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Chapter1
I N T R O D U C T I O N

1.1 out-of-plane walls

When an unreinforced masonry (URM) building is subjected to horizontal shaking
during a seismic event, most of its walls inevitably experience a combination
of in-plane and out-of-plane response. Past research into seismic response of
URM structures has focused primarily on walls’ in-plane shear behaviour, since
it provides the primary load path for transfer of the building’s lateral seismic
force to its foundation (Figure 1.1) [e.g. König et al., 1988; Anthoine et al., 1994;
Andreaus, 1996; Magenes and Calvi, 1997; Tomaževič and Klemenc, 1997; Paquette and
Bruneau, 2003; Vasconcelos and Lourenço, 2009]. However, whilst out-of-plane action
is not typically considered to be part of the building’s seismic load path, walls still
require sufficient capacity to avoid out-of-plane collapse; as even local failure can
pose significant danger to life safety, and furthermore, failure of loadbearing walls
could potentially trigger partial or complete collapse of the overall structure by
compromising its gravity or lateral in-plane load resistance paths.

Post-earthquake studies have identified out-of-plane wall collapse as one of
the predominant modes of failure in URM construction, including during the 1989

Newcastle earthquake [Page, 1992], as well as in more recent events such as 2009

L’Aquila, Italy [Bazzurro et al., 2009; Oyarzo-Vera and Griffith, 2009], and 2010–2011

Christchurch, New Zealand [Ingham and Griffith, 2011a,b]. Studies have also found,
however, that a large proportion of out-of-plane collapse during earthquakes
occurred in instances where the walls were not designed to withstand such actions,
and furthermore, that failure was preventable if the walls were properly designed
and constructed according to the relevant design codes [Scrivener, 1993; Page, 1995].
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2 introduction

Figure 1.1: Seismic load path in URM buildings [from Doherty, 2000]. (Graphics used with
permission from K. Doherty.)

Nonetheless, the topic of seismic out-of-plane response is one that is still not fully
understood; Paulay and Priestley [1992] describing it as “one of the most complex
and ill-understood areas of seismic analysis”, and numerous others highlighting the
need for further research into the seismic behaviour of URM buildings [Bruneau,
1994; Brunsdon, 1994; Calvi, 1999; Maffei et al., 2000; Abrams, 2001]. Considering
Australia’s large amount of seismically vulnerable URM building stock, it is therefore
of significant interest both nationally and internationally that we conduct research
to improve our understanding of seismic out-of-plane wall response, and facilitate
development of the corresponding design and assessment techniques.

When a wall is subjected to out-of-plane face loading due to either earthquake
or wind, it undergoes flexure (bending). Orientation of the internal stresses within
the wall and the resulting crack pattern developed is dictated by the position of its
supported edges, as shown by Figure 1.2. One-way spanning walls (Figure 1.2a)
undergo uniaxial bending, which can be classified as either vertical or horizontal
depending on the orientation of the span.1 This results in cracks that run parallel
to the panel’s supports and the axis of internal bending. Behaviour of two-way
spanning walls (Figure 1.2b), which include any class of walls supported on at

1The traditional naming convention for vertical and horizontal bending is based on the orientation
of principal flexural stresses generated by the applied bending moment. Vertical bending causes
flexural stresses acting perpendicularly to the bed joints (see Figure 1.3a), whilst horizontal bending
causes flexural stresses acting perpendicularly to the perpend joints (Figure 1.3b). For clarity, it
should be noted that the crack direction is opposite to that suggested by the name—vertical bending
is associated with horizontal cracks and conversely, horizontal bending with vertical cracks.
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Figure 1.2: Various types of wall support shapes and the associated out-of-plane flexure
cracking patterns.
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least one vertical edge and one horizontal edge, is especially complex, due to the
anisotropic nature of the masonry material and the structural indeterminacy of
the wall configurations [Drysdale et al., 1994]. Such walls undergo biaxial bend-
ing, whereby the internal flexural stresses act in both the horizontal and vertical
directions. As a result, two-way panels characteristically develop crack patterns
exhibiting a combination of vertical, horizontal and diagonal crack lines. In turn,
the internal moments along the different types of crack lines can consist of a
combination of flexure (normal stress) and torsion (shear stress) (Figure 1.3).

The majority of past experimental and theoretical research dealing with seismic
out-of-plane response has been focused on vertically spanning URM walls [Ewing
and Kariotis, 1981; Doherty et al., 2002; Griffith et al., 2004]. By contrast, two-way
URM walls have received only limited attention [e.g. Jaramillo, 2002], even though
they are most commonly encountered in practice. This topic will hence form the
primary focus of this thesis.

1.2 shortcomings of current design methodology

To highlight the flaws of the current seismic design approach, a brief description of
typical load-displacement (F-∆) behaviour of a URM wall subjected to out-of-plane
loading will firstly be presented (Figure 1.4). When an uncracked URM wall is
loaded, it initially deforms in a linear elastic manner until the internal stresses
begin to exceed the material’s tensile strength and cracking starts to occur. With
continued deformation, progressive cracking of joints occurs and the panel loses
stiffness. Typically, the wall reaches its ultimate load capacity at a deformation
between approximately 5–15 mm. As the wall is displaced further, it continues to
lose strength and stiffness until it eventually becomes fully cracked. After this, the
wall can still maintain some load resistance due to gravity effects; however, this load
resistance reduces with increased deformation due to P-Delta destabilisation. The
wall finally reaches its ultimate displacement capacity when the internal resisting
moments become balanced by the destabilising moments, which typically occurs as
the deformation approaches the wall thickness (110 mm for single leaf walls built
with standard Australian clay brick units). Beyond this point, the wall becomes
unstable and requires a centring applied load to prevent it from collapsing.

Under cyclic loading, fully cracked vertically spanning walls behave as rocking
blocks and possess nonlinear but elastic load-displacement (F-∆) behaviour (as
shown by the dotted line in Figure 1.4) [Ewing and Kariotis, 1981; Griffith et al., 2004].
By contrast, two-way spanning walls obtain the additional benefit of increased
strength and displacement capacities, as well as frictional energy dissipation under
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Figure 1.4: Generalised F-∆ response of URM walls subjected to out-of-plane bending.

cyclic loading—characteristics that are all favourable to seismic performance. This
has been demonstrated by both preliminary studies [Vaculik et al., 2004] and also
the experimental work performed as part of this research.

The current Australian provisions for ultimate limit state design (prevention of
collapse) of URM walls against out-of-plane seismic actions use a force-based (FB)
capacity check—that is, the designer must ensure that a wall’s load capacity (Fc)
exceeds its seismic load demand (Fd):

Fc > Fd. (1.1)

The load demand is determined according to the Australian earthquake loading
code as 1170.4 [Standards Australia, 2007], where the wall is treated as a non-
structural component (i.e. it is assumed to not be a part of the building’s overall
seismic load path). According to the code, the force demand is calculated as

Fd = afloor
Ic ac

Rc
M, (1.2)

where afloor is the effective floor acceleration at the level in the building where
the wall is situated; M is the mass of the wall; and Ic, ac and Rc are factors
accounting for component importance, attachment amplification and component
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ductility, respectively, which are all taken as 1.0 for a URM wall subjected to out-
of-plane actions. The wall’s load capacity (Fc) is in turn determined according to
the Australian masonry code as 3700 [Standards Australia, 2001] using the virtual
work (VW) method. Therefore, in order for the wall to be deemed as adequate,
its effective static acceleration capacity (load capacity divided by wall mass) must
exceed the maximum acceleration of the motion that the wall is subjected to; or

Fc/M > afloor. (1.3)

The shortcomings of the presently-used seismic design approach, together with
the associated aims of this research are as follows:

1. Whilst a FB design approach is suitable for preventing collapse due to static
loading such as wind, it has the potential to become overly conservative
for seismic design of ductile systems [Priestley, 1985; Abrams et al., 1996;
Magenes and Calvi, 1997; Priestley, 2000], as wall collapse only occurs once
its deformation exceeds its ultimate displacement capacity (∆u in Figure
1.4). Since the current design approach is aimed to ensure that the ultimate
load capacity of the wall is not exceeded, it effectively limits the maximum
allowable wall deformation to relatively small values (∆p in Figure 1.4). Hence,
there is a large range of ‘reserve’ displacement capacity that goes unutilised
in conventional FB design.

An innovative alternative to FB design is displacement-based (DB) seismic design,
whose objective is to ensure that the imposed displacements are kept within
acceptable limits. The philosophy of DB design is based on the notion that
structural deformations, rather than forces, provide a reliable indicator of
damage incurred under seismic loading, which is an especially attractive
concept from the point of view of performance-based seismic engineering
[Priestley, 2000; Fajfar, 2000; Abrams, 2001; Bertero and Bertero, 2002; Xue and
Chen, 2003]. DB methods have gained widespread acceptance in recent years
and have been developed for various types of ductile systems [Priestley,
1997; Magenes and Calvi, 1997; Medhekar and Kennedy, 2000; Kowalsky, 2002],
including vertically spanning URM walls subjected to out-of-plane actions
[Doherty et al., 2002]. The ultimate aim of the present research is to develop
a generalised DB design methodology for walls subjected to out-of-plane
loading, with particular emphasis on two-way walls.

2. A further issue of the current FB design approach is that the ultimate load
capacity (peak of the solid line in Figure 1.4), calculated according to as 3700,
is heavily dependent upon the masonry’s tensile strength properties which
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Figure 1.5: General form of the as 1170.4 design acceleration spectrum.

have a large range of variability. While this is a natural aspect of URM, it does
make seismic assessment of existing masonry buildings problematic, as it is
difficult to reliably quantify these material properties in-situ.

By contrast, it is intended that the developed DB methodology will be based
upon the wall’s capacity curve after cracking (dotted line in Figure 1.4), which
does not rely upon tensile strength data but rather on the geometry of the
wall. In particular, it is already well established that the ultimate out-of-plane
displacement capacity ∆u is dependent primarily on the wall’s thickness [e.g.
Doherty et al., 2002]—information that is much easier to obtain in existing
buildings.

3. The current as 1170.4 provisions used to determine the seismic load demand
[as per Eq. (1.2)] effectively assume that the wall is rigid (has a zero vibrational
period) and therefore responds at the peak acceleration of the excitation
motion. For example, if the wall is situated at the ground level, then the
design acceleration afloor used in the design check [Eq. (1.3)] is taken as the
peak ground acceleration (PGA) in the design acceleration spectrum (Figure
1.5). This, however, can be a highly unconservative assumption since the wall
is, to some degree, flexible (has a period greater than zero) and can therefore
amplify accelerations through its own vibration. Hence, if the FB design
procedure is to be used, it may be more prudent to use the peak spectral
acceleration (PSA) region of the acceleration spectrum rather than the PGA.2

2An alternative way to rectify this problem would be for as 1170.4 to stipulate the component
amplification factor ac in Eq. (1.2) as a value > 1. Presently the only such value (2.5) is specified for
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For comparison, the ratio of the PSA/PGA for the as 1170.4 prescribed design
spectra ranges between 2.8 and 3.3.

As described by the above points, the current FB design approach appears to be
overly conservative in certain parts (point 1) and unconservative in others (point
3). Hence, there is significant scope for the development of an alternative design
methodology to address these deficiencies. Of the above limitations, this thesis will
focus primarily on points 1 and 2, through development of a DB design approach.
While the third point remains valid, it can be effectively addressed through DB

design using the capacity spectrum method [e.g. as described by Freeman, 2004]
and will therefore not be explicitly dealt with in this thesis.

1.3 research objectives , scope and outline

As discussed in the previous section, the primary objective of this research is
the development of a displacement-based seismic design approach for URM walls
subjected to two-way bending. As a secondary objective, it is also of interest to fur-
ther develop the presently-used force-based methodology, in particular, analytical
techniques for predicting: (i) the ultimate strength which accounts for the material
tensile strength of the masonry (solid line in Figure 1.4), and (ii) the strength of a
wall after cracking (dashed line in Figure 1.4). It is anticipated that the resulting
FB and DB methodologies can ultimately be assimilated into a multi-tiered design
procedure.

The URM typology forming the main focus for this research is single-leaf, half-
overlap stretcher bonded, clay brickwork (as illustrated in Figure 1.3), which has
widespread prevalence in both new and existing Australian construction. While
multi-leaf interlocked and cavity construction is also common, it is beyond the
scope of this thesis. Furthermore, as stated previously, two-way spanning walls
(Figure 1.2b) represent the main type of wall configuration considered in this work;
although, where forming a specific case of the developed methodology, one-way
spanning walls (Figure 1.2a) are also considered. It is the author’s intention that
within this scope, the findings of this research are kept as general as possible,
so that they may be applied toward the design of new buildings as well as the
assessment of existing buildings alike.

To achieve the aforementioned objectives, the content of this thesis is divided
into three parts: Part i reports the experimental work undertaken and includes
Chapters 2 and 3. Part ii reports the development of the associated analytical

“flexible spring-type mounting systems for mechanical equipment”.
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methodologies and includes Chapters 4, 5, 6 and 7. Part iii includes various
supporting appendices relating to the individual chapters.

The following is a synopsis of each chapter:

• Chapter 2 reports experimental tests in which eight full-scale walls were
subjected to quasistatic cyclic loading using airbags.

• Chapter 3 reports a companion study where five half-scale walls were tested
using a shaketable.

• Chapter 4 provides further developments of the present state-of-the-art
method for prediction of the ultimate load capacity of two-way walls, which
considers contributions from the tensile strength of the masonry.

• Chapter 5 develops a probabilistic approach to horizontal bending, with
application toward the ultimate moment capacity and expected likelihood of
the different types of failure modes.

• Chapter 6 develops an analytical method for predicting the wall’s load capac-
ity by assuming that the masonry possesses zero bond strength. The resulting
approach becomes based primarily on the geometric properties of the wall.

• Chapter 7 continues the development of the approach in the previous chapter
by extending it to the prediction of the wall’s overall load-displacement
capacity. It also describes a prototype DB analysis using the proposed model.

• Chapter 8 concludes this thesis by summarising its main outcomes and
providing recommendations for future research.
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E X P E R I M E N TA L W O R K





Chapter2
Q U A S I S TAT I C C Y C L I C T E S T I N G

Abstract

An experimental programme was conducted in which eight full-scale unreinforced
masonry walls were subjected to quasistatic cyclic face loading using a system of
airbags. Of the tested walls, six contained a window opening and four were sub-
jected to vertical precompression. Combined supports at the vertical and horizontal
edges ensured that under face loading the walls underwent two-way bending. The
walls were found to possess good post-peak strength and displacement capacity
as well as reasonable energy dissipation characteristics. Significant strength and
stiffness degradation and non-symmetry of strength in the positive and negative
displacement directions were also evident. Discussion of the causes of the afore-
mentioned trends and their implications towards the seismic response of masonry
walls is provided.

13
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2.1 introduction

This chapter presents an experimental study in which a set of eight full-scale
unreinforced masonry (URM) walls were subjected to cyclic out-of-plane loading.
The panels were two-way spanning, in that they were supported at their horizontal
and vertical edges, and thus responded in biaxial bending when subjected to face
loads. Displacement-controlled quasistatic loading was administered using a set of
inflatable airbags positioned against the opposite faces of the walls. The boundary
support conditions remained constant for all wall specimens and incorporated
moment connections at the walls’ vertical edges. Parameters varied across the eight
walls include the panel aspect ratio, amount of vertical precompression, and the
presence of a window opening. The panel configurations are described in greater
detail in Section 2.3.2.

The aims of this study were:

• To record the cyclic load-displacement (F-∆) behaviour of the walls, for the
purposes of: (i) studying it with respect to the walls’ expected seismic perfor-
mance, (ii) comparing the walls’ static strength to analytical predictions made
using the virtual work (VW) method (dealt with in Chapter 4), (iii) quantifying
values of key hysteretic properties including stiffness and damping, and (iv)
providing a basis for the development of a nonlinear F-∆ model (dealt with
in Chapter 7).

• To study the walls’ cracking patterns and measure their deformation profiles,
and assess the accuracy of idealised failure mechanisms used in the various
analytical methods.

• To contribute to the available pool of experimental data for full-scale URM

walls with precompression and fixity at the vertical edges, which is surpris-
ingly lacking in the available literature.

To achieve these aims, every wall was tested in two distinct stages, as follows:

ultimate strength test The first stage of the test involved subjecting the
wall to monotonic loading using airbags until it reached its ultimate load capacity.
In most of the walls, this corresponded to deformations of approximately 20 to 40

mm, which caused sufficient cracking to define a failure mechanism. During this
phase of testing, the face of the wall was heavily instrumented using an array of
displacement transducers to monitor displacements at different locations along the
wall.
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cyclic testing After the initial ultimate strength test was completed, airbags
were placed on both sides of the wall and cyclic loading was administered. The
amplitude of the applied displacement was sequentially increased at increments of
10 mm, with typically two cycles being performed at each level of displacement.
During this phase the walls were subjected to maximum central displacements
close to the wall’s thickness of 110 mm.

The test study undertaken is believed to provide a significant contribution to
the existing pool of experimental work, by filling several research gaps identified
through a review of literature (reported in Section 2.2). Among the unique aspects
of this study are the boundary support conditions imposed on the test walls. To
the author’s knowledge, no prior experimental work has been conducted where
full rotational fixity was implemented along the vertical edges of the wall by means
of return walls, a restraint condition that is commonly encountered in practice. In
this study, vertical edges were restrained against both translation and rotation and
were therefore considered to be fixed-supported. By contrast, the top and bottom
horizontal edges were simply-supported, with the exception of one wall which
remained free at the top edge. Another significant aspect of the tests was subjecting
some of the walls to precompression, in order to simulate loadbearing walls that
act as part of the gravity load path. In addition, six of the eight walls tested in this
study contained a window opening, and furthermore, because most of the walls
with openings encountered in past literature contained concentrically positioned
openings, this study included four walls with asymmetrically positioned openings.
Finally and most importantly, to the author’s knowledge, no prior experimental
work has been performed where the primary aim was to study the cyclic response
of two-way URM walls under quasistatic loading conditions.

The outline of this chapter is as follows: A review of past experimental research
is presented in Section 2.2. A detailed account of the main test programme,
including the material properties, wall configurations, the test arrangements and
test procedure, is provided in Section 2.3. Results of the experimental study are
then presented in three parts: The walls’ load-displacement behaviour is studied
in Section 2.4, the observed damage and crack patterns are discussed in Section
2.5, and a study of the wall deformation profiles is presented in Section 2.6. The
chapter concludes by summarising the key observations and lessons derived from
the experimental programme in Section 2.7.

Supporting appendices are also provided in relation to the work in this chapter:
Appendix A reports details of material testing, and Appendix B provides other
miscellaneous details.
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2.2 review of past experimental research

2.2.1 Comparison of Testing Methods

The general aim of cyclic testing, which may include any method of testing where
the structure is subjected to repeated reversals of loading direction, is to study the
seismic performance of structural systems. Such tests can be further categorised
according to the loading rate as either quasistatic or dynamic.

Quasistatic cyclic tests involve administering a cyclic loading pattern at a slow
rate, usually in displacement control. The primary advantage of this mode of testing
is to allow the load versus displacement (hysteresis) behaviour to be studied under
predefined displacement histories. These generally involve alternating direction
of the applied displacement at sequentially increasing levels, with multiple cycles
at each level of displacement. This can be used to quantify the system’s cyclic
load-displacement envelope as well as its degradation and energy dissipation
characteristics.

Dynamic shaketable testing is fundamentally different to quasistatic loading,
because it subjects the structure to a series of accelerations. Whilst this mode
of testing doesn’t afford the same level of control over the imposed structural
deformations, it does recreate the true dynamic nature of seismic response by
incorporating inertial and viscous damping forces. It also allows for the structure
to be subjected to realistic earthquake motions. A further aspect of shaketable
testing is that the structure is inherently subjected to loading spatially distributed
according to its mass, which is an experimental design aspect that needs to be
explicitly taken into account in quasistatic testing if it is to be used for seismic
resistance assessment.

Calvi et al. [1996] provides a good discussion of the relative merits of the
different testing methods with respect to masonry structures. He notes that since
URM exhibits rate-dependent behaviour whereby crack propagation can occur
during application of a constant load, quasistatic tests tend to indicate lower load
resistance than dynamic tests and are thus generally considered to be conservative
for seismic assessment. Furthermore, he and other researchers [e.g. Abrams, 1996]
have also argued that since typical displacement histories used in quasistatic cyclic
tests involve a large number of displacement cycles, which are more severe than
monotonic or random earthquake histories, quasistatic cyclic tests tend to be even
further conservative in terms of the measured strength for structural systems such
as URM, where degradation is affected by the number of cycles.
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2.2.2 Monotonic Loading

In the past four decades, a substantial amount of monotonic testing has been
performed on two-way masonry walls, with significant contributions made in
Australia, Canada and the United Kingdom. The general aim of these studies has
been to measure the static load capacity of various types of wall configurations
in response to a uniformly distributed pressure, typically administered using
airbags. An extensive review of these works has led to the compilation of a
database incorporating over 400 individual tests. Table 2.1 summarises the main
aspects of the published test data, including: the type of masonry (unreinforced or
reinforced1), specimen scale (full or reduced), type of material (clay or concrete),
types of edge support geometries, and the number of walls featuring openings or
precompression.

The review conducted indicates a notable lack of available test data for walls
with precompression. As seen from Table 2.1, of the eight reported tests with
precompression, only five involved unreinforced clay brick masonry walls. The
shortage of data for such walls is somewhat surprising, considering that loadbearing
walls are very common in typical in masonry construction. The review also
shows a lack of data for two-way spanning walls with rotational fixity along the
vertical edges (not indicated in the table). As a contribution to the available data
pool, the experimental programme in this chapter focuses on walls featuring both
precompression and vertical edge fixity.

2.2.3 Cyclic Loading

Whilst a relatively large amount of experimental work has been performed involv-
ing monotonic loading (as reported in Section 2.2.2), only a handful of studies have
administered cyclic loading, be it quasistatic or dynamic. Furthermore, the majority
of such studies have focused only on vertically spanning walls. These include tests
on unstrengthened URM panels [Ewing and Kariotis, 1981; Dafnis et al., 2002; Griffith
et al., 2004], as well as URM panels strengthened using various retrofit systems such
as fibre-reinforced polymer (FRP) strips [Ehsani et al., 1999], expansive epoxy [Zeiny,
2003] and timber backup framing [Paquette et al., 2001; Reneckis et al., 2004].

Experimental research on two-way panels is especially limited in the available
literature. Benedetti et al. [1998] performed shaketable tests on 24 half-scale two-
storey masonry buildings; however, the study focused primarily on the overall

1Although unreinforced masonry walls are the primary focus of this research, several tests on
reinforced masonry walls and concrete masonry walls are included in Table 2.1, as these formed
part of a data set used by Lawrence and Marshall [2000] to validate the accuracy of the VW method for
calculation of the ultimate load capacity.
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building response and only limited attention was given to the out-of-plane flexural
response of the two-way walls which were present. Jaramillo [2002] conducted a
rare study involving shaketable testing of two-way spanning walls. He tested two
full-scale wall specimens supported along the bottom edge and both vertical edges,
whilst being free at top edge.

Cyclic tests on two-way walls using quasistatic load application have also been
very limited, but some research has been performed, including previous work by
the author [Vaculik et al., 2003, 2004] involving airbag tests on half-scale dry-stack
masonry walls; and tests by Ghobarah and El Mandooh Galal [2004] using carbon-FRP

retrofitted concrete block masonry walls. However, in both of these studies the wall
specimens were tested by unloading and reloading in the same direction and since
the direction of loading was not reversed, the loading would not be considered
truly ‘cyclic’.

Review of the available literature indicates a surprising lack of experimental
work on regular non-retrofitted, two-way URM panels subjected to cyclic loading,
be it quasistatic or dynamic. In order to fill these gaps, two test studies have been
conducted as part of this research: (i) the quasistatic cyclic tests on eight full-scale
panels, as reported in the current chapter; and (ii) shaketable tests on five half-scale
panels, reported in Chapter 3.

2.3 test programme and methodology

2.3.1 Materials

All brickwork used in this study, including the eight full-scale URM panels and
small-scale material test specimens, was constructed by qualified bricklayers under
controlled laboratory conditions to ensure the best possible quality control. The
masonry units comprised standard Australian clay bricks with nominal dimensions
230× 110× 76 mm (lu × tu × hu), perforated with two rows of five holes (Figure
2.1). The nominal weight density γ of this type of masonry is 19× 10

−6 N/mm3.
To minimise variability in the material properties, all masonry was constructed
using brick units originating from the same batch at manufacture.

Mortar joints were constructed to a standard thickness of 10 mm using 1:2:9
mortar (portland cement, lime and sand). The clay content of the sand was
determined to be 8.2%. Quality control measures were undertaken during the
mixing of the mortar to ensure consistency. This included bucket batching of the
ingredients and ensuring that all sand was air-dried prior to mixing. Water was
added to the mix of cement and lime inside the mortar mixer to provide a desired
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Figure 2.1: Perforated clay masonry units with 230× 110× 76 mm dimensions.

Table 2.2: Material properties of brick units.

Lateral modulus of rupture Young’s modulus
fut [MPa] Eu [MPa]

Mean 3.55 52, 700
CoV 0.27 0.35

workability based on the bricklayers’ experience. All water additions were recorded.
The average volumetric water content of the mortar was 19.9%, with a coefficient of
variation (CoV) of 0.13.

Tests on small masonry specimens were conducted in accordance with the
guidelines given in the Australian masonry code as 3700 [Standards Australia, 2001],
to determine values of key material properties for use in subsequent analytical
studies. A detailed report of the test procedures used and the associated results is
given in Appendix A. Mean material properties for the brick units are summarised
in Table 2.2, including the lateral modulus of rupture fut and Young’s modulus of
elasticity Eu. Mean material properties for the masonry are summarised in Table
2.3 for the respective walls, including the flexural tensile strength fmt, compressive
strength fmc and Young’s modulus of elasticity Em. Note that the fmt presented
in this table was determined as the average of the mean values for the mortar
batches used in each wall (refer to Appendix A.2). The values of material properties
determined are considered typical for the type of masonry used.
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774 

946 

2520 

2400 

660 

1200 

2494 

120 

86 

(c) Walls s7 and s8.

Figure 2.2: Detailed wall dimensions (in millimetres).
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Table 2.3: Material properties of masonry.

Wall Flexural tensile strength Compressive strength Young’s modulus
fmt [MPa] fmc [MPa] Em [MPa]

s1 0.721 17.6 3, 190
s2 0.520 13.6 2, 240
s3 0.499 15.1 3, 030
s4 0.635 16.8 5, 580
s5 0.655 17.4 3, 990
s6 0.496 15.8 2, 740
s7 0.682 15.1 4, 130
s8 0.714 16.1 3, 060

Mean 0.614 16.0 3, 540
CoV 0.19 0.14 0.41

2.3.2 Panel Configurations

Configurations of the eight test walls are presented in Table 2.4, with their dimen-
sions shown in Figure 2.2. The walls comprised of three different geometries, as
follows:2

long solid walls (s1, s2) These walls had dimensions of 4080× 2494 mm
(L× H) and did not contain any openings (Figure 2.2a). They were tested under
precompression of 0.10 and 0 MPa, respectively.

long walls with openings (s3, s4, s5, s6) These walls had dimensions of
4080× 2494 mm (L× H) and each contained an eccentrically positioned window
opening (Figure 2.2b). Walls s3–s5 were supported at the top horizontal edge and
tested under precompression of 0.10, 0.05 and 0 MPa, respectively. The fourth wall,
s6, was unique to this study in that it was left unsupported at the top edge.

short walls with openings (s7, s8) These walls had dimensions of 2520×
2494 mm (L× H) and contained a concentrically positioned window opening (Fig-
ure 2.2c). They were tested under precompression of 0.10 and 0 MPa, respectively.

All walls were constructed entirely using half-overlap stretcher bonded masonry.
Short return walls spanning two brick units in length (480 mm) were provided
at the vertical edges, as shown by Figure 2.3, which were also engaged into the
main leaf of the wall using the half-overlap stretcher bond. The purpose of the

2Note that the given wall lengths refer to the length between the centre-to-centre of the return
walls supporting the vertical edges. For the clear lengths between the supports refer to Table 2.5 and
Figure 2.2.
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Table 2.4: Test wall configurations.

Panel dimensions [mm] and
support arrangement Wall σvo [MPa]

FF

S

S

2 4 9 4

4 0 8 0

s v o

s1 0.10

s2 0

9 4 6

7 7 4

7 7 4

FF

S

S

2 4 9 4

2 2 2 01 2 0 06 6 0
4 0 8 0

s v o

s3 0.10

s4 0.05

s5 0

9 4 6

7 7 4

7 7 4

FF

f r e e

S

2 4 9 4

2 2 2 01 2 0 06 6 0
4 0 8 0

s6 –

9 4 6

7 7 4

7 7 4

FF

S

S

2 4 9 4

6 6 01 2 0 06 6 0
2 5 2 0

s v o

s7 0.10

s8 0

Note: F = Fixed support, S = Simple support

Table 2.5: Detailed wall dimensions and properties.

Walls Wall dimensions Opening dimensions Area Weight

Lw sup Lw clear Hw xo yo Lo Ho Aw Ww
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [m2] [kN]

s1, s2 4080 3960 2494 − − − − 9.876 20.64
s3, s4, s5, s6 4080 3960 2494 660 774 1200 946 8.741 18.27
s7, s8 2520 2400 2494 660 774 1200 946 4.850 10.14

Note: The area and weight of the wall were calculated using the clear wall length between the
supports, Lw clear.
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480 mm 

Exterior face of 
main wall 

Interior face of 
main wall  

Return walls  

Figure 2.3: Overall test wall geometry.

return walls was to stabilise the walls against overturning and to provide means
for implementing rotational fixity at the vertical edges. The naming convention
used for reference to the interior and exterior faces of the wall is also shown on
Figure 2.3, which is used throughout this chapter.

The dimensions of each class of wall are summarised in Table 2.5, including the
wall length Lw sup measured between the centre-to-centre of the vertical supports,
wall length Lw clear taken as the clear span between the return walls, wall height
Hw, and coordinates of the opening as xo, yo, Lo and Ho (horizontal offset, vertical
offset, length and height, respectively). The net face area Aw and net weight Ww

of the main face of the wall are also provided in the table, which were used in
subsequent calculations for converting the measured force resistance to pressure.
Note that these values were calculated using the clear length of the wall, Lw clear,
since this corresponds to the area over which the airbag loading acted.

2.3.3 Wall Support Conditions

The methods of restraint used at the edges of the walls incorporated simple
translational support at the top and bottom edges, and both translational and
rotational restraint at the vertical edges. The detailing used to provide these support
conditions and the implications toward wall behaviour will now be discussed.
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Steel members 
along length of 
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Wall 

Figure 2.4: Bottom edge support details.

Bottom Edge

During construction, a mortar base joint was used to bond the walls to the concrete
floor of the laboratory. Whilst this provided sufficient translational restraint during
testing of panel s1 which was subjected to 0.10 MPa precompression, significant
sliding along the base occurred during the initial push of wall s2, an identical
wall with no precompression. This is most likely to have resulted from the lack of
additional frictional restraint in wall s2. It was decided that whilst it is possible for
such behaviour to occur in practice when the base connection is weak, for example
in the case of a damp proof course connection, additional support at the bottom
edge would be provided in order to facilitate two-way bending response.

An improved restraint method was thus implemented in all subsequent tests,
consisting of a steel member that ran adjacent to the entire length of the bottom
edge and was fastened to the laboratory floor using steel struts (Figure 2.4). This
system was implemented on both sides of the wall during the cyclic test phase.

Although each wall was mortar-bonded to the floor using a base joint, previ-
ous studies have shown that horizontal cracks in two-way walls generally form
prior to the attainment of the ultimate load capacity [Lawrence and Marshall, 2000].
Consequently, the cohesion along the base joint does not contribute to the ultimate
strength of the wall. Nonetheless, the bottom edge still possesses the capacity to
provide some degree of rotational restraint following crack formation, due to the
restoring moment from self-weight. Although this level of moment resistance has
been shown to be generally negligible when considering the ultimate strength of
a wall, it becomes significant when considering the wall’s residual strength after
cracking [Vaculik et al., 2003].
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Loading point Rubber 
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Steel angle members Steel strut 
connected to 
reaction frame 

Steel angle members 
along length of wall 
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(a) Walls with precompression (b) Walls without precompression

Figure 2.5: Top edge support details.

Top Edge

The methods used to provide translational restraint along the top edge of the panels
are shown in Figure 2.5. In walls with axial loading (Figure 2.5a), the top edge was
restrained using steel angles that were clamped onto the horizontal precompression
bars, with further restraint also resulting from friction. In the absence of axial
loading (Figure 2.5b), the edge was restrained by angled steel members that ran
along the entire length of the wall, and were further stiffened using steel struts.
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Because both connection methods provided translational restraint but were
unable to transfer any bending moment, the top edge in all test walls (except
s6) was considered to be simply-supported. It should also be noted that in the
presence of axial precompression, the load was transferred to the wall through a
thin steel bar which was positioned at the mid-thickness of the wall (Figure 2.5a),
and thus provided no restoring moment to contribute to the wall’s out-of-plane
load resistance.

Vertical Edges

The degree of rotational restraint along the vertical edges can significantly influence
the out-of-plane strength of two-way walls calculated using the as 3700 [Standards
Australia, 2001] method [Griffith, 2000]. Special care was therefore taken in the
detailing of the connections at the vertical edges, to ensure that the degree of fixity
was a controlled quantity. To achieve this, connections were detailed to produce
full translational and rotational restraint—boundary conditions which would be
representative of typical masonry construction; for example, where a wall is built
into an engaged pier, or at the intersection of two orthogonal walls at the corner of
a building.

The detailing used to restrain the vertical edges of the walls is shown by Figure
2.6. Full moment connections were achieved at the vertical edges of the main wall
face, by encasing the return walls along their height using steel channel members
which were in turn braced back to the reaction frame. Because this provided lateral
out-of-plane restraint to the vertical edges of the return walls themselves, any face
load acting on the main wall face generated a horizontal bending moment at the
boundary between the main wall and the return wall. Consequently, the vertical
edges of the wall can be treated as fixed moment connections, which require cracks
to form in order for the wall to develop a collapse mechanism.

2.3.4 Vertical Precompression

For the purpose of simulating typical loadbearing walls, vertical precompression
of up to 0.10 MPa was applied to four of the test specimens (walls s1, s3, s4 and
s7). The vertical load was administered using a series of horizontal steel members
pinned at one end to a support frame and cantilevered over the test wall along the
main panel as well as at the return walls, as shown in Figure 2.7. In order to apply
axial loading in a realistic manner, the steel members were positioned along the test
wall at spacing representative of typical roof beams (details in Figure B.1, Appendix
B.1). Weights were suspended from the ends of the horizontal bars to achieve the
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Figure 2.6: Vertical edge support details.
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1 5 0 0  m m4 0 0  m m

S t i f f  r e a c t i o n  f r a m e

L e v e r a g e  r a t i o :
1 9 0 0  /  4 0 0  =  4 . 7 5

S u s p e n d e d  w e i g h t
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S t e e l  b a r
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(a) Main wall

1 2 6 0  m m6 4 0  m m

L e v e r a g e  r a t i o :
1 9 0 0  /  6 4 0  =  2 . 9 7

R e t u r n  w a l l

P i v o t  p o i n t L o a d i n g  p o i n t

(b) Return walls

Figure 2.7: Vertical precompression loading arrangement.

intended precompression stress (σvo) at the top of each wall, particularly 0.10 MPa
in walls s1, s3 and s7, and 0.05 MPa in wall s4. The force was transferred to the wall
through a loading pin positioned along the centre line of the wall’s thickness, with
a timber top-plate and a rubber layer used to disperse the load more uniformly
(Figure 2.5a).

2.3.5 Test Procedure

Each wall was tested in two distinct stages which are described herein. A diagram
of the loading and instrumentation arrangement used during each stage is shown
in Figure 2.8.

Ultimate Strength Test

The first phase of testing involved subjecting the initially uncracked wall to a
monotonic load until it reached its ultimate load capacity. In the majority of tests,
this involved displacements of approximately 20–40 mm, during which sufficient
cracking occurred along the panel to define the failure mechanism. Once it was
deemed that a wall had attained its peak strength, the applied load was released.

Figure 2.8a illustrates various aspects of the test arrangement schematically,
whilst Figure 2.9 shows a photograph of a panel during this phase of testing. The
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(a) Arrangement for ultimate strength test

 
Reaction frame Load cells 
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displacement transducers 

Protective 
casing Return wall 

(b) Arrangement for cyclic testing

Figure 2.8: Plan view of the instrumentation and loading arrangement.
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Figure 2.9: Photograph of the overall test setup, including precompression arrangement
(wall s1 shown).

mechanism used to apply a uniformly distributed pressure onto the panel consisted
of a series of inflatable airbags mounted on a stiffened backing frame, which was
in turn supported by load cells connected to the reaction frame. Because of the
differently sized airbags available, their arrangement was chosen so as to provide
the best possible coverage along the face of the wall, in order to distribute the load
evenly (details in Figure B.2, Appendix B.1). Pressure was applied to the test wall
by slowly inflating the airbags using an electronically regulated air pump. The
exact force exerted on the wall was measured by the load cells and conveyed to
a data acquisition system. It was noted during the tests that the face pressure
measured using the load cells was typically 75–80% of the air pressure recorded in
the airbags, which is common for this type of loading technique.

The deformation profile along the wall was monitored using an array of displace-
ment transducers (Figure B.4, Appendix B.1). A 3× 3 grid was used to measure
the displacement along the wall’s quarter- and mid-span locations. Movement
of the walls along their vertical and horizontal edges was also monitored using
displacement transducers, and where movement along these boundaries took place,
the wall deformation data was adjusted accordingly such that the displacements
were measured relative to the wall edges.
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(b) Type B, used for walls s4–s8.

Figure 2.10: Cyclic loading patterns.

Cyclic Testing

After completing the ultimate load capacity test, which essentially corresponded
to the first half-cycle of loading, the walls were subjected to cyclic loading using
airbags positioned on both sides of the wall (Figure 2.8b). Due to the presence of
the airbags, it was impractical to record displacements at multiple locations over
the face of the wall as was done in the ultimate load capacity tests; so instead,
displacement transducers were used only at key positions (Figure B.5, Appendix
B.1), including the location of the maximum displacement during the initial push.
To achieve this, string potentiometer displacement transducers were attached to the
wall through holes in the airbag backing frame and encased in protective tubing to
prevent contact between the string and the airbags (Figure 2.8b).

Idealised representations of the applied displacement histories are shown in
Figure 2.10 (Figures B.16–B.23 in Appendix B.3 show the precise histories imposed
on each wall). Initiating from the residual displacement from the initial push, the
applied displacement was alternated between the positive and negative directions,
with its amplitude being increased by 10 mm increments. Two loading cycles were
generally performed at each amplitude, except at larger displacements where only
one cycle was performed. The tests were concluded when the walls were deemed to
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be sufficiently damaged based on visual inspection and measured strength, which
typically corresponded to deformations of approximately 100 mm.

Two types of loading patterns were employed: type A loading, used for walls
s1–s3 (Figure 2.10a); and type B loading, used for walls s4–s8 (Figure 2.10b). In
type A loading, the displacement was consistently alternated between the positive
and negative directions for two complete cycles, before increasing the amplitude
by 10 mm. By contrast, in type B loading, each time the displacement amplitude
was increased to a higher level, the wall was unloaded (denoted by ‘U’ in Fig-
ure 2.10b) and then reloaded in the same direction as the previous displacement
excursion. This allowed for observations of hysteretic behaviour caused by un-
loading/reloading in the same direction, which was not possible under type A
loading, since unloading was always followed by loading in the opposite direction.
It was thought that type B loading could provide additional information regarding
the hysteretic behaviour that might prove useful in subsequent development of a
hysteresis model.

2.4 load-displacement behaviour

Using the recorded data, load-displacement graphs were generated for the initial
push to ultimate strength (Figures 2.11–2.13) and cyclic tests (Figures 2.14–2.21). It
should be noted that the positive displacement and load direction in these graphs
corresponds to the applied load pushing the wall inwards, thereby imposing a
compressive reaction onto the return walls.

The primary axes of the graphs plot the wall’s face pressure q versus displace-
ment ∆. The pressure resistance was calculated as

q =
F

Aw
, (2.1)

where F is the lateral force acting on the wall, obtained as the total of the load cell
measurements, and Aw is the net face area (given in Table 2.5 for each wall).3

The secondary axes of the provided graphs display the displacement and load
using the non-dimensional λ-δ format. The normalised displacement δ is defined
as

δ =
∆
tu

, (2.2)

where tu is the wall thickness (in these tests 110 mm). The non-dimensional load
(or load multiplier) λ is defined the ratio of the wall’s lateral force resistance and

3The net area was calculated as Aw = Lw × Hw − Ao, where Lw and Hw are the length and height
of the wall along which the load was applied and Ao is the area of any openings present.
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Table 2.6: Results of the initial push.

Wall
Measured Strength Kini

[kN/mm]

Percentage
of ∆max

recovered
Fult qult λult

[kN] [kPa]

s1 47.0 4.76 2.28 42.1 66%
s2 30.0 3.04 1.45 6.71 62%
s3 44.2 5.05 2.42 45.1 83%
s4 34.2 3.91 1.87 35.2 77%
s5 31.4 3.59 1.72 16.6 52%
s6 17.2 1.97 0.94 3.85 75%
s7 42.2 8.71 4.17 28.7 60%
s8 41.3 8.52 4.08 24.6 70%

self-weight4 (given in Table 2.5 for each wall); or

λ =
F

Ww
=

q
γ tu

, (2.3)

where γ is the weight density of the masonry (in these tests 19× 10
−6 N/mm3).

Alternatively, λ may also be interpreted as the equivalent static acceleration in
units of g’s. Of these three different measures of strength (F, q and λ), the pressure
and load multiplier are most meaningful in terms of the wall’s load resistance to
seismic actions, as they account for the surface area of the wall, and therefore reflect
the inertial nature of earthquake loading. Therefore, throughout the upcoming
discussions the pressure capacity is used as the measure of the load capacity.

2.4.1 Initial Push

The walls’ load-displacement response during the initial push up to the ultimate
load capacity is graphed in Figures 2.11–2.13. Several key parameters were derived
based on the measured response, as summarised in Table 2.6 for each wall. These
include: the ultimate strength, reported as a force (Fult), pressure (qult) and load
multiplier (λult); and the initial uncracked stiffness (Kini), determined as the slope of
the F-∆ loading branch up to 40% of the wall’s ultimate strength.5 The percentage
of displacement recovered upon unloading is also provided; however, since the
maximum displacement imposed upon the walls during these tests was somewhat
arbitrary, these values should only be treated as indicative of the walls’ self-centring

4The wall’s net weight is calculated as Ww = Aw tu γ, where Aw is the net area.
5All walls except for s2 were originally uncracked at the time the ultimate strength test was

conducted. In addition, wall s6 had its return walls insufficiently restrained in the in-plane direction
during these tests. Hence, it is likely that the strength and stiffness of these two walls may have been
reduced relative to their ‘true’ values.
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Figure 2.11: Load-displacement response for long solid walls (s1, s2) during initial push.

ability. Graphs demonstrating the derivation of each of these parameters from the
load-displacement curves are provided in Appendix B.2 (Figures B.6–B.13).

The upcoming sections discuss the behaviour of individual walls, followed by a
summary of the general trends observed from the initial ultimate strength tests.

Long Solid Walls (s1, s2)

Solid walls s1 and s2 differed only in that wall s1 was loaded with 0.10 MPa
precompression, whilst wall s2 had no axial loading. From inspection of the load-
displacement response shown in Figure 2.11 and Table 2.6, it can be seen that
wall s1 was stronger (4.76 kPa for wall s1 compared to 3.04 kPa for wall s2) and
significantly stiffer (42.1 kN/mm for wall s1 relative to 6.71 kN/mm for wall s2).

Whilst the increased strength of wall s1 may be explained by the presence of
vertical precompression, the difference in stiffness is thought to be due to previous
cracking undergone by wall s2 during an initial failed test attempt. In the first
loading attempt, the wall underwent sliding between its base course and the floor,
due to insufficient restraint along the bottom edge. This caused the wall to respond
primarily in one-way horizontal bending, resulting in a vertical crack along its mid-
length (photograph in Figure B.33, Appendix B.5). Following this failed test, the
restraint at the bottom edge was revised to the arrangement shown by Figure 2.4,
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which subsequently caused the wall to respond in two-way bending, as intended.

Both walls maintained a relatively constant load resistance for displacements
ranging from 5 mm to in excess of 30 mm. The shapes of the curves are also
consistent with those reported by Lawrence [1983] for similarly supported walls
incorporating fixed vertical edges. This apparent ‘ductility’ is thought to be due to
redistribution of internal resistance from diagonal bending along the inclined cracks
to horizontal bending along the vertical edges at the return walls. Consequently, at
the point where the ultimate load capacity is first reached, the horizontal bending
restraint along the vertical edges has additional capacity to accept transfer of load
from the diagonal bending mechanisms. This argument is supported by the crack
patterns exhibited by the walls during this phase of testing (refer to Figure 2.23),
showing that the diagonal cracks were fully developed but vertical cracks along the
edges were only partially developed. Further support to this hypothesis is given
by analytical calculations of wall strength, reported in Section 4.5, which suggest
that at the point of the wall’s ultimate load capacity, the full moment capacity of
the vertical edge cracks is not yet reached. Due to the damage incurred by the
walls, both unloaded inelastically and recovered approximately 60% of the imposed
displacement.

Long Walls with Openings (s3, s4, s5, s6)

Walls s3, s4 and s5 each had translational support along their top edges, with
precompression of 0.10, 0.05 and 0 MPa, respectively. From the load-displacement
curves for these walls shown by Figure 2.12 and Table 2.6 it can be seen again that
the walls with more vertical precompression were both stronger (5.05 kPa for wall
s3, 3.91 kPa for wall s4 and 3.59 kPa for wall s5), and stiffer (45.1 kN/mm for wall
s3, 35.2 kN/mm for wall s4 and 16.6 kN/mm for wall s5). By virtue of its free
top edge, wall s6 had the lowest strength (1.97 kPa) and stiffness (3.85 kN/mm) of
these four walls, particularly compared to wall s5 which differed from wall s6 only
in that its top edge was restrained from translation.

The load-displacement curves for these walls also suggest an apparent plasticity
over a range of displacements from 5 to 25 mm that is also believed to be due to the
moment redistribution from moment along the diagonal cracks to the horizontal
bending resistance along the vertical edge supports. The crack patterns for these
walls also demonstrate that at the conclusion of this test phase, the diagonal cracks
for these walls were well developed while no vertical cracks were visible at the
return wall supports, except in wall s3 where they were just starting to appear
(refer to Figure 2.23).
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Figure 2.12: Load-displacement response for long walls with openings (s3–s6) during
initial push.

Interestingly, walls s3 and s5 with openings had a greater pressure resistance
capacity than the corresponding walls without openings (s1 and s2), as shown by
the results in Table 2.6. This somewhat counterintuitive result is due to the fact
that the space occupied by the windows was not loaded, which caused the total
length of diagonal cracks contributing to the wall’s overall load resistance to reduce
only slightly, whilst the applied load applied reduced more significantly due to
the applied pressure acting over a smaller area. Hence, this particular set of walls
with openings would be expected to have a greater ‘force-based’ resistance toward
seismic loading than the corresponding solid walls. Note, however, that this result
is dependent on the size and position of the opening and should therefore not be
generalised. By contrast, the same walls subjected to wind loading would generate
uniform load distribution over its entire face including any openings and would
therefore be expected to fail under a smaller pressure than the corresponding solid
walls.

Short Walls with Openings (s7, s8)

Walls s7 and s8 were approximately square in shape with a symmetrically placed
window opening, and subjected to vertical precompression loads of 0.10 and
0 MPa, respectively. Both panels, similarly to the previous panels, displayed



38 quasistatic cyclic testing

0

2

4

6

8

10

0 10 20 30 40 50

Displacement, ∆ [mm]

P
re
ss
u
re
, 
q
 [
k
P
a]

0.0

1.0

2.0

3.0

4.0

0 0.1 0.2 0.3 0.4

Normalised displacement, δ

S
el
f 
w
ei
gh

t 
fa
ct
o
r,
 λ

 

FF 

SS 

SS 

2500 

2500 

1000

750

750

650 1200 650 

axial precompression σσσσv 

 

∆ (-) ∆ (+) 

Plan View 

 Displacement 
Transducer Position 

σ vo  = 0.10 MPa   (Wall s7)

σ vo  = 0 MPa   (Wall s8)

Figure 2.13: Load-displacement response for short walls with openings (s7, s8) during
initial push.

a substantial amount of displacement capacity beyond their elastic range and
recovered inelastically upon unloading (Figure 2.13). In contrast to the other walls
tested, wall s7 had only a slight increase in strength (4.17 kPa relative to 4.08 kPa)
and stiffness (28.7 kN/mm relative to 24.6 kN/mm) over wall s8.

At this stage of the test, the cracking pattern for wall s7 had fully developed
diagonal crack lines and a nearly complete vertical crack mechanism in one of
the return walls, whereas only diagonal cracking was visible for wall s8 (refer to
Figure 2.23). This suggests that wall s7 had very nearly developed a full collapse
mechanism at which point the strength would be expected to decrease rapidly.

Main Observations

The following generalisations can be made from the observed wall response during
the initial push:

Both the ultimate strength and initial loading stiffness of the walls became
enhanced with higher applied precompression. This is evident by comparing the
F-∆ curves for walls s1 and s2 (Figure 2.11), walls s3, s4 and s5 (Figure 2.12) and
walls s7 and s8 (Figure 2.13); as well as the associated Fult and Kini values provided
in Table 2.6. The increase in ultimate strength results from increased flexural and
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torsional resistance along cracks, which contribute to the internal moment capacity
of the masonry.

Significantly, each of the walls demonstrated some degree of ductility in the
region of the ultimate load capacity, as characterised by their ability to maintain a
relatively constant load resistance with continued deformation. Such behaviour is
considered desirable with respect to seismic resistance. As discussed previously,
this apparent ductility is thought to have been due to gradual redistribution of
internal bending moment from diagonal cracks to vertical cracks along the edges,
and was therefore a consequence of the vertical edges having rotational restraint.
This conclusion is also supported by the observed crack patterns at this phase of
testing, in that the vertical edge cracks were only partially developed whilst the
diagonal cracks were fully developed in most of the test walls (refer to Figure
2.23), and also by analytical predictions of wall strength reported in Section 4.5. It
is worth noting that Lawrence [1983] observed similarly ductile response during
tests on 15 walls that had comparable supports to the walls in the present study,
including some degree of rotational restraint at the vertical edges. By comparison,
Lawrence did not observe such strength plateaus in walls whose vertical edges were
simply supported, thus indicating that the apparent ductility in the former set of
walls was a result of the rotational restraint.

2.4.2 Cyclic Response

Cyclic F-∆ curves for the eight walls are plotted in Figures 2.14–2.21. Various key
properties have been derived from the response, as summarised in Table 2.7. Note
that all properties in the table were determined independently in the positive and
negative loading directions (as denoted by superscripts + and −) and include the
following: The ultimate force capacities in the two directions (F+

ult and F−ult) are
given in the 3rd and 4th columns. Two alternative measures of the wall’s ability
to maintain its strength with increasing deformation were used, including: (i) the
displacement range encompassing 80% of the ultimate strength (∆+

0.8Fu and ∆−0.8Fu),
as given in the 5th and 6th columns; and (ii) the residual strength and stiffness
at δ = ±0.5 (displacement equal to half the wall’s thickness). The corresponding
residual force capacities (F+

ht and F−ht ) are provided in the 7th and 8th columns; the
ratios of the respective residual strengths and the overall ultimate strength (F+

ht /Fult

and F−ht /Fult) are in the 9th and 10th columns; and the effective secant stiffness (K+
ht

and K−
ht) are in the 11th and 12th columns. The 13th and 14th columns provide the

equivalent viscous damping (ξhyst), calculated by the method of energy dissipated
per cycle of loading. A detailed description of the methods used to derive the
various properties from the data is provided in Appendix B.3, including a graphical
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illustration in Figures B.16–B.23.

The main trends in the observed load-displacement behaviour will now be
discussed with emphasis on their expected influence on the walls’ seismic response.

Residual Strength and Displacement Capacity

The derived values of ∆+
0.8Fu and ∆−0.8Fu (summarised in Table 2.7) indicate that

the walls were generally able to maintain 80% of their ultimate strength up to
displacements ranging between 20 to 40 mm in the positive direction and 30 to 50

mm in the negative direction. That the capacity in the negative direction appears
higher is a result of the ultimate strength in that direction (F−ult) being lower than
that in the positive direction (F+

ult), as the walls were already cracked when they
were first pushed in the negative direction. For the different walls, values of the
ratios F+

ht /Fult and F−ht /Fult provided in Table 2.7, range between 0.27 and 0.83 in
the positive direction (0.54 average), and between 0.20 and 0.73 in the negative
direction (0.47 average). This indicates that the walls still retained, on average,
approximately half of their ultimate load carrying capacity at a deformation equal
to half the wall thickness.

In Section 2.4.1, it was demonstrated that the F-∆ response in the vicinity of the
ultimate strength exhibited a ductile plateau due to progressive cracking and an
associated redistribution of moment from the diagonal cracks to the vertical edge
cracks. However, from the cyclic tests it is evident that the walls still possessed
significant residual strength and displacement capacity even after becoming fully
cracked. The reasons for this are as follows:

1. Following the formation of a collapse mechanism, the walls undergo rock-
ing block motion allowing them to reach significant displacement without
collapse. It is already well established that vertically spanning walls possess
a stability limit as the displacement approaches the wall thickness (δ = 1)
[Ewing and Kariotis, 1981; Doherty et al., 2002; Derakhshan et al., 2011, e.g.].
By contrast, two-way spanning walls are expected to possess even greater
displacement capacity, due to the following points.

2. In two-way collapse mechanisms, a greater proportion of the wall undergoes
rotation about the vertical axis. Mechanism sub-plates rotating about the
vertical axis are not governed by stability mechanics, since the axis of rotation
is parallel to the action of gravity. As a result, the overall wall becomes less
destabilised by P-Delta effects, and the instability displacement increases.
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Figure 2.14: Cyclic load-displacement response for wall s1.
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Figure 2.15: Cyclic load-displacement response for wall s2.
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Figure 2.16: Cyclic load-displacement response for wall s3.
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Figure 2.17: Cyclic load-displacement response for wall s4.
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Figure 2.18: Cyclic load-displacement response for wall s5.
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Figure 2.19: Cyclic load-displacement response for wall s6.
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Figure 2.20: Cyclic load-displacement response for wall s7.
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Figure 2.21: Cyclic load-displacement response for wall s8.
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In fact, analytical methodology developed in Chapter 7 predicts the upper
bound of the instability displacement for two-way mechanisms to be δ = 2.

3. Furthermore, two-way walls obtain an additional benefit to their post-cracking
strength from frictional modes of resistance along the already-formed crack
lines; particularly, rotational friction along vertical cracks. Since friction is
naturally ductile, it is expected that its influence can be active over a large
range of the wall’s displacement.

4. Another interesting feature of the F-∆ curves (Figures 2.14–2.21) is that the
walls’ load resistance increased with increasing displacement, as indicated by
the positive stiffness of the loading branches. This trend is consistent for all
panels tested and suggests that the walls underwent some degree of arching.
It is likely that this included some combination of horizontal arching due to
in-plane restraint provided by the vertical edge supports (Figure 2.6); as well
as vertical arching caused by vertical confinement of the walls close to the
return walls.

The two-way spanning walls tested in this study have been shown to exhibit
substantial displacement capacity as most were subjected to displacements close
to the wall thickness of 110 mm without collapse. These imposed displacements
were well in excess of the displacement at which the walls reached their ultimate
strength, as shown by the lower limit of ∆+

0.8Fu in Table 2.7, where it is seen that
most walls reached 80% of their ultimate load at a displacement between 2 and 5

mm. The walls’ ability to undergo large displacements while still maintaining a
reasonable amount of strength, is highly beneficial to their seismic resistance, and
counter to the conventional wisdom that assumes URM components are non-ductile.
Considering that traditional force-based (FB) design assumes failure to occur when
the walls reach their ultimate strength, these tests have demonstrated a substantial
reserve displacement capacity that is not recognised in FB design, suggesting the
current seismic design provisions to be overly conservative (as discussed in Section
1.2).

Hysteretic Energy Dissipation

The ‘fat’ load-displacement hysteresis loops (Figures 2.14–2.21) demonstrate the
cyclic behaviour of the walls to be highly inelastic, which is beneficial with regard
to their seismic performance. This is in contrast to vertically spanning walls, whose
response is well known to be nonlinear but elastic [e.g. Griffith et al., 2004]. The
reason for the additional energy dissipation capability in two-way walls is the
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activation of frictional modes of internal resistance along the vertical and diagonal
crack lines.

Equivalent viscous damping (ξhyst) was calculated for each half-cycle test run
performed, based on the energy dissipated through hysteresis. The calculated
values of damping were averaged for half-cycles whose displacement amplitude was
within the range 0.25 ≤ δ ≤ 0.75 (27.5 mm ≤ ∆ ≤ 82.5 mm) and are summarised
in Table 2.7. Average values of ξhyst for the eight walls are all between 0.11 and 0.22.
Comparison of ξ+

hyst and ξ−hyst shows that there is minimal difference between the
damping ratios in the two directions. Furthermore, damping values were observed
to be relatively constant during the initial and repeat cycles at each amplitude of
imposed displacement.

Asymmetry Effects

While it is not uncommon for structures to exhibit asymmetric cyclic response
in relation to strength in the opposite loading directions, the load-displacement
response of the eight test walls (Figures 2.14–2.21) was observed to be markedly
asymmetric. Each wall tested was consistently weaker in the negative displacement
direction; that is, when it was pushed in the direction away from the return walls
(refer to Figure 2.3). This is demonstrated by the residual strength in the negative
direction (F−ht ) being consistently lower than in the positive direction (F+

ht ), by
between 10–30%, and approximately 16% on average, as indicated in Table 2.7. The
higher of these differences were observed for walls s1, s5 and s8.

The observed strength asymmetry is believed to be caused by the asymmetric
orientation of the return walls, particularly with respect to their ability to provide
a path for the transfer of lateral load from the main wall leaf to its vertical edges.
As discussed later in Section 2.5.2, in certain instances, the occurrence of extensive
cracking at the vertical edges was observed to reduce the amount of overlapping bed
area between adjacent courses, especially when a large number of units underwent
line failure (refer to Figure 2.26). This diminished the capacity of the vertical edge
to transmit a lateral force by means of friction and hence reduced the ability of the
return walls to provide a horizontal force reaction. Loading the interior face (away
from the return walls) therefore caused the vertical cracks to open up, thus reducing
the walls’ strength in the negative displacement direction. Conversely, loading
the exterior face closed the vertical cracks to restore some of the overlap and also
caused bearing of the main wall against the return walls, thereby improving the
wall’s ability to transmit horizontal forces in the positive displacement direction.
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Strength and Stiffness Degradation

A moderate degree of strength and stiffness degradation is evident from the
F-∆ curves of all eight walls (Figures 2.14–2.21), which was symptomatic of the
accumulated damage resulting from progressively increased displacements and
repeated cyclic deformation. The overall degradation is likely to have resulted from
numerous irreversible sources of damage, which are discussed in more detail in
Section 2.5.2.

Generally, around a 10% reduction in strength was observed between the first
and second cycle of loading for any given displacement amplitude, with a greater
reduction for walls without precompression when expressed as a percentage of
the resulting post-peak strength. However, because the walls with precompression
had a higher post-peak strength, the loss in the absolute strength from cycle to
cycle remained relatively constant. For example, consider walls s3, s4 and s5 and
the initial and repeat cycles at a displacement amplitude ∆amp of +60 mm.6 Wall
s3 (0.10 MPa) experienced a first to second cycle strength drop of 1.8 kN (6.7%)
(measured by the force amplitude Famp), compared to 1.9 kN (8.5%) for wall s4

(0.05 MPa), and 1.6 kN (15.1%) for wall s5 (0 MPa). Similar trends are also evident
for the two long walls without openings (s1 and s2) and the two short walls (s7

and s8).

Inspection of the load-displacement curves (Figures 2.14–2.21) indicates that
the strength and stiffness degradation were also asymmetric. Comparison of the
first pair of cycles between −10 and +10 mm shows that the load resistance was
consistently higher in the negative direction. Note that this was overshadowed
at larger displacements by the asymmetry in the strength capacity as discussed
previously. However, this observation suggests that the initial push during the
static strength test weakened the wall predominantly in the positive displacement
direction. In fact, the peak of the cyclic strength envelope in the positive displace-
ment range coincided closely with the maximum displacement excursion during
the initial static test in the case of every wall tested. It is therefore necessary to treat
the displacement excursion during the initial push as the first half-cycle in each
panel’s overall loading history.

The observed degradation asymmetry is likely to be linked to the progression of
tensile crack formation during a wall’s displacement history. Consider the state of
the wall immediately after the initial push. During the initial ultimate strength test,
in which the walls underwent positive displacement, cracks formed in the tensile
fibres of the stressed regions and were unlikely to have spanned across the full wall

6Runs 23 and 25 for wall s3, runs 22 and 24 for wall s4, and runs 22 and 24 for wall s5, as referred
to in Tables B.3, B.4 and B.5, in Appendix B.3.
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thickness. Once the panel was unloaded and pushed in the negative direction (in
the first half-cycle of the cyclic tests), the original cracks closed up in compression,
and the opposite fibres then needed to crack in tension, thus requiring a higher
load in the negative displacement direction. The next push in the positive direction
would not require much additional cracking, since the tensile cracks had already
formed during the static test. The strength of the wall in the positive direction
during the first few half-cycles in cyclic testing was therefore not as high as in the
negative direction.

From these tests it is difficult to establish the significance of this asymmetric
degradation mechanism at larger displacements, because the cyclic loading histories
imposed on the walls were symmetric (Figure 2.10). It is believed however, that the
asymmetric effects of degradation become less significant at larger displacements,
since a wall having undergone large deformation in either displacement direction
is expected to exhibit extensive cracking across its thickness and thus be already
weakened in both directions.

The most notable implication for the seismic response of URM walls with
asymmetric strength and stiffness degradation characteristics is that walls could be
particularly vulnerable to earthquake motions which contain acceleration pulses
in a predominant direction. Such earthquake inputs may weaken a wall and
encourage failure in a predominant direction.

Influence of Vertical Precompression

The most significant effect of vertical precompression on the behaviour of the
walls was an enhancement of their load capacities. Whilst it is emphasised that
the ultimate strength is dependent mainly on the flexural tensile strength of the
masonry ( fmt), in which there was shown to be variation between the different
walls tested (refer to Table 2.3), Figure 2.22 shows the influence of the vertical
compressive stress, σv, on both their ultimate and residual strength. The plotted
values of ultimate strength are the average of F+

ult and F−ult, and the plotted values of
the residual strength are the average of F+

ht and F−ht , both as given in Table 2.7. The
influence of the vertical stress on the ultimate strength has already been discussed
in Section 2.4.1 and therefore the discussion here is limited to its effect on the
residual strength.

It can be seen from the graphs in Figure 2.22 that panels with precompression
significantly outperformed panels without precompression with regard to their
residual strength. For example, in the long solid walls (s1, s2) there was over a
two-fold increase in the residual strength (11.4 kN in wall s2 compared to 25.4 kN
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Figure 2.22: Influence of vertical precompression on wall strength. Circle markers ( e)
show the ultimate strength as an average of F+

ult and F−ult; and square markers ( ) show
the residual strength as an average of F+

ht and F−ht . The value of σv is taken as the internal
compressive stress at the mid-height of the wall.
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in wall s1) due to an increase in precompression from zero to 0.10 MPa. There was
a similar trend in the long walls containing an opening (s3, s4, s5), which had mean
residual strength of 26.5, 21.9 and 8.6 kN, for precompression of 0.10, 0.05 and 0
MPa, respectively. The short walls containing an opening (s7, s8) further confirmed
this trend, having mean residual strength of 25.1 and 9.7 kN, for precompression
of 0.1 and 0 MPa, respectively.

The improvement in post cracking strength in panels subjected to vertical
precompression is a result of an increase in the residual moment capacity along
the already formed crack lines, which derive their strength from axial compression.
These effects are recognised in analytical expressions for the residual moment
capacities provided in Section 4.3.

2.5 observed damage and crack patterns

2.5.1 Initial Push

The cracking patterns exhibited by the test walls at the completion of ultimate load
capacity tests are shown in Figure 2.23.

Comparisons of the observed crack pattern shapes with those assumed by the
as 3700 VW method for calculating the load capacity (see Figure 4.1), are favourable.
For all walls tested, the generated patterns are synonymous with the crack patterns
typically known to occur for two-way panels, characterised by diagonal cracks
propagating from corners where two neighbouring supported edges intersect.
Furthermore, diagonal cracks generally followed the natural diagonal slope of the
masonry (i.e. one bed-joint across, one perpend joint up, and so on), as assumed
by the VW approach. Differences between the idealised shapes and the observed
ones are considered to be minor and where they did occur, the differences could be
attributed to factors such as spatial variability of material properties, workmanship,
and local stress concentrations.

One of the notable aspects of the crack patterns following the initial push up
to the ultimate strength of the wall (Figure 2.23) is that only a limited amount of
cracking was visible at the vertical edges, and where present, such cracks were
only partially developed. For example, walls s1, s2, s3 and s7 exhibited a limited
amount of cracking at the vertical edges whereas walls s4, s5, s6 and s8 showed
no visible cracks at these edges at the conclusion of the initial push up to ultimate
strength. By contrast, the diagonal cracks were relatively well developed in all
panels. Furthermore, comparison of crack patterns after the initial ultimate load
capacity tests (Figure 2.23) with those after the cyclic tests (Figure 2.24) shows that
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Figure 2.23: Cracking patterns at the conclusion of ultimate strength test, shown for the
interior face of the wall.
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the vertical edge cracks in all walls became fully developed during cyclic loading.
These observations indicate that in the sequence of crack formation in two-way
panels with full moment support at the vertical edges, diagonal cracks are formed
prior to vertical edge cracks, and significantly, that such panels are likely to reach
their ultimate load capacity prior to the vertical edge cracks reaching their full
moment capacity. This finding has important implications toward the application
of the VW method for ultimate load capacity analysis, as the method inherently
assumes that the moment capacity in vertical bending and diagonal bending is
reached simultaneously. This issue is further investigated in Section 4.5, whereby
analytical calculations of ultimate load capacity indeed support this hypothesis.

2.5.2 Cyclic Testing

After the conclusion of cyclic testing, the airbags were removed from both faces of
the walls, and a visual inspection of the developed crack patterns was performed.
The resulting crack patterns are illustrated in Figure 2.24, while corresponding
photographs are also provided in Appendix B.5.

Comparisons of the crack patterns following the cyclic tests with those after the
initial push (Figure 2.23) demonstrate that the walls underwent a large amount of
additional damage during the rigorous cyclic loading histories to which they were
subjected. Nonetheless, the overall shapes were still consistent with the idealised
shapes assumed in the VW analysis, as already discussed in Section 2.5.1 with
reference to the initial observed crack patterns.

Close inspection of the cracks present following the cyclic tests revealed various
levels of damage, ranging from small hairline cracks to large cracks which exhibited
severe damage and fallout of mortar. In Figure 2.24, the more severe cracks are
highlighted as thick lines, whilst cracks with lesser damage are shown as thin
lines. Notably, the cracks defining the typical two-way failure patterns along the
walls exhibited moderate to severe damage, suggesting that they underwent large
rotations.

A common feature of the crack patterns at the completion of testing was that
vertical cracks typically underwent line failure through brick rupture as opposed to
stepped failure along the brick/mortar bond. Examples of vertical cracks exhibiting
a combination of these two failure modes along the vertical edges of the walls
are shown in Figure 2.25. This observation is in agreement with a developed
probabilistic approach for the purpose of calculating the relative proportions of
each type of failure mode, presented in Chapter 5. Predictions made by the new
approach are reported in Section 5.7.2, which indeed show line failure to be the
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(a) Wall s1.

  

(b) Wall s2.

  

(c) Wall s3.

  

(d) Wall s4.

  

(e) Wall s5.

Figure 2.24: Cracking patterns at the conclusion of cyclic testing. The left diagram for each
wall shows the inside face and the right diagram the outside face. The only exception is
wall s8, for which only the outside face is shown, as it was deemed unsafe to remove the
airbag from the outside face due to the wall’s deteriorated state at the conclusion of the
tests.
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(f) Wall s6.

  

(g) Wall s7.

(h) Wall s8.

Figure 2.24: (cont’d).
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Figure 2.25: Examples of combined stepped and line failure along vertical edge cracks.
Walls s2 and s6 shown.

slightly more dominant crack mode, based on the relative tensile strengths of the
brick units and masonry bond that were measured through material testing. The
predominance of line failure over stepped failure is detrimental to the post-cracking
strength of the masonry walls, since line failure possesses zero post-cracking
moment capacity; as opposed to stepped failure, which can provide significant
reserve post-cracking moment capacity in horizontal bending due to rotational
friction along the bed-joints (refer to Section 4.3.3).

A serious issue that may arise, which can significantly affect a wall’s seismic
performance, is that if an excessive amount of line failure occurs along the sup-
ported vertical edge of a wall, its ability to provide a load path for the applied face
load may become diminished. In extreme cases, it is even possible for the main wall
leaf to separate from the return walls, thus effectively making the wall unsupported
at its vertical edges. If this occurs, the wall is likely to revert to a one-way vertical
bending mode, which will reduce its strength and displacement capacity, as well
diminish its energy dissipation capability due to the loss of internal friction. This
type of failure was observed in some of the test walls and was most pronounced
for walls s3, s7 and s8. A visual example is provided in Figure 2.26, in which wall
s3 appears to approach instability at the largest imposed displacement of −110
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At ∆ = -110 mm At ∆ = -60 mm At ∆ = 0 mm 

Figure 2.26: Wall approaching instability with increasing outward displacement after loss
of vertical edge support due to excessive line failure. Wall s3 shown, at the far end from
the window.

(a) Restoration of support at ∆ = +70 mm. (b) Loss of support at ∆ = −90 mm.

Figure 2.27: Loss and restoration of the vertical edge support with alternating direction
of loading (wall s8 shown). The support provides a bearing reaction when the wall is
pushed toward the return wall as shown in (a); however, the reaction is lost when the wall
is pushed away from the return wall, as shown in (b).
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Figure 2.28: Examples of sliding between adjacent sub-plates within the mechanism.

mm. A second example is shown by Figure 2.27, where it is seen that when the
wall was pushed inwards, the vertical edge provided a bearing reaction to transfer
horizontal load from the main wall to the return wall. This caused the adjacent
sub-plate in the main wall to undergo rotation about the vertical axis, consistently
with two-way bending. However, when the wall was pushed outwards, support
along the vertical edge effectively became lost and the wall appeared to undergo a
rocking mechanism synonymous with simple vertically spanning walls.

The progressive damage accumulated by the walls during the course of the cyclic
tests caused significant strength and stiffness degradation in the F-∆ behaviour
(Figures 2.14–2.21). On the basis of visual observations, the following sources of
irreversible damage are believed to have contributed to the overall degradation:

• Progressive tensile and shear cracking of brick/mortar joints;

• Line failure through units in horizontal bending, thus causing a reduction of
internal frictional resistance due to reduced overlap;

• In certain walls, an inability of the vertical edges to provide a path for the
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applied horizontal load due to excessive line failure (Figures 2.25 and 2.26);

• Crushing of bed joint mortar at large crack rotations, causing a reduction in
the effective width of the bedded area; and

• Sliding between successive courses of adjacent sub-plates within the overall
mechanism, thus further reducing the amount of overlapping bedded area
(Figure 2.28).

It is difficult to evaluate the relative importance of each of these sources with regard
to the overall degradation; however, their overall combined effects on the resulting
F-∆ behaviour are discussed in Section 2.4.2.

2.6 wall deformation profiles

One of the key assumptions of the VW method, used for predicting the ultimate
load capacity of URM walls (refer to Chapter 4), is that at the instance that the
ultimate load capacity is reached the wall’s deformed shape closely resembles an
idealised failure mechanism dependent on the configuration of its supported edges.
The idealised displaced shapes consist of a series of rigid sub-plates bordered by
crack lines along which rotations are concentrated. In Section 2.5, this assumption
was shown to be reasonably accurate on the basis of visual comparison of the
idealised shapes to the observed crack patterns. The accuracy of the assumption is
further investigated here, by comparing the displacement profiles measured along
the face of the wall with the idealised failure mechanisms employed by the VW

method (refer to Figure 4.1). Details of the displacement transducer array layout
used are given in Appendix B.1 (Figure B.4).

For the eight walls tested, displacement profiles along vertical slices at the
1/4-span, midspan and 3/4-span were determined by calculating the measured
displacement at each gauge point relative to the wall boundaries. Representative
plots of the deformation profiles for each class of wall tested are provided in Figures
2.29–2.32. The ‘snapshots’ plotted in these figures include: (i) the instance at which
ultimate load capacity Fult was reached, and (ii) the point at which the maximum
displacement ∆max was imposed on the wall during the initial push. The full set
of plots for the eight walls are provided in Appendix B.4 (Figures B.24–B.31). For
comparison, each graph also shows the displaced shapes according to the idealised
collapse mechanisms used in the VW method. The observed displacement patterns
will now be discussed for the different types of wall geometries tested.
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(a) Wall s2, at Fult.
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(b) Wall s2, at ∆max.

Figure 2.29: Typical displacement profiles for long solid walls (s1–s2).

2.6.1 Long Solid Walls, O-Shaped

Displacement profiles representative of the two long solid walls are shown by Figure
2.29 at (a) the point of peak load, and (b) at the point of maximum displacement
applied to the wall during the static test. It can be seen that the displaced shape
is quite symmetric, with the displacements at slice a–a being very comparable to
the displacements at c–c. Further, the displacement profiles at a–a and c–c match
reasonably well with the displacements predicted by the idealised shape. The
displaced shape along central slice b–b is in very good agreement with the idealised
shape, being nearly linear above and below the mid-height crack, especially at the
point of maximum displacement (Figure 2.29b).

It was observed that for each of the walls tested, the measured displaced shape
at the point of peak load was comparable to the shape at the point of maximum
applied displacement, although the latter tended to be in slightly better agreement
with the idealised failure mechanism. This is thought to be a result of the collapse
mechanism being more fully developed in the latter case. Furthermore, it will
be noted that the VW method is intrinsically concerned with predicting the peak
load resistance of a wall, from which it can be reasoned that the displacement
profile at the point of peak load is of primary importance. However, in most walls
there was only a slight drop from the peak load to the load resisted at the point
of maximum applied displacement (Figures 2.11–2.13) and hence, consideration
of the displacement profile at a snapshot anywhere along this ‘strength plateau’
seems to be justified.
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(a) Wall s3, at Fult.
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(b) Wall s5, at ∆max.

Figure 2.30: Typical displacement profiles for long walls with asymmetric opening and
supported at all four edges (walls s3–s5).

2.6.2 Long Walls with Openings, O-Shaped

Typical displacement profiles for the long walls containing an asymmetric window
opening and supported at all four edges (walls s3, s4 and s5) are shown by Figure
2.30. Asymmetry of the displaced shapes is clearly evident, with displacements
at vertical slice c–c exceeding those at a–a for each wall in this category. This is
believed to be a direct result of the stiffening effect of the lintel located at the top
edge of the window opening, in addition to the relative values of stiffness of the
local subpanels at each side of the opening. Because the subpanel to the left of
the window opening (as seen from the inside face on Figure 2.30) has a shorter
horizontal span (0.65 m) than the subpanel to the right of the window (2.15 m), it is
expected to be stiffer; and therefore to undergo a smaller displacement, as indeed
indicated by the plots.

In all cases, the experimentally observed displaced shapes of walls s3, s4 and s5

were fairly consistent with the shape of the idealised mechanism; the most notable
difference being that the measured displacement at the 3/4-height along section
b–b was consistently greater than the displacement predicted by the idealised
mechanism. This discrepancy was most pronounced in wall s3 (Figure 2.30a), where
the displacement at the 3/4-height was almost as large as the displacement at the
mid-height. This trend suggests that the central horizontal crack formed above the
expected mid-height location, as was indeed observed in the crack patterns for all
three walls (Figure 2.23c, 2.23d, 2.23e). This phenomenon is believed to be a result
of the reinforcing action of the lintel, which acted to inhibit propagation of the
top-left diagonal crack and thus promote the formation of a central horizontal crack
closer to the top of the wall. Interestingly, the VW method predictions reported in
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(a) Wall s6, at Fult.
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(b) Wall s6, at ∆max.

Figure 2.31: Displacement profiles for long wall with asymmetric opening and free top
edge (wall s6).

Section 4.5 produce the greatest underestimation of the actual ultimate load for
wall s3, in which the aforementioned effect was most pronounced. The author
believes this to be a result of the deviation from the idealised collapse mechanism
where the central horizontal crack is at mid-height of the wall, thus minimising the
internal work term in the calculations. Because the central horizontal crack did not
actually form at the mid-height, the internal work performed by the wall increased,
hence increasing its load resistance.

2.6.3 Long Wall with Opening, U-Shaped

The displacement profile for the long wall with an asymmetric window opening
and free on the top edge (wall s6) is shown in Figure 2.31. The displaced shapes
are comparable at the point of peak load and at maximum displacement and are
in good agreement with the shape predicted by the idealised collapse mechanism.
While there is a discrepancy in the ‘slope’ of the displaced shape along slices a–a

and c–c, the average displacement at these slices is fairly constant and the overall
displaced shape of the wall can be considered to be symmetrical about the central
vertical slice b–b. This symmetry is in contrast to the relatively asymmetric profiles
observed for walls s3, s4 and s5, which had the same geometry, but were supported
at the top edge, and is likely to be a result of the fact that the lintel did not intersect
with any of the cracks, in neither the observed nor idealised failure mechanisms,
which therefore remained unaltered by its presence.
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(a) Wall s7, at Fult.
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(b) Wall s8, at Fult.

Figure 2.32: Displacement profiles for short walls with central opening (walls s7–s8).

2.6.4 Short Walls with Openings, O-Shaped

The displaced shapes of the short walls (s7 and s8) containing a centred window
opening are shown in Figure 2.32. It can be seen that the observed displacement
profiles suffer from the same discrepancy relative to the idealised displacement
profiles, whereby in the observed shapes the displacements along slices a–a and
c–c are quite similar in magnitude to the displacements at the central slice b–b,
whereas in the idealised shape the displacements at b–b should be significantly
greater than the displacements at a–a and c–c. This behaviour is believed to result
from the stiffening effect of the lintel located at the top edge of the window, which
provided a substantial amount of reinforcement in the 3/4-height region of the
wall, but whose influence also appears to have extended to the 1/4-height region
where the measured displacements at the three vertical slices a–a, b–b and c–c are
also closely clustered.

2.7 conclusions

The main outcome of these tests has been the demonstration that two-way spanning
URM walls possess substantial post-cracking strength and displacement capacity,
well beyond the displacement at which the peak strength is reached. The ability
of the walls to maintain their strength at large deformations without collapsing is
counter to the traditional view that URM components are non-ductile. This signifi-
cant reserve displacement capacity is not taken into account in contemporary FB

calculation procedures, suggesting that these methods may be overly conservative
for ultimate limit state design against seismic actions, and thus warranting the
development of displacement-based (DB) methodology.
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Other trends identified from the walls’ load-displacement response were as
follows.

• The walls exhibited highly inelastic cyclic behaviour due to hysteretic energy
dissipation. This behaviour results from the internal frictional resistance as a
result of two-way action and is beneficial to the walls’ seismic performance.
Equivalent viscous damping was calculated to be within the range of 0.11–
0.22.

• Loading branches after cracking were found to have a relatively constant and
positive tangent stiffness, which can likely be attributed to horizontal arching
within the walls.

• All specimens underwent a moderate degree of strength and stiffness degra-
dation due to the damage accumulated from repeated cyclic deformation and
increasing displacement excursions. The main forms of damage identified
by visual observation included vertical line failure through units in the re-
turn walls, crushing of the bed-joint mortar, and sliding between adjacent
sub-plates in the mechanism.

• The walls exhibited asymmetric strength in the positive and negative dis-
placement directions and were consistently weaker when pushed away from
the return walls. The difference between the post cracking strength in the
two directions was approximately 16%, on average. This asymmetry could be
a potentially significant issue with certain types of seismic excitations.

• The post-cracking strength was shown to be greatly enhanced by the presence
of vertical precompression.

To verify the wall behaviour observed in the present study under true dynamic
loading conditions, shaketable tests were performed on a set of five half-scale walls,
as reported in the following chapter.



Chapter3
S H A K E TA B L E T E S T I N G

Abstract

To verify whether the wall behaviour observed in the quasistatic cyclic tests (Chapter
2) could be considered representative of response under true dynamic earthquake
loading, a complimentary shaketable study was performed on five reduced-scale
walls. These corresponded to half-scale replicas of specimens s1–s5 from the
previous study, with three walls being subjected to vertical precompression and
three containing a window opening. Care was taken to ensure that the boundary
conditions remained as close as possible to the original tests, in particular simple
supports at the horizontal edges and fixed restraint along the vertical edges. Each
wall was subjected to an extensive number of individual runs which included pulse
loading, harmonic excitation and realistic earthquake motions. The tests confirmed
the main behaviour trends observed in the quasistatic test study, including good
post-peak strength, reasonable energy dissipation characteristics, strength and
stiffness degradation, and very similar crack patterns.

65
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3.1 introduction

A key outcome of the quasistatic test study reported in Chapter 2 was the detailed
characterisation of the load-displacement behaviour of unreinforced masonry (URM)
walls subjected to two-way bending. This was enabled by the displacement-
controlled nature of the loading to which the walls were subjected, accomplished
using a series of airbags positioned on both sides of each wall. However, a natural
limitation of that test method with regard to studying the walls’ seismic response
was that it could not recreate the true dynamic nature of seismic loading.

The present chapter reports a complimentary experimental study in which a
set of five URM walls were subjected to dynamic loading by means of a shaketable.
The test wall configurations employed were half-scale replicas of walls s1–s5 from
the quasistatic tests. All walls had identical dimensions and boundary conditions,
which included translational support at the top and bottom edges and full moment
connections at the vertical edges. Parameters that were varied between the walls
included the presence of an asymmetrically positioned window opening and the
amount of vertical precompression applied at the top of the wall. Throughout the
course of testing, each wall was subjected to an extensive number of individual
runs comprising of pulse loading, harmonic excitation and realistic earthquake
motions.

The aims of the dynamic tests were as follows:

• To establish whether the wall behaviour observed in the quasistatic tests
(Chapter 2) could be considered representative of wall behaviour under
true seismic loading. The main points of comparison included the walls’
load-displacement behaviour as well as damage and crack patterns.

• To generate data to aid the development of a nonlinear time-history analysis
(THA) for simulation of dynamic response. A finalised THA is not presented
as part of this thesis; however, some preliminary work on development of
such a model, including comparisons to the experimental data obtained from
these tests, can be found in Vaculik and Griffith [2008].

• To expand the available pool of experimental work on this topic. As outlined
in Section 2.2, shaketable testing of two-way URM walls has been identified as
a major gap in previous research.

It should be emphasised that these half-scale wall tests were not aimed at assessing
the seismic resistance or code compliance of similar full-scale walls with respect
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to any particular ‘design’ earthquake; but rather, at providing data for the devel-
opment of a numerical model used to simulate the dynamic response of walls to
arbitrary seismic motions. It is intended to be the role of the subsequent analytical
model to generate data that can be used to make predictions regarding the seismic
adequacy of particular masonry walls, and to draw recommendations regarding
future code provisions for seismic assessment and design.

The outline of this chapter is as follows: Section 3.2 describes the test methodol-
ogy, including material properties, wall configurations and test procedure. Section
3.3 describes the processing of the test data to derive various properties relating
to the wall’s dynamic behaviour. The load-displacement behaviour of the walls is
discussed in Section 3.4 and the observed damage and crack patterns in Section 3.5.
The chapter concludes by summarising the key observations and lessons derived
in Section 3.6. Several appendices are also provided relating to this experimental
study: Tests to determine the material properties of the masonry are reported
in Appendix A; data analysis methods and detailed results in Appendix C; and
an investigation relating to a performance issue of the shaketable is reported in
Appendix D.

3.2 test programme and methodology

3.2.1 Materials

All brickwork used in this study, including the five test walls and small material test
specimens, were constructed by qualified bricklayers under controlled laboratory
conditions in order to ensure the best possible quality control (Figure 3.1). Because
reduced-scale brick units were unavailable from professional manufacturers, the
units used throughout this study were obtained by manually cutting solid clay
pavers lengthwise to produce several half-scale units. The resulting brick units
had average dimensions of 110× 50× 39 mm (lu × tu × hu). As a result of this
process, all units were solid and lacked any perforations. All mortar joints within
the brickwork were made to a standard thickness of 5 mm, using 1:2:9 mortar
(portland cement, lime and sand). Quality control measures were undertaken
during the mixing of the mortar to ensure consistency, including bucket batching
of the ingredients and ensuring that the sand was air-dried prior to mixing. The
ingredients were combined together in a mortar mixer and water was added to
ensure a desired mortar workability based on the bricklayers’ experience.

In order to quantify values of key material properties of the brickwork, a series
of material tests were conducted on small specimens constructed from the same
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Figure 3.1: The test walls during construction.

Table 3.1: Material properties of the masonry.

Parameter Mean CoV

Flexural tensile strength of the masonry, fmt [MPa] 0.415 0.53
Modulus of elasticity of the masonry, Em [MPa] 9, 180 0.15
Modulus of elasticity of the brick units, Eu [MPa] 32, 100 0.16
Modulus of elasticity of the mortar joints, Ej [MPa] 1, 410 0.20
Unconfined compressive strength of the masonry, fmc [MPa] 25.9 0.09
Friction coefficient across the broken bond interface, µm 0.576 0.10

materials as the actual test walls. These tests were performed in accordance with
the guidelines given in the Australian masonry code as 3700 [Standards Australia,
2001]. The procedures and detailed results are reported in Appendix A. Mean
values of the material properties as well as their coefficients of variation (CoV) are
summarised in Table 3.1. In addition, the weight density γ of the masonry was
experimentally measured as 21.17× 10

−6 N/mm3.
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Table 3.2: Test wall configurations.

Panel dimensions [mm] and
support arrangement Wall σvo [MPa]

FF

S

S

1 2 3 2

1 8 4 0

s v o

d1 0.10

d2 0

5 2 8

3 5 2

3 5 2

FF

S

S

1 2 3 2

9 4 95 7 53 1 6
1 8 4 0

s v o

d3 0.10

d4 0.05

d5 0

Note: F = Fixed support, S = Simple support

Table 3.3: Detailed wall dimensions and properties.

Walls Wall dimensions Opening dimensions Area Weight

Lw sup Lw clear Hw xo yo Lo Ho Aw Ww
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [m2] [kN]

d1, d2 1840 1783 1232 − − 0 0 2.267 2.400
d3, d4, d5 1840 1783 1232 316 352 575 528 1.963 2.079

Note: The area and weight of the wall were calculated using the wall length measured between the
centres of the return walls, Lw sup.
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(a) Walls d1 and d2.
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(b) Walls d3, d4 and d5.

Figure 3.2: Detailed wall dimensions (in millimetres).
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3.2.2 Panel Configurations

Configurations of the five walls tested are presented in Table 3.2, with their dimen-
sions shown in Figure 3.2. The walls comprised two different geometries:1

long solid walls (d1, d2) Serving as half-scale replicas of walls s1 and s2

in Chapter 2, these walls had dimensions of 1840 × 1232 mm (L × H) and did
not contain any openings (Figure 3.2a). They were tested under varied axial
precompression of 0.10 and 0 MPa, respectively.

long walls with openings (d3, d4, d5) Intended as half-scale versions of
walls s3, s4 and s5 in Chapter 2, these walls had dimensions of 1840× 1232 mm
(L× H) and contained an eccentrically positioned window opening (Figure 3.2b).
They were tested under varied axial precompression of 0.10, 0.05 and 0 MPa,
respectively.

The wall construction method was identical to that used for the full-scale
specimens in the quasistatic tests (Chapter 2). This included the use of half-overlap
stretcher bond and inclusion of short return walls spanning two bricks in length
(230 mm) at the vertical edges, for the purpose of stabilising the walls against
overturning and providing a means for implementing rotational fixity at these
edges. The walls were constructed upon reinforced concrete slabs, as shown by
Figure 3.1, which enabled them to be lifted onto the shaketable using the laboratory
crane. For the three walls with a window opening (walls d3, d4 and d5), the lintel
consisted of a standard equal angle steel section (ea 50× 50× 3) spanning 6 brick
units (720 mm) in length.

The dimensions of the walls are summarised in Table 3.3, including the wall
length Lw sup, measured between the centre-to-centre of the return walls; wall
length Lw clear, taken as the clear span between the return walls; wall height Hw;
and coordinates of the window opening as xo, yo, Lo and Ho (horizontal offset2,
vertical offset3, length and height, respectively). The net face area Aw and net
weight Ww of the main face of the wall are also provided in the table, which were
used in subsequent calculations for converting the measured acceleration to the
force resisted by the wall. Note that these values were calculated using the length
of the wall between the centre-to-centre of the vertical supports, Lw sup.

1Note that the given wall lengths refer to the length between the centre-to-centre of the return
walls supporting the vertical edges. For the clear lengths between the supports, refer to Table 3.3 and
Figure 3.2.

2Horizontal offset measured relative to the centre line of the return wall, as shown in Figure 3.2b.
3Vertical offset measured relative to the bottom of the wall, as shown in Figure 3.2b.
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Steel member 
providing 
translational support 
along bottom edge. 
(Also located on 
opposite face of the 
wall) 

Channel section 
member along edge 
of return wall, 
providing rotational 
and translational 
restraint along the 
wall’s vertical edge. 
(Also located at far 
end of the wall) 

Timber members  
providing 
translational restraint 
along the vertical 
edge of the wall, in 
the direction away 
from the return 
walls. (Also located 
at far end of the wall; 
used for walls d1 and 
d2 only) 

Steel members 
providing 
translational restraint 
along the top edge of 
the wall. 

Figure 3.3: Photograph of the overall arrangement, showing various aspects of the wall
restraint system. Wall d2 shown.

3.2.3 Wall Support Conditions

The support conditions used to restrain the edges of the test walls were intended to
replicate as close as possible those used for the full-scale walls in the quasistatic tests
(Section 2.3.3), which included simple translational support at the top and bottom
edges, and full translational and rotational restraint at the vertical edges. The
overall wall restraint system, as shown in Figures 3.3 and 3.4, utilised a stiff frame
mounted on the shaketable with an in-plane stiffness similar to that expected for a
masonry wall acting in-plane to the seismic excitation.4 The various components of
the detailing used to provide the aforementioned support conditions are discussed
further in this section.

4The support frame was originally designed to meet this criterion in previous experimental work
by Doherty [2000], involving vertically spanning URM walls.



3.2 test programme and methodology 73

S h a k e t a b l e

M a i n  l e a f  o f  t h e  
t e s t  w a l l

R e t u r n  w a l l

C o n c r e t e  s l a b

T o p  e d g e  r e s t r a i n t  
s y s t e m ,  c o n n e c t e d  
t o  s u p p o r t  f r a m e  a t  
e a c h  e n d

B o t t o m  e d g e  r e s t r a i n t  
s y s t e m ,  f a s t e n e d  t o  
s h a k e t a b l e

R u b b e r  b e a r i n g s

P l a n  v i e w

(a) Restraint along the top and bottom edges of the wall.
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(b) Restraint along the vertical edges of the wall.

Figure 3.4: Arrangements used to restrain the wall’s edges.
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Bottom Edge

Despite the presence of a base mortar joint between the bottom course of the wall
and the slab, additional restraint was provided along the bottom edge of the wall
to ensure that sliding could not occur between the wall and the slab. This consisted
of steel members located adjacent to both faces of the wall and fastened to the
shaketable with steel struts, as shown in Figures 3.3 and 3.4a. This arrangement
was identical to that used for the full-scale walls in the quasistatic tests, shown in
Figure 2.4.

Top Edge

Translational restraint along the top edge of the wall was achieved using a pair
of angled steel members, with one present on each side of the wall, as shown by
Figures 3.3 and 3.4a. Rubber bearings glued onto the steel members were used to
transmit the reaction force between the face of the wall along its top course and
the steel members, which in turn were connected to the support frame. Whilst this
arrangement was slightly different to that used in the quasistatic tests, shown by
Figure 2.5, both are believed to have provided a very similar connection. The main
difference between the two methods of support was the inclusion of the rubber
bearing in the shaketable test walls, which were intended to soften any impacts that
may have occurred during the shaking and to provide a more uniform distribution
of the reaction force along the wall’s top edge.

Vertical Edges

The connection arrangement used to achieve translational and rotational restraint
along the vertical edges of the walls consisted of two components, illustrated in
Figures 3.3 and 3.4b. The first component was a steel channel member encasing the
vertical edges of the return walls. This connection was identical to that previously
used for the quasistatic test walls, shown by Figure 2.6, which provided rotational
restraint as well as lateral restraint when the wall was loaded toward the return
walls. The second component consisted of a vertical timber member propped
against the steel support frame using a pair of horizontal timber struts, in order
to prevent translation in the direction away from the return walls. Note, however,
that this was only used for walls d1 and d2 (the last two walls tested) after it was
observed that the walls were undergoing rigid body rocking.5

5For wall d2, the arrangement was implemented for test run d2_20_H_12Hz_0.1mm and onwards.
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Figure 3.5: Arrangement used to impose vertical precompression.

3.2.4 Vertical Precompression

As mentioned in Section 3.2.2, walls d1, d3 and d4 were subjected to vertical
precompression, in order to emulate loadbearing walls. The arrangement used to
implement the precompression, shown by Figure 3.5, consisted of four pairs of
pretensioned steel rods anchored onto the shaketable which applied compressive
vertical reactions at the top of the wall. These loading points were equally spaced
along the wall at intervals that could be considered representative of typical roof
beams. The rods were tensioned using springs whose extension was manually
controlled using bolts at the top ends of the rods. Each pair of pretensioned rods
were connected to the opposite ends of a horizontal steel member which transferred
the compressive force onto the top of the wall through a steel loading pin located
along the central line of the wall’s thickness. The loading pin further transmitted the
force through a timber plate and a rubber layer which were intended to distribute
the force more evenly within the wall. The desired compressive stress of either
0.10 MPa or 0.05 MPa was generated by adjusting the extension of the springs to a
pre-calculated deflection based on previous calibration. It is also worth noting that
the springs were designed to operate at large deformations, so that small changes
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Figure 3.6: Table displacement step function used for pulse tests. Each run consisted of
a pair of pulses: one forward and one backward. The function is defined by the table
displacement xo and time interval dt over which it moves from x = 0 to x = xo at constant
velocity.

in the height of the wall due to ‘rigid block’ rotation resulted in minimal influence
on their tension.6

3.2.5 Test Procedure

The walls were fitted with an array of instrumentation, including accelerometers
and displacement transducers, in order to acquire data for determination of their
load-displacement response. Details of the instrumentation positioning along the
walls are provided in Appendix C.3 (Figure C.5).

Throughout the course of testing, each wall was subjected to a large number of
individual test runs comprising of three basic types of input motions:

pulse tests In these tests, the table movement was defined by a simple dis-
placement step function, as shown by Figure 3.6. The primary role of these tests
was to generate an impulse for the purpose of causing the wall to undergo free
vibration response. Each time these tests were performed, they were run at three
different intensities: (i) 4 mm step in 0.2 sec, (ii) 4 mm step in 0.1 sec, and (iii) 8

mm step in 0.1 sec.

6The springs were designed such that the increase in compressive stress did not exceed 0.005 MPa
(5% for the 0.10 MPa walls and 10% for the 0.05 MPa wall) in the most extreme scenario of the wall
reaching a lateral displacement equal to its thickness of 50 mm. Since the wall displacements reached
during the tests were considerably lower than this, it is believed that the change in compression
which occurred was negligible.
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Figure 3.7: Sinusoidal table displacement function used for harmonic tests, as defined by
excitation frequency fo and displacement amplitude xo.

harmonic tests These tests involved a sinusoidal input motion with a constant
frequency and table displacement amplitude (Figure 3.7). Harmonic tests were
used primarily for causing the wall to crack at the early stages of testing; and also
at other points in testing, to generate hysteresis curves with a cyclic response due
to the symmetric nature of the input motion.

earthquake tests These tests involved earthquake-like motions with a broad
frequency content. The main seismic motion used was the well known Kern County
1952 (Taft) earthquake, which was sped up by a factor of

√
2 in order to preserve

frequency similitude in the reduced-scale masonry specimens in comparison to
equivalent full-scale prototypes. In addition, several synthetically generated earth-
quake motions were also used. The time and frequency domain representations of
these motions are provided in Appendix C.2 (Figures C.1–C.4). In the overall test
sequence, these tests were performed in pairs—For example, an earthquake test run
with a peak ground displacement (PGD) of +60 mm was always followed by a run
with a PGD of −60 mm. This was done to reduce the effects of any directional offset
in the walls’ residual displacement that may have occurred due to the asymmetry
of the motions.

Whilst the overall test sequence performed was different for each wall, the
general strategy to testing each wall consisted of two stages: Firstly, the initially
uncracked wall was subjected to a free vibration pulse test to determine its natural
frequency. The wall was then subjected to harmonic sinusoidal input at increasing
intensity until it cracked and developed a failure mechanism. Once the wall
was cracked, the second phase of testing was undertaken, in which the wall
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was subjected to earthquake motions at sequentially increasing intensities. Free
vibration pulse tests were conducted regularly to observe any changes in the
natural frequency of the wall as a result of cumulative damage. A description of the
nomenclature used for naming the individual test runs, which is used throughout
this chapter, is provided in Appendix C.1. The full sequence of tests performed on
each wall is detailed in Appendix C.3 (Table C.6).

It should be noted that a problem was encountered during the course of
testing, whereby the shaketable experienced unexpected ‘impacts’ while running
earthquake input motions at higher levels of intensity. This resulted in large
acceleration spikes in the table’s acceleration that were not present in the original
input motion. Appendix D presents the results of a diagnostic study that was
undertaken in order to identify the causes of these impacts, and to determine
whether measures could be taken to prevent the impacts from occurring. The
study found that the impacts resulted from a velocity limitation of the shaketable’s
hydraulic actuator and that they could not be prevented from occurring with
the resources available. In many instances, the acceleration spikes generated
corresponded to the peak displacement and acceleration response of the wall. The
test runs in which these impacts occurred are identified in Appendix C.3 (Table
C.6).

3.3 data processing

The data acquired during the tests was processed in two stages: Firstly, the time
domain vector data measured by the accelerometers and displacement transducers
was used to calculate other vector data of interest, such as the wall’s load and
displacement response and the motion of the supports. Secondly, the wall’s load-
displacement data was used to quantify key cyclic response properties including
stiffness, damping and vibrational frequency. The methods used to perform
these two components of data processing are described in Sections 3.3.1 and 3.3.2,
respectively.

3.3.1 Time Domain Response

Using the raw acceleration and displacement data acquired during the tests, nu-
merous additional time domain response vectors were calculated. The variables of
particular interest were those relating to: (i) the motion of the wall itself, and (ii)
motion of the wall’s supports, which effectively served as the wall’s excitation. The
most relevant of these variables are outlined in this section. A detailed description
of these and other vector variables calculated is presented within Appendix C.3.1.
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Support Motion

The motion of the wall’s supports was of significant interest, as it defined the
wall’s excitation. The average support position was calculated as the mean of the
measurements at the top and bottom supports:

xsup.avg =
xsup.bot + xsup.top

2
. (3.1)

The average support acceleration was taken as a weighted average of the accelerom-
eter measurements along the slab (50% contribution), and the top left and right
corners of the wall (25% contribution each):

asup.avg = 0.5 aslab + 0.25 aw.tl.corner + 0.25 aw.tr.corner. (3.2)

Wall Displacement

The wall’s central displacement7 ∆w.cent was calculated as the difference between
the position at the centre of the wall and the average of the wall’s supports:

∆w.cent = xw.cent − xsup.avg. (3.3)

Since the wall typically exhibited some displacement offset at the end of a test run
relative to the start of the run, an alternative displacement response vector ∆w.cent0

was also used, which was zeroed at the start of the run.

To facilitate comparisons of displacement response between the half-scale walls
in this study and the full-scale walls in Chapter 2, in the upcoming discussions
the wall displacement (∆) will generally be referred to in its normalised form, δ,
defined [according to Eq. (2.2)] as

δ =
∆
tu

, rep. (2.2)

where tu is the wall thickness.

Wall Load Resistance

Load related response variables, including the force and pressure of the wall
were determined from the measured accelerations. Two acceleration response
vectors were of particular interest: (i) the central wall acceleration aw.cent, which

7Unless otherwise stated, throughout this chapter, ‘wall displacement’ refers to the displacement
at the centre of the wall.
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was directly measured during testing, and (ii) the average wall acceleration aw.avg,
calculated as the weighted average of the various accelerometers along the face of
the wall.

The significance of the wall’s central acceleration is that it was believed to have
provided a more accurate representation of the wall’s flexural mode of vibration
in comparison to the wall’s average acceleration, with the latter appearing to have
captured some contribution from higher vibrational modes such as twisting of the
wall specimens. This opinion is based on visual inspection of hysteresis curves
plotted using both methods (presented in Appendix C.6 for each test run), which
indicate a much ‘cleaner’ relationship between aw.cent and δ, as opposed to aw.avg

and δ. Additionally, Fourier spectra of the respective acceleration vectors exhibited
a higher frequency content in the average acceleration, suggesting interference from
these higher modes. On this basis, hysteresis curves based on aw.cent were deemed
to provide a more reliable representation of the true loop shape for the flexural
mode of vibration, and were therefore used in the computation of the equivalent
viscous damping ξhyst (reported in Section 3.3.2). By contrast, aw.avg was believed
to be more accurate in terms of the size of the force resisted by the wall, as the
peak accelerations determined from aw.cent were typically much larger than those
from aw.avg, by approximately a factor of two. Consequently, the wall’s force and
pressure resistance was calculated using the average acceleration.

Based on the equation of motion, if velocity-proportional damping forces are
assumed to be negligible, then the force and pressure resisted by the wall become
directly proportional to the wall’s average acceleration. Using this assumption, the
wall’s pressure resistance was calculated as

qw = −γ tu

g
aw.avg, (3.4)

where γ is the weight density of the wall, tu is the wall’s thickness and g is
gravitational acceleration. The wall’s force resistance was taken as

Fw = −Mw aw.avg, (3.5)

where Mw is the mass of the wall8, calculated from the wall’s net area Aw, such
that

Mw =
γ tu Aw

g
. (3.6)

Because of the proportionality between the wall’s acceleration, force and pressure,

8Note that the mass of the lintel used in walls d3, d4 and d5 composed less than 1% of the mass
of the wall and was therefore omitted from this calculation.



3.3 data processing 81

as defined by the above equations, these response variables can be used somewhat
interchangeably when considering the wall’s load resistance. Throughout this
chapter, hysteresis curves are generally presented in the non-dimensional a versus
δ format9 in order to make them directly comparable to the corresponding graphs
presented in Chapter 2.

3.3.2 Cyclic Properties

After the load and displacement data was calculated in the time domain as outlined
in Section 3.3.1, an advanced analysis procedure was performed to derive values
of several properties related to the wall’s cyclic response. This procedure was
performed on the data from each test run and consisted of three steps:

1. A cycle detection algorithm was implemented to find and isolate individual
cycles of the wall’s response in the time domain. Details of this procedure are
provided in Appendix C.4.1.

2. The cyclic response properties of interest (described below) were calculated
for each valid cycle found.10

3. Average values of the cyclic properties were calculated for specific ranges
of displacement response, including at small displacements and near the
maximum response occurring within the test run. The load and displacement
amplitudes for the largest response cycles were also determined for the
purpose of generating envelope curves for each wall.

The following properties were determined from each loop (cycle), as illustrated
by Figure 3.8:

displacement amplitude Since the displacement response for the cycle was
not necessarily symmetric about zero displacement (∆ = 0), its amplitude ∆amp

was taken as
∆amp =

∆max − ∆min

2
, (3.7)

where ∆max and ∆min are the maximum and minimum displacements occurring in
a cycle.

9In this chapter, acceleration is generally quantified in units of g’s, thus making it analogous to
the non-dimensional force λ defined by Eq. (2.3), since λ = a/g.

10For a cycle to be classified as valid, satisfaction of certain criteria was required, including: (i)
sufficient centring around zero displacement, and (ii) being sufficiently ‘closed’. This is discussed in
greater detail in Appendix C.4.1.
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Figure 3.8: Isolated hysteresis loop and the properties derived.

force and acceleration amplitude Due to the direct proportionality be-
tween the wall’s restoring force Fw and average acceleration aw.avg [as per Eq. (3.5)],
these two variables were used interchangeably when calculating other cyclic prop-
erties such as equivalent damping and frequency. The cycle acceleration amplitude
aamp was taken as

aamp =
amax − amin

2
, (3.8)

where amax and amin are the maximum and minimum accelerations occurring in
the cycle. Similarly, for force:

Famp =
Fmax − Fmin

2
. (3.9)

effective stiffness The effective secant stiffness of the cycle, K, defined as the
slope of the cycle’s force-displacement curve, was obtained as the slope of a straight
line passing through the corner points of the loop’s bounding box, as shown in
Figure 3.8. This is equivalent to

K =
Famp

∆amp
. (3.10)

equivalent viscous damping The equivalent viscous damping ξhyst was
calculated using the area-based approach, according to the expression

ξhyst =
2
π

Uloop

Ubox
, (3.11)
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where Uloop is the energy dissipated during the cycle and corresponds to the area
enclosed within the hysteresis loop; and Ubox is the area inside the loop’s bounding
box, which is proportional to the internal strain energy of the equivalent linear
system (both quantities shown by Figure 3.8). It is emphasised that the energies
Uloop and Ubox were calculated based on the wall’s central acceleration (aw.cent) and
not the average acceleration (aw.avg), since aw.cent was believed to provide a more
reliable representation of the fundamental mode of vibration corresponding to
out-of-plane flexure, as previously discussed in Section 3.3.1.

period and frequency The approach used to determine the cycle’s period T
depended on whether the cycle was classified as closed or open (as described in
Appendix C.4.1). For closed cycles, the period was taken as the duration between
its start and end boundaries as determined from the cycle isolation algorithm. For
open cycles, the period was taken as twice the duration between its peak and
trough vertices. The corresponding frequency was calculated as f = 1/T.

For each test run performed, average values of the aforementioned cyclic prop-
erties were calculated for specific ranges of the displacement response, including:

• Short displacement range, incorporating cycles having a displacement amplitude
within the range 0.5 mm ≤ ∆amp ≤ 3 mm. This was intended to capture the
response along the initial loading branch of the load-displacement curve.

• Peak response range, incorporating cycles with a displacement amplitude be-
tween 70% and 100% of the maximum displacement amplitude occurring
during the test run.

Further details are provided in Appendix C.4, including a description of the
cycle detection algorithm, methods used to calculate the cyclic response properties,
graphical examples of analysis output and summary of results for each test run.
It is noted that prior to the analysis being conducted, the data used was digitally
filtered in the frequency domain in order to improve functionality of the cycle
detection algorithm. Test data from pulse and earthquake tests was filtered using
a lowpass filter with the cutoff frequency generally set between 30 and 50 Hz,
depending on the cleanliness of the original data. Data from harmonic tests was
filtered using a comb filter which passed the spectral content at the first three
harmonics of the excitation frequency. Further details of the filtering methods used
are presented in Appendix C.5. The various cyclic properties as determined from
the analysis are presented graphically in Figures 3.9–3.13 for each wall. Detailed
results for individual test runs are provided in Appendix C.4 (Table C.7).
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Table 3.4: Legend for Figures 3.9, 3.10, 3.11, 3.12 and 3.13.

Background colour Meaning (Type of test)

� Pulse test
� Harmonic test
� Earthquake test

Data series style Meaningr Maximum measured value of the respective properties.e Mean result from cyclic response analysis, calculated in the large
response range (70–100% of max response).

Mean result from cyclic response analysis, calculated in the small
response range (0.5–3.0 mm).

Represents the secant stiffness calculated as max force excursion
divided by max displacement excursion.

3.4 load-displacement behaviour

This section presents results related to the walls’ measured load-displacement
response. Figures 3.9–3.13 provide a sequential plot of properties determined from
each test run (using the procedures described in Section 3.3), including the load
(or acceleration), displacement, effective stiffness, equivalent viscous damping and
frequency.

3.4.1 Graphical Examples

Typical visual examples of the measured load-displacement response, as well as the
corresponding response in the time and frequency domains, are shown by Figures
3.14, 3.15 and 3.16 for a pulse test, harmonic test and earthquake test, respectively.
Plots of the load-displacement response for all individual test runs performed
during the course of this test study are provided in Appendix C.6. It may be
seen that the response observed through the shaketable tests is not as ‘smooth’ as
that observed under quasistatic cyclic loading (Figures 2.14–2.21); however, this is
known to be a typical aspect of dynamic testing.
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8: P
ulse, 4 mm in 0.2 s

9: P
ulse, 4 mm in 0.1 s

10: P
ulse

, 8 mm in 0.1 s

12: S
ine, 0.5 mm at 13 Hz

13: S
ine, 0.75 mm at 13 Hz

14: S
ine, 1 mm at 13 Hz

15: T
aft, -

40 mm PGD

16: T
aft, +

40 mm PGD

17: T
aft, +

60 mm PGD

18: T
aft, -

60 mm PGD

19: T
aft, -

80 mm PGD

20: T
aft, +

80 mm PGD

21: T
aft, +

100 mm PGD

22: T
aft, -

100 mm PGD

23: T
aft, -

120 mm PGD

24: T
aft, +

120 mm PGD

25: P
ulse

, 4 mm in 0.2 s

26: P
ulse

, 4 mm in 0.1 s

27: P
ulse

, 8 mm in 0.1 s

30: S
ine, 0.4 mm at 13 Hz

31: P
ulse

, 4 mm in 0.2 s

32: P
ulse

, 4 mm in 0.1 s

33: P
ulse

, 8 mm in 0.1 s

34: T
aft, +

40 mm PGD

35: T
aft, -

40 mm PGD

36: T
aft, -

60 mm PGD

37: T
aft, +

60 mm PGD

38: T
aft, +

80 mm PGD

39: T
aft, -

80 mm PGD

40: T
aft, -

100 mm PGD

41: T
aft, +

100 mm PGD

42: P
ulse

, 4 mm in 0.2 s

43: P
ulse

, 4 mm in 0.1 s

44: P
ulse

, 8 mm in 0.1 s

45: T
aft, +

120 mm PGD

46: T
aft, -

120 mm PGD

47: P
ulse

, 4 mm in 0.2 s

48: P
ulse

, 4 mm in 0.1 s

49: P
ulse

, 8 mm in 0.1 s

51: S
ine, 0.2 mm at 12 Hz

52: P
ulse

, 4 mm in 0.2 s

53: P
ulse

, 4 mm in 0.1 s

54: P
ulse

, 8 mm in 0.1 s

56: S
ynth01, +20 mm PGD

57: S
ynth01, -2

0 mm PGD

58: S
ynth01, -4

0 mm PGD

59: S
ynth01, +40 mm PGD

60: S
ynth01, +60 mm PGD

61: S
ynth01, -6

0 mm PGD

62: S
ynth01, -8

0 mm PGD

63: S
ynth01, +80 mm PGD

64: P
ulse

, 4 mm in 0.2 s

65: P
ulse

, 4 mm in 0.1 s

66: P
ulse

, 8 mm in 0.1 s

67: S
ynth03, -2

0 mm PGD

68: S
ynth03, +20 mm PGD

69: S
ynth03, +40 mm PGD

70: S
ynth03, -4

0 mm PGD

71: S
ynth03, -6

0 mm PGD

72: S
ynth03, +60 mm PGD

73: S
ynth03, +80 mm PGD

74: S
ynth03, -8

0 mm PGD

75: S
ynth03, -1

00 mm PGD

76: S
ynth03, +100 mm PGD

77: P
ulse

, 4 mm in 0.2 s

78: P
ulse

, 4 mm in 0.1 s

79: P
ulse

, 8 mm in 0.1 s

80: S
ynth05, -2

0 mm PGD

81: S
ynth05, +20 mm PGD

82: S
ynth05, +40 mm PGD

83: S
ynth05, -4

0 mm PGD

84: S
ynth05, -6

0 mm PGD

85: S
ynth05, +60 mm PGD

86: P
ulse

, 4 mm in 0.2 s

87: P
ulse

, 4 mm in 0.1 s

88: P
ulse

, 8 mm in 0.1 s
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Figure 3.9: Test sequence and key results for wall d1. Legend in Table 3.4.



86 shaketable testing

1: P
ulse, 4 mm in 0.2 s

2: P
ulse, 4 mm in 0.1 s

3: P
ulse, 8 mm in 0.1 s

4: P
ulse, 4 mm in 0.2 s

5: P
ulse, 4 mm in 0.1 s

6: P
ulse, 8 mm in 0.1 s

9: S
ine, 0.2 mm at 12 Hz

10: P
ulse

, 4 mm in 0.2 s

11: P
ulse

, 4 mm in 0.1 s

12: P
ulse

, 8 mm in 0.1 s

13: S
ine, 0.25 mm at 12 Hz

14: S
ine, 0.25 mm at 12 Hz

16: P
ulse

, 4 mm in 0.2 s

17: P
ulse

, 4 mm in 0.1 s

18: P
ulse

, 8 mm in 0.1 s

21: S
ine, 0.2 mm at 12 Hz

24: S
ine, 0.2 mm at 12 Hz

25: P
ulse

, 4 mm in 0.2 s

26: P
ulse

, 4 mm in 0.1 s

27: P
ulse

, 8 mm in 0.1 s

28: S
ine, 0.25 mm at 12 Hz

29: S
ine, 0.3 mm at 12 Hz

30: P
ulse

, 4 mm in 0.2 s

31: P
ulse

, 4 mm in 0.1 s

32: P
ulse

, 8 mm in 0.1 s

33: T
aft, -

20 mm PGD

34: T
aft, +

20 mm PGD

35: T
aft, +

40 mm PGD

36: T
aft, -

40 mm PGD

37: T
aft, -

60 mm PGD

38: T
aft, +

60 mm PGD

39: T
aft, +

80 mm PGD

40: T
aft, -

80 mm PGD

41: T
aft, -

100 mm PGD

42: T
aft, +

100 mm PGD

43: P
ulse

, 4 mm in 0.2 s

44: P
ulse

, 4 mm in 0.1 s

45: P
ulse

, 8 mm in 0.1 s

46: T
aft, +

60 mm PGD

47: T
aft, -

60 mm PGD

48: T
aft, -

120 mm PGD

49: T
aft, +

120 mm PGD

50: P
ulse

, 4 mm in 0.2 s

51: P
ulse

, 4 mm in 0.1 s

52: P
ulse

, 8 mm in 0.1 s

53: S
ynth01, +20 mm PGD

54: S
ynth01, -2

0 mm PGD

55: S
ynth01, -4

0 mm PGD

56: S
ynth01, +40 mm PGD

57: S
ynth01, +60 mm PGD

58: S
ynth01, -6

0 mm PGD

59: S
ynth01, -8

0 mm PGD

60: P
ulse

, 4 mm in 0.2 s

61: P
ulse

, 4 mm in 0.1 s

62: P
ulse

, 8 mm in 0.1 s
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Figure 3.10: Test sequence and key results for wall d2. Legend in Table 3.4.
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1: P
ulse, 2 mm in 0.2 s

2: P
ulse, 4 mm in 0.2 s

3: P
ulse, 4 mm in 0.1 s

4: P
ulse, 8 mm in 0.1 s

8: S
ine, 0.2 mm at 13 Hz

9: S
ine, 0.25 mm at 13 Hz

10: S
ine, 0.3 mm at 13 Hz

11: S
ine, 0.3 mm at 13 Hz

12: P
ulse

, 4 mm in 0.2 s

13: P
ulse

, 4 mm in 0.1 s

14: P
ulse

, 8 mm in 0.1 s

15: S
ine, 0.35 mm at 13 Hz

16: S
ine, 0.4 mm at 13 Hz

17: P
ulse

, 4 mm in 0.2 s

18: P
ulse

, 4 mm in 0.1 s

19: P
ulse

, 8 mm in 0.1 s

20: S
ine, 0.4 mm at 12 Hz

21: P
ulse

, 4 mm in 0.2 s

22: P
ulse

, 4 mm in 0.1 s

23: P
ulse

, 8 mm in 0.1 s

24: T
aft, -

5 mm PGD

25: T
aft, +

5 mm PGD

26: T
aft, +

10 mm PGD

27: T
aft, -

10 mm PGD

28: T
aft, -

20 mm PGD

29: T
aft, +

20 mm PGD

30: T
aft, +

30 mm PGD

31: T
aft, -

30 mm PGD

32: T
aft, -

40 mm PGD

33: T
aft, +

40 mm PGD

34: T
aft, +

50 mm PGD

35: T
aft, -

50 mm PGD

36: T
aft, -

60 mm PGD

37: T
aft, +

60 mm PGD

38: T
aft, +

70 mm PGD

39: T
aft, -

70 mm PGD

40: T
aft, -

80 mm PGD

41: T
aft, +

80 mm PGD

42: P
ulse

, 4 mm in 0.2 s

43: P
ulse

, 4 mm in 0.1 s

44: P
ulse

, 8 mm in 0.1 s

45: T
aft, +

90 mm PGD

46: T
aft, -

90 mm PGD

47: P
ulse

, 4 mm in 0.2 s

48: P
ulse

, 4 mm in 0.1 s

49: P
ulse

, 8 mm in 0.1 s

50: T
aft, -

100 mm PGD

51: T
aft, +

100 mm PGD

52: T
aft, +

110 mm PGD

53: T
aft, -

110 mm PGD

54: T
aft, -

120 mm PGD

55: T
aft, +

120 mm PGD

56: T
aft, +

60 mm PGD

57: T
aft, -

60 mm PGD

58: S
ine, 0.1 mm at 12 Hz

59: S
ine, 0.2 mm at 12 Hz

60: S
ine, 0.4 mm at 12 Hz
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Figure 3.11: Test sequence and key results for wall d3. Legend in Table 3.4.
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1: P
ulse, 4 mm in 0.2 s

2: P
ulse, 4 mm in 0.1 s

3: P
ulse, 8 mm in 0.1 s

6: Taft, -
40 mm PGD

7: Taft, +
40 mm PGD

8: Taft, +
80 mm PGD

9: Taft, -
80 mm PGD

10: P
ulse, 4 mm in 0.2 s

11: P
ulse, 4 mm in 0.1 s

12: P
ulse, 8 mm in 0.1 s

13: S
ine, 0.15 mm at 13 Hz

14: S
ine, 0.2 mm at 13 Hz

15: S
ine, 0.25 mm at 13 Hz

16: S
ine, 0.3 mm at 13 Hz

17: S
ine, 0.35 mm at 13 Hz

18: S
ine, 0.4 mm at 13 Hz

19: P
ulse, 4 mm in 0.2 s

20: P
ulse, 4 mm in 0.1 s

21: P
ulse, 8 mm in 0.1 s

22: S
ine, 0.45 mm at 13 Hz

23: S
ine, 0.5 mm at 13 Hz

24: P
ulse, 4 mm in 0.2 s

25: P
ulse, 4 mm in 0.1 s

26: P
ulse, 8 mm in 0.1 s

34: S
ine, 1.5 mm at 6 Hz

35: P
ulse, 4 mm in 0.2 s

36: P
ulse, 4 mm in 0.1 s

37: P
ulse, 8 mm in 0.1 s

39: S
ine, 0.2 mm at 13 Hz

40: S
ine, 0.3 mm at 13 Hz

41: S
ine, 0.4 mm at 13 Hz

42: P
ulse, 4 mm in 0.2 s

43: P
ulse, 4 mm in 0.1 s

44: P
ulse, 8 mm in 0.1 s

45: Taft, -
10 mm PGD

46: Taft, +
10 mm PGD

47: Taft, +
20 mm PGD

48: Taft, -
20 mm PGD

49: Taft, -
30 mm PGD

50: Taft, +
30 mm PGD

51: Taft, +
40 mm PGD

52: Taft, -
40 mm PGD

53: Taft, -
50 mm PGD

54: Taft, +
50 mm PGD

55: Taft, +
60 mm PGD

56: Taft, -
60 mm PGD

57: P
ulse, 4 mm in 0.2 s

58: P
ulse, 4 mm in 0.1 s

59: P
ulse, 8 mm in 0.1 s

60: Taft, +
60 mm PGD

61: Taft, -
60 mm PGD

62: Taft, -
70 mm PGD

63: Taft, +
70 mm PGD

64: Taft, +
70 mm PGD

65: Taft, -
70 mm PGD

66: P
ulse, 4 mm in 0.2 s

67: P
ulse, 4 mm in 0.1 s

68: P
ulse, 8 mm in 0.1 s

69: Taft, +
70 mm PGD

70: Taft, -
70 mm PGD

71: Taftbf05, -7
0 mm PGD

72: Taftbf05, +70 mm PGD

73: Taftbf10, +70 mm PGD

74: Taftbf10, -7
0 mm PGD

75: Taftbf20, -7
0 mm PGD

76: Taftbf20, +70 mm PGD

77: Taftbf30, +70 mm PGD

78: Taftbf30, -7
0 mm PGD

79: Taftbf50, -7
0 mm PGD

80: Taftbf50, +70 mm PGD

81: Taftbf75, +70 mm PGD

82: Taftbf75, -7
0 mm PGD

83: Taftbf100, -7
0 mm PGD

84: Taftbf100, +70 mm PGD

85: P
ulse, 4 mm in 0.2 s

86: P
ulse, 4 mm in 0.1 s

87: P
ulse, 8 mm in 0.1 s

88: S
ine, 0.2 mm at 13 Hz

89: S
ine, 0.4 mm at 13 Hz

90: S
ine, 0.6 mm at 13 Hz

91: P
ulse, 4 mm in 0.2 s

92: P
ulse, 4 mm in 0.1 s

93: P
ulse, 8 mm in 0.1 s

94: Taft, +
70 mm PGD

95: Taft, -
70 mm PGD

96: Taft, -
80 mm PGD

97: Taft, +
80 mm PGD

98: Taft, +
90 mm PGD

99: Taft, -
90 mm PGD

100: Taft, -
100 mm PGD

101: Taft, +
100 mm PGD

102: Taft, +
110 mm PGD

103: Taft, -
110 mm PGD

104: Taft, -
120 mm PGD

105: Taft, +
120 mm PGD

106: P
ulse, 4 mm in 0.2 s

107: P
ulse, 4 mm in 0.1 s

108: P
ulse, 8 mm in 0.1 s

109: S
ine, 0.1 mm at 13 Hz

110: S
ine, 0.2 mm at 13 Hz

111: S
ine, 0.3 mm at 13 Hz

112: S
ine, 0.4 mm at 13 Hz

113: S
ine, 0.5 mm at 13 Hz

114: P
ulse, 4 mm in 0.2 s

115: P
ulse, 4 mm in 0.1 s

116: P
ulse, 8 mm in 0.1 s
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Figure 3.12: Test sequence and key results for wall d4. Legend in Table 3.4.
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Figure 3.13: Test sequence and key results for wall d5. Legend in Table 3.4.
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Figure 3.14: Typical response during pulse test, including hysteresis plot (top), time
domain response (middle) and frequency domain response (bottom). Shown for test run
d2_32_R_8mm_100ms incorporating high frequency filter.
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Figure 3.15: Typical response during harmonic test, including hysteresis plot (top), time
domain response (middle) and frequency domain response (bottom). Shown for test run
d2_13_H_12Hz_0.25mm incorporating high frequency filter.
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Figure 3.16: Typical response during earthquake test, including hysteresis plot (top), time
domain response (middle) and frequency domain response (bottom). Shown for test run
d2_41_EQ_Taft_-100mm incorporating high frequency filter.
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Table 3.5: Peak measured response of key variables.

Wall Ultimate strength Max imposed displacement

aw.avg qw Fw aw.cent ∆w.cent ∆w.cent0
[g] [kPa] [kN] [g] [mm] [mm]

d1 3.73 3.95 8.96 6.40 14.1 13.3
d2 2.33 2.47 5.60 3.83 14.4 15.2
d3 2.52 2.67 5.25 5.49 17.2 16.3
d4 2.51 2.65 5.21 5.56 16.7 14.8
d5 1.52 1.61 3.16 4.95 22.6 24.5

Table 3.6: Legend for Figures 3.17, 3.18, 3.19, 3.20 and 3.21.

Colour Meaning (Type of test)u Pulse testu Harmonic testu Earthquake test

Marker Meaning (Damage state)

Wall uncrackede Wall lightly cracked
Wall fully cracked

3.4.2 Peak Response

Table 3.5 summarises the peak values of the main response variables measured
throughout the tests on each wall. Columns 2–4 provide different but interchange-
able measures of the ultimate strength, in terms of the average wall acceleration
aw.cent, pressure qw and force Fw. Column 5 provides the maximum measured
central wall acceleration aw.cent. Columns 6 and 7 give the largest displacement
imposed on the walls during testing, in terms of ∆w.cent and ∆w.cent0; however, it is
emphasised that these values provide only a lower bound estimate of the wall’s
displacement capacity, since none of the walls were tested to collapse. Peak values
of these variables occurring during individual runs are provided in Appendix C.3.2
(Table C.6). The corresponding peak values of ∆w.cent0 and aw.avg are also shown
graphically in Figures 3.9–3.13.

3.4.3 Envelope Curves

Figure 3.17 presents envelope curves for each wall’s load-displacement response
in the a–δ format, by plotting the amplitude of displacement and average wall
acceleration for the largest cycles occurring in each test run. It can be seen that the
plots for each wall share several common features:
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Figure 3.17: Average wall acceleration versus central displacement (amplitudes). Data
points correspond to the largest cycles identified in each test run. Legend in Table 3.6.

• Each initially uncracked wall underwent first cracking and reached its ulti-
mate strength at fairly small displacements (typically δ < 0.1).

• With increasing deformation and number of cycles imposed on the wall, the
progressive cracking and damage resulted in degradation of both strength and
stiffness. This is also evident from Figures 3.9–3.13, which show a continual
reduction in the stiffness with an increasing number of test runs.

• Even after full cracking, each wall still maintained its load capacity at increas-
ing levels of displacement, which can be attributed to rigid body rocking
and internal friction. It is noted that due to performance limitations of the
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Figure 3.18: Central wall acceleration versus central displacement (amplitudes). Data
points correspond to the largest cycles identified in each test run. Legend in Table 3.6.

shaketable, the maximum displacements reached (max δ between 0.2 and
0.4) were smaller than those achieved in the quasistatic tests (max δ approx-
imately 1). Nonetheless, the envelope curves indicate that the walls still
retained a significant proportion of their strength at the maximum imposed
displacements.

These behavioural trends are considered consistent with those observed for the
full-scale walls subjected to quasistatic cyclic loading as reported in Chapter 2.

Figure 3.18 provides alternative envelope curves, by plotting the wall’s central
acceleration versus displacement for the largest cycles occurring in each test run.



96 shaketable testing

Whilst the values of acceleration in these graphs are not considered to be represen-
tative of the load resistance in terms of the magnitude (since they use the central
acceleration and not the average acceleration), the plots suggest a more direct
relationship between the wall’s central acceleration and displacement, as opposed
to the average acceleration and displacement (Figure 3.17). In particular, for the
three walls with vertical precompression (walls d1, d3 and d4), the post-cracking
envelope appears to be somewhat bilinear in shape. This trend is not surprising
considering that the central acceleration was able to better capture the response of
the fundamental flexural mode of vibration, compared to the average acceleration,
which as discussed previously, is believed to have received some interference from
higher vibrational modes such as twisting.

3.4.4 Hysteretic Damping

Equivalent viscous damping due to hysteretic energy dissipation (refer to Section
3.3.2) is plotted against the displacement amplitude in Figure 3.19. It can be seen
that whilst there is a large degree of scatter in the measured values of ξhyst, the
main cluster of points resides between approximately 0.02 and 0.10, for all walls
tested. By comparison, values of damping at similar displacement amplitudes (i.e.
δ < 0.3) for the equivalent full-scale walls from Chapter 2 were generally between
0.09 and 0.15 (based on detailed results provided in Appendix B.3, particularly
Tables B.1–B.5 and Figures B.16–B.20). That the measured hysteretic damping was
higher for the full-scale walls can likely be attributed to the half-scale brickwork
having a lower friction coefficient due to the bricks being solid, as opposed to the
full-scale bricks which were perforated and therefore likely to have provided better
interlock.

3.4.5 Vibration Frequency

Figure 3.20 plots the wall’s vibrational frequency against displacement amplitude
in the peak response range, using results obtained by the cyclic response analysis
(outlined in Section 3.3.2). Despite a high level of scatter, the graphs suggest a
somewhat inverse relationship between the frequency and displacement amplitude.
An interesting correlation becomes apparent when the square of the angular
frequency, ω2, (whereby ω = 2π f ) is plotted against the effective stiffness K
(Figure 3.21). Whilst the resulting graphs still exhibit scatter, they do suggest a
linear relationship between the two parameters, as would be expected for a linear
dynamic system according to the fundamental relationship ω2 = K/M (where
M is the mass of the system). For the range of tests conducted, these graphs
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Figure 3.19: Equivalent viscous damping from hysteresis plotted against central displace-
ment amplitude. Data points correspond to the average values calculated in the peak
response range of each test run. Legend in Table 3.6.

also demonstrate that both stiffness and frequency were generally lower in walls
without precompression (d2, d5) and higher in walls with precompression (d1, d3,
d4).
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Figure 3.20: Cycle frequency plotted against central displacement amplitude. Data points
correspond to the average values calculated in the peak response range of each test run.
Legend in Table 3.6.
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Figure 3.21: Cycle angular frequency squared [ω2 = (2π f )2] plotted against effective
stiffness. Data points correspond to the average values calculated in the peak response
range of each test run. Effective stiffness is derived from the wall’s central acceleration.
Legend in Table 3.6.
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3.5 observed damage and crack patterns

Diagrams of the failure patterns exhibited by the walls at the conclusion of testing
are shown by Figure 3.22. Photographs showing the damage are also presented in
Figures 3.23–3.27.

3.5.1 Crack Pattern Shapes

The observed cracking patterns are consistent with the failure patterns typically
associated with walls in two-way bending, which are used in the as 3700 virtual
work (VW) method for prediction of the ultimate load capacity (refer to Figure
4.1).11 These patterns are characterised by diagonal cracks propagating from
corners where adjacent supported edges intersect, in addition to a short horizontal
crack forming at the centre of the wall.

There were, however, some differences between the observed and expected
behaviour: One such case was wall d2, which did not develop diagonal cracks
propagating from the top corners; instead, it developed a vertical crack along the
midspan that ran toward the top edge, with the overall pattern resembling that of
a wall free along the top edge. The reason for this is believed to be that the top
edge support did not provide a sufficient reaction at small displacements during
which the wall first cracked, due to the presence of a short horizontal gap between
the wall and the rubber spacer mounted onto the horizontal restraint members
(refer to Figure 3.4a). However, once the wall became cracked and underwent
horizontal movement at the top edge, it would make contact with the top edge
support member causing the horizontal reaction to become restored. A second
example is wall d5, which also did not develop a top diagonal crack along its longer
subpanel. It is emphasised, however, that the differences between the observed
and expected behaviour are not believed to be a result of the dynamic nature of
the imposed loading, but rather, a consequence of the detailing used along the top
edge support being unable to provide a sufficient horizontal reaction at the time
that the walls first cracked.

3.5.2 General Observations

The damage exhibited by the walls at the conclusion of testing is shown by Figures
3.23–3.27.

11Idealised versions of the expected failure patterns for the corresponding full-scale walls (s1–s5)
are illustrated in Figures 2.14–2.18.
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(a) Wall d1 (σvo = 0.10 MPa).

(b) Wall d2 (σvo = 0 MPa).

(c) Wall d3 (σvo = 0.10 MPa).

(d) Wall d4 (σvo = 0.05 MPa).

(e) Wall d5 (σvo = 0 MPa).

Figure 3.22: Cracking patterns exhibited by the walls at the conclusion of testing. The
inside and outside faces of each wall are shown by the left and right diagrams, respectively.
Note that the illustrations show the unfolded view of the walls (see Figure 2.23 for plan
view).
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Figure 3.23: Wall d1 at the conclusion of testing.
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Figure 3.24: Wall d2 at the conclusion of testing.
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Figure 3.25: Wall d3 at the conclusion of testing.
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Figure 3.26: Wall d4 at the conclusion of testing.
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Figure 3.27: Wall d5 at the conclusion of testing.
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Stepped Failure Versus Line Failure

Stepped failure was shown to be the exclusive mode of failure along vertical cracks
in horizontal bending, with no line failure being observed in any of the walls tested.
This is in contrast to the quasistatic test walls, where line failure was the slightly
more dominant failure mode (refer to Section 2.5). The difference in the observed
behaviour between the two sets of tests is believed to result from the different
types of brickwork used—particularly, perforated brick units in the quasistatic
tests (Figure 2.1) and solid brick units in the dynamic tests (Figure 3.1). The solid
brickwork had a lower tensile bond strength than the perforated brickwork, as
verified by material testing (reported in Appendix A.2). In addition, the solid
brick units are likely to have had a higher modulus of rupture due to the lack of
perforations (even though the modulus of rupture was not measured in these tests).
Both of these factors are likely to have contributed to stepped failure being the
more dominant mechanism in the reduced-scale test walls.

Importance of Wall Integrity Toward Seismic Performance

As stated in Section 3.1, one of the aims of this study was to verify whether the type
of behaviour observed in the quasistatic test study was comparable to response
produced under true dynamic conditions. In particular, it was speculated that the
airbags positioned on both sides of the wall during the quasistatic cyclic tests (refer
to Figure 2.8b) may have acted to confine the wall, thereby improving its integrity.
Indeed, the shaketable tests have demonstrated that under seismic loading it is
possible for a wall to undergo several types of premature local failure if its overall
integrity is poor.

A common observation of the walls’ response during seismic loading was
localised shear sliding along the cracks between adjacent sub-plates forming the
overall mechanism. Examples of this have been demonstrated to some extent by all
five walls tested, with solid walls d1 and d2 being the most notable cases (Figures
3.23 and 3.24). In fact, for both of these walls, the largest measured slip between
the subpanels was approximately 20 mm (40% of the wall’s thickness). Such sliding
could potentially cause a wall to lose flexural strength due to a reduction in internal
overlap, or in the more extreme scenario to undergo local failure if the shear sliding
becomes excessive. It should be noted, however, that the walls in this study were
subjected to a very large number of deformation cycles throughout the course
of testing, and that the number of deformation cycles expected during realistic
earthquakes would be considerably lower. Furthermore, the brickwork used in this
study may have been particularly susceptible to this kind of sliding behaviour due
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to a weak tensile bond strength and low friction coefficient (mean value of 0.576)
as a result of the flat surface of the bricks. By contrast, perforated brickwork, such
as that used in the quasistatic cyclic tests, would be expected to benefit from the
additional interlock between mortar and the bricks and hence be more resistant to
this type of failure.

Another example of localised failure was demonstrated by wall d5, in which the
steel lintel became disengaged from the wall at one of its ends (Figure 3.27). This is
believed to have occurred due to a loss of the lintel’s vertical confinement, caused
by large rotations and excessive fallout of mortar adjacent to the lintel’s support. A
further factor likely to have contributed to the failure was the smooth surface of
the lintel, which consisted of an equal angle steel section. This highlights the need
for a strong connection between the lintel and wall. Resistance against this type of
failure could be improved, for example, by using a lintel with a corrugated surface
to generate better interlock with the brickwork.

As was observed during the quasistatic cyclic tests and discussed in some detail
in Section 2.5.2, excessive line failure along the vertical edges of a wall can lead to
separation between the main wall and the return walls. Whilst line failure did not
occur in any of the shaketable test walls as discussed previously, it was nonetheless
possible for the main wall to become disengaged from the return walls due to
shear sliding, had the frictional interlock been insufficient. This did not occur in
any of the test walls; however, it needs to be clarified that the restraint conditions
implemented along the return walls for walls d1 and d2 would have prevented this
type of premature failure, since the return walls were restrained in the outward
direction (refer to Figures 3.3 and 3.4b).12 Whilst some minor separation between
the main wall and the return wall was observed in walls d3, d4 and d5 (for example,
as shown by Figure 3.26, third row from top, middle and right photos), the frictional
resistance along the cracks was still sufficient to provide a path for the horizontal
load. These observations once again underline the importance of the brickwork
having a high modulus of rupture ( fut) in order to promote stepped cracks, thereby
enabling frictional mechanisms to provide residual resistance following cracking
and improving the overall seismic performance.

3.6 conclusions

Shaketable tests have been performed on a set of five half-scale URM walls. The
walls were intended to serve as half-scale replicas of walls from the quasistatic

12Whilst it is recognised that the type of connection provided for walls d1 and d2 was not entirely
realistic, it was deemed necessary in order to prevent rocking of the test specimens (observed during
testing of wall d2) and to facilitate two-way bending response instead.
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cyclic loading tests in Chapter 2. As such, they were subjected to the same set of
boundary conditions as in the previous study, including translational restraint at
the top and bottom edges and full moment connections along both vertical edges.
The specimens comprised panels with openings, as well as loadbearing walls with
vertical precompression up to 0.1 MPa. During the course of testing, each wall
was subjected to a large number of individual test runs that included pulse tests,
harmonic tests and realistic earthquake motions.

The tests successfully verified the most significant behaviour characteristics
observed in the quasistatic cyclic test study, including the following:

• The walls exhibited significant post-cracking strength as well as displacement
capacity. Due to shaketable’s performance limitations, the imposed wall
displacements (max δ between approximately 0.2 and 0.4) were lower than
those reached in the quasistatic test study (max δ ≈ 1). Nonetheless, they
still significantly exceeded the deformations at which initial cracking and the
ultimate strength were attained.

• Under cyclic deformation, the observed load-displacement behaviour was
highly inelastic and exhibited a significant degree of hysteretic energy dissi-
pation, due to the frictional resistance mechanisms associated with two-way
bending.

• The walls’ strength and stiffness degraded as a result of damage accumulated
during the continued cyclic deformation and increasing displacements.

• Walls with precompression outperformed those without precompression
with respect to their ultimate and post-cracking strength. Furthermore, the
loadbearing walls exhibited a higher post-cracking stiffness and frequency of
vibration compared to the equivalent non-loadbearing walls.

• The observed damage and cracking patterns were in reasonably good agree-
ment with those typically associated with two-way walls, which were also
observed in the quasistatic test study.

The tests have also demonstrated, however, that walls without good overall
integrity could become susceptible to various modes of premature failure which
could reduce their overall seismic resistance. This includes sliding of adjacent
subplates along cracks; and in walls with openings, a possible loss of connection
between the brickwork and lintels. Whilst some of these issues could potentially be
prevented through good construction practice, they are beyond the scope of this
research. The tests have also highlighted the importance of the masonry possessing
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a high ratio of brick to bond strength ( fut/ fmt) in order to promote stepped failure
over line failure and maintain the ability of vertical edges to provide a path for the
horizontal load.
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Chapter4
U LT I M AT E S T R E N G T H P R E D I C T I O N I N
M O RTA R - B O N D E D M A S O N RY WA L L S

Abstract

Most state-of-the-art procedures for ultimate strength design of mortar-bonded,
two-way walls are based on plastic analysis. The basis of these methods, however,
assumes simultaneous attainment of moment capacities along the various cracks,
which is known to be fundamentally flawed for unreinforced masonry due to its
brittle nature. This chapter reviews the various available design methods and
outlines the distinctions between them, particularly their approach to dealing with
this conceptual flaw. Analytical expressions for calculating both the ultimate and
residual moment capacities along the various types of crack lines are presented,
which incorporate some improvements over previous models to enhance their
versatility. These expressions were fed into the virtual work analysis to analyse the
full-scale walls from tests reported in Chapter 2. Comparisons of the predicted and
measured values of ultimate strength suggest that the diagonal cracks and vertical
edge cracks in these walls did not achieve their moment capacities simultaneously.
Furthermore, although the present as 3700 code approach ignores any moment
contributions from horizontal crack lines, as these are generally known to form
early in the wall’s response, the analyses indicate that inclusion of some residual
moment capacity along these cracks helps to reduce the overall scatter in the
predictions.

113
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4.1 introduction

Although computationally intensive analytical methodologies such as finite element
analysis have been demonstrated to predict the out-of-plane strength of two-way
spanning, mortar-bonded unreinforced masonry (URM) walls with good accuracy
[Southcombe et al., 1995; Ng, 1996; Lee et al., 1996; Martini, 1998; Mathew et al.,
1999; Lourenço, 2000, 2002; Milani et al., 2006; Cecchi et al., 2007; Casolo and Milani,
2010], their reliance upon knowledge of precise values of material properties, high
computational effort and high analytical skill of the user makes them unsuitable
for everyday design use [Kappos et al., 2002]. This creates a distinct need for design
methodologies, which can accurately predict the ultimate strength, but are yet
simple enough for code implementation and hand calculation.

The approach prescribed by the Australian masonry code as 3700 [Standards
Australia, 2001] for ultimate strength design of two-way walls is the so-called virtual
work (VW) method, developed by Lawrence and Marshall [1996] [also reported in
Lawrence and Marshall, 1998, 2000].1 The method is a form of rigid plastic analysis,
which assumes that at the point of ultimate strength the load resistance of the wall
is obtained from contributions of moment capacities along vertical and diagonal
crack lines. Comparisons of strength predictions with a large experimental data
set have been shown to be largely favourable in the aforementioned sources,
despite numerous shortcomings of the moment capacity expressions used within
the method which are still currently prescribed in the code (refer to Appendix
E.1). More recently, Willis [2004] [also reported in Willis et al., 2004; Griffith et al.,
2005] developed alternative expressions for calculating the moment capacities
which incorporate significant improvements over the code expressions, in that they
are based on more rational mechanical models, account for the beneficial effects
of vertical compression, and are dimensionally consistent. Furthermore, Willis
demonstrated the expressions to perform favourably in predicting the ultimate
load capacity when implemented into the VW approach.

The aim of this chapter is to examine the accuracy of the VW method by
comparing its predictions of the ultimate load capacity to the experimental results
reported in Chapter 2. Of particular interest is to find out how effectively the
method can deal with the specific aspects of the tested walls, such as the presence
of openings, axial loading and moment restraint along the vertical edges, and to
suggest improvements and refinements to the method, as necessary.

This chapter is structured as follows: Section 4.2 describes the fundamental

1The method was originally implemented in the 1998 version of the code and has been retained
without modification in the subsequent 2001 and 2011 editions.
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basis behind the plastic analysis approach and provides a discussion of the various
subtleties between the different available methods. Section 4.3 provides analytical
expressions for calculating the moment capacities of mortar-bonded URM with
respect to the different types of bending. Section 4.4 describes a refined analysis for
walls with openings. Section 4.5 compares analytical predictions to experimentally
measured values of strength and provides a discussion of the results. A summary
of the findings and recommendations is presented in Section 4.6. Additional infor-
mation regarding various analytical models for calculation of moment capacities is
also provided in Appendix E.

4.2 review of plastic analysis methods

4.2.1 Theoretical Basis

Most masonry codes today specify ultimate strength design of two-way spanning
URM walls according to some form of rigid plastic analysis: including the Eurocode,
former British code2, Canadian code, as well as the Australian code.

At the heart of these methods are two fundamental assumptions:

1. The first assumption is that at the point of ultimate strength, the wall’s
displacement profile exhibits a collapse mechanism—a series of flat plates
with deformations concentrated in the form of rotations along crack lines.
Because the most significant deformations of masonry panels in flexure occur
along their crack lines, it is generally accepted that their collapse mechanisms
can be generally defined by the overall crack patterns (refer to Figure 4.1).

2. The second assumption is that the moment capacities along the contributing
cracks in the mechanism are all reached simultaneously. However, this
assumption is well known to be theoretically flawed, since URM is a non-
ductile material which cannot maintain its moment capacity at continued
deformation. As such, the various design approaches have addressed this
problem in different ways (as discussed further in Section 4.2.2).

Any plastic analysis begins with the arbitrary selection a collapse mechanism.
For the chosen mechanism, the lateral pressure resistance of the wall is evaluated
from the principle of energy conservation, by equating the internal and external
virtual work.

2Withdrawn on March 31st 2010 and now replaced by Eurocode 6.
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Figure 4.1: Failure mechanisms for various wall configurations as catered for by the as

3700 VW method. Graphics from Lawrence and Marshall [1996] [as reproduced in Lawrence
and Page, 1999]; however, labelling changed for consistency with Chapters 6 and 7 (used
with permission from S. J. Lawrence.).
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With loading due to a lateral pressure q〈x, y〉, the total external virtual work
E′tot done on the wall is obtained by integrating the product of the applied pressure
and the virtual displacement u′〈x, y〉, along the face of the wall:

E′tot =
∫

Y

∫
X

q〈x, y〉 u′〈x, y〉dx dy. (4.1)

When the applied pressure is uniformly distributed, such that q〈x, y〉 = q, the
above equation simplifies to

E′tot = q V ′
tot, (4.2)

where V ′
tot represents the total virtual displaced volume,

V ′
tot =

∫
Y

∫
X

u′〈x, y〉dx dy. (4.3)

Expressions for V ′ can easily be derived for various types of fundamental dis-
placed shapes, which in turn can be used to construct different types of collapse
mechanisms. This is done in Chapter 6 (refer to Figure 6.9 and Table 6.1).

The total internal virtual work is obtained by summing the energy contributions
from the various cracks present in the mechanism. The energy of a single crack is a
product of its moment M and virtual rotation θ′. Therefore, the total internal work
along the mechanism is

U′
tot =

n

∑
i=1

Mi θ′i , (4.4)

where i is the crack index and n is the total number of cracks.

By applying the principle of energy conservation and equating the external and
internal virtual work terms [Eqs. (4.2) and (4.4)], the pressure resistance of the wall
becomes

q =
U′

tot
V ′

tot
= ∑n

i=1 Mi θ′i
V ′

tot
, (4.5)

where crack rotations (θ′i) and displaced volume (V ′
tot) are geometric properties

dependent on the shape of the assumed collapse mechanism. By contrast, the
moment contribution (Mi) along each crack is dependent on the geometric and
material properties of the masonry, as well as vertical compression throughout the
panel.

An inherent aspect of plastic analysis is that it requires an accurate assumed
collapse mechanism to produce an accurate prediction of strength. Since conceptu-
ally there are an infinite number of possible collapse mechanism shapes that may
be applied to any particular wall, the critical or ‘correct’ mechanism is the one
that occurs under the smallest load—that is, it produces the minimum collapse
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pressure based on Eq. (4.5). Because of this, the method is often termed upper
bound, as any chosen mechanism can only provide an upper limit to the strength of
the critical mechanism. Finding the critical solution not only requires for various
different types of collapse mechanisms to be considered (for example refer to
Section 6.2), but within each mechanism, the shape-defining variables such as the
mechanism length and height dimensions and diagonal crack angles effectively
become independent variables that need to be optimised in order to minimise the
failure load.

4.2.2 Adaptations of the Method for Design

Numerous different adaptations of plastic theory have been developed for calculat-
ing the ultimate load capacity of two-way URM walls, several of which are used in
design codes today. These include traditional yield line analysis [Johansen, 1962],
the fracture line method [Sinha, 1978, 1980], the failure line method [Drysdale and
Baker, 2003; Baker et al., 2005], and the virtual work method [Lawrence and Marshall,
1996, 1998, 2000]. The appeal of plastic analysis lies in its versatile applicability, in
that it can easily deal with irregular wall configurations, walls with openings and
different edge fixities.

The theoretical problem with the application of plastic theory, which assumes
simultaneous attainment of moment capacities along the various cracks, to a brittle
material such as URM is already well established [Baker, 1973; Haseltine et al., 1977;
Lawrence, 1983; Baker et al., 1985; Haseltine and Tutt, 1986; Drysdale and Essawy, 1988;
Lovegrove, 1988; Southcombe et al., 1995].3 This is particularly true in reference to
the yield line method, which was the first application of plastic analysis to URM,
and of the various methods makes the most unconservative set of assumptions;
as such, it has been shown to overpredict wall strengths in many instances. The
subsequent methodologies developed have addressed some of these conceptual
issues and provided a more justifiable treatment of plastic analysis applied to URM.
Therefore, the aim of this review is not to debate the validity of plastic analysis, but
rather to provide an overview of the various methods and discuss their underlying
assumptions with respect to further development. For a quantitative comparison
between some of these methods, the reader is also referred to work by Maluf et al.
[2008].

Generalisations

Each of the methods share the following features:
3Also see discussions between Lovegrove, Beal, and Lawrence [1989].
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• The failure mechanisms implemented are based on typical two-way wall
crack patterns shown by Figure 4.1. This general class of crack patterns, char-
acterised by the propagation of diagonal crack lines from corners at which
adjacent supported edges meet, has been observed throughout many experi-
mental studies [Baker, 1973; Anderson and Bright, 1976; West et al., 1977, 1979b,a;
Hodgkinson et al., 1982a,b; Lawrence, 1983; Tapp, 1985; Drysdale and Essawy, 1988;
Chong, 1993; Ng, 1996; Abrams et al., 1996; Griffith, 2000; Edgell and Kjær, 2000;
Jaramillo, 2002; Korany, 2004; Edgell, 2005] including the experimental work
reported in Chapters 2 and 3.

• The length and height dimensions of the mechanism are assumed to take on
the full length and height spans of the wall. This assumption appears to be
reasonable for URM constructed with mortar based on both experimental evi-
dence and analytical predictions, in that the longest possible mechanism span
will generally lead to the lowest calculated load. However, as demonstrated
through parametric studies reported in Section 6.7.1, this generalisation only
remains valid as long as bond strength of the masonry significantly exceeds
the vertical compression from the self-weight of the wall. For walls with
very weak or zero bond cohesion, which obtain their strength primarily from
self-weight effects, there exists a critical mechanism height at which the failure
load becomes minimised. If the height of such a wall exceeds the critical
height, then the mechanism will not utilise the full available span.

By contrast, the most significant distinctions between the methods lie in the
following:

• Method of calculation of moment capacities along cracks;

• Selective inclusion of crack energies toward the internal work; and

• Treatment of the diagonal crack slope in the mechanism as either an indepen-
dent variable or predefined.

Standard Yield Line Analysis

Yield line analysis, which was originally developed for design of reinforced concrete
slabs by Johansen [1962], was the first application of plastic analysis to ultimate
strength design of two-way URM walls. The method was adopted in the 1978

version of the British code [British Standards Institution, 2005] and is still presently
used by the Eurocode [Comité Européen de Normalisation, 2005]. The basic form of
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the design equation in terms of the pressure capacity qc is

qc =
M̄vc

βL2 , (4.6)

where M̄vc is the moment capacity in vertical bending per unit length, L is the wall
length, and β is a moment coefficient corresponding to the particular wall aspect
ratio, orthogonal strength ratio and wall boundary condition. Eurocode 6 tabulates
values of β for a range of wall configurations and edge fixities, including O-, U-
and C-shaped walls, but not L-shaped (refer to Figure 1.2 for an explanation of the
codes). Alternatively, these coefficients may also be calculated using closed-form
expressions [e.g. Golding, 1991].

Yield line analysis makes the highest strength predictions of the various plastic
analysis adaptations for design, as it assumes full moment capacities to be achieved
along all cracks present in the mechanism. The effective moment capacity in vertical
bending is specified as

M̄vc = ( fmt + σv) Z̄, (4.7)

where fmt is the flexural tensile strength (determined from wallettes subjected to
vertical bending), σv is the design vertical stress and Z̄ is the sectional modulus per
unit length. By contrast, the capacity in horizontal bending is effectively treated as

M̄hc = fhZ̄, (4.8)

where fh is the equivalent flexural strength determined from wallettes subjected to
horizontal bending, and hence intrinsically accounts for a combination of line and
stepped failure (refer to Figure 4.4). Furthermore, the yield line approach implicitly
assumes the diagonal moment capacity along an inclined crack with angle ϕ to be

M̄dc = M̄vc cos2 ϕ + M̄hc sin2 ϕ, (4.9)

which simply resolves the capacities M̄vc and M̄hc along the diagonal axis and
therefore effectively assumes that both are reached simultaneously. This treatment
of diagonal bending appears to be a further unconservative aspect of the method,
in light of various experimental evidence suggesting that the vertical and hori-
zontal bending components in diagonal bending do not achieve their capacities
simultaneously, but are rather governed by a biaxial failure criterion [Baker, 1979;
Sinha et al., 1997; Griffith et al., 2005].

A feature of the yield line approach is that the diagonal crack angle ϕ is treated
as an independent variable, which is implicitly optimised to minimise the failure
load. This is in comparison to the Australian VW method, which assumes the
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diagonal crack angle to be predefined along the natural slope of the masonry, on
the basis of experimental observations and the reasoning that this is the natural
plane of weakness for brickwork (as will be discussed later). While the treatment
of ϕ as a variable is a conservative step in the yield line method, and will act to
slightly counteract its set of other unconservative assumptions, it could be argued
that for a material such as clay brick work it should not really be required since the
cracks will generally form along the predefined line of weakness.

Fracture Line Method

The fracture line method is a modification of yield line analysis developed by Sinha
[1978, 1980]. Even though the governing equations are derived using a moment
equilibrium approach rather than the energy approach (as described in Section
4.2.1), the method is still based on the same concepts as standard yield line analysis,
including moment contribution from all cracks, allowance for moment capacity
orthotropy, and treatment of the diagonal crack slope as an independent variable.
However, it also allows for independence between the developed internal moments
in the vertical and horizontal directions, by making the approximation that these
moments are distributed according to the stiffness orthotropy of the masonry k,
defined in the method as the ratio of the Young’s modulus of elasticity in the two
directions:

k = Ex/Ey.

Hence, the method becomes equivalent to standard yield line analysis when k = 1

[Hendry et al., 1997].

Failure Line Method

The Canadian code [Canadian Standards Association, 2004] uses a modified form
of yield line analysis, referred to as the failure line method [Drysdale and Baker,
2003; Baker et al., 2005]. The innovation of the method is that it omits internal
work contributions along central vertical or horizontal cracks that form early.
Assessment of whether or not an early crack forms is determined from comparing
the cracking load obtained from a precursor elastic plate analysis, to the load
calculated using standard yield line analysis assuming full crack contribution. If
the elastic analysis predicts that cracking will occur at a load lower than the yield
line method capacity, then a second plastic analysis is performed which omits the
internal work contribution from the early crack. Otherwise, the yield line solution
is adopted. Hence, the failure line method will always produce strength predictions
that are either equal to or lower than standard yield line analysis. The Canadian
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code implementation of this method only caters for three edge support shapes—
O-, U- and C-shaped walls, with L-shaped walls omitted; and furthermore, for
conservatism, it treats any supported edges as being simply supported regardless
of the actual edge fixity.

It is also worth noting that similar methodology is currently being developed
in Germany [Bakeer, 2011]. In the method described by Bakeer, the internal work
contribution along the first crack is formulated in terms of a moment reduction
factor, so that a portion of its moment capacity can still be included. This is to
avoid underprediction of the strength for very long or very tall walls. Hence, the
method becomes equivalent to standard yield line analysis (as per Eurocode 6)
when this factor is set to 1 and the Canadian failure line method when it is set to 0.

Virtual Work Method

The virtual work (VW) method is an approach developed by Lawrence and Marshall
[1996, 1998, 2000], which was adopted in the 1998 version of the Australian masonry
code as 3700 and retained in its more recent versions [Standards Australia, 2001].
The method differs from yield line analysis, in that: (i) it ignores the moment
contribution of horizontal crack lines, (ii) assumes the slope of diagonal crack lines
to follow a natural slope governed by the brick unit geometry, and (iii) is based on
explicit calculation of the moment capacities in horizontal and diagonal bending
using independent analytical expressions.

To calculate the design capacity of the wall, the code provides the formula

q =
2 a f

L2
e

(kh M̄h + kd M̄d) , (4.10)

which is a more user-friendly but mathematically equivalent adaptation of Eq. (4.5).
The term Le is the wall’s effective length, while a f , kh and kd are coefficients based
on the mechanism geometry. Expressions for these coefficients were derived by
Lawrence and Marshall [1996] for the range of failure mechanisms shown by Figure
4.1, and are tabulated in as 3700. Terms M̄h and M̄d represent the horizontal and
diagonal bending moment capacities as a moment per unit length of crack. The
expressions for these capacities prescribed by as 3700 are included in Appendix
E.1; however, these have numerous shortcomings as described therein. As such,
alternate analytical expressions, based mainly on work by Willis [2004] and some
modifications by the author, are recommended instead, as presented in Section 4.3.

The omission of horizontal crack contributions from the internal work is to
account for the typical experimental observation that horizontal cracks form early
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in the response and are therefore unlikely to contribute their full moment capacity
at the point that the ultimate strength is reached [e.g. Lawrence, 1983; Drysdale
and Essawy, 1988]. This measure, however, could result in underprediction of the
wall strength in certain scenarios, in particular for walls with high L/H aspect
ratio, since omitting the moment along horizontal cracks means that the calculated
pressure capacity will become continually lower and approach zero as the length of
the wall increases. Clearly, then, there must be some limiting value of wall length
above which the load capacity becomes governed by one-way vertical bending
response. A more realistic prediction of strength may for such cases could hence
be achieved, for example, by introducing a design clause that specifies the pressure
capacity as the larger of the two-way bending analysis [as per Eq. (4.10)], and an
analysis treating the wall as one-way vertically spanning by ignoring any vertical
supports. A further consideration is that since vertical compression will cause
horizontal crack lines to provide some moment resistance following cracking, it
may be reasonable to include this residual moment capacity in the analysis (such
analyses are conducted in Section 4.5.2 with favourable results).

A feature of the VW approach is that it assumes the diagonal crack angle to
inherently follow the natural diagonal slope of the masonry, i.e. one bed joint
across, one perpend joint up, and so on (refer to Figure 4.8). Hence, for a given
combination of wall dimensions and support arrangement, the collapse mechanism
geometry becomes immediately defined from the start of the analysis (Figure 4.1).
This allows for much simpler application of the method toward irregular walls
such as those with openings, when compared to methods treating the angle as
an independent variable, whose application to such scenarios can become quite
complicated due to the need for optimisation [e.g. Baker et al., 2005]. Experimental
studies [e.g. Lawrence, 1983; Griffith, 2000, as well the tests reported Chapters 2

and 3] have indeed shown the slope assumption to be reasonable for regular half-
overlap clay brickwork walls, in which the natural diagonal slope defines the main
line of weakness to diagonal crack formation. However, it may be prudent to treat
this assumption with care when dealing with non half-overlapping brickwork or
masonry where the tensile strength of the bricks units is low compared to that
of the bond, and hence diagonal crack line failure passing through brick units
becomes more likely.

Furthermore, there is an inherent difficulty with attempting to develop a rational
approach that treats the angle as an independent variable, as it requires a diagonal
bending model that can accurately describe the moment capacity as a function of
the crack angle. Although some experimental work has been carried out in this area
[Gazzola et al., 1985], the corresponding analytical models are not yet sufficiently
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developed. For example, the approach implicitly used in yield line analysis [Eq.
(4.9)], despite being formulated in terms of the crack slope, does not provide a
representative model of the biaxial bending failure criterion since it assumes that
the orthogonal capacities are reached simultaneously and is therefore likely to be
highly unconservative. Alternatively, while the Willis diagonal bending model
[refer to Eq. (4.32)] is also formulated in terms of the crack angle, it was developed
based on tests where wallette specimens were subjected to a moment oriented
along the natural diagonal slope [Griffith et al., 2005]; and as such, it has not been
validated for any other crack inclinations.

4.3 moment capacities

This section presents analytical expressions for calculating the moment capacity
of mortar-bonded URM with respect to vertical, horizontal and diagonal bending.
These include, in part, expressions based on established bending theory, expressions
based on work by Willis [2004] incorporating some modifications by the author,
and original expressions by the author.

For each type of bending, two limit states are considered:

1. Ultimate strength, prior to which the masonry is assumed to be initially un-
cracked. At this state, the masonry derives its strength through a combination
of material strength in addition to a contribution from vertical compression.

2. Residual strength, which assumes that the masonry is fully cracked and thus
possesses zero bond strength. At this limit state, the masonry obtains its
entire resistance from the acting vertical axial stress.4

It should be noted that while each of the presented analytical expressions account
for the strengthening influence of vertical compression, it is assumed that the
compressive strength of the masonry fmc is large compared to both the flexural
tensile strength fmt and the axial stress σv (i.e. fmc � fmt > σv); and that as a result,
the various sectional capacities are governed by the tensile, rather than compressive,
modes of failure.

4.3.1 Basic Definitions

The notation used in reference to the geometry of half-overlap stretcher bonded
masonry is illustrated by Figure 4.2. The length, height and width of the masonry

4Note that equations for the residual moment capacity in horizontal and diagonal bending are
included for completeness, even though they are not utilised in the present chapter. The respective
expressions are used in Chapter 6 as part of a virtual work analysis for cracked or dry stack masonry.
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Figure 4.2: Notation relating to the basic geometric properties of half-overlap masonry.

unit are denoted by lu, hu and tu, respectively. The mortar thickness is assumed to
be equal for both bed joints and perpend joints and is denoted by tj.

Let us define a basic ‘element’ of the masonry matrix as shown in Figure 4.2,
whose length se and height he are, respectively:

se =
(
lu + tj

)
/2, (4.11)

and he = hu + tj. (4.12)

The natural diagonal slope of the masonry, Gn, and corresponding angle ϕn are
defined by the slope that follows one bed joint across, one perpend joint up (and
so on), which is equivalent to the slope of a single element:

Gn = tan ϕn =
he

se
=

2
(
hu + tj

)
lu + tj

. (4.13)

As a matter of convenience, throughout this section the various moment capaci-
ties are generally provided in terms of the moment acting over a single element,
denoted by m. To convert these expressions into a moment per unit length of crack
format, denoted by M̄, the following formulae may be used:

For vertical bending, M̄v =
1
se
·mv; (4.14)

for horizontal bending, M̄h =
1
he
·mh; (4.15)

and for diagonal bending, M̄d =
1√

se2 + he2
·md. (4.16)

Any of the above M̄ formulations may be converted into an absolute moment along
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a crack line, denoted by M, using the expression

M = M̄ · lC, (4.17)

where lC is the span of the crack, which may be oriented either horizontally,
vertically or diagonally, depending on the type of bending.

4.3.2 Vertical Bending

Ultimate Strength

An unreinforced masonry section subjected to pure vertical bending develops
flexural stresses normal to the bed joints. The section will begin to crack when the
tensile stress reaches the flexural tensile strength of the masonry, fmt. Based on
simple elastic beam theory, the corresponding moment to cause cracking is

mv ult = ( fmt + σv) Zbe, (4.18)

where σv is the acting vertical compression and Zbe is the elastic section modulus
over the length of the element:

Zbe =
se t2

u
6

. (4.19)

While the Australian masonry code as 3700 method ignores the contributions
from vertical bending in the design of two-way walls, it prescribes a moment
capacity equivalent to Eq. (4.18) for the design of vertically spanning walls. The
code expression, which has been adapted for engineering design by incorporating
characteristic values of material strength and capacity reduction factors, is included
in Appendix E.1 [Eq. (E.1)]. It is worth noting that typical yield line analysis
also uses this form of the vertical moment capacity equation for calculating the
internal work contributions along horizontal crack lines in two-way wall collapse
mechanisms [see Eq. (4.7)].

Residual Strength

Consider a cracked masonry section with thickness tu, width se, and an acting axial
load P, subjected to an increasing moment, as shown by Figure 4.3. At the resting
state (Figure 4.3a), the stress along the section will be uniform and equal to

σv =
P

se tu
.
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Figure 4.3: Normal stresses along a cracked section subjected to increasing rotation under
vertical bending: (a) Resting state; (b) Imminent crack opening with linear elastic stress
distribution [governed by Eq. (4.20)]; (c) Partially open crack; (d) Fully open crack with
stress concentration at the material crushing limit [governed by Eq. (4.22)], and point load
idealisation [governed by Eq. (4.21)].

As a moment is applied, the stress distribution will initially be linear elastic
and continue to be so until the section reaches zero stress in the extreme tensile
fibre (Figure 4.3b). This condition represents incipient opening of the crack. The
corresponding moment at this state can be obtained directly from elastic theory by
substituting fmt = 0 into Eq. (4.18), producing

mv res = σv Zbe. (4.20)

As the moment is increased further, the crack will continually open up, thus reduc-
ing the length of the contact zone across the section and shifting the compressive
force resultant toward the extreme compressive fibre (Figure 4.3c). This will also
cause the compressive stress to enter the nonlinear range of the material, as shown.

If the portions of the wall above and below the crack are assumed to act as
rigid blocks, the maximum moment that can be reached occurs when the force
resultant becomes concentrated as a point load at the extreme compressive fibre of
the section (Figure 4.3d). The moment at this idealised state is

mv res = σv
se t2

u
2

, (4.21)
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where σv is the equivalent axial compressive stress calculated as if it were uniformly
distributed across the entire area of the section.5 This equation effectively provides
an upper bound to the moment capacity that can be reached along a cracked
section, since it assumes the idealisations of material rigidity, infinite compressive
capacity (to avoid crushing) and a perfectly flat surface across the crack. Comparing
Eqs. (4.21) and (4.20) shows that the moment capacity for the upper bound case of
a concentrated compressive stress is three times greater that of the linear elastic
moment capacity at the incipient opening of the crack.

A more realistic estimation of the upper limit to the maximum developable
moment can be obtained by accounting for the minimum bearing area necessary
to transmit the compressive force across the crack. If we assume that the stress
distribution at the material crushing limit can be approximated using a rectangular
stress block of magnitude c fmc (Figure 4.3d), the corresponding moment capacity
becomes

mv res = σv
se t2

u
2

[
1− σv

c fmc

]
, (4.22)

where fmc is the crushing strength of the masonry and c is some factor (generally
taken as 0.85 in reinforced concrete design). The square bracket term in the above
equation effectively acts as a strength reduction factor relative to the moment
capacity from idealised rigid block behaviour.

4.3.3 Horizontal Bending

Ultimate Strength

It is well established that horizontal bending generates cracks that can follow two
distinct failure patterns: either stepped failure (Figure 4.4a), where the crack follows
a toothed pattern alternating between across bed and perpend joints; or line failure
(Figure 4.4b), where the crack cuts alternately through perpend joints and brick
units. The critical mode of failure is dependent on the relative strength of the
masonry with respect to these two modes, whereby the strength against stepped
failure is governed by the torsional shear strength of the bed joint [Lawrence, 1975],
while the strength against line failure is governed by the tensile rupture strength of
the brick units.

The ultimate moment capacity with respect to both failure modes may be
calculated either by using expressions provided in the Australian masonry code
as 3700 [Eqs. (E.2a) and (E.2b) in Appendix E.1], or more recent expressions

5In other words, σvsetu is the acting axial force and tu/2 is the lever arm over which the force
acts. The product of these is equivalent to Eq. (4.21).
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(a) Stepped failure.

M o m e n t  a x i s

(b) Line failure.

Figure 4.4: Failure modes in horizontal bending.
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Figure 4.5: Torsion about the centroid of a bed joint.

developed by Willis [2004] [also reported in Willis et al., 2004]. The expressions by
Willis provide significant improvements over the code expressions and therefore
the author considers them to be the current state-of-the-art models. A slight
modification, however, is proposed to Willis’ expression for stepped failure, as will
be described.

stepped failure In his doctoral work, Willis [2004] proposed an analytical
equation for calculating the ultimate moment capacity with respect to stepped
failure [Eq. (E.8) in Appendix E], which provided a significant improvement over the
existing code expression [Eq. (E.2a)], in that it is founded on a rational mechanics-
based model, has dimensional consistency, and accounts for the beneficial influence
of vertical compression. For reasons that will be outlined, the author proposes a



130 ultimate strength prediction in mortar-bonded masonry walls

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

Overlap ratio, r
o

T
o
rq
u
e 
co
ef
fi
ci
en
t,
 k
b

 k
be

 k
bp

ro kbe kbp

0 0 0
0.2 0.0117 0.0521
0.5 0.0615 0.1483
0.8 0.1416 0.2765
0.9 0.1738 0.3274
1.0 0.2082 0.3826
1.1 0.2353 0.4422
1.2 0.2627 0.5063
1.3 0.2904 0.5749
1.4 0.3183 0.6482
1.5 0.3465 0.7261

Figure 4.6: Bed joint torque coefficients for varying overlap.

slightly modified version of the expression developed by Willis, as follows:

mh ult step = kbe τum t3
u, (4.23)

where τum is the ultimate shear stress of the masonry bond, and kbe is a torque
coefficient based on elastic theory. Due to the well established experimental
observation that perpend joints tend to crack early in the response [Base and Baker,
1973; Lawrence, 1983; Gairns, 1983; Baker et al., 1985; Lawrence, 1995], the equation
omits any contribution from flexure along perpend joints and assumes that at the
point of peak moment capacity, all resistance is obtained entirely from torsional
resistance along the bed joint (refer to Figure 4.5). The fundamental model treats the
bed joint as a rectangular section subjected to pure torsion, with failure occurring
when the developed shear stress reaches the shear capacity of the bond. To estimate
the ultimate shear capacity, Willis proposed the empirical Coulomb type expression

τum = 1.6 fmt + 0.9σv, (4.24)

where the σv coefficient, representing the coefficient of internal friction, was taken
as 0.9 on the basis of values observed in numerous studies involving in-plane shear
behaviour, and the fmt coefficient of 1.6 was subsequently calibrated using data
from flexural tests on small brickwork wallettes.

As mentioned, Eq. (4.23) represents a minor revision of the original equation
proposed by Willis. While being based on the same fundamental model, the
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improvement incorporated into the revised expression gives it more generic ap-
plicability. To explain this, let us first define sb as the minimum bed joint overlap
length between two successive courses as shown in Figure 4.2, which may be
calculated as

sb = (lu − tj)/2. (4.25)

The rectangular bed joint section resisting torsion therefore has the dimensions
sb × tu (Figure 4.5). Also define the overlap ratio, as the ratio of the overlap length
and the brick unit width:

ro =
sb

tu
. (4.26)

Since, according to elastic theory [Timoshenko and Goodier, 1934], the location of
the maximum shear stress along a rectangular section occurs at the midpoint of
the longer side, Willis’ original expression has the limitation in that it is only
strictly valid for a section with good overlap (ro ≥ 1). The modified form of the
expression [Eq. (4.23)] overcomes this and becomes applicable to any degree of bed
joint overlap (i.e. ro ≥ 0), due to the method used to calculate the elastic torque
coefficient kbe. The full procedure for calculating kbe as a function of ro is described
in Appendix E.2, or alternatively it may be obtained from Figure 4.6.

line failure Willis [2004] proposed that the ultimate moment capacity against
line failure can be calculated as

mh ult line =
1
2

( fut − νu σv)
hut2

u
6

, (4.27)

where fut is the lateral modulus of rupture of the brick unit, νu is the Poisson’s ratio
of the brick units (typically taken as 0.2), and other variables as defined previously.
This equation is based on simple elastic beam theory, with failure assumed to occur
when the tensile stress reaches the modulus of rupture. The subtracted term νu σv

in the equation accounts for the weakening influence of Poisson’s effect, which
causes vertical compression to induce additional lateral tensile stress within the
brick units. The coefficient of 1/2 accounts for the fact that only half of the vertical
line crack cuts through the available brick units (refer to Figure 4.4b), while the
other half cuts through perpend joints whose contributions to the moment capacity
are ignored, similarly to the previously discussed stepped failure model.

critical failure mode Figure 4.7 compares the failure mode expected to
be dominant based on the predicted strengths for standard Australian brickwork
(230× 110× 76 mm units with 10 mm joints). The plotted line represents equality
between the moment capacities predicted using Eqs. (4.23) [with (4.24)] and (4.27).
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Figure 4.7: Predicted failure mode in horizontal bending for standard Australian brickwork.

It is seen that as the axial load σv is increased, the ratio fut/ fmt required for stepped
failure to be favoured increases linearly. This trend is a combined effect of both
the strengthening influence of σv on the resistance against stepped failure, and its
weakening influence on the resistance against line failure.

According to the standard design procedure, including that prescribed by
as 3700, once the individual moment capacities for stepped and line failure are
calculated independently, the governing moment capacity is taken as the one with
the lower value:

mh ult gov = lesser of

mh ult step,

mh ult line.
(4.28)

However, as the material properties fmt and fut which influence these moment
capacities exhibit a large degree of variability, this treatment raises a conceptual
problem when attempting to use a deterministic, rather than a probabilistic ap-
proach to calculating the critical moment capacity. This is because a crack will
generally tend to follow weak links in the overall masonry matrix due to the
variation of material properties throughout a panel, and therefore exhibit a mixture
of the two failure modes. Since at a local level the crack effectively has the choice
to cut across a brick unit in line failure, or along the bed joints in stepped failure,
the option of having two parallel pathways means that the moment capacity of
the mixed failure mode will always be lower than that of either mode considered
individually.
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These issues will not be dealt with in detail in the present section, as Chapter 5

is fully dedicated to investigating them through the development of probabilistic
methodologies for estimating the resulting strength reduction, as well as the
expected likelihood of each failure mode. It will be noted, however, that for typical
levels of material strength variability, the adverse capacity reduction factor of 0.6
used for the design of walls in flexure according as 3700 appears to be sufficient to
cover these effects. As an estimate of the maximum possible strength reduction for
a particular level of material strength variability, the reader is referred to Figure 5.9.

Residual Strength

Portions of a vertical crack that undergo stepped failure at the ultimate strength
limit state are likely to possess some residual moment capacity due to frictional
torsion across overlapping bed joints (Figure 4.5). This capacity may be calculated
using the expression

mh res = kbp τf t3
u, (4.29)

where τf is the frictional shear stress capacity of the bedded surface, kbp is a plastic
torque coefficient, and other variables as defined previously. The frictional shear
stress capacity is taken as

τf = µm σv, (4.30)

where µm is the friction coefficient of the bedded surface and σv is the acting normal
stress. The plastic torque coefficient kbp for a bed joint section with the dimensions
sb × tu can be calculated directly from the overlap ratio ro [defined by Eq. (4.26)], as

kbp =
1
12

[
2ro

√
1 + r2

o + ln
(

ro +
√

1 + r2
o

)
+ r3

o ln
(

r−1
o +

√
1 + r−2

o

)]
. (4.31)

Full derivation of this equation is provided in Appendix E.3. The relationship
between kbp and ro is also plotted in Figure 4.6.

The model is based on the following assumptions:

1. The cracked bed joint is assumed to exhibit full contact across the crack as
well as a uniform normal stress, which results in a uniform frictional shear
stress capacity along the surface.

2. To oppose the applied torsion, the section is assumed to develop a shear
stress equal to its frictional shear capacity along its entire surface, regardless
of its distance from the point of rotation. The shear stress distribution is
therefore considered to be plastic.
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3. The point of rotation is assumed to be positioned at the centroid of the
rectangular section (as shown in Figure 4.5). This condition results in the
shortest aggregate lever arm for the acting shear stresses, thus leading to the
lowest possible value of torsion. This assumption is deemed conservative,
since placing the pivot at any point other than the section centroid will result
in increased torsion.

It is worth noting that the proposed model described here is very similar to a
torsional friction model developed by Orduña and Lourenço [2005a], which also has
the ability to deal with different (non centred) positions of the rotation point along
the rectangular section.

Both equations (4.29) and (4.23), representing the residual and ultimate (stepped)
moment capacities, have a very similar form—the difference being that the first
is proportional to kbp τf and the second to kbe τum. Although it can be seen from
Figure 4.6 that kbe < kbp for any value of overlap, this effect will generally be
outweighed by the fact that τum � τf , due to the cohesion term 1.6 fmt in Eq. (4.24).
The predicted moment capacity of an uncracked section will therefore exceed the
predicted capacity after cracking, for realistic values of parameters.

It is important to note that only portions of the vertical crack which exhibit
stepped failure (Figure 4.4a) are able to contribute to the residual moment capacity.
By contrast, portions of the crack which undergo line failure (Figure 4.4b) provide
no residual moment resistance. As mentioned earlier, Chapter 5 provides a devel-
oped probabilistic approach for estimating the expected likelihood of these failure
modes, which can be used as an estimate of the proportion of the crack expected to
undergo each type of failure. A potential application of this methodology is there-
fore to provide a reduction factor for the residual strength based on the approach
presented herein. For an estimate of the proportion of stepped failure expected for
standard Australian brickwork, the reader is referred to Figure 5.10.

4.3.4 Diagonal Bending

Ultimate Strength

The ultimate moment capacity along a diagonal crack line can be calculated using
several alternative approaches: The first is a model developed by Lawrence and
Marshall [1996] as part of the as 3700 VW method, which is still currently in use
and is reproduced in Appendix E.1.3. The second is a mechanics-based model
developed more recently by Willis [2004] [also published in Griffith et al., 2005],
which provides numerous improvements over the code approach. The third model
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Figure 4.8: Diagonal stepped crack.

is a proposed approach that takes the fundamental concepts behind the Willis
model and implements them with a more rational treatment of the biaxial failure
criterion, by accounting for the inclination of the applied moments and the strength
orthotropy of the masonry. The second and third models will now be described.

willis model Willis [2004] [as also reported in Griffith et al., 2005] developed
an analytical expression for predicting the ultimate moment capacity in diagonal
bending on the basis that the crack follows the natural diagonal slope of the
masonry (Figure 4.8). The model assumes that at the point of ultimate strength, the
crack’s moment resistance is obtained from combined flexure and torsion acting
along the bed joints. By contrast, contributions from capacities along perpend joints
are ignored due to the observation that they tend to crack early in the response.
The model also applies reduction factors to the contributing bed joint flexural and
torsional capacities to account for a mutually weakening interaction between these
mechanisms—that is, a reduction in the effective torsional capacity due to the
presence of normal stresses, and conversely, a reduction in the effective flexural
capacity due to the acting shear stresses. Occurrence of such effects has been
suggested on the basis of numerous studies [Baker, 1979; Sinha et al., 1997; Hagsten
and Nielsen, 2000].

A slightly reformulated but mathematically equivalent version of the equation
proposed by Willis [2004] is

md ult = mv ult cos3 ϕ + mh ult step sin3 ϕ, (4.32)

where md ult is the ultimate diagonal moment capacity over a single element, mv ult

and mh ult step are the respective moment capacities of the element with respect to
vertical bending and horizontal bending by stepped failure [as given by Eqs. (4.18)
and (4.23)], and ϕ is the angle of diagonal crack line. By separating the portions of
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the trigonometric terms in Eq. (4.32) accounting for moment interaction from those
acting to resolve the respective moments along the diagonal axis, and converting to
a moment per length formulation [using Eqs. (4.14)–(4.16)], Willis’ model can be
presented in the more generalised form:6

M̄d ult = M̄v ult
[
cos2n ϕ · cos2 ϕ + η sin2n ϕ · sin2 ϕ

]
, (4.33)

where M̄d ult and M̄v ult are the respective moment capacities per unit length for
diagonal and vertical bending, and η is the strength orthotropy ratio defined as
M̄h ult/M̄v ult. This ratio may be calculated on the basis of Eqs. (4.18), (4.23) and
(4.24) as

η =
[

1.6 fmt + 0.9σv

fmt + σv

]
6 kbe tu

he
. (4.34)

The parameter n in Eq. (4.33) can be used to vary the degree of interaction between
the flexural and torsional moments, as shown in Figure 4.9. Willis found that
a linear interaction (n = 1) gave the most accurate predictions compared to the
results from four individual tests on wallettes subjected to bending along the
natural diagonal slope (Figure 4.8).

While the Willis model incorporates numerous advances over the current as

3700 approach (included in Appendix E.1.3), its robustness could potentially be
limited due to the fact that it ignores the ratio of the horizontal and vertical
components of the applied moment and the strength orthotropy of the masonry,
and implicitly assumes that the flexural and torsional capacities of the bed joint
are reached simultaneously. Such an assumption is not theoretically justifiable
and as a result, extension of the model to predicting the moment capacity along a
generic crack angle becomes questionable, even though Eqs. (4.32) and (4.33) [also
the original equation in Willis, 2004] are presented in terms of the crack angle ϕ.
Nonetheless, it seems reasonable to presume that Willis’ model should perform well
when applied to cracks that follow the natural diagonal slope, since the interaction
coefficients [the terms cos2n ϕ and sin2n ϕ in Eq. (4.33)] were effectively calibrated

6Note that the basic formula for resolving a combined vertical and horizontal bending moment
onto an inclined axis can be written in the absolute moment form (M), as

Md = Mv cos ϕ + Mh sin ϕ,

where Md is the moment resultant, Mv is the vertical bending component (horizontal axis), Mh is the
horizontal bending component (vertical axis) and ϕ is the angle of inclined axis with respect to the
horizontal. Alternatively, in the moment per length (M̄) form, this becomes

M̄d = M̄v cos2 ϕ + M̄h sin2 ϕ,

which is the form generally presented in the literature in relation to yield line analysis. It is obvious
therefore that care needs to be exercised with regard to the exponents of the sine and cosine terms,
depending on the type of formulation being used.
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Figure 4.9: Biaxial bending failure criterion with various symmetric envelopes. Each axis
plots the ratio of the developed moment to the moment capacity in the respective direction.

using tests on wallettes subjected to such a failure condition. Indeed, incorporation
of the model as part of a as 3700 type virtual work method, in which the diagonal
crack slope is assumed to follow the natural slope of the masonry, has shown
favourable predictions of strength in comparison to a data set of 64 full-scale walls
[Griffith et al., 2005].

developed model based on biaxial failure criterion To overcome
the aforementioned shortcomings of the Willis model, an alternative model based
on a more rational treatment of the biaxial failure criterion has been developed. Its
full derivation is presented in Appendix E.4.

The proposed model has a similar basis to the Willis model, in that the overall
diagonal moment capacity is taken as the sum of the contributing flexural and
torsional moments along the bed joints. However, the revised model uses a differ-
ent implementation of the failure criterion which does not assume simultaneous
attainment of the flexural and torsional capacities. Instead, consideration is given
to the ratio of the developed flexural and torsional moments, by making the as-
sumption that the ratio of these moments per unit length can be approximated by
the inclination of the crack:

M̄h

M̄v
≈ tan ϕ. (4.35)

This estimation of the loading line for a given crack inclination ϕ, as shown in
Figure 4.9, allows for the failure point to be determined as the intersection of the
loading line with the chosen failure envelope.
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While it is possible for the model to utilise any failure criterion that is defined
by a relationship between the ratios M̄v/M̄v ult and M̄h/M̄h ult, the chosen form of
the failure criterion is(

M̄v

M̄v ult

)1/n

+
(

M̄h

M̄h ult

)1/n

= 1, with n > 0. (4.36)

The effect of n on the resulting envelope is illustrated by Figure 4.9, where it is seen
that as n is increased, the mutual weakening effect between flexure and torsion
becomes more significant.

In summary, the implementation of the biaxial failure criterion in the proposed
model achieves the following:

1. It makes a rational estimate of the ratio of the developed flexural and tor-
sional moments along the crack, instead of making the assumption that their
respective capacities are reached simultaneously.

2. It accounts for interaction between the two failure mechanisms (i.e. a mutually
reducing effect).

By comparison, the Willis approach only achieves the second point above.

Implementation of the failure criterion defined by Eq. (4.36) into the proposed
model results in the following general formula for the ultimate moment capacity
along an inclined axis:

M̄d ult = M̄v ult
(cos ϕ)3 + (sin ϕ)3[

(cos ϕ)1/n + (η−1 sin ϕ)1/n
]n , (4.37)

where the orthogonal strength ratio η may be calculated with respect to the stepped
failure mode using Eq. (4.34). Note, however, that as the crack approaches a vertical
inclination (ϕ → π/2), the crack becomes more likely to develop some proportion
of line failure. Therefore, if the user intends to use this equation along a generic
crack angle ϕ, it may be prudent to take the orthogonal ratio as the lesser of that
for the stepped and line failure modes.

In order to determine an appropriate value of the interaction parameter n in
the failure envelope defined by Eq. (4.36), a calibration process was undertaken to
produce equality between capacities obtained using the proposed model [Eq. (4.37)]
and the Willis model [Eq. (4.33)], using the test wallette properties originally used
by Willis for the calibration of his equation. These comprised standard Australian
brickwork (230× 110× 76 mm units with 10 mm mortar joints) with no applied
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axial load (σv = 0), subjected to bending along the natural diagonal slope. Equality
between the two models occurs at the value n = 0.88, which represents a failure
envelope that lies in between linear and elliptical (Figure 4.9). It should be noted,
however, that at this particular set of calibration conditions the capacity M̄d ult

predicted using Eq. (4.37) is fairly insensitive to the chosen value of n. This is
because at these conditions, the equivalent slope of the loading line in Figure 4.9
is quite low (tan ϕ/η = 0.717/2.86 = 0.25), which causes failure to be governed
primarily by the vertical bending capacity. This highlights the need for additional
experimental data to allow calibration of the failure envelope for a wider range of
crack angles.

Because the proposed model has been calibrated to give equal predictions
to the Willis model for standard clay brick masonry with no axial stress and
crack inclination at the natural diagonal slope, both models are equally valid and
effectively interchangeable for the scope of application used in this chapter—that
is, prediction of the ultimate strength of test walls from Chapter 2 using the as

3700 type VW approach, which assumes diagonal cracks to follow the natural
diagonal slope of the masonry. The author, however, considers the proposed
model to be better suited to application beyond this scope, such as predicting the
moment capacities along cracks that do not follow the natural slope, since it is
based on a more rational treatment of the biaxial failure criterion. For example, it
could be used as an alternative to the unconservative diagonal moment capacity
model implicitly used in the yield line and failure line methods [Eq. (4.9)], which
ignores interaction between the vertical and horizontal bending contributions and
furthermore assumes that their capacities are reached simultaneously.

Residual Strength

The residual moment along a diagonal crack can be estimated using principles
similar to those used for vertical bending. As shown by Figure 4.3(d) the maximum
attainable moment occurs when the axial load is concentrated at the extreme
compressive fibre of the section. If the portions of the masonry above and below
the crack are assumed to act as rigid blocks, then the moment capacity at this state
is equal to

md res = σv
se t2

u
2

cos ϕ, (4.38)

which is equivalent to the capacity for a horizontal crack under vertical bending
[Eq. (4.21)], resolved onto the inclined axis of the crack by the cos ϕ term.
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4.4 walls with openings

While the as 3700 codified VW approach gives provisions for walls with openings,
the treatment provided therein makes several conservative simplifying assump-
tions. One of these is that the area covered by the opening is subject to the same
uniform pressure as the solid portions of the wall. Although this representation
is reasonable when the wall is subjected to wind loading, it introduces some level
of conservatism with respect to earthquake induced inertial loading, since the
openings will generally have a lower mass density compared to the wall and
therefore attract less load. For the purpose of force-based seismic design, this
assumption seems quite acceptable since it errs on the side of safety. However,
in order to assess the method’s accuracy with respect to the walls with openings
tested experimentally in Chapter 2, we need a refined approach, since the walls’
openings were left unloaded in these tests.

The refined analysis performed for walls with openings is based on discretising
the wall into individual elements and using only the solid portions of the wall for
contributions to the internal and external work terms. Such an analysis may be
easily performed using a spreadsheet. The general steps are as follows:

1. Discretise the wall into individual elements having the length se and he as
given by Eqs. (4.11) and (4.12) and illustrated in Figure 4.2. It is convenient
to treat this as the basic unit of discretisation, since it defines the diagonal
crack slope based on the brick unit geometry.

2. Superimpose the assumed crack pattern (collapse mechanism) onto the wall.
For each of the test walls analysed, the crack patterns used in the analysis
were based on full utilisation of the wall length and height spans and closely
resembled the experimentally observed crack patterns (see walls s3–s8 in
Figure 2.23).

3. Generate a spatial representation of the vertical compressive stress (σv) dis-
tribution along the panel, and by doing so, calculate the compression acting
within each element present. The model used for this purpose shall be
described later in this section.

4. Calculate the moment capacity of each crack in the mechanism using the
equations in Section 4.3 for the respective types of bending (vertical, horizontal
or diagonal). The moment capacity along a single crack is then obtained as

M = ne ·m,
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Figure 4.10: Displaced shape for walls s3–s5.

where ne is the number of elements in the crack and m is the moment per a
single element. The vertical stress used in the calculation of m for each crack
can be taken as the average vertical stress of the participating elements in
the crack, based on the stress profile obtained from step 3. Note that since
the moment capacity in horizontal bending is taken as the minimum of the
stepped and line failure modes, additional refinement may be introduced by
calculating m for each element in the crack using its own value of σv, and
summing these over the elements present to get the total moment along the
crack.

5. Calculate the internal work for each crack by multiplying its moment capacity
M by its virtual rotation θ′. (The reader is referred to Figure 6.9 for formulae
to calculate the virtual rotations for the different types of cracks.) The total
internal work along the mechanism U′

tot is then obtained by summing the
individual crack energies [Eq. (4.4)].

6. To account for the external work, generate the displacement profile along the
mechanism by calculating the displacement at the centroid of each element.
The total virtual volume along the mechanism [refer to Eq. (4.3)] is obtained
as

V ′
tot = se he ∑ u′j,

where se × he represents the area of a single element and ∑ u′j is the sum of
all element displacements along the solid portions of the wall. An example of
the calculated displacement profile is shown by Figure 4.10.

7. Finally calculate the wall’s pressure capacity q using Eq. (4.5).
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As described, step 3 involves the calculation of the spatial distribution of com-
pressive stress (σv) within the wall, which is subsequently used to account for
vertical stress effects in evaluation of moment capacities in step 4. In the analyses
performed (reported in Section 4.5), the stress distribution throughout the wall was
evaluated using a two-dimensional axial stress propagation model (Figure 4.11)
in which the stresses in a particular course are calculated based on the stresses
in the course directly above. Because this scheme computes the stresses in the
wall course-by-course, from the top to the bottom of the wall, it is well suited to
spreadsheet implementation. The model is based on the following rules:

• Noting that each full brick is comprised of a pair of elements as shown in
Figure 4.11a, the stresses σbl and σbr developed at the base of the brick are
calculated from the stresses σtl and σtr applied at the top of the brick, by
distributing them according to the dispersion coefficient c and adding the
stress σw from self-weight. Hence, the stresses developed are as follows:

for the left element, σbl = c σte + (1− c) σtr + σw;

and for the right element, σbr = (1− c) σtl + c σtr + σw.

Valid values of c range from 0.5 to 1.0, with 0.5 causing equal distribution of
the stress at the top of the brick to each element below, and 1.0 generating a
purely vertical flow of stress with no lateral dispersion. The analytical results
reported in Section 4.5 used c = 0.5, however, it is noted that the value chosen
had only a very minor (less than 1%) influence on the calculated wall strength
for all cases considered.

• The stress applied at the base of a half-brick was simply calculated as stress
applied at its top, in addition to self-weight (Figure 4.11b):

σb = σt + σw.

• The load reactions developed at the ends of the window lintels were calculated
from the forces exerted by the acting elements by treating the lintel as a simply-
supported beam (Figure 4.11c). The weight of the lintel itself was ignored
from the calculations.

• In walls with precompression (walls s1, s3, s4 and s7), the applied stress was
assumed to be uniformly distributed along the top edge; that is, the precise
horizontal positioning of load bearing points in the experimental arrangement
(Figure B.1 in Appendix B.1) was not accounted for.
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Figure 4.11: Two dimensional axial stress propagation model.
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Figure 4.12: Calculated axial stress distribution for wall s5.

As seen from Figure 4.11d, the resulting dispersion of stress in the model is limited
by the natural slope of the masonry. An example of the computed stress distribution
is shown in Figure 4.12, for wall s5.

4.5 analysis results and comparison with experiment

To examine the accuracy of the VW method, the measured values of the ultimate
strength of the eight full-scale walls (as reported in Chapter 2) were compared to
analytical predictions. Trialled within the VW method were two sets of moment
capacity expressions for horizontal and diagonal bending: (i) the presently pre-
scribed code expressions (provided in Appendix E.1), and (ii) expressions based on
the work by Willis and incorporating some minor modifications by the author [Eqs.
(4.23), (4.24) and (4.27) for horizontal bending, and Eq. (4.32) or alternatively Eq.
(4.37) for diagonal bending]7.

Comparisons were made in two stages:

1. Firstly, by ignoring any moment contributions from vertical bending, as is
done by the codified version of the approach in as 3700 (Section 4.5.1);

7The precise results presented here are based on analyses that used the diagonal bending model
by Willis [Eq. (4.32)]; however, replacing this with the revised model [Eq. (4.37)] provides wall
strength predictions that are very close (within 0.5% for all walls), since the developed model was
calibrated to the Willis model for standard Australian brickwork (refer to Appendix E.4.3).
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2. And secondly, by including some contribution from vertical moment capaci-
ties along the horizontal cracks (Section 4.5.2).

Details of various aspects of the wall configurations, which served as input values
for the analyses, can be found in Section 2.3. Wall dimensions and values of
precompression are summarised in Table 2.4. The analyses utilised mean values of
the measured material properties, including fmt and fut, as given in Tables 2.2 and
2.3. Note that for each wall its own specific value of fmt was used. The collapse
mechanisms applied to each wall were based on the general class of mechanisms
illustrated in Figure 4.1. Analyses of walls with openings were performed according
to the refined treatment described in Section 4.4.

4.5.1 Ignoring Vertical Bending

In addition to ignoring vertical moments present along horizontal cracks, the
analyses conducted made the assumption that diagonal cracks develop their full
moment capacities. Horizontal moments along the vertical edge cracks were treated
as variable by means of the R f factor, acting as a multiplier of their nominal moment
capacities. In the as 3700 approach, this factor provides scope to account for varied
degree of rotational fixity along these edges. By contrast, internal vertical cracks
(present only in wall s6) were assumed to provide their full moment capacity.
Results of these analyses are summarised in Table 4.1 and also shown graphically
in Figure 4.13.

From the results it is evident that regardless of which set of moment capacity
expressions are used, assuming the vertical edge cracks to provide their full
moment contribution (R f = 1) leads to overprediction of the wall strength. The
resulting strength overestimation is equal to 39% and 80%, on average, for the
Willis-based and code expressions, respectively. Taking R f as 1, however, makes
the assumption that the capacities of cracks in diagonal and horizontal bending are
reached simultaneously, which may not strictly be the case. In fact, observations
of the sequence of crack formation and the cracking patterns at the conclusion
of each test (refer to Section 2.5) suggested that the moment resistance along the
diagonal cracks was reached before the horizontal bending moment capacity was
reached along the vertical edges. Furthermore, cracking along the vertical edges of
the walls did not appear to be fully developed in any of the specimens, even after
the walls had reached their ultimate strength (refer to Figure 2.23).

To account for the fact that the full moment capacity along the vertical edges
may not have been reached at the point of ultimate load capacity, the analyses
were repeated, but this time assuming only a partial moment contribution along
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Figure 4.13: Comparison of measured and calculated values of strength for the eight test
walls. The predictions assume no moment contribution from vertical bending.

Table 4.1: Summary of strength predictions using refined mechanisms and assuming zero
moment contribution from vertical bending.

Wall
Measured

Strength qtest
[kPa]

Ratio of calculated to measured strength, qcalc/qtest, for:

Willis-based Mh ult and Md ult Code based Mh ult and Md ult

R f = 1 R f = 0.5 R f = 0 R f = 1 R f = 0.5 R f = 0

s1 4.76 1.14 0.88 0.62 1.47 1.15 0.82
s2 3.04 1.35 0.99 0.64 1.88 1.48 1.09
s3 5.05 0.97 0.69 0.41 1.29 0.95 0.61
s4 3.91 1.38 0.99 0.61 1.78 1.33 0.89
s5 3.59 1.48 1.06 0.64 1.88 1.43 0.98
s6 1.97 1.69 1.22 0.75 2.13 1.60 1.06
s7 8.71 1.56 1.07 0.58 2.00 1.39 0.78
s8 8.52 1.56 1.05 0.55 1.94 1.38 0.81

Mean: 1.39 0.99 0.60 1.80 1.34 0.88
CoV: 0.17 0.16 0.16 0.16 0.15 0.18
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the vertical edge cracks, through reduction of the R f factor. It is seen from Table
4.1 that predictions using the Willis-based expressions provide good agreement
with the experiment, in that the average ratio of the predicted and measured
strength (qcalc/qtest) becomes approximately equal to unity, if the contributions of
the vertical edges are taken as 50% of their ultimate moment capacity. Using the
code expressions, the R f factor would need to be reduced even further to 13% in
order to achieve unity predictions. By contrast, if the vertical edges are effectively
treated as simply supported by taking R f = 0, analyses using both the Willis-based
and code expressions underpredict the wall strength, on average, by 40% and 12%
respectively. These results suggest that even though the vertical edge connections in
the experimental arrangement were designed to behave as fully fixed by providing
short return walls with rotational restraint, the vertical edge cracks formed along
these edges are unlikely to have developed their full ultimate moment capacities at
the same time as the walls achieved their ultimate load resistance.

4.5.2 Inclusion of Residual Vertical Bending

It may seem that since the analyses in Section 4.5.1 have already established that
strength overpredictions result when both the horizontal and diagonal moments
are taken at their full capacities, there is no reason to include further internal work
contribution from vertical bending. However, since we know that due to axial
compression effects some albeit small residual moments must still be present along
the horizontal cracks even after cracking, it could be argued that these should be
included in the analysis in order to better represent actual behaviour.

Therefore, a second set of analyses was performed, which allowed for some
degree of moment resistance along the horizontal cracks present. The various
vertical bending moment capacities trialled as part of the VW approach included:

• Ultimate moment capacity [Eq. (4.18)];

• Residual moment capacity assuming the crack to be open together with
idealised rigid rocking behaviour [Eq. (4.21)];

• Residual moment capacity at incipient opening of the crack with a linear
elastic stress distribution [Eq. (4.20)]; and

• Zero moment contribution, for comparison.

An assumption of the analyses performed in Section 4.5.1 was that at the point
of the wall’s ultimate load resistance diagonal cracks within the mechanism exhibit
their full moment capacities. However, there is no justifiable reason for making
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Figure 4.14: Calibration of moment capacity coefficients for horizontal and diagonal
bending, so as to achieve average qcalc/qtest equal to unity for the eight walls tested. Results
are shown for different types of assumed vertical moment capacity along horizontal cracks.
The top graphs demonstrate the relationship between the horizontal and diagonal bending
moment factors. The bottom graphs show the overall scatter in the predictions between
the eight walls, by plotting the CoV of qcalc/qtest in terms of the assumed diagonal moment
coefficient.
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this assumption, other than the fact that the walls appeared to reach their ultimate
strength close to when these cracks formed. In the opinion of the author, it is likely
that at the point that the walls reached their ultimate strength both of these types
of cracks exhibited only a limited proportion of their full moment capacities. As
discussed in Sections 2.4 and 2.5, the observation of crack progression in conjunction
with the measured load-displacement behaviour (Figures 2.11–2.13) suggested that
some degree of moment redistribution occurred as the applied deformation was
increased, with gradual transfer of the internal load resistance mechanisms from
diagonal bending to horizontal bending. Hence, the peak load of the walls was
most likely reached at some point during this moment redistribution process—that
is, before the vertical cracks had yet reached their full moment capacity, but after
the moment along diagonal crack lines had already began to reduce.

To account for these effects in the analysis, reduction coefficients were imple-
mented to both the ultimate diagonal and horizontal moment capacities Md and Mh.
A subsequent calibration process was undertaken to determine what proportion of
the ultimate bending moment capacities in horizontal and diagonal bending was
likely to contribute toward the ultimate strength of the test walls. This process in-
volved assuming a particular value of the diagonal moment coefficient and varying
the horizontal moment coefficient to achieve an average value of qcalc/qtest for the
eight walls equal to unity. Since this process ensures that the predictions are, on
average, neither conservative nor unconservative, the only meaningful measure of
prediction accuracy becomes the scatter in the predictions, which was quantified
using the coefficient of variation (CoV) of qcalc/qtest across the eight walls. Results
of these analyses are provided in Figure 4.14 by graphing the relationship between
the horizontal and diagonal moment coefficients and the resulting scatter in the
predictions.

From the results, it is evident that prediction scatter becomes minimised when
some quantity of residual moment capacity is assumed to be present along the
horizontal crack lines. This is not surprising given that this representation provides
a more accurate account of the internal resistance within the wall, compared to
simply ignoring the vertical moment capacities as done by the codified as 3700

approach. The graphs indicate that regardless of whether the VW analysis uses
Willis-based or code expressions for Mh and Md, the most favourable predictions
occur when residual moment capacity based on rigid body rocking [Eq. (4.21)]
is assumed to be active along the horizontal crack lines. Using the Willis-based
moment equations (Figure 4.14a), the CoV becomes minimised at a value of 7.7%,
when the diagonal and horizontal moment coefficients are set to 0.90 and 0.42,
respectively. Values of these coefficients are comparable to those established to give
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good predictions in Section 4.5.1 in the absence of vertical bending (1.0 and 0.5
respectively); however, the resulting prediction scatter becomes effectively halved
(from CoV = 16%) simply by accounting for residual vertical bending.

It is emphasised that the aim of this calibration study was not to derive values
of moment factors that can be directly implemented into a generalised design pro-
cedure, but rather to establish likely values of the contributing moment capacities
for this particular set of walls. These walls, in particular, had full moment restraint
along their vertical edges and therefore different coefficients would be expected for
similarly shaped walls, but with different rotational restraint. Derivation of such
values for a generalised design procedure would furthermore require consideration
of a much larger experimental data set.

Nonetheless, if we hope to implement moment capacity models such as those by
Willis, which have been developed and calibrated based on uniaxial bending tests
on small scale wallettes, into the plastic analysis approach for design of two-way
walls, then application of such reduction factors for the purpose of design becomes
conceptually justifiable on the following grounds:

• The various cracks present in the mechanism do not reach their ultimate
capacities simultaneously, as already discussed.

• Due to the internal moment distribution developed throughout a wall as a
result of two-way action, cracks generally form by propagating, rather than
forming instantaneously along their entire length. Therefore, it is unlikely
that even an individual crack could be able to reach its full moment capacity
simultaneously, since some portions of the crack will already have failed,
while others will not yet have achieved their capacity.

• Variability in material strength properties, including fmt and fut, throughout
the wall causes cracks to propagate along weak links within the masonry
and therefore to exhibit a lower capacity than suggested by a deterministic
analysis which uses mean values of these material properties. Such effects
are investigated further in Chapter 5 with regard to horizontal bending.

4.6 conclusions

A review of various plastic analysis techniques for ultimate strength design of
two-way walls has been conducted. Of the methods available, the VW method
used in as 3700 is appealing because it is based on explicit calculation of moment
capacities along the various types of crack lines. Significant advances have been
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made recently in development of corresponding analytical models for predicting
the moment capacities of URM in horizontal and diagonal bending. These models
were fed into the VW method and analyses were conducted on the eight walls from
tests reported in Chapter 2. Each of these walls had full moment connections along
their vertical edges and thus required formation of vertical cracks to generate a
failure mechanism. However, comparisons of the predicted values of strength with
measured values indicate that it is unlikely that both the diagonal and vertical
cracks achieved their full capacities simultaneously. Indeed, this conclusion was
supported by the crack patterns observed during testing, as only a limited amount
of cracking had been visible along the vertical edges even after the walls had been
pushed beyond their ultimate strength. Furthermore, it was demonstrated that it
may be worthwhile to include some residual capacity along horizontal crack lines
in the mechanism—something not presently done by the codified version of the
method—as this reduced the overall scatter in the predictions.

Nonetheless, it must be emphasised that these conclusions are based only on
analytical predictions made for the eight walls reported in Chapter 2. A more
comprehensive comparison study based on a much larger experimental data set
is still needed in order to validate these findings, which can be a focus for future
work. A summary of the existing experimental data that could be used for this
purpose is presented in Table 2.1.
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Chapter5
P R O B A B I L I S T I C M E T H O D O L O G Y F O R
H O R I Z O N TA L B E N D I N G

Abstract

Unreinforced masonry subjected to horizontal bending can undergo cracking by
two distinct modes: either by stepped failure along the masonry bond, or line
failure cutting directly through the brick units. Because of variability in the material
properties, vertical cracks typically tend to develop a mixture of both failure modes.
This chapter presents two stochastic analysis methodologies. The first deals with
calculating the ultimate moment capacity in horizontal bending by accounting
for the weakening effect associated with a combined mode of failure. Strength
reduction factors are derived for the mean and characteristic strength, which may
be applied toward both static and seismic design. The second methodology is for
calculating the expected likelihood of each mode of failure, which has implications
toward a wall’s seismic resistance, since the two modes result in significantly
different post-cracking behaviour. This approach may be used in the calculation
of an effective residual moment capacity, as well as for assessing the integrity of
supported vertical edges against various types of secondary failure in order to
ensure that a panel can continue to respond in two-way bending after cracking.
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M o m e n t  a x i s

Figure 5.1: Mixed failure along a vertical crack in horizontal bending, consisting of both
stepped and line failure.

5.1 introduction

The material properties of unreinforced masonry (URM) exhibit a high degree of
variability compared to other structural materials such as steel or concrete. This is
due to factors such as variability in the manufacturing process, quality of on-site
workmanship, environmental conditions during manufacture and construction, and
random variation in the materials themselves [Lawrence and Lu, 1991]. Nonetheless,
the current state-of-the-art probabilistic design procedures for masonry are still far
less advanced than those for materials such as steel, concrete and wood [Schueremans
and Gemert, 2006]. As noted by Stewart and Lawrence [2002], “a need clearly exists for
developing a theoretical framework that can be used for the calculation of the reliability of
masonry structures.”

Horizontal bending is an aspect of URM behaviour that warrants the attention
of probabilistic techniques. As discussed in Section 4.3.3, vertical cracks can form
by two distinct modes: (i) stepped failure, where the crack follows a stepped pattern
along the bond of perpend and bed joints (see Figure 4.4a); and (ii) line failure,
where the crack passes alternately through the brick units and perpend joints as a
straight line (see Figure 4.4b). The tendency of either type of failure to be favoured
depends on the relative strengths of the brick units and the masonry bond.

It has been demonstrated both in practice and experimentally, that vertical
cracks rarely exhibit either of these failure modes exclusively; instead, they tend
to develop a combination of the two modes (Figure 5.1), due to local variation in
the material properties throughout the panel. Examples of this were evident in
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the experimental study on full-scale walls, as demonstrated by the observed crack
patterns (Section 2.5). Whilst major advances have been made in recent years in the
analytical techniques for calculating the ultimate moment capacity with respect to
both modes of failure [Willis et al., 2004], little consideration has been given to the
fact that these modes tend to occur in combination. This gives rise to several issues,
which should be considered in the context of both static and seismic assessment.

issues relating to ultimate moment capacity To obtain the design mo-
ment capacity according to the as 3700 [Standards Australia, 2001] procedure, the
designer must separately calculate the moment capacities for the stepped and line
failure modes using characteristic material properties, and adopt the lower value.1,2

However, since crack formation is governed by weak link effects, the characteristic
strength of the combined (stepped and line) failure mode will always be lower than
the characteristic strength of either of the two failure modes considered separately
(this is demonstrated later in this chapter). The same also holds for other statistical
values, such as the mean and median strength. Hence, the currently-used design
procedure has the potential to be unconservative. Whilst it can be reasoned that
any reduction in ultimate strength arising from weak link effects is likely to be
accounted for by the capacity reduction factor used in design,3 the issue should
nonetheless be investigated using a probabilistic approach. These issues, concern-
ing the ultimate strength limit state, have relevance to both static (e.g. wind) and
seismic loading.

issues relating to wall behaviour after cracking The type of failure
developed along vertical cracks has significant influence on the post-cracking
response of the wall, which is relevant to its seismic resistance. Because post-
cracking resistance of stepped cracks is derived from friction, stepped cracks
tend to possess residual strength with good energy dissipation characteristics.
By contrast, line failure tends to be brittle with the resulting cracks having zero
residual strength. Furthermore, if a large number of brick units along a panel’s
vertical edge support fail by line cracking, the support’s capacity to provide a load
path for the out-of-plane face load may become diminished. In extreme cases, it
is even possible for the wall to separate from its vertical supports and revert to
one-way vertical bending. Such failure occurred in several wall specimens from
the quasistatic cyclic tests reported in Chapter 2 (refer to Figures 2.26 and 2.27);

1Throughout this chapter, characteristic strength is defined as the strength below which 5% of
the samples are expected to fail.

2The as 3700 equations for horizontal bending are reproduced as Eqs. (E.2a) and (E.2b) in
Appendix E.1

3
as 3700 prescribes a capacity reduction factor of 0.6 for design of URM walls in flexure.
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which, in one case, led to the wall’s post-cracking strength, displacement capacity
and hysteretic damping capability, becoming considerably reduced (refer to Figure
2.20). Therefore, in the context of seismic assessment, which relies on the wall’s
ability to maintain good residual strength, it is of significant interest to develop an
analytical tool that can quantify the influence of material variability on the wall’s
post-cracking behaviour.

The aforementioned issues justify development of probabilistic methodology
for horizontal bending, which can have potential application to both static and
seismic design of two-way panels. The main objectives of this chapter are twofold:

1. Investigate the weakening influence of the mixed mode of failure on the
ultimate load capacity, and derive equivalent strength reduction factors for
characteristic and mean strength. This approach is developed in Section 5.5.

2. Develop a method for calculating the expected likelihood of each individual
failure mode, and in doing so, derive an effective strength reduction factor
for residual strength. This is achieved in Section 5.6.

This chapter is structured as follows: Past research on the use of probabilistic
methods applied to masonry is reviewed in Section 5.2. A study involving the
characterisation of the variability aspects of the relevant material properties is
presented in Section 5.3. The theoretical basis of the new methodology is discussed
in Section 5.4. A developed stochastic approach for calculating the ultimate moment
capacity is presented in Section 5.5. A developed approach for calculating the
expected likelihood of each of the failure modes, which has influence on the
residual strength of the masonry, is presented in Section 5.6. The predictions made
by the proposed methodology are compared to the results of experimental work in
Section 5.7. A study investigating the influence of various parameters using the
new methodology is presented in Section 5.8. The conclusions and main outcomes
are summarised in Section 5.9.

5.2 previous use of probabilistic models

Despite the highly variable nature of URM compared to other structural materials,
development of probabilistic design methods has so far been limited [Schueremans
and Gemert, 2006]. Furthermore, the majority of such work has focused primarily on
compression loading, and only a small handful of studies have considered flexural
strength [Stewart and Lawrence, 2002].
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Most of the previous research involving out-of-plane bending of URM includes
work by Lawrence. One set of such studies investigated the influence of material
variability on the initial cracking strength of two-way panels [Lawrence and Cao, 1988;
Lu and Lawrence, 1991]. These utilised Monte Carlo simulation whereby material
properties were randomly assigned throughout the wall, followed by an elastic
analysis to determine the load necessary to generate internal stresses which would
cause the flexural capacity to become exceeded somewhere within the panel. This
approach allowed the expected cracking load and its variability to be determined
as a function of the variability in the material properties.

In another set of studies, Lawrence [1991] demonstrated the use of the Monte
Carlo technique to predict the ultimate strength of vertically and horizontally
spanning masonry panels. In the study involving vertical bending, Lawrence tested
two hypotheses: (i) an averaging hypothesis, in which the strength of a course of
units was taken as the average strength of the individual bonds along the course;
and (ii) a weakest link hypothesis, in which the strength of a course was assumed
to be governed by the weakest bond along the course. It was found that the
averaging hypothesis tended to overestimate the panel strength and the weakest
link hypothesis gave reasonably good correlation with experiment. The physical
interpretation of this result is that failure in horizontal bending is initiated by the
weakest joint within a masonry course and that once the weakest joint fails, the
crack immediately propagates throughout the entire course. In the study involving
horizontal bending, Lawrence conducted a Monte Carlo simulation utilising a finite
element analysis to predict the cracking and ultimate strength. It was found that
the analysis gave accurate although slightly conservative predictions of the ultimate
strength and that the ultimate strength was highly dependent on the variability of
the modulus of rupture of the brick units.

5.3 random variability in the material properties

The methodology developed in this chapter is founded on representing key material
properties as random variables, defined through a chosen probability distribution,
mean value, and coefficient of variation (CoV)4. The two most influential material
properties on the generated mode of failure are the flexural tensile strength of
the masonry bond, fmt, and the lateral modulus of rupture of the brick units, fut

[refer to the governing equations, Eq. (5.1) and (5.2)]. This section reports a study
aimed to establish typical levels of variability and suitable probability distributions
to represent these properties. Although the Poisson’s ratio of the brick units, νu,

4Due to its dimensionless nature, the measure of the level of variability adopted throughout this
chapter is the CoV, defined as the standard deviation divided by the mean.
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is another material property influencing the moment capacity for line failure, its
effect is expected to be minor since in most typical scenarios fut � νuσv, where σv

is the vertical compressive stress [refer to Eq. (5.2)]. Furthermore, due to a lack of
available research on the topic, the variability effects of νu will not be considered.
The study conducted is based on the experimental work reported in Chapters 2

and 3. Relevant findings from available literature are also presented.

Three types of probability distribution were trialled for their suitability: nor-
mal, lognormal and Weibull. These were chosen for several reasons. The normal
distribution, whilst being a good candidate for the subsequent development of
an analytical approach due to its mathematical properties, has the inherent dis-
advantage that it can assume negative values and so may not be appropriate for
representing fmt and fut. The lognormal and Weibull distributions can only assume
positive values making them potentially more appropriate for modelling these
parameters; however, their mathematical form is more complex, thus making them
more difficult to use in the subsequent development of an analytical approach.

The statistical test used throughout these studies for quantifying the goodness
of fit between a hypothesized probability distribution and an empirical data set
is the Kolmogorov-Smirnov (KS) test. The KS test uses the statistic Dn to measure
the goodness of fit, which is taken as the maximum absolute difference between
the empirical and hypothesized cumulative distribution functions (CDFs). A lower
value indicates better fit. If Dn exceeds a cutoff value derived from a particular
statistical significance level, then the hypothesized distribution is rejected as being
the underlying distribution from which the empirical data set has been sampled.
The KS test significance level used throughout this study is 5%.

5.3.1 Flexural Tensile Strength of Masonry fmt

Results of Original Experimental Studies

During the course of the experimental work in Chapters 2 and 3, a large data set
for fmt was acquired through material testing, as reported in Appendix A.2. These
included full-sized perforated brick specimens (from quasistatic tests) as well as
half-sized solid brick specimens (from dynamic tests). In both types of brickwork,
fmt was quantified using the bond wrench method and typically 12 individual
joints were tested for each batch of mortar.

For the full-scale walls s1–s8 (Chapter 2), approximately six batches of mortar
were used in each panel’s construction. Thus, pooling of the data for the constituent
batches in each wall produced eight data sets, each consisting of approximately 70
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Figure 5.2: Distribution of fmt in pooled data set for full-scale panels s1–s8.

individual data points. Note that although the Student’s t-test found a statistically
significant difference between the distribution of data from individual batches
and the pooled data sets for the parent wall in approximately 50% of cases (as
reported in Appendix A), it is nonetheless deemed reasonable to pool the batch
data belonging to each panel since this effectively reflects what occurs in practice.
Furthermore, in typical ultimate strength design the engineer will generally use a
single value of fmt, as opposed to considering each constituent batch separately. The
fmt data sets based on the full-sized brickwork, which were used for subsequent
distribution fitting, included a data set for each individual wall, in addition to a
global pooled data set consisting of all individual joints tested across all walls.

In the shaketable test study (Chapter 3), the five half-scale walls d1–d5 were
built using a combined total of four separate batches of mortar. Because of the
shared use of these batches between the walls, and furthermore, since the batches
all had a similar mean and CoV, it was deemed acceptable to pool all individual
data points into a single global data set for the purpose of distribution fitting.

The hypothesized distributions (normal, lognormal and Weibull) were fitted
to each empirical data set using its mean and CoV. Plots of the resulting CDFs are
illustrated by Figures 5.2 and 5.3 for the pooled data sets for the full-scale panels
and half-scale panels, respectively. Additional plots based on the data sets for the
individual full-scale panels are included in Appendix F.1 (Figures F.1–F.8). The
goodness of fit of the hypothesized distributions to each data set is summarised
in Table 5.1, which provides the calculated KS test statistic Dn for each of the
distributions, as well as the cutoff value at the 5% confidence limit. As Dn is
smaller than the cutoff value in each case (except for one case where the result is
very marginal), none of the distributions can be rejected as being the underlying
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Figure 5.3: Distribution of fmt in pooled data set for half-scale panels d1–d5.

Table 5.1: Kolmogorov-Smirnov test results for fmt data (ordered by CoV).

Data Set n CoV
KS test statistic, Dn

Normal Lognorm Weibull Cutoff

s8 59 0.19 0.077 0.093 0.068 0.174
s1 66 0.20 0.064 0.089 0.070 0.164
s4 82 0.21 0.065 0.078 0.083 0.148
s5 83 0.21 0.043 0.081 0.038 0.147
s6 74 0.22 0.098 0.061 0.121 0.155
s7 60 0.23 0.077 0.113 0.058 0.172
s2 66 0.27 0.145 0.094 0.157 0.164
s1–s8 pooled 547 0.27 0.047 0.059 0.047 0.058
s3 68 0.28 0.078 0.067 0.090 0.162
d1–d5 pooled 43 0.53 0.155 0.082 0.115 0.203

probability distribution of the empirical data sets at the 5% significance level. In
other words, each type of probability distribution can be considered adequate for
representing fmt.

The results given in Table 5.1 also indicate only a minimal difference between
the performance of the three distributions for the full-scale panels s1–s8, regardless
of whether the data is considered individually for each panel or as a pooled data
set. Interestingly, the normal distribution performs better than the lognormal
distribution in five of the eight full-scale panels and also in the pooled set s1–s8.
A similar trend is observed by comparing the normal and Weibull distributions,
whereby the normal distribution appears to perform slightly better in the full-scale
panels. However, in the pooled data set for half-scale panels d1–d5, the lognormal
and Weibull distributions perform better than the normal distribution, which can
also be seen from visual inspection of Figure 5.3. Notably this data set had by far
the largest CoV of the data sets considered. In general, it can be seen from Table
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5.1 that the normal and Weibull distributions performed better than the lognormal
distribution in data sets with a small CoV and vice versa. Conversely, for data sets
with a high CoV, the lognormal distribution performed better. The normal and
Weibull distributions appear to perform equally well across all levels of variability.

Results of Studies by Other Researchers

Numerous experimental studies have been performed in the past to investigate
variability in the material properties of URM. The flexural tensile strength of
masonry, in particular, has received a significant amount of research attention.

For example, a study by Lawrence [1983] obtained a large amount of flexural
tensile strength data from tests on vertically spanning beams. Several forms of
probability distribution were tested to determine the underlying form of the data,
including the normal, lognormal and Weibull distributions. The KS test at the 20%
significance level was used to either accept or reject the distributions as providing
adequate fit (a more stringent level than that used in the current study). It was
found that all of the three types of distribution provided adequate fit to the fmt data;
however, the normal distribution typically gave the lowest test statistic and therefore
provided the best fit. In the same study, tests were conducted to determine the
shear strength of the masonry bond, τum. This property is perhaps of even greater
significance to the current chapter than fmt, since τum is directly related to the
ultimate moment capacity for stepped failure [Eq. (4.23)]. All of the hypothesized
probability distributions were found to provide acceptable fit to the τum data, with
the normal distribution providing the best fit. It is worth mentioning that the study
also conducted material tests to determine the flexural strength of horizontally
spanning beams in bending. Again, the normal distribution was found to give the
best fit to the strength, but all three types of distribution considered were deemed
as acceptable.

Another study by Heffler et al. [2008] investigated spatial correlation of fmt

throughout entire masonry panels. The bond wrench method was used to de-
termine the flexural tensile strength of all brick units within the panel and their
underlying bond. Several types of probability distribution, including truncated
normal, lognormal, Weibull, Gamma and Gumbel, were fitted to the data of four
of the panels tested. The goodness of fit was measured using the KS test at the 5%
significance level, which showed that the truncated normal distribution gave the
best fit and was the only distribution that could not be rejected for any of the four
panels. In addition, the Weibull distribution was shown to pass the test for one of
the panels, but not for the other three.
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A study by Baker and Franken [1976] on vertically spanning beams subjected to
flexure also showed bond strengths to be adequately represented using the normal
distribution. This study used the KS test at the 10% significance level.

Summary of Findings

On the basis of the original study performed herein and consideration of work by
other researchers, the normal, lognormal and Weibull distributions are all deemed
to adequately represent the flexural tensile strength of masonry when the degree
of variability is within the range considered by these studies (i.e. CoV < 0.5). The
normal distribution has been shown to provide the best fit by numerous studies,
despite its simplicity and inclusion of negative values. It is the author’s opinion,
however, that caution should be exercised in using the normal distribution to
represent fmt at higher levels of variability, because a greater proportion of values
are going to fall in the negative value range. In such a situation, the use of another
distribution which can only assume positive values may be more appropriate.

A large body of experimental work exists in which fmt was measured, either
where the parameter formed the central focus of the research, or where it was
determined as a byproduct of the test study in material testing. However, because
such studies have most often been performed in laboratories with a certain degree
of quality control, it is difficult to assess whether such studies reflect the extent of
variability in masonry construction found in practice. A study which investigated
the variability of fmt in masonry in practice was conducted by McNeilly et al. [1996]
who performed in-situ bond wrench tests on newly built brickwork panels at 19

different sites. In total, 25 sets of fmt data were taken, each consisting of between
10 and 19 individual bond wrench tests. The mean tensile bond strength ranged
between 0.22–0.85 MPa. The CoV ranged between 0.16–0.49, with an average of
0.30. By comparison, the CoV measured for walls s1–s8 in the present study ranged
between 0.19–0.28, which falls in the lower end of the range observed in the in-situ
tests; and the mean tensile bond strength ranged between 0.50–0.72 MPa (Table 2.3)
which falls in the upper end of the range observed in the in-situ tests. Therefore, the
mean tensile bond strength determined from the present laboratory study appears
to be, on average, higher and less variable than from the in-situ data.

5.3.2 Lateral Modulus of Rupture of Brick Units fut

In the experimental study reported in Chapter 2, fut was determined using flexural
tests on three brick long beams. A total of 12 specimens were tested using the full-
sized perforated brick units used in panels s1–s8. Full details of the experimental
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Figure 5.4: Distribution of fut for brick units used in full-scale panels s1–s8.

Table 5.2: Kolmogorov-Smirnov test results for fut data.

Data Set n CoV
KS test statistic, Dn

Normal Lognorm Weibull Cutoff

s1-s8 12 0.27 0.194 0.167 0.202 0.375

method used are provided in Appendix A.3.

The hypothesized probability distributions (normal, lognormal and Weibull)
were fitted to the fut data set using its mean and CoV. The resulting CDFs are shown
by Figure 5.4, and the KS test statistics are given in Table 5.2. Based on the KS test,
none of the hypothesized distributions can be rejected at the 5% significance level.

Lawrence [1983], who tested a total of 245 test specimens from 7 separate batches
of brick units, also found that each of the three aforementioned distributions gave
adequate representation of fut. Interestingly, in that study the Weibull distribution
gave the best fit to the data which exhibited a slightly negative skew. The CoV of
fut, measured by Lawrence through three-unit brick beam tests, ranged between
0.18 and 0.37. The average CoV was 0.26, which is very comparable to the value of
0.27 observed in the present study.

5.4 theoretical basis

5.4.1 General Assumptions

The general assumptions made by the methods developed in this chapter are as
follows:
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Figure 5.5: Basic masonry module consisting of two courses of bricks.

1. Weak link hypothesis is assumed to govern crack formation on a local level.
Figure 5.5 shows a basic module of masonry over a height of two courses of
bricks. The module will develop either stepped failure if two bed joints fail
due to torsion, or line failure if a single brick fails due to flexural tension. The
critical crack mode is taken as the one that has the lower moment capacity
calculated using the fundamental equations presented in Section 5.4.2.

2. Material properties, including the flexural tensile strength ( fmt) and the lateral
modulus of rupture of the brick units ( fut), are treated as independent random
variables. It is assumed that both properties can be represented using either
the normal, lognormal or Weibull distributions. As reported in Section 5.3,
this assumption is supported by statistical analyses on test data obtained
from original experimental work as well as findings by other researchers. The
choice of distribution for both these parameters will depend on purpose of
the analysis, for reasons discussed later.

3. Because the influence of Poisson’s effect on the line failure moment capacity
is very small5, it is assumed that the variability in the Poisson’s ratio of the
brick units (νu) may be ignored and that it can be treated as a constant. Where
allowances are made to treat νu as a random variable, it is assumed to follow
the normal distribution.

4. All other parameters featuring in the governing equations (Section 5.4.2),
including brick unit dimensions, mortar joint dimensions and vertical stress,
are treated as constants.

5For example, if we assume typical values of material properties, such as fut = 4 MPa and
νu = 0.2; and a conservatively high value of axial stress σv = 0.2 MPa; then according to Eq. (5.2), the
strength reduction due to Poisson effects on the line failure moment capacity is still only 1%.
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5.4.2 Fundamental Equations

The governing equations providing the basis for the proposed methodology were
introduced in Section 4.3.3 and are reproduced herein.

By generalising the fmt and σv coefficients in Eq. (4.24) as r and µ, respectively,
and substituting into Eq. (4.23), the ultimate moment capacity with respect to
stepped failure over a single course of the masonry becomes

mstep = kbe (r fmt + µ σv) t3
u, (5.1)

where σv is the vertical compressive stress at the joint under consideration, tu is
the width of the masonry unit, kbe is the elastic torsion coefficient [calculated using
Eqs. (E.9), (E.11) and (E.12) in Appendix E.2], and other parameters as defined
previously. The coefficients r and µ have the empirically calibrated values r = 1.6
and µ = 0.9, as per Eq. (4.24).

Reproducing Eq. (4.27), the ultimate moment capacity with respect to line
failure over a single course of the masonry is

mline =
1
2

( fut − νu σv)
hut2

u
6

, (5.2)

where hu is the height of the brick unit, and other parameters as defined previously.
The factor of 1/2 accounts for only one brick being involved in the crack for every
two courses (see Figure 5.5).

Based on the weak link hypothesis (Assumption 1), the effective ultimate
moment capacity for the mixed failure mode per a single course of the masonry,
mmix, is taken the minimum of the capacities for the two individual modes, such
that

mmix = min
(
mstep, mline

)
. (5.3)

Equations (5.1)–(5.3) provide the basis for the derivation of the methodologies
proposed in this chapter.

Equations (5.1) and (5.2), which are based on work by Willis et al. [2004] [in
addition to the modification implemented into Eq. (5.1), as described in Section
4.3.3], are considered to be the current state-of-the-art in analytical expressions for
calculating the moment capacity of URM in horizontal bending. In validating the
accuracy of the expressions, Willis calculated the total moment capacity of tested
wallettes undergoing a mixed failure mode, by counting the number of cracked
bed joints and brick units along the overall crack and summing their moment
contributions. This approach was found to produce good correlation with the
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experimentally measured moment capacities. However, because these calculations
required prior knowledge of the proportion of the crack undergoing each failure
mode, they could only be used as an a posteriori analysis. Nonetheless, the fact that
the moment expressions were validated in such a way indicates that they provide a
sound basis for the development of the a priori analysis techniques proposed in
this chapter.

5.5 reduction in the ultimate strength

As outlined in Section 5.1, the as 3700 procedure for calculating the characteristic
ultimate strength in horizontal bending does not explicitly account for a strength
reduction due to weak link effects. This section presents an analytical approach for
predicting an effective ultimate moment capacity of the mixed failure mode and
quantifying the expected strength reduction. The idea of the proposed method is
to formulate the probability density function and cumulative distribution function
curves of the effective moment capacity in terms of those of the individual failure
modes, by applying the weak link hypothesis. From these curves, key statistical
values can then be derived, including the mean and characteristic strengths, which
enables the resulting reduction in strength to be quantified.

Further to the assumptions listed in Section 5.4, it is assumed that the ultimate
moment capacity of both failure mechanisms is attained simultaneously. This
assumption makes it possible to take the total moment capacity along a crack as
the direct sum of the moment capacities for the two failure modes taking place at
different regions along the crack. As mentioned in Section 5.4, Willis et al. [2004]
showed such calculations to give good agreement with experimentally measured
strength, thus, in essence supporting this assumption.

Because the characteristic ultimate strength (i.e. strength at which CDF is equal
to 0.05) is of interest, only the lognormal and Weibull distributions are considered
for representing tensile strengths fmt and fut, as they only assume positive values
and therefore provide more representative behaviour at the lower end tail. The
normal distribution will not be considered.

5.5.1 Formulation

Before the governing equations for the method are presented, the symbolic notation
used throughout this chapter will be defined: For a random variable X, its mean
or expected value is denoted as either X̂ or E〈X〉; its standard deviation as S〈X〉;
and its coefficient of variation as C〈X〉. For a variable Y consisting of a random
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component X and a constant component c, such that Y = X + c, the random part
may be denoted as X = rand(Y) and the constant part as c = const(Y).

Non-dimensional Properties

For convenience, a non-dimensional formulation will be adopted, whereby the
moment capacity in horizontal bending is normalised by the mean moment capacity
in vertical bending to produce the orthogonal strength ratio:6

η =
M̄h

M̄v
. (5.4)

It also becomes useful to normalise the mean lateral modulus of rupture f̂ut and
vertical compressive stress σv by the mean flexural tensile strength f̂mt, to produce
the non-dimensional quantities

Fut =
f̂ut

f̂mt
, (5.5)

and Σv =
σv

f̂mt
. (5.6)

Recognising that in the absence of vertical compressive stress, the mean vertical
bending moment capacity per unit length of crack is

M̄v = f̂mt
t2
u
6

, (5.7)

and applying the conversion formula for horizontal bending Eq. (4.15), the orthog-
onal strength ratios for stepped failure and line failure become

ηstep = kstep

[
r

fmt

f̂mt
+ µ Σv

]
, (5.8)

and ηline = kline

[
fut

f̂mt
− νu Σv

]
. (5.9)

6The definition of the orthogonal strength ratio is not always consistent throughout the literature
and various design codes, which can sometimes lead to confusion. In some works, it is defined as
M̄v/M̄h, whereas others define it as M̄h/M̄v. In this thesis, it is defined as the strength in horizontal
bending divided by the strength in vertical bending (M̄h/M̄v) and hence its value will generally be
greater than 1.
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The terms kstep and kline are constants dependent only on and containing all
information regarding the geometry of the masonry constituents, calculated as

kstep =
6 kbe tu

hu + tj
, (5.10)

and kline =
hu

2
(
hu + tj

) . (5.11)

Formulation of the PDFs and CDFs

The orthogonal strength ratios for stepped and line failure, given by Eqs. (5.8) and
(5.9), both consist of a random part, proportional to the respective tensile strength
term ( fmt or fut); plus a constant part, due to vertical compressive stress Σv.

The orthogonal ratio for stepped failure, ηstep, consists of the random and
constant parts

ηstep = kstep r
fmt

f̂mt︸ ︷︷ ︸
=rand(ηstep)

+ kstep µ Σv︸ ︷︷ ︸
=const(ηstep)

. (5.12)

Since rand
(
ηstep

)
is directly proportional to fmt, both must have the same distribu-

tion and CoV. Therefore, rand
(
ηstep

)
has the mean

E
〈
rand

(
ηstep

)〉
= kstep r, (5.13)

and CoV C
〈
rand

(
ηstep

)〉
= C〈 fmt〉 . (5.14)

Similarly, the orthogonal ratio for line failure, ηline, consists of the random and
constant parts

ηline = kline
fut

f̂mt︸ ︷︷ ︸
=rand(ηline)

− kline νu Σv︸ ︷︷ ︸
=const(ηline)

, (5.15)

Since rand(ηline) is directly proportional to fut, both must have the same distribution
and CoV. Therefore, rand(ηline) has the mean

E〈rand(ηline)〉 = kline Fut, (5.16)

and CoV C〈rand(ηline)〉 = C〈 fut〉 . (5.17)

The probability density functions (PDFs) and cumulative distribution functions



5.5 reduction in the ultimate strength 169

(CDFs) of ηstep and ηline can now be formulated. For ηstep, the PDF at the value x is

pηstep(x) = prand(ηstep)
(
x− const

(
ηstep

))
, (5.18)

and the related CDF is

Pηstep(x) = Prand(ηstep)
(
x− const

(
ηstep

))
. (5.19)

The functions prand(ηstep)(· · ·) and Prand(ηstep)(· · ·) are the PDF and CDF of the random

component rand
(
ηstep

)
, which follow the same distribution (e.g. normal, lognormal

or Weibull) as fmt, and whose mean and CoV are given by Eqs. (5.13) and (5.14).

Similarly, the PDF of ηline at the value x is

pηline(x) = prand(ηline)(x− const(ηline)) , (5.20)

and the related CDF is

Pηline(x) = Prand(ηline)(x− const(ηline)) . (5.21)

The functions prand(ηline)(· · ·) and Prand(ηline)(· · ·) are the PDF and CDF of the random
component rand(ηline), which follow the same distribution as fut, and have a mean
and CoV given by Eqs. (5.16) and (5.17).

Expressions for the PDF and CDF of the orthogonal strength ratio ηmix for the
mixed mode of failure are obtained by applying the weak link hypothesis, as per
Assumption 1 in Section 5.4. Equation (5.3) can be formulated in the orthogonal
ratio form such that

ηmix = min
(
ηstep, ηline

)
. (5.22)

Since the weak link hypothesis defines ηmix as the minimum of pairs of independent
random variables drawn from ηstep and ηline, its PDF and CDF can be formulated as
[e.g. Simon, 2002]

pηmix(x) = pηstep(x)
[
1− Pηline(x)

]
+ pηline(x)

[
1− Pηstep(x)

]
, (5.23)

and
Pηmix(x) = Pηstep(x) + Pηline(x)− Pηstep(x) Pηline(x) . (5.24)

It can be shown using Eq. (5.24) that for any arbitrary value of x, the value of the
CDF for the mixed-mode capacity will always have a greater value than that of
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Figure 5.6: Example of the predicted distribution of orthogonal strength ratio for stepped,
line and mixed mode failure. Standard clay brick masonry is considered with Fut = 6,
Σv = 0.1 and C〈 fmt, fut〉 = 0.3. The Weibull distribution is used to represent fmt and fut.

either of the individual modes. Symbolically this means that

Pηmix(x) > Pηstep(x) , and Pηmix(x) > Pηline(x) .

It follows that for any arbitrary value of y, where

y = Pηstep(x) = Pηline(x) = Pηmix(x) ,

the inequalities

P−1
ηmix

(y) < P−1
ηstep

(y) and P−1
ηmix

(y) < P−1
ηline

(y)

must hold. This outcome demonstrates that at any given percentile (value of the
CDF), the strength of the mixed failure mode will always be lesser than either of
the strengths of the two pure failure modes. In other words, there is an always-
weakening influence on the moment capacity as a result of weak link effects.
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5.5.2 Mean and Characteristic Values of Strength

The proposed method is best suited for application using computer software where
the PDFs and CDFs of the probability distributions of interest can be programmed in
as functions. Figure 5.6 demonstrates an example of such an analysis graphically,
showing the predicted PDFs and CDFs of the orthogonal strength ratios for the
stepped, line and mixed failure modes and also indicating their respective mean
and characteristic values. This example considers standard clay brick masonry,
which for this example and others presented in this chapter will be defined as
masonry consisting of bricks with dimensions 230 × 110 × 76 mm and 10 mm
thick mortar joints. It is assumed that this type of masonry has a Poisson’s ratio
νu = 0.2, and coefficients r = 1.6 and µ = 0.9, as per Eq. (4.24). In this example,
the ratio of brick strength to bond strength is Fut = 6 and the ratio of axial stress
to bond strength is Σv = 0.1. The Weibull distribution is used to represent the
tensile strengths fmt and fut with the CoV taken as 0.3. The CDFs of the three modes
demonstrate the weakening influence on the strength of the mixed failure mode.

For the purposes of design or analysis, it will typically be of interest to determine
the mean and characteristic values for each of the parameters ηstep, ηline and ηmix.
The mean values of ηstep and ηline can be obtained directly from Eqs. (5.8) and (5.9),
by assigning mean values of the respective tensile strengths fmt and fut. This gives

E
〈
ηstep

〉
= kstep (r + µ Σv) , (5.25)

and E〈ηline〉 = kline (Fut − νu Σv) . (5.26)

The mean value of ηmix, however, needs to be calculated numerically, since its PDF

and CDF will not generally follow any common distribution. This can be done by
numerically integrating the first moment of the PDF. The characteristic values of
ηstep, ηline and ηmix are also easily obtained numerically, by employing root finding
techniques to find the value of η at which the CDF equals 0.05.

5.5.3 Capacity Reduction Factors

Since the computation of the mean and characteristic values of effective strength
requires the use of computer techniques, a more practical way to implement the
proposed methodology is to derive strength reduction factors for the statistical
values of interest, such as the mean, median and characteristic strengths. In general
terms, let us define the strength reduction factor φ as the ratio of the effective
moment capacity and the lesser of the moment capacities for stepped and line
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failure. Therefore, for characteristic strength, the reduction factor becomes

φchar =
Char〈ηmix〉

min
(
Char

〈
ηstep

〉
, Char〈ηline〉

) .

Similarly, for mean and median strength:

φmean =
E〈ηmix〉

min
(
E
〈
ηstep

〉
,E〈ηline〉

) , φmed =
Med〈ηmix〉

min
(
Med

〈
ηstep

〉
, Med〈ηline〉

) .

For instance, in the example shown by Figure 5.6, the mean strength reduction
factor is φmean = 2.34/2.64 = 0.89, and the characteristic strength reduction factor
is φchar = 1.19/1.31 = 0.91. This indicates that mean strength undergoes an 11%
reduction as a result of mixed failure, relative to the value that would be calculated
if only the pure stepped and line modes were considered. Similarly, there is a 9%
reduction in the characteristic strength compared to that which would be calculated
using the current design philosophy.

To determine when the reduction in strength becomes most significant, strength
reduction factors were computed for standard clay brick masonry for a range of
Fut and Σv values, as plotted in Figures 5.7 and 5.8 for the mean and characteristic
strength, respectively. The CoV of fmt and fut was taken as 0.3, which is considered
to be a typical value, as reported in Section 5.3. Furthermore, 0.3 is the CoV value
allowed by as 3700 when calculating the characteristic values of these material
properties from test results. These graphs may be directly used, in analysis or
design, to account for the influence of weak link effects on the ultimate strength.
To determine the effective moment capacity, one can simply calculate the moment
capacities for stepped and line failure modes independently, using mean or charac-
teristic values of fmt and fut (i.e. according to the conventional as 3700 method);
and then multiply the lower of these values by the appropriate strength reduction
factor (as determined from the graphs) for given Fut and Σv.

Comparing Figures 5.7a and 5.7b, and Figures 5.8a and 5.7b, demonstrates
the difference between the computed strength reduction when the lognormal and
Weibull distributions are used to represent the material properties. It is seen from
Figure 5.7 that the mean strength reduction factor is not overly sensitive to the type
of probability distribution used. However, as seen from Figure 5.8, the characteristic
strength reduction factor is quite sensitive to the chosen probability distribution;
particularly, the reduction factors computed using the Weibull distribution are
more adverse than those based on the lognormal distribution. This trend can be
explained by the fact that the Weibull distribution has a fatter lower end tail than
the lognormal distribution.
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(a) Properties fmt and fut following lognormal distribution with CoV = 0.3.
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Figure 5.7: Mean strength reduction factor φmean for standard clay brick masonry.
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Figure 5.8: Characteristic strength reduction factor φchar for standard clay brick masonry.
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Figure 5.9: Capacity factors corresponding to the most adverse strength reduction possible
at different levels of variability in the material properties.

Another notable observation from these graphs is that there are distinct regions
in the Fut–Σv space where the strength reduction effects are most pronounced.
These zones correspond to similar magnitudes of strength (mean or characteristic)
for the stepped and line failure modes, thus causing the mixed failure mode to
become dominant. Furthermore, the graphs demonstrate that the most adverse
strength reduction occurs at zero axial stress (Σv = 0), at a value of approximately
Fut = 6.5 for this particular type of masonry. The critical value of Fut associated
with the greatest strength reduction can be calculated as

Fut = r
kstep

kline
. (5.27)

It is worth noting that a ratio of the mean lateral modulus of rupture and bond
strength of 6.5 is well within the typical range observed in practice; for exam-
ple, as demonstrated by the results of material testing performed as part of the
experimental work in Chapter 2 (details in Appendix A).

Recognising that the largest reduction in strength occurs when the means of
the two moment capacities are equal and the constant offset in capacity due to
axial stress is zero, we can determine the maximum possible reduction that can
occur at different levels of material strength variability. Figure 5.9 plots the most
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adverse reduction in the mean, median and characteristic strength which may
occur at a particular CoV in the material properties, when represented using the
lognormal or Weibull distributions.7 It is seen that the Weibull distribution predicts
a greater reduction in strength than the lognormal distribution, particularly for the
characteristic strength. This is consistent with the observations made previously
through Figures 5.7 and 5.8.

Figure 5.9 also demonstrates that the reduction in strength that can occur at
typical levels of material strength variability can be quite significant. For a CoV of
0.3, which was determined to be a typical level of variability through in-situ testing
[McNeilly et al., 1996, refer to Section 5.3.1], there is a potential 17% reduction in
strength. The largest CoV observed in the study by McNeilly et al. was approximately
0.5, which corresponds to a potential strength reduction of 28%. However, whilst
such a reduction in strength is considerable, it is nonetheless accounted for by
the capacity reduction factor used in the as 3700 design procedure for masonry
in bending (φ = 0.6). In the latter case, this still allows for a left over capacity
reduction factor of 0.6/0.72 = 0.83. It is therefore concluded that whilst the strength
reduction effects could, under certain circumstances, be significant, the current as

3700 procedure sufficiently accounts for them with the capacity reduction factor of
0.6.

5.6 expected likelihood of each failure mode

As discussed in Section 5.1, the type of failure mode developed along the vertical
cracks in a wall can have a significant effect on its post-cracking behaviour and
seismic resistance. This section presents an analytical technique for predicting the
relative proportions of stepped and line failure expected to develop along a vertical
crack.

The proposed method is based on the assumptions and underlying theory
discussed in Section 5.4. Moreover, it assumes (as per Assumption 2 in Section
5.4) that the tensile strengths fmt and fut follow the normal distribution, which
allows for some useful simplifications in the derivation of the governing equations.
Furthermore, since we are interested in the full range of values for these material
properties, the fact that the normal distribution assumes negative values at the
lower end tail is of little consequence. The normal distribution’s suitability for
representing these properties was scrutinised in Section 5.3, where it was shown

7Note that in the case of the Weibull distribution, these three factors coincide because of a special
property of the distribution whereby the minimum of two Weibull distributed variables is also
Weibull distributed.
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that it can adequately represent them at the typical levels of variability, that is, for
CoV < 0.5.

The proposed method also makes allowance to treat the Poisson’s ratio of the
brick units (νu) as a random variable, despite Assumption 3 in Section 5.4, which
stated that its variability could be ignored. The parameter νu is assumed to be
normally distributed.

5.6.1 Formulation

According to the weak link hypothesis (Assumption 1 in Section 5.4), a masonry
section subjected to horizontal bending will undergo stepped failure in favour of
line failure when

mstep < mline. (5.28)

Substituting in Eqs. (5.1) and (5.2), gives

r fmt + µ σv < Gh ( fut − νu σv) , (5.29)

where the term Gh contains all information regarding the geometric properties of
the masonry, and is calculated as

Gh =
kline

kstep
=

hu

12 tu kbe
. (5.30)

Inequality (5.29) contains three randomly distributed variables: fmt, fut and νu.
By assuming that each of these is normally distributed and taking advantage of the
normal distribution’s properties,8 inequality (5.29) can be reduced into

0 < u, (5.31)

where u is a normally distributed dummy variable with the mean

E〈u〉 = GhFut − r− Σv (GhE〈νu〉+ µ) , (5.32)

and variance

S〈u〉2 = (GhFutC〈 fut〉)2 + (rC〈 fmt〉)2 + (ΣvGhE〈νu〉C〈νu〉)2 . (5.33)

From this, the probability of stepped failure is determined by computing the

8In particular, the addition of normally distributed variables.
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probability that u is greater than zero, such that

Pstep = Pr(u > 0) = ΦN

(
S〈u〉
E〈u〉

)
, (5.34)

where ΦN(· · ·) is the standard normal cumulative distribution function. The
parameter Pstep can be interpreted as either the expected likelihood of stepped
failure, or the proportion of the crack expected to undergo stepped failure. No
closed-form solutions exist for computing the CDF of the normal distribution;
however, it may be calculated using functions built into software such as Excel and
Matlab, or otherwise obtained from textbook probability tables.

5.6.2 Solution Process

As shown by Figure 5.10, the proposed method is well suited to graphical applica-
tion by plotting contour lines of the expected likelihood of stepped failure (Pstep)
versus the ratio of unit to bond strength (Fut) and normalised axial stress (Σv). Such
graphs may be generated for a particular combination of brick and mortar joint
geometry; coefficients νu, r and µ; and level of material variability. Once generated,
a graph could be readily used in practice to assess the expected likelihood of each
failure for a given masonry type.

The particular plots in Figure 5.10 correspond to standard clay brick masonry
(230 × 110 × 76 mm units with 10 mm mortar joints). They demonstrate two
general trends: Firstly, the likelihood of stepped failure increases with increasing
ratio of brick to bond strength Fut, due to the direct effect of the relative material
strengths. Secondly, the likelihood of stepped failure reduces as the ratio of axial
stress and bond strength Σv increases. This second trend is due to a combination of
two factors: the axial compression’s strengthening influence on the capacity against
stepped failure, and its weakening influence on the capacity against line failure
due to Poisson’s effect.

The influence of material variability can be observed by comparing Figures 5.10a
and 5.10b. It is seen that the median contour line at Pstep = 0.5, which represents
equal amount of stepped and line cracking, is unaffected by the CoV. However, for
a larger value of the CoV, the other contour lines become more spread out around
the median contour line; and hence, increasing the CoV effectively causes Pstep to
approach 0.5 at any particular value of Fut and Σv. In other words, as the level of
material variability increases, the masonry will tend toward developing more equal
amounts of stepped and line failure. Note that since all material properties have
been represented using the normal distribution, the median contour line may be
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Figure 5.10: Probability of stepped failure for standard clay brick masonry.
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calculated directly using Eq. (5.32), by assigning E〈u〉 = 0.

5.6.3 Possible Applications

The proposed method for estimating the relative likelihood of stepped and line
failure has numerous potential applications, some of which will now be briefly
discussed.

Capacity Reduction Factor for Residual Strength

In his research, Willis et al. [2004] proposed an equation for calculating the residual
moment capacity of brick masonry derived from frictional torsion along the bed
joints [reproduced as Eq. (E.13) in Appendix E.3]. He was able to demonstrate
good agreement between the predicted and experimentally measured moment
capacity in small-sized wallettes failing by a combination of stepped and line
failure. In these calculations, the total moment capacity of the crack was calculated
by counting the number of bed joints active along the crack, and multiplying this
number by the theoretical capacity of an individual bed joint.

Whilst the author has proposed an alternative and more robust expression for
calculating the residual moment capacity [Eq. (4.29)], Willis’ findings effectively
indicate that a crack’s residual moment capacity is proportional to the amount of
stepped failure along the crack. The parameter Pstep therefore has the potential to
be used as a capacity reduction factor, which may be used to multiply the nominal
residual moment capacity, to obtain the effective residual moment capacity. Using
Eq. (4.29), the effective residual moment capacity, expressed as an orthogonal ratio,
would therefore become

ηres = Pstep kres µ Σv, (5.35)

where kres is the geometric parameter

kres =
6 kbp tu(
hu + tj

) . (5.36)

Note the similar form between kres and kstep [Eq. (5.10)]; the only difference being
that the former uses the plastic torsion coefficient kbp, and the latter uses the
elastic torsion coefficient kbe (refer to Figure 4.6). It is further worth noting that the
frictional coefficient µ in Eq. (5.35) is for the post-cracked state only, and is distinct
from that used in Eq. (5.1). On the basis of bed joint torsion tests by Willis [2004],
which used solid clay pavers with a flat surface, and equating Eq. (4.29) to Eq.
(E.13), the equivalent post-cracking friction coefficient is shown to be approximately
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1.04. For typical clay brick units, however, which may be perforated or frogged, µ

is likely to be even higher, due to interlock effects.

As a final comment, it will be noted that predicting the residual moment capacity
of mixed-mode cracks may be further complicated by the fact that the pattern of
the crack itself may have a significant influence on the local propagation of vertical
compressive stress, which will in turn affect its frictional capacity. However, further
research is required to investigate these effects, as they are beyond the scope of this
thesis.

Assessment of Wall Separation Along Vertical Edges

Another potential application of the proposed method could be in the assessment
of the vertical edges’ capacity to provide a support reaction. In addition to line
failure due to horizontal bending, there are also several other non-flexural failure
modes which could cause separation between a wall and its vertical supports,
thereby preventing the wall from undergoing two-way flexural response after crack
formation (see for example, Figures 2.26 and 2.27). Such failure modes could
include, for example:

• Tensile failure at the return wall,

• Shear failure at the main wall,

• Sliding due to insufficient friction,

• Or any combination of the above.

A wall’s capacity against each of these secondary failure modes relies on good
interlock between the units of successive courses, which would be weakened by the
occurrence of line failure. The expected likelihood of stepped failure, Pstep, could
therefore potentially be utilised during an analytical check of the vertical edges’
ability to withstand separation. Development of such methodology, however, is
beyond the scope of this thesis.

5.7 comparison with experiment

5.7.1 Small-Sized Wallettes

Accuracy of the stochastic methodologies described in Sections 5.5 and 5.6 was
examined through comparison with the results of horizontal bending tests on small-
sized wallettes, as performed by Willis [2004] [also reported in Willis et al., 2004]. It is
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Figure 5.11: Horizontal bending test arrangement used by Willis [2004]. (Graphic used
with permission from C. R. Willis.)

noted that these experiments were part of the data set that Willis used to develop the
ultimate moment capacity expressions, Eqs. (5.1) and (5.2); particularly, to calibrate
the empirical parameters r and µ in Eq. (5.1). As such, one would naturally expect
the correlation between the measured and predicted moment capacity to be good.
However, since the main purpose of the comparisons conducted here is to study
the stochastic aspects of failure, which were not previously addressed by Willis,
the author believes the use of this data set for comparative purposes to be valid.

The brickwork used in this study was constructed using extruded clay brick
paving units with nominal dimensions of 230× 114× 65 mm and 10 mm mortar
joints. The test specimens were three-and-a-half bricks in length and six courses
high, and were subjected to four-point bending, as shown in Figure 5.11. Fives sets
of tests were conducted: In the first four sets, the walls were oriented vertically and
were subjected to varied levels of axial compression using springs (Figure 5.11),
including 0.075, 0.15 and 0.25 MPa, as well as a control set with no precompression.
In the fifth set, the specimens were oriented horizontally and had no axial loading.
Each set consisted of five repetitions, resulting in a total of 25 individual tests.

The methodology described in Section 5.5 was used to predict the ultimate
moment capacity of the tested wallettes. Detailed analysis results are provided
in Appendix F.2 (Table F.1). Figure 5.12 compares the computed strength (as
orthogonal ratio) with the measured strength. Two cases are considered: Part
(a) used conventional analysis, where the strength was taken as the minimum of
the separately calculated stepped and line failure capacities. Part (b) used the
developed approach, whereby the strength was taken as that of the mixed mode of
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Figure 5.13: Comparison of predicted and observed proportion of stepped failure for
small-sized wallettes.

failure, taking into account weak link effects. The average ratio of the predicted
and measured strengths was 0.88 for the conventional approach and 0.80 for the
stochastic approach. That the conventional approach is slightly more accurate in
this case, is not surprising, given that this data set was used by Willis [2004] in
calibration of the governing moment capacity expressions. In turn, the stochastic
approach will always predict a lower capacity than the conventional approach,
since it takes into account the weak link effects, and is equivalent to applying a
strength reduction factor to the capacity obtained by the conventional approach (as
discussed in Section 5.5.3).

The methodology described in Section 5.6 was used to determine the expected
likelihood of stepped failure for the tested wallettes. The predictions are compared
to the proportion of stepped failure observed experimentally in Figure 5.13 (full
results provided by Table F.1 in Appendix F.2). The plot shows a large amount of
scatter between the predicted and observed results, with the analysis, on average,
underpredicting the proportion of stepped failure (or overpredicting the proportion
of line failure) by −0.25. Whilst these comparisons suggest the developed method
to be conservative, it is not entirely clear why the method tends to overpredict the
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Table 5.3: Comparison of predicted and observed proportion of stepped failure along
vertical edges of full-scale panels.

Wall σvo
[MPa]

Pstep observed Pstep
calculated

Error (calc − obs)

Avg L edge R edge L edge R edge

s1 0.1 0.25 0.36 0.14 0.12 −0.24 −0.03
s2 0 0.49 0.43 0.56 0.53 +0.10 −0.03
s3 0.1 0.18 0.18 – 0.44 +0.26 –
s4 0.05 0.29 0.29 – 0.25 −0.04 –
s5 0 0.43 0.43 – 0.28 −0.15 –
s6 0 0.43 0.50 0.36 0.58 +0.08 +0.23
s7 0.1 0.11 0.07 0.14 0.15 +0.08 +0.01
s8 0 0.25 0.21 0.29 0.19 −0.03 −0.10

Mean: +0.01
StD: 0.14

amount of line failure for this data set.

Another point of interest is that whilst both the experimental tests and de-
veloped approach indicate a positive correlation between the level of axial stress
and the likelihood of line failure, sensitivity between Pstep and σv appears to be
higher in the experiment than in the analytical predictions. Possible reasons for this
include that values of either the coefficient of friction, µ [which was taken as 0.9, as
per Eq. (4.24)], or the Poisson’s ratio of the masonry units νu (assumed as 0.2), may
have been underestimated in the analysis. Underestimation of µ is also indicated
by a comparison of the predicted and measured strengths (Figure 5.12), whereby
the strength predictions for wallettes with an applied axial stress are, on average,
more conservative than for wallettes without axial stress (also refer to Table F.1).

5.7.2 Full-Scale Panels

Accuracy of the developed method for predicting the relative likelihood of stepped
and line failure (as described in Section 5.6) was also examined through compar-
isons to the observed cracking patterns in full-scale walls s1–s8 (Chapter 2).

The crack patterns used for the comparisons were those at the conclusion of
the cyclic tests (see Figure 2.24). In walls s1–s2 and s6–s8, cracks along both
vertical edges were considered; however, in walls s3–s5, only the edges of the
longer subpanel were considered, as the edges of the shorter subpanels developed
only partial cracking. The experimental value of Pstep was determined along each
vertical edge as the observed number of bed joints undergoing stepped failure,
divided by the total number of potential bed joints that could have failed. The
results are provided in Table 5.3 (columns 3–5) for the left and right edge of each
panel, as well as the average value. As was the case for the small-sized wallettes



186 probabilistic methodology for horizontal bending

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Σ
v

F
ut

0.05

0.1

0.2

0.3
0.40.5

0.6
0.7

0.8

0.9

 s1

 s2
 s3

 s4 s5

 s6

 s7 s8

Figure 5.14: Predicted probability of stepped failure for walls s1–s8.

analysed in Section 5.7.1, there is a clear trend whereby the proportion of line
failure increases with higher axial stress. For example, in the case of the long solid
panels (s1, s2), panel s2 (with zero axial load) had 49% stepped failure, but panel
s1 (with 0.1 MPa precompression) had only 25% stepped failure. The same trend is
also evident for the long panels with an asymmetrically positioned window (s3–s5)
and short panels with a centred window (s7, s8). It is noted, however, that the bond
strength ( fmt) determined for each panel happened to be such that it may also have
contributed to this trend. Full results are given in Appendix F.2 (Table F.2).

The expected proportion of stepped failure was determined using the method
proposed in Section 5.6. Each wall was analysed using its own value of the
mean bond strength ( f̂mt) and corresponding coefficient of variation (C〈 fmt〉), as
determined from material tests (reported in Table A.2, Appendix A). The axial stress
was taken as the average value along the vertical edge of the panel, accounting for
both the applied axial loading and self-weight. Other input parameters included:
r = 1.6, µ = 0.9; whilst the Poisson’s ratio of the brick units was taken as νu = 0.2,
with C〈νu〉 = 0.2. The predicted values of Pstep are given in Table 5.3 (column 6). A
detailed summary of the results and input parameters is provided in Appendix F.2
(Table F.2).

Figure 5.14 provides an illustrative example of the graphical method of solution
proposed in Section 5.6.2. This graph uses a single value of the CoV, taken as
C〈 fmt〉 = 0.27, based on the pooled bond strength data set (refer to Table 5.1). It is
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Figure 5.15: Comparison of predicted and observed proportion of stepped failure for
full-scale test walls.

seen that this does not significantly alter the results compared to predictions based
on panel-specific values of the CoV (in Table 5.3).

A comparison of the predicted and observed proportion of stepped failure is
provided in Figure 5.15. The accuracy of the predictions is highly promising, and
significantly better than for the small-sized wallettes (Section 5.7.1). The average
error in Pstep (taken as the calculated value minus the observed value) is +0.01,
which is approximately neutral (Table 5.3). Furthermore, the results lie within the
±0.1 band, in nine of the 13 cases considered. The only two panels where the
method overpredicts Pstep by more than 0.2, are walls s3 and s6, which incidentally
had the lowest measured bond strength of the eight walls. By contrast, the only
case where the method underpredicts Pstep by more than 0.2, is wall s1, in which
the measured bond strength was the highest.

5.8 parametric study

Several studies were conducted using the developed stochastic methodologies, to
investigate the effects of various parameters on the expected ultimate and residual



188 probabilistic methodology for horizontal bending

strengths. The parameters considered include:

• Geometry of the masonry units, particularly the ratio of hu/tu;

• Mean tensile strengths f̂ut and f̂mt, and their ratio (Fut); and

• The amount of vertical compressive stress σv (or Σv).

To investigate the effect of these parameters, material variability was kept constant
at CoV = 0.3 in the examples presented herein.

5.8.1 Influence of Brick Geometry on Likelihood of Stepped Failure

Figure 5.16 shows the effect of brick geometry on the likelihood of stepped failure,
by varying the height of the brick unit. The ratio of the length and width of the
unit is kept constant at lu/tu = 2. For simplicity, the mortar joint thickness has
been ignored in this example (tj = 0). The plots show that short units have a
greater chance of undergoing line failure, while tall units are more likely to develop
stepped failure. This is because whilst both types of units have the same capacity
against stepped failure, a taller unit has a greater resistance against line failure,
due to its larger sectional area.

5.8.2 Influence of Brick Geometry on Ultimate and Residual Strength

The influence of brick geometry on the ultimate strength (ηmix) and residual strength
(ηres) of the masonry is shown by Figure 5.17. The ratio of axial stress to bond
strength is kept constant at Σv = 0.4. Note that the residual strength was calculated
using Eq. (5.35), which effectively factors the nominal strength (assuming a fully
stepped crack) by the probability of stepped failure.

When the ratio of brick strength to bond strength is small (approx. Fut . 1.5,
for the tall unit), line failure will be the dominant mode. Consequently, within this
range of Fut, the ultimate strength is proportional to Fut and approximately equal
for all three unit geometries. At small Fut, the residual strength is negligible, due
to the very low probability of stepped failure.

As the ratio of the brick strength to bond strength increases, the failure mode
undergoes a transition from the line mode to the stepped mode (between approx.
1.5 . Fut . 4, for the tall unit). Within this range of Fut, the ultimate moment
capacity goes from being fut- to fmt-proportional. The masonry also begins to
develop residual strength, due to the increased likelihood of stepped failure. The
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Figure 5.16: Influence of brick shape on the probability of stepped failure (CoV = 0.3).
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Figure 5.17: Influence of brick shape on ultimate and residual strength for Σv = 0.4,
CoV = 0.3.

range of Fut at which this transition occurs is dependent on the brick geometry and
becomes higher as the hu/tu ratio reduces.

When the brick strength is sufficiently high relative to the bond strength (approx.
Fut & 4, for the tall unit), stepped failure becomes the dominant mode. This causes
the ultimate moment capacity to become fmt-proportional. The residual strength
also reaches its full potential, due to the absence of any strength reduction from
line failure. In this range of Fut, capacity for both the ultimate and residual strength
is derived from torsional resistance along the bed joints. Since masonry built with
short bricks has a greater number of bed joints over a given height of the crack
compared to tall brick masonry, the ultimate and residual strength both increase as
the units become shorter in height.
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Figure 5.18: Influence of axial stress on ultimate and residual strength for standard clay
brick masonry (CoV = 0.3).

5.8.3 Influence of Axial Stress on Ultimate and Residual Strength

The influence of axial stress (Σv) on the ultimate and residual strength is shown
by Figure 5.18. The masonry constituent geometry in this example corresponds to
standard clay brickwork.

When the ratio of the brick strength to bond strength is small (approx. Fut . 4),
ultimate strength (ηmix) is governed by line failure. It is seen that in this range of
Fut, an increase in the amount of axial stress acts to reduce the strength, due to
Poisson’s effect. At high brick to bond strength (approx. Fut & 8), stepped failure
becomes dominant and the axial stress generates a positive effect on the ultimate
strength, by enhancing the frictional moment resistance along the bed joint.

The effect of axial stress on the residual strength (ηres) is particularly interesting.
In general terms, as the axial stress increases, the maximum potential residual
strength due to friction (assuming full stepped failure) also increases proportionally.
However, as Σv is varied, the Fut transition zone between stepped and line failure



192 probabilistic methodology for horizontal bending

also shifts. Consequently, when Fut is low, axial stress will have a detrimental effect
on the residual strength, since it increases the amount of line failure. However, if
Fut becomes sufficiently high, then the amount of stepped failure increases and the
masonry becomes able to exploit its full frictional capacity, thus making a higher
axial stress more beneficial.

5.9 conclusions

The main outcome of this chapter has been the development of a pair of stochastic
methodologies for dealing with combined stepped and line failure in horizontal
bending.

The first methodology is used to predict the expected reduction in the ultimate
strength caused by weak link effects. Equivalent strength reduction factors have
been derived for mean and characteristic ultimate strength, with the latter applica-
ble toward design. The predictions indicate that for a typical level of variability
in the material properties (CoV = 0.3), there can be a potential 17% reduction in
strength; whilst for higher levels of material variability (CoV = 0.5), the strength
reduction could be as high as 28%. However, although such a strength reduction is
considerable, it appears to be sufficiently accounted for by the capacity reduction
factor of 0.6, which is used in flexural design according to as 3700. A potential use
of the proposed method is to provide a basis for the development of a partial safety
factor design procedure.

The second developed methodology is used to predict the relative likelihood of
stepped failure versus line failure. The method has produced good correlation with
experimentally observed crack patterns in full-scale panels. Since previous research
[Willis, 2004] has demonstrated that the residual moment capacity in horizontal
bending is effectively proportional to the amount of stepped failure along the crack,
the proportion of stepped failure predicted using the proposed approach could
be used as a strength reduction factor applicable to the post-cracking strength.
Furthermore, the method could be used as the basis for the development of an
assessment technique to check against other types of secondary failure along
vertical cracks, in order to ensure that vertical edge separation does not occur in
two-way walls.



Chapter6
C O L L A P S E L O A D P R E D I C T I O N I N D RY
M A S O N RY WA L L S

Abstract

This chapter describes an analytical procedure for predicting the static strength of
unreinforced masonry walls using a collapse mechanism analysis. The proposed
method treats the masonry as having zero cohesion (bond strength) and assumes
that a wall’s lateral load resistance is obtained entirely from rigid body restoration
due to gravity and frictional sources. As such, the developed approach becomes
potentially suitable for the assessment of existing unreinforced masonry buildings,
where it can be particularly difficult to reliably quantify the tensile bond strength
of the masonry. Considered are a set of standard mechanisms involving flexural
deformation along the out-of-plane panel, as well as hybrid mechanisms incorpo-
rating combined flexural deformation along the out-of-plane panel with in-plane
shear deformation in the connecting return walls. The accuracy of the analysis
is assessed by comparisons with the results of tilting table experiments involving
dry-stack masonry, which demonstrate that predictions made by the analysis are
in good agreement with both the experimentally measured collapse loads and
observed failure patterns. A significant aspect of the proposed method is that it is
based entirely on principles of mechanics and does not rely upon any empirically
calibrated parameters.
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Figure 6.1: Rondelet’s three mechanisms [Rondelet, 1802].

6.1 introduction

Accurate calculation of a brick masonry wall’s flexural strength can be obtained
using sophisticated finite element analyses, which require accurate knowledge
of the material properties as well as geometry and boundary conditions [e.g.
Lourenço, 2002]. Finite element based limit analyses have also been shown to
perform favourably in predicting wall failure mechanisms [Orduña and Lourenço,
2005a,b; Cecchi et al., 2007; Milani et al., 2007; Milani, 2008; Cecchi and Milani, 2008].
Nonetheless, there is also a parallel interest to develop more simplistic analytical
procedures requiring a lesser computational effort, which may be implemented,
for example, into large scale vulnerability assessment of historical structures. This
has led to numerous works aimed at characterising possible types of out-of-plane
collapse mechanisms and development of closed-form analytical expressions to
evaluate their strength.

It could naturally be expected that with judicious choice of a collapse mecha-
nism, a reasonably accurate prediction of the out-of-plane strength of a masonry
wall could be made solely on the basis of its geometry and boundary conditions.
This philosophy was used over two centuries ago by Rondelet [1802], who described
three simple out-of-plane failure mechanisms for different wall support conditions
and used stability principles to determine their capacities (Figure 6.1). Modern
day research in this field began with work by Giuffrè [1990, 1993], who conducted
post-earthquake inspections of historical buildings and identified several likely
out-of-plane collapse mechanisms based primarily on rigid body overturning. Sig-
nificant advancements to the analytical methodology were made by de Felice and
Giannini [2001], by proposing a pair of collapse mechanisms incorporating com-
bined out-of-plane failure of the façade walls with shear failure in the adjoining
in-plane walls, and also accounting for friction along the in-plane shear cracks.
D’Ayala and Speranza [1999, 2002, 2003] identified numerous additional out-of-plane
failure mechanisms and made further refinements to the corresponding calculation
techniques by allowing for additional frictional effects, the presence of overburden
loads, and the ability of mechanisms to span over multiple storeys within the
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Figure 6.2: Mechanisms considered by D’Ayala and Speranza [2003]. (Graphics used with
permission from EERI.)

building (Figure 6.2). Additional development of the analytical approach was
performed by Casapulla [2008], who also reasoned that frictional contributions to
the strength should be treated in terms of possible bounds rather than specific
values.

In this chapter, the general analytical approach is further refined to account
for: (i) horizontal bending due to torsional friction along bed joints, (ii) transla-
tional bed joint friction due to internal shear deformation of participating in-plane
walls; and (iii) the potential strengthening or weakening influence that can result
from a restrained/unrestrained overburden load and its eccentricity. Additional
collapse mechanisms are also proposed on the basis of failure patterns observed in
experimentally tested dry-stack masonry (DSM) walls [Restrepo Vélez, 2004; Restrepo
Vélez and Magenes, 2009]. The analytical formulations are based on the virtual work
approach, in which the external work done by the load on the wall is equated to
the internal work done along deforming flexural cracks and, where the mechanism
involves cracks in the return walls, also due to in-plane shear deformation. This
conveniently leads to the calculation of the collapse load in terms of the load
multiplier λo, defined as the ratio of the lateral load capacity to the weight of the
panel [refer to Eq. (2.3)], which may also be interpreted as an equivalent lateral
acceleration in units of g’s.

A key feature of the presented methodology is that, unlike the ultimate strength
analysis presented in Chapter 4, it neglects any strength contribution from the
tensile bond strength ( fmt), and thus effectively treats the wall as being already
cracked. In turn, the analysis assumes that the wall derives its entire load resistance
from gravity effects, including internal restoration moments and friction. Whilst
this approach will generally predict lower (more conservative) load capacities, the
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fact that it does not rely on the stress capacities of the masonry material for inputs
makes it a suitable seismic assessment tool for existing unreinforced masonry (URM)
buildings, where it can be particularly difficult to determine a reliable value of fmt

or to detect any preexisting cracking.

The chapter is structured as follows: The various collapse mechanisms consid-
ered are introduced in Section 6.2. Considerations relating to the wall boundary
conditions are discussed in Section 6.3. The general analytical procedure for calcu-
lating the collapse load is described in Section 6.4, and derived analytical equations
for the specific mechanisms are presented in Section 6.5. Analytical predictions
are compared with experimental results in Section 6.6, and a set of parametric
studies are undertaken in Section 6.7 to determine the sensitivity of the predictions
to the choice of mechanism. The chapter concludes in Section 6.8 with a summary
of the outcomes. Additional information related to the topics covered in this
chapter is provided in Appendix G, including derivations and worked examples
demonstrating the application of the method.

6.2 collapse mechanisms

The various mechanisms considered in this chapter are illustrated in Figure 6.3. All
mechanisms assume that the wall’s bottom edge in addition to at least one vertical
edge are restrained from lateral movement—conditions sufficient to facilitate two-
way bending. They include the pure out-of-plane mechanisms G, K1 and K2

(referred to as standard mechanisms); and the hybrid mechanisms J and B, combining
flexural deformation along the out-of-plane panel with shear deformation in the
adjacent in-plane return walls. The mechanisms can also be categorised as either
type-1, in which the top edge of the wall is free to undergo lateral movement
(including G, J, B and K1), or type-2, where the top edge of the wall is laterally
restrained (only K2).1 Furthermore, each of the mechanisms can assume one- or
two-sided forms, based on the number of supported vertical edges.

6.2.1 Type G

Type G mechanisms (Figure 6.3) are a class of standard two-way mechanisms
applicable to walls free along their top edge. In the present treatment, they are
subcategorised into the complimentary forms Gx and Gy, corresponding to different
length to height aspect ratios. The overall shapes of these mechanisms are charac-
terised by a V-shape, formed by diagonal crack lines propagating downwards from

1While type-2 versions of mechanisms G, J and B are also conceptually possible, they are not
considered here, as such forms are generally not known to occur.
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Figure 6.3: Collapse mechanisms.
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laterally supported vertical edges. The mechanisms can be considered variations
of Rondelet’s second and third mechanisms (Figure 6.1), or D and G reported by
D’Ayala and Speranza [2003] (Figure 6.2). Interestingly, type G mechanisms have been
observed through several different experimental studies on DSM walls [Ceradini,
1992; Giuffrè, 1993; Restrepo Vélez, 2004; Vaculik et al., 2004; Shi et al., 2008]; however,
they are generally not known to occur in mortar-bonded URM walls, which instead
tend to undergo type K mechanisms (Section 6.2.3).

6.2.2 Hybrid Types J and B

Mechanisms J and B (Figure 6.3) are hybrid mechanisms applicable to two-way
walls free along the top edge. In applying these mechanisms, it is assumed that the
loading direction is outward from the supporting return walls, which enables the
return walls to participate through in-plane shear deformation. Hence, a significant
feature of these mechanisms is that, unlike the standard mechanisms, they do not
necessarily need to be confined to a single out-of-plane wall, but rather have the
ability to form chains spanning along multiple adjacent out-of-plane walls.

Mechanism J is a proposed mechanism which can be considered to be a hybrid
variant of the standard mechanism Gx. Its one-sided form somewhat resembles
a combination of D’Ayala and Speranza’s D and B1, whilst its two-sided form is
similar to a combination of G and B2 (Figure 6.2). This mechanism can be observed
extensively in Restrepo Vélez’s experimental study using DSM [Restrepo Vélez, 2004]
and has been developed on this basis. It also appears to be present in DSM tests
reported by Shi et al. [2008]. Mechanism B is a hybrid version of the typical one-way
vertical bending mechanism for parapet walls (referred to throughout as V1), and is
equivalent in shape to B1 and B2 by D’Ayala and Speranza. While it may appear that
mechanism B is simply a particular case of J in which the length of the diagonal
cracks approaches zero (or a = 1, refer to Figure 6.14), the difference in their
treatment is the inclusion of additional internal work along the internal vertical
cracks in J, which are absent from B. This means that mechanism B could become
energetically more feasible than J in certain situations, particularly for walls with a
high H/L aspect ratio.

The fundamental distinction between the treatment of hybrid mechanisms
in this chapter and D’Ayala and Speranza [2003], is the resistance model used
for the in-plane components. While both models allow the mobilised portion
of the in-plane panel to adopt a triangular shape, the approach by D’Ayala and
Speranza assumes that the mobilised panel undergoes rigid body overturning. This
assumption, however, implies that the masonry has sufficient tensile strength to
remain monolithic, which is inaccurate when dealing with DSM or masonry with
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very poor bond strength. As a result, the D’Ayala and Speranza approach could
potentially become unconservative when applied to this type of masonry, as the
assumed rigid body restoring moment can constitute a significant proportion of the
overall lateral load resistance. The proposed in-plane deformation model adopted
throughout this chapter (described in Section 6.4.3) is fundamentally different: It
treats the in-plane walls as having zero bond strength and assumes that internal
resistance is obtained purely from frictional sources. Consequently, the mobilised
panel not only slides with respect to the stationary part of the return wall, but it
also undergoes internal shear deformation whereby adjacent courses of bricks slide
relative to each other (refer to Figure 6.11). The latter condition is necessary in order
to satisfy displacement compatibility between the in-plane and the out-of-plane
panels within the overall mechanism.

6.2.3 Types K1 and K2

Type K mechanisms (Figure 6.3) are a general class of mechanisms characterised by
diagonal crack lines propagating from corners at which orthogonal supported edges
of the wall intersect. In the present treatment, they are divided into two subclasses:
K1, in which the top edge is free; and K2, where the top edge is laterally restrained.
Both subclasses are further subdivided into their complimentary forms, K1x/K1y

and K2x/K2y, depending on the length to height aspect ratio. Type K mechanisms
represent the most common class of mechanisms associated with mortar-bonded
URM walls possessing tensile bond strength, and have been observed throughout
many experimental studies [Baker, 1973; Anderson and Bright, 1976; West et al., 1977,
1979b,a; Hodgkinson et al., 1982a,b; Lawrence, 1983; Tapp, 1985; Drysdale and Essawy,
1988; Chong, 1993; Ng, 1996; Abrams et al., 1996; Griffith, 2000; Edgell and Kjær, 2000;
Jaramillo, 2002; Korany, 2004; Edgell, 2005] including the original experimental work
reported in Chapters 2 and 3. As such, these mechanisms have been used as the
basis of numerous methods for ultimate strength design of two-way walls (see
Section 4.2), including the virtual work (VW) approach developed by Lawrence and
Marshall [1996] and adopted in the Australian code as 3700 [Standards Australia,
2001]; traditional yield line analysis [originally developed by Johansen, 1962]; as
well as modified versions of yield line analysis [Sinha, 1978; Baker et al., 2005].

6.3 boundary conditions

The position of a wall within the overall building plays an important role with
regard to its out-of-plane behaviour. In the analysis of a particular wall, the wall
is treated in isolation from the surrounding structure, and the influence of the
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structure gets replaced by a set of idealised boundary conditions acting upon the
wall. This section provides a discussion of considerations relating to boundary
conditions and the resulting implications toward the analysis, including: lateral
restraint of the top edge (Section 6.3.1); loadbearing walls (Section 6.3.2); and
vertical edge supports (Section 6.3.3).

6.3.1 Lateral Restraint Along the Top Edge

A particularly important consideration when undertaking an analysis is deter-
mining whether the top edge of the wall is laterally restrained or free to displace
horizontally. As mentioned earlier, all of the mechanisms presented in Section 6.2
assume that the wall has translational restraint along the bottom edge and at least
one vertical edge. The flowchart in Figure 6.4 can be subsequently used to establish
whether the top edge of the wall is adequately restrained to allow the use of a
type-2 mechanism, or whether a type-1 mechanism must be used instead whereby
the top edge is treated as unrestrained. The latter option will generally yield lower
(more conservative) capacities.

6.3.2 Overburden Loads

A wall is considered to be loadbearing if it acts as a gravity force path for an
overburden load (OBL) due to a floor system or some other part of the overall
structure. A feature of the analytical methodology presented in this chapter is that
it allows for the presence of an OBL and accounts for the resulting effects on the
wall’s load capacity. The following considerations are taken into account:

• Enhancement in the wall’s flexural resistance as a result of higher vertical
compressive stress;

• Restraint of the OBL against horizontal movement;

• Adequacy of the shear connection between the OBL and the wall; and

• Eccentricity of the force transfer point between the OBL and the wall.

These will now be discussed in greater detail. Firstly however, some basic sym-
bolic notation will be introduced, as it is referred to throughout the upcoming
discussions.
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Figure 6.4: Flowchart for choosing an appropriate type of mechanism (type-1 or type-2), as
well parameters ψ and Φ, as necessary. In type-1 mechanisms, the top edge of the wall is
able to displace horizontally (includes G, J, B and K1). In type-2 mechanisms, the top edge
is restrained from lateral movement (includes K2).
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A convenient way to express the magnitude of the OBL is in terms of the
overburden weight ratio ψ, defined as

ψ =
Wvo

Wtot
, (6.1)

where Wvo is the vertical force exerted by the OBL onto the wall, and Wtot is the
weight of the wall over the mechanism’s total height Ht.2 The corresponding
vertical compressive stress generated at the top of a wall is 3

σvo =
Wvo

tuL
, (6.2)

where tu is the thickness of the wall and L is the length over which Wvo acts. It may
also be expressed in terms of ψ, as

σvo = ψγHt, (6.3)

where γ is the weight density of the masonry material.

Enhancement of Internal Flexural Resistance

An important influence of an OBL is that it generates additional vertical compression
throughout the wall, which enhances the wall’s capacity to resist flexure. In the
analysis procedure presented in this chapter, this effect is accounted for by the
σvo term in the stress capacity function [Eq. (6.22)] which is subsequently used in
calculating the internal moment capacities.

Restraint of the Overburden Load

When applying type-1 mechanisms to loadbearing walls, a particularly important
consideration is establishing whether or not the OBL is restrained from displacement
along the horizontal degree-of-freedom (DOF) (Figure 6.5). We define the OBL to be
restrained when some part of the overall structure can provide a load path for the
OBL’s horizontal inertial load, and conversely, unrestrained when the only part of
the structure able to provide a horizontal load path is the out-of-plane wall itself.
A typical example of a restrained OBL is a stiff slab that rests upon the out-of-plane

2It should be noted that since the mechanism height Ht is treated as an independent variable
in the analytical method presented in this chapter, ψ will not necessarily remain constant when
considering a particular wall.

3Note that the axial stress σv refers to the equivalent stress generated at a particular height of the
wall, by treating the compressive force as acting over the entire bedded area. It is not intended to
account for stress concentrations across cracked sections.
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Figure 6.5: Additional horizontal loads imposed on a wall by either a restrained or
unrestrained overburden load in type-1 mechanisms.

wall, but whose horizontal inertial load can be resisted by stiff in-plane shear walls.
By contrast, a flexible floor diaphragm may act as an unrestrained OBL that can
apply additional lateral load to an out-of-plane wall along its top edge.

The influence of the restraint is illustrated by Figure 6.5, which shows that
when a type-1 mechanism is considered in conjunction with an acting OBL, an
additional horizontal force becomes generated and transferred to the wall along its
top edge. If the OBL is restrained and a frictional connection is present between
the wall and OBL (Figure 6.5a), a frictional force equal to µoWvo (where µo is the
friction coefficient) becomes generated in opposition to the wall’s motion, thereby
enhancing its strength. By contrast, if the OBL is unrestrained (Figure 6.5b), then
under inertial loading it will apply an additional overturning force onto the wall,
thus reducing its load capacity. This additional load is equal to ληWvo, where λ is
the lateral load multiplier; and η is defined to as the orthogonal factor of the OBL,
which corresponds to the ratio

η =
Who

Wvo
, (6.4)

where Who is the component of the OBL’s weight free to impose a horizontal
reaction onto the wall and Wvo is the acting vertical reaction. The factor η is
introduced because in certain instances the weight components acting horizontally
and vertically may not necessarily be equal. Nonetheless, its value may generally
be determined directly from statics. As a further note, when dealing with an
unrestrained OBL and type-1 mechanisms, the proposed approach assumes that
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the connection between the wall and overburden load is sufficiently strong to
accommodate full transfer of the overburden load’s horizontal inertial force. Whilst
this assumption is conservative with respect to calculating the wall’s collapse
load, it can be verified at the discretion of the user. For example, it can be easily
shown that for a purely frictional connection with a friction coefficient µo, the load
multiplier to cause slip along the joint is

λ = µo/η. (6.5)

To activate the effects associated with the OBL restraint in the analytical equations
presented throughout this chapter, the binomial variable Φ is used, defined as the
DOF factor of the OBL with respect to the horizontal direction of displacement. Its
value is taken as

Φ =

0 for a restrained overburden load,

1 for an unrestrained overburden load.
(6.6)

The flowchart provided in Figure 6.4 may also be used to determine its value.

Horizontal Strength of the Connection

In the case of a restrained OBL, the strength of the shear connection between the
OBL and the wall can have a significant influence on the wall’s response, because it
influences whether the top edge of the wall is sufficiently restrained. We define the
connection to be either frictional or strong. A frictional connection is one where load
transfer relies purely on friction between the OBL and the wall, whereas a strong
connection is one that is assumed to have sufficient capacity to accommodate any
required load transfer. For instance, a strong connection may result from steel ties
connecting the wall to an adjacent concrete slab.

As seen from the flowchart in Figure 6.4, if the OBL is restrained and a strong
shear connection is provided, then the top edge of the wall can also be considered
restrained and a type-2 mechanism may automatically be used. However, in the
case of a frictional connection, the wall may respond either by a type-1 or type-2
mechanism, depending on whether the friction is sufficient to accommodate the
required reaction at the top edge. The suggested approach in such a case is to
consider both types of mechanisms individually, and adopt the one that predicts
the lower collapse load. Alternatively, by making the conservative assumption the
top and bottom edges each resist half of the lateral load in a type-2 mechanism,4

4This assumption is deemed conservative, because it may be demonstrated using statics that
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it follows that friction should be sufficient to provide lateral restraint to the top
edge when the available friction capacity (µoψWtot) exceeds the required reaction
( 1

2 λoWtot). This leads to the inequality expression

λo < 2µoψ, (6.7)

which could be used to check whether the calculated collapse multiplier λo can be
realised with the available friction. Therefore, a two tiered approach may also be
implemented, in which a type-2 mechanism is first used, and if the calculated col-
lapse multiplier satisfies the above inequality then the result is accepted; otherwise,
a type-1 mechanism is used instead.

Eccentricity Effects

The position of the load transfer point between the OBL and the wall influences the
wall’s lateral load resistance and displacement capacities, since it affects the moment
imposed on the wall. These effects were recognised in analytical load-displacement
relationships derived by Doherty [2000] for vertically spanning one-way panels,
where he considered the OBL to act at either the upward-deflecting rotational point
at the top edge, or at the mid-thickness of the wall. The treatment used here is a
more generalised one, in that the eccentricity is specified using the factor ε, defined
such that the OBL acts at a distance ε tu measured from the upward-deflecting point
along the wall’s cross section (Figure 6.6). It is worth noting that the upward-
deflecting point occurs on the windward side in type-1 mechanisms and on the
leeward side in type-2 mechanism, as denoted by ‘W’ and ‘L’ in Figures 6.7 and 6.8.

A further consideration which has implications toward the cyclic behaviour
of the wall, is the mode of connection between the OBL and the wall, particularly
whether the load is transferred through a bearing (Figure 6.7) or across a horizontal
surface such as a stiff slab (Figure 6.8). In the case of a bearing connection, the
position of the load transfer point will remain fixed regardless of whether the
displacement is positive or negative (∆+ and ∆− as shown in Figure 6.7), and hence
the eccentricity ε will alter depending on the displacement direction. Therefore,
unless the bearing is positioned at the mid-thickness of the wall (ε = 1/2), the
wall’s load-displacement behaviour will be asymmetric. In the case of a stiff slab,
the load transfer point will shift when the wall transitions between the opposite
displacement directions, such that it is always positioned at the upward-deflecting
point (ε = 0), and hence the wall’s behaviour will be symmetric. It can further be

the lateral reaction along the top edge is always lower than along the bottom edge, at the point of
incipient rocking for mechanism K2 (refer to Appendix H.1). Furthermore, the assumption neglects
any additional force transfer across the supported vertical edges.



206 collapse load prediction in dry masonry walls

W v o

l ae  t uP o i n t  d e f l e c t i n g  
u p w a r d s  d u r i n g  
r o t a t i o n

1 / 2  t u 1 / 2  t u

G e o m e t r i c  c e n t r o i d  o f  
t h e  s e c t i o n

Figure 6.6: Overburden load eccentricity factor ε, defined such that the OBL acts at a
distance ε tu measured from the upward-deflecting point along the wall’s cross section.
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Figure 6.7: Eccentricities during reversed loading when force transfer occurs through a
bearing. Asymmetric behaviour will result when ε 6= 1/2.
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Figure 6.8: Eccentricities during reversed loading when force transfer occurs through a stiff
horizontal surface such as a concrete slab. The load always acts at the upward-deflecting
point of the wall section; therefore, ε = 0 regardless of the loading direction.
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demonstrated that the wall receives the maximum beneficial influence toward both
its strength and displacement capacities when the OBL acts at the upward-deflecting
point (ε = 0), as this causes the OBL to impose the largest possible restoring moment
onto the wall.5

6.3.3 Vertical Edge Restraint

The type of support condition present along the vertical edges of a wall can
influence:

• The rotational restraint along the boundary; and

• The ability of the wall to undergo a hybrid mechanism.

The level of rotational restraint along a supported vertical edge affects the
horizontal bending moment capacity that it can develop. From the collapse mech-
anisms defined in Section 6.2, this has relevance toward mechanism Gy and the
full family of type K mechanisms (K1x, K1y, K2x and K2y). In the methodology
presented in this chapter, the rotational restraint is accounted for using the factor
Rvs. This is equivalent to the R f 1 and R f 2 factors used in the as 3700 virtual work
procedure for ultimate strength design [developed by Lawrence and Marshall, 1996].
For consistency with as 3700, it is recommended for Rvs to be taken as

Rvs =


0 for no rotational restraint (simple support),

1 for full rotational restraint (fixed connection),

intermediate value for partial rotational restraint.

(6.8)

as 3700, however, does not give any provisions regarding the types of support
conditions that qualify for each of the above categories. The author recommends
that full rotational restraint should only be assumed when the wall is continuous
past the support, or when it is fully engaged into either an adjoining pier or a
continuing return wall around a corner. For cases where the vertical edges are
restrained only using wall ties (such as infill panels), it is prudent to assume zero
rotational restraint. In cases where a wall has both vertical edges supported, but
with different levels of rotational restraint, an average value may be used in the
analysis.

The second consideration listed previously concerns whether or not the out-of-
plane wall is able to form a hybrid mechanism J or B (Section 6.2.2). A conservative

5As demonstrated by analytical equations presented in Table 7.1.
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approach recommended by the author is to always consider these mechanisms;
however, the angle of the in-plane shear crack that can form may be limited in
certain situations. For example, if the vertical edges of the out-of-plane wall are
restrained using wall ties or engaged into a masonry pier, then the in-plane crack
may only assume a vertical inclination (v = 0 in Figure 6.14). When the out-
of-plane wall is engaged into adjoining return walls, it becomes possible for the
in-plane shear crack to assume any diagonal inclination, assuming that the return
wall is sufficiently long [within the limits of Eq. (6.33), as discussed in Section
6.4.3].

6.4 general method for calculating the collapse load

The methodology employed for calculating a wall’s load capacity is based on the
classical rigid plastic VW approach, which involves selecting an arbitrarily assumed
collapse mechanism and calculating the corresponding kinematic collapse load.
Due to the upper-bound nature of this method (as discussed in Section 4.2.1), the
critical collapse mechanism is the one at which the collapse load is minimised. The
process of solving for the collapse load therefore becomes an optimisation problem.
An outline of the overall solution procedure is as follows:

1. Select the fundamental form of the collapse mechanism (for instance mech-
anism Gx), and express its geometry in terms of a series of independent
variables such as its length and height dimensions.

2. Using the virtual work method, formulate a closed-form expression for the
collapse load λo in terms of the relevant independent variables and constant
properties for the particular masonry wall under consideration.

3. Define a set of constraints that govern the mechanism’s geometry for the
wall under consideration. This includes, for example, ensuring that the
mechanism’s length and height do not exceed the dimensions of the wall.

4. Perform an optimisation process to minimise λo for the selected mechanism,
by varying the independent variables whilst satisfying the given set of geo-
metric constraints.

5. Repeat steps 1 to 4 for each viable collapse mechanism; for example, after
considering mechanism Gx analyse the wall with respect to the remaining
type-1 mechanisms, Gy, J, B,. . ..

6. Adopt the lowest calculated λo value together with the associated collapse
mechanism as the overall critical solution.
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This section provides the methodology used for calculating the collapse load λo

for a particular chosen mechanism (Point 2 above), including: a discussion of
the overall VW approach (Section 6.4.1); moment capacities of different types of
cracks (Section 6.4.2); and shear capacity of in-plane walls involved in the hybrid
mechanisms (Section 6.4.3).

6.4.1 Virtual Work Formulation

The load capacity of a wall with respect to a particular collapse mechanism is
calculated using the VW approach, consisting of four basic steps:

1. Postulate a collapse mechanism,

2. Calculate the total internal work,

3. Calculate the total external work, and

4. Evaluate the collapse multiplier.

These steps will now be discussed in greater detail.

Postulate a Collapse Mechanism

Due to the inherent planes of weakness in an out-of-plane masonry wall, flexural
(or rotational) cracks tend to be oriented either horizontally, vertically, or diagonally
in accordance with the natural diagonal slope of the masonry, Gn, which may be
determined directly from masonry unit geometry using Eq. (4.13) (refer to Figure
4.2). This reduces the number of viable collapse mechanisms to those that contain
these three fundamental types of flexural cracks. With this in mind, several basic
building blocks may be used to construct most typical mechanisms. Figure 6.9
shows the different types of blocks that may be used to compose the out-of-plane
component of the mechanism along walls orthogonal to the loading direction. In
the case of hybrid mechanisms, the block shown in Figure 6.10, which corresponds
to a triangular-shaped deforming portion, may be used to account for the in-plane
component (discussed in greater detail in Section 6.4.3). The various types of
mechanisms considered in this chapter (Figure 6.3) are all composed using these
fundamental blocks. For example, type G mechanisms consist of blocks shown in
Figures 6.9a and 6.9d, whilst type K mechanisms consist of the blocks in Figures
6.9c and 6.9d. By contrast, hybrid mechanism J is composed of the blocks in Figures
6.9b, 6.9d and 6.10.
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Figure 6.9: Fundamental blocks for constructing the out-of-plane component of a collapse
mechanism.
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Figure 6.10: Block corresponding to a triangular-shaped, linearly deforming in-plane panel,
as used in hybrid mechanisms J and B. For ease of visualisation, the displacement d∆r is
illustrated as being orthogonal to the surface, even though it is actually in parallel.
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Once a collapse mechanism has been postulated, the remaining steps in the
λo calculation process will be to determine the associated internal and external
work terms. These steps involve the consideration of certain properties which are
directly proportional to the size of the applied displacement. Therefore, for brevity,
it is convenient to denote the derivatives of these properties with respect to the
displacement ∆ using Lagrange’s notation, so that for a generic property X, its
corresponding virtual property X′ is

X′ ≡ dX
d∆

. (6.9)

This leads to the definition of the virtual displacement ∆′:

∆′ ≡ d∆
d∆

= 1, (6.10)

as well as other virtual properties, including internal virtual work U′, external vir-
tual work E′, virtual rotation θ′, virtual displaced volume V ′, and virtual displaced
area A′:

U′ ≡ dU
d∆

, E′ ≡ dE
d∆

, θ′ ≡ dθ

d∆
, V ′ ≡ dV

d∆
, A′ ≡ dA

d∆
. (6.11)

When considering a particular mechanism, it is essential that all of these virtual
properties are formulated with respect to a reference virtual displacement ∆′ at a
particular location along the mechanism. In the treatment of each of the predefined
mechanisms (Gx, Gy, J, B,. . .) presented in this chapter, the reference displacement
is taken at the position of the mechanism’s largest displacement (refer to Figures
6.15–6.17).

Calculate Internal Work

The next step is to calculate the total internal work performed by the overall
mechanism. The three sources of internal resistance that may be active in the
mechanisms include: internal moments along flexural cracks in the out-of-plane
component of the mechanism; internal resistance associated with shear deformation
of the in-plane component in the hybrid mechanisms; and in the case of type-1
mechanisms, possible friction between the top edge of the wall and a restrained
OBL.

For flexural cracks, the internal crack energy U′
C is calculated as the product of

the crack’s virtual rotation θ′ and its moment capacity M:

dUC = dθ M, or U′
C = θ′M. (6.12)
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The virtual rotations of cracks present in the various types of mechanism building
blocks are shown in Figures 6.9 and 6.10.6 Analytical expressions for calculating
the moment capacities for each type of bending and crack orientation are presented
in Section 6.4.2.

The internal energy U′
r performed by an in-plane panel undergoing shear defor-

mation (in hybrid mechanisms J and B) is the product of the shear displacement
and the corresponding frictional force resistance, in addition to a contribution
from vertical bending along the boundary between the in-plane and out-of-plane
components. The analytical expression for calculating the resulting internal virtual
work is presented as Eq. (6.36) in Section 6.4.3.

The energy performed due to frictional sliding between a free top edge (in
type-1 mechanisms) and a restrained OBL is the product of the virtual displacement
along the top of the wall and the acting frictional force. The expression used to
calculate the corresponding internal virtual work U′

O is

U′
O = (1−Φ) µoσvotu A′, (6.13)

where Φ is the DOF factor for the OBL as defined in Section 6.3.2; µo is the friction
coefficient between the wall and the OBL; σvo is the acting vertical stress; tu is the
thickness of the wall; and A′ is the virtual displaced area along the wall’s top edge,
which is determined by integrating the virtual displacement along the length of
the wall. The derivation of Eq. (6.13), along with expressions for A′ for the various
mechanisms considered are provided in Appendix G.2.9. Expressions used to
calculate A′ for the various building blocks are given in Figures 6.9 and 6.10.

Thus, the total internal work of the overall mechanism is the sum of the work
done by all participating flexural cracks, in-plane panels, and contributions from
any restrained OBLs; and is calculated according to the formula

U′
tot = ∑ U′

C + ∑ U′
r + ∑ U′

O. (6.14)

Calculate External Work

The external work performed by the acting lateral load on the wall is the product
of the lateral pressure and the virtual displacement, integrated along the surface of
the wall. This can be formulated as

E′ =
∫

Y

∫
X

q〈x, y〉 u′〈x, y〉dx dy, (6.15)

6These rotations are based on small angles, at which dθ ≈ tan dθ.
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Table 6.1: Expressions for calculating the virtual displaced volumes (V′) for different types
of block elements. Note that for each block type, L, H and ∆′ are defined in the respective
diagrams.

Block Type Diagram V′ = . . .

Full triangular pyramid Figure 6.9a 1
6 ∆′LH

Truncated triangular pyramid Figure 6.9b 1
6 ∆′

H2(1−r3)
Gn

, where Gn = tan ϕ

Rectangular pyramid Figure 6.9c 1
3 ∆′LH

Wedge Figure 6.9d 1
2 ∆′LH

In-plane shear triangular pyramid Figure 6.10
1
3 ∆′r H2

r v

where E′ is the external virtual work; q〈x, y〉 is the lateral pressure and u′〈x, y〉 is
the virtual displacement acting at the point defined by the coordinates x and y; and
L and H are the length and height of the wall.

The two major sources of external loads considered include: (i) the wall’s
self-weight; and (ii) in type-1 mechanisms, the lateral component of a possible unre-
strained overburden load along the top edge of the wall. Other mass concentrations
that may be present, such as lintels or other fittings, could also be accounted for
with this approach; however, they were not a feature of any of the walls considered
in this chapter. As a result, the total external work is

E′tot = ∑ E′W + ∑ E′O, (6.16)

where ∑ E′W is the sum of contributions from the wall’s self-weight and ∑ E′O is the
sum of contributions from an unrestrained OBL.

For seismic lateral loading, which is weight-proportional in nature, the acting
lateral force is equal to the component’s weight times the load multiplier λ. The
lateral pressure from the wall’s self-weight therefore becomes

q = λγtu,

where γ is the weight density of the masonry and tu is the thickness of the wall.
The external work due to the wall’s self-weight may be formulated as

∑ E′W = λγtu ∑ V ′, (6.17)

where ∑ V ′ is the sum of the virtual displaced volumes of all individual blocks
comprising the mechanism. Expressions for calculating volumes of the different
displaced shapes in Figures 6.9 and 6.10, are listed in Table 6.1.
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The sum of external work contributions from all unrestrained OBLs is

∑ E′O = Φληtu ∑ σvo A′, (6.18)

with parameters Φ and η having been defined in Section 6.3.2. Derivations of
this formula and expressions for A′ for the various mechanisms are presented in
Appendix G.2.9.

Evaluate the Collapse Multiplier

An expression for the collapse load multiplier λo is obtained by applying the
principle of energy conservation and equating the total internal work to the total
external work, such that

dUtot = dEtot, or U′
tot = E′tot. (6.19)

Substituting in Eqs. (6.14) and (6.16), together with Eqs. (6.17) and (6.18) and
rearranging in terms of λ, yields

λo =
∑ U′

C + ∑ U′
r + ∑ U′

O
γtu ∑ V ′ + Φηtu ∑ σvo A′ . (6.20)

6.4.2 Moment Capacities of Flexural Cracks

The moment capacity of a masonry crack with respect to any mode of bending
(vertical, horizontal and diagonal) can be expressed in the general form

M = f 〈· · ·〉 lC Z̄, (6.21)

where M is the moment capacity of the crack, f 〈· · ·〉 is a stress capacity function,
lC is the span (length or height) of the crack, and Z̄ is the moment modulus per
unit span of the crack, for the particular type of bending. It is convenient to express
the moment capacity in the above form, because it separates the moment moduli
which remain constant, from the stress capacity and crack span terms which are
dependent on the dimensions of the overall mechanism and the location of the
crack.

Since masonry without bond strength attains its flexural strength entirely from
vertical compression acting throughout the panel, the stress capacity becomes
equivalent to the vertical compressive stress σv. For a solid wall (without openings)
this may be defined as 3

f 〈d〉 ≡ σv = σvo + γd, (6.22)
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where d is the vertical distance measured from the top edge of the wall to the
centroid of the crack under consideration, γ is the unit weight of the masonry,
and σvo is the precompression stress applied at the top of the wall. If the distance
d is equal to the total mechanism height Ht times some coefficient c, then by
incorporating Eq. (6.3), f 〈· · ·〉 can also be rewritten in terms of the overburden
weight ratio ψ, as

f 〈cHt〉 = γHt (ψ + c) . (6.23)

For walls with openings, it is recommended that a more refined approach be used
to calculate the compressive stress distribution throughout the wall, as presented
previously in Section 4.4.

The moment capacities for the different types of bending, which are used for
subsequent analyses of DSM walls, will now be presented in the same form as Eq.
(6.21), together with their corresponding moment moduli (Z̄). The expressions
are based on models already discussed in Section 4.3. Symbols lu, tu, hu and tj

featuring in the upcoming expressions are defined by Figure 4.2. Note that while
it is assumed that the DSM possesses zero tensile bond strength, the provided
expressions do allow for the possibility of the masonry being built with mortar
joints for the purpose of calculating various related geometric properties. However,
for DSM where mortar joints are absent, the joint thickness is simply taken as tj = 0.

Vertical Bending Along Internal Cracks

The moment resistance along any horizontal crack undergoing vertical bending is
based on the restoring moment opposing rigid body rotation about the extreme
compressive fibre of the section (refer to Figure 4.3d). The corresponding moment
capacity obtained by Eq. (4.21) may be formulated as

Mv = f 〈d〉 LZ̄v, (6.24)

where L is the length of the crack, and Z̄v is the vertical bending moment modulus
per unit length, given by

Z̄v = t2
u / 2. (6.25)

This moment capacity is applicable to all horizontal flexural cracks within the
mechanism.
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Vertical Bending Along the Top Edge in Presence of an OBL

Although the top edge of a wall is not a true masonry ‘crack’, it may nonetheless
act as a hinge with the ability to provide an internal work contribution when it
undergoes rotation about the horizontal axis and is subjected to an overburden
load. This concept is applicable regardless of whether the top edge is restrained
or free to undergo lateral movement (i.e. both type-1 and type-2 mechanisms, as
discussed in Section 6.3.1). An OBL will provide rotational restraint to the top edge
when its vertical force resultant acts at an offset relative to the centre of the wall’s
cross section. The moment capacity of the hinge may be calculated as

Mvo = Rts Mv, (6.26)

where Rts is defined an effective rotational restraint factor along the top edge, and
Mv is the nominal vertical bending moment capacity [given by Eq. (6.24)]. The
effective restraint factor is calculated from the OBL eccentricity ε (defined in Figure
6.6) as

Rts = 1− 2ε. (6.27)

Derivation of this equation is presented in Appendix G.2.10. It follows that when
the load acts upon the upward-deflecting point along the section (ε = 0), as for the
case of a slab connection (Figure 6.8), the load applies a full restoring moment to
the wall, and hence Rts achieves a value of 1. If the load acts at the centre of the
wall’s thickness (ε = 1/2), then the load provides no net moment, and Rts becomes
zero. If the load acts at the downward-deflecting point across the wall’s cross
section (ε = 1), then Rts becomes −1, and the hinge provides a negative internal
work contribution; or in other words, the load exerts an overturning moment onto
the wall.

Furthermore, as the top edge requires that d = 0 in Eq. (6.22), the moment
capacity simplifies to

Mvo = Rts f 〈0〉 LZ̄v. (6.28)

This moment capacity is applicable to any part of the top edge belonging to a
sub-plate which undergoes some component of rotation about the horizontal axis.

Diagonal Bending

Similarly to vertical bending, the resistance to diagonal bending is based on rigid
body rotation about the extreme compressive fibre of the section. The corresponding
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moment capacity is given by Eq. (4.38), which may be formulated as

Md = f 〈d〉 LdZ̄v cos ϕ or Md = f 〈d〉 Hd

Gn
Z̄v cos ϕ, (6.29)

where Ld is the horizontal projection of the diagonal crack and Hd is its vertical
projection. This equation is applicable to all flexural diagonal cracks along the
out-of-plane component of the mechanism.

Horizontal Bending

The moment resistance along any flexural vertical cracks that undergo horizontal
bending is assumed to be obtained from rotational friction along the participating
bed joints. The corresponding moment capacity, as given by Eq. (4.29), can be
formulated as

Mh = f 〈d〉HZ̄h, (6.30)

where H is the crack height and Z̄h is the moment horizontal bending modulus per
unit height of crack. This modulus is obtained as

Z̄h =
µm kbp t3

u

hu + tj
, (6.31)

where µm is the coefficient of friction along the bed joint interface; and kbp is the
plastic torque coefficient which, for a rectangular overlapping section as illustrated
by Figure 4.5, may be obtained either using Eq. (4.31) or from Figure 4.6. The
resulting moment capacity is applicable to all flexural vertical cracks within the
mechanism, except in the special case where the vertical crack acts as the boundary
between the out-of-plane panel and sliding in-plane panel in hybrid mechanisms J

and B.

6.4.3 Frictional Shear Deformation Model for In-Plane Panels

Hybrid mechanisms J and B (Section 6.2.2) incorporate a frictional shear deforma-
tion model for calculating the internal resistance of the participating in-plane walls.
As illustrated by Figure 6.11, it is assumed that the mobilised in-plane panel has a
triangular shape, whereby the angle of the shear crack with respect to the vertical
is treated as a variable and denoted by v. The geometries of mechanisms J and
B require that in order to satisfy displacement compatibility between the in-plane
panel and the adjacent out-of-plane panel, the in-plane panel must undergo shear
deformation with a linear profile along its height.
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Figure 6.11: In-plane panel undergoing frictional shear deformation.

The total internal resistance of the in-plane panel is obtained from three sources:

1. Frictional resistance within the panel due its internal shear deformation;

2. Frictional resistance due to sliding between the panel and the stationary
portion of the return wall along the diagonal crack; and

3. Vertical bending at the interface between the sliding in-plane panel and the
adjacent out-of-plane panel, which must occur since the masonry units within
the out-of-plane wall become rotated relative to the units within the in-plane
wall.

Contributions from Frictional Shear Resistance

For a triangular in-plane panel subjected to a virtual displacement d∆r at its top
edge (Figure 6.11), the increment of internal work dUfs performed by the two
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sources of translational friction (Points 1 and 2 listed above) is calculated from the
expression

dUfs = 1
2 d∆r µm tuHr

(
1

Gn
+ v

)
f
〈 1

3 Hr
〉

, (6.32)

which is derived in Appendix G.1. The variables include: Hr, the height of the
panel; µm, the coefficient of friction along the bed joints; and others as defined
previously. The geometric limits of v are governed by

0 ≤ v ≤ 1/Gn. (6.33)

The case where v = 0 corresponds to the in-plane crack being oriented vertically,
whilst v = 1/Gn corresponds to the crack following the natural diagonal slope of
the masonry, which is the upper limit at which Eq. (6.32) remains valid.

It is assumed here that the return wall has sufficient length to accommodate the
full length of the diagonal in-plane crack (i.e., that the crack terminates at the top
edge of the return wall). Whilst it is possible that an in-plane crack may terminate
at an in-plane wall’s free vertical edge in cases where the in-plane wall is short,
such cases are not considered here. Similar equations may nonetheless be derived
for such scenarios.

Contribution from Vertical Bending at the Interface

An additional component of internal work is generated from vertical bending along
the vertical crack forming the boundary between the in-plane and out-of-plane
panels (Point 3 stated above). The moment capacity Mvy of the crack may be
calculated from Eq. (6.24), together with an equivalent length of L = Hr/Gn, and a
depth of d = 1

2 Hr below the top of the wall. This gives

Mvy = f
〈 1

2 Hr
〉 Hr

Gn
Z̄v. (6.34)

As shown by Figure 6.10, the crack’s effective increment of rotation about the
horizontal axis is

dθv = d∆r/Hr,

hence the crack provides an increment of internal work equal to

dUvy = dθv Mvy = d∆r
Z̄v

Gn
f
〈 1

2 Hr
〉

. (6.35)
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Total Internal Work

The overall increment of internal work dUr for an in-plane panel involved in the
mechanism is the sum of the contributions from frictional shear resistance and
vertical bending at the interface, or

dUr = dUfs + dUvy.

Substituting in Eqs. (6.32) and (6.35) and dividing by the increment of displacement
d∆r at the top edge of the in-plane panel, results in

dUr

d∆r
= 1

2 µm tuHr

(
1

Gn
+ v

)
f
〈 1

3 Hr
〉
+

Z̄v

Gn
f
〈 1

2 Hr
〉

.

However, since all virtual work expressions must be formulated with respect to
the mechanism’s reference displacement ∆′ (as discussed in Section 6.4.1), in order
to obtain the internal virtual energy U′

r of the in-plane panel, it is necessary to
multiply the above derivative by d∆r/d∆ according to the formula

dUr

d∆
=

d∆r

d∆
dUr

d∆r
, or U′

r = ∆′r
dUr

d∆r
.

This results in the expression

U′
r = ∆′r

[
1
2 µm tuHr

(
1

Gn
+ v

)
f
〈 1

3 Hr
〉
+

Z̄v

Gn
f
〈 1

2 Hr
〉]

(6.36)

≡ U ′
r
〈
∆′r, Hr, v

〉
.

Variables in this equation which are dependent on the mechanism geometry include
∆′r, Hr and v, with all other properties being constant for a particular masonry
type. Therefore, this equation will be abbreviated using the function notation
U ′

r 〈∆′r, Hr, v〉.

6.5 formulations for type G, J, B, K1 and K2 mechanisms

This section presents closed-form virtual work expressions for calculating the
collapse multiplier λo with respect to the mechanisms considered in Section 6.2,
including hybrid mechanisms J and B, and standard mechanisms G, K1 and K2.
For each mechanism, expressions are provided for the total internal work, U′

tot; and
for the total external work premultiplied by the reciprocal of the load multiplier,
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λ−1E′tot. This allows for the collapse multiplier to be calculated as

λo =
U′

tot
λ−1E′tot

. (6.37)

Derivations of the presented analytical expressions are included in Appendix G.2.

The presented formulations specifically assume that a wall is solid; that is, it
contains no openings. Analysis of a wall with openings can be performed from
first principles using the refined VW treatment covered in Section 4.4.

6.5.1 General Concepts

The following general concepts and calculations are applicable toward all of the
mechanisms considered.

Individual Out-of-Plane Walls

The first step in conducting an analysis is to identify individual out-of-plane panels
within the overall masonry specimen. Figure 6.12 shows examples of several
different wall configurations where an out-of-plane façade wall is supported by
in-plane return walls at one or multiple locations. As shown, an individual out-of-
plane wall is defined as having the dimensions Lw and Hw, which are measured
as the spans between either a free edge and a support, or between two supports.
For a particular out-of-plane wall, the number of supported vertical and horizontal
edges are denoted by nvs and nhs, respectively.

Out-of-Plane and In-Plane Mechanism Modules

The treatment herein is based on the concept that an overall collapse mechanism
is comprised of a series of out-of-plane modules and in-plane modules. Out-of-plane
modules feature in all mechanisms, whilst in-plane modules are relevant to only
the hybrid mechanisms. As demonstrated by each of the cases in Figure 6.12, an
out-of-plane wall will accommodate either a single out-of-plane module when
only one of its vertical edges are supported, or two modules when both of its
vertical edges are supported. The length and height dimensions of an individual
out-of-plane module are denoted by Le and Ht, respectively.

Each of the mechanisms considered treat the height of the mechanism, Ht, as
an independent variable which may assume values within the range

0 < Ht ≤ Hw. (6.38)



222 collapse load prediction in dry masonry walls

L w

H w

L e

( 1 )H t

(a) Single out-of-plane wall with one vertical
edge supported (Nw = 1, nvs = 1).
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(b) Single out-of-plane wall with two vertical
edges supported (Nw = 1, nvs = 2).
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(c) Pair of out-of-plane walls, each with one
vertical edge supported (Nw = 2, nvs = 1).
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(d) Pair of out-of-plane walls, each with both
vertical edges supported (Nw = 2, nvs = 1).

Figure 6.12: Subdivision of various types of wall configurations into individual out-of-plane
mechanism modules.
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Figure 6.13: Properties that may have different values for the participating out-of-plane
and in-plane walls, as denoted by the subscripts m and r, respectively.
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Minimisation of λo generally tends to occur when Ht < Hw, or in other words,
when the mechanism does not utilise the full available height of the wall. In
addition, it is useful to define the effective height of the mechanism He, as

He = Ht/nhs, (6.39)

which is equal to the full height of the mechanism when the top edge is free, and
half of the mechanism’s total height when both horizontal edges are supported. Or
alternatively, it may be taken as

He =

Ht, for type-1 mechanisms (G, J, B and K1),
1
2 Ht, for type-2 mechanisms (K2).

(6.40)

The allowable limits on the length of the out-of-plane component of the mecha-
nism depend on whether the mechanism under consideration is standard or hybrid.
In the standard mechanisms, the length span is allowed to assume values anywhere
within the geometric limits of the out-of-plane wall, whereas in the hybrid mecha-
nisms it must span the full length of the wall. Therefore, the out-of-plane module
length Le is constrained by

0 < Le ≤ Lw/nvs in standard mechanisms (G, K1 and K2), (6.41)

and Le = Lw/nvs in hybrid mechanisms (J and B). (6.42)

As will be shown later, however, minimisation of λo generally occurs when the
mechanism utilises the maximum available length of the wall.

Note that in the treatment of hybrid mechanisms, it is possible for certain prop-
erties to adopt different values along the out-of-plane and in-plane walls/modules.
This is catered for in the analysis. Such properties are denoted using the subscripts
m and r, respectively, as illustrated in Figure 6.13.

Mechanism Aspect Ratios

Based on the effective mechanism dimensions Le and He, it is useful to calculate a
pair of aspect ratios. These include the effective aspect ratio:

β =
Le

He
; (6.43)
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and the normalised effective aspect ratio:

α = Gn
Le

He
= Gnβ. (6.44)

The parameter α has special significance to the pure out-of-plane mechanisms
G, K1 and K2, as the condition α = 1 represents the limiting case between each
complimentary pair of mechanisms Gx/Gy, K1x/K1y, and K2x/K2y.7

6.5.2 Hybrid Types J and B

Presented here is a simplified treatment for mechanisms J and B, which makes
the simplifying assumption that all participating out-of-plane modules and in-
plane modules are equivalent. Consequently, this treatment is only applicable to
specimens in which all out-of-plane walls share the following properties:

• Length span Lw;

• Overburden load properties, including σvom, Φm and ηm; and

• Number of vertical supports (i.e., all walls must be either 1- or 2-sided, but
not a mixture of both).

Similarly, the OBL characteristics (σvor, Φr and ηr) for all in-plane walls must also
be identical. Examples of allowable configurations include the four cases shown in
Figure 6.12.

For configurations that fail to satisfy any of the above conditions, it becomes
necessary to use a more generalised approach that allows each wall to have unique
values of the aforementioned properties and in which the virtual work equations
are formulated in terms of independent shape variables for each participating
wall. This refined procedure is presented in Appendix G.3 and is applicable to any
arbitrary configuration where the out-of-plane walls are connected in series and
separated by in-plane return walls (refer to Figure G.13). The generalised method,
however, is considerably more involved than the simplified analysis presented here.

A further consideration is that the simplified approach is only guaranteed
to find optimal solutions for configurations that are symmetric with respect to
every out-of-plane and in-plane wall present, or in other words, when a line of
symmetry exists between each possible pair of out-of-plane and in-plane modules
in the mechanism. Whilst the simplified approach may nonetheless be applied

7This is equivalent to the so-called slope factor used in the as 3700 virtual work method, also
denoted by α.
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to forms that fail to meet this condition of symmetry (as long as they satisfy the
aforementioned dot points), the solutions found will generally be sub-optimal,
due to an insufficient number of independent variables to describe the optimal
mechanism state. Therefore, from the configurations shown in Figures 6.12, the
simplified procedure will only reach optimal states for configurations (a), (b) and
(c), but not (d).8 A practical example of this is demonstrated in Section 6.6.1 for
a pair of test specimens having the geometry shown in Figure 6.12d (walls r20

and r21). It is noted, however, that in that case, the refined solution gives only a
minor (approximately 1%) reduction in the computed collapse load relative to the
simplified analysis. Figure 6.3 illustrates all of the basic variants of mechanism J

for which the simplified approach will find optimal solutions, as well as examples
of complex variants that require the general approach.

Common Calculations

When analysing a wall specimen using the simplified treatment presented here, the
first step is to establish the number of out-of-plane and in-plane modules partici-
pating in the overall mechanism. The number of in-plane modules, Nr, is simply
taken as the number of in-plane return walls present. In the simplified approach
presented here, the number of out-of-plane modules, Nm, may be calculated as

Nm = Nw · nvs, (6.45)

where Nw is the number of out-of-plane walls, and nvs is the number of vertical
supports per wall. For example, the specimen shown in Figure 6.12d consists of
three return walls (∴ Nr = 3) and two out-of-plane walls (∴ Nw = 2) both of which
have two vertical supports (∴ nvs = 2), so the resulting number of out-of-plane
modules [from Eq. (6.45)] is Nm = 2× 2 = 4. It should be noted that the simplified
treatment requires all walls present within the specimen to participate in the overall
mechanism. By contrast, the generalised approach (detailed in Appendix G.3)
allows for selective participation of the various walls present, which may lead to
lower values of the calculated collapse multiplier for configurations that do not
satisfy the aforementioned symmetry condition.

The geometries and deflected shapes of mechanisms J and B are shown in
Figure 6.14.9 The common independent variables for both mechanisms include: the

8Since (in Figure 6.12d) out-of-plane modules 1 and 4 are not equivalent to modules 2 and 3.
Similarly, the central return wall is not equivalent to either of the external ones.

9Figures 6.14, 6.15, 6.16 and 6.17 all illustrate the mechanisms as they appear when the wall
has two-sided vertical supports and therefore two out-of-plane modules. In each scenario shown,
the deflected shape is mirrored by the vertical line of symmetry at the mid-length of the wall. The
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Figure 6.14: Type J and B hybrid mechanisms.
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total height Ht; and slope of the in-plane shear crack, v. As per Eq. (6.42), both
mechanisms must span the full length of the wall, thereby making the out-of-plane
module length Le predetermined, as 10

Le = Lw/nvs. rep. (6.42)

Common auxiliary variables include: effective height He, which from Eq. (6.40)
is equal to the total height for both these mechanisms; and the aspect ratios β

and α calculated from Eqs. (6.43) and (6.44). The common optimisation constraints
include restrictions on the mechanism’s total height and in-plane crack slope, which
must adhere to

0 < Ht ≤ Hw, rep. (6.38)

and 0 ≤ v ≤ 1/Gn. rep. (6.33)

It should be noted that the in-plane model also assumes the return walls to have
sufficient length to accommodate any length of the diagonal in-plane crack within
the above limit, as discussed in Section 6.4.3.

Mechanism J

For this mechanism, an additional independent variable is the shape parameter a.
Additional dependent variables include the shape parameter r:

r = 1− α(1− a) ; (6.46)

work contribution factor ζhi for the vertical crack undergoing horizontal bending:11

ζhi =

a, if one vertical edge is supported, i.e. nvs = 1,

1, if two vertical edges are supported, i.e. nvs = 2;
(6.47)

case where the wall has only one vertical support can be visualised by considering only one of the
out-of-plane modules present on either side of the line of symmetry.

10Although mechanism B is effectively a hybrid version of the one-way vertical bending mechanism
for a parapet wall, in the provided approach the effective mechanism length Le still considers the
number of vertical supports. This is done for consistency with the formulations used for the other
mechanisms.

11A more in-depth discussion of the reasoning behind implementation of the factor ζhi is provided
in Appendix G.2.1. The factor effectively accounts for a reduction in the crack’s rotation when it is
parallel to an unrestrained vertical edge, as shown by Figure G.3. It also ensures continuity in the
calculated collapse load λo in transitioning between the complimentary pair of mechanisms Gx and
Gy.
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and if an OBL is present on either the out-of-plane or in-plane walls, the virtual
energy quantities e′m and e′r:

e′m = 1
2 (1 + a + r− ar) Le tuσvom, (6.48)

and e′r = r2vHt tuσvor. (6.49)

The total internal work for a total of Nm out-of-plane modules and Nr in-plane
modules is calculated as

U′
tot = Nm

[
Z̄vβ

(
f
〈 1

2 (1 + a + r− ar)Ht
〉
+ Rts f 〈0〉

)
+ ζhiZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m

]
+ Nr

[
U ′

r 〈r, rHt, v〉+ (1−Φr)µoe′r
]

,

(6.50)

whilst the total external work premultiplied by λ−1 is

λ−1E′tot = Nm

[
γtuH2

t

(
1
2 aβ + 1

6
1−r3

Gn

)
+ Φmηme′m

]
+ Nr

[
γtuH2

t
( 1

3 r3v
)
+ Φrηre′r

]
.

(6.51)

Additional optimisation constraints include restrictions on the shape parameters a
and r, which must satisfy

0 ≤ a ≤ 1, (6.52)

and 0 ≤ r ≤ 1. (6.53)

Mechanism B

Additional dependent variables include the OBL virtual energy quantities e′m and e′r:

e′m = Le tuσvom, (6.54)

and e′r = vHt tuσvor. (6.55)

The total internal work for a total of Nm out-of-plane modules and Nr in-plane
modules is

U′
tot = Nm

[
Z̄vβ ( f 〈Ht〉+ Rts f 〈0〉) + (1−Φm) µoe′m

]
+ Nr

[
U ′

r 〈1, Ht, v〉+ (1−Φr) µoe′r
]

,
(6.56)

and the total external work premultiplied by λ−1 is

λ−1E′tot = Nm
[
γtuH2

t
( 1

2 β
)
+ Φmηme′m

]
+ Nr

[
γtuH2

t
( 1

3 v
)
+ Φrηre′r

]
.

(6.57)
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6.5.3 Standard Types G, K1 and K2

The standard mechanisms G, K1 and K2 are applicable to individual out-of-plane
walls. Therefore, when applying them to specimens consisting of multiple out-of-
plane walls (e.g. Figure 6.12d), each wall present may be treated independently
(unlike for the hybrid mechanisms). For such specimens, the wall with the longest
span will generally have the lowest associated collapse multiplier.

Common Calculations

The geometries and deflected shapes of the mechanisms are shown in Figure
6.15 for type G mechanisms Gx and Gy, Figure 6.16 for type K1 mechanisms K1x

and K1y, and Figure 6.17 for type K2 mechanisms K2x and K2y.9 For each of the
mechanisms, the independent variables include the effective length Le and total
height Ht. Common auxiliary dependent variables include: effective height He,
obtained from Eq. (6.40) based on the type of mechanism; and aspect ratios β and
α [from Eqs. (6.43) and (6.44)]. In addition, it is necessary to calculate either

a = 1− 1
α

for x-forms (Gx, K1x and K2x), (6.58)

or r = 1− α for y-forms (Gy, K1y and K2y). (6.59)

Common geometric constraints include the mechanism length and height restric-
tions

0 < Ht ≤ Hw, rep. (6.38)

and 0 < Le ≤ Lw/nvs. (6.60)

In addition, α must satisfy

α ≥ 1 for x-forms (Gx, K1x and K2x), (6.61)

and α ≤ 1 for y-forms (Gy, K1y and K2y). (6.62)

Mechanism Gx

Additional dependent variables include the work contribution factor ζhi for the
vertical crack undergoing horizontal bending: 11

ζhi =

a, if one vertical edge is supported, i.e. nvs = 1,

1, if two vertical edges are supported, i.e. nvs = 2;
(6.63)
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Figure 6.15: Type G mechanisms.

and if an OBL is present on the out-of-plane wall, then the energy quantity e′m:

e′m = 1
2 (1 + a) Le tuσvom. (6.64)

The total internal work for a single out-of-plane module is

U′
tot = Z̄vβ

[
f
〈 1

2 (1 + a)Ht
〉
+ Rts f 〈0〉

]
+ ζhiZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m,

(6.65)

whilst the total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

6 + 1
3 a
)
+ Φmηme′m. (6.66)

Mechanism Gy

Additional dependent variables include the work contribution factor ζvi for the
internal horizontal crack:12

ζvi = r; (6.67)

the corresponding work contribution factor ζvo for the top edge hinge:

ζvo = 1− ζvi; (6.68)

12The reasoning behind implementing the work contribution factors ζvi and ζvo is explained
in Appendix G.2.4. As shown by Figure G.7, the factors effectively account for a reduction or
enhancement in the crack rotations, due to the top edge being unrestrained.
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work contribution factor ζhi for the central vertical crack in horizontal bending:

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1,

1, if two vertical edges are supported, i.e. nvs = 2;
(6.69)

and if an OBL is present on the out-of-plane wall, the virtual energy e′m:

e′m = 1
2 Le tuσvom. (6.70)

The total internal work for a single out-of-plane module is

U′
tot =

Z̄v

Gn

[
ζvi f 〈rHt〉+ f

〈 1
2 (1 + r)Ht

〉
+ Rtsζvo f 〈0〉

]
+

Z̄h

β

[
ζhi f

〈 1
2 Ht

〉
+ Rvsr f

〈 1
2 rHt

〉]
+ (1−Φm)µoe′m,

(6.71)

and the total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

6 + 1
3 r
)
+ Φmηme′m. (6.72)

Mechanism K1x

If an OBL is present on the out-of-plane wall, then an additional dependent variable
is the energy quantity e′m:

e′m = 1
2 (1 + a) Le tuσvom. (6.73)

The total internal work for a single out-of-plane module is

U′
tot = Z̄vβ

[
f 〈Ht〉+ Rts a f 〈0〉+ (1− a) f

〈 1
2 Ht

〉]
+ RvsZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m,

(6.74)

whilst the corresponding total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 a
)
+ Φmηme′m. (6.75)
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Figure 6.16: Type K1 mechanisms.

Mechanism K1y

Additional dependent variables include the work contribution factor ζhi for the
internal vertical crack:

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1,

1, if two vertical edges are supported, i.e. nvs = 2;
(6.76)

and if an OBL is present on the out-of-plane wall, the energy quantity e′m:

e′m = 1
2 Le tuσvom. (6.77)

The total internal work for a single out-of-plane module is

U′
tot = 2

Z̄v

Gn
f
〈( 3

4 + 1
4 r
)

Ht
〉

+
Z̄h

β

[
Rvs f

〈 1
2 Ht

〉
+ ζhir f

〈 1
2 rHt

〉]
+ (1−Φm)µoe′m,

(6.78)

whilst the corresponding total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 r
)
+ Φmηme′m. (6.79)
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Figure 6.17: Type K2 mechanisms.

Mechanism K2x

The total internal work for a single out-of-plane module is

U′
tot = Z̄vβ

[
f 〈Ht〉+ Rts f 〈0〉+ 2 f

〈 1
2 Ht

〉]
+ 2RvsZ̄hGn f

〈 1
2 Ht

〉
,

(6.80)

whilst the corresponding total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 a
)

. (6.81)

Mechanism K2y

An additional dependent variable is the work contribution factor ζhi for the internal
vertical crack, taken as

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1,

1, if two vertical edges are supported, i.e. nvs = 2.
(6.82)
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λo = tan φ 

Figure 6.18: Tilting table tests on dry-stack masonry walls by Restrepo Vélez and Magenes
[2009]. The shown test corresponds to wall r9. (Graphics used with permission from IUSS
Press.)

The total internal work for a single out-of-plane module is

U′
tot =

Z̄v

Gn

[
f 〈Ht〉+ Rts f 〈0〉+ 2 f

〈 1
2 Ht

〉]
+ 2

Z̄h

β
(Rvs + ζhir) f

〈 1
2 Ht

〉
,

(6.83)

whilst the corresponding total external work premultiplied by λ−1 is

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 r
)

. (6.84)

6.6 comparison of predictions with experimental results

To validate the accuracy of the proposed methodology, its predictions were com-
pared to the results of experimental tests conducted at the University of Pavia by
Restrepo Vélez [2004] [also reported in Restrepo Vélez and Magenes, 2009]. These tests
considered a set of 1:5 scale, stone brick dry-stack masonry (DSM) walls, loaded up
to collapse using a tilting table arrangement (Figure 6.18). Because of the inertial
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Table 6.2: Material properties of the dry-stack masonry in tests by Restrepo Vélez [2004].

Parameter Mean value Units

Brick length, lu 79.8 mm
Brick height, hu 28.2 mm
Brick thickness, tu 39.7 mm
Joint thickness, tj 0 mm
Friction coefficient of the masonry, µm 0.71 -
Unit weight of the masonry, γ 26.8× 10−6 N/mm3

Table 6.3: Wall definition input parameters used in the analysis of walls tested by Restrepo
Vélez [2004].

Wall
Lw

lu
Hw

hu
Nw nvs Nr Rvs

σvom

γhu
ε Φm ηm

σvor

γhu
Φr ηr

r1, r2, r3 11 21 1 2 2 1 0 - - - 0 - -
r5 8 21 1 2 2 1 0 - - - 0 - -
r6 13 21 1 2 2 1 0 - - - 0 - -
r7 8 21 1 2 2 1 0 - - - 0 - -
r8, r9 6 21 1 2 2 1 0 - - - 0 - -
r10 12 21 1 2 2 1 0 - - - 0 - -
r11 12 21 1 1 1 1 0 - - - 0 - -
r12 8 21 1 1 1 1 0 - - - 0 - -
r13 6 21 1 1 1 1 0 - - - 0 - -
r14, r17 3 21 2 1 1 1 0 - - - 0 - -
r15, r18 4 21 2 1 1 1 0 - - - 0 - -
r16, r19 6 21 2 1 1 1 0 - - - 0 - -
r20, r21 7 21 2 2 3 1 0 - - - 0 - -
r23, r24 14 21 1 2 2 1 0 - - - 0 - -
r34, r35 10 21 1 2 2 1 5.50 0.5 1 1.3 0 - -
r36 10 21 1 2 2 1 0 - - - 5.16 1 1
r37 8 21 1 1 1 1 0 - - - 5.16 1 1
r38 8 21 1 1 1 1 6.02 0.5 1 1.3 0 - -
r41 10 21 1 2 2 1 5.50 0.5 0 - 0 - -

nature of loading, the test arrangement allowed the collapse multiplier (λo) to be
easily measured as the tangent of the table’s angle of tilt at the point of failure.
The material properties and geometric configurations of the walls (which served
as input parameters for the analyses) are given in Tables 6.2 and 6.3. The various
specimen configurations tested are illustrated in Tables 6.4 and 6.5. All walls were
free to displace along their top edge (with the exception of wall r41, as described
later). Where vertical edge support was provided to the out-of-plane panels, it was
done so by means of return walls.

The equations for calculating λo, as they are presented in Section 6.5, were
coded into an Excel spreadsheet, and the built-in optimisation tool Solver was
used to perform the minimisation process. Results of the analyses are provided in
Tables 6.4 and 6.5, respectively, for walls with and without overburden loads. The
critical mechanism for each wall, as revealed by the analysis, is shown in Figure
6.19. Table 6.6 compares the predictions made using the proposed method with
other methods, based on calculations made by Restrepo Vélez [2004] in his thesis;
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Figure 6.19: Critical mechanism shapes for each wall as revealed by the analysis.
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Figure 6.19: (cont’d).
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including methods by de Felice [1999], Picchi [2002], de Riggi [1999], Casapulla [1999],
as well as Restrepo Vélez’s own predictions. The results will now be discussed
with respect to each type of configuration tested.

6.6.1 Walls Without Axial Loading

The predicted values of strength for walls without axial loading are presented in
Table 6.4, with comparison to the experimentally measured values. All walls except
r1–r5 were loaded in the outward direction (away from the return walls).

walls r1–r4, r6 Each of these five walls consisted of a single out-of-plane panel
having two-sided support. Loading was administered in the inward direction
(toward the return walls). As such, hybrid mechanisms J and B became inappli-
cable and only the standard mechanisms of type G and K1 were considered. For
every wall, Gy was shown to be the critical mechanism, giving extremely good
predictions with an average accuracy ratio (defined as the calculated λo divided by
the measured λo) of 1.00.

walls r7–r10 These walls had the same configuration as r1–r6; however, they
were loaded in the outward direction, and hence hybrid mechanisms became
applicable. For each wall, hybrid mechanism J was shown to be critical. The
predictions were very accurate, with an average accuracy ratio of 0.95.

walls r11–r13 Each of these walls consisted of a single out-of-plane panel with
one vertical edge supported and the other edge free. Mechanism J was shown to
be critical for each wall. The average accuracy ratio was 0.87, meaning that the
calculations slightly underestimated the walls’ strength.

walls r14–r19 These specimens consisted of a pair of out-of-plane panels shar-
ing a common return wall, whilst the outside vertical edge of each panel remained
free. Walls r14–r16 had identical overall dimensions as walls r15–r17, but a slightly
different mode of connection between the out-of-plane wall and the return walls.
Mechanism J was shown by the analysis to be critical for each wall, with an average
accuracy ratio of 0.91.

walls r20 and r21 These specimens comprised of a pair of connected out-of-
plane walls having both vertical edges supported and sharing a common internal
return wall. While both specimens had identical dimensions, a slightly different
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Table 6.4: Collapse loads calculated using the proposed method for non-loadbearing walls
tested by Restrepo Vélez and Magenes [2009]. (Graphics used with permission from IUSS
Press.)

Configuration Wall Test λo
Calculated λo (Critical mechanism indicated in bold) Ratio λo

calc/test
Gx Gy J B K1x K1y var‖

Nw = 1, nvs = 2,
Nr = 2

r1 0.254 0.257 0.244 ‡ ‡ 0.325∗ 0.323 0.96
r2 0.226 0.257 0.244 0.325∗ 0.323 1.08
r3 0.244 0.257 0.244 0.325∗ 0.323 1.00
r5 0.349 0.353 0.336 0.447∗ 0.444 0.96
r6 0.208 0.217 0.207 0.275∗ 0.273 0.99

Nw = 1, nvs = 2,
Nr = 2

r7 0.291 0.353 0.336 0.273 0.442 0.447∗ 0.444 0.94
r8 0.362 0.470 0.447 0.352 0.489 0.596∗ 0.591 0.97
r9 0.352 0.470 0.447 0.352 0.489 0.596∗ 0.591 1.00

r10 0.213 0.235 0.224 0.190 0.380 0.298∗ 0.296 0.89

 

Nw = 1, nvs = 1,
Nr = 1

r11 0.097 0.094 0.101∗† 0.092 0.265 0.152 0.170∗† 0.94
r12 0.129 0.132∗ 0.122 0.112 0.333 0.223∗ 0.221 0.87
r13 0.181 0.176∗ 0.163 0.145 0.380 0.298∗ 0.294 0.80

Nw = 2, nvs = 1,
Nr = 1

r14 0.251 0.352∗ 0.326 0.226 0.380 0.596∗ 0.589 0.90
r15 0.199 0.264∗ 0.245 0.179 0.333 0.447∗ 0.441 0.90
r16 0.139 0.176∗ 0.163 0.128 0.265 0.298∗ 0.294 0.92
r17 0.207 0.352∗ 0.326 0.226 0.380 0.596∗ 0.589 1.09
r18 0.230 0.264∗ 0.245 0.179 0.333 0.447∗ 0.441 0.78
r19 0.151 0.176∗ 0.163 0.128 0.265 0.298∗ 0.294 0.85

 

Nw = 2, nvs = 2,
Nr = 3

r20 0.285 0.403 0.384 0.289 0.418 0.511∗ 0.507 0.284 1.00
r21 0.244 0.403 0.384 0.289 0.418 0.511∗ 0.507 0.284 1.16

 

Nw = 1, nvs = 2,
Nr = 2

r23 0.144 0.202 0.192 0.165 0.358 0.255∗ 0.253 0.138 0.96
r24 0.156 0.202 0.192 0.165 0.358 0.255∗ 0.253 0.136 0.87

Loading
direction in the
diagrams: ↖

Mean: 0.95
CoV: 0.10
Min: 0.78
Max: 1.16

∗λo was minimised at α = 1; i.e. the limiting case between complimentary mechanisms Gx/Gy or K1x/K1y.
†The mechanism was unable to utilise the full wall length, due to the wall’s aspect ratio and constraint on α.
‡Hybrid mechanisms not applicable, since test walls were loaded in the direction toward the return walls.
‖Unique mechanism variant. Description provided in the text.
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method of connection had been used between the façade wall and the central
return wall. Mechanism J was found to be critical in the case of each wall; however,
two different approaches were undertaken: The first (given in column J in Table
6.4) used the simplified treatment for mechanism J, outlined in Section 6.5.2,
whereby all participating in-plane and out-of-plane modules are assumed to be
equivalent. The second approach (in column ‘var’) used the generalised treatment
for mechanism J (described in Appendix G.3), which allowed for non-equivalence
between participating modules. Since this specimen configuration failed to satisfy
the requirements of symmetry (as discussed in Section 6.5.2), the generalised
approach was applied, which yielded a slightly lower collapse load than the
simplified approach. However, in the case of these particular specimens, this
difference was very minor (approximately 1%). The average accuracy ratio for
these walls was 1.08, meaning that the analysis slightly overpredicted the walls’
measured strength.

walls r23 and r24 Each of these specimens comprised an out-of-plane wall
with two-sided support and containing a pair of window openings, which were
slightly differently positioned in the two specimens. The failure patterns observed
in the tests strongly resembled mechanism J. The analysis results reported for
mechanisms Gx, Gy, J, B, K1x and K1y in Table 6.4 were based on the standard
analysis, which ignored the openings and treated the walls as if they were solid.
The results reported in column labelled ‘var’ were obtained from a refined analysis
that accounted for the presence of the openings, but only considered the precise
failure pattern observed in the tests, which was not subject to any further λo

minimisation process. These analyses were based on the procedure described in
Section 4.4, performed by discretising the wall into individual elements and using
only the solid portions of the wall to provide contributions to the internal and
external work terms. They also utilised the refined approach to calculating the
axial stress distribution throughout the wall, as described therein (refer to Figures
4.11 and 4.12), which was used in the subsequent calculation of the crack energies.
The collapse multiplier was then evaluated using Eq. (6.20). As indicated by Table
6.4, the refined analyses taking into account the openings provided the critical
solutions (despite not undergoing optimisation), with an average accuracy ratio of
0.91. By contrast, mechanism J gave the lowest predictions for the analyses that
ignored the openings; however, it still slightly overpredicted the strength of both
specimens. This outcome indicates that it may be unconservative to ignore the
presence of openings in the analysis. However, it is noted that such an analysis
requires significant additional effort to perform, as it is generally necessary to set
up an individual spreadsheet for each unique failure pattern.
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general remarks

• The proposed method performed with very good accuracy for the 22 walls
without precompression, giving an average accuracy ratio of 0.95 and coef-
ficient of variation (CoV) of 0.10. Importantly, the method did not perform
poorly for any particular configuration.

• Furthermore, comparison to predictions made using other methods, as pro-
vided by Restrepo Vélez in his thesis (Table 6.6), demonstrates the proposed
method to not only be the most accurate overall, but also the only method
that did not, on average, overpredict the walls’ strength.

• The analysis showed mechanism Gy to be critical for all specimens loaded in
the inward direction (toward the return walls), and mechanism J for all walls
loaded in the outward direction.

• Comparison of the predicted failure shapes (Figure 6.19) with the observed
failure patterns [provided in Restrepo Vélez and Magenes, 2009] shows that
for every wall, the analysis had managed to capture the actual collapse
mechanism reasonably well.

• For almost every wall analysed, all non-critical mechanisms produced strength
predictions that were unconservative. This highlights the importance of
considering all possible mechanisms during the analysis in the search for the
critical one.

• The strength predictions obtained from mechanism B were highly uncon-
servative for every wall considered and, on average, approximately twice as
high as the predictions from mechanism J. This illustrates that mechanism J

is a fundamentally more energetically feasible failure shape compared to B.
This outcome is somewhat surprising, given that mechanism B has already
attracted considerable attention in previous published literature [e.g. mecha-
nisms B1 and B2 by D’Ayala and Speranza, 2003], whereas mechanism J has
been overlooked.

• That the proposed approach performed with such good accuracy may also
be somewhat surprising in light of issues highlighted by Casapulla [2008],
who argued that it is unlikely for the full capacity of frictional torsion to be
realised due to dilatancy of the masonry during deformation, and therefore
inclusion of full friction along cracks in horizontal bending could prove to be
unconservative. Whilst the author recognises these points to be entirely valid,
the analysis results indicate that while consideration of only the standard
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type G mechanisms with full friction indeed results in strength overprediction
for all walls loaded in the outward direction (refer to walls r7–r24 in Table
6.4), mechanism J appears to have offset any such effects by allowing for
hybrid action and thus causing a reduction in the predicted collapse load.
Furthermore, it can be demonstrated that for this particular experimental data
set, type G mechanisms with zero friction would still overpredict the strength
of the one-sided walls, while becoming underpredictive for the two-sided
walls; and thus, neglecting friction would not provide any real improvement
in the prediction accuracy.

• Type K1 mechanisms produced strength predictions that were, on average,
approximately 50% higher that those from type G mechanisms, thus showing
type G mechanisms to be more favoured in DSM. The relative favourability of
these mechanisms is investigated further in Section 6.7.2.

6.6.2 Loadbearing Walls

The applicability of the proposed method to loadbearing walls was assessed using
test results for six such walls tested by Restrepo Vélez, with the experimental
and analytical results provided in Table 6.5. In the test arrangement, the OBL was
administered using a series of joists resting upon the top of the specimens and
acting at the mid-thickness of the wall (ε = 1/2), which meant that the Rts factor
in the analysis was taken as 0 [from Eq. (6.27)]. The joists were unrestrained in five
of the specimens (r34–r38), thus enabling them to apply an additional lateral load
to the wall; whilst in the last specimen (r41), they were restrained. All specimens
except for r34 were loaded in the outward direction (away from the return walls).

wall r34 This wall had two-sided support, and the OBL acted upon the out-of-
plane panel. Loading was applied in the inward direction, meaning that only type
G and K1 mechanisms were applicable. The critical mechanism was Gx.

walls r35 and r38 These walls had two-sided and one-sided support respec-
tively, with the OBL applied onto the main out-of-plane panel. Wall r35 had the
same configuration as r34, except that it was loaded in the outward direction.
Mechanism J was found to be critical in both walls.

walls r36 and r37 These walls had two-sided and one-sided support respec-
tively, and the OBL was applied onto the in-plane return walls. Despite being
loaded in the outward direction, the analysis revealed the standard mechanism
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Table 6.5: Collapse loads calculated using the proposed method for loadbearing walls
tested by Restrepo Vélez and Magenes [2009]. (Graphics used with permission from IUSS
Press.)

Configuration Wall Test λo
Calculated λo (Critical mechanism indicated in bold) Ratio λo

calc/test
Gx Gy J B K1x K1y K2x K2y

 

Nw = 1, nvs = 2,
Nr = 2, Φm = 1

r34 0.217 0.189 0.195∗ ‡ ‡ 0.291 0.306∗ ¶ ¶ 0.87

 

Nw = 1, nvs = 2,
Nr = 2, Φm = 1

r35 0.168 0.189 0.195∗ 0.143 0.195 0.291 0.306∗ ¶ ¶ 0.85

 

Nw = 1, nvs = 2,
Nr = 2, Φr = 1

r36 0.320 0.282 0.268 0.281 0.546 0.357∗ 0.355 ¶ ¶ 0.84

 

Nw = 1, nvs = 1,
Nr = 1, Φr = 1

r37 0.126 0.132∗ 0.122 0.131 0.471 0.223∗ 0.221 ¶ ¶ 0.97

 

Nw = 1, nvs = 1,
Nr = 1, Φm = 1

r38 0.055 0.094∗ 0.094∗ 0.075 0.159 0.191 0.197∗ ¶ ¶ 1.37

 

Nw = 1, nvs = 2,
Nr = 2, Φm = 0

r41
§ 0.423 0.604 0.466 0.316 0.450 0.635∗ 0.523 0.723∗ 0.708 0.75

Loading direction
in the diagrams:

↖

Mean: 0.94
CoV: 0.24
Min: 0.75
Max: 1.37

∗λo was minimised at α = 1; i.e. the limiting case between complimentary mechanisms Gx/Gy or K1x/K1y.
‡Hybrid mechanisms not applicable, since test walls were loaded in the direction toward the return walls.
§Overburden load was restrained; however, the friction coefficient along the vertical edge was taken as µo = 0.
¶Type-2 mechanisms not applicable, as top edge was free to move horizontally.
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Figure 6.20: Influence of the coefficient of friction µo on the critical mechanism and collapse
multiplier for wall r41.

Gy to be favoured over J for both these walls, albeit only slightly. This outcome
is a consequence of the additional internal work cost required to mobilise the
in-plane panels within mechanism J, which made the pure out-of-plane mechanism
Gy energetically more feasible. Inspection of the photographed failure patterns
[provided in Restrepo Vélez, 2004] confirms that the in-plane panels were not active
in the mechanism. This result is interesting when compared to both the predicted
and observed response for walls r35 and r38, where the OBL acted upon the
out-of-plane panels, and which instead underwent the hybrid mechanism J.

wall r41 The out-of-plane wall in this specimen had two-sided support and
was subjected to an OBL which was restrained against horizontal movement. A
frictional connection was present between the wall and OBL; however, the value
of the friction coefficient µo was not reported and needed to be assumed in the
analysis. Considered in the analysis were all type-1 mechanisms as well as the type-
2 mechanisms K2x and K2y. It was found that the critical mechanism was dependent
on the assumed value of µo, as demonstrated by Figure 6.20. Mechanism J was
found to be critical when the assumed value of µo was less than approximately 1.0,
which is considered to be within the realistic range of values. As seen from Figure
6.20, within this range, the calculated collapse multiplier was quite sensitive to the
value of µo. When µo was increased beyond 1.0, the connection became sufficiently
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strong that the type K2 mechanisms became favoured. In the type-1 mechanism
analyses, whose results are presented in Table 6.5, the connection was assumed
to be perfectly smooth (µo = 0), which resulted in underprediction of the wall’s
capacity by 25%. By varying the friction coefficient, it was found that the predicted
strength equalled the measured strength at µo = 0.17, which is considered to be
well within the range of values typically prescribed by design codes. Nonetheless,
because of a lack of data for walls with such restraint conditions in the available
experimental work, it is difficult to validate the accuracy of the proposed method.
Hence, it is recommended that inclusion of a frictional resistance along the top
edge be treated with caution, as it could result in unconservative values of strength.

general remarks

• For five of the six walls, the proposed method produced strength predictions
that were within the mildly conservative range (accuracy ratio between 0.75–
0.97). The strength of only one of the walls (r38) was overestimated (accuracy
ratio of 1.37).

• The proposed method produced, on average, the most accurate predictions
of the methods considered in Table 6.6. It was also the only method whose
predictions were, on average, conservative (average accuracy ratio of 0.94).

6.7 sensitivity of predictions to the choice of mechanism

This section presents a set of parametric studies investigating the sensitivity of the
calculated collapse multiplier (using the governing equations presented in Section
6.5) to the choice of mechanism and independent geometric variables, in particular,
the mechanism length Le and height Ht. The aim of this study was to gain an
insight into the relationship between λo and the mechanism dimensions, and also
to identify general trends relating to the optimisation process.

The internal work equations for each of the predefined mechanisms (given in
Section 6.5) have been formulated in terms of the stress capacity function f 〈· · ·〉,
whose meaning is defined according to the fundamental form of the moment
capacity expression [Eq. (6.21)] in combination with the derived moment moduli
Z̄v and Z̄h. In the parametric studies undertaken, two different forms of the stress
capacity function were considered:

1. The first is a self-weight (or height) proportional form, where σvo in Eq. (6.22)
is taken as zero, resulting in

f 〈d〉 = γd. (6.85)
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This is representative of either DSM or mortar-bonded URM with negligible
bond cohesion, in both cases without precompression.

2. The second is a constant form,

f 〈· · ·〉 = constant, (6.86)

which when dealing with DSM makes the effective assumption that the acting
precompression is much larger than the compressive stress from self-weight
(σvo � γHt). The resulting algebraic form is also analogous to mortar-
bonded masonry if the bond cohesion fmt far exceeds the self-weight stress
( fmt � γHt). This follows from inspection of analytical expressions for the
ultimate moment capacities of mortar-bonded masonry in vertical, horizontal
and diagonal bending [see Eqs. (4.18), (4.23)–(4.27) and (4.32)], since each has
the same general form as Eq. (6.21) but with varied moduli Z̄ and a stress
capacity function in the form

f 〈· · ·〉 = a fmt + b σv, (6.87)

where a and b are some constants. Therefore, by treating the stress capacity
function as constant, it is possible to gain a qualitative insight into the trends
that might be expected for URM with strong bond cohesion.13

The case study analysed was a single out-of-plane wall with two-sided support,
based on walls r7–r10 tested by Restrepo Vélez [2004] (refer to Table 6.4) and having
the same material properties (Table 6.2). Two parametric studies were conducted for
each type of stress capacity function: Firstly, the mechanism length was fixed such
that Le/lu = 6 bricks, and Ht was varied from 0 to ∞. Secondly, the mechanism
height was fixed at Ht/hu = 12 courses and Le varied from 0 to ∞. The fixed
dimensions were chosen to achieve realistic slenderness ratios, with Le/tu = 12.1
and Ht/tu = 8.5, respectively in the two studies. Analyses were performed with
each of the predefined type-1 mechanisms presented in Section 6.5, including G, J,
B and K1. For the standard mechanisms G and K1, at each set of chosen values of Le

13The resulting trends in the expected behaviour for mortar-bonded URM should be treated
as indicative only, as several simplifying assumptions are made. These include: (i) The moment
moduli used in the calculations correspond to those for masonry without cohesion, as presented
in Section 6.4.2; (ii) Capacities from vertical, diagonal and horizontal crack lines are all assumed
to contribute and thus achieve their capacities simultaneously. By contrast, in the usual ultimate
strength calculation for uncracked URM walls in two-way bending, capacities along horizontal cracks
are typically ignored as they form early in the response; (iii) Calculations for the hybrid mechanisms
use the original shear deformation model, which is based on frictional shear deformation of the
in-plane panel (Section 6.4.3). By implementing a constant stress capacity function within the
corresponding internal work equation, it is effectively assumed that a Mohr-Coulomb type failure
criterion (τ = c + µσv) governs, in which the cohesion term c becomes dominant.
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and Ht, the collapse multiplier was evaluated directly. For the hybrid mechanisms
J and B, the remaining independent variables v and a (a only in J) were optimised
to minimise the collapse multiplier. The results are plotted over the full domains
of λo and α in Figure 6.21, for a weight-proportional stress capacity function [Eq.
(6.85)]; and Figure 6.22, for a constant stress capacity function [Eq. (6.86)].14 It
is worth noting that for the standard mechanisms, α = 1 defines the boundary
between each complimentary pair of x and y forms.

To illustrate the strengthening benefit obtained from two-way response due to
the presence of vertical edge support, the graphs also show the strength based on
the simple rocking mechanism for a parapet wall (mechanism V1). The equation
used to calculate λo for this mechanism is

λo =
tu

γH2
t

f 〈Ht〉 . (6.88)

As seen from the provided graphs, all curves converge with mechanism V1 as
α → ∞, indicating that all mechanisms approach simple vertical one-way bending
for walls with large Lw/Hw aspect ratios.

6.7.1 Influence of the Mechanism Dimensions

General trends relating to the influence of mechanism dimensions Le and Ht on
the calculated collapse load λo will now be discussed with reference to Figures 6.21

and 6.22.

Mechanism Height

Perhaps the most important trend demonstrated is the existence of a critical mecha-
nism height at which λo becomes minimised for masonry with zero bond strength
(Figure 6.21a). This trend is evident for each two-way mechanism and can be ratio-
nalised as follows: As the height Ht and slenderness ratio Ht/tu is reduced, the
mechanism becomes increasingly stable with respect to overturning, and therefore
λo → ∞ as Ht → 0. In standard mechanisms, as Ht becomes increasingly large, the
height-proportional stress capacity function [Eq. (6.85)] causes the internal work to
increase proportionally to H2

t , whereas the external work only increases in propor-
tion to Ht. This results in λo ∝ Ht at large Ht, and hence λo → ∞ as Ht → ∞. In
hybrid mechanisms, the frictional in-plane component becomes dominant over the
flexural out-of-plane component as the Le/Ht aspect ratio becomes small, causing

14An arbitrary value of f 〈· · ·〉 = 0.01 MPa was used in the case of the constant stress capacity
function.
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the value of the collapse multiplier to approach the coefficient of friction (in this
case µm = 0.71). Consequently, λo → µm as α → 0, which may be due to either
Ht → ∞ or Le → 0.15 Therefore, between the limits of Ht = 0 and Ht = ∞ (at
which λo = ∞) a critical height must exist at which λo reaches a minimum value,
in both the standard and hybrid mechanisms.

It should also be emphasised that Figures 6.21 and 6.22 demonstrate the direct
influence of mechanism dimensions Le and Ht, and not the wall dimensions Lw

and Hw. Since Ht is an independent variable that may assume any value within
the physical height limit of the wall (Hw), it follows that if the Hw is larger than the
critical mechanism height, then the mechanism will adopt the critical height, and
any additional increase in Hw will have no further influence on λo. Indeed, this
was demonstrated by both the experimentally observed failure patterns for DSM

(for example, as shown in Figure 6.18) and the critical mechanism shapes revealed
by the analysis (Figure 6.19), which in most cases exhibited only partial utilisation
of the wall’s total height.

It is evident that as the mechanism height is varied (Figures 6.21a and 6.22a) a
slope discontinuity occurs across α = 1 for the standard type G mechanisms. As
seen, this can create local minima within the sub-domains 0 < α ≤ 1 (mechanism
Gy) and 1 ≤ α < ∞ (mechanism Gx), regardless of the stress capacity function used.
This highlights the importance of considering each complimentary form of the
mechanism separately during the optimisation process, to avoid the minimisation
algorithm from potentially getting trapped at these local minima.

For mortar-bonded URM walls with strong bond cohesion (Figure 6.22a), the
general trend demonstrated for mechanisms B and K1 is that λo reduces with
increasing Ht. This trend also applies to the standard type G mechanism, except
for a very minor local minimum for mechanism Gx at approximately α ≈ 1.05.
This indicates that for this types of masonry, the mechanism will generally tend to
utilise the full height of the wall.16 Indeed, this has been observed through a large
number of experimental studies, including those mentioned in Section 6.2.3 and
the original tests reported in Chapters 2 and 3.

15Note that in the case of Le → 0 for constant Ht (Figure 6.21b), λo approaches a value slightly
higher than the coefficient of friction, due to the additional resistance from the vertical crack in
horizontal bending as well as vertical bending along the vertical edge boundary crack.

16Whilst this trend is valid within the practical range of wall aspect ratios, as long as the influence
of self-weight remains small (due to the assumption that fmt � γHt); it should be treated with
caution for walls with a large height, where the self-weight may become significant. Nonetheless, if
the user is willing to ignore the influence of wall self-weight in calculating the ultimate load capacity,
then the demonstrated parametric trends will still hold.
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Figure 6.21: Parametric study implementing a weight-proportional stress capacity function.
This is representative of non-loadbearing DSM or mortar-bonded URM with very weak bond
cohesion.
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Figure 6.22: Parametric study implementing a constant stress capacity function. This is
analogous to mortar-bonded URM with strong bond cohesion.
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Mechanism Length

The influence of mechanism length (Le) on the calculated collapse multiplier is
much more direct than the effect of the mechanism height, in that regardless of
the stress capacity function or type of mechanism used, λo always reduces as Le

is increased (Figures 6.21b and 6.22b). This is because with increasing Le, the
associated external work term for each mechanism increases at a greater rate than
the internal work term, due to a larger proportion of the mechanism exhibiting
vertical bending. The resulting trend implies that each type of mechanism will
generally utilise the full available length of the wall. Nonetheless, when using the
proposed optimisation approach (described in Section 6.5), it is recommended that
Le should be treated as an independent variable, as instances may arise where it
may not be possible for a mechanism to span the full length of the wall due to
constraints on α [as per Eqs. (6.61) and (6.62)] (for example, wall r11 in conjunction
with mechanism Gy, as shown in Table 6.4).

6.7.2 Critical Mechanism

It is extremely difficult to make generalised predictions regarding the expected crit-
ical mechanism, as this depends on a variety of aspects of the wall’s configuration,
including:

• Length and height dimensions of the wall, and the resulting aspect ratio;

• Boundary conditions, in particular whether the wall is one- or two-sided
(nvs), the degree of rotational restraint along the supported vertical edges
(Rvs factor), and the degree of effective rotational restraint along a top edge
resulting from a potentially eccentric OBL (Rts factor);

• Material characteristics, including the coefficient of friction µm and the nature
of the stress capacity function f 〈· · ·〉.

The influence of some of these properties on the relative favourability of the various
mechanisms will now be discussed with reference to Figures 6.21 and 6.22, which, it
should be recalled, are based on the particular case study of a two-sided wall with
full moment connections along the vertical edges. The focus of these discussions is
to identify: (i) the critical mechanism overall; and (ii) the relative dominance of the
standard mechanisms G and K1, which becomes relevant when in-plane failure is
preventable. Despite the best efforts of the author to explain the trends observed in
these figures, it is nonetheless recommended that the explanations are treated as
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indicative only—the safest and most prudent approach is for the user to always
analyse a wall with respect to each of the mechanisms and adopt the critical one.

Masonry with Weak or Zero Bond Cohesion

For DSM or URM with very weak bond cohesion, hybrid mechanism J is shown
to be critical overall across the full domain of Lw/Hw wall aspect ratios (Figure
6.21).17 The only exception is for walls with a very short length, where mechanism
B becomes critical (Figure 6.21b). However, even in that instance both hybrid
mechanisms still provide very similar predictions.

Comparison of the relative favourability of type G and K1 mechanisms on
the basis of Figure 6.21 shows G to be dominant over K1, regardless of the wall
aspect ratio Lw/Hw. The reason for this can be explained by performing an
energy comparison for the two mechanisms using their respective internal and
external work expressions (provided in Section 6.5.3). The fundamental difference
between these two mechanisms is that G uses the triangular-based element (Figure
6.9a) and K1 uses the rectangular-based element (Figure 6.9c). For a weight-
proportional stress capacity function together with the parameters Rvs = 1 and
nvs = 2, it may be demonstrated that while mechanism K1 has a larger external
work compared to mechanism G (due to the different associated elements), it also
has a disproportionally higher internal work term, due to vertical bending along
the bottom edge crack. This causes mechanism G to be more favourable in this
instance. However, it should be noted that for different values of the other input
parameters this trend may not necessarily hold. For example, if the vertical edges of
the wall were to have no rotational restraint (Rvs = 0), then mechanism K1 would
not incur any internal work from horizontal bending along the vertical edge crack,
thus making it energetically more feasible.

Masonry with Strong Bond Cohesion

For masonry with high bond strength, the wall’s Lw/Hw aspect ratio influences
which mechanism becomes dominant. From Figure 6.22, it is seen that for walls
with a high aspect ratio (at α > 0.95) mechanism J is the most critical overall,
whereas for walls with a low aspect ratio (at α < 0.95) mechanism K1y becomes
critical. However, it should be noted that mechanisms G, J and K1 all provide
similar strength for α > 0.7.

17Although Figure 6.21a shows mechanism J to be non-critical when α < 0.45, if the wall’s
effective aspect ratio satisfies α < 0.8, then the global minimum λo will apply, which corresponds to
mechanism J.
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Comparison of the relative favourability of type G and K1 mechanisms on the
basis of Figure 6.22 again demonstrates a dependence on the wall’s Lw/Hw aspect
ratio. Mechanism K1 is slightly favoured for walls with low aspect ratio (α < 1.2),
whereas G is slightly favoured for walls with a high aspect ratio (α > 1.2). It is also
evident that the difference between the two mechanisms is minor in this instance
when compared to the results of analyses using a weight-proportional stress
capacity function (Figure 6.21), where mechanism G was shown to be significantly
more favoured. Furthermore, it should be noted that in the studies conducted, the
wall was assumed to have full rotational restraint along the vertical edges (Rvs = 1).
However, if the wall was to have simply supported vertical edges instead, then
mechanism K1 would become more favoured due to a reduction in the internal
work from horizontal bending along these edges.

General Remarks

The parametric study undertaken indicates that in two-way walls with a free top
edge, type G mechanisms are expected to be generally favoured for masonry with
low or zero bond strength, whereas type K1 mechanisms are expected to be more
favoured for masonry with high bond strength. Indeed, this is consistent with
failure patterns observed throughout many experimental studies, as discussed
previously in Section 6.2. However, the results have also shown that in certain
instances, type G mechanisms are expected to become critical for masonry with
strong bond cohesion, particularly for walls that have a high Lw/Hw aspect ratio.
This is in contrast to the fact that type G mechanisms are not considered by
any presently-used ultimate strength design procedures, including the Australian
masonry code method, which only considers type K mechanisms (refer to Figure
4.1).

Finally, it will be noted that while the trends observed have been based on
the particular case study where the mechanism slenderness ratios were fixed at
Le/tu = 12.1 and Ht/tu = 8.5 (Figures 6.21 and 6.22), they are also generally
consistent with the results of a second case study with fixed slenderness ratios of
Le/tu = 6.0 and Ht/tu = 14.9. Graphical results of this second study are provided
in Appendix G.5 (Figures G.19 and G.20).

6.8 conclusions

This chapter has described an analytical procedure for calculating the collapse load
multiplier (λo) in walls without any bond strength (or DSM), based on a virtual work
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approach. The numerous refinements that have been made over previous methods
[e.g. D’Ayala and Speranza, 2003] are: (i) inclusion of a horizontal bending moment
capacity due to rotational friction along bed joints; (ii) development of a frictional
shear deformation model for participating in-plane walls; (iii) a detailed account
of the various possible effects due to overburden loads; and (iv) development of
several additional collapse mechanisms.

Generic expressions were presented for calculating the moment capacities of
DSM along horizontal, vertical and diagonal crack lines. Together with the new
in-plane shear deformation model, these expressions were implemented in a set of
derived closed-form analytical expressions for calculating λo for a range of collapse
mechanisms. Accuracy of the developed technique was verified using experimental
results for a set of 28 dry-stack masonry walls tested by Restrepo Vélez [2004]. The
resulting comparisons were highly favourable, with predictions of the collapse load
being, on average, slightly conservative and within 5% of the experimental values,
whilst exhibiting a coefficient of variation of only 13%. The critical mechanism
predicted by the analysis also closely resembled the observed failure pattern in the
majority of the walls.

It has been demonstrated that since the VW method gives an upper-bound
estimate of the critical collapse load, to find the critical solution for a particular wall,
it is prudent to consider all possible mechanisms and perform a λo minimisation
process within each mechanism by treating its dimensions as independent variables.
Whilst it is impractical to perform all of the necessary calculations by hand, the
method is nonetheless simple enough to be implemented using software such
as Excel, where the minimisation process can be performed using the built-in
optimisation package Solver. Finally, that the proposed method is based entirely
on mechanics principles and does not rely on any empirically calibrated parameters,
is considered to be another valuable aspect as a static analysis tool for seismic
assessment.
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Chapter7
L O A D - D I S P L A C E M E N T M O D E L L I N G

Abstract

This chapter presents a nonlinear inelastic load-displacement model for represent-
ing the behaviour of two-way walls subjected to out-of-plane loading. The model
treats the walls as having zero tensile bond strength, akin to the treatment used
in Chapter 6. Associated analytical expressions for calculating both the load and
displacement capacities, which feed into the model, have also been derived for
type K mechanisms using principles of statics and virtual work. Comparison of
the model’s predicted response to experimentally observed behaviour is quite
favourable, in that it appears to provide a reasonable yet conservative estimate
of the wall strength. Implementation of the model is also demonstrated as part
of a displacement-based (DB) assessment approach using the substitute structure
method. Influence of various aspects of the wall’s configuration, such as vertical
edge fixity, overburden loads, and different edge support shapes, on the predicted
seismic performance is demonstrated through a set of examples. It is anticipated
that an extensive set of parametric time-history analysis studies using the pro-
posed model is the next necessary step toward developing a reliable DB assessment
technique for two-way walls.
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7.1 introduction

An essential ingredient of displacement-based (DB) seismic analysis is an analytical
model to define the structure’s load-displacement capacity, sometimes referred to
as a pushover or capacity curve. It is well established through both experiment and
theory that vertically spanning unreinforced masonry (URM) walls tend to behave
as rocking blocks when subjected to lateral loads (Figure 7.1), which has led to
the subsequent development of a DB methodology for such walls [Doherty et al.,
2002]. By contrast, the load-displacement behaviour of two-way URM walls has
gone largely unstudied, and as such, no analytical models exist for representing
their behaviour. It is believed that the experimental studies performed as part of
the present research in Chapters 2 and 3 now provide a basis for the development
of such a model.

In Chapter 6, a force-based (FB) analytical approach was developed for calculat-
ing the load capacity of masonry walls with respect to various types of two-way
mechanisms, by treating the wall as being cracked and having zero bond strength.
In the present chapter, this procedure is further extended to modelling of the
wall’s load-displacement behaviour up to the point of collapse. The methodology
presented focuses primarily on type K collapse mechanisms (refer to Figure 6.3
and discussions in Section 6.2.3), as these are the failure patterns most commonly
associated with mortar-bonded URM and are used in the as 3700 [Standards Aus-
tralia, 2001] procedure for ultimate strength design. Nonetheless, the basic concepts
and procedures used to derive the load-displacement relationships could also be
applied to other types of mechanisms, such as the type G, J or B mechanisms
dealt with in Chapter 6. The relationships derived are based on static equilibrium
of the sub-plates comprising the mechanisms, with frictional modes of resistance
also being taken into account, thus resulting in overall hysteretic response that is
nonlinear and inelastic. Various considerations discussed in Section 6.3.2 relating to
overburden loads (OBLs) are also considered in the derived relationships, including
the OBL’s restraint and eccentricity.

The layout of the chapter is as follows: The proposed load-displacement model,
including the analytical equations used to calculate the various input properties,
is presented in Section 7.2. Validation of the model with experimental data is
performed in Section 7.3. The developed model is implemented into a prototype
DB design procedure by means of the substitute structure approach in Section 7.4.
Several examples illustrating application of this method are presented in Section
7.5. Conclusions and main outcomes of the chapter are summarised in Section 7.6.
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Figure 7.1: Rocking behaviour of vertically spanning walls.

7.2 load-displacement capacity model

The proposed load-displacement model considers the wall to have zero tensile
strength, akin to the treatment used for analytical prediction of the load capacity in
Chapter 6. This is because in the response range of interest (i.e. large displacements),
the wall will have formed a collapse mechanism and will therefore be already
cracked. The fundamental assumption made by the developed approach is that
at any point in the wall’s response, its total lateral load resistance is comprised of
several sources of resistance acting independently of one another. By separately
defining the hysteresis rules for each of these components in terms of a common
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reference displacement, δ, the wall’s overall response may then be obtained by
superimposing the individual load contributions. For a wall with zero bond
strength, the total lateral load resistance λ〈δ〉 may come from three possible sources:

λ〈δ〉 = λr〈δ〉+ λh〈δ〉+ λs〈δ〉 , (7.1)

where λr〈δ〉 is resistance from rigid body rocking, λh〈δ〉 is frictional resistance
from horizontal bending, and λs〈δ〉 is a possible additional contribution from
frictional sliding between the top edge of the wall and an OBL. The proposed
load-displacement representations for these components are shown by Figure 7.2.
The following sections will describe the individual components in more detail.

Since the methodology presented here is effectively an extension of the FB

analysis described in Chapter 6, various concepts and considerations described
therein are also applicable. In particular, the model has the ability to deal with the
following aspects related to a wall’s boundary conditions, which were discussed in
greater detail in Section 6.3:

• Treatment of any OBLs present as either restrained or unrestrained;

• OBL eccentricity;

• Rotational fixity along supported vertical edges.

Furthermore, as the analytical equations presented here focus specifically at type K

mechanisms, the mechanism specific calculations presented in Section 6.5 are also
relevant. Definitions of the variables used throughout the analytical expressions
presented are as given in Chapter 6.

For convenience and consistency with other parts of this thesis, the developed
load-displacement relationships are presented in the non-dimensional λ-δ format,
where λ is the load multiplier, defined as the ratio of the lateral load to the self-
weight of the wall [Eq. (2.3)]; and δ is the wall’s lateral displacement normalised by
its thickness [Eq. (2.2)]. Note that unless stated otherwise, displacement δ refers to
the maximum surface displacement along the mechanism, as illustrated in Figures
6.16 and 6.17 (indicated by the symbol ∆′).

7.2.1 Rocking Component (r)

It is well established [e.g. Ewing and Kariotis, 1981; Doherty et al., 2002; Derakhshan
et al., 2011] that vertically spanning walls undergo rocking behaviour when sub-
jected to large out-of-plane deformations (Figure 7.1). Since two-way walls also
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Figure 7.2: Hysteresis rules proposed for representing various components of the wall’s
load resistance.
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exhibit some degree of vertical bending, it follows that at larger deformations some
component of their response must also include rocking type behaviour. Modelling
this requires consideration of two types of rocking block systems: idealised rigid
blocks, defined as being non-deformable with a perfectly rectangular cross sec-
tional geometry; and in the realistic case, semi-rigid blocks that are deformable
and have imperfect (non-flat) contact surface along cracked sections. While real
masonry walls are semi-rigid, calculating the parameters that define their rock-
ing load-displacement capacity inherently relies upon the idealisation of rigid
behaviour.

Rigid Block System Idealisation

The elastic load-displacement response of an idealised rigid block system under
rocking is shown by the dashed line in Figure 7.1. Initiation of motion from
the resting position requires application of the overturning force, λro, in order to
overcome the initial restoring moment from self-weight. For a fixed pivot location,
an increase in the displacement causes a linear reduction in the resisting moment,
accompanied by a linear reduction in the restoring force. Eventually the system
reaches its instability displacement, δru, at which it becomes balanced and provides
zero restoration force. If the system is allowed to displace beyond this point, then
it enters the unstable range where it requires application of an external restoring
force in order to avoid collapse. For a system with a known shape and spatial
mass distribution, the response-defining load and displacement capacities λro and
δru may be easily calculated from statics. When a displacement is applied in the
opposite displacement direction, the pivot locations switch to the opposite side of
the block, thus generating a discontinuity in the load-displacement curve across
δ = 0. Rocking behaviour is naturally elastic, due to conversion of applied external
energy or the kinetic energy into potential energy manifested through vertical uplift
of the block’s mass, as illustrated by the wall diagrams in Figure 7.1. This causes
the loading and unloading paths along the load-displacement capacity curve to
coincide. 1

Presented in Table 7.1 are a set of λ-δ relationships that define the idealised
rigid block rocking behaviour for the different forms of the type K mechanisms
(Figure 6.3). These mechanisms are divided into the complimentary forms K1x/K1y,

1Note that in the context described, rocking is considered to be elastic in terms of its load-
displacement behaviour under quasistatic loading conditions. During dynamic motion, a rocking
block undergoes energy losses associated with the change of rotation axis at the point of impact
[see e.g. Housner, 1963; Hogan, 1989]. Whilst impact damping is not explicitly considered in the
methodology described in this chapter, its influence could be accounted for by the choice of the
nominal viscous damping, ξnom, used in a dynamic analysis (refer to Section 7.4.2).
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which occur when the wall is unrestrained along the top edge (Figure 6.16); and
forms K2x/K2y, applicable to walls whose top edge is restrained (Figure 6.17). The
tabulated equations were derived from principles of statics, by discretising the wall
into vertical strips, and integrating the increment of moment for each strip along
the length of the wall to ensure that moment equilibrium is satisfied for the overall
mechanism. For full derivation details the reader is referred to Appendix H.1. The
main assumptions made in the derivation of these equations are as follows:

1. The wall is subjected to a lateral load distributed according to its mass.

2. Stresses across horizontal and diagonal cracks are concentrated at the extreme
compressive fibre of the section. This is based directly on the assumption of
idealised rigid block behaviour.

3. As mentioned, within the derivation process the wall is discretised into a
series of vertical strips. It is then assumed that both the lateral and vertical
inertia-based external forces applied onto each strip are transmitted to the
supported horizontal (top or bottom) edges of the wall within the strip itself.
In other words, there is no net flow of these forces between adjacent strips.

The second column of Table 7.1 provides relationships between the load resistance
λ and the normalised displacement δ, in the positive displacement direction (δ > 0).
The third and fourth columns of the table provide the rocking overturning load
λro and the rocking instability displacement δru, based on the λ-δ relationships
in the second column. Using these capacities, the idealised rigid body rocking
relationships (in the second column) can be expressed over the entire δ domain in
the alternate form

λr〈δ〉 =


λ+

ro (1− δ/δ+
ru) for δ > 0,

0 for δ = 0,

λ−ro (−1− δ/δ−ru) for δ < 0.

(7.20)

Properties superscripted with ‘+’ or ‘−’ denote the respective capacities in the
positive and negative directions, as defined in Figure 7.2a. This allows for the
possibility of asymmetric behaviour, which will occur when an OBL acts at different
eccentricities in the two directions, as illustrated through Figure 6.7 and discussed
in Section 6.3.2.

Table 7.1 also provides λ-δ capacity relationships for the one-way vertical
bending mechanisms V1 and V2, where V1 represents a parapet wall supported
along only its bottom edge and V2 represents a wall supported along both its bottom
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and top edges (see Figure 7.1). These expressions were obtained by assigning a = 1

to the corresponding equations for two-way mechanisms K1x and K2x, since these
mechanisms will approach V1 and V2, respectively, when the horizontal span
becomes sufficiently long. The resulting capacity expressions are similar to those
presented by Doherty et al. [2002], with the additional features of allowing for
control over the OBL eccentricity and restraint.

An important feature of the idealised rocking relationships in Table 7.1 is
that the expressions for the overturning load λro become identical to collapse
load multiplier expressions derived in Chapter 6 based on the energy approach,
when, in the latter, only cracks undergoing vertical and diagonal bending are
included in contributing toward the internal work [i.e. inclusion of only the Z̄v

terms in the respective equations (6.74), (6.78), (6.80) and (6.83), and exclusion
of the frictional sources of resistance]. This results from the fact that both sets
of analytical expressions are based on the same fundamental assumptions listed
previously. In other words, the force-based methodology presented in Chapter 6

can be considered to be a particular case of the load-displacement model described
in the present chapter, when the displacement approaches zero.

Real Block Systems

Real masonry walls differ from idealised rigid blocks in that they are deformable,
possess geometric imperfections (a non-flat contact surface along cracked sections),
and have a finite material compressive strength. The problem of the discontinuity
in the λ-δ capacity curve across δ = 0 (as is the case for idealised rigid systems)
becomes avoided, since the curve must exhibit an effective linear elastic zone in
the small displacement range (blue line in Figure 7.1), due to the deformability
of the material and gradual shift of the compressive force resultant toward the
extreme compressive fibre of the section with increasing rotation (refer to Figure
4.3d). This, however, also means that a real system cannot reach the full overturning
force (λro) and instability displacement (δru) capacities of the idealised rigid system.
Instead, the λ-δ capacity curve of the real system effectively becomes bounded by
the response curve predicted using rigid body theory, as has been demonstrated
through both static and dynamic experimental tests on vertically spanning walls
[e.g. Griffith et al., 2004; Derakhshan et al., 2009].

As an analytical representation of the load-displacement behaviour of non-
idealised vertically spanning walls, Doherty et al. [2002] proposed a trilinear elastic
model (Figure 7.1) comprising of three zones: (i) initial linear elastic region, (ii)
constant strength plateau, and (iii) softening branch for the equivalent rigid system.
This model can be defined by four input parameters, including the overturning



266 load-displacement modelling

Table 7.2: Empirically derived zone limiting displacements δ1 and δ2 for the trilinear
λ-δ relationship by Doherty et al. [2002]. The yield displacement δy used in the various
component hysteresis rules is taken as the average of these two values.

State of degradation at the cracked joint δ1 δ2 δy

New 0.06 0.28 0.17
Moderate 0.13 0.40 0.27
Severe 0.20 0.50 0.35

force λro, instability displacement δru, and the zone limiting displacements δ1 and δ2.
However, while λro and δru can be easily calculated from statics, there are no rational
means for determining displacements δ1 and δ2. Instead, Doherty quantified these
values empirically and presented them for three different damage states (Table
7.2). Further work on the trilinear form of the model has been carried out by
Derakhshan et al. [2009], who proposed additional empirically derived relationships
for quantifying the limiting displacement δ2 as a function of the overburden weight
ratio ψ, as well the wall slenderness ratio (tu/Ht).

The approach proposed here to model the wall’s rocking component of response
is based on an elastic bilinear-softening rule, as shown by Figure 7.2a. The form
of the model is slightly simpler than the trilinear representation by Doherty et al.
[2002], in order to allow for easier merging of the rocking component with the
inelastic components at a later stage (as outlined in Section 7.2.4). The model can
be defined by three parameters: the rocking load and displacement capacities λro

and δru provided in Table 7.1; in addition to either the initial stiffness κro or yield
displacement δry (see Figure 7.2a). Unfortunately, predicting the initial stiffness of
a wall after it is damaged is quite difficult, as it depends on a variety of factors
including the effective material stiffness and the state of degradation in the vicinity
of the cracked section. Therefore, it is proposed that the yield displacement δry in
the bilinear rule can be estimated using Doherty’s empirical approach, by taking
the average value of the zone limiting displacements δ1 and δ2 which define the
trilinear model. These averaged values, denoted by δy, are provided in Table 7.2.

A further consideration when dealing with real wall systems is that due to
the crushing strength of the material, compressive force transfer between adjacent
blocks cannot occur across a point, as assumed in the rigid body idealisation,
but requires a finite bearing area (refer to Figure 4.3d). Such effects have been
considered in various modelling approaches for vertically spanning walls, for
example that by Derakhshan et al. [2011]. This consequently acts to limit the internal
lever arm that can be developed to resist the applied moment and means that the
load and displacement capacities (λro and δru) in the real system become reduced
relative to the idealised rigid system. In the analysis, this can effectively be taken
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into account through a reduction of these capacities. For example, by adopting a
rectangular stress block approach, it can be seen from Eq. (4.22) that the effective
lever arm reduction factor is equivalent to

φr = 1− σv

c fmc
, (7.21)

where σv is the average compressive stress along the section, fmc is the crushing
strength of the masonry (or the mortar, whichever is weaker) and c is the compres-
sive strength factor (generally taken as 0.85 in reinforced concrete design). The
factor φr can be subsequently used to reduce the nominal capacities λro and δru

calculated using the equations in Table 7.1.

7.2.2 Horizontal Bending Frictional Component (h)

Unlike vertically spanning walls, whose response is nonlinear but elastic, the re-
sponse of two-way walls contains some component of inelastic hysteresis behaviour
due to the activation of frictional sources of internal resistance after cracking. This
has been demonstrated through the presence of hysteresis loops in the observed
load-displacement behaviour for walls tested both in the quasistatic cyclic tests and
shaketable tests (Chapters 2 and 3). The primary source of this inelastic behaviour
is believed to be residual horizontal bending, which generates rotational friction
across the cracked bed joints present along vertical cracks.

As already discussed in Section 7.2.1, the load capacity of the rocking response
component is equivalent to inclusion of only the vertical and diagonal crack lines
in the energy-based load capacity calculation procedure in Chapter 6. It is therefore
proposed that the resistance contribution from horizontal bending can be accounted
for within the overall load-displacement model in terms of an inelastic component,
whose load capacity λho can be predicted by the approach in Chapter 6 by including
only the Z̄h terms in the respective internal work equations [Eqs. (6.74), (6.78), (6.80)
and (6.83) for the type K mechanisms]. The resulting λho expressions for the various
forms of type K mechanisms are provided in Table 7.3 (second column).

In the proposed approach, the load-displacement hysteresis for this component
of response is modelled using the elastoplastic rule (Figure 7.2b). Due to the
lack of a more sophisticated model for predicting the initial loading stiffness of
a cracked masonry wall, as discussed in Section 7.2.1, it is suggested that the
elastoplastic yield displacement δhy (see Figure 7.2b) could be estimated using the
same simplified procedure used to estimate the yield displacement of the rocking
response component, that is, according to the empirically derived δy limits by
[Doherty et al., 2002], as presented in Table 7.2.
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Table 7.3: Equations for load capacities of the inelastic (frictional) components.
Mech. Load capacity of horizontal bending

rotational friction, λho

Load capacity of OBL sliding friction,
λso

K1x

λho =
Z̄hGn

tuLe
· Rvs (1 + 2ψ)

2
3 + 1

3 a + Φηψ (1 + a)

(7.22)

λso = (1−Φ)
µoψ (1 + a)

2
3 + 1

3 a

(7.23)

K1y

λho =
Z̄hGn

tuLe
· Rvs (1 + 2ψ) + ζhir (r + 2ψ)

α
(

2
3 + 1

3 r + Φηψ
)
(7.24)

λso = (1−Φ)
µoψ

2
3 + 1

3 r

(7.25)

K2x

λho =
Z̄hGn

tuLe
· 2Rvs (1 + 2ψ)

2
3 + 1

3 a

(7.26)

−

K2y

λho =
Z̄hGn

tuLe
· 2 (Rvs + ζhir) (1 + 2ψ)

α
(

2
3 + 1

3 r
)

(7.27)

−

V1
− λso = (1−Φ) (2µoψ)

(7.28)

V2
− −

While the overall proposed approach used to model the inelastic component
of internal frictional resistance appears to be conservative based on comparison
with the cyclic load-displacement curves observed through testing (refer to Section
7.3.1), it does make several simplifications of actual wall behaviour:

Firstly, friction along interlocking vertical crack lines is unlikely to be purely
rotational as assumed by the model, but is expected to also have a translational
component. This can be particularly true for vertical edge cracks when the direction
of loading is away from the connecting return walls, in which case the main face of
the wall may experience sliding away from the return walls along these boundaries.
Such behaviour was observed in some of the walls tested as part of the quasistatic
cyclic experimental study, especially once they underwent a sufficient number of
repeated cycles at large deformations (refer to Figures 2.26–2.28). Nonetheless, a
translational mode of frictional slip along these cracks is likely to be associated
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Figure 7.3: Curvilinear asymptotic M-θ behaviour of frictional torsion along a rectangular
section, resulting from using an elastoplastic constitutive τ-s relationship for friction along
the cracked interface.

with a higher load resistance than the rotational representation used, and on this
basis, the model is expected to be conservative. Furthermore, comparisons of the
predicted inelastic resistance with the cyclic load-displacement curves (refer to
Section 7.3.1) suggest that the model underpredicts the inelastic load capacity.

Secondly, if we were to make the seemingly reasonable assumption of defining
friction across the cracked bed-joint interface using an elastoplastic relationship
between shear stress and shear slip (τ-s), then the resulting moment versus ro-
tation behaviour of the joints will become curvilinear, since a section subjected
to increasing rotation would yield gradually rather than simultaneously (Figure
7.3). This would also cause the corresponding inelastic resistance component of
the wall’s load-displacement behaviour to be curvilinear and asymptotic toward
the maximum attainable strength λho, and not strictly elastoplastic as assumed
in the proposed modelling approach (Figure 7.2b). Nonetheless, the simplifying
assumption of an elastoplastic representation for the load-displacement response
seems a reasonable one, as long as an appropriate or conservative estimate of the
equivalent yield displacement can be made.

Finally, the suggested approach for estimating the yield displacement δhy using
the limits derived by Doherty (Table 7.2) is also very simplistic and does not
properly account for the influence of the wall’s various physical properties. For
example, consider two walls with identical L and H dimensions but varying
thickness. If we assume frictional resistance across the cracked joint to have an
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elastoplastic constitutive τ-s relationship (Figure 7.3), then the thicker wall would
be expected to achieve yield2 at a smaller crack rotation and therefore have a
smaller yield displacement than the thinner wall. This is the opposite effect to
that resulting from the simplified approach based on Doherty’s yield displacement
limits, which suggests that yield occurs at a constant value of δ and therefore at
a larger displacement (∆) for a thick wall compared to a thin one. As a second
example, consider two walls with equal thickness and L/H aspect ratio, but
different L and H spans. Since both walls would be expected to have the same
yield rotation due to identical thickness, the longer wall should have a larger yield
displacement than the shorter wall. The simplified approach, however, predicts both
walls to have the same yield displacement. While the use of Doherty’s displacement
limits is expected to be conservative for most typical wall configurations (i.e. they
will overestimate the yield displacement), these examples demonstrate the need
for development of a more rational mechanics-based approach for predicting the
initial loading stiffness and yield displacement of cracked walls.

As a final remark, it should be noted that for design or assessment purposes, it
may be warranted to apply a capacity reduction factor to the nominal capacity λho

calculated using the equations in Table 7.3. This is to account for issues such as:

• The torsional friction mode of resistance not reaching its full capacity due to
dilation effects, as described by Casapulla [2008]; and

• In the case of walls built with mortar, the cracks will generally exhibit a
mixture of stepped and line failure, and only the stepped portions of the
crack can contribute to the residual moment capacity. These effects were
dealt with in Chapter 5, where a probabilistic methodology was developed
for estimating the expected likelihood of stepped failure. It is suggested that
the resulting parameter could be used as a capacity reduction factor for this
purpose.

7.2.3 Overburden Load Frictional Sliding Component (s)

As discussed in Section 6.3.2, it is possible for a wall to benefit from an additional
source of resistance due to friction between the wall and an OBL. In order for
this resistance to be activated, a frictional connection must be present between
the wall and OBL, and the OBL itself must be restrained against lateral movement

2Note that in this context, ‘yield’ can be interpreted as the instance at which yield slip is achieved
at a particular percentile of the cracked interface (or by some other similar definition), since as noted
by the previous point, the M-θ curve based on an elastoplastic τ-s relationship can merely asymptote
toward the maximum attainable moment and never actually reach it (Figure 7.3).
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(hence Φ = 0; see Figure 6.5a). Nonetheless, the frictional connection must be
sufficiently weak to enable the top edge to undergo lateral displacement (i.e. a
type-1 mechanism). Establishing whether a wall with a frictional top connection
will undergo a type-1 mechanism (in which the top edge is effectively unrestrained)
or type-2 mechanism (where the top edge is restrained against movement) can be
aided by the flowchart in Figure 6.4 together with the concepts provided in the
accompanying discussions in Section 6.3.2.

While the boundary conditions necessary to generate these effects were not
present in any of the walls tested as part of the experimental studies in Chapters 2

and 3, allowing for them was catered for in the analytical approach for calculating
the collapse load multiplier, as described in Chapter 6. Therefore, for completeness
and consistency, allowance for these effects is also made in the proposed load-
displacement model through the λs term in Eq. 7.1. It is emphasised, however,
that inclusion of this source of resistance should be treated with caution due to
uncertainties regarding the choice of an appropriate value of the friction coefficient
µo, as well as the need to ensure that frictional contact between the wall and OBL

exists for a sufficient range of wall deformation.

Due to the frictional nature of this resistance component, it is suggested that it
may be modelled using an elastoplastic hysteresis rule (Figure 7.2c). Two alternative
but equivalent approaches may be used to calculate the component’s load capacity
λso:

1. Either the energy approach described in Chapter 6, which will provide the
corresponding load resistance contribution when only the µo-based terms are
included (i.e. the Z̄v and Z̄h terms omitted) in the respective internal work
equations [Eqs. (6.74), (6.78), (6.80) and (6.83) for the type K mechanisms];

2. Or the statics-based approach used to derive capacity expressions for the
rocking response component, as per the derivations presented in Appendix
H.1.

It can be easily demonstrated that both approaches produce equal values of load
capacity. The resulting analytical expressions to calculate λso for mechanisms K1x,
K1y and V1 are provided in the third column of Table 7.3.

As already discussed in Sections 7.2.1 and 7.2.2, in the absence of a more
rational analytical model for predicting the initial loading stiffness, it is suggested
that Doherty’s empirically derived δy limits (Table 7.2) can be used to estimate the
equivalent yield displacement δsy in the corresponding elastoplastic rule (Figure
7.2c). Note, however, that there is no justifiable reason for the use of these limits
for this particular purpose, except that they are likely to be conservative.
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7.2.4 Complete Model

As per Eq. (7.1), the complete hysteresis model is obtained by superimposing the
load contributions from the elastic rocking component, modelled by the bilinear
softening rule (Figure 7.2a); and the two inelastic frictional components, modelled
by elastoplastic rules (Figures 7.2b and 7.2c). The general shape of the overall
hysteresis model is shown by Figure 7.4.

Merged Frictional Component (f)

At this point, it becomes convenient to reduce the complexity of the overall model
by merging of the two inelastic components (h and s) into a single elastoplastic
component (f) that accounts for all frictional sources present. The primary reason
for this is to reduce the total number of parameters required to define the over-
all model and also enable ductility to be defined with respect to a single yield
displacement.3

The effective yield displacement of the merged frictional rule can be calculated
as the weighted average of the yield displacements for the individual components,
using their respective force capacities as weighting factors:

δfy =
∑ λo δy

∑ λo
=

λho δhy + λso δsy

λho + λso
. (7.29)

This calculation ensures that the total energy dissipated by the merged rule is
equivalent to the energy dissipated by each of the inelastic components considered
separately.

The force capacity of the combined frictional component hence becomes

λfo = λho + λso. (7.30)

Capacity Envelope

The capacity envelope of the overall model is obtained by superimposing the
respective envelopes of the rocking and frictional components, as demonstrated in
Figure 7.4. If we assume a single yield displacement δy for both components, as
shown in the figure, then a bilinear envelope will be formed, whose segments are

3This condition is already ensured if one follows the simplified treatment suggested in Sections
7.2.1–7.2.3, whereby the yield displacement for each rule is taken according to Doherty’s empirical δy
limits given in Table 7.2.
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Figure 7.4: Complete load-displacement model obtained by superposition of the rocking
and frictional components. In the representation shown, the yield displacements of the
rocking and frictional components are assumed to be equal (δy = δry = δfy). Initiating from
the resting position (1), response will remain linear elastic as long as the displacement
does not venture beyond ±δy, i.e. remains inside the yield limits (2) and (3). Points (4)–(12)
demonstrate a closed loop generated for a cycle with displacement amplitude ±δamp.
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calculated according to the formulae

λ〈δ〉 =

λp
(
δ/δy

)
for δ ≤ δy (ascending branch),

λro (1− δ/δru) + λfo for δ > δy (softening branch).
(7.31)

When the yield displacements of the components do not coincide, the envelope
will have additional segments with progressive softening. In such an instance, a
refined process can be employed to determine the points connecting the envelope
line segments.

It can also be seen from Figure 7.4 and Eq. (7.31) that due to the inclusion of
the frictional component, the combined envelope will have an overall instability
displacement δu which is greater than that of the rocking component (δu > δru).
Whether or not one is willing to treat this increased displacement capacity as a
reliable measure of the maximum displacement capacity of the wall depends on
the judgement of the analyst, as it is difficult to say if these frictional components
can be trusted to provide a continuous load resistance equal to their capacity at
large displacements. Certainly at the current stage of research there is still a lack
of experimental data to be able to make this assumption with confidence. A more
conservative approach might be to treat the rocking instability displacement δru as
the maximum usable wall displacement capacity.

Peak Force Resistance

As already stated, the collapse load multiplier λo (dealt with in Chapter 6) is
equivalent to summing the nominal capacities of the three components:

λo = λro + λho + λso, (7.32)

where λro, λho and λso are determined according to expressions provided in Tables
7.1 and 7.3. However, it is obvious from both Figures 7.2a and 7.4 that because the
proposed model treats the λ-δ behaviour of the rocking component as having an
initial linear elastic zone, the peak attainable load in the overall model will always
be lower than λo.

The peak force, λrp, of the bilinear rocking component (Figure 7.2a), occurring
at the yield point, is

λrp = λro
(
1− δry/δru

)
. (7.33)

Therefore, the peak load in the overall capacity envelope (Figure 7.4) becomes

λp = λrp + λfo. (7.34)
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Note that this assumes that the individual components have an equal yield dis-
placement, or at least that δhy ≤ δry and δsy ≤ δry. Otherwise, the overall peak load
capacity λp can be determined by considering the various cases possible.

7.3 model validation using experimental data

To verify the accuracy of the proposed load-displacement model (described in
Section 7.2), the predicted theoretical response was compared to measured be-
haviour of two-way walls tested experimentally. Three separate test data sets were
considered: (i) the eight full-scale walls from quasistatic cyclic tests in Chapter 2,
(ii) the five half-scale walls from the shaketable tests in Chapter 3, and (iii) three
small-scale dry-stack masonry (DSM) walls tested by the author in a previous study
[Vaculik et al., 2003]. All of these walls underwent type K mechanism response
during testing.

For each wall considered, the rocking load and displacement capacities λro and
δru, and the horizontal bending load capacity λho, were calculated based on the
respective type K mechanisms using the formulae in Tables 7.1 and 7.3. None
of the walls were provided with a frictional top edge connection, and hence the
s-component described in Section 7.2.3 was not applicable. Detailed summaries of
the analyses performed on each set of walls are presented throughout Tables 7.4,
7.5 and 7.6, including the computed capacities as well as various input properties
and parameters calculated at intermediate steps during the analyses. Graphical
comparisons between the predicted model response and experimental behaviour
are provided by Figures 7.5, 7.6 and 7.7.

The key aspects of the analyses conducted are as follows:

• For each solid wall (i.e. without any openings), the length and height spans
of the mechanism were taken according to the full dimensions of the wall.
Therefore, the mechanism type (K1x, K1y, K2x or K2y) was immediately
defined from the start of each analysis.

• Since the equations in Tables 7.1 and 7.3 are only strictly applicable to solid
walls, two different approaches were used to analyse walls with openings:
The first approach ignored the presence of any openings and treated the
wall as being entirely solid. The second approach treated the wall as having
a free vertical edge at the boundary between the wall and opening. In
the latter treatment, only the longer side of the wall was analysed since
this results in the more conservative (lower) capacities. Illustrations of the
respective mechanisms used are also shown in Figures 7.5, 7.6 and 7.7. In
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both treatments, the mechanism utilised the full available length and height
of the wall.

Comparisons of the model and experimental behaviour will now be discussed for
each set of walls.

7.3.1 Full-Scale Mortar-Bonded URM Walls s1–s8

This data set comprised the eight full-scale walls subjected to cyclic loading using
airbags, as reported in Chapter 2. As discussed in Section 2.4.2, a notable aspect
of the measured load-displacement behaviour of these walls (Figures 2.14–2.21)
was the positive stiffness (slope) of the loading branches irrespective of the cyclic
displacement amplitude or the degradation state of the wall. This was attributed to
internal arching within the wall, which constitutes an additional source of resistance
that is not accounted for in the proposed load-displacement model. Because of this
behaviour, the walls did not possess a distinct value of residual strength that could
be used for direct comparison to the values of strength predicted by the model.
It therefore becomes more convenient to compare the observed and predicted
response graphically.

Table 7.4 summarises the analysis results, while Figure 7.5 provides a graphical
comparison of the predicted model response and experimental behaviour. On the
basis of these results, the following conclusions can be made:

1. The model provides a conservative representation of each wall’s F-∆ capacity
envelope over the full range of displacement considered. It is worth empha-
sising that the analytically computed capacities presented are unfactored, in
that they do not account for any of the additional capacity reduction effects
that were discussed in Sections 7.2.1 and 7.2.2. Such factorisation would
result in even further conservatism of the results. The discrepancy between
the analytical model and experimental behaviour is believed to be primarily
due to the presence of arching effects within the test walls.

2. The model appears to underpredict the inelastic capacity of the walls, as can
be seen by comparing the hysteresis loops within the experimental response
to the upper and lower bounds of the model (λr ± λho, shown using dashed
lines in Figure 7.5). This is also likely to be due to arching effects, which
induce additional compressive stresses throughout the wall and therefore
generate a greater capacity to resist friction. Furthermore, the walls are also
likely to experience additional frictional resistance from bed joint torsion
along diagonal crack lines, particularly at small rotations before the cracks
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Figure 7.5: Comparison of theoretical behaviour and experimental response for quasistatic
cyclic test walls s1–s8. The predicted rigid body rocking component (λr) is indicated by
a coloured (red or blue) solid line ( ). Response inclusive of the additional inelastic
contribution from horizontal bending (λr ± λho) is shown by dashed lines ( ) for the
forward and reverse loading directions. The resulting bounded area (shaded) represents
the energy dissipated under reversed cyclic loading. Initial loading branches based on
Doherty’s empirical δy limits are also shown for the three different damages states (Table
7.2).
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Figure 7.5: (cont’d).
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Figure 7.5: (cont’d).
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become fully opened. This type of resistance is not accounted for in the
model, which instead assumes diagonal cracks to undergo purely elastic
rocking behaviour.

3. Differences between capacities predicted for walls with openings using the
two alternative approaches (solid wall analysis and longer edge analysis) are
relatively minor for walls s3, s4, s5 and s6, but somewhat more pronounced
in walls s7 and s8. This relates to the value of the effective mechanism length
(Le) used in the respective analyses (refer to Table 7.4). It is suggested that
an alternative and possibly more accurate approach to the analysis of walls
with openings would be to use the refined virtual work treatment described
in Section 4.4 to calculate the load capacities λro and λho, while still using
the rigid body rocking relationships in Table 7.1 to determine the rocking
instability displacement δru.

4. Finally, for this set of walls the initial loading branches obtained using
Doherty’s empirical δy limits appear to be conservative, in that the approach
underpredicts the loading stiffness of the walls.

7.3.2 Half-Scale Mortar-Bonded URM Walls d1–d5

This data set included the five half-scale walls tested by shaketable, as reported in
Chapter 3. The corresponding analytical results are summarised in Table 7.5, while
Figure 7.6 compares the model’s theoretical response to the experimental behaviour
graphically. The experimental response plotted by each graph represents the load
and displacement coordinates for the largest amplitude cycles occurring within
individual test runs performed on each wall (refer to Figure 3.17 and Section 3.4.3).

It is difficult to draw conclusions from these comparisons because of the rel-
atively small wall deformations achieved in the tests. As discussed in Chapter 3,
this was due to the limitation of the experimental setup, in particular the inability
of the shaketable to generate stronger motions. It could be concluded, however,
that in the range of wall deformations produced, the model appears to provide a
conservative lower bound estimate of the experimental response.

7.3.3 Small-Scale DSM Walls f8–f10

This set of data comprised three reduced-scale DSM walls tested by the author in
a previous study [Vaculik et al., 2003] (some detail also reported in Vaculik et al.,
2004). The brick units used to build these walls were obtained by cutting standard
brick paving units lengthwise using a circular saw. This cutting process introduced
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Figure 7.6: Comparison of theoretical behaviour and experimental response for shaketable
test walls d1–d5. The experimental response, shown using grey markers, corresponds to
the largest amplitude cycles measured during individual test runs (refer to Figure 3.17;
marker legend defined in Table 3.6).
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Figure 7.6: (cont’d).
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irregularities in the shape of the brick units, and consequently, the walls could be
considered representative of very poor quality masonry construction. Loading of
the walls was conducted in displacement control using airbags. The test procedure
consisted of subjecting the wall to some displacement and then unloading, which
was generally repeated a few times in order to study the walls’ hysteretic behaviour.
During the course of testing, the maximum displacements imposed on the walls
were fairly large, ranging between approximately 0.5 < max δ < 1. A total of three
walls were tested, each at three different levels of vertical precompression.

A summary of the basic calculations to obtain nominal capacities using the
equations in Tables 7.1 and 7.3 is presented in Table 7.6. The nominal load capacities
λro and λho were further factored to account for the fact that airbags used did not
cover the entire wall face, but were instead concentrated toward the centre of
the wall. These load modification factors were computed using the virtual work
approach as the ratio of the average virtual displacements along the loaded area
in the two respective loading scenarios. Note that, unlike the load capacities, the
positioning of the airbags does not affect the rocking displacement capacity δru,
as this is based on the stability criterion at zero applied load. A summary of the
modified load capacities, including comparison to the peak measured load during
the experiments, is given in Table 7.7. Graphical comparison of the predicted
model response incorporating the modified load capacities and the experimentally
measured load-displacement behaviour is presented in Figure 7.7.

From Figure 7.7 it can be seen that the experimental response of the walls is
highly hysteretic (inelastic), indicating that some modes of frictional resistance were
activated. Each of the experimental curves clearly exhibits a peak load followed
by a softening branch, which is consistent with the general form of the proposed
load-displacement model. On the basis of this observation, it appears that any
arching in these walls was minimal, in stark contrast to the response of the full-scale
walls where arching effects were significant (Section 7.3.1). The difference in this
behaviour is likely to result from the different type of masonry used for these two
sets of walls, that is, dry stack masonry as opposed to mortar-bonded masonry.

Interestingly, the calculated load capacities overpredict the measured strength
for every one of these walls. This is believed to be a result of the poor quality of
masonry construction, as stated previously. As seen from Figure 7.1, in the trilinear
load-displacement model by Doherty et al. [2002], the ratio of the peak load of the
real system to the idealised rigid body load capacity is effectively 1− δ2. Therefore,
from Doherty’s empirically derived δ limits (Table 7.2) this ratio would be expected
to be approximately 50% for severely degraded masonry, which is comparable to
the values quantified (Table 7.7). It should also be noted that the vertical edges
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Figure 7.7: Comparison of theoretical behaviour and experimental response for reduced-
scale dry-stack masonry walls tested by Vaculik et al. [2003].
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of the walls, while being restrained against lateral displacement, did not have
full rotational restraint. As a result, it is expected that their overall behaviour lay
somewhere between pure rocking response (λr) and response inclusive of the full
horizontal bending contribution (λr + λh).

Although the test walls were not pushed up to the point of collapse, the
graphical comparisons in Figure 7.7 suggest that if the softening branches of the
experimentally measured load-displacement curves were extrapolated, then in
most cases, the predicted displacement capacity (δru) would provide a conservative
estimate of the experimental (extrapolated) capacities.

7.4 displacement-based seismic assessment

This section demonstrates implementation of the proposed load-displacement
model into a displacement-based seismic assessment procedure using the substi-
tute structure approach—an approximate technique for estimation of the maximum
displacement demands of nonlinear structural systems subjected to seismic ex-
citations. The method was originally proposed by Gülkan and Sozen [1974] [also
Shibata and Sozen, 1976] and has since been developed for various structural systems
and nonlinear load-displacement behaviour types [e.g. Moehle, 1992; Priestley, 1997;
Magenes and Calvi, 1997; Medhekar and Kennedy, 2000; Kowalsky, 2002], including
vertically spanning walls subjected to out-of-plane actions [Doherty et al., 2002;
Griffith et al., 2003].

The basic steps in the method can be summarised as follows:

1. The actual multi-degree-of-freedom (MDOF) structure (in this case the wall),
whose mass and displacement are both spatially distributed, is transformed
into an equivalent single-degree-of-freedom (SDOF) system with a lumped
effective mass M∗ and effective displacement u (Section 7.4.1).

2. The structure’s nonlinear F-∆ behaviour is replaced by an equivalent lin-
ear system characterised by an effective stiffness Ke and equivalent viscous
damping ξe. Properties Ke and M∗ are then used to determine an effective
vibrational period Te (Section 7.4.2).

3. Finally, the maximum displacement demand of the structure, ud, to a par-
ticular earthquake is estimated by entering the effective dynamic properties
Te and ξe (as determined in Step 2) into the earthquake’s elastic spectrum.
In the case of design, a code-prescribed design spectrum is used. While nu-
merous alternative approaches exist for undertaking this step, the approach
demonstrated will be the capacity spectrum (CS) method (Section 7.4.3).
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In its present state, implementation of the proposed F-∆ model into the sub-
stitute structure method is as yet unverified, in that the accuracy of the resulting
approach has not been tested by comparing its displacement demand predictions
to those of nonlinear time-history analyses. It is anticipated that such a verification
process, conducted for a range of values of the input parameters in the proposed
F-∆ model, can be a focus for future research.

7.4.1 SDOF Transformation

The first step of the substitute structure approach involves transforming the ma-
sonry wall from a MDOF system into an equivalent SDOF system with lumped
displacement and mass properties. These transformations are based on standard
modal analysis [see for instance Clough and Penzien, 1993; Chopra, 2000], which
fundamentally requires the structure to deform according to a predominant dis-
placement pattern (mode shape). This assumption seems reasonable for a masonry
wall in flexure, whose primary mode shape is characterised by the collapse mecha-
nism.

Effective Displacement

In standard modal analysis, the modal participation factor Γ is defined as

Γ =

n

∑
i=1

mi ϕi

n

∑
i=1

mi ϕ
2
i

, (7.35)

where i denotes indices of nodes in the MDOF structure with a total of n nodes, ϕi

is the mode shape function at each node, and mi is the mass at each node.

By defining a particular control node in the MDOF structure such that the value
of the mode shape function at the control node is ϕc [as used during the calculation
of Γ by Eq. (7.35)], the relationship between effective SDOF system displacement u
and the displacement at the control node, ∆c, becomes

u =
∆c

ϕc Γ
. (7.36)

Based on these formulae, it is possible to derive a displacement transformation
relationship for any wall collapse mechanism by considering its deflected shape.
To define such a relationship for the type K family of mechanisms (Figures 6.16
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and 6.17), let us firstly define a modified normalised aspect ratio αs, such that

αs = greater of

α,

1/α,
(7.37)

where α is the normalised aspect ratio calculated using Eq. (6.44). From this,
the ratio of the effective displacement and the maximum surface displacement
(indicated by ∆′ in Figures 6.16 and 6.17) in any of the type K mechanisms, including
K1x, K1y, K2x or K2y, becomes

u
∆

=
2αs − 1
3αs − 1

. (7.38)

For consistency, this equation uses the same reference displacement (∆) in each of
the mechanisms as the load-displacement relationships in Section 7.2.

Note that Eq. (7.38) is only applicable to solid walls. Furthermore, in the case
of type K1 mechanisms, it assumes that any OBL present is restrained from lateral
movement (Φ = 0). For walls with openings or for type K1 mechanisms with an
unrestrained OBL (Φ = 1), which acts as additional concentrated mass along the
top edge of the wall, the ratio u/∆ may be determined from first principles using
Eqs. (7.35) and (7.36).

Since αs may assume values between 1 and ∞, the ratio u/∆ calculated using Eq.
(7.38) can range between 1/2 and 2/3. The latter corresponds to the wall becoming
sufficiently long or tall to be treated as one-way spanning and is consistent with
the value determined by Doherty et al. [2002] for vertically spanning walls.

The ratio u/∆ together with Eq. (2.2) may subsequently be used for transfor-
mation of the various displacement properties in the load-displacement model
between the δ, ∆ and u domains. For example, the rocking instability displacements
δru, ∆ru and uru are related by

∆ru = tu · δru, and uru =
u
∆
· ∆ru.

Other displacement properties may also be converted in a similar manner.
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Effective Mass

Based on modal analysis, the effective mass of the equivalent SDOF system (i.e. the
modal mass) is calculated as

M∗ =

(
n

∑
i=1

mi ϕi

)2

n

∑
i=1

mi ϕ
2
i

, (7.39)

with mi and ϕi as defined previously. The actual mass of the structure is

M =
n

∑
i=1

mi. (7.40)

Therefore, the ratio of the effective and actual mass becomes

M∗

M
=

(
n

∑
i=1

mi ϕi

)2

(
n

∑
i=1

mi

)(
n

∑
i=1

mi ϕ
2
i

) . (7.41)

For the type K mechanisms, including K1x, K1y, K2x and K2y, this ratio becomes

M∗

M
=

9αs
2 − 6αs + 1

12αs2 − 6αs
, (7.42)

where αs is obtained by Eq. (7.37). Note that the actual mass (M) in the above
equation refers to the mass of the wall over the height of the mechanism, Ht, as
illustrated in Figures 6.16 and 6.17. Applicability of Eq. (7.42) is subject to the same
limitations as discussed previously in relation to Eq. (7.38).

As αs can range between 1 and ∞, the ratio M∗/M obtained using Eq. (7.42)
may assume values between 2/3 and 3/4. The latter is consistent with the value
provided by Doherty et al. [2002] for vertically spanning walls.

7.4.2 Equivalent Linearisation

This step of the substitute structure approach involves replacing the nonlinear F-∆
behaviour by an effective linear system with an effective stiffness Ke and equivalent
viscous damping ξe. The criterion for ideal selection of Ke and ξe is that an inelastic
time-history analysis (THA) incorporating the actual nonlinear F-∆ behaviour will
produce the same maximum structural displacement as a THA of the equivalent
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linear system, when subjected to the same earthquake motion. Achieving this will
realistically require an extensive calibration process of formulae for determining
these linear properties on the basis of the different input properties of the proposed
F-∆ rule. This, however, is a major task and is outside the scope of this thesis.
Therefore, a simplified procedure will instead be outlined, in which the equivalent
stiffness is obtained using the usual secant approach and the effective damping by
the hysteretic area approach.

Effective Stiffness

The first step in determining the secant stiffness at a particular displacement is to
define the pushover (capacity) curve of the structure. In analysis of MDOF structures,
determination of the capacity curve is typically carried out by subjecting the system
to a load shape function based on its modal inertia distribution (i.e. mode shape
function × mass distribution).4 The capacity relationships presented in Section 7.2,
however, are based on the assumption that the acting load is distributed directly
according to the wall’s mass. This therefore requires us to convert the derived
nominal load capacities (λo or Fo) to equivalent force capacities based on a modal
inertia load shape (denoted by λ∗o or F∗o ).

Using the fundamental assumption of independence between the mode shape
and the loading function, it follows that irrespective of the loading function, the
wall performs the same amount of internal work. From this, it can be demonstrated
that

F∗o
Fo

=
M∗

M
(7.43)

(refer to Appendix H.2). The significance of this will now be demonstrated.

As seen from Figure 7.8, according to the secant approach the effective stiffness
is taken as

Ke =
F∗〈u〉

u
, (7.44)

where F∗〈u〉 is the effective force resistance based on the wall’s capacity envelope
curve at an arbitrarily chosen value of the effective displacement u.

From basic dynamics principles, the modal angular frequency is

ωe =
√

Ke

M∗ =

√
F∗〈u〉
u M∗ , (7.45)

4Other, more adverse approaches in terms of the resulting load capacity are also sometimes used
for determination of the pushover curve, such as applying a point load at the position of maximum
displacement [see e.g. Chopra and Goel, 1999].
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Figure 7.8: Effective stiffness Ke of equivalent linear system obtained using the secant
approach at an arbitrary effective displacement u.

which, by noting Eq. (7.43), is equivalent to

ωe =

√
F〈u〉
u M

, (7.46)

where F〈u〉 is simply the force resisted at the effective displacement u, assuming a
mass-proportional load shape distribution. The significance of this result is that
the effective mass calculation [as per Eqs. (7.39) and (7.42)] effectively becomes
redundant if one uses the load capacity expressions presented in Tables 7.1 and 7.3.

Since F〈u〉 /M is equivalent to the static acceleration of the wall, Eq. (7.46) can
be written as

ωe =

√
λ〈u〉 g

u
, (7.47)

where λ〈u〉 is the load multiplier at the effective displacement u as defined by the
capacity curve, and g is gravitational acceleration. From this, the wall’s effective
period Te and frequency fe are related by

Te =
1
fe

=
2π

ωe
. (7.48)

Equivalent Viscous Damping

A conventional method of quantifying the equivalent hysteretic damping ξhyst of
an inelastic F-∆ system is by the hysteretic area approach, which accounts for the
amount of energy dissipated in a full deformation cycle at a given displacement
amplitude (e.g. see Figure 3.8 and the accompanying discussion in Section 3.3.2 for
further detail). This approach, originally proposed by Jacobsen [1930, 1960], is based
on the notion that the inelastic system dissipates the same amount of energy by
hysteresis as a replacement linear system does by viscous (velocity-proportional)
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Figure 7.9: Hysteretic damping ξhyst as a function of the displacement ductility µ∆, for
different ratios of the inelastic strength λfo to the overall peak strength λp.

damping, and furthermore, the assumption that both systems undergo steady-state
sinusoidal response at resonance [see e.g. Clough and Penzien, 1993]. As per Eq.
(3.11), the corresponding equivalent viscous damping is calculated as

ξhyst =
2
π

Uloop

Ubox
,

with Uloop and Ubox as defined in Figure 3.8.

Denoting the displacement cycle amplitude (δamp in Figure 7.4) simply as δ, the
equivalent viscous damping in the proposed load-displacement model becomes

ξhyst〈δ〉 =


0 for δ ≤ δfy (pre-yield),
2
π

λfo
(
δ− δfy

)
λp δ

for δ > δfy (post-yield),
(7.49)

where δfy is the yield displacement of the combined frictional component [Eq.
(7.29)], and λp is the overall peak force resistance [Eq. (7.34)]. Note that this
calculation implicitly assumes a higher value of the effective stiffness in terms of
the resulting internal strain energy compared to Eq. (7.44), thus leading to a lower
(more conservative) value of ξhyst.

By introducing a displacement ductility parameter µ∆ according to its conven-
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tional definition as the ratio of the cycle displacement to the yield displacement:

µ∆ =
δ

δfy
, (7.50)

the post-yield equivalent hysteretic damping in Eq. (7.49) can also be written in the
alternative form

ξhyst =
2
π

λfo

λp

(
1− 1

µ∆

)
. (7.51)

Figure 7.9 plots the resulting relationship between ξhyst and µ∆ for different values
of the ratio λfo/λp.

The total effective viscous damping ξe is subsequently obtained as the sum of
the nominal viscous damping ξnom (typically taken between 0.03 to 0.05) and the
equivalent hysteretic damping:

ξe = ξnom + ξhyst. (7.52)

At this point, it is important to emphasise that ξhyst based on the hysteretic
area approach is known to overestimate damping of certain types of systems when
subjected to realistic earthquake motions, particularly systems with a high inelastic
energy absorption [Chopra and Goel, 2001; Dwairi and Kowalsky, 2004; Priestley et al.,
2007]. This is because real accelerograms contain a broad spectrum of frequencies,
as opposed to a single excitation frequency as assumed by the Jacobsen damping
approach. A common way of addressing this is to apply a reduction factor to
the area-based ξhyst term in Eq. (7.52), where the factor is typically expressed as
a function of the initial value of ξhyst and characteristics of the hysteresis rule
[ATC, 1996; Chopra and Goel, 2000; Priestley et al., 2007]. This further underlines
the necessity for development of an expression for calculating a suitable value
of the equivalent damping in the proposed F-∆ model, as an alternative to Eq.
(7.49). Such a calibration process may be performed using methods similar to those
employed for various types of hysteresis rules by Grant et al. [2005] and Dwairi et al.
[2007].

7.4.3 Prediction of the Displacement Demand

Having transformed the wall from a MDOF system to a SDOF system (Section 7.4.1)
and replaced its nonlinear inelastic F-∆ behaviour with equivalent linear dynamic
properties (Section 7.4.2), the displacement response of the wall with respect to a
particular design earthquake is determined from the elastic design spectrum. This
will now be demonstrated using the capacity spectrum (CS) method, as originally
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proposed by Freeman et al. [1975] [also described in Freeman, 2004], which provides
a convenient graphical implementation of DB assessment.

The method consists of the following steps:

1. The elastic design spectrum is obtained from the relevant earthquake loading
standard for a particular limit state (e.g. serviceability or ultimate limit state).
It is convenient to discretise the period domain into a finely spaced grid
over the range of interest. At each value of period T, the elastic spectral
acceleration and displacement, Sae〈T〉 and Sde〈T〉, are determined. This step
assumes the usual spectral ordinate dependency

Sae〈T〉 =
(

2π

T

)2

Sde〈T〉 . (7.53)

2. The elastic spectrum is converted into an inelastic spectrum by accounting
for hysteretic damping in the specific wall under consideration. It is common
to perform this reduction using a spectrum reduction factor Rξ formulated in
terms of the equivalent viscous damping. A number of alternative expressions
for calculating Rξ are described by Priestley et al. [2007], which for illustrative
purposes, Eurocode 8 [Comité Européen de Normalisation, 2004] prescribes as

Rξ〈ξe〉 =
(

0.10
0.05 + ξe

)1/2

, subject to 0.55 ≤ Rξ〈ξe〉 ≤ 1, (7.54)

where ξe is the total damping inclusive of both nominal and hysteretic damp-
ing. This equation assumes nominal damping to be ξnom = 0.05, so that the
resulting factor becomes applicable to the 5% damped elastic spectrum.

From this, the spectrum reduction factor, RT, at a given period is determined
as

RT〈T〉 = Rξ〈ξe〉 , by satisfying Sde〈T〉 · Rξ〈ξe〈u〉〉 = u. (7.55)

Because of the circular dependency between Rξ , ξe and u, solution for RT〈T〉
may be obtained by numerical iteration.

The inelastic spectral ordinates at each period T are then calculated as

Sdi〈T〉 = RT〈T〉 · Sde〈T〉 , (7.56)

and Sai〈T〉 = RT〈T〉 · Sae〈T〉 . (7.57)

3. The inelastic spectrum and the capacity envelope curve of the wall are plotted
together on the same set of axes in the acceleration-displacement format. It is
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up to the user to decide the normalisation for each axis, but in the author’s
opinion, it is convenient to plot normalised acceleration on the y-axis (Sa/g
for the spectrum and λ for the capacity curve) and effective displacement on
the x-axis (Sd for the spectrum and u for the capacity curve). This requires
the capacity envelope, given by Eq. (7.31), to be converted into the λ-u format
using Eqs. (2.2) and (7.38).

The wall’s displacement response (demand) ud is subsequently obtained as
the displacement at the intersection of the two curves, referred to as the
performance point. In the event that the curves do not intersect, the wall is
deemed to fail. Because of the softening nature of the capacity curve in the
proposed model, it is possible in some circumstances for multiple intersections
to occur. In such an instance, the solution is taken as the intersection point at
the lowest displacement.

Finally, to assess the structural adequacy of the wall, the displacement de-
mand ud is compared to an acceptable deformation limit. For example, in
ultimate limit state design (against collapse) the user may deem as acceptable
any demand within a certain percentage of the available rocking displacement
capacity (uru), such that

capacity utilisation ratio = ud/uru. (7.58)

It should be noted that when using the CS method, it is not necessary to explicitly
calculate the wall’s effective stiffness nor period [given by Eqs. (7.44) and (7.48)], as
this information is effectively stored in the acceleration-displacement diagram itself.
These properties are, however, required when using the secant stiffness approach
[e.g. Doherty et al., 2002].

7.5 examples

Several examples will now be provided to demonstrate the application of the
proposed F-∆ model as part of a DB seismic assessment using the CS method. The
influence of various aspects of the boundary conditions on the resulting capacities
will also be demonstrated.

7.5.1 Assumptions and Generalities

capacity related Consider walls comprising standard Australian clay brick
masonry with 230× 110× 76 mm bricks and 10 mm mortar joints, with values of
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material properties and other dependent properties as walls s1–s8 (summarised in
Table 7.4). Let us treat each wall as being constructed with mortar, and therefore, as
per the lessons learnt from the parametric studies in Section 6.7, assume that: (i) the
span of the mechanism utilises the full length and height of the wall, and (ii) type
K mechanisms will be favoured over other mechanisms such as type G.5 From this,
the precise mechanism applied to each wall becomes immediately defined from
the start of the analysis based on the wall’s dimensions and support shape, and
capacities λro, δru and λho are obtained using the relevant equations in Tables 7.1
and 7.3. To account for capacity reduction effects due to non-idealised behaviour
[as discussed throughout Section 7.2; see for example Eq. (7.21)], let us apply a
capacity reduction factor of 0.9 to each of the aforementioned capacities. The yield
displacement for both the rocking and frictional components is estimated using
Doherty’s empirical value for the most degraded state, which from Table 7.2 gives
δy = 0.35 and therefore ∆y = 0.35× 110 mm = 38.5 mm for each wall, regardless
of its configuration.

spectrum related To define the elastic design spectrum, let us use the Aus-
tralian earthquake loading standard as 1170.4 [Standards Australia, 2007] and assume
a 1/500 year return period, type D soil class (deep or soft soil) and location within
the Adelaide region. This results in an elastic spectrum with the characteristics:
PGA = 0.11 g, PSA = 0.37 g, PSV = 0.31 m/s, and PSD = 0.074 m. Conversion of
the elastic spectrum to an inelastic spectrum is performed based on each wall’s
damping function [Eq. (7.49)] combined with the Eurocode 8 spectrum reduction
formula [Eq. (7.54)].

7.5.2 Results

The CS method examples, whose results are shown in Figures 7.10, 7.11 and 7.12,
all consider an identically sized wall with dimensions 4080 × 2494 × 110 mm
(L× H × t), subjected to different types of boundary conditions.

In the respective diagrams, three performance points are plotted for each wall
configuration: (i) total capacity versus the inelastic spectrum, (ii) total capacity
versus the elastic spectrum, and (iii) elastic capacity versus the elastic spectrum.
The first case represents the primary solution of the analysis. The second and third
cases are used to provide an upper-bound prediction of the displacement demand
that would result if the elastic spectrum was not reduced to account for inelastic

5Note that despite any initial ultimate strength obtained from mortar bond contribution, which
may be calculated using the methodology dealt with in Chapter 4, the DB analysis undertaken here
effectively assumes bond strength to be zero.
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Table 7.8: Legend for Figures 7.10, 7.11 and 7.12.

Capacity curves
Elastic capacity (rocking only)
Total capacity (rocking + inelastic)

Spectrum curves
Elastic spectrum
Inelastic spectrum

Performance pointsu Total capacity vs. Inelastic spectrum
Total capacity vs. Elastic spectrum
Elastic capacity vs. Elastic spectrum

effects. For each performance point plotted in these figures, the percentage value
indicates the utilisation of the wall’s displacement capacity relative to the rocking
instability displacement [as per Eq. (7.58)].

As a matter of terminology, note that in the following discussions, ‘displacement
capacity’ refers to the rocking instability displacement δru and not the additional
enhanced capacity δu that is obtained from inelastic contributions (refer to Figure
7.4 for an illustration of both).

Example set 1—Influence of vertical edge support

Figure 7.10 demonstrates the predicted response for a wall with: (a) O-shaped
support with full moment restraint at the vertical edges, (b) O-shaped support with
only simple support at the vertical edges, and (c) both vertical edges unsupported.

Comparison of cases (a) and (b) shows that a significant improvement to the
wall’s seismic resistance is gained from having its vertical edges fixed against
rotation. This is due to not only an increase in the wall’s load capacity, but also a
reduction of the spectrum due to inelastic resistance along these edges.

Comparing cases (b) and (c) demonstrates that despite both systems being
elastic and therefore being subject to the same unfactored spectrum, a wall with
two-way support performs significantly better than a vertically spanning wall, due
to an enhancement of both its load and displacement capacities.

Example set 2—Influence of precompression and overburden load eccentricity

Figure 7.11 shows the predicted response for a wall with 0.05 MPa precompression,
which is equivalent to an overburden weight ratio of ψ = 1.06. Parts (a) and (b) of
the figure demonstrate the effect of the OBL eccentricity, which is controlled by the
property ε (defined in Figure 6.6 and Figure 6.7b for type-2 mechanisms).
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Figure 7.10: CS method examples—Influence of vertical edge support. Legend in Table 7.8.
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Figure 7.11: CS method examples—Influence of an applied overburden load and its eccen-
tricity. Refer to Figure 7.10a for case without precompression. Legend in Table 7.8.

In part (a), the load is concentrated at the upward-deflecting point of the wall’s
cross section (ε = 0), while in part (b), the load acts at the wall’s centreline (ε = 0.5).
For reference, Figure 7.10a shows the response of a control wall without any
precompression.

Comparison of Figures 7.10a and 7.11a demonstrates that if the OBL acts at the
upward-deflecting point (ε = 0), an increase in the applied precompression will
enhance the load capacity, but will have no influence on the displacement capacity.

On the other hand, comparison of Figures 7.10a and 7.11b shows that when the
OBL acts at the centreline (ε = 0.5), an increase in the precompression will lead to
better overall load capacity but poorer displacement capacity. The latter occurs due
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Figure 7.12: CS method examples—Influence of wall support shape. Also refer to Figure
7.10a for case with O-shaped support. Legend in Table 7.8.
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to the destabilising moment resulting from the position of the OBL.

For a constant value of precompression (ψ), variation of the eccentricity influ-
ences the load and displacement capacities such that the softening slope of the
capacity curve remains unaltered. This can be seen by comparing parts (a) and (b)
of Figure 7.11, which show that a more eccentric load (higher ε) reduces the load
and displacement capacities in equal proportion. The most favourable condition
therefore results when the OBL acts at the upward-deflecting point (ε = 0), which is
analogous to a slab connection (as illustrated by Figure 6.8). It is worth noting that
the eccentricity can only influence the rocking load and displacement capacities
and not the inelastic load capacities.

Example set 3—Influence of support shape (O, U, C or L)

Figure 7.12 demonstrates the predicted response for a wall with: (a) U-shaped
support, (b) L-shaped support, and (c) C-shaped support. For reference, Figure
7.10a shows the response of a control wall with O-shaped support.

The examples demonstrate the expected influence of the support shape on the
load capacity, in that providing any wall with additional supported edges will act
to enhance its strength. This is seen by an increase in strength by modifying the
support shape from L to U (Figures 7.12b and 7.12a), from L to C (Figures 7.12b
and 7.12c), from U to O (Figures 7.12a and 7.10a), and from C to O (Figures 7.12c
and 7.10a).

However, these examples also demonstrate another very interesting prediction—
that removal of support along the top horizontal edge, while reducing the wall’s
load capacity, actually acts to increase displacement capacity. This is evident by
comparing O-shaped support with U-shaped support (Figures 7.10a and 7.12a), and
C with L (Figures 7.12c and 7.12b). The reason for this somewhat counterintuitive
result is that removing the top edge support causes a greater proportion of the wall
to undergo rotation about the vertical axis, thus making it less prone to rocking
destabilisation (or P-Delta effect) which only influences the mechanism sub-plates
rotating horizontally. In fact, the governing equations in Table 7.1 predict that in
the absence of precompression (ψ = 0), the instability displacement in each of
the type K mechanisms becomes dependent only on the normalised aspect ratio
α [Eq. (6.44)], such that a lower value of α will lead to a higher displacement
capacity. Furthermore, the equations predict that the theoretical upper limit to the
displacement capacity occurs in mechanisms K1y and K2y, where δru can approach
a value of 2, that is, a displacement equal to twice the wall thickness. By contrast,
the well known upper limit for vertically spanning walls is equal to 1. Note that
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this prediction is also consistent with behaviour observed in the quasistatic cyclic
tests (Chapter 2), where the U-shaped wall s6 appeared to have a considerably
higher displacement capacity than the identically sized O-shaped walls s1–s5.

7.6 conclusions

A nonlinear inelastic load-displacement model has been proposed for modelling
the behaviour of two-way walls subjected to out-of-plane loading. The model
treats the wall as possessing zero bond strength and assumes that its response
consists of several independently acting resistance sources whose load contributions
can be superimposed at any value of the wall’s displacement. These include the
rocking component, modelled by a bilinear elastic softening rule; and frictional
components due to horizontal bending and overburden load friction, both modelled
by elastoplastic rules.

Analytical expressions have been derived for calculating the load and displace-
ment capacities of the rocking component, for the various possible forms of type
K mechanisms, which are the mechanisms most commonly associated with two-
way URM walls. It is possible, however, to employ the same techniques to derive
such expressions for other types of mechanisms, such as type G, which, although
being more favoured in dry walls, should probably also not be overlooked for
mortar-bonded walls. Expressions for the load capacities of the inelastic capacities
were obtained using the virtual work approach. By contrast, a mechanics-based
approach to calculating the initial loading stiffness or yield displacement of the
wall is still lacking.

Comparisons of the proposed model with experimentally observed behaviour
have been shown to be largely favourable. While the model does not account for
the initial ultimate strength that uncracked walls gain from tensile bond strength,
nor effects such as strength degradation and arching, it is conceptually possible
to account for such effects by the inclusion of additional resistance components.
Nonetheless, in its current form, the model appears to provide a reasonable albeit
conservative representation of observed behaviour.

Implementation of the model into a DB seismic assessment approach using the
substitute structure method has also been demonstrated. The parameters necessary
to perform the relevant displacement and mass transformations to convert the
system from MDOF to SDOF were presented for the type K mechanisms. By contrast,
only simplified techniques were demonstrated for estimating the effective stiffness
and equivalent viscous damping, based on the secant stiffness and hysteretic area
based damping methods, respectively. It is anticipated that performing an extensive
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set of parametric THA studies using the proposed F-∆ model is the next necessary
step toward developing a reliable DB assessment technique.



Chapter8
C O N C L U S I O N

8.1 experimental work

A pair of complimentary experimental studies have been performed on two-way
spanning unreinforced masonry (URM) walls: quasistatic cyclic tests on full-scale
walls (Chapter 2), and shaketable tests on half-scale walls (Chapter 3).

The quasistatic tests demonstrated that two-way walls, in addition to possessing
greater strength than vertically spanning walls, also possess a substantially higher
displacement capacity that is in excess of the wall thickness (as validated by
the load-displacement model developed in Chapter 7). Good energy dissipation
characteristics due to frictional modes of resistance were also observed, which
are further beneficial to a wall’s seismic resistance. The tests also demonstrated,
however, that it is possible for the out-of-plane wall to separate from the connecting
return walls when a significant proportion of brick units along the wall’s vertical
edge undergo line failure. This can be of some concern, since loss of functionality
by the vertical edges can cause a two-way wall to revert to a vertical one-way
collapse mechanism, thus losing the aforementioned benefits.

The shaketable tests were not able to achieve the same levels of wall displace-
ment as in the quasistatic tests, mainly because of performance limitations of the
shaketable. However, they were still able to verify the main trends in wall be-
haviour, including hysteretic energy dissipation and the ability to displace beyond
the peak load capacity. Furthermore, both sets of studies demonstrated consistency
between the walls’ observed failure mechanisms and patterns generally associated
with mortar-bonded walls (i.e. type K mechanisms, see Figure 4.1), thus laying the
foundation for the subsequent development of analytical methods.
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8.2 analytical work

In this thesis, the development of analytical techniques was tackled on several
fronts: Chapters 4 and 6 dealt with prediction of the wall’s load capacity by
respectively including and ignoring, the presence of tensile bond strength. Chapter
5 developed a probabilistic approach in relation to the possible failure modes in
horizontal bending, with implications toward both the ultimate and residual load
capacity. And finally, Chapter 7 developed a load-displacement capacity model
and demonstrated its implementation into a prototype displacement-based (DB)
analysis procedure. It is envisaged that these methodologies, with some further
development, can be assimilated into a multi-tiered design/assessment approach
incorporating both force-based (FB) and DB components, as shown by the flowchart
in Figure 8.1

8.2.1 Force-Based Methodology

Prediction of Ultimate Strength

Chapter 4 provided further development of the current state-of-the-art methodology
for calculating the ultimate strength of walls possessing tensile bond strength,
including refinements to existing models for predicting the ultimate moment
capacities in horizontal bending (particularly stepped failure) and diagonal bending.
Advances were also made in Chapter 5 through quantification of the strength
reduction expected in the ultimate horizontal bending moment capacity, as a result
of weak link effects associated with the combined possibility of the stepped and
line failure modes.

Ultimate moment capacity expressions were fed into the virtual work (VW) ap-
proach to predict the load capacity of overall walls. Comparisons of the predictions
with the measured wall strength (from Chapter 2) demonstrated that if we assume
the fundamental models for horizontal and diagonal bending moment capacities to
be accurate, then it is unlikely that diagonal and vertical cracks in the mechanism
achieve their peak moments simultaneously as assumed by the current as 3700

design approach. This conclusion was also supported by observations of crack
patterns during the tests. It was also demonstrated that inclusion of some residual
(post-cracking) moment capacity along horizontal crack lines in the mechanism
reduced the overall scatter in the predictions. In its present form, the as 3700

approach neglects any such moment capacities.

Since rigid plastic analysis (the VW method) is well known to be fundamentally
flawed with regard to URM, in that it is extremely unlikely that all cracks within
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the mechanism could achieve their moment capacities simultaneously, it would
be reasonable to accept that a rational design approach requires some level of
empiricism to account for the discrepancy between actual and idealised behaviour.
This could be accomplished, for example, by implementation of internal work
reduction factors to the respective crack lines, to address issues such as: (i) moments
along different types of cracks not peaking simultaneously, and (ii) weak link effects
due to variability in material properties.

In addition, there is still a significant scope for further development of the
fundamental models for the different types of bending (vertical, horizontal and
diagonal), including:

• The need for additional diagonal bending test data, as the present models by
Willis [Griffith et al., 2005] and the refined approach developed in this thesis
have so far been calibrated using only a handful of tests;

• Calibration of an ultimate shear stress expression [see Eq. (4.24)] to different
types of brick units (e.g. perforated, frogged or solid) through further bed
joint torsion tests; and

• Further wallette testing and development of moment-rotation models for the
different types of bending. It is believed that such models could be used to
make the transition from one-way bending in wallettes to two-way bending
in actual walls.

Prediction of Residual (Post-Cracking) Strength

An alternative, conservative approach to predicting a wall’s load capacity is to
assume that the masonry possesses zero tensile bond strength and that it derives
its strength purely from gravity effects. Chapter 6 focused on the development of
such methodology. The various refinements incorporated into the method were: (i)
inclusion of rotational friction resistance along vertical cracks, (ii) characterisation
of several additional collapse mechanisms, including hybrid mechanisms incor-
porating both out-of-plane and in-plane components, and (iii) development of a
frictional shear model for the participating in-plane walls. A detailed account of
various effects relating to overburden loads (OBLs) was also provided, including the
possibility of the OBL being restrained or unrestrained, as well as eccentricity effects.
The developed approach showed good correlation compared to experimentally
tested dry-stack masonry (DSM) walls with regard to both their strength and the
critical collapse mechanisms.
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Whilst an analysis that ignores bond strength will generally result in lower
(more conservative) calculations of strength compared to the ‘ultimate strength’
analysis, which includes the benefit of bond cohesion, its main advantage is that
it bypasses the difficulty of having to determine the material tensile strength
properties of the masonry. This makes it a particularly appealing tool for FB

assessment of walls in existing URM buildings, where it is especially difficult to
quantify these properties reliably. It is expected that this approach could be used as
an alternative to the ultimate strength prediction method (from Chapter 4) within
the overall design procedure, as shown in Figure 8.1.

8.2.2 Displacement-Based Methodology

As shown by Figure 8.1, it is believed that DB assessment can form a second tier of
the multi-tiered design approach, that would only be called upon should the wall
fail the first (FB) check.

Chapter 7 developed a load-displacement capacity model for representing the
nonlinear inelastic behaviour of two-way walls. The basis of the model is similar to
the strength prediction methodology in Chapter 6, in that it treats the wall as having
zero tensile bond strength. The model assumes that the overall load resistance
of the wall can be obtained by superimposing the load contributions of several
independently acting sources, including: (i) a rocking component modelled by a
bilinear elastic softening rule; and (ii) frictional components due to rotational and
translational friction sources, both modelled using elastoplastic rules. Analytical
expressions for calculating the load and displacement capacities were derived
for the type K family of mechanisms. The various considerations relating to
OBLs, as described previously, were also catered for in the derived relationships.
Comparisons of the proposed model with measured experimental F-∆ response
(using data from Chapters 2 and 3) were shown to be largely favourable, in that
the model appears to provide a reasonable albeit conservative representation of the
observed behaviour.

Implementation of the model into a DB seismic assessment based on the sub-
stitute structure method was also demonstrated (in Chapter 7). The parameters
necessary to transform the wall from a multi- to single-degree-of-freedom sys-
tem were derived for the type K mechanisms. By contrast, replacement of the
nonlinear F-∆ behaviour with an equivalent linear elastic system was performed
using standard procedures—namely the secant approach to estimating the effec-
tive stiffness, and the hysteretic area based approach to estimating the equivalent
viscous damping. In its present form, this procedure is as yet unverified, in that
its displacement demand predictions have not been validated with the demand
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predictions of nonlinear time-history analyses. It is anticipated that such a verifica-
tion process, conducted for a realistic range of input parameters, can be a focus for
future research.

A necessary intermediate step before undertaking a displacement-based design
check (Figure 8.1) is to establish whether return wall separation is likely to occur.
As identified through testing, this is an important consideration as it determines
whether the wall continues to respond in two-way bending at larger displacements,
or if it reverts to vertical one-way bending due to loss of connection at the edges.
At the present stage, the analytical tools to make such an assessment are not yet
fully developed. It is believed however, that the stochastic methodology developed
in Chapter 5, for estimating the expected likelihood of stepped versus line failure
in horizontal bending, can provide the basis for development of such a method.

8.3 topics for future research

The following topics also require further research attention:

• Interaction between combined in-plane and out-of-plane wall response;

• Development of floor spectra accounting for filtration of the ground motion
by the building itself, to serve as the input motion for out-of-plane walls
at different levels in the building; This is especially important toward DB

assessment;

• Influence of connecting in-plane walls and flexible floor/roof diaphragms,
which may cause an out-of-plane wall to receive different input excitations at
these boundaries; and

• Further wall testing with various realistic types of boundary conditions.
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