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Mineral replacement reactions and permeability 
When a mineral interacts with a fluid with which it is not in equilibrium, a chemical reaction occurs 
which may result in replacement of all or part of the original (parent) mineral and the formation of a 
new (product) material. This mineral replacement reaction occurs in 2 stages: 

 Dissolution of the parent material until it comes into equilibrium with the fluid (thus changing the 
composition of the fluid). 

 Precipitation of a new mineral assemblage from the fluid that replaces all or part of the parent 
assemblage.  

Critically, the above process can result in new porosity generation at the reaction front (Putnis 2009). 
Changes in volume associated with mineral replacement reactions induce stress into the system, 
resulting in micro-fractures and porosity changes that change the permeability of the mineral 
assemblage (Xia et al 2009). 

Hydrothermal mineral replacement reactions play an important role in controlling fluid transport in fluid 
flow environments such as geothermal energy systems. Their role has been studied principally via 
numerical modelling due to the widely held belief that the timescale of mineral replacement reactions 
are incompatible with laboratory experiments (Berkowitz 2002). Very little experimental research has 
been conducted and the relative contributions to permeability of micro-cracks and reaction generated 
porosity are not empirically verified.  

In order to an attempt to explore this problem experimentally we have developed in-situ flow-through 
reactors (figure 1). The reactors are used to determine the effect of pressure, temperature, fluid flow 
rate, fluid composition and pH on mineral replacement reactions and associated changes in 
permeability. 

In-situ flow through reactors 
A high pressure high performance liquid chromatography (HPLC) pump was used to generate fluid 
flow rates of between 1 and 10 ml-min. The pump was capable of maintaining these flow rates at 
pressures of up to 400 bar (6,750 PSI). The HPLC pump was used in conjunction with a hand loaded 
back pressure regulator (BPR) providing pressures of up to 400 bar.  

A heating jacket, capable of heating to 4000C was used to heat fluid prior to its passing through the 
mineral sample. As heat transference into the BPR could result in increasing pressure over time, the 
fluid was cooled prior to reaching the BPR. Pressure transducers were placed before and after the 
sample holder and linked to a data logger so that pressure changes could be used to detect changes 
in porosity of the sample. 
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Ultra high pressure reactor 

In order to simulate more extreme hydrothermal environments an ultra-high pressure flow-through 
reactor is being developed.  

An ultra-high pressure HPLC pump will generate fluid flow rates of between 0.001 and 5 ml-min. The 
pump is capable of maintaining these flow rates at pressures of up to 1700 bar (25,000 PSI) in 
conjunction with a high performance BPR.  

The reactor’s tubing, sample holding cell and fittings will be constructed from high pressure nickel-
alloy (Inconel 625 and Hastealloy C276). Conventional stainless steel components are incapable of 
withstanding the required temperatures/pressures and have poor corrosion resistance at high 
temperatures, particularly with saline fluids, resulting in the development of leaks after 24 hours of 
use. The nickel alloys are capable of withstanding very high pressures (>1500 bar) at high 
temperatures (>500OC). The alloys are also highly corrosion resistant allowing corrosive fluids such as 
chlorides to be used at elevated temperatures and pressures for extended periods. 

Benefits gained from the reactors include the ability to simulate dynamic rather than static 
environments for study of mineral transformation reactions. The reactors allow us to independently 
control pressure, temperature and flow rate so the effect of each on mineral transformation and 
porosity can be independently assessed. 

A B 

 

Figure 1: A: Flow through reactor showing (from left to right) HPLC pump, heating element, sample chamber, 
cooling unit and hand loaded back pressure regulator. Tubing and fittings are stainless steel. Pressure 
transducers are not fitted. B: A close up image of the heating unit (at left) and sample holder (immediately to the 
left of the heating unit). 

Sample analysis 
Samples were non-destructively analysed before and after treatments using a Philips XL40 scanning 
electron microscope (SEM), Cameca SX-51 electron microprobe with SAMX software and a Skyscan 
1072 micro-computer tomography (MCT) analyser. Energy dispersive analysis X-ray (EDAX) analysis 
was used to determine changes in elemental composition of the samples. MCT analysis allowed 
construction of 3-dimensional x-ray images of samples from which porosity could be determined using 
grey-scale analysis. 

Preliminary studies 

Dolomitisation of marble 

Pilot dolomitisation experiments were performed on a 12mm by 7 mm marble sample at 30 bar 
pressure and 2000C. The sample was pre-cracked to allow fluid flow through the marble and provide a 
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region of interest to monitor for dolomitisation. Pressure transducers linked to a data logger were used 
to monitor for pressure changes across the marble sample resulting from changes in porosity. A 
magnesium/calcium solution was pumped through the sample at a flow-rate of 10 ml-min.  

Initial results showed a 16 bar pressure difference across the marble sample over 10 days, indicating 
a significant change in porosity had occurred. Analysis using a SEM and electron microprobe showed 
dolomitisation occurred both at the front face of the marble sample and along the crack (figure 2). The 
dolomitisation extended from the crack into the marble along the calcite grain boundaries.  

A B

 

 

 

Figure 2: Dolomotisation of marble at A: front face of marble. The image is a backscattered electron image 
sample (Quanta 450 FEG ESEM, 60 Pa) of the unpolished sample. The lighter grey areas are calcite; the darker 
grey areas are dolomite B: Looking along the crack. The lighter grey boundaries are proto-dolomite with low 
amounts of calcium. The interior of the grains is magnesium carbonate. Large crystals of silicate minerals are also 
visible.  

lected 

 a vespel plastic sheathing before being placed in the reactor’s sample 

Isolation of variables affecting dolomitisation of limestone 

The reactors have also initially been used to isolate the effect of fluid flow rate on the rate of mineral 
transformation and analyse associated changes in porosity. Dolomitisation of limestone was se
as an appropriate process to study the phenomena. Mineral samples analysed were 4.3mm in 
diameter by 4mm length, to allow optimal resolution during MCT analysis (5 microns). Sample’s were 
wrapped in Teflon and placed in
holder to ensure a fluid tight fit. 

Reaction fluid was composed of 1 molar magnesium chloride (MgCl2·6H2O) and 1 molar calcium 
chloride (CaCl2·2H2O) as suggested by Kaczmarek and Sibley (2011). A magnesium/calcium ratio of 
1.14:1 was used to minimise time needed for substantial dolomitisation of the limestone to occur (i.e. 
less than 48 hours for > 50% dolomitisation). Other variable values used in the experiment are shown 
in table 1. The samples were placed in the reactors for 24 hours.  
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Table 1: Parameters for variable flow rate experiment and level of dolomitisation achieved and associated 
porosity.  

ml/min) Flow rate ( 1 10 

Temperature (oC) 2  00 200

Pressure (Bar) 250 250 

Mg:Ca ratio 1.14:1 1.14:1 

% proto-dolomitisation 36 19 

Porosity % 17 10 

 

Formation of proto-dolomites occurred within 24 hours and was negatively correlated with fluid flow 
rate (table1). It is likely that faster flow rates inhibited nucleation of the dolomite onto the limestone 
surface. Porosity increased with dolomitisation due to the smaller volume of the replacement dolomite 
(because of magnesium’s smaller ionic radius) compared to calcite.  
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