ASSESSING LIQUEFACTION POTENTIAL OF SOILS UTILISING IN-SITU TESTING

by

Bambang Setiawan

Thesis submitted for the degree of **Master of Engineering Science**

The University of Adelaide School of Civil, Environmental and Mining Engineering

October 2011

INTENTIONALLY BLANK

To my father Ahmad Tony & father in law Said Mustafa, my mother Kustinah & mother in law Syarifah Nadirah, my wife Syarifah Mastura, my son Di Raja Qusayyi Rabbani, and my daughter Wan Lubnayya Nabigha. INTENTIONALLY BLANK

ABSTRACT

Liquefaction has caused significant failures and represents a significant problem for the community and geotechnical engineering designers (Pyrah et al., 1998). However, in practice, a single reliable method for assessing the liquefaction potential of soils is not well defined, particularly for aged soils. This is due mainly to the fact that most research has been based on 'clean sand' as the calibration to define the boundary between liquefaction and non liquefaction behaviour. Therefore, a well defined procedure for liquefaction assessment which is applicable to soils of any age is a crucial first step in reducing the risk of substructure failures and mitigating casualties resulting from earthquakes.

The research presented herein is focused on investigating the capability of the cone penetration test (*CPT*) and flat dilatometer test (*DMT*) for liquefaction assessment on natural soils considering soils deposited more than 1100 years ago at Gillman, South Australia. The recommended *CPT* procedure from the 1996 *NCEER* and 1998 *NCEER/NSF* Workshops is employed. In addition, the age correction factor proposed by Hayati et al. (2008) is used to revise the cone resistance ratio (*CRR*) values obtained from the *NCEER/NSF* procedure. The *DMT* procedure is selected as another contender in this liquefaction assessment because some researchers, such as Yu et al. (1997), Sladen (1989) and Marchetti (1999), claimed that the *DMT* is able to capture the ageing effect of the soils.

Extensive study to define the peak ground acceleration for this liquefaction assessment is conducted by using one-dimensional, site-specific ground response analysis (*SHAKE91* and *EERA*). The most recent and significant natural earthquake motions recorded by two separate accelerogram stations are obtained and manipulated to suit the data entry format of the response analysis methods. The soil unit weight and its shear wave velocity are derived from *CPT* and *DMT* data by using several empirical correlations. The results are then applied individually to each procedure.

The critical state approach for liquefaction assessment introduced by Jefferies & Been (2006) is used to verify the assessment of both the *CPT* and *DMT* procedures. The simple critical state parameter test proposed by Santamarina & Cho (2003) is undertaken on 6 soil samples taken from the study site to estimate the in-situ state parameter.

Liquefaction assessment using the *CPT* data incorporating ageing and *DMT* procedures (i.e. Marchetti, 1982 and Monaco et al., 2005) are presented and a comparison between all procedures is carried out. Re-examination using critical state approach is made. In addition, the consequences of the liquefaction in terms of ground settlement are also investigated.

Finally, this study shows that soil ageing increases the ability of soil to resist during the seismic loading. Furthermore, by assuming that the critical state approach represents the true conditions of the study site, the liquefaction assessment method proposed by Marchetti (1982) from *DMT* data provides better prediction than the others.

STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying.

Signed:

Date:

INTENTIONALLY BLANK

In the name of Allah, the Most Gracious, the Most Merciful. All praise is due to Allah, Lord of all that exists and may His peace and blessing be upon His Prophet and Final Messenger Muhammad (pbuh). I am indebted to Allah Subhanahu Wata'ala for the strength, nourishment and opportunities which I have been blessed with during this period of study.

This document encapsulates the last two years of research I have undertaken at the University of Adelaide, Australia. This period has been a special part of my life that I have thoroughly enjoyed and will always look back on with fond memories. This is direct result of the support, friendship and direction that many people have afforded me. First and foremost, I owe a great deal to my principal supervisor, Dr Mark Jaksa from the University of Adelaide. He has provided a great source of direction and support throughout this research. For this I am forever indebted to him. I would also like to share my appreciation for the support of my co-supervisor, Dr William Kaggwa, also from the University of Adelaide. He has provided invaluable direction regarding the laboratory testing and its application.

I would also like to acknowledge three additional people who have all been directly involved in this project: Professor Peter Mitchell, from the University of Adelaide; Dr. David Love, from PIRSA; Mr. Brendan Scott, from Engtest the University of Adelaide ; Mrs. Barbara Brougham, from the University of Adelaide, Mr. Gary Bowman, from the University of Adelaide, Mr. Adam Ryntjes, from the University of Adelaide, Mr. Junaidi, from Syiah Kuala University, and Mr. Restu Sitanggang, from Syiah Kuala University. Professor Mitchell has given valuable geotechnical engineering data at the surrounding study site. Dr. Love graciously provided the earthquake motions input and some discussion about these matters. Mr. Brendan Scott has given me an opportunity to share the site. Mrs. Barbara Brougham has assisted me for the writing of this thesis. Mr Gary Bowman and Mr. Adam Ryntjes have assisted me during in-situ and laboratory tests. Mr. Junaidi and Mr. Restu Sitanggang have provided some suggestions for the laboratory tests.

I wish to thank fellow postgraduate students: Ibrisam Akbar, Ratni Nurwidayati, Rahimah Muhamad, Yu Su, Matthew Haskett, Jeffry Newman, Fiona Paton, Joanna Seamis, Phillip Visintin, Wade Lucas, Ahrufan Ghalba, Tim Rowan, and Fernando Gayani, for their friendship, encouragement and advice. I would also like to thank the Government of Aceh for financial support given to me during my candidature through the Australian Scholarship scheme of Komisi Beasiswa-Aceh.

I will always be indebted to my family, particularly my wife, Syarifah Mastura, my son, Di Raja Qusayyi Rabbani, and my daughter, Wan Lubnayya Nabigha, for their constant love, sacrifice and support throughout the period of my candidature. In addition, I am indebted to my father and father in law, Ahmad Tony and Said Mustafa, and my mother and mother in law, Kustinah and Syarifah Nadirah, for the considerable sacrifices which they have made for me throughout my life.

TABLE OF CONTENTS

Abstr	racts		i
State	ment of Or	riginality	iii
Ackn	owledgme	nts	v
Table	e of Conter	nts	vii
List a	of Figures		xiii
List a	List of Tables		
Abbr	Abbreviations and Notations		
Chaj	pter 1. IN	FRODUCTION	1
1.1	INTROI	DUCTION	1
1.2	AIMS A	ND SCOPE OF RESEARCH	2
1.3	ORGAN	IISATION OF THE THESIS	4
Char	nton 2 I II		7
Cnap	pter 2. LT		7
2.1	INTROI	DUCTION	1
2.2	LIQUEF	FACTION	7
	2.2.1	Liquefaction mechanism	7
	2.2.2	A critical state line and state parameter in soil liquefaction	10
	2.2.3	Liquefiable soil types	11
2.3	ASSESS	SING LIQUEFACTION POTENTIAL OF SOILS	14
	2.3.1.	Simplified procedures for evaluation of cyclic stress ratio (CSR)	15
	2.3.1.1	Peak ground acceleration	16
	2.3.1.2.	Stress reduction coefficient/factor	19
	2.3.1.3	Magnitude scaling factor (MSF)	22
	2.3.2	Simplified procedures for evaluation of cyclic resistance ratio (CRR)	24
	2.3.2.1	THE CONE PENETRATION TEST (CPT) METHOD	24

	2.3.2.2	THE FLAT DILATOMETER TEST (DMT) METHOD	34
2.4	INFLUE	NCE OF AGEING ON LIQUEFACTION	44
	2.4.1	Introduction	44
	2.4.2	Particle rearrangement	44
	2.4.3	Particle cementation	45
	2.4.4	Determination of the age of the soil deposit	46
	2.4.5	Influence of age on CRR	46
2.5	LIQUEF	ACTION EFFECT ON SOILS	48
2.6	SUMMA	RY	54
Chap	ter 3. PRO	DJECT SITE INVESTIGATION	55
3.1	INTROD	UCTION	55
3.2	PROJEC	T SITE LOCATION	55
3.3	STUDY	CHARACTERISTICS OF THE SITE	58
	3.3.1	Geological history of the project site and the surrounding area	58
	3.3.2	Seismicity of the study site	60
	3.3.3	Soil profile of the study site and the surrounding area	62
3.4	SUB-SU	RFACE EXPLORATION PROGRAM	65
	3.4.1	Sub-surface soil sampling	65
	3.4.2	In-situ testing layout	66
	3.4.3	The depth of the sampling and the in-situ testing	67
	3.4.4	Geotechnical laboratory testing program	67
3.5	PERFOR SAMPLI	MANCE AND RESULTS OF THE IN-SITU TESTING AND NGS	68
	3.5.1	Borehole engineering log	70
	3.5.2	DMT in-situ testing results	73
	3.5.3	CPT in-situ testing results	73
3.6	LABORA	ATORY TESTING RESULTS	73
3.7	SUMMA	RY	80

Chapt	er 4. SITE	C-SPECIFIC GROUND RESPONSE ANALYSIS	81
4.1	INTROE	DUCTION	81
4.2	SITE-SP	ECIFIC GROUND RESPONSE ANALYSIS	82
	4.2.1	Characterisation of the site	84
	4.2.1.1	Soil profiles	84
	4.2.1.2	Shear wave velocity	92
	4.2.1.3	Soil unit weight	98
	4.2.1.4	Extended the soil profiles up to the bedrock	104
	4.2.2	Modulus reduction and damping curves	107
	4.2.3	Earthquake motion input	109
	4.2.4	Methods of the site-specific ground response analysis	112
	4.2.4.1	Overview of the analytical tools	112
	4.2.4.2	Input parameters	113
	4.2.5	Results of the site-specific ground response analysis	117
4.3	RESULT ANALY	TS OF THE SITE-SPECIFIC GROUND RESPONSE SIS USING CPT DATA	122
4.4	RESULT ANALY	TS OF THE SITE-SPECIFIC GROUND RESPONSE SIS USING DMT DATA	123
4.5	COMPA ANALY	RISON OF THE SITE-SPECIFIC GROUND RESPONSE SIS RESULTS WITH OTHERS	124
4.6	CONCL	USION	129
Chapt FORM	er 5. CR IATION	RITICAL STATE PARAMETER OF THE ST. KILDA	131
5.1	INTROE	DUCTION	131
5.2	SELECT	TING AND PREPARING THE TEST SAMPLES	131
	5.2.1	Selecting sample for the simple CS test	132
	5.2.2	Preparing the sample for the simple CS test	134
5.3	METHO	D OF LABORATORY TESTING	135
	5.3.1	Setting up the experimental apparatus for the CS test	135

	5.3.2	Procedure of the simple CS test	135
	5.3.3	Establishing the experimental apparatus for the critical friction angle test	138
	5.3.4	Procedure of the critical friction angle test	138
5.4	CALIBR	ATION TESTS	139
	5.4.1	Calibrating the CS and critical friction angle tests procedures	140
	5.4.2	Calibrating the membrane stiffness	141
5.5	RESULT	'S AND ANALYSIS OF THE CRITICAL STATE TESTING	146
	5.5.1	Data reduction of the testing results	146
	5.5.2	Membrane correction testing results	148
	5.5.3	Calibration sample CS testing results	149
	5.5.4	Selected soils sample simple CS testing results	153
5.6	INTERP	RETING THE IN-SITU STATE PARAMETER	158
	5.6.1	Interpreting in-situ state parameter from CPT data	158
	5.6.2	Interpreting in-situ state parameter from DMT data	164
5.7	CONCLU	USION	167

Chapter 6. ASSESSING LIQUEFACTION POTENTIAL OF THE ST. 169 **KILDA FORMATION AT GILLMAN**

6.1	INTROD	UCTION	169
6.2	LIQUEF	ACTION ASSESSMENT PROCESS	170
6.3	DETERM	INATION OF CSR OF THE ST. KILDA FORMATION	172
	6.3.1	Peak ground acceleration	173
	6.3.2	Stress reduction and magnitude scaling factors	173
	6.3.3	Cyclic stress ratio (CSR)	174
6.4	DETERM LIQUEF	AND ACTION OF CYCLIC RESISTANCE RATIO (CRR) AND ACTION ASSESSMENT OF THE ST. KILDA FORMATION	182
	6.4.1	The cone penetration test (CPT) method for estimating CRR	182
	6.4.1.1	Procedure for estimating the CRR using the CPT	182
	6.4.1.2	Liquefaction assessment of the St. Kilda Formation using <i>CPT</i> method	185

	6.4.2	Ageing correction factor for CPT-CRR	185
	6.4.3	Liquefaction assessment of the St. Kilda Formation using <i>CPT</i> method incorporating the ageing	189
	6.4.4	The flat dilatometer test (DMT) method for estimating CRR	191
	6.4.4.1	Estimating the CRR using the DMT	191
	6.4.4.2	Liquefaction assessment of the St. Kilda Formation using the <i>DMT</i> method	196
6.5	RE-EXAL CPT-ME DMT-ME	MINATION AND COMPARISON BETWEEN THE THOD INCORPORATING AGEING AND THE ETHOD FOR LIQUEFACTION ASSESSMENT	198
	6.5.1	Soil types evaluation	198
	6.5.2	State parameter evaluation	199
	6.5.3	Comparison of the results after the re-examination	200
6.6	GROUNI LIQUEFA	D SETTLEMENT ESTIMATION INDUCED BY ACTION	201
6.7	SUMMA	RY	213
Chapte	er 7. SUMI	MARY AND CONCLUSIONS	215
7.1	SUMMA	RY	215
7.2	RECOM	MENDATIONS FOR FURTHER RESEARCH	217
7.3	CONCLU	JSIONS	218
DEFEI	DENCES		210
NEFEF	LINCES		219
APPEN	DIX A.	ENGINEERING BORELOG	235
APPEN	DIX B.	FLAT DILATOMETER TEST (DMT) DATA	245
APPEN	DIX C.	CONE PENETRATION TEST (CPT) DATA	251
APPEN	DIX D	LABORATORY TESTING RESLULTS FOR SOIL CLASSIFICATION	265

APPENDIX E MEMBRANE STIFFNESS TESTING RESULTS 351

APPENDIX F	CHARACTERSISTICS AND SIMPLE <i>CS</i> TESTING RESULTS OF CALIBRATION SAMPLES	357
APPENDIX G	SIMPLE CRITICAL STATE PARAMETER TESTING RESULTS OF SITE SOIL SAMPLES	375
APPENDIX H	INTERPRETING IN-SITU STATE PATAMETER FROM CPT DATA	401
APPENDIX I	INTERPRETING IN-SITU STATE PARAMETER FROM DMT DATA	427
APPENDIX J	CPT LIQUEFACTION ASSESSMENT RESULTS	437
APPENDIX K	DMT LIQUEFACTION ASSESSMENT RESULTS	481
APPENDIX L	VERTICAL GROUND SETTLEMENT ASSESSMENT RESULTS	497

LIST OF FIGURES

Figure 2.1	Schematic of liquefaction mechanism at the mesoscale (Youd, 2003)	8
Figure 2.2	Schematic diagram of liquefaction mechanism in macroscale (Maltman & Bolton, 2003)	9
Figure 2.3	Diagrammatic of a critical state line and definition of state parameter ψ (Jefferies & Been, 2006)	11
Figure 2.4	Modified Chinese Criteria (Seed, et al., 2003)	12
Figure 2.5	Recommendations regarding assessment of liquefiable soil types (Seed, et al., 2003)	14
Figure 2.6	Elastic layer on elastic half-space (Finn & Wightman, 2003)	18
Figure 2.7	Amplification of ground motions in soft soils and associated rock sites (Idriss, 1990)	19
Figure 2.8	Schematic for determine the stress reduction coefficient r_d (Idriss, 1999)	20
Figure 2.9	Stress reduction coefficient, r_d , versus depth developed by Seed & Idriss (1971, cited in Youd et al., 1998)	21
Figure 2.10	Variation of r_d with depth and earthquake magnitude (Idriss, 1999)	22
Figure 2.11	Magnitude scaling factor, <i>MSF</i> , proposed by various researchers (Idriss & Boulanger, 2004)	23
Figure 2.12	Overview of the <i>CPT</i> testing per ASTM D 5778 procedures (Mayne, 2007b)	25
Figure 2.13	Schematic diagram of the electric cone penetrometer (After Holtz & Kovacs, 1981)	26
Figure 2.14	Curve recommended for liquefaction evaluation in earthquake magnitude M=7.5 modified from <i>NCEE</i> R 1998 base on <i>CPT</i> data (Finn, 2001; Youd, et al., 2001)	31
Figure 2.15	A chart illustrating the soil behaviour index, I_c , based on <i>CPT</i> data (Youd, et al., 2001)	33
Figure 2.16	Overview of the DMT testing layout (Marchetti et al., 2001)	35

Figure 2.17	<i>DMT</i> unit and the associated equipment which are: a. nitrogen gas tank, b. pneumatic hose, c. electrical cable, d. steel blade and e. syringe (Marchetti et al., 2001)	36
Figure 2.18	DMT calibration setup (Marchetti, et al., 2001)	36
Figure 2.19	DMT working principle (Marchetti, et al., 2001)	37
Figure 2.20	The <i>DMT</i> in-situ testing step by step procedures illustration (adapted from Marchetti et al., 2001)	38
Figure 2.21	Use of the dilatometer in the identification of soil type (Marchetti, et al., 2001)	40
Figure 2.22	Results of calibration chambers testing (pre-straining cycles) by Jamiolkowski and Lo Presti 1998 cited by Maugeri & Monaco (2006)	41
Figure 2.23	Correlation K_D - D_R for NC uncemented sands by Reyna & Chameau in 1991 & Tanaka & Tanaka in 1998 (Maugeri & Monaco, 2006)	41
Figure 2.24	Average correlation K_D - in situ state parameter ψ_0 by Yu in 2004 (Maugeri & Monaco, 2006)	42
Figure 2.25	<i>CRR-K_D</i> curves from <i>DMT</i> (Monaco et al., 2005, cited by Monaco and Marchetti, 2007	43
Figure 2.26	Validation <i>CRR-K_D</i> curves (Monaco et al., 2005)	43
Figure 2.27	Strength gain factor with age (Lewis et al. 2008)	49
Figure 2.28	Schematic examples of large displacements (Seed et al., 2003)	51
Figure 2.29	Limited liquefaction-induced lateral translation (Seed et al., 2003)	52
Figure 2.30	Schematic illustration of selected modes of liquefaction-induced vertical displacements (Seed et al., 2003)	52
Figure 2.31	Schematic illustration of selected modes of liquefaction-induced vertical displacements (Seed et al., 2003)	53
Figure 3.1	Field study incorporating a general geological setting (Love, 1996)	55
Figure 3.2	Australian earthquake epicentres with ML≥4 from 1859 to 1988 (Gaull et al., 1990)	56
Figure 3.3	Adelaide liquefaction potential assessment (Poulos et al., 1996)	57
Figure 3.4	Sequence stratigraphy of Adelaide in the Quaternary Period (Sheard & Bowman, 1996)	59
Figure 3.5	Quaternary sedimentary deposits within the study site (Belperio & Rice, 1989)	60

Figure 3.6	Major fault zones and epicenters around Adelaide (Selby, 1984)	61
Figure 3.7	Adelaide geodynamic activity since 1870 (Selby, 1984)	62
Figure 3.8	Holocene sedimentary facies of the St Kilda Formation (Belperio & Rice, 1989)	63
Figure 3.9	Composite grain size analysis for marine sand of the St. Kilda Formation (Sheard & Bowman, 1996)	64
Figure 3.10	Composite grain size analysis for aeolian sand of the St. Kilda Formation (Sheard & Bowman, 1996)	64
Figure 3.11	Grain size analysis curves of potentially liquefiable sands (after Ishihara et al. 1989 cited by Kavazanjian et al., 1997)	65
Figure 3.12	Layout plan of in-situ testing of this research (adapted from Kaggwa et al., 1996)	66
Figure 3.13	Detail schedule of completion of the in-situ testing and continuous sampling	68
Figure 3.14	Continuous sampling activities at Sampling #1 and Sampling #2	69
Figure 3.15	CPT in-situ testing activities at CPT #1	69
Figure 3.16	DMT in-situ testing activities at DMT #1	70
Figure 3.17	Summary of borehole engineering log at BH #1	71
Figure 3.18	Summary of borehole engineering log at BH #2	72
Figure 3.19	Estimate I_D , E_D and K_D in depth from the in-situ <i>DMT</i> testing	74
Figure 3.20	CPT #1 in-situ testing results	75
Figure 3.21	CPT #2 in-situ testing results	76
Figure 3.22	CPT #3 in-situ testing results	77
Figure 4.1	Sequence of steps for site-specific ground response analysis	83
Figure 4.2	Soil profiles from continuous sampling at Gillman, SA	85
Figure 4.3	Estimated soil profiles from DMT data from Gillman, SA	87
Figure 4.4	Soil classification using the Robertson et al. (1986) method for <i>CPT</i> #1 data at Gillman, SA	88
Figure 4.5	Soil classification using the Robertson et al. (1986) method for <i>CPT</i> #2 data at Gillman, SA	89
Figure 4.6	Soil classification using the Robertson et al. (1986) method for <i>CPT</i> #3 data at Gillman, SA	90

Figure 4.7	Cone resistance and friction ratio profiles from all <i>CPT</i> data at Gillman, SA	91
Figure 4.8	Comparison of simplified soil profiles from all in-situ data at Gillman, SA	93
Figure 4.9	Empirical shear wave velocity profiles from all <i>CPT</i> data at Gillman, SA	95
Figure 4.10	Plotting cone penetration resistances, q_c , and its estimated shear wave velocity, V_s	96
Figure 4.11	Comparison empirical shear wave velocity profiles with Tsiambaos & Sabatakakis (2010)'s model	96
Figure 4.12	Estimated shear wave velocity profile from <i>DMT</i> data at Gillman, SA	99
Figure 4.13	Empirical soil unit weight profiles from all <i>CPT</i> data at Gillman, SA	101
Figure 4.14	Estimated soil unit weight using a chart developed by Marchetti & Crapps, 1981 from <i>DMT</i> data at Gillman, SA	102
Figure 4.15	Estimated soil unit weight profile from DMT data at Gillman, SA	103
Figure 4.16	Soil profiles at Port Adelaide from Mitchell (2009)	104
Figure 4.17	Extended soil profiles for site-specific ground response analysis from <i>CPT</i> data at Gillman, SA	105
Figure 4.18	Extended soil profiles for site-specific ground response analysis from <i>DMT</i> data at Gillman, SA	106
Figure 4.19	Modulus for clay by Seed and Sun (1989) upper range and damping for clay by Idriss (1990) cited in Bardet et al. (2000)	107
Figure 4.20	Modulus for sand by Seed & Idriss (1970) - Upper Range and damping for sand by Idriss (1990) cited in Bardet et al. (2000)	108
Figure 4.21	Attenuation of rock average and damping in rock by Schnabel (1973) cited in Bardet et al. (2000)	108
Figure 4.22	Input motion accelerograms recorded at Government House (<i>GHS</i>), Adelaide, from an earthquake on 5 March 1997 (Love, 2010)	110
Figure 4.23	Input motion accelerograms recorded at Mt. Osmond (<i>TUK</i>) near Adelaide from an earthquake on 5 March 1997 (Love, 2010)	111
Figure 4.24	One dimensional idealisation of a horizontally layered soil deposit over a uniform half-space (Idriss & Sun, 1992)	113
Figure 4.25	Sample parts of the earthquake motions input data for the <i>SHAKE 91</i> ground response analysis (Idriss & Sun, 1992)	114

Figure 4.26	Sample input data for the SHAKE 91 ground response analysis (Idriss & Sun, 1992)	115
Figure 4.27	Sample of parts of earthquake motions input data for <i>EERA</i> ground response analysis (Bardet, et al., 2000)	116
Figure 4.28	Sample of soil profile input for <i>EERA</i> ground response analysis (Bardet, et al., 2000)	117
Figure 4.29	Sample peak ground acceleration output from the <i>EERA</i> ground response analysis	118
Figure 4.30	Sample stress output from the EERA ground response analysis	118
Figure 4.31	Sample strain output from the EERA ground response analysis	118
Figure 4.32	Sample amplification ratio output from the <i>EERA</i> ground response analysis	119
Figure 4.33	Sample Fourier spectrum output from the <i>EERA</i> ground response analysis	119
Figure 4.34	Sample response spectral acceleration output from the <i>EERA</i> ground response analysis	119
Figure 4.35	<i>PGA</i> amplification factor from site-specific ground response analysis using <i>CPT</i> data	122
Figure 4.36	<i>PGA</i> amplification factor from site-specific ground response analysis using <i>DMT</i> data	123
Figure 4.37	Predicted maximum acceleration at ground level using CPT data	124
Figure 4.38	Predicted maximum acceleration at ground level using DMT data	125
Figure 4.39	Acceleration response spectra of calculated motions at ground surface from <i>CPT</i> data	126
Figure 4.40	Acceleration response spectra of calculated motions at ground surface from <i>DMT</i> data	126
Figure 4.41	Spectral acceleration in time domain from EERA using CPT data	127
Figure 4.42	Spectral acceleration in time domain from <i>SHAKE91</i> using <i>CPT</i> data	127
Figure 4.43	Spectral acceleration in time domain from EERA using DMT data	128
Figure 4.44	Spectral acceleration in time domain from <i>SHAKE91</i> using <i>DMT</i> data	128
Figure 5.1	Sequence of steps to determine the in-situ critical state parameter,	133

Figure 5.2	a) Simplified <i>CS</i> test experimental set up proposed by Santamarina & Cho (2001) and (b) experimental set up apparatus of this study	136
Figure 5.3	Critical friction angle test experimental design apparatus used in this study (a) the side elevation of the apparatus, (b) the front elevation of the apparatus	138
Figure 5.4	Documentation of an experiment to determine the critical state friction angle of this study (a) the pedestal was rotated for at least 60° (b) the pedestal was returned to it original position before measuring the angle	139
Figure 5.5	Grain sieve analysis results of the calibration sample	141
Figure 5.6	Diagram of membrane extension modulus testing (after Bishop & Henkel, 1962 cited by Head, 1994)	142
Figure 5.7	Membrane extension modulus testing of this study (a) membrane extension modulus testing on specimen#1; (b) membrane extension modulus testing on specimen#2; and (c) membrane extension modulus testing on specimen#3	143
Figure 5.8	Extension modulus test on rubber membrane of sample #1	145
Figure 5.9	Extension modulus test on rubber membrane of sample #2	145
Figure 5.10	Extension modulus test on rubber membrane of sample #3	146
Figure 5.11	Results of the CS test on calibration specimen #1	149
Figure 5.12	Results of the CS test on calibration specimen #2	150
Figure 5.13	Results of the CS test on calibration specimen #3	150
Figure 5.14	Results of the CS test on all calibration specimens	151
Figure 5.15	Comparison of the results of the grainsize distribution of the calibration sample with samples provided by Santamarina & Cho (2001)	152
Figure 5.16	Comparison of the results of the <i>CS</i> test for the calibration sample with other several samples provided by Santamarina & Cho (2001)	152
Figure 5.17	Results of the simple critical state testing for sample #1.2	154
Figure 5.18	Results of the simple critical state testing for sample #1.3	154
Figure 5.19	Results of the simple critical state testing for sample #1.5	155
Figure 5.20	Results of the simple critical state testing for sample #2.3	155
Figure 5.21	Results of the simple critical state testing for sample #2.4	156
Figure 5.22	Results of the simple critical state testing for sample #2.6	156

Figure 6.1	Liquefaction assessment flowchart	171
Figure 6.2	Sequence of steps to determine cyclic stress ratio	172
Figure 6.3	Stress reduction factor profiles	174
Figure 6.4	Cyclic stress ratio (<i>CSR</i>) versus normalised cone penetration resistance of <i>CPT</i> #1	175
Figure 6.5	Cyclic stress ratio (<i>CSR</i>) versus normalised cone penetration resistance of <i>CPT</i> #2	176
Figure 6.6	Cyclic stress ratio (<i>CSR</i>) versus normalised cone penetration resistance of <i>CPT</i> #3	176
Figure 6.7	Cyclic stress ratio (<i>CSR</i>) versus horizontal stress index, K_D from <i>DMT</i> #1	180
Figure 6.8	Flowchart for determining cyclic resistance ratio (<i>CRR</i>) using <i>CPT</i> data	183
Figure 6.9	Cyclic resistance ratio (<i>CRR</i>) versus normalised cone tip resistance	184
Figure 6.10	Liquefaction assessments at <i>CPT</i> #1, <i>CPT</i> #2 and <i>CPT</i> #3 for earthquake magnitude scale of (a) 5.0 and (b) 5.5	186
Figure 6.11	Liquefaction assessments at <i>CPT</i> #1, <i>CPT</i> #2 and <i>CPT</i> #3 for earthquake magnitude scale of (a) 6.0 and (b) 6.5	187
Figure 6.12	Liquefaction assessments at <i>CPT</i> #1, <i>CPT</i> #2 and <i>CPT</i> #3 for earthquake magnitude scale of (a) 7.0 and (b) 7.5	188
Figure 6.13	<i>CPT</i> cyclic resistance ratios with and without ageing effect versus normalised cone penetration resistance	191
Figure 6.14	Liquefaction assessments including ageing at $CPT \#1$, $CPT \#2$ and $CPT \#3$ with an earthquake magnitude scale of (a) 5.0 and (b) 5.5	192
Figure 6.15	Liquefaction assessments including ageing at <i>CPT</i> #1, <i>CPT</i> #2 and <i>CPT</i> #3 with an earthquake magnitude scale of (a) 6.0 and (b) 6.5	193
Figure 6.16	Liquefaction assessments including ageing at $CPT \#1$, $CPT \#2$ and $CPT \#3$ with an earthquake magnitude scale of (a) 7.0 and (b) 7.5	194
Figure 6.17	Outline of estimating cyclic resistance ratio using DMT data	195
Figure 6.18	Plotting of cyclic resistance ratios versus horizontal stress index of <i>DMT</i> parameter	196

Figure 6.19	Liquefaction assessments of <i>DMT</i> -method using the Marchetti (1982) approximation for 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 earthquake magnitude scales	197
Figure 6.20	Liquefaction assessments of <i>DMT</i> -method using the Monaco et al. (2005) approximation for 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 earthquake magnitude scales	197
Figure 6.21	Laboratory test results superimposed on the Seed et al. (2003) chart to estimate the liquefaction characteristics of the soils	198
Figure 6.22	Correlation between post-liquefaction volumetric strain and equivalent clean sand normalised cone resistance for different factors of safety (modified from Zhang et al., 2002)	208
Figure 6.23	Example plots illustrating the major procedures in estimating liquefaction-induced ground settlements from the proposed <i>CPT</i> -based method	211
Figure 6.24	Schematic diagram of the surface non liquefiable layer and the underlying liquefiable layer (Ishihara, 1985)	211
Figure 6.25	Schematic diagram of the surface non liquefiable layer and the underlying liquefiable layer for stratified soil profiles (Ishihara, 1985)	212
Figure 6.26	Differentiation between surface manifestation and no surface manifestation due to liquefaction, as proposed by Ishihara (Ishihara, 1985)	212

Table 2.1	Liquefaction susceptibility of silty and clayey sands (Andrews & Martin, 2000)	13
Table 2.2	The basic <i>DMT</i> data calculation formula and its correlations (Marchetti et al., 2001)	39
Table 2.3	Classification of soil liquefaction consequences (after Castro, 1987 cited by Rauch, 1997)	53
Table 3.1	Laboratory tests for soil types evaluation	68
Table 3.2	Laboratory testing results for the fines content correction for <i>BH</i> #1	78
Table 3.3	Laboratory testing results for the fines content correction for <i>BH</i> #2	79
Table 3.4	Results of carbonate content test	79
Table 4.1	Relationships to estimate shear wave velocity from CPT data	94
Table 4.2	<i>CPT</i> 's simplified shear wave velocity for site-specific ground response analysis	97
Table 4.3	<i>DMT</i> 's simplified shear wave velocity for site-specific ground response analysis	98
Table 4.4	Simplified soil unit weight for site-specific ground response analysis based on <i>CPT</i> data	100
Table 4.5	Simplified soil unit weight for site-specific ground response analysis based on <i>DMT</i> data	100
Table 4.6	Summary of acceleration time histories of 5 March 1997 earthquake	112
Table 4.7	Summary of the results of site-specific ground response analysis using <i>CPT</i> data	120
Table 4.8	Summary of the results of site-specific ground response analysis using <i>DMT</i> data	121
Table 4.9	Summary of comparison of site-specific peak ground acceleration (<i>PGA</i>)	125
Table 5.1	Characteristics of the samples for the critical state parameter testing at $BH \# 1$	134

Table 5.2	Characteristics of the samples for the critical state parameter testing at $BH \# 2$	134
Table 5.3	Data calculation formula and its correlations of the CS test on this study	147
Table 5.4	Membrane correction factor for the CS test of this study	148
Table 5.5	Properties of the calibration sample of this study and several materials from Santamarina & Cho (2001)	151
Table 5.6	Simple <i>CS</i> test results for the calibration sample of this study and several the <i>CS</i> test results from Santamarina & Cho (2001)	153
Table 5.7	Simple CS test results for the selected sample of this study	157
Table 5.8	Results of the in-situ state parameter interpreted from the <i>CPT</i> #1 data and simple <i>CS</i> test at <i>BH</i> #1	160
Table 5.9	Results of the in-situ state parameter interpreted from the <i>CPT</i> #1 data and simple <i>CS</i> test at <i>BH</i> #2	161
Table 5.10	Results of the in-situ state parameter interpreted from the <i>CPT</i> #2 data and simple <i>CS</i> test at <i>BH</i> #1	162
Table 5.11	Results of the in-situ state parameter interpreted from the CPT #2 data and simple CS test at BH #2	163
Table 5.12	Results of the in-situ state parameter interpreted from the CPT #3 data and simple CS test at BH #1	164
Table 5.13	Results of the in-situ state parameter interpreted from the <i>CPT</i> #3 data and simple <i>CS</i> test at <i>BH</i> #2	165
Table 5.14	Results of the in-situ state parameter interpreted from the <i>DMT</i> #1 data	166
Table 5.15	Compilation results of the in-situ state parameter	168
Table 6.1	Summary of CSR parameter for the liquefaction assessment	174
Table 6.2	Cyclic stress ratio (CSR) versus depth at CPT #1	177
Table 6.3	Cyclic stress ratio (CSR) versus depth at CPT #2	178
Table 6.4	Cyclic stress ratio (CSR) versus depth at CPT #3	179
Table 6.5	Cyclic stress ratio (CSR) versus depth at DMT #1	181
Table 6.6	Ageing correction factor for the <i>CPT-CRR</i> in the present study (i.e. Hayati et al., 2008) compared with approximation by Kulhawy & Mayne (1990) and Lewis et al. (2008)	190
Table 6.7	Results of the fines content evaluation for samples at $BH \# 1$	199
Table 6.8	Results of the fines content evaluation for samples at BH #2	199

	٠	٠	٠
VV	1	1	1
$\Lambda \Lambda$	I	1	н

Table 6.9	Comparison of liquefaction assessment results for earthquake magnitude of 5.0	202
Table 6.10	Comparison of liquefaction assessment results for earthquake magnitude of 5.5	203
Table 6.11	Comparison of liquefaction assessment results for earthquake magnitude of 6.0	204
Table 6.12	Comparison of liquefaction assessment results for earthquake magnitude of 6.5	205
Table 6.13	Comparison of liquefaction assessment results for earthquake magnitude of 7.0	206
Table 6.14	Comparison of liquefaction assessment results for earthquake magnitude of 7.5	207
Table 6.15	Estimation of ground settlements induced by liquefaction	209
Table 6.16	Results of manifestation classification based on the liquefaction assessment	210
Table 6.17	Summary of estimated ground settlement induced by liquefaction and its manifestation on the surface	213

INTENTIONALLY BLANK

$\sigma_{_m}$	additional radial stress for the simple critical state parameter test
σ_{ci}	applied pressure for the simple critical state parameter test
A_t	area inside the transparent tube for the simple critical state parameter test
$\sigma_{_{3i}}$	correction applied pressure for the simple critical state parameter test
ϕ_{cs}	critical state friction angle for the simple critical state parameter test
d_i	distance for the simple critical state parameter test
p_i	mean principal stress in each measurement for the simple critical state parameter test
h_i	measured water level for the simple critical state parameter test
V_{w0}	reference water volume for the simple critical state parameter test
G_{s}	specific gravity of the soil
γ_w	unit weight of water
e_i	void ratio
ΔV_i	volume change for the simple critical state parameter test
V_t	volume of the device with soil for the simple critical state parameter test
V_d	volume of the device without soil for the simple critical state parameter test
V _s	volume of the soil for the simple critical state parameter test
V_{sp}	volume of the specimen for the simple critical state parameter test
$V_{_{wi}}$	water volume for the simple critical state parameter test
h_0	reference water level for the simple critical state parameter test

W_s	soil unit weight for the simple critical state parameter test
κ	impedance ratio
Г	intersect of the CSL at 1 kPa mean stress pressure
Ψ	normalising state parameter
λ	slope of the CSL
Е	axial strain in the specimen
Φ	dilatometer friction angle
ϕ ʻ	internal friction angle
σ'_m	additional radial stress
σ'_{vo}	effective vertical overburden stresses
ψ_0	in situ state parameter
ρ _r ,	density of the bedrock
β_s	soil critical damping ratio
ρ_s	soil density or soil unit weight
E _{vi}	post-lique faction volumetric strain for the soil sub-layer i
σ_{vo}	total vertical overburden stresses
Δz_i	thickness of the sub-layer i ; and j is the number of soil sub-layers
Α	amplification ratio
A/D	Analogue to Digital
a_{max}	peak horizontal acceleration at ground surface
a_{0}	bedrock peak ground acceleration
<i>a</i> _r	incoming bedrock peak ground acceleration to the upper layer.
AS	Australian Standard
ASTM	American Soil Testing and Material
$a_{\rm t}$	surface acceleration
BH	Borehole

BP	Before Present
C_A	strength gain factor and
c_h	dilatometer coefficient of consolidation
c_{M}	membrane correction
CPT	Cone Penetration Test
C_Q	normalising factor of cone penetration resistance
CRR	cyclic resistance ratio
CRR_K	cyclic resistance ratio corrected for age
CS	critical state parameter
CSL	Critical State Line
CSR	Cyclic Stress Ratio
Cu	coefficient of uniformity
c _u	undrained shear strength
D	initial diameter of the specimen
D ₁₀	the grain diameter (in mm) corresponding to 10% passing by weight
D ₅₀	the grain diameter (in mm) corresponding to 60% passing by weight
DMT	Dilatometer Test
D_R or Dr	relative density
е	void ratio
E_D	dilatometer dilatometer modulus
EERA	Equivalent-linear Earthquake Response Analysis
EPROM	Erasable Programmable Read Only Memory
FS	Factor of Safety,
f_s	sleeve resistance.
g	acceleration of gravity;
G_0	small strain modulus

GHS	the accelerogram at Government House, Adelaide
Н	thickness of soil layer
I/O	Input/Output
Ic	soil behaviour index
I_D	dilatometer material index
IBM	International Business Machine
ISOPT	International Symposium on Penetration Testing
ISSMFE	International Society of Soil Mechanics and Foundation Engineering
k	soil specific coefficient proposed by Jefferies & Been (2006)
K_0	coefficient earth at rest
K_c	correction factor of fines content
K_D	dilatometer horizontal stress index
K_{DR}	factor to correct the effect of aging
k _h	dilatometer coefficient of permeability
LCD	Liquid Crystal Displays
LL	Liquid Limit
т	rigidity specific coefficient proposed by Jefferies & Been (2006)
М	earthquake magnitude.
М	compression modulus of the membrane material
MCC	Modified Chinese Criteria
M_{DMT}	dilatometer vertical drained constrained modulus
MPU	Microprocessor Unit
MSF	Magnitude Scaling Factor
п	exponent that varies with soil type
NCEER	National Center for Earthquake Engineering Research
NSF	National Research Foundation
OCR	Overconsolidation Ratio

p 0	dilatometer corrected first reading
p ₁	dilatometer corrected second reading
P_a	1 atm of pressure
PGA	Peak horizontal Ground Acceleration
PGV	Peak Ground Velocity
PL	Plastic Limit
Q	normalised parameter of tip resistance
q_c	field cone penetration resistance measured at the tip.
q_{c1N}	normalised penetration resistance
$q_{c1N,cs}$,	equivalent clean sand normalized tip resistance,
q_D .	penetration resistance of dilatometer blade
Q_p	dimensionless cone resistance based on mean stress
RAM	Random Access Memory
r _d	stress reduction coefficient/factor
S	ground settlement
SASW	Spectral Analysis of Surface Waves
SPT	Standard Penetration Test
t	age or time since initial soil deposition or last critical disturbance
Т	wave transmission
TL	termoluminescence
TUK	the accelerogram at Mt. Osmond, Adelaide
U_0	pre-insertion pore water pressure
USCS	Unified Soil Classification System
$V_{\rm s}$	shear wave velocity
V _{sr}	shear wave velocity of the bedrock
Z.	depth below the surface

Ysoil	total unit weight of soil
ρ	soil mass density

 ψ in-situ state parameter

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.i: Line 19 should read:

... (1989) and Marchetti (1997), claimed that the DMT is able to capture the ageing effect of ...

p.3: Line 15 should read:

... originally by Schnabel et al. (1972) and EERA by Bardet et al. (2000). For the ...

p.4: Line 22 should read:

... (Schnabel et al., 1972) and *EERA* (Bardet et al., 2000). The results of the site-specific ground ...

p.10: Last line should read:

... dilative behaviour or a strain hardening response. Although cyclic mobility can occur slightly below the normalising state parameter, ψ is an important parameter to detect liquefaction flow, which often causes disastrous failures on structures (Martin & Lew, 1999).

p.12: Line 12 should read:

... less than approximately 10% clay-size fines (< 0.002 mm), and a liquid limit (LL) in the ...

p.12: Line 14 should read:

... with more than approximately 10% clay-size fines and a LL more than or equal to 32% are ...

Liquid Limit ¹ Clay-size Content ²	Liquid Limit ¹ <32%	Liquid Limit ¹ ≥32%
Clay-size Content ² <10%	Susceptible	Further Studies Required (Considering plastic non-clay sized grains - such as Mica)
Clay-size Content ² ≥ 10%	Further Studies Required (Considering non-plastic clay sized grains – such as mine and quarry tailings)	Not Susceptible
Notes: ¹ Liquid limit determined by Casagrande-type percussion apparatus. ² Clay-size content defined as grains finer than 0.002 mm.		

p.13, Table 2.1: The correct table is:

p.15: Line 16 should read:

... cyclic loading (Glaser & Chung, 1995). Moreover, obtaining high quality undisturbed sandy samples is difficult and costly. Thus, in-situ testing is very useful and usually ...

p.175: Line 6 should read:

... 6.4, 6.5 and 6.6 to depict the impact of different magnitude of earthquake at study site. As seen in the plots, the *CSR* values increase when the earthquake...

p.180: Line 2 to 3 should read:

... (identified by green shading) occurs at a depth of approximately 2.2 m; (2) the layer which exhibits the highest impact during an earthquake is the layer at a ...

p.180: Line 5 to 6 should read:

... shading); and (3) an increase of 0.5 in earthquake magnitudes causes a rise of the thickness by a factor of 1.5.

p.181: Line 1 should read:

... highest impact during an earthquake is a layer at a depth of between 7.8 to 9.8 m ...

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.202, Table 6.9: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=5.5 Ē Depth (REMARKS DMT BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3 METHOD METHOD #2** #1' 0.2-SOIL TYPES SCREENING 0.6-1.0-No need for further testing 1.4 1.8-Potential to liquefy 2.2-2.6-Need further testing 3.0-3.4 -CRITICAL STATE APPROACH 3.8-Fine grained soils 4.2-(Not applicable for critical state approach) 4.6 5.0-Dilative 5.4 -5.8-Contractive 6.2-6.6 LIQUEFACTION ASSESSMENT 7.0-7.4 No liquefaction 7.8 8.2 Liquefaction 8.6 9.0 #1* DMT liquefaction 9.4 assessment method proposed by Marchetti (1982) 9.8-10.2 10.6 #2** DMT liquefaction assessment method 11.0proposed by Monaco et al. (2005) 11.4 -11.8-12.2 12.6-13.0 13.4 13.8

p.203, Table 6.10: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.0 Ē Depth (REMARKS DMT BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3 METHOD METHOD #2** #1' 0.2-SOIL TYPES SCREENING 0.6-1.0-No need forfurther testing 1.4 1.8-Potential to liquefy 2.2-2.6-Need further testing 3.0-3.4 -CRITICAL STATE APPROACH 3.8-Fine grained soils 4.2-(Not applicable for critical state approach) 4.6 5.0-Dilative 5.4 -5.8-Contractive 6.2-6.6 LIQUEFACTION ASSESSMENT 7.0-7.4 No liquefaction 7.8 8.2 Liquefaction 8.6 9.0 #1* DMT liquefaction 9.4 assessment method proposed by Marchetti (1982) 9.8-10.2 10.6 #2** DMT liquefaction assessment method 11.0proposed by Monaco et al. (2005) 11.4 -11.8-12.2 12.6-13.0 13.4 13.8

p.204, Table 6.11: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.5 Ē Depth (REMARKS DMT BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3 METHOD METHOD #2** #1' 0.2-SOIL TYPES SCREENING 0.6-1.0-No need for further testing 1.4 1.8-Potential to liquefy 2.2-2.6-Need further testing 3.0-3.4 -CRITICAL STATE APPROACH 3.8-Fine grained soils 4.2-(Not applicable for critical state approach) 4.6 5.0-Dilative 5.4 -5.8-Contractive 6.2-6.6 LIQUEFACTION ASSESSMENT 7.0-7.4 No liquefaction 7.8 8.2 Liquefaction 8.6 9.0 #1* DMT liquefaction 9.4 assessment method proposed by Marchetti (1982) 9.8-10.2 10.6 #2** DMT liquefaction assessment method 11.0proposed by Monaco et al. (2005) 11.4 -11.8-12.2 12.6-13.0 13.4 13.8

p.205, Table 6.12: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=7.0 Ē Depth (REMARKS DMT BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3 METHOD METHOD #1' #2** 0.2-SOIL TYPES SCREENING 0.6-1.0-No need for further testing 1.4 1.8-Potential to liquefy 2.2-2.6-Need further testing 3.0-3.4 -CRITICAL STATE APPROACH 3.8-Fine grained soils 4.2-(Not applicable for critical state approach) 4.6 5.0-Dilative 5.4 -5.8-Contractive 6.2-6.6 LIQUEFACTION ASSESSMENT 7.0-7.4 No liquefaction 7.8 8.2 Liquefaction 8.6 9.0 #1* DMT liquefaction 9.4 assessment method proposed by Marchetti (1982) 9.8-10.2 10.6 #2** DMT liquefaction assessment method 11.0proposed by Monaco et al. (2005) 11.4 -11.8-12.2 12.6-13.0 13.4 13.8

p.206, Table 6.13: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=7.5 Ē Depth (REMARKS DMT BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3 METHOD METHOD #2** #1' 0.2-SOIL TYPES SCREENING 0.6-1.0-No need for further testing 1.4 1.8-Potential to liquefy 2.2-2.6-Need further testing 3.0-3.4 -CRITICAL STATE APPROACH 3.8-Fine grained soils 4.2-(Not applicable for critical state approach) 4.6 5.0-Dilative 5.4 -5.8-Contractive 6.2-6.6 LIQUEFACTION ASSESSMENT 7.0-7.4 No liquefaction 7.8 8.2 Liquefaction 8.6 9.0 #1* DMT liquefaction 9.4 assessment method proposed by Marchetti (1982) 9.8-10.2 10.6 #2** DMT liquefaction assessment method 11.0proposed by Monaco et al. (2005) 11.4 -11.8-12.2 12.6-13.0 13.4 13.8

p.207, Table 6.14: The correct table is:

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.216: Line 5 should read:

... specific ground response analysis using the SHAKE91 (Schnabel et al., 1972) and EERA...

p.216: Line 6 should read:

... (Bardet et al., 2000) techniques. The results of the site-specific ground response analysis ...

p.223: Line 28 should read:

... properties of a stiff, overconsolidated clay. Ph.D. Thesis, Faculty of Engineering, The University of Adelaide, Adelaide, 469pp.

p.224: Lines 19 to 20 should read:

... penetrometer tests to estimate settlements of shallow footing on calcareous sand. *Proceedings* 7^{th} Australia-New Zealand Conference on Geomechanics, Adelaide, pp. 909 - 914.

p.227: Lines 15 to 16 should read:

... conventional field testing. *Proceedings 2007 Conference on Earthquake Engineering in Australia*. Australian Earthquake Engineering Society, Paper No. 40, Wollongong, November.