An Investigation of Terahertz Near-Field Imaging

by

Hungyen Lin

B.E. (Computer Systems, First Class Honours), The University of Adelaide, Australia, 2003M.Eng. (Manufacturing Engineering, Masters by Research), University of South Australia, Australia, 2006

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical & Electronic Engineering Faculty of Engineering, Computer & Mathematical Sciences The University of Adelaide, Australia

12 December, 2011

Supervisor: Prof Derek Abbott Co-supervisor: Associate Prof Christophe Fumeaux Co-supervisor: Dr Bernd Michael Fischer

© 2011 Hungyen Lin All Rights Reserved

Contents

Content	ts		iii
Abstrac	t		ix
Statem	ent of (Driginality	xi
Acknow	ledgme	ents	xiii
Conven	tions	:	xvii
Publica	tions		xix
List of	Figures		xxi
List of	Tables	x	xvii
Chapte	1. Int	roduction and Motivation	1
1.1	Introd	uction	3
	1.1.1	Terahertz radiation	3
	1.1.2	Major THz radiation sources	3
	1.1.3	THz radiation characteristics & applications	6
1.2	Motiva	ation	7
1.3	Signifi	cance of microscopy	7
1.4	Thesis	overview	8
1.5	Origin	al contributions	10
Chapter	2. Pu	Ised THz Radiation Generation & Detection	13
2.1	Pulsed	THz radiation sources	15
	2.1.1	Optical rectification	15
	2.1.2	Photoconductive antenna	21
2.2	Pulsed	THz radiation detectors	23

	2.2.1	Electro-optical sampling	23
	2.2.2	Photoconductive sampling	25
2.3	THz s	ystems	28
	2.3.1	PCA emission PCA detection	28
	2.3.2	PCA emission electro-optical detection	29
	2.3.3	Electro-optical emission PCA detection	31
2.4	Chapt	er summary	31
Chapte	r 3. Te	erahertz Near-Field Imaging Techniques: Review	35
3.1	Introd	uction	37
3.2	Princi	ples of near-field microscopy	38
3.3	Review	w of THz near-field imaging	39
	3.3.1	Aperture based techniques	39
	3.3.2	Tip based techniques	42
	3.3.3	Highly focused beam techniques	47
3.4	Chapt	er summary	53
Chapte	r4. Fa	r-Field Modelling of Focused THz Radiation Generation	55
Chapte 4.1	r 4. Fa Introd	r-Field Modelling of Focused THz Radiation Generation	55 57
Chapte 4.1 4.2	r 4. Fa Introd Exper	r-Field Modelling of Focused THz Radiation Generation	55 57 60
Chapte 4.1 4.2	r 4. Fa Introd Exper 4.2.1	Inter-Field Modelling of Focused THz Radiation Generation Interview Interview <t< td=""><td>55 57 60 60</td></t<>	55 57 60 60
Chapte 4.1 4.2	r 4. Fa Introd Exper 4.2.1 4.2.2	Inter-Field Modelling of Focused THz Radiation Generation Interview Interview <t< td=""><td> 55 57 60 60 61 </td></t<>	 55 57 60 60 61
Chapte 4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume	Inter-Field Modelling of Focused THz Radiation Generation Auction	 55 57 60 60 61 67
Chapte 4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1	Inter-Field Modelling of Focused THz Radiation Generation Interview Interview Pinhole Interview Interview Prinkole Interview	 55 57 60 60 61 67 67
Chapte 4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2	Inter-Field Modelling of Focused THz Radiation Generation Intervention Intervention Pinhole Intervention Knife-edge profile Intervention Intervention High frequency structural simulator Beam modelling as radiation from a Gaussian aperture	 55 57 60 60 61 67 67 68
Chapte 4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3	r-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile erical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Equivalent crossed-dipole model	55 57 60 60 61 67 67 68 68
4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4	r-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile erical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Equivalent crossed-dipole model Far-field pattern	 55 57 60 60 61 67 67 68 68 71
Chapte 4.1 4.2 4.3	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result	r-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile erical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Far-field pattern Far-field pattern	 55 57 60 60 61 67 67 68 68 71 72
 Chapte 4.1 4.2 4.3 4.4 	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result 4.4.1	r-Field Modelling of Focused THz Radiation Generation nuction iment iment Pinhole Knife-edge profile wrical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Far-field pattern s and discussion Experimental results	 55 57 60 60 61 67 67 68 68 71 72 72
 Chapte 4.1 4.2 4.3 4.4 	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result 4.4.1 4.4.2	r-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile wrical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Far-field pattern stand discussion Experimental results Model validation	 55 57 60 60 61 67 67 68 68 71 72 72 72 72
Chapte 4.1 4.2 4.3 4.4 4.4	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result 4.4.1 4.4.2 Ramif	r-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile erical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Far-field pattern Far-field pattern experimental results Model validation	55 57 60 61 67 67 68 68 71 72 72 72 72 74
Chapte 4.1 4.2 4.3 4.3 4.4 4.4 4.5 4.6	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result 4.4.1 4.4.2 Ramif Crysta	ar-Field Modelling of Focused THz Radiation Generation auction iment iment Pinhole Knife-edge profile wrical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Far-field pattern Equivalent crossed-dipole model Far-field pattern example and discussion Model validation ications to THz al heating effects	55 57 60 61 67 67 68 68 68 71 72 72 72 72 74 75
Chapte 4.1 4.2 4.3 4.3 4.4 4.4 4.5 4.6 4.7	r 4. Fa Introd Exper 4.2.1 4.2.2 Nume 4.3.1 4.3.2 4.3.3 4.3.4 Result 4.4.1 4.4.2 Ramif Crysta Chapt	ar-Field Modelling of Focused THz Radiation Generation nuction iment iment Pinhole Knife-edge profile erical simulation High frequency structural simulator Beam modelling as radiation from a Gaussian aperture Equivalent crossed-dipole model Far-field pattern es and discussion Model validation ications to THz er summary	 55 57 60 60 61 67 68 68 71 72 72 72 74 75 77

Chapte	r 5. M	odelling of Terahertz Microscope	87
5.1	Introd	uction	89
5.2	Enhar	cement replication	90
	5.2.1	Experiment	90
	5.2.2	Results	91
5.3	Terahe	ertz microscope modelling	94
	5.3.1	Experimental near-field beam characterization	95
	5.3.2	Modeling of the THz knife-edge experiment	96
	5.3.3	Results and discussion	103
5.4	Terahe	ertz microscopy application	109
5.5	Chapt	er summary	111
Chapte	r 6. Tl	nesis Summary	113
6.1	Thesis	conclusions	115
	6.1.1	Review of THz near-field imaging	115
	6.1.2	Far-field modelling of focused THz radiation generation	115
	6.1.3	Terahertz microscope modelling	116
	6.1.4	Summary	116
6.2	Future	ework	116
	6.2.1	Far-field modelling of focused THz radiation generation	116
	6.2.2	Terahertz microscope modelling	117
6.3	Summ	ary of original contributions	117
Append	lix A. 1	Ferahertz Time Domain Spectroscopy Setup	119
A.1	Optica	al alignment	121
	A.1.1	Practical safety advice	121
	A.1.2	Practical alignment tips	121
A.2	Hardv	vare specification	123
	A.2.1	IR beam path	123
	A.2.2	THz radiation emitters & detectors	125
	A.2.3	THz radiation path	127
	A.2.4	Mechanical components	128
A.3	Sampl	e	129

Contents

Append	ix B. N	Naterial Characterisation in THz PCA Manufacture	131
B.1	Introd	uction	133
B.2	Ultrafa	ast semiconductor dynamics	136
B.3	Radiat	tion damaged silicon-on-sapphire	137
	B.3.1	Ion implantation	137
B.4	Semi-i	nsulating gallium arsenide	139
B.5	Carrie	r lifetime measurement	141
	B.5.1	Drude model	141
	B.5.2	Experimental setup	142
B.6	Materi	ial characterisation	146
	B.6.1	Low-temperature gallium arsenide	146
	B.6.2	Semi-insulating gallium arsenide	148
	B.6.3	Silicon-on-sapphire	148
B.7	Chapt	er summary	149
Append	lix C. T	Ferahertz Near-Field Material Detection	155
C.1	Systen	n setup	157
C.2	Enhan	cement structure	158
	C.2.1	Structure design	158
	C.2.2	Structure simulation	159
	C.2.3	Structure fabrication	159
	C.2.4	Experimental result	160
C.3	Substr	ate structure	161
	C.3.1	Structure design	161
	C.3.2	Structure fabrication	161
Append	ix D. C	Gas Recognition with Terahertz Time Domain Spectroscopy	173
D.1	Introd	uction	175
	D.1.1	Gas sensing technologies	175
	D.1.2	Fundamental considerations	176
	D.1.3	Real-time gas recognition	177

D.2	Featur	e extraction	177
	D.2.1	Spectroscopic catalog features	178
	D.2.2	Sample spectral features	179
	D.2.3	Reference-free spectral features	181
	D.2.4	Feature encoding	181
D.3	Featur	e selection	181
D.4	Euclid	ean distance classifier	182
Append	ix E. S	oftware Implementation	191
E.1	Data a	cquisition	193
	E.1.1	THz-TDS algorithm	193
	E.1.2	Knife-edge algorithm	193
	E.1.3	Imaging algorithm	193
E.2	Data p	processing	193
	E.2.1	Code listings	197
Bibliogr	aphy		213
Glossary	/		229
Acronyms			231
Index			233
Biograp	hy		237

Abstract

The spatial resolution of conventional terahertz (THz) images is limited by the wavelength of THz radiation (0.3 mm for 1 THz) and is therefore in the submillimetre range. The general motivation behind an increased spatial resolution is to distinguish objects separated by sub-wavelength distances and to cater for a smaller sample size. Owing to the infancy of the technology, much work has to be carried out to improve the system resolution. The focus of this Thesis is not to further improve the resolution, but rather, take a step back to elucidate further understanding THz near-field approach. This thesis, in the scope of engineering, investigates the focused beam near-field technique through experimentation and modelling with an aim to provide a better understanding in the far-field and near-field regime. The work aims to assist with the future implementation of THz near-field imaging systems. This body of work performs far-field studies of a sub-wavelength THz source (Chapter 5) and a near-field investigation for potential microscopic application (Chapter 6). In particular, this can be outlined into two categories:

Far-field studies of a sub-wavelength THz source focus on modelling the source as a radiating Gaussian aperture and illustrate the breakdown of the paraxial approximation at low THz frequencies. The findings show that the shape of the radiation pattern causes a reduction in detectable THz radiation and hence contribute significantly to low signal-to-noise ratio in THz radiation generation. The investigation can apply without a loss of generality to other types of sub-wavelength sources for THz generation, such as, in photoconduction and plasma generation. Simulation of the laser heating effects from prolonged intense exposure of a highly confined optical beam on the THz emitter is also conducted.

The near-field investigation of a sub-wavelength THz source in a THz emitter also models the source as a radiating Gaussian aperture. Based on realistic parameter values, the model allows for THz beam characterisation in the near-field region for potential microscopy applications. The proposed validated numerical model therefore aids in the quantitative understanding of the performance parameters. The work can be applied to other focused beam THz techniques such as photoconductive antennas without a loss of generality. Thin THz emitters have been reported to generate THz radiation power enhancement. Empirical investigation of a reported unexpected thin crystal power enhancement is also conducted.

In addition to these parts of the original contributions, the Thesis offers an introductory background to THz-TDS and THz near-field imaging. Three side investigations are described in the appendices: (i) THz photoconductive antenna material characterisation, (ii) THz near-field material detection, and (iii) Gas recognition with THz-TDS.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Hungyen Lin and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

December 12, 2011

Signed

Date

Acknowledgments

I gratify this opportunity and glorify this Thesis to the Lord and His precious son Jesus Christ. He is truly the amazing rock in my life no matter what happens and the source of everything. I praise Him!

The fruition of this Thesis has come about because of many people and a few lines here are not sufficient to express my uttermost gratitude and appreciation.

I would like to express my gratitude to my principal supervisor Prof Derek Abbott for accepting me as a PhD candidate in 2006 and introducing to me the glorious world of THz near-field imaging. His unwavering optimism, linguistic finesse, ever-so encouraging attitude, generous travel financial assistance has been helpful in propelling my research forward. I have had the pleasure to work alongside two further great scientists, my co-supervisors, Dr Bernd M. Fischer and A/Prof Christophe Fumeaux. Seeing and experiencing how internationally renowned scientists conduct fundamental research is the very reason why I pursued a PhD following a Masters by research degree. Together, they have defined the word quality for the research. Dr Bernd M. Fischer's long experience with THz radiation has been of great importance to my research. His practical experience in THz-TDS systems underpins the many setups that we house in the Australian National T-ray Facility today. His knowledge of the field and international links is the inspiration behind THz photoconductive antenna development in Appendix D. I am also deeply grateful to Bernd, Birgitte, and family for their warm hospitality during my research visit to Freiburg THz Physics Group, Germany and Institute of Saint Louis, France in February 2011. Another person that I am strongly indebted to is A/Prof Christophe Fumeaux. His theoretical understanding of the electromagnetic regime spanning from optics to microwaves, complemented with proficiency in numerical simulation, has consolidated with my THz near-field experiments. Christophe has always welcomed scientific discussions and has given me critical technical feedback. I have thoroughly enjoyed our collaboration and I am thankful for his understanding and patience. I also thank Prof Masayoshi Tonouchi for hosting my short-term stay at Osaka University, A/Prof Hironaru Murakami for warm hospitality and Dr Iwao Kawayama for technical discussions.

I also like to express my appreciation to the staff of The School of Electrical & Electronic Engineering at The University of Adelaide. To the technical staff, Mr Ian Linke, Mr Alban O'Brien and Mr Pavel Simcik for their practical suggestions and fabrication of samples in the midst of tight time frames. Mr Danny Di Giacomo for his friendliness and logistical supply of parts. The administrative staff, Mrs Rose-Marie Descalzi, Mrs Ivana Rebellato and Ms Philomena Jensen-Schmidt for their kindness and assistance. To the supervisors of the courses that I tutored: A/Prof Mike Liebelt, Prof Lang White and Dr Benham Jamali; it was great to work with you all.

While a PhD is a solitary experience by nature, I have had the privilege to interact with all the people at the Adelaide T-ray Group, the School and Osaka University. I would specially like to acknowledge and thank Mr Benjamin Ung and Dr Withawat Withayachumnankul, for being supportive colleagues and friends. Much of the work on THz systems setup and uncertainty analysis resulted from our collaboration. I would also like to thank Mr Henry Ho, Mr Shaoming Zhu, and Mr Andrew Li for interesting friendship and being great gym buddies, and Ms Shaghik Atakaramians, Dr Gretel M. Png and Mr Mayank Kaushik for fruitful discussions and encouragement. Other people include Dr Jegathisvaran Balakrishnan and Inke Jones. Special mention to Dr Samuel P. Mickan, who has provided his optical component drawings that are vastly used throughout this Thesis.

I have had the privilege to serve alongside many postgraduate students in the executive committee of Electrical and Electronic Engineering Society of Adelaide University (EEESAU). Special thanks to the executive members Prof Bevan Bates, Dr Brian Ng, Mr Luke Balzan, Mr Simon Knight, Mr Daniel Kelly, Dr Muammar Kabir, Mr Robert Moric, Mr Adam Burdeniuk, Mr James Kitchener, Ms Hui Min Tan and Mr Barry Yang. It was a pleasure to work with you all for the greater good of the school. Despite hectic schedules, I have enjoyed weekly Christian bible study and fellowship with Dr Wen Soong, Mr Greg Pullman, Mr David Bowler, Mr Matthew Trinkle in the school and Mr Geoff Lin at Evangelical Society at the university. I appreciate the sacrifice and commitment that you all put in reminding us of God's Word in our lives. Other postgraduates in the school that I have become well acquainted with include Mr Omid Kavehi, Mr Mostafa Rahimi, Ms Taraneh Aria, Mr Ruiting Yang, Mr Danny Wong, and Mr Arash Mehdizadeh. Experiences in Japan was paramount to my spiritual growth. I treasure the time with Ms Tatiane Teru Takahashi and I look forward in a journey together. I would like to thank the following people that I met whilst in Osaka University; Mr Kazunori Serita, Mr Yuki Sano, Ms Gong Qian, Mr Andreas Glossner, Mr Weiming Xu, Mr Shinya Kikuta, Mr Yuki Maekawa, Ms Mayo Iwami, Ms Azusa Ebisuya and Ms Makie Tachikawa, I thank you all for the warm friendship and the precious moments together.

Outside research, I would like to express my deepest gratitude to my family especially my parents and sister for their abundance in love, advice, words of wisdom and unwavering support that I know I can always count on no matter what. I would also like to thank my fellow brothers and sisters at Hope Christian Fellowship, Holy Trinity Church and Osaka International Church for their patience, love and encouragement towards Christ.

Finally, I gratefully acknowledge the many funding agencies whose generous grants facilitated this research. This was was enabled by Australian Postgraduate Award, Australian Research Council (ARC) Grant-Funded Scholarship, IEEE Photonics Society Graduate Student Fellowship, DR Stranks Postgraduate Travelling Fellowship, The University of Adelaide Research Abroad Scholarship, IEEE South Australia Section Travel Assistance Fund and Barbara Crase Bursary from the Australian Federation of University Women (AFUW). This work is mainly funded by the ARC project number DP09888673. Special thanks are due to Department of Education, Employment and Workplace Relations and the Endeavour Awards Management Team for the funding and an opportunity of a lifetime in the form of a one year educational exchange to Institute of Laser Engineering at Osaka University in Japan.

Conventions

- **Typesetting** : This Thesis is typeset using the LATEX2e software. Processed plots and images were generated using Matlab 7.6 (Mathworks Inc.), Ansoft HFSS 11.0 (Ansoft Corporation), CorelDRAW 11 (Corel Corporation), and Adobe Illustrator CS3 (Adobe Systems Incorporated) was used to produce schematic diagrams and other drawings.
- **Spelling** : Australian English spelling has been adopted throughout, as defined by the Macquarie English Dictionary (Delbridge 2001). Where more than one spelling variant is permitted such as biassing or biasing and infra-red or infrared the option with the fewest characters has been chosen.
- System of units : The units comply with the international system of units recommended in an Australian Standard: AS ISO 1000—1998 (Standards Australia committee ME/71, Quantities, Units, and Conversion 1998).
- **Physical constants** : The physical constants comply with a recommendation by the Committee on Data for Science and Technology: CODATA (Mohr and Taylor 2005).
- **Frequency band definition** : The terahertz spectrum from 0.1 to 10 THz is referred to as terahertz radiation as opposed to 'T-rays' in Abbott and Zhang (2007). This is because of the growing popularity of terms such as 'terahertz time-domain spectroscopy—THz-TDS' and 'terahertz gap' in the community.
- **Referencing** : The Harvard style is used for referencing and citation in this Thesis.

Publications

Journal publications

- UNG-B. S. Y., FUMEAUX-C., LIN-H., FISCHER-B. M., NG-B.-W.-H., AND ABBOTT-D. (2012). A low-cost ultra-thin polymer broadband terahertz beam-splitter, *Opt. Express*, **20**(5), pp. 4968–4978.
- WITHAYACHUMNANKUL-W., LIN-H., SERITA-K., SHAH-C. M., SRIRAM-S., BHASKARAN-M., TONOUCHI-M., FUMEAUX-C., AND ABBOTT-D. (2012). Sub-diffraction thin-film sensing with planar terahertz metamaterials, *Opt. Express*, **20**(3), pp. 3345–3352.
- KHODASEVYCH-I. E., SHAH-C. M., SRIRAM-S., BHASKARAN-M., WITHAYACHUMNANKUL-W., UNG-B. S. Y., LIN-H., ROWE-W. S. T, ABBOTT-D, AND MITCHELL-A. (2011). Elastomeric silicone substrates for terahertz fishnet metamaterials, *Appl. Phys. Lett.*, doi: 10.1063/1.3665180.
- LIN-H., FUMEAUX-C., UNG-B. S. Y., AND ABBOTT-D. (2011). Comprehensive modeling of THz microscope with a sub-wavelength source, *Opt. Express*, **19**(6), pp. 5327–5338.
- LIN-H., FUMEAUX-C., FISCHER-B. M., AND ABBOTT-D. (2010b). Modelling of sub-wavelength THz sources as gaussian apertures, *Opt. Express*, **18**(17), pp. 17672–17683.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., LIN-H., AND ABBOTT-D. (2008). Uncertainty in terahertz time-domain spectroscopy measurement, *Journal of the Optical Society of America B: Optical Physics*, **25**(6), pp. 1059–1072.
- WITHAYACHUMNANKUL-W., PNG-G., YIN-X., ATAKARAMIANS-S., JONES-I., LIN-H., UNG-B.-S. Y., BALAKRISHNAN-J., NG-B.-W.-H., FERGUSON-B., MICKAN-S., FISCHER-B., AND ABBOTT-D. (2007b). T-ray sensing and imaging, *Proceedings of the IEEE*, **95**(8), pp. 1528–1558.

Conference publications

- LIN-H., FUMEAUX-C., FISCHER-B. M., AND ABBOTT-D. (2011). Sub-wavelength THz source modelling, International Symposium on Terahertz Nanoscience (TeraNano 2011) & Workshop of International Terahertz Research Network (GDR-I), Osaka, Japan, p. 255.
- LIN-H., FUMEAUX-C., FISCHER-B. M., AND ABBOTT-D. (2011). Near-field & far-field modelling of a sub-wavelength THz source, *36th International Conference on Infrared, Millimeter, and Terahertz*

Publications

Waves, Houston, USA, doi: 10.1109/IRMMW-THz.2011.6104774.

- SHAH-C. M., SRIRAM-S., BHASKARAN-M., KHODASEVYCH-I., WITHAYACHUMNANKUL-W, UNG-B, LIN-H., ABBOTT-D., AND MITCHELL-A. (2011). Microfabrication of flexible large-area Terahertz fishnet metamaterials, *International Conference on Materials for Advanced Technologies*, Singapore (Accepted on 1 March 2011).
- LIN-H., FISCHER-B. M., AND ABBOTT-D. (2010). Comparative simulation study of ZnTe heating effects in focused THz radiation generation, *35th International Conference on Infrared, Millimeter, and Terahertz Waves,* Rome, Italy, doi:10.1109/ICIMW.2010.561272.
- LIN-H., UNG-B. S. Y., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2009). Effect of crystal thickness in localized terahertz generation via optical rectification in ZnTe — preliminary investigation, 34th International Conference on Infrared and Millimeter Waves and Terahertz Waves, Busan, Korea, doi: 10.1109/ICIMW.2009.5325560.
- LIN-H., WITHAYACHUMNANKUL-W., FISCHER-B., AND ABBOTT-D. (2008). Gas recognition with terahertz time-domain spectroscopy and reference-free spectrum: a preliminary study, *33rd International Conference on Infrared and Millimeter Waves and Terahertz Waves*, Pasadena, USA, doi: 10.1109/ICIMW.2008.4665829.
- LIN-H., WITHAYACHUMNANKUL-W., FISCHER-B., MICKAN-S., AND ABBOTT-D. (2007). Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study, *Proceedings. of SPIE Photonics Asia*, **6840**, Beijing, China, art. no. 68400X.
- LIN-H., WITHAYACHUMNANKUL-W., FISCHER-B., MICKAN-S., AND ABBOTT-D. (2007). THz timedomain spectroscopy uncertainties *Joint 32nd International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics*, Cardiff, UK, pp. 222-223.
- WITHAYACHUMNANKUL-W., LIN-H., MICKAN-S. P., FISCHER-B. M., AND ABBOTT-D. (2007). Analysis of measurement uncertainty in THz-TDS *Proceedings SPIE Photonic Materials, Devices, and Applications II*, **6593** Gran Canaria, Spain, art. no. 659326L.
- LIN-H., FISCHER-B., MICKAN-S., AND ABBOTT-D. (2006). Review of THz near-field methods *Proceedings SPIE Smart Structures, Devices, and Systems III* 6414, Adelaide, Australia, art. no. 64140L.
- LIN-H., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2006). THz near-field microscopy a review Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, Shanghai, China, p. 441.

List of Figures

1.1	THz band	4
1.2	Thesis framework	9

2.1	Optical rectification for generating THz radiation	16
2.2	Photoconductive antenna for generating THz radiation	23
2.3	Electro-optical sampling for detecting THz radiation	26
2.4	Photoconductive dipole antenna for detecting THz radiation	27
2.5	PCA emission PCA detection THz system schematic	28
2.6	Pulse from PCA emission PCA detection THz system	29
2.7	Spectrum from PCA emission PCA detection THz system	30
2.8	PCA emission electro-optical detection THz system schematic	30
2.9	Pulse from PCA emission electro-optical detection THz system	31
2.10	Spectrum from PCA emission electro-optical detection THz system	32
2.11	Electro-optical emission PCA detection THz system schematic	32
2.12	Pulse from electro-optical emission PCA detection THz system	33
2.13	Spectrum from electro-optical emission PCA detection THz system	34

3.1	Collection mode probe	41
3.2	Confocal microscopy inspired setup	41
3.3	On-chip THz near-field detector	42
3.4	Tip with electro-optic detection	43
3.5	A tip based method by Chen <i>et al.</i> (2003)	44
3.6	Atomic force microscopic tip	45
3.7	Scattering-SNOM inspired setup	45
3.8	Tapered PCA probe	46
3.9	Low-loss dielectric waveguide	46

List of Figures

3.10	Laser terahertz emission microscope	48
3.11	Improved laser terahertz emission microscope	49
3.12	Dynamic Aperture	49
3.13	Peak electric field with different crystal thickness	50
3.14	Electro-optic THz microscope schematics	51
3.15	Electro-optic experimental setup in Lecaque <i>et al.</i> (2006)	51
3.16	Integrated GaP crystal	52
3.17	Metallic metal microstructures with SOS PCA detector	53
3.18	Terahertz chemical microscope setup in Kiwa <i>et al.</i> (2010)	53

4.1	True Gaussian beam	58
4.2	Gaussian beam depth of focus	59
4.3	Pinhole experiment for observing obliquity factor and paraxial theory .	61
4.4	Knife-edge experiment for observing obliquity factor and paraxial theory	62
4.5	Bird's eye view of the knife crystal system with a CCD camera	64
4.6	Parabolic mirrors placement	66
4.7	Effect of crystal parabolic distance on image formation	66
4.8	Experimental setup	67
4.9	High Frequency Structural Simulator model	68
4.10	Far-field distribution of a plane wave through the aperture	69
4.11	Gaussian aperture modeling methodology	70
4.12	Power spectrum at certain knife locations	73
4.13	Knife-edge profile of selected frequencies	74
4.14	Model validation at 0.375 THz	75
4.15	Model validation at 0.712 THz	76
4.16	Model validation at 1.35 THz	77
4.17	Model validation at 1.5 THz	78
4.18	Model validation at 1.91 THz	78
4.19	Model validation at 2.14 THz	79
4.20	Model validation at 2.51 THz	79

4.21	Illustration of goodness of fit	80
4.22	Detectable THz power percentage	81
4.23	ZnTe temperature increase for the high and low pump power density	82
4.24	ZnTe temperature increase for the high and low pump power density	83
4.25	Contour plot of penetration depth for high power density	84
4.26	Contour plot of penetration depth for low power density	85

5.1	Varying the excitation size	91
5.2	Thin crystal enhancement experimental setup	92
5.3	Varying excitation size	93
5.4	Pulse from thin electro-optical crystal and PCA detection	93
5.5	Spectrum from thin electro-optical crystal and PCA detection	94
5.6	Measured peak THz electric field for the thick crystal	95
5.7	Measured peak THz electric field for the thin crystal	96
5.8	Experimental setup	97
5.9	Two knife system	97
5.10	Bird's eye view CCD images of <i>x</i> -axis knife-edge	98
5.11	Bird's eye view CCD images of <i>y</i> -axis knife-edge	98
5.12	Dual-axis experimental knife-edge	99
5.13	Schematic of the numerical FVTD model	100
5.14	THz amplitude distribution at 0.8 THz	102
5.15	THz amplitude distribution at 2.4 THz	102
5.16	Normalized THz amplitude radiation pattern	103
5.17	Power spectrum at certain <i>x</i> -axis knife locations	104
5.18	X-axis knife-edge profile of selected frequencies	105
5.19	Power spectrum at certain <i>y</i> -axis knife locations	106
5.20	Y-axis knife-edge profile of selected frequencies	107
5.21	Model validation at 0.35 THz	107
5.22	Model validation at 0.615 THz	108
5.23	Model validation at 1.04 THz	108

List of Figures

5.24	Model validation at 1.46 THz	108
5.25	Model validation at 2.1 THz	109
5.26	Model validation at 2.5 THz	109
5.27	Contour plot along the <i>x</i> and <i>y</i> -axis of the THz beam profile at 50 μ m	110
5.28	THz microscopy application	111

A.1	Use of IR viewer card	122
A.2	Beam horizontal alignment	123
A.3	Femtosecond laser source	124
A.4	Beam splitters	125
A.5	Parabolic mirror	128
A.6	Near-field sample design	130

B.1	Low-temperature GaAs PCA 135
B.2	Silicon-on-sapphire PCA
B.3	SOS Wafers
B.4	Ion implantation on a test wafer
B.5	Uniform ion implantation with depth of sample
B.6	Optical pump probe schematic
B.7	Optimised optical pump probe schematic
B.8	Probe zero delay
B.9	Freiburg LT-GaAs test sample
B.10	Transient reflectivity measurements of LT-GaAs
B.11	Transient reflectivity measurements of SI-GaAs
B.12	Transient reflectivity measurements of unimplanted SOS 150
B.13	Transient reflectivity measurements of radiation damaged SOS with oxygen ions151
B.14	Transient reflectivity measurements of the radiation damaged SOS with silicon ions152
B.15	Carrier lifetime of radiation damaged SOS with oxygen and silicon ions 153

C.1	Scanning THz near-field imaging system
C.2	Mask structures
C.3	Mask design
C.4	Bow-tie near-field simulation in free-space
C.5	Simulated bow-tie near-field frequency response
C.6	Simulated bow-tie far-field transmission spectra
C.7	Photomask development
C.8	Device fabrication
C.9	Fabricated devices
C.10	Optical and THz image of bow-tie structure
C.11	Experimental bow-tie far-field transmission spectra
C.12	Square structures
C.13	Square aperture transmission spectra
C.14	Experimental design
C.15	Mask design
C.16	GaAs etching rate

D.1	The flow chart for the proposed gas recognition system
D.2	Spectra for reference, recovered reference, and water vapour
D.3	Absorption coefficient and extracted features
D.4	Water vapour absorption coefficient and reference-free spectrum 186
D.5	Absorption coefficient and extracted features for ammonia gas 187
D.6	Ammonia gas absorption coefficient with dynamic range
D.7	Data encoding for the catalog and sample spectral features
D.8	Column plot of the Euclidean distance measures

E.1	THz-TDS LabVIEW algorithm	194
E.2	LabVIEW algorithm for single axis sample scanning	195
E.3	LabVIEW algorithm for two axis sample scanning	196

List of Tables

4.1	Lens selection	63
4.2	ZnTe physical parameters	77
4.3	Initial experimental parameters	78
B.1	Photoconductive material properties	134
B.2	Oxygen ions implants	139
B.3	Silicon ion implants	140
B.4	Measured oxygen ion implanted silicon-on-sapphire carrier lifetimes	150
B.5	Measured silicon ion implanted siliconon sapphire carrier lifetimes	153