
 

PUBLISHED VERSION  

 

 

Boyle, Peter A.; Kelly, C.; Maynard, Chris M.; Zanotti, James Michael; Flynn, Jonathan M.; de 
Lima, H. Pedroso; Sachrajda, Christopher T.; Jüttner, Andreas; RBC Collaboration; UKQCD 
Collaboration  
Determining the Κ₁₃ form factors directly at zero momentum transfer, P o S - Proceedings of 
Science (Lat 2009), 2009; 248:1-248:7. 

Copyright owned by the author(s) under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike Licence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/77062 

 

PERMISSIONS 

 

http://pos.sissa.it/POSauthors.html  
 
 

• All contributions are published in PoS under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike Licence. Every author 
submitting his/her contribution to PoS retains the copyright, and upon 
submission (s)he applies this license to his/her work. 

 

 

 

24rthApril 2013 

http://hdl.handle.net/2440/77062�
http://creativecommons.org/licenses/by-nc-sa/3.0/�
http://creativecommons.org/licenses/by-nc-sa/3.0/�
http://hdl.handle.net/2440/77062�
http://pos.sissa.it/POSauthors.html�
http://creativecommons.org/licenses/by-nc-sa/3.0/�


P
o
S
(
L
A
T
2
0
0
9
)
2
4
8

Determining the Kl3 form factors directly at zero
momentum transfer

P.A. Boyle, C. Kelly, C.M. Maynard, J.M. Zanotti∗

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

J.M. Flynn, H. Pedroso de Lima, C.T. Sachrajda

School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

A. Jüttner

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz, D–55099 Mainz, Germany

RBC and UKQCD Collaborations

We compute the K`3 form factors using partially twisted boundary conditions. The twists are
chosen so that the K`3 form factors are calculated directly at zero momentum transfer (q2 = 0),
removing the need for a q2 interpolation. The simulations are performed on an ensemble of the
RBC/UKQCD collaboration’s gauge configurations with Domain Wall Fermions and the Iwaski
gauge action with an inverse lattice spacing of 1.73(3) GeV. For the value of the K`3 form factor,
f Kπ
+ (q2), determined directly at q2 = 0, we find a value of f Kπ

+ (0) = 0.9757(38) at this particular
quark mass, which agrees well with our earlier result (0.9774(35)) obtained using the standard,
indirect method.

The XXVII International Symposium on Lattice Field Theory - LAT2009
July 26-31 2009
Peking University, Beijing, China

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
9
)
2
4
8

Kl3 form factors at q2 = 0 J.M. Zanotti

1. Introduction

Over the last few years as part of our Domain Wall Fermion (DWF) physics programme we
have been looking at the K → π`ν` (K`3) form factor at zero momentum transfer. Since the experi-
mental rate for K`3 decays is proportional to |Vus|2| f Kπ

+ (0)|2, a lattice calculation of the form factor,
f Kπ
+ (q2) at q2 = 0, provides an excellent avenue for the determination of the Cabibbo-Kobayashi-

Maskawa (CKM) [1] quark mixing matrix element, |Vus|.
The uncertainty in the unitarity relation of the CKM matrix |Vud |2 + |Vus|2 = 1 (we ignore

|Vub| since it is very small), is dominated by the precision of |Vus|. In Fig. 1 we show the latest
determinations of |Vud | [2] and |Vus| [3]. For comparison, we also show the unitarity relation. Since
it is important to establish unitarity with the best precision possible, it is essential that we decrease
the error in |Vus|.

Vus/Vud

Figure 1: Bands showing the current limits on
|Vud | [2], and |Vus| [3].

The value of f Kπ
+ (0) used in determining

|Vus| in figure 1 was determined using standard
methods [4, 5] involving periodic spatial bound-
ary conditions for the finite volume quark fields
in the recent paper [3]. There, the K`3 form fac-
tor is calculated at q2

max = (mK −mπ)2 and sev-
eral negative values of q2 for a variety of quark
masses. This allows for an interpolation of the
results to q2 = 0. The form factor is then chi-
rally extrapolated to the physical pion and kaon
masses. The final result for f Kπ

+ (0) quoted is
then [3] f Kπ

+ (0) = 0.9644(33)(34)(14) where the
first error is statistical, and the second and third
are estimates of the systematic errors due to the
choice of q2 and quark mass parametrisation and
lattice artefacts, respectively. Using the result for
| f Kπ

+ Vus| by [6] this gives us a value of |Vus|= 0.2249(14).
More recently, we have developed a method that uses partially twisted boundary conditions

to calculate the K`3 form factor directly at q2 = 0 [7], thereby removing the systematic error due
to the choice of parametrisation for the interpolation in q2. The method was developed and tested
in [7] and now applied in a simulation with parameters much closer to the physical point.

In this paper we discuss our progress in improving the precision of our result for f Kπ
+ (0)

from [3] using partially twisted boundary conditions. Finally, the systematic due to the chiral
extrapolation in the above result includes a correction for the fact that the simulated strange quark
has a mass which is a little heavier than the physical one - here we confirm this estimate by new
simulation results which allow us to interpolate directly in the strange quark mass.

2. Simulation Parameters

The computations are performed using an ensemble with light quark mass amu = amd = 0.005
and strange quark mass ams = 0.04 from a set of N f = 2 + 1 flavour DWF configurations with
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(L/a)3×T/a×Ls = 243×64×16 which were jointly generated by the UKQCD/RBC collabora-
tions [8] using the QCDOC computer. The simulated dynamical strange quark mass, ams = 0.04,
is close to its physical value [8], while for the valence strange quark mass, we choose two values,
ams = 0.04 and ams = 0.03.

The gauge configurations were generated with the Iwasaki gauge action with an inverse lattice
spacing of a−1 = 1.729(28)GeV. The resulting pion and kaon masses are mπ ≈ 330MeV and
mK ≈ 575MeV, respectively.

In this work we use single time-slice stochastic sources [9], for which the elements of the
source are randomly drawn from a distribution D = Z(2)⊗Z(2) which contains random Z(2)
numbers in both its real and imaginary parts. With sources of this form we find that the computa-
tional cost of calculating quark propagators is reduced by a factor of 12. For more details on the
simulations, see [10].

3. The Form Factors

Here we briefly outline the main features of our method and we refer the reader to our earlier
papers for more details [3, 7, 10].

The matrix element of the vector current between initial and final state pseudoscalar mesons
Pi and Pf , is in general decomposed into two invariant form factors:

〈Pf (p f )|Vµ |Pi(pi)〉= f +
PiPf

(q2)(pi + p f )µ + f−PiPf
(q2)(pi− p f )µ , (3.1)

where q2 = −Q2 = (pi − p f )2. For K → π , Vµ = s̄γµu, Pi = K and Pf = π . The form factors
f +
PiPf

(q2) and f−PiPf
(q2) contain the non-perturbative QCD effects and hence are ideally suited for a

determination in lattice QCD.
In a finite volume with spatial extent L and periodic boundary conditions for the quark fields,

momenta are discretised in units of 2π/L, ane the momentum transfer is given by

q2 = (EK(~pi)−Eπ(~p f ))2− (~pi−~p f )2 . (3.2)

For ~pi = 0 and 2π/L with ~p f = 0, we have q2 ≈ 0.06 GeV2 and −0.05 GeV2, respectively, pre-
senting the need for an interpolation in order to extract the result of the form factor, f Kπ

+ , at q2 = 0.
In order to reach zero momentum transfer (q2 = 0), we employ partially twisted boundary con-

ditions [11, 12], combining gauge field configurations generated with sea quarks obeying periodic
boundary conditions with valence quarks with twisted boundary conditions [11–17]. The valence
quarks, q, satisfy

q(xk +L) = eiθk q(xk), (k = 1,3) , (3.3)

where ~θ is the twisting angle. Our method is decribed in detail in [7, 10] and proceeds by setting
~θ = 0 for the spectator quark. We are then able to vary the twisting angles, ~θi and ~θ f , of the quarks
before and after the insertion of the current, respectively. The momentum transfer between the
initial and final state mesons is now

q2 = (Ei(~pi,~θi)−E f (~p f ,~θ f ))2− ((~pi +~θi/L)− (~p f +~θ f /L))2 , (3.4)
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where E(~p,~θ) =
√

m2 +(~p+~θ/L)2. Hence it is possible to choose ~θi and ~θ f such that q2 = 0,

which from now on we refer to as ~θK and ~θπ for when we twist a quark in the Kaon and Pion,
respectively.

In order to extract the matrix elements (3.1) from a lattice simulation, we consider the follow-
ing ratios of three- and two-point correlation functions

R1,PiPf (~pi,~p f ) = 4
√

EiE f

√
CPiPf (t,~pi,~p f )CPf Pi (t,~p f ,~pi)

CPi (tsink,~pi)CPf (tsink,~p f )
,

R3,PiPf (~pi,~p f ) = 4
√

EiE f
CPiPf (t,~pi,~p f )
CPf (tsink,~p f )

√
CPi (tsink−t,~pi)CPf (t,~p f )CPf (tsink,~p f )
CPf (tsink−t,~p f )CPi (t,~pi)CPi (tsink,~pi)

.

(3.5)

We deviate slightly from the method outlined in [7] for extracting f Kπ
0 (0) from the ratios.

Previously we considered only the time-component of the vector current and solved for f Kπ
0 (0) =

f Kπ
+ (0) via the linear combination

f Kπ
0 (0) =

Rα,Kπ(~pK ,~0)(mK −Eπ)−Rα,Kπ(~0,~pπ)(EK −mπ)
(EK +mπ)(mK −Eπ)− (mK +Eπ)(EK −mπ)

(α = 1,2,3) . (3.6)

This, however, is just one of many expressions that can be obtained when we solve the system of
simultaneous equations that are obtained when we consider all components of the vector current,
Vµ , rather than just V4 that was considered in [7]

Rα,Kπ(~θK ,~0,V4) = f Kπ
+ (0)(EK +mπ)+ f Kπ

− (0)(EK −mπ)

Rα,Kπ(~0,~θπ ,V4) = f Kπ
+ (0)(mK +Eπ)+ f Kπ

− (0)(mK −Eπ)

Rα,Kπ(~θK ,~0,Vi) = f Kπ
+ (0)θK,i + f Kπ

− (0)θK,i

Rα,Kπ(~0,~θπ ,Vi) = f Kπ
+ (0)θπ,i− f Kπ

− (0)θπ,i , (3.7)

where i = 1,2,3 in the last two equations. We can now proceed to solve this overdetermined system
of equations via χ2 minimisation.

4. Kl3 form factor results

As explained in Sec. 3, we calculate the K → π form factor directly at q2 = 0 by setting the
Kaon and Pion in turn to be at rest, while twisting the other one such that q2 = 0. We refer to these
twist angles as θπ and θK , respectively. We then get the following equations:

〈K(pK)|Vµ |π(0)〉 = f Kπ
+ (0)pK,µ − f Kπ

− (0)pK,µ

〈K(0)|Vµ |π(pπ)〉 = f Kπ
+ (0)pπ,µ + f Kπ

− (0)pπ,µ (4.1)

By considering all the µ components simultaneously, we perform a χ2 minimisation on the overde-
termined system of equations to find the values of f Kπ

+ (0) and f Kπ
− (0) that best fit the equations.

To obtain the matrix elements (4.1), we consider different combinations of R1 and R3 (3.5).
We find that all combinations lead to consistent results, with the best combination being that we
use R3 for all matrix elements except for the case where the pion is twisted and we are considering
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Figure 2: K`3 form factor, f Kπ
0 (q2), evaluated at q2 = 0 directly using twisted boundary conditions. Results

are compared with data at q2 6= 0 and fits from [3]

the 4th component of the vector current. Using this set up, we obtain our preliminary results for
f +
Kπ

(0) and f−Kπ
(0) (for a pion mass of mπ = 330MeV)

f +
Kπ

(0) = 0.9757(38) , f−Kπ
(0) =−0.0997(93) . (4.2)

Our result for f +
Kπ

(0) = f 0
Kπ

(0) is indicated in Fig. 2 by the red right-pointing triangles. We also
include additional data points for f +

Kπ
(q2) in the range 0 . q2 5 q2

max obtained using the partially
twisted boundary condition technique. These results are compared with the pole dominance fit
to the Fourier momentum results (black circles) obtained in [3], as indicated by the dashed black
line. As can be seen, this pole dominance fit goes through all of the new partially twisted boundary
condition points. In our previous result, f Kπ

+ (0) = 0.9644(33)(34)(14), these were combined,
taking a systematic error of (34) for the model dependence. This contribution to the error has been
eliminated in our new calculation.

4.1 Correcting the strange quark mass

Another source of systematic error in our result in [3] is due to the slight difference between our
simulated strange quark mass (ams +amres ' 0.043) and the physical strange quark (ams +amres '
0.037) [8]. In [3], this was corrected by simultaneously fitting the q2 and quark mass dependences
with the global ansatz

f Kπ
0 (q2) =

1+ f2 +(m2
K −m2

π)2
(
A0 +A1(m2

K +m2
π)

)
1−q2/

(
M0 +M1(m2

K +m2
π)

)2 , (4.3)

to all available data points with four different light quark masses, then inserting in the physical
pion and kaon masses to obtain the final result. Using the fit parameters which were determined
in [3] and plugging in the unitary and partially quenched kaon mass which we simulated for here,
the ansatz in eqn. (4.3) predicts the red and blue curve in figure 2, respectively. Both curves nicely
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Figure 3: Red points are from [3], while the Z2 points are from the current analysis. The black curve is from
the fit in [3] with Eq. (4.3). All points are shifted to the physical strange quark mass.

fit the red and blue data points. Even though our results for ams = 0.03 were based on partially
quenched data, this observation increases our confidence in the semi-phenomenological fit ansatz
of [3]. We will need to rely on such ansatz until a NNLO expression for f Kπ

+ (q2) is presented in a
closed form as a function of low energy constants and the quark or meson masses.

These two points for f Kπ
+ (0) from the aml = 0.005 ensemble with two different strange quark

masses are compared in Fig. 3 with the chiral extrapolation from [3]. After shifting all results to
the physical strange quark mass, we see again the excellent agreement of the new partially twisted
boundary condition results and the earlier results from [3] using more standard techniques.

4.2 Conclusions

We conclude that using partially twisted bc’s for the K`3 form factor, is an improvement on
the conventional method as it removes a source of systematic error, while keeping comparable
statistical errors. From calculations with two different valence strange quark masses, we have also
shown that effect of simulating with a strange quark mass that differs slightly from its physical
value can be easily accounted for by fitting the simulated points with the ansatz (4.3) and inserting
the physical pion and kaon masses to obtain the final result.

Simulations at a second lattice spacing and three light masses are currently underway. We also
plan to combine our results with the latest expressions from chiral perturbation theory [18].
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