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Summary

The drag developed on an object as it moves through a fluid comprises of
a number of components arising from various and differing fluid phenom-
ena. For aerodynamic bodies such as aircraft, one of the most dominant
components of the total drag force is that arising from shear interactions
between the surface of the object and the fluid. In steady, cruise conditions
this shear-induced skin friction drag can account for almost 50% of the total
drag force on the body and hence this is the reason much interest surrounds
the minimisation of this component.

Laminar Flow Control (LFC) is the field of aerodynamics focused on
minimising skin friction, or viscous drag. The viscosity of a fluid, and the
shear interactions between the layers of fluid and the aerodynamic body give
rise to a boundary layer, a region of fluid with diminished fluid velocity and
momentum. Laminar Flow Control aims to minimise the momentum deficit
within the boundary layer by manipulating the flow within and encouraging
favourable flow conditions to exist and be maintained. In essence, Laminar
Flow Control attempts to maintain laminar flow within the boundary layer,
improving the stability of the flow, delaying the onset of turbulence and the
formation of a turbulent boundary layer that develops significantly more
drag than an equivalent laminar structure.

A number of techniques exist for controlling and maintaining laminar
flow within a boundary layer. Examples include compliant surfaces, acoustic
arrays and suction, and all share the common trait of complexity, which
to date has limited the application of such systems in the real world. In
the search for simpler Laminar Flow Control technology, attention has been
turned towards Dielectric Barrier Discharge (DBD) plasma actuators as a
possible alternative. Through the formation of a small volume of plasma,
these actuators are capable of producing an electrostatic body force that can
couple with the surrounding air and bring about a jetting effect without the
addition of mass. This jetting effect, if controlled effectively, can potentially
favourably augment a boundary layer flow and lead to a delay in transition.
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The work discussed in this thesis represents a contribution to the field
of DBD-based Laminar Flow Control. The aim was to further investigate
the potential of plasma actuators for improving the hydrodynamic stability
of a boundary layer and hence contribute to the limited published data
pertaining to this field. The research involved the development of a DBD-
based LFC system in which plasma actuators were used to augment the
most fundamental of boundary layer flows, the flat plate, Blasius-type. By
measuring the augmentation to the velocity profile of the boundary layer
brought about by the LFC system, the stability of the flow was able to be
investigated and hence the feasibility of the technology determined.

The plasma actuators utilised in this research were designed such that
control could be achieved over the shape of the induced jetting profile. To min-
imise adverse interactions with boundary layer flows, the plasma actuators
were designed so that the magnitude and position of the maximal induced
jetting velocity could be controlled. After consultation of the literature, novel
actuators utilising orthogonally arranged electrodes were conceived and
tested in a parametric study. Through variation of the distance to which the
exposed electrode sat proud above the surface of the actuator, in addition
to variation of the applied voltage, it was found that the desired control
over the induced jet could be attained, leading to the identification of two
mechanisms through which the DBD-based LFC system could be tuned. The
details of the design and development of these orthogonal actuators and the
effect of the electrode height on the jetting characteristics of the devices can
be found in Gibson et al. (2009a) and Gibson et al. (2009b).

After identifying suitable and novel actuator arrangements, a tuning
strategy was conceived to hasten the development of the LFC system. Rather
than implementing the actuators and measuring the response of the boundary
layer to the plasma first, Linear Stability Theory was instead used to identify
desirable boundary layer augmentation objectives for the LFC system. Linear
Stability Analyses (LSAs) were performed on a number of idealised boundary
layer flows, obtained from curve fitting analytical functions to published DBD-
augmented boundary layer data, as well as from boundary layer theory. The
LSAs were conducted using an Orr-Sommerfeld Equation solver developed
as part of this research, which utilises a finite differencing scheme. The
outcome of this comparison process was that the developed DBD-based LFC
system was used to attempt to augment the boundary layer such that the
flow attained an asymptotic suction velocity profile, which would give the
boundary layer a limit of stability almost two orders of magnitude greater
than that of the base flow, and hence significant robustness to transition.

The conceived DBD-based LFC system was implemented into a Blasius-
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type boundary layer which was formed over the Flat Plate Rig (FPR) designed
and developed as part of this research. Initially a single actuator was utilised,
positioned just upstream of the location of the critical Reynolds Number
(limit of stability) of the flow. Due to the design of the FPR and the actuators
utilised, it was possible to study the response of the layer to the plasma
with and without a mild suction effect, introduced through a 5mm wide slot
that was required for operation of the actuator. This mild suction effect was
measured to be approximately 4Pa, and by itself was found to be insufficiently
strong enough to augment the flow such that it attained the characteristics of
a boundary layer with uniform wall suction. With the FPR, measurements of
the velocity profile of the boundary layer with and without flow control were
made around the critical Reynolds Number location of the flow (80000 <

Rex < 120000), which allowed the changes to the stability of the flow to be
studied.

As discussed in Gibson et al. (2012) the initial results of the DBD-based
LFC system showed that the plasma was adversely affecting the stability of
the flow. Subsequent tuning of the system was therefore performed through
variation of the applied voltage of the actuator. From this tuning it was found
that an actuator operated with an applied voltage of 19.0kVpp (referred to as
a low-voltage actuator) in conjunction with the mild suction effect, produced
boundary layer characteristics akin to those of a flow exposed to uniform
wall suction. In addition, an actuator operated with an applied voltage of
21.4kVpp (referred to as a high-voltage actuator) was found to adversely affect
the stability, even more so in the absence of the mild suction effect. The single
low-voltage actuator was found to be able to maintain uniform wall suction-
like characteristics for 50mm beyond the trailing edge of the encapsulated
electrode. This finding pertaining to the use of the low-voltage actuator
highlighted the potential of a single DBD device to develop uniform wall
suction-like characteristics with only a mild suction effect through a single
slot, and hence in a less complex fashion than conventional suction systems.

An attempt was made to maintain the favourable benefits of the single,
low-voltage actuator by using two such actuators placed in series. However,
the effect of this combined double-actuator/suction system differed only
slightly from the suction-only system (with two slots instead of one), meaning
that in this configuration, the use of the plasma was somewhat superfluous.
Hence it could be concluded from the results of the research that a single
low-voltage actuator operated in conjunction with a mild suction effect
is more effective as a LFC system than a single mild-suction slot, but a
combined double-low-voltage actuator/suction system is no better than a
simpler and less energy consuming double-mild-suction slot system. It is,
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however, anticipated that through the undertaking of future works, utilising
additional actuators that have undergone further tuning, a LFC even more
effective than the double suction slot system tested in this research will
ultimately be developed.
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Symbols

Greek

• α Velocity disturbance wavenumber, angle of attack

• Γ FDS variable

• ∆ FDS variable, incremental change

• δ Boundary layer thickness, FDS variable, incremental change

• δw Streamline displacement due to presence of pressure tube close to a
wall

• δ∗ Boundary layer displacement thickness

• ε Apparent shift in probe position

• ε Dielectric coefficient

• η Non-dimensional distance normal to wall

• θ Boundary layer momentum thickness

• Λ Pohlhausen shape factor

• λ Velocity disturbance wavelength

• λD Debye length

• µ Dynamic viscosity

• ν Kinematic viscosity

• ξ Suction parameter, arbitrary variable

• ρ Fluid density

xxiii



xxiv NOMENCLATURE

• ρc Charge number density

• σ Standard deviation

• Φ Discretised velocity disturbance amplitude

• φ Velocity disturbance amplitude

• ϕ Electric potential

• χ Ratio of electrode width to electrode length

• ψ Stream function

• ω Velocity disturbance circular frequency

• ω̃ FDS variable

Roman

• A FDS variable

• a Plasma breakdown length perpendicular to actuator surface, arbitrary
Falkner-Skan variable, arbitrary polynomial coefficient, super-ellipse
major radius, local speed of sound

• B FDS variable

• b Plasma breakdown length parallel to actuator surface, arbitrary
Falkner-Skan variable, arbitrary polynomial coefficient, electrode span-
wise length, super-ellipse minor radius, cavity width

• C Capacitance, FDS variable

• Cp Pressure coefficient

• c Velocity disturbance propagation velocity, arbitrary polynomial coef-
ficient

• c̃ FDS variable

• cl Airfoil lift coefficient

• D Diode

• d Separation distance between electrodes, pressure tube outside diame-
ter, cavity depth



xxv

• E Electric field strength

• E0 Peak electric field strength, Output voltage of hot wire circuit

• Eb Breakdown electric field strength

• e exponential e

• ec Electron charge

• err Error

• exp exponential e

• f Body force, applied frequency, measurement frequency, plasma body
force, arbitrary Falkner-Skan variable, arbitrary Glauert wall jet variable

• G arbitrary variable

• g Arbitrary Falkner-Skan variable, arbitrary function, acceleration due
to gravity

• H Boundary layer shape factor, Investigation height boundary

• h Discretisation distance (y-direction),

• I Length of electrical network (plasma actuator), Gain of current-
boosting amplifier (hot wire circuit)

• I0 Output current of hot wire circuit

• i Squareroot of negative one

• J Number of points in the y-direction

• K Gain of voltage-boosting amplifier (hot wire circuit)

• k1 Electirc field gradient (x-direction)

• k2 Electirc field gradient (y-direction)

• k Discretisation distance (x-direction), Trip wire diameter

• k Discretisation distance (x-direction), Trip wire diameter

• L Electrode chordwise length, left-hand side

• ln Natural logarithm
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• M Momentum

• m Arbitrary Falkner-Skan variable

• N Maximum number, number of points in the x-direction

• n Number, amplification factor

• P Arbitrary point, static pressure

• q Dynamic pressure

• R Resistance, right-hand side

• Re Reynolds number

• r Variable set (matrix equation)

• r̃ FDS variable

• s Arbitrary variable

• t Time, thickness

• Tu Turbulence intensity

• U Arbitrary variable

• U∞ Freestream velocity

• u Mean velocity, local x-direction velocity

• V Velocity vector, applied voltage

• v Local y-direction velocity

• v0 Uniform suction velocity

• w Local z-direction velocity

• x x-direction (chordwise), boundary layer development length, parallel
to wall

• y y-direction, normal to wall

• z z-direction (spanwise), height above the Earth’s surface

Math

• ∞ Limit at infinity
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Subscripts

Greek

• δ Based on boundary layer thickness

• δ∗ Based on boundary layer displacement thickness

Roman

• a Pertaining to air, arbitrary resistance

• abs Absolute (error)

• app Applied to actuators

• b Body, pertaining to the backward-going discharge cycle, balance (hot
wire bridge)

• Blasius Pertaining to Blasius flow

• C Based on chord length

• c Pertaining to a charge, arbitrary resistance

• Calculated Pertaining to calculated data

• Cold At cold temperatures

• Control Controlled

• corrected Corrected mesurement value

• crit Critical (point of stability)

• d Pertaining to the dielectric, based on pressure tube outside diameter

• e Edge

• elec Pertaining to the electrodes

• encapsulated Pertaining to the encapsulated electrode

• exp Distance to which exposed electrode sits proud above surface

• exposed Pertaining to the exposed electrode

• f Pertaining to the forward-going discharge cycle



xxviii NOMENCLATURE

• f it Pertaining to a fitted curve

• h Horizontal (x) direction, voltage overshoot

• i Imaginary component, output of CTA bridge, ith element

• instrument Pertaining to the instrument

• j Due to plasma suction

• jet Jet

• k Based on trip wire diameter

• L Based on non-dimensional length item LE Pertaining to the leading
edge

• max Maximal

• measured Pertaining to measured data

• N Pertaining to the maximum number N

• n Pertaining to the number n

• Op Operating (hot wire bridge)

• Published Pertaining to published data

• pp Peak-to-Peak

• qi Offset (voltage)

• r Real component

• rel Relative (error)

• S Arbitrary point of interest

• scatter Scatter (measurements)

• spatial Spatial

• t Eddy viscosity

• Tot Total

• tr Transition

• v Pertaining to the vertical (y) direction



SUPERSCRIPTS xxix

• w Due to the wall, hot wire

• x Pertaining to the x-direction

• y Pertaining to the y-direction

Mathematical

• ∞ In the freestream

• 0 At the wall

Superscripts

• −→ Vector quantity

• ′ Differentiation with respect to the normal direction

• ´ Fluctuating quantity

• ? Non-dimensional

• ˙ Derivative with respect to time

Acronyms

• AC Alternating Current

• CTA Constant Temperature Anemometry

• DBD Dielectric Barrier Discharge

• DC Direct Current

• DE Direct Equation

• DOC Direct Operating Costs

• FDS Finite Differencing Scheme

• FPR Flat Plate Rig

• ID Internal Diameter

• KBM Keller’s Box Method

• LFC Laminar Flow Control
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• LSA Linear Stability Analysis

• LST Linear Stability Theory

• NRMSD Normalised-Root-Mean-Square-Deviations

• OD Outside (External) Diameter

• OHR Over Heat Ratio

• OSE Orr-Sommerfeld Equation

• PDE Partial Differential Equation

• PDF Portable Document Format

• RSE Rayleigh Stability Equation

• TS Tollmien Schlichting

• ZPG Zero Pressure Gradient
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