwide, but particularly in the past few years. Individual states are generally aiming 

for a holistic adaptive management approach, but are all at different stages of achieving this goal. 

The arid and semi-arid regions are usually not high on the priority list in this formal process, due 

to the relative infrequency of large fire events here; while operationally, the lack of funding, 

manpower, resources and access often means that wildfires are left to burn unless they are 

perceived to be directly threatening life or property. There is also a lack of empirical knowledge 

of both past and present fire regimes in these regions, and the ecological effects that different 

regimes have in the various landscapes. It is therefore difficult to know what the ‘appropriate’ 

regimes for the present might be. 

Until recently the greatest majority of the rangelands had no mapped fire history. The availability 

of two fire datasets, (active fire - Fire Hotspots (FHS) and burnt area - Fire Affected Area (FAA)), 

derived from NOAA AVHRR satellite imagery, have now given us a continuous picture of fire 

events across the entire continent since 1998 at a 1 km resolution. This data has been developed 

by Satellite Remote Sensing Services at Landgate (the Western Australian Land Information 

Authority; formerly known as the Western Australian Department of Land Information (DLI), and 

before that, the Department of Land Administration (DOLA)), and used operationally for a 

number of years to produce publicly available fire locations online.  

Seven years of FHS and FAA data was purchased from Landgate for this project (1998-2004). In 

order to perform the analysis for this dissertation it was necessary to assemble other fire data for 

validation, as well as a suitable comprehensive digital spatial database of climatic, edaphic and 

anthropogenic variables on which to base assessments. For these variables, direct data sources 

were identified where possible, and spatial surrogates substituted elsewhere. Databases were 

acquired from various government agencies mostly. An attempt was made to purchase some 

additional data from private sources (particularly lightning data), but to no avail. Most datasets 

underwent manipulation to some degree, to conform to the format and standards required for 

analysis. Various parameters within the assembled database were used in various analyses in this 

dissertation. 

Although the FHS and FAA data is used operationally across the country, there has been nothing 

published on validation of the data in the arid and semi-arid regions (70% of the continent). This 

dissertation compares the FHS and FAA data with higher resolution Landsat-derived fire maps at 

11 sites, using a number of different approaches which have been used elsewhere in the published 
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literature. Despite the fact that rigorous validation was not possible for much of the data as there 

was no ground-truth data available, this analysis still gives a good indication of the reliability and 

accuracy of the data. It also highlights some of the difficulties in mapping lower intensity fires in 

discontinuous fuels in the highly reflective desert soils in particular.  

Taking these limitations into consideration, both the FAA and FHS datasets were analysed within 

a GIS (Geographic Information System) framework, to quantify some aspects of fire regime 

(distribution, seasonality, frequency and extent of fires) for the whole of arid and semi-arid 

Australia for the first time. This was done at a number of different scales, for the period 1998 to 

2004. Other fire regime metrics such as fire intensity, internal patchiness, or return interval could 

not be measured from this data. While this is a fairly short time frame, it is very significant 

because it captured, for the first time, the extent of burning in the whole of arid and semi-arid 

Australia following a period of above average rainfall. This analysis highlights similarities and 

differences between regions, giving policy makers and managers a basis from which to make 

more informed decisions in the present, and with which to compare future regimes.  

A major problem in these areas is predicting if, and when, mitigating action needs to be taken to 

avert large wildfires, as resources are often not available to bring them under control once 

underway. As these events have been relatively infrequent in the past, it is difficult to alert people, 

who may not have experienced sure an event in the past, to the danger, (especially when there was 

no mapped record of such events). There are a range of fire models available at different temporal 

and spatial scales, for a variety of forecasting and modelling purposes, none of which have been 

used to any great extent in arid and semi-arid Australia. In the original project proposal, the author 

suggested that long-lead seasonal forecasting, as had just been instated in the US, was the way 

forward for arid and semi-arid Australia. During the course of this project, this has become a 

reality. There have now been three annual workshops, where experts from around the country 

gather to produce the Fire Potential Outlook for the entire country for the upcoming fire season. 

This will assist strategic long-term planning, and the chance of timely and cost-effective 

intervention initiatives when necessary. This could also help to maximize the limited available 

funding and resources. 

This type of seasonal forecasting has brought about a new type of statistical regression model, 

producing spatial indicators of seasonal wildfire risk, using many different techniques and fire-

climate relationships, in an effort to refine predictions. It has been stated many times that rain is 

the driving force behind desert fires in Australia with a number of localised studies showing a 

significant relationship between the occurrence of fires, and rain in the preceding two to three 

years. In this dissertation, initial regression analysis of the 1998-2004 data on a broad scale (10 
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rainfall categories in 200mm steps), showed a strong relationship between fire and rainfall in the 

previous year. 

A more in-depth analysis of the 1998-2004 fire data was then undertaken, at both a continental 

and regional level. A conceptual framework was developed on which to base geo-statistical 

analysis, and experimental regression analysis modelling. This is the first such analysis of fire in 

arid and semi-arid Australia as a whole. The results provided new insights into the complexities of 

the driving forces of fire in these areas, and the differences between periods of low fire activity 

compared to a less frequent high fire episode. Systematic analysis of the relationship between 

FAA and antecedent rainfall (using various combinations of time lag and phase) was performed. 

Presenting this large amount of data visually helps identify the most important relationships for 

different regions. Analysis of the other independent variables was performed to elucidate their 

relative strength of influence, and predictive capability on forecasting FAA in arid and semi-arid 

Australia on a regional basis. The strongest combinations were included in a final model, which is 

different for each region. This analysis was undertaken at a finer scale than the initial broad-scale 

analysis of rainfall categories above. This resulted in much smaller r2 values, reflecting the 

stochastic nature of the fire data at this scale. Results from this analysis may help in refining the 

annual Fire Potential Outlook for these areas. This analysis has highlighted regional patterns of 

fire across different land tenures. Heightened awareness of these patterns may encourage a more 

cooperative and coordinated approach to fire management amongst stakeholders. 

Overall, this dissertation cannot totally define the fire regimes of arid and semi-arid Australia, due 

to the short time span of the data. Nor does it attempt to provide a definitive model for long-lead 

fire forecasting for these areas. Rather, a significant scientific contribution has been made towards 

these goals, and to the development of a structure under which to do it. 

7.2 Future Directions 

Strategic fire planning is essential in the arid and semi-arid rangelands of Australia, as fire 

management is constrained by limited resources, and the vastness and remoteness of these 

regions, with poor accessibility to many areas. But management is hampered by imperfect 

knowledge of fire regime, fire behaviour and fire effects. In the past, there has been little impetus 

from individual landowners and land managers to manage for wildfire, as they are a relatively rare 

occurrence on individual properties. An ability to predict fire danger for an upcoming season is 

fundamental to proactively managing fire in these regions, such as implementing patch-burn 

strategies and buffer burns to benefit biodiversity and to limit the impact of wildfires when it is 

necessary. Studies such as this one must continue to advance our knowledge of fire regimes and 

their drivers, to provide support for strategic planning and geographic priority-setting. 
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NOAA-AVHRR imagery has provided a database of fire activity over the continent for the last 

decade, and these datasets are now being complimented by the higher resolution MODIS data. 

Definition of current fire regimes is improving through analysis and interpretation of this satellite 

imagery, but we must continue to map both active fires and burnt area at a continental scale to 

build up our knowledge of fire regimes. Areas of particular interest should also be continually 

mapped at a fine scale resolution. 

“Variability and heterogeneity in fire regimes are seldom quantified. Yet they have 

profound implications for the ecological effects of fire, and our ability to infer and 

understand fire regimes themselves, especially over large areas and long times (Keane et 

al. 1990; McKenzie et al. 1996b; Lertzman et al. 1998; Schmoldt et al 1999)” (Allan, 

2003). 

Analysis of these databases over time will increase our understanding of the high variability of 

fire regimes in arid and semi-arid regions. It will help quantify the three kinds of heterogeneity in 

the fire regimes: internal heterogeneity of individual fires, and both the spatial and temporal 

heterogeneity of fire regimes. Analysing this information on a regional basis will reduce the use 

of widespread generalisation with regard to fire regimes that are not relevant in many regions. It 

will also give us insight into how these regimes are continually evolving over time through 

changes in landuse and tenure, vegetation types, population demographics, accessibility, 

management strategies and climate change. 

This dissertation has highlighted some unique issues with mapping fire in arid and semi-arid 

Australia, but more funding needs to be allocated to rigorously validate this data in these regions. 

While it can be difficult to organise the collection of ground truth data in these remote areas at 

times of infrequent fire, a coordinated effort must be made to do so, which is representative of all 

landscape types and climate zones in these regions. The results of such validation should then be 

used to improve the algorithms used in fire detection where possible. 

Following on from the immediate aftermath of major fires around the country at the turn of the 

century, and recommendations put forward by a number of ensuing enquiries, there have been 

great advances made in updating laws and policies, and developing fire management strategies 

and plans, in the last few years. The challenge now is to continue that impetus in times of lesser 

fire activity in arid and semi-arid regions. It remains to be seen how well these will be 

implemented, monitored and altered where necessary, within an adaptive management 

framework. 
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Hazard reduction burning is recognised as one of the most cost-effective methods of controlling 

wildfires in arid and semi-arid Australia. The models put forward from exploratory regression 

analysis in this dissertation can help to identify the areas most at risk for an upcoming fire season. 

But these models could be greatly improved upon. With increased funding, other datasets and 

models could be incorporated into the analysis. The models could be used to test the effects that 

changes in climate or management strategies, for example, might have on the fire regimes. 

Understanding these changes will help address future management issues. There is also a need for 

analysis and simulation of the effectiveness of programs of controlled burning in reducing 

bushfire risk at the landscape scale (Cary, 2005).  

It is imperative that anthropogenic fire is reintroduced into some landscapes to prevent further 

declines in ecosystem health, and to maintain or increase diversity of resident biota. But care must 

be taken to ensure that its use is not continuing the observed decline in environmental value and 

biodiversity. While responses of some taxa and communities to fire regimes are reasonably well-

known, considerable challenges still remain in defining optimal fire regimes for others. More 

research is needed to improve our understanding, including detailed studies of interactions 

between declining floral and faunal species and fire regimes, empirical fire regime experiments, 

and computer modelling. This should be tempered with insight from traditional owners and other 

experts. While many agencies have recently produced some form of fire regime guidelines, this 

research is still in its infancy. Many rely on the best expert knowledge available, and are in fact, 

yet-to-be tested hypotheses. Until our understanding increases through adaptive management in a 

cycle of testing, monitoring and improving these postulated regimes, a conservative approach 

should be taken. 

There are currently not enough trained people or resources in sparsely settled arid and semi-arid 

regions to implement mosaic burning on a large scale. Part of the solution is to train and provide 

resources to Indigenous ‘fire teams’ where appropriate. This is currently happening in a number 

of areas through Working on Country projects, which are part of Caring for our Country, the 

Government's new natural resource management initiative (DEWHA, 2008). Such projects 

provide applied education, employment opportunities and natural resource management 

outcomes. They also have the potential to provide other health (both physical and mental), social, 

cultural, economic, and environmental benefits to people, by them routinely being on their land 

(Burgess et al., 2005; Johnston et al., 2007b). There are many more Aboriginal communities in 

arid and semi-arid Australia, with detailed complex knowledge and skills in fire management, and 

the desire to pass this onto the younger people so they can care for country, who could benefit 

from such opportunities (Burrows et al., 2006c). It is imperative that such projects take into 

account the diverse nature of individual communities, and take time to understand local situations, 
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social structures, culture, politics and land rights issues. De-centralized decision-making 

processes should be adopted that give the appropriate indigenous people a real say in managing 

the land (Aslin and Bennett, 2005). Special attention should be paid to fire management of 

outstations, which have not been managed by traditional burning for some time, and where 

traditional knowledge may have been lost.  

Satellite-derived fire datasets are currently used to estimate biomass burning and greenhouse gas 

emissions in the savannas (AGO, 2006; Beringer et al., 1995; Meyer, 2004; Meyer et al., 2008; 

Russell-Smith et al., 2003b; Russell-Smith et al., 2009). In 2008, prescribed burning of savanna 

(i.e. emissions associated with the burning of tropical savanna and temperate grasslands for 

pasture management, fuel reduction, and prevention of wildfires) accounted for almost 2% of 

Australia’s national greenhouse gas inventory (DCC, 2009). The fires in arid and semi-arid 

Australia between 2000 and 2002 would also have contributed to significant greenhouse gas 

emissions. Efforts need to be made now in estimating emissions from fires in the arid and semi-

arid zones, and modelling how these may alter in the face of climate change. 

The success of fire management in arid and semi-arid Australia relies on continued funding and 

increased resources, for planning, coordination and implementation, and for further research. This 

dissertation may help to highlight the importance of maintaining the momentum in these regions 

to politicians, in the fight for the limited funding available nationwide. 
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