
Enabling Traceability

in Large-Scale RFID Networks

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

Yanbo Wu

Supervisor: Prof. Hong Shen, Dr. Quanzheng Sheng

School of Computer Science

The University of Adelaide

December, 2011

i

Table of Contents

1 Introduction . 2

1.1 RFID Enabled Traceability . 4

1.2 Supply Chain Management System: an Example 6

1.3 Research Issues . 8

1.4 Contribution Overview . 10

1.4.1 Peer-to-Peer Traceability Model and Architecture 10

1.4.2 Traceability Mining over Distributed RFID Streams 11

1.4.3 Traceability as a Service 12

1.4.4 Implementation and Performance Study 13

1.5 Dissertation Organization . 13

2 Background . 16

2.1 RFID Traceable Networks: Preliminaries 17

2.1.1 RFID Systems . 17

2.1.2 Traceable RFID Networks 21

2.2 Traceability in RFID Networks: Applications, Queries and Re-

quirements . 26

2.2.1 RFID Enabled Traceability Applications 26

2.2.1.1 Eliminating Inventory Inaccuracies 28

2.2.1.2 Inventory Shrinkage 29

2.2.1.3 Eliminating Wastage and Damage 29

ii

CONTENTS iii

2.2.1.4 Fine Grain Product Recalls 30

2.2.1.5 Anti-counterfeiting 30

2.2.2 Traceability Queries . 31

2.2.3 Requirements of Traceability Applications 35

2.2.3.1 System Development Requirements 35

2.2.3.2 Data Model Requirements 39

2.3 Overview of Traceability Models for RFID Data 42

2.3.1 DRER Model . 42

2.3.2 RFID Cuboid . 44

2.3.3 KAIST Trace Model . 46

2.3.4 SPIRE Model . 47

2.3.5 Comparison and Open Issues 49

2.4 Overview of Architectures for Traceable RFID Networks 50

2.4.1 EPCglobal Architecture Framework 52

2.4.2 BRIDGE . 55

2.4.3 IBM Theseos . 58

2.4.4 DIALOG . 59

2.4.5 Hierarchical P2P-based RFID Code Resolution Network . 60

2.4.6 Comparison and Open Issues 62

2.5 Summary . 66

3 MOODS . 68

3.1 The MOODS Model . 70

CONTENTS iv

3.1.1 The Key Traceability Functions 70

3.1.2 The Design of the MOODS Model 71

3.2 A P2P Traceable RFID Network Architecture 74

3.3 An Enhanced Model Maintenance Algorithm 77

3.3.1 The Overview of the Design 77

3.3.2 Determining the Width of the Sliding Window 79

3.3.3 The Key Factor : The Length of Prefixes 81

3.3.4 Prefix Triangle . 83

3.3.5 The Group-based Indexing Algorithm on Prefix Triangle . 87

3.3.6 Algorithm Analysis . 89

3.4 Traceability Query Processing Algorithms 90

3.4.1 Item Level Queries . 90

3.4.2 Statistical Queries . 91

3.4.3 Algorithm Analysis . 92

3.4.3.1 Item Level Queries 92

3.4.3.2 Statistical Queries 93

3.5 Replication and Fault Recovery 93

3.5.0.3 Hardware Faults 93

3.5.0.4 Network Faults 94

3.6 Related Work . 96

3.7 Summary . 99

4 Mining Moving Patterns . 102

CONTENTS v

4.1 Problem Definition . 104

4.2 The Architecture for Distributed Stream Mining 106

4.3 The TISH Model . 110

4.3.1 The Overview of TISH Design 110

4.3.2 Algorithm : RFID Stream Sampling 114

4.3.3 Algorithm : Update for the Current Slot 116

4.3.4 Algorithm : Merging with the Next Slot 117

4.4 Building TISH in a P2P Fashion 117

4.4.1 Tracing and Tracking Objects 118

4.4.2 Building the Flow Synopsis 120

4.4.3 The Business Neighbor Tree 124

4.4.4 Determining ws and we . 126

4.5 Performance Analysis . 128

4.5.1 Model Maintenance Cost 128

4.5.2 Performance of Building Flow Synopsis 131

4.6 Related Works . 132

4.6.1 Data Structures and Data Transformation 133

4.6.2 Knowledge Discovery . 134

4.6.3 Distributed Modeling and Query Processing 135

4.7 Summary . 137

5 Traceability as a Service . 138

5.1 Motivations and Challenges . 142

CONTENTS vi

5.2 The Architecture of PeerTrack Cloud 147

5.2.1 Modules of the Architecture 147

5.2.2 PT-T2S Data Model . 150

5.2.3 PT-S2 Data Model . 153

5.3 Data Partition and Replication 156

5.3.1 Point-Based Data Partition and Replication 158

5.3.2 Path-Based and Graph-based Data Partition and Replication159

5.4 Performance Analysis and Comparison 162

5.5 Related Work . 164

5.6 Summary . 166

6 Implementation and Performance Study 168

6.1 PeerTrack Platform: An Overview 169

6.2 Implementation Details . 173

6.2.1 Rule Engine . 174

6.2.2 Tracking Engine . 176

6.3 PeerTrack AMS: A Demonstration 178

6.4 Performance Study . 181

6.4.1 Performance Study on the P2P Architecture and MOODS 181

6.4.1.1 Performance Study on Scalability 181

6.4.1.2 Performance Study on Bandwidth Efficiency . . . 184

6.4.1.3 Performance Study on Load Balancing 186

6.4.2 Performance Study on the TISH Model 188

CONTENTS vii

6.4.2.1 Accuracy of TISH 190

6.4.2.2 The Cost of Model Maintenance 193

6.4.3 Performance Study on the PeerTrack Cloud 195

6.5 Summary . 197

7 Conclusions . 200

7.1 Summary . 200

7.2 Future Directions . 203

A Curriculum Vitae . 206

Bibliography . 216

List of Figures

1.1 Supply Chain Management Scenarios 7

2.1 Overview of an RFID System . 17

2.2 Reference Model of Traceable RFID Networks 22

2.3 RFID Data Model Overview : DRER Model 43

2.4 RFID Data Model Overview : RFID Cuboid 44

2.5 RFID Data Model Overview : Gateway-based RFID Cuboid . . . 45

2.6 RFID Data Model Overview : KAIST Trace Model 46

2.7 RFID Data Model Overview : SPIRE Model 48

2.8 EPCglobal Architecture Framework 53

3.1 MOODS Model Design Overview 72

3.2 P2P Traceable RFID Network Workflow 75

3.3 Group-based P2P Traceable RFID Network Workflow 78

3.4 Prefix Triangle Example . 84

3.5 Algorithm for Indexing a Group of Objects 88

3.6 An Example of Missing Readings 94

3.7 Replication of Indices . 95

3.8 Replication of MOODS . 95

4.1 The Architecture for Distributed Stream Mining 107

4.2 The Logarithmic Tilted Time Frame 111

4.3 An Example of Tilted Time Frame Series of Histograms 112

viii

LIST OF FIGURES ix

4.4 The Structure of a Slot in TISH 113

4.5 Algorithm to Update the LTTF Model 117

4.6 Algorithm to Merge the LTTF Model 118

4.7 Algorithm to Trace an Object . 119

4.8 Algorithm to Build Flow Synopsis 123

4.9 An Example of Sideway Problem 124

4.10 An Example of Business Neighbor Tree 125

4.11 An Example of Overlapped Sliding Windows 127

4.12 Example of Performance in Modeling Accuracy 129

4.13 Examples of Tracing Efficiency . 132

5.1 The Waste of Resources in Existing Deployment Scheme 143

5.2 Cloud Computing Architecture 144

5.3 PeerTrack Cloud Architecture . 147

5.4 Algorithm to Update Index in PT-T2S 151

5.5 Algorithm to Update Index in PT-T2S 153

5.6 PT-S2 Graph Model . 154

5.7 Example of PT-S2 Graph Model 155

5.8 Example of Partitioning Point-based Data 158

5.9 Example of Partitioning Path-based Data 160

5.10 Algorithm to Replicate the Graph-based Data 161

6.1 The Architecture of PeerTrack Platform 170

6.2 Screenshot of the Rule Editor . 175

LIST OF FIGURES x

6.3 Screenshot of the PeerTrack AMS Client 178

6.4 Scalability on Network Size . 183

6.5 Scalability on Data Volume . 184

6.6 Bandwidth Cost in Different Scenarios 185

6.7 Load Balancing with Different Schemes 187

6.8 Default Settings of Experiments for TISH 189

6.9 Patterns in Experiments for TISH 190

6.10 Accuracy of the Model for Different Patterns 191

6.11 Accuracy of the Model with Mixed and Random Pattern 192

6.12 Number of Network Calls vs. Time 194

6.13 Distribution of Number of Network Calls for Model Maintenance . 194

6.14 Query Processing Performance of PeerTrack Cloud 196

List of Tables

2.1 Notations in the Reference Model of Traceable Networks 25

2.2 Comparison: Data Models vs. Data Model Requirements 51

2.3 Comparison: Data Models vs. Supporting Traceability Queries . . 51

2.4 Comparison: System Architectures vs. System Development Re-

quirements . 65

4.1 Symbols in The Overview of TISH 112

5.1 Comparison of Performance in Different Architectures 164

6.1 Enabling Technologies in PeerTrack Platform 173

6.2 Testing Queries for Scalability of PeerTack and MOODS 182

xi

Abstract of the Dissertation

Enabling Traceability

in Large-Scale RFID Networks

by

Yanbo Wu

Doctor of Philosophy in Computer Science

The University of Adelaide, 2011

The emergence of radio frequency identification (RFID) technology brings sig-

nificant social and economic benefits. As a non line of sight technology, RFID pro-

vides an effective way to record movements of objects within a networked system

formed by a set of distributed and collaborating parties. A trail of such recorded

movements is the foundation for enabling traceability applications. While trace-

ability is a critical aspect of the majority of RFID applications, realizing trace-

ability for these applications brings many fundamental research and development

issues, including storage efficiency, query processing complexity, privacy etc.

In this dissertation, we present a novel approach to realize RFIID-based trace-

ability in large, autonomous and heterogeneous distributed networks. We first

propose a Peer-to-Peer (P2P) architecture, namely PeerTrack. PeerTrack does

not require any kind of centralized database for the RFID data or their index,

neither it requires RFID data to be fully shared to partners. In PeerTrack, only

a specific portion of data is requested by partners, when the access is necessary.

We introduce a distributed model, namely MOODS (a Model for mOving

Objects in Discrete Space), for the essential data structures of traceability.

xii

MOODS is maintained by a distributed index on the top of a structured Peer-

to-Peer overlay. We then propose efficient algorithms for the maintenance of

MOODS. The algorithms are optimized to consume statistically minimal cost of

bandwidth. Based on this model, we propose algorithms for efficient item-level

and statistical traceability query processing.

We also propose a traceability mining model for distributed RFID streams,

namely TISH (Tilted TIme Frame of Histogram). TISH takes advantages of

two important data mining tools, namely Tilted Time Series and Histogram, and

combines them to describe the patterns of RFID streams in the dimensions of

both time and space, and capture the dynamicity of the patterns. We propose

efficient algorithms to maintain TISH and algorithms that use it for traceability

query processing and RFID stream mining.

We present a platform, namely PeerTrack Cloud, to bring the aforementioned

RFID data modeling and traceability query processing techniques to the Cloud

Environments. The platform features specific traceability-oriented modules for

real-time query processing and efficient data storage.

The techniques proposed in this dissertation are implemented in “Asset Man-

agement System”, which is a collaborative project with a local company. Finally,

we conduct extensive performance studies of the proposed techniques. The ex-

perimental results reveal that our system i) is more scalable and outperforms the

centralized approach when the data volume or the network becomes larger; ii)

provides powerful programming interfaces for query processing; iii) is economy in

both storage and bandwidth; and iv) can be easily adopted in cloud computing

platforms.

xiii

Originality Statement

“Yanbo Wu certifies that this work contains no material which has been accepted

for the award of any other degree or diploma in any university or other tertiary

institution and, to the best of my knowledge and belief, contains no material

previously published or written by another person, except where due reference

has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library,

being made available for loan and photocopying, subject to the provisions of the

Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on

the web, via the Universitys digital research repository, the Library catalogue, also

through web search engines, unless permission has been granted by the University

to restrict access for a period of time.”

Yanbo Wu

December 1st, 2011

To my mother and father,

who made all of this possible,

for their endless encouragement and support.

Acknowledgments

It has been a great pleasure working with the faculty, staff, students at the Uni-

versity of Adelaide, during my tenure as a doctoral student, and I would like to

thank them all for such a great graduate school experience. My foremost thank

goes to my thesis supervisor Dr. Quanzheng Sheng, a talented teacher and pas-

sionate scientist. Dr. Sheng instilled a thirst for excellence in me, taught me how

to do high-quality research, and helped me think independently and creatively.

He not only guided my research, but also served as a mentor and role model as I

embarked on my academic career. I will forever cherish his full support during my

study. I also would like to thank Prof. Hong Shen, who gave me many valuable

suggestions to my research.

I thank my co-authors: Quanzheng Sheng, Hong Shen, Sherali Zeadally, Jian

Yu, Damith Ranasinghe and Jun Han, for their productive and enjoyable col-

laborations. I would like also to thank anonymous reviewers for their valuable

comments on earlier drafts of my papers.

I would like to thank my mother and father for their constant support and en-

couragement. They have been always being there whenever I needed them. I

also would like to thank my dearest friend, Chenke Yang, for not only giving me

valuable suggestions to my papers, but also supporting me spiritually.

Finally, I express my sincere appreciation to the University of Adelaide, who pro-

vided the Adelaide University Fee Scholarship (AFSI) and ARC-grant Funded

Scholarship and to Google Inc., who provided the Google PhD Top-up Scholar-

ship, to financially support my work in this dissertation.

xvi

Chapter 0. Introduction 1

Chapter 1

Introduction

Traceability refers to the capability to track the states (e.g. location) of goods,

discover information regarding its past state and potentially estimate the future

state. In the era of globalized economic, traceability becomes vital for efficient

business operations and decision making. It is fundamental to a wide range of

business applications such as inventory control, distribution planning, product

recalls and counterfeit detection.

Identification technology is the bridge to connect the physical world with

the digital one. Accurate and efficient identification is very important to realize

traceability applications. RFID (Radio Frequency Identification) is capable of

automatically extracting information from microelectronic tags attached to ob-

jects using radio waves. The identification is wireless and does not require the

line of light. RFID was first explored in 1940s [Lan05]. However, due to its high

cost and immaturity, its usage was limited in applications of small scale, such as

automatic checkouts and electronic toll collection.

In the past decade, research initiatives by academic organizations such as the

Auto-ID Labs1, industrial interests from companies (e.g., Wal-Mart) and govern-

ment initiatives (e.g., the United States Department of Defense) have rapidly es-

1http://www.autoidlabs.org

Chapter 1. Introduction 3

calated new developments and interests in RFID technology. Alongside, Moore’s

law has ensured that integrated circuits reduce in size, cost and power consump-

tion. Consequently, RFID systems have become more reliable, efficient and more

importantly, have become cheaper. These developments have resulted in an ex-

plosion in the number of RFID systems and applications.

“Networked RFID” [SLZ08b] is one of the important technological advances

that make the explosion possible. The basic idea behind “Networked RFID”

is to connect otherwise isolated RFID systems and other software. RFID tags

only carry an unambiguous ID, meanwhile other data pertaining to the objects,

including the past and current states are stored and accessed over the Internet.

“Networked RFID” brings significant and promising benefits to traceability ap-

plications. For example, it makes it possible for applications to automatically

analyze recorded RFID events to discover the current or past information of an

object, without physical access to it. Many organizations are planning or already

exploiting RFID to enable traceability. Wal-Mart, the world’s largest public cor-

poration by revenue, in 2005, mandated its top 100 suppliers to tag their pallets

and cases using RFID [Ang05]. The U.S. Department of Defense released a policy

on the use of RFID to its external suppliers and for internal operations in July

of 2005 [RCT06].

However, to reap such benefits, researchers must overcome a number of key

challenges. RFID-enabled traceability is not a single-layer problem. First of all,

large-scale global RFID networks have the potential to generate unprecedented

amounts of data. An important challenge therefore centers on the efficient man-

agement and sharing of the data within traceability applications. The system

architecture must be scalable in order to deal with the data collected from net-

worked RFID systems. For efficient processing and storage, data models must be

Chapter 1. Introduction 4

carefully considered. To allow business users to make decisions and analysis, we

must support various kinds of queries for tracking and tracing each individual ob-

ject, and mining the RFID steams. Finally, RFID is a pervasive technology that

can unobtrusively monitor the movement of tagged goods or persons to generate

sensitive data. As a result, privacy and security concerns must be addressed to

allow wide-scale real world adoption.

This chapter is organized as follows. In Section 1.1, we briefly discuss RFID-

enabled traceability in distributed environments. In Section 1.2, we present a

typical traceability application and introduce the requirements for efficient trace-

ability. In Section 1.3, we outline the research issues tackled in this dissertation.

In Section 1.4, we summarize our contributions, and in Section 1.5, we describe

the structure of this dissertation.

1.1 RFID Enabled Traceability

Traceability is an important requirement in many modern enterprises. For exam-

ple, in food supply industry, the safety of food relies on the physical traceability

throughout the chain. Finding the source of food deficiency is the key to stop

its spread and avoid damages [KPD07]. In postal services, the ability to track

individual packages is crucial to the success of delivery, and recovery when it is

missing. In retailing business, traceability empowers the business managers to

monitor the stock so that they can make rational decisions about supplies.

The existing solution for enabling traceability mostly use barcode as the iden-

tification method. This has several drawbacks. Firstly, line of light is required

for a successful reading. An operator has to point the reader to the barcode

label manually. This increases labor costs. Secondly, barcode cannot identify

Chapter 1. Introduction 5

the products of the same kind individually. Contrarily, it can only identify the

type/category of the products. Thirdly, the amount of information which can be

carried by barcode is very limited.

In the recent years, RFID is emerging as a promising technology for effective

and efficient traceability system design. This is mainly motivated by three factors.

Firstly, RFID tags are becoming cheaper and cheaper [Cho11]. It has become

possible to affix RFID tags to goods at item level. Secondly, RFID is contact-less

and it does not require line of light, so the identification process can be automatic.

This significantly reduces the labor cost and identification time. Finally, RFID

tags can carry more data than the competing technologies such as the barcode

and the magnetic card. This makes it possible to record more information such

as environmental data (temperature, humidity) for further analysis.

From a business perspective, RFID-enabled traceability can provide a number

of benefits:

• It minimizes the human interaction in business processes. This does not

only reduce the labor cost, but also reduce the possibility of human mis-

takes. More importantly, enabling traceability can help to pinpoint human

mistakes.

• Without the delay caused by human contact, tracking and tracing can be

done in real time. This makes it possible for fast reactions and better

visibility of the business processes.

• Item-level traceability, enabled by RFID, is the foundation of many services,

such as personalized service and accurate product recall. On the other hand,

mining RFID streams can discover business patterns in a timely manner.

RFID-enabled traceability is a complicated problem which involves techniques

Chapter 1. Introduction 6

from multiple layers. It has been subject of much research in the past few

years [CKR04a, SLZ08b, WRS11]. Adequate solutions to this problem will be

very important for effective, efficient and intelligent business applications.

1.2 Supply Chain Management System: an Example

While the outcomes of our research are generic enough to be applicable to a

wide range of applications, in this section, we use the Supply Chain Management

System as an example to explain the problems and solutions in RFID-enabled

traceability.

The motivation is based on the observations of the existing supply chain man-

agement system. According to the Supply Chain Management Review White Pa-

per2, the current Supply Chain Management (SCM) systems have a set of issues in

transportation and delivery, including changeable rates caused by undetermined

routes, inefficient shipping routes, lengthy timeline and security issues.

One of the reasons why these problems still exist after about half-century

development of supply chains, is that the allocation of resources (transportation,

human labor etc.) is not efficient. The deeper cause is that the link between

these resources and their digital information is weak. Traceability, together with

other analysis in SCM is designed to dig information out of an existing data

warehouse [CE11]. In this way, the analysis is always behind the reality.

Another problem of existing SCM systems is that the personalized service is

not good enough. Nowadays, more and more purchasing is done online. The

customers wish to track where the products they bought are from and when they

will be delivered. However, the tracking service is not satisfactory.

2http://www.scmr.com/article/current trends and the potential
for automation in international transporta

Chapter 1. Introduction 7

RFID technologies make the transformation of object flow to information flow

easier. It has the potential to enable efficient, effective real-time traceability. Fig-

ure 1.1 shows the usage scenarios of a typical supply chain management system.

All objects in the system is uniquely identified by RFID tags. RFID readers are

placed at observation points, such as entrances and exits of warehouses. This

system requires most of the traceability functionalities, including:

Manufacturer

of Product B

Customer

Manager

Distribution Center

Wholesaler Warehouse

Supermaket

 Inventory: Do I need to order more A?

 Statistics: How many A has been shipped?

 Alerts: Notify me if there is any mis-shipped A or B.

Manufacturer

of Product A

 Track: I ordered an A, where is it now? When can it be shipped to me?

 Trace: I got a B which is problematic, is it genuine? Where is it from?

Figure 1.1: Supply Chain Management Scenarios

Chapter 1. Introduction 8

Real-time Tracking. The users of the system (including customers, managers

or carriers) are able to find out where a particular item is by its id. For example,

after placing an order online, a customer wants to get notified when the goods is

shipped. He can also check the latest location of the shipped package whenever

he wants. On the other hand, the retailer can get notified when something goes

wrong, e.g., a misplaced delivery or missing package.

Tracing. A customer finds out that the product he received does not look

genuine. He wants to find out where this product comes from so that he can

ask the wholesaler or manufacturer for refund. Furthermore, the manufacturer is

supposed to find out where all the products of the same kind are so he can call

all of them back3.

Business Intelligence. The managers of the retailer, or the wholesaler can

make certain decisions about inventory or shipment arrangement, according to

the real-time statistics of product sales, which can be monitored by the shipment

of products to end users. Moreover, various mining or further analysis can be

easily applied on the existing data models so that the managers can get a better

understanding about the business process.

1.3 Research Issues

RFID-enabled traceability is a multiple layer problem. It is posed the following

key challenges:

• Adaptation to large and dynamic environments: In a large traceable

network, the membership of partners is continuously changing. For exam-

3This action requires the ability of both tracking and tracing.

Chapter 1. Introduction 9

ple, in a large supply chain network, new partners may join and existing

partners may quit. Consequently, approaches that rely on static models are

inappropriate. Instead, the system should be built on the top of a generic

model which is adaptive to any network. Moreover, the model should be

self-adaptive to the changes of the network.

• Privacy and Sovereignty: Large traceable networks often consist of part-

ners from different organizations. They are reluctant to fully share their

private data to others. However, without sharing, inter-organization trace-

ability is impossible to achieve. Centralized architectures are not suitable

because they require all the data to be uploaded to a centralized database

and governed by a central administrator. Contrarily, in a Peer-to-Peer ex-

ecution model, each partner physically owns his data. He can also control

which part of the data to share, and share to whom. Peer-to-Peer com-

puting is gaining a considerable momentum, as it naturally exploits the

distributed nature of the Internet [YG01].

• Efficient mining over distributed RFID streams: In large networks,

the records collected from RFID readers form a stream of large volume.

Traditional data mining techniques which require to read the data for mul-

tiple times are not suitable. Also, in distributed environments, it is costly

to access remote data during the mining process. As a result, the mining

techniques used in RFID-enabled traceable networks should make as few

remote accesses as possible.

• Efficient traceability query processing: Traceability queries (track-

ing, tracing, aggregation etc.) are the subset of location-based spatial

queries [ZZP03]. However, existing query processing techniques cannot be

used directly because there are significant differences between RFID and

Chapter 1. Introduction 10

normal spatial data. It is discrete, meanwhile spatial data is continuous.

Moreover, Spatial data is more concerned about the geographical change

(i.e., change of coordinations) of objects, meanwhile the location changes

of RFID-tagged objects often imply business transactions.

1.4 Contribution Overview

We propose a generic Peer-to-Peer data model and architecture for large-scale

RFID traceable networks. We propose traceability query processing algorithms

and traceability mining algorithms. We also propose a cloud-based framework

to make traceability as a service using our models. The proposed techniques are

implemented in PeerTrack Platform and deployed in an application called Peer-

Track Asset Management System. In particular, the main research contributions

in this thesis focus on the following:

1.4.1 Peer-to-Peer Traceability Model and Architecture

We propose a generic data model to abstract and manage the basic and advanced

data structures in RFID-enabled traceability. We also propose an architecture

for large-scale traceable networks [SWR10, WSR11b]. This architecture is built

on the top of a P2P overlay network so that no centralized database/index is

required. It is purely distributed so that it is scalable in terms of the size of

network and the volume of the RFID data.

We propose an algorithm to index the objects in the P2P network. Objects

are indexed at deterministic gateway nodes that are responsible for updating

objects’ status at the source and destination nodes for their movements. In this

way, the distributed traceability model is established and maintained.

Chapter 1. Introduction 11

To reduce the indexing overhead from massive volumes of data in large-scale

applications, we further propose an enhanced group-based indexing approach.

This approach takes both indexing efficiency and load balancing into considera-

tion. We design a novel grouping algorithm which abstracts the key factor for

indexing efficiency and load balancing as a single parameter. It can be used to

determine the tradeoff between them. We also find its optimistic value and prove

its validity.

For better load balancing in the situation that the system setting is static,

we design a distributed data structure called Prefix Triangle which is a simplified

version of Distributed Hash Tree. It uses three nodes instead one so that the

indices are more evenly distributed in the network.

One of the important issues in Peer-to-Peer network is the handling of node

failures. We design a replication-based failure handling approach. There are

several different cases of replications, i.e., indices replication, metadata replication

and path-data replication.

Finally, we propose algorithms for traceability query processing in the afore-

mentioned architecture. The queries supported include item-level tracing and

tracking queries and statistical queries.

1.4.2 Traceability Mining over Distributed RFID Streams

We propose a distributed traceability mining model to achieve scalable data min-

ing in large-scale networks. Our model is a combination of two important tools in

data mining, namely Tilted Time Frame and Histogram. Essentially, this model

is the synopsis of the object flows. It represents the patterns of object flows

among nodes for a long history using limited memory. The model suggests the

probability that an object comes from a node at specific time.

Chapter 1. Introduction 12

We also develop algorithms to establish and maintain the model in a pure P2P

fashion. To avoid long delays caused by network queries, we further develop an

algorithm to choose the most possible neighbors as the targets of query rewriting.

This model can be applied to a wide range of applications. For data mining

applications such as inventory/supply management system, it can be used as

the base for further analysis such as time-based association rule learning and

classification. It can also be used for heuristic traceability query processing.

For example, query rewriting policy can be based on the distribution of objects

from/to source/destination nodes. In this dissertation, we demonstrate its usage

by introducing the TISH-based item-level tracing query processing algorithm.

1.4.3 Traceability as a Service

The “data-on-network” paradigm of RFID-based traceability applications has

several shortcomings. One of them is that the RFID records are stored in several

physical locations, especially in the P2P architecture. These locations may be

distributed around the globe, thus it is likely that the query processing is with

long latency. This can cause serious problems wherever a process requires fast

system response.

To overcome this problem and reap the benefits of cloud computing, we de-

sign a cloud-based solution to make the traceability available as services to the

general public, as well as enable fast query response. With this solution, the

data is mirrored at the data center(s) which is (are) close to the nodes involved

in the “chain of values”. In this way, the data is available to the querier via a

shorter network path than existing architectures. We develop algorithms of data

partitioning and replication for various location-oriented data structures.

Chapter 1. Introduction 13

1.4.4 Implementation and Performance Study

We provide an implementation of proposed techniques inside the PeerTrack Plat-

form. We adopt a number of state-of-the-art technologies for the implementation.

We develop a service-oriented platform for traceability query processing. This

work has been adopted in a real application for tracking and tracing returnable

assets.

To validate the feasibility and benefits of our approach, we conduct extensive

performance studies. The studies have been conducted from various aspects in-

cluding scalability, network costs, load balancing and query processing efficiency.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we in-

troduce the background knowledge about RFID and traceability. And we present

the state of the art in research about RFID-based traceability. We summarize

the traceability requirements and traceability queries, and compare the existing

approaches with respect to them.

In Chapter 3, we present the Peer-to-Peer traceability model and architecture.

We first abstract the basic data structures and propose a distributed representa-

tion of them. We then propose the algorithms to maintain the data structures

in the P2P fashion. Finally, we describe the algorithms of traceability query

processing.

In Chapter 4, we give a detailed description of the traceability mining model.

Firstly, we discuss the structure of the model and its benefits. Secondly, we pro-

pose the algorithms to maintain the model efficiently. In particular, we describe

the usage of this model in traceability query processing in details.

Chapter 1. Introduction 14

In Chapter 5, we propose a design of cloud-based traceability network archi-

tecture based on the models we introduced in Chapter 3 and 4. In particular,

we introduce the algorithm to efficiently replicate the RFID data for fast query

response.

In Chapter 6, we describe the implementation of our approach for RFID-

based traceability. We also report the results of a set of performance studies

of our approach. Finally, in Chapter 7, we provide concluding remarks of this

dissertation and discuss directions of future research.

Chapter 1. Introduction 15

Chapter 2

Background

In this chapter, we give an introduction to the research fields of traceability in

RFID networks. We summarize the important traceability queries and the re-

quirements of traceable RFID networks. We overview some major data models,

data processing techniques, system architectures and standards for RFID trace-

able networks, to help readers gain a better understanding of the work described

in this dissertation.

This chapter is organized as follows. In Section 2.1, we first introduce some

basic concepts and technologies related to Networked RFID. In Section 2.2, we

formally define Traceability in Networked RFID and identify a set of requirements.

We also summarize a set of important traceability queries. In Section 2.3 and

Section 2.4, we overview representative research on RFID data modeling and sys-

tem architectures, and compare them with respect to our proposed requirements

and queries. Finally, we summarize this chapter in Section 2.5.

Chapter 2. Background 17

2.1 RFID Traceable Networks: Preliminaries

2.1.1 RFID Systems

Controller

Reader

Tag Tag

Data Processing Server

Networked Database

Backend System

Network

R
e
c
e
iv
e
r

T
ra
n
s
m
itte

r
Controller

Reader

R
e
c
e
iv
e
r

T
ra
n
s
m
itte

r

Figure 2.1: Overview of an RFID System

RFID (Radio Frequency IDentification) is a technology that transfers the

information between an electronic tag and an interrogator using radio waves. It

is used to create a seamless link between individual, physical objects and their

digital natives. RFID allows individual objects to be uniquely and automatically

identified using wireless communications to extract identifiers from RFID tags

Chapter 2. Background 18

attached to objects. In contrast to traditional identification technologies such

as magnetic strips or barcodes, RFID is a contact-less technology that operates

without line-of-sight restrictions [Fin03].

Regardless of the underlying technologies around which an RFID system is

built (e.g., microelectronic tags, surface acoustic wave tags, tags using multiple

resonances to encode data and so on), all modern RFID system infrastructures

can be categorized into three primary components, namely tags (labels), readers,

and backend systems. Figure 2.1 illustrates the interconnected components of a

typical modern RFID infrastructure.

Tags. Tags, also called RFID labels1, are attached to objects. A tag contains

an Integrated Circuit (IC) or a chip that stores the identification of the object

to which the tag is attached, and an antenna that communicates the information

via radio waves. When a tag passes through an electromagnetic field generated

by a reader, the tag communicates to the reader the identification information.

Consequently, there is no line-of-sight requirement for object identification in

RFID systems.

The data stored on the label, object identification information, may be an

Electronic Product Code (EPC) [SBE01], which is a unique item identification

code. Although a variety of existing as well as hitherto undefined identifica-

tion codes can be encoded as EPC, an EPC typically contains information that

identifies the manufacturer, the type of item and the serial number of the item.

RFID tags can be classified based on their frequency of operation (Low Fre-

quency, High Frequency, Ultra High Frequency or Microwave), or according to

powering techniques (passive, semi-passive, and active) [Fin03]. An active tag

1For consistency, we use the term“tag” throughout this dissertation.

Chapter 2. Background 19

has its own transmitter and a power source to power the microchip’s circuitry

and broadcast signals to an RFID reader. The power source is either connected

to a powered infrastructure or uses energy stored in an on-board battery. In the

latter case, an active tag’s lifetime is constrained by the battery. A passive tag

does not have its own power source and scavenges power from the electromag-

netic fields generated by readers. A passive tag also has an indefinite operational

life and relies on reflecting back the electromagnetic (EM) field generated by the

reader and modulating the reader’s EM incident on the antenna to send informa-

tion back. Semi-passive tags use their own power source to run the microchip’s

circuitry but scavenge power from the waves sent out by readers to broadcast

their signals.

Active and semi-active tags are more expensive and typically used for high-

value goods and/or large assets that need to be tracked over long distances. For

example, the U.S. Department of Defense uses active tags to track many con-

tainers being shipped to bases and units overseas. On the other hand, passive

tags are very inexpensive (as cheap as 20 cents) and can even be used for com-

mon materials in very large quantities. Currently, significant efforts are being

undertaken to achieve 5-cent tags by shrinking chip size, cutting antenna cost,

and increasing tags consumption (e.g., RFID mandates from Wal-Mart and U.S.

Department of Defense).

RFID tags appear in a wide variety of shapes (e.g., key fobs, credit cards,

capsules, pads), sizes (e.g., small as a grain of rice, big as a six inches ruler),

capabilities, and materials. Tags can have metal external antennas, embedded

antennas, or printed antennas.

In this dissertation, we will not give a detailed review of physical principles re-

garding RFID hardware design. Interested readers are referred to [Fin03, Wan06].

Chapter 2. Background 20

Readers. The readers’ function is to generate an electromagnetic (EM) field to

power tags (when passive tags are employed) and facilitate communication with

tags. RFID readers communicate with tags using a radio frequency interface.

Either a strong energy storage field near the reader’s antenna, or radiating EM

waves, establishes the RF interface. Communication between a reader and a

tag may involve interrogating the tag to obtain data, writing data to the tag or

beaming commands to the tag so as to affect its behavior. The readers consist

of their own source of power, processing capability and an antenna (antennas).

In addition, most modern RFID readers are equipped embedded systems with

networking capabilities (WIFI or LAN) to allow readers to be networked with

other computing hardware. Typically, readers are connected to a backend system

via the networking interfaces (as outlined in Figure 2.1).

RFID readers are generally placed at fixed locations with their antennas

strategically placed to detect tagged items passing through their EM field. RFID

readers can read multiple co-located tags simultaneously (e.g., up to several hun-

dred of tags per second). The reading distance ranges from a few centimeters

to more than 100 meters, depending on the types of tags, the power of readers,

interference from other RF devices and so on [Fin03].

Handheld RFID Reader is one kind of the Mobile RFID Readers. Compared

with fixed readers, mobile RFID readers are not deployed at fixed location. Con-

trarily, the readers is embedded in PDAs or mobile phones so that they can be

carried around. Mobile readers are very important and useful in mobile pay-

ment [OP07]. However, its usage in traceable networks is limited. Consequently,

in this dissertation, only fixed readers are under our consideration in the discus-

sions.

Chapter 2. Background 21

Backend Systems. The readers are connected to a computer network in which

the data is collected and processed. This network may be limited to a single

organization, or it may cross organizational boundaries to enable cooperation

and sharing between business partners (e.g., manufacturers, warehouses, and

retailers).

2.1.2 Traceable RFID Networks

Networked RFID refers to the system in which “rather than storing object-related

data on a tag, tagged objects and their associated metadata can be matched

through a task-specific network service” [RDT09]. I.e., an RFID tag only stores

an identification, while the mapping between the identification and the other

data pertaining to the tag is stored somewhere else, but accessible through the

Internet.

Modern business often involves participation of multiple parties. For exam-

ple, in supply chain management systems (Section 1.2), suppliers, transporters,

warehouses and retailers are involved. All of the parties set up their Network

RFID systems to monitor and management the assets/products. The network

formed by connecting these isolated systems through the Internet, is called RFID

Networks. Furthermore, we call the systems built on RFID networks specifically

for tracking and tracing, the Traceable RFID Networks. Via traceable RFID

networks, we can access not only the metadata for a tag though the network

but more useful information such as history of the tag and patterns of object

movement in the network.

To ease our discussion and better understand a traceable RFID network and

its elements, we propose a generic reference model (Figure 2.2) that is agnostic

to various traceability applications by abstracting elements of traceable RFID

Chapter 2. Background 22

networks.

Movement 2

Node 1

Node 2

Node 3

Node 4

Node 5

Organization 1 Organization 2

Organization 3

Movement 1

Object 1

Object 1

Figure 2.2: Reference Model of Traceable RFID Networks

Figure 2.2 illustrates the following static components in a traceable network:

• Node. Nodes represent observation points in a traceable network. There

are five nodes in the reference model (Figure 2.2), namely “Node 1” to

“Node 5”. A node can be a geographic location of an organization or

an internal location within an organization. In our discussion, each node

has two sets of RFID readers, deployed at the entrance and the exit of

the physical location so that the readings of arrival and leaving can be

distinguished. But not all the physical locations with RFID reader(s) may

formulate as a node in the traceable network. For example, in a supply

chain, the internal flow of goods inside a distribution center may not be

of any interest to other trading partners while it may be critical for the

distribution center to manage its inventory. As a result, for the partners,

observation points in the distribution center do not count as nodes, while

for the distribution center, they do. Whether or not an observation point is

treated as a node is determined by user requirements and the context of the

Chapter 2. Background 23

application. In this dissertation, we use v with subscript as the notation

for nodes. The set of nodes is noted as V2.

• Organization. Organizations represent the owner of a set of assets and

related data. Each organization governs a number of nodes and collects

data from them via the RFID readers. The data may be stored in a sin-

gle database or several databases. Nevertheless, nodes in the network can

freely access data from each other. From the view of the global network,

each organization is a data source, providing the information about the

the arrival and leaving of objects regarding itself, meanwhile, the internal

workflows are well encapsulated.

• Object. An object represent a tagged item with a globally unique identi-

fier. Objects are noted as o.

• Connection. A connection is a link between nodes. It is established stati-

cally (e.g., by the partnership of organizations). However, it is quasi-static

because these partnerships or supply paths may change over time. Each

connection may be characterized by several properties or meta data (e.g.,

distance to neighboring nodes, possible methods and cost of travel). There

are two types of connections, namely Internal Connection and External

Connection, illustrated by the dashed line and solid line, respectively. In

most cases, external connections are those we are interested in because

they represent the business transactions between two organizations. Inter-

nal connections represent the internal workflows, which is valuable to the

organization only. A connection has two attributes, source node vs and

destination node vd. Connections are directional, i.e., connection (v1, v2)

2We choose to use graph theory notation v (for vertex) because n is often used as a mea-
surement.

Chapter 2. Background 24

and connection (v2, v1) are different. The set of connections is noted as E .

• Network. A network is a set nodes and a set of composite connections

between them. It represents the direct or indirect relationship between

nodes. According to data sharing policies, networks are categorized into two

types, Open-Loop networks and Closed-Loop networks. Within a closed-loop

network, data is shared by nodes that belong to the same organization. On

the other hand, nodes in an open-loop network normally belong to different

organizations. Figure 2.2 shows a simple network formed by five nodes and

four connections. Node 1, Node 2 and Node 3 form a closed-loop network.

A network is represented as a directional graph, where the nodes are the

vertexes and the connections are the edges. Network G is formally defined

as G := (V , E).

There are two important concepts about the dynamic relationships of objects

in a traceable network.

• Movement. Movement captures the change of locations of an object, from

a source node to a destination node3. Similar to connections, movements

can be classified as Internal Movements and External Movements. “Move-

ment 1” illustrates an internal movement, which happens inside an organi-

zation, meanwhile, “Movement 2” illustrates an external movement, which

is across the boundary of organizations. A movement has four attributes:

1) the source vs, 2) the destination vd, 3) the start time ts and 4) the end

time td. A movement m is formally defined as m := (vs, vd, ts, td).

• Path. A set of ordered movements establishes a path p (e.g., “Movement

1” (m1) and “Movement 2” (m2) form a two-segment path). The length

3For the convenience of discussion, we simply them as “source” and “destination”.

Chapter 2. Background 25

Notation Description Definition
v A node. N/A
o An object. N/A
e A connection. e := (vs, vd)
m A movement. m := (vs, vd, ts, td)
p A path. p :=< m1,m2, ...,mn > or

p :=< v1, v2, ..., vn+1 >
T The time domain. N/A
V The set of all nodes. V := {v1, v2, ..., vn}
E The set of all connections. E := {e1, e2, ..., en}
G A network. G := (V , E)
P The set of all paths. P := {p1, p2, ..., pn}
|V| The number of nodes in V . The notation itself.
|E| The number of connection in E . The notation itself.
|p| The length of p. The notation itself.

Table 2.1: Notations in the Reference Model of Traceable Networks

of a path |p| is defined as the number of segments in p. Paths are records

about the history of an object in both spatial and temporal dimensions.

It should be noted that although path is defined in terms of movements,

it can also be represented by connecting the sources and destinations of

movements because two conjoint movements in a path must share a same

node. For example, in Figure 2.2, the path (m1,m2) can also be represented

as (v1, v3, v4).

Table 2.1 summarizes the notations that we use throughout this dissertation

for the components and relationships defined above.

Chapter 2. Background 26

2.2 Traceability in RFID Networks: Applications, Queries

and Requirements

GS14, a global organization dedicated to the design and implementation of global

standards for supply and demand chains, proposes the definition of traceability

as “the ability to trace the history, application or location of that which is under

consideration” [GS1] (ISO 9001: 2000). Although the context of [GS1] is based

on supply chain management, this definition is appropriately generic for other

application areas.

It should be note that GS1 definition only refers to historical information.

We argue that the ability to establish the present and predict the future state is

a significant addition to traceability applications. For example, when an object

leaves a location v, the only information recorded is its last observed location

(i.e., v). There is a gap in information available about its destination or expected

time of arrival. Such information would be potentially useful in making effective

business decisions. Consequently, it is useful to articulate the implied meaning

of traceability. We formally define the traceability as the following [WRS11]:

Traceability is the ability to retrieve past, present, and potentially, future in-

formation about the state (e.g., location) of an object.

Networked RFID systems have the potential to create revolutionary applica-

tions by enabling real-time and automatic traceability of individual objects.

2.2.1 RFID Enabled Traceability Applications

The underlying identification technologies predominantly used in existing trace-

ability applications (such as optical barcodes and human readable codes) require

4http://gs1.org

Chapter 2. Background 27

human operators and are labor intensive for implementation at the individual

product level. Printed barcodes are also a line of sight technology, prone to fail-

ure by effects that reduce the visibility of the barcode (e.g., dust, dirt, physical

tears). There are also other issues such as delays in transactions (e.g., barcodes

need to be correctly aligned to be read) and identification inaccuracies due to

human operator errors. Consequently, these systems have an important impact

on the quality of traceability information.

Research suggests that the process of manually recording a re-usable container

number and entering it into a computer before shipment is susceptible to 30%

error [Fin03]. The impact of such errors is costly. In manufacturing environments,

scanning errors as a result of associating the wrong container to the processing

steps can result in the whole batch of products being discarded due to quality

assurance reasons. The capabilities of identification technologies and the costs

involved to identify products at an instance level have prevented companies from

being able to make decisions at the individual product level5.

However, with traceable RFID networks, object instances can be precisely

and automatically monitored, and their life histories can be recorded in real-

time. Traceability essentially improves the quality (accuracy and the level of

detail) and timeliness of information leading to better decisions at the business

and enterprise level. As a result, by exploiting traceable RFID networks’ ability

to precisely record and trace product movements automatically, there are many

emerging advanced application scenarios, such as reducing costs of inventory

errors, eliminating shrinkage, fine grain products recalls and anti-counterfeiting.

5http://www.scdigest.com/assets/On_Target/09-02-23-1.php

Chapter 2. Background 28

2.2.1.1 Eliminating Inventory Inaccuracies

The discrepancies between actual and recorded inventory in information sys-

tems (i.e., inventory inaccuracy) is estimated to be as high as 65% at a major

retailer [DRT01]. Despite significant investments by companies to reduce the in-

formation gap, the quality of inventory information is still poor and often leads

to inefficient supply chains. A significant portion of inventory inaccuracies are

related to two execution problems: transaction errors and misplacement errors.

Transaction errors occur unintentionally during various transactions such as

an inventory count, goods receipt check and at the point of sale (e.g., when a

variety of potato is recorded as a different kind by the sales staff).

Raman [DRT01] reports that 16% of items at a leading retailer were missing

as a result of products being misplaced at various locations in the store, storage

or back room. Misplacement errors impact sales. Culprits of misplacement are

not just employees but consumers who may pickup items and subsequently place

them in other locations. A leading market research and advisory firm IDTechex,

estimates that, annually, hospitals lose close to 15% of their assets by value

and are unable to locate 15-20% of their assets resulting in additional costs of

US$1,900 per nurse6.

Traceable RFID networks have the ability to reduce transaction errors through

automatic capture of individual item level quantities and location information

at various process steps. Similarly, misplacement errors can be minimized by

analyzing the data gathered from the movements of tagged items, obtained au-

tomatically from a network of readers strategically placed along the supply chain

and at each business step.

6http://www.idtechex.comresearch/articles/rfid/in/healthcare/and/
pharmaceutical/applications/00000518.asp

Chapter 2. Background 29

2.2.1.2 Inventory Shrinkage

Inventory shrinkage, as defined by the Efficient Consumer Response (ECR) group7,

refers to the loss of inventory as a consequence of a combination of internal theft

(e.g., employees), external theft (e.g., shoplifters), supplier fraud, and adminis-

tration errors. Shrinkage results in a staggering annual loss of US$33.1 billion

for US retailers, Euro 28.9 billion for European retailers and AU$942 million

for Australian retailers [AGG]. RFID traceability networks can improve and,

in some cases, even eliminate shrinkage due to theft prevention in the supply

chains. More importantly, RFID traceability networks provide us the capability

to measure shrinkage accurately, which helps to pinpoint the likely causes.

2.2.1.3 Eliminating Wastage and Damage

The cost associated with food wastage is a significant problem for the food indus-

try. For example, perishable fresh products while contributing only 30% to sales

constitute 56% of the total wastage at supermarkets [KF08], which represents

a significant opportunity for improvement. Many factors contribute to spoilage

including unsuitable variations in environmental conditions during transport and

handling, excessive dwell time during loading, transport, and unloading. RFID

traceability networks can automatically capture movements, dwell times and con-

dition of products, which make it possible for instant checks of freshness and

identification of potential causes of spoilage.

7http://www.orisgroup.co.uk/blue_book.asp

Chapter 2. Background 30

2.2.1.4 Fine Grain Product Recalls

Food and drug safety is widely regarded as a serious threat to public health

globally. RFID traceability networks will ease the task of product recalls by

rapidly and accurately locating specific harmful products in the event of problems

such as an illness outbreak due to contaminated food. For example, countries

are adopting policies and regulations requiring all cattle to be tagged to allow

authorities to quickly locate the source of infected cows in the event of an outbreak

of mad cow disease [RCT06]. To achieve fine grained recalls, BT Foodnet8 uses

RFID to track products and provides a full audit trail of ingredients along the

supply chain. Then only products with bad material need to be recalled, which

significantly decreases the wastage.

2.2.1.5 Anti-counterfeiting

The International Anti-Counterfeiting Coalition9 estimates that US$600 billion

of goods, accounting for 5-7% of the world trade, are counterfeit. The impact

of counterfeiting is not only limited to manufacturers and brand owners, but

has serious consequences for consumers. The World Health Organization esti-

mated that in 2003 between 5-8% of the worldwide trade in pharmaceutical is

counterfeit [FDA]. Counterfeit medicines range from products with wrong ingre-

dients, insufficient active ingredients or products with fake packaging to mimic a

medication.

There are a variety of existing techniques for product authentication based

on optical technologies such as watermarks, holograms, micro printing, and bio-

8http://www2.bt.com/static/i/media/pdf/campaigns/consumer_goods/
foodnet_broch.pdf

9http://www.iacc.org

Chapter 2. Background 31

chemical technology [BO05]. All these technologies have static markers that are

generally applied on a uniform scale to a single class of products. However,

biochemical marker tests provide the ability to detect markers but they do not

generally quantify the marker, thus leaving open avenues of counterfeiting by di-

lution. Optical technologies no longer present an adequate deterrent due to the

reduction in the cost of producing imitated watermarks and holograms.

RFID enabled traceability has the potential to provide a timely and an au-

tomatic trace that can verify the existence of a valid chain of custody through

a supply chain, which is commonly referred to as providing an electronic pedi-

gree [RC08]. Recent legislation has even pushed industries to consider RFID

technology to comply with electronic pedigree laws. For example, some states

in the USA have introduced the pedigree laws [Gov] requiring a verifiable record

of drug movement through the supply chain at any time. Furthermore, trace-

ability data can be analyzed using machine learning algorithms to detect and

report anomalies in supply chains and to alert potential problems or separate

counterfeit products from genuine products using copies of genuine product iden-

tifiers [IAM09a].

2.2.2 Traceability Queries

It is difficult to determine exact query requirements because they are largely ap-

plication dependent. A common application oriented classification of traceability

queries proposed in [CKS07a] includes: i) pedigree queries that reconstruct the

complete historical path of an object through a supply chain, ii) product recall

queries that detect the current location of objects, and iii) bill-of-material queries

that return information about all the objects with a containment relationship of

a specific object. However, this is not an adequate generalization for supporting

Chapter 2. Background 32

traceability applications.

In this dissertation, we formulate a set of fundamental queries that are useful

for most traceability applications, which can be used as building blocks to con-

struct more complex queries. It is evident that the information critical to the

success of a traceability application is the determination of an item status (iden-

tity, precise location, physical status such as perished/damaged/expired etc.) and

history of its path throughout the supply chain. The key objective of traceable

RFID networks is to enable the discovery of past (trace), present (track) and pos-

sibly future information (prediction) of objects. Consequently, tracking, tracing

and prediction are the three fundamental types of traceability queries that can

be generalized as being adequate for building traceability applications. Tracking

refers to a query to find the current state (such as its current location) of an

object. Tracing refers to finding the historical states of an object and prediction

queries provide a probabilistic view of possible future states of an object (e.g.,

the most probable node to be visited next).

We summarize and categorize these queries as the following:

Track Queries. A track query supports the retrieval of the current state, such

as the location, of an object. The following is a typical example of a track query:

Q1: Where is object o now?

Trace Queries. These queries are designed to discover a part of or the whole

life history of an object such as movement information. Some typical examples

are:

Q2: What nodes did object o travel through before it reached node v2?

Q3: What is the travel path for object o?

Chapter 2. Background 33

Q4: What is the travel path for object o before it reached node v2?

Q5: What are the nodes visited by object o after node v2?

RFID event data is characterized by both spatial and temporal information [WL05a].

Trace queries can be spatially constrained to discover the location of a given ob-

ject at specified time, or temporally constrained to determine places where the

object has been for a particular time period. Some typical examples are given

below.

Queries with spatial constraints:

Q6: Where was object o on 12th, Dec. 2010 ?

Q7: Where has object o been between 12th, Dec. 2010 and 20th, Dec. 2010 ?

Queries with temporal constraints:

Q8: When was object o seen at node v2?

Q9: How long did object o dwell at node v2?

Q10: How long did object o take to move from node v1 to v2?

There are a specific set of trace queries aimed at extracting containment relation-

ships between objects such as finding the objects that traveled in a pallet. These

are called containment trace queries. Some typical examples are:

Q11: What objects were contained in object o on 12th, Dec. 2010 ?

Q12: What was the container for object o when it was at node v1?

Chapter 2. Background 34

Q13: Where was object o packed into object o2?

Q14: When was object o unpacked from object o2?

Finally, a set of beneficial trace queries to support business processes and strate-

gic decisions are desirable to data analysis applications (e.g., ERP applications

designed to manage the re-ordering or production of goods). As such, in a supply

chain, it is useful to know the average time spent by various products in storage

at a particular distribution center or on a shelf at a supermarket. These queries

are classified as statistical trace queries. Some typical examples are:

Q15: How many objects have been sent from node v1 to node v2 last year?

Q16: Which node sent node v1 the maximum number of objects last year?

Q17: Which node received the minimum number of objects from node v1 in

2010?

Q18: What is the average dwell time of object at node v1?

Q19: What is the total number of objects seen at node v1 in 2010?

Prediction Queries. The objective of a prediction query is to estimate the

future state of an object. Some typical examples are:

Q20: What is the expected arrival time for object o at node v1?

Q21: What is the probability that object o will arrive at node v1 in the next

hour?

Q22: What is the expected location of object o after node v1?

Q23: What is the expected location of object o after five movements from

node v1?

Chapter 2. Background 35

2.2.3 Requirements of Traceability Applications

We followed a comprehensive methodology to elicit and analyze the requirements

for traceability applications, especially applications in large-scale, collaborative

networks. Our approach considers 1) the responses to a survey10 conducted

among potential end-users and vendors in Australia about the requirements for

traceability applications; 2) the evaluations of the outcomes of the EU funded

BRIDGE project11, which aims to develop a traceability platform based on iden-

tified industrial requirements from enterprises in Europe; and 3) our analysis of

existing literature on traceable RFID networks [WL05a, IAM09b, CKS07b, LC08,

KBM06, RSZ10, RWN07].

Based on these works, in this section, we identify a set of dimensions for

evaluation existing traceability approaches. We consider the dimensions based

on system development and data model requirements.

2.2.3.1 System Development Requirements

We consider the following key system development requirements: 1) scalability,

2) heterogeneity, 3) support for unique identifier, 4) uncertainty management, 5)

timeliness, and 6) security and privacy. Among them, we consider the scalability

and heterogeneity the most important ones in large-scale traceable network.

Scalability. In large-scale RFID applications (e.g., global supply chains), there

will be thousands of readers distributed across and within organizations that

generate large volumes of data automatically and rapidly. Data volumes can be

enormous (e.g., Wal-Mart generates about 7 tera-bytes of data every day if goods

10http://cs.adelaide.edu.au/peertrack/collaboration/survey/
11http://www.bridge-project.eu/

Chapter 2. Background 36

are tagged at the item level [SLZ08b]). A scalable architecture framework is

required to ensure adequate performance of traceability networks as the number

of nodes and volume of data increases. A scalable architecture must address the

following issues:

• Data volumes. Given the large quantities of potential object instance level

data, an appropriate solution that does not involve the permanent storage

of individual raw data must be found.

• Integration. It should be possible to integrate increasing number of nodes

into the traceable RFID network without degrading query performance such

as timeliness of responses. This is significant since a linear increment of the

number of nodes will also linearly increase the number of nodes that must

be searched for object related data in a blind search. And a liner increment

of the number of nodes will cause exponential increase of the generated

data.

Heterogeneity. A traceable RFID network is established by connecting differ-

ent nodes, which may belong to different organizations, use different hardware

and software systems, store the collected data in different formats. In addition,

with the rapid development in RFID technologies, new devices may be introduced.

Consequently, traceability systems should be agnostic to such heterogeneity and,

ideally, be compliant with global standards for interoperability across of organi-

zations and geographies.

Support for Unique Identifier. Given the distributed nature of data collec-

tion and storage, there must be a mechanism for associating products with their

relevant life-cycle data in networked information systems as well as on products

Chapter 2. Background 37

themselves. This aspect is fundamental to networked RFID systems. The univer-

sally unique identifier (UUID) forms the link between an object and its associated

information collected and possibly distributed at various organizations and loca-

tions. The UUID can then be used to discover and access information associated

with it from distributed information resources, similarly to the manner in which

web addresses or Uniform Resource Locators (URLs) are used to access infor-

mation from the Internet. Supporting traceability applications such as targeted

product recall and anti-counterfeiting requires that each architecture supports a

unique identifier. The scope of the identifier may be defined by the application.

However, for managing global traceability applications with a worldwide focus

(such as supply chains distributed across countries), a fundamental requirement

is the support for a globally unique identifier.

Uncertainty Management. The responses to traceability queries may not

be deterministic since the underlying RFID network is limited by the number

of discrete observation points (nodes), hardware performance and data sharing

issues. Consequently, a significant challenge is to manage uncertainty.

The typical causes for uncertainty are summarized as follows:

• False Positives. Data generated by readers is limited in accuracy. RFID

readers may report a tag identifier which is not stored on a tag within the

reader’s EM field. This is called “Ghost Read”. Essentially, the reader re-

ceives incorrect data which is interpreted by the reader as being valid. False

positives result in erroneous data that is difficult for information systems

to handle.

• Missing Events. A reader may miss identifying an object or a temporal

malfunction of a device may cause a systematic error in event generation.

Chapter 2. Background 38

A missed tag reading results in incompleteness of data, because the in-

formation stored in the tag, such as the identifier, is not captured by the

reader.

• Nodal Limitations. At a given time, an object o may be in movement m

from node vs to vd, or it may have arrived at vd but not yet to be identified.

If we consider a query “Where is o?”, the answer might be vs, according

to the data we have collected. This detachment of the digital observation

from physical reality affects the accuracy of traceability queries.

Timeliness. Traceable RFID networks are built on the premise that changes

in the physical world are reflected by timely changes in information systems.

Real-time traceability information is critical for managing distribution opera-

tions, rapid product recalls and service/maintenance operations that need to be

constantly re-evaluated based on traceability information of tools and technicians.

Therefore, an expectation of a traceable RFID network is that the system should

be responsive, with the ability to provide timely information.

It is expected that the queries (Section 2.2.2) should work in both Pull and

Push mode. In the pull mode, the front-end system sends the query to the

backend to get an answer, meanwhile, in the push mode, the front-end system

gets notified when a certain pre-set condition is met. Normally, the push mode

is implemented as the Observer pattern [EV95]. However, this pattern requires a

centralized mapping from the observed objects to the observer. When the number

of the observed objects increases linearly, the time used to notify the observers

increases linearly too. This causes a severe delay in large-scale traceable networks.

Chapter 2. Background 39

Security and Privacy. RFID is a pervasive technology capable of mass se-

rialization and unobtrusive scanning from a distance. So no discussion is ever

complete without addressing various security and privacy related issues. Trace-

able RFID networks are susceptible to issues arising from vulnerabilities in RFID

technology [Jue06] as well as associated information systems. For example, com-

petitors of an organization (such as a rival supermarket) may scan another orga-

nization’s inventory labeled with RFID tags or eavesdrop on the organization’s

own valid operations to obtain valuable information, such as sales data, to ascer-

tain the performance of its competitors (an act commonly referred to as corporate

espionage). The fact that a third party can eavesdrop on a conversation between

a tag and reader from a distance is a fundamental vulnerability.

There are numerous publications [AF05, Dim05, FDW04, OTY09, JP02] that

address vulnerabilities of RFID systems through improved security features such

as the kill functionality for Class 1 Generation 2 tags and lightweight security

mechanisms suitable for RFID devices. Furthermore, there is a mature and stan-

dardized set of cryptographic tools (e.g., public key security mechanisms such

as RSA and Elliptic Curve Cryptography, private key mechanisms such as the

Advanced Encryption Standard) available for securing computer networks and

networked resources. Therefore, we will only consider the traceability system’s

ability to manage RFID data without violating privacy or compromising security

of partner organizations participating in a traceable RFID Network.

2.2.3.2 Data Model Requirements

Most modern RFID readers collect data from tag reading events as a triple tuple

{ID, timestamp, node}. The temporal-spatio information is implicit. For exam-

ple, to discover the dwell time of object o, an infant formula, at node v, a storage

Chapter 2. Background 40

shelf at a distribution center, we have to sort all reads for o at v in time and

the dwell time is obtained by the time difference between the first and the last

reads. The level of pre-processing required to respond to such a query makes the

processing of this query inefficient. In particular, for large-scale systems, it will

result in severe performance issues. Most traceability queries are in fact much

more complicated.

To make query processing more efficient, a high level data model that consid-

ers the characteristics of queries is required. We propose the following require-

ments for a suitable data model based on the traceability queries discussed in

Section 2.2.2:

• Temporal Abstraction. RFID data is generated dynamically and asso-

ciated with timestamps. It is highly desirable for the model to abstract

temporal information from the underlying data, such as dwell time, time

taken for a movement, and arrival and departure time. Such high-level

temporal attributes will vastly improve the processing of trace queries such

as Q8 and Q10 by reducing the number of basic queries that needs to be

executed as well as by eliminating the time required to process the related

responses to derive a final response.

• Spatial Abstraction. A node is associated with a location. Many trace-

ability queries are related to discovering movements of objects between

nodes (e.g., Q2-Q7). Similar to temporal abstractions, it is desirable for

the data model to be able to provide a high level representation that cap-

tures object movement, path and other spatial information to efficiently

process trace queries.

• Containment Abstraction. The data model should be able to encapsu-

Chapter 2. Background 41

late changes in containment relationships as objects move across nodes. In

other words, the model should be able to preserve the dynamic relation-

ships between parent and child objects. For example, individual items are

packed in cases and pallets, which are then unpacked or repacked in new

pallets. With containment relationship captured in the data model, queries

Q11-14 can be effectively processed. In addition, the storage cost can be

significantly reduced by grouping the records.

• Statistical Constructs. To efficiently process statistical trace queries (see

Q15-Q19), it is highly desirable for the data model to be able to encapsu-

late low-level statistical information such as sums and averages based on

RFID event data collected by the system. Although this is not an essential

attribute, processing a statistical query such as Q16 over a traceability sys-

tem with a complex supply network structure (multiple pathways into and

out of a node) would not be possible using a set of low level trace queries

we have discussed in Section 2.2.2.

• Uncertainty. We have discussed the need for addressing uncertainty intro-

duced as a result of the imperfections in the physical layer in Section 2.2.3.1.

In addition to information systems’ support, appropriate data models are

required to capture and model the uncertainty in the status of objects de-

rived from observed events and the actual status of objects in the physical

world.

A good data model lays the foundation for efficient traceability query process-

ing. However, for the data model to be easily integrated into a traceable RFID

network, there are also other relevant considerations that are not directly linked

to supporting traceability queries. The most significant one is storage efficiency.

Chapter 2. Background 42

RFID data can be voluminous in large-scale applications. Storage requirements

become a crucial issue for large quantities of RFID data which need to be accessed

rapidly to support real-time performance of traceability applications. Good data

compression methods can effectively and efficiently decrease the processing time

and storage footprint.

2.3 Overview of Traceability Models for RFID Data

Data models determine the structures of the data storage and representation. De-

signing appropriate data models significantly affects the performance of the whole

system. Due to the nature of large-scale traceability applications, data models

must be appropriately designed to support various queries in highly-dynamic,

data-intensive environments. In order to support traceability applications in

different business contexts, generically fundamental data models are necessary,

which are expected to meet the requirements in Section 2.2.3.2.

In this section, we examine a set of representative research work on data

modeling and corresponding query processing techniques for traceable RFID net-

works. We analyze them by considering the requirements in Section 2.2.3.2.

2.3.1 DRER Model

Dynamic Relationship ER (DRER) [WL05a] (Figure 2.3) is the data model used

by siemens’ RFID middleware system. It is one of earliest RFID data models.

It abstracts the static and dynamic entities including object, reader, location and

transaction. Interactions are modeled as either state or event based relationships.

In [WL05a], low-level temporal and spatial queries are considered. Although

the design takes containment into consideration by introducing the Containment

Chapter 2. Background 43

Sensor Location

Object

Transaction

SensorLocation

ObjectLocation

Containment TransactionItem

Observation

timestamp

tend

tstart

tend

tstart

tendtstart

timestamp

Figure 2.3: RFID Data Model Overview : DRER Model

relationship, it does not mention how this relationship is captured.

DRER models the transition of states for objects using the dynamic relations

(e.g., ObjectLocation). This model is simple yet expressive that it can be used to

answer all the queries that we summarized in Section 2.2.2, either directly or by

composing the low-level queries.

The simplicity of this model brings some shortcomings:

• The model and the query processing techniques assumes all data are stored

in a single database or database cluster. It is hard to be used in distributed,

heterogeneous systems.

• The model focuses on modeling individual RFID events. It lacks support for

complicated data structures, such as path. Consequently, some queries have

to be implemented by composing low-level queries which is not efficient.

• The model lacks support for statistical queries.

Chapter 2. Background 44

2.3.2 RFID Cuboid

 epc

 loc

 t_in

 t_out

Fact

 parent_gid

 child_gid/epc

Map gid

 count

 ...

Measurement

 gid

 loc

 t_in

 t_out

Stay

Figure 2.4: RFID Data Model Overview : RFID Cuboid

The idea of RFID Cuboid [GHL06a] is based on the observation that individual

objects tend to move and stay together (i.e., bulky object movements). The

records for the objects moving along the same segments can be merged without

loss of information. The term “cuboid” implies that data is merged at some

point. Compared with DRER, RFID Cuboid is a data mining model instead

of dynamic event-driven model. Figure 2.4 shows the key tables for the RFID-

Cuboid. The Fact table is essentially the same as the ObjectLocation table in

DRER. RFID Cuboid introduces the Stay and Map tables for data compression

and measurement. The main idea of compression is that the Map table records

the mapping for high-level group to its child groups or objects for each segment in

the movements, meanwhile the Stay and Measurement tables record the related

data for the groups, instead of each individual object.

The most important advantage of RFID-cuboid is the efficient support of

statistical and path-oriented queries, by grouping the objects and materializa-

tion of the group information. This materialization significantly improves the

performance of query processing. However, the storage used by RFID-Cuboid

is more than that by DRER because of the additional tables. This additional

storage cost is further reduced by the same authors’ recent work by introducing

a Gateway-Based Movement Graph model [GHC10]. This enhanced work makes

an assumption that there are some “gateway” nodes in an RFID network, which

Chapter 2. Background 45

Sub-Network 1

Sub-Network 2

Sub-Network 3

Gateway

Gateway

Gateway

Figure 2.5: RFID Data Model Overview : Gateway-based RFID Cuboid

have either high fan-in or high fan-out edges as illustrated in Figure 2.5. These

gateway nodes connect the sub-graphs together.

The RFID Cuboid can be established around the gateway nodes, and de-

grouped within the sub-graphs. Instead of using the starting location of a group

of objects as the root, the gateway-based movement graph selects the gateway

nodes as the root. In this way, the root groups are the largest, so that the number

of groups are minimum. As a result, the size of Stay and Map tables are further

reduced. This is very useful for large-scale, distributed traceability applications

(e.g., global supply chain systems).

The RFID-Cuboid model efficiently compresses the data and improves the

performance of queries using a tree-structure. However, it is highly dependent

on the data distribution. The performance is significantly affected if objects do

not exhibit bulky movements. Consequently, this data model is only suitable for

Chapter 2. Background 46

large datasets that share some common properties (e.g., move together in bulky

mode).

2.3.3 KAIST Trace Model

A

B E D

C D C

2

3

5 7 5

11 7

Path A-B-C is encoded as 2 * 3 * 5 = 30

Figure 2.6: RFID Data Model Overview : KAIST Trace Model

The researchers from KAIST (Korea Advanced Institute of Science and Tech-

nology) proposed a novel model to efficiently encode and query path information

in an RFID database [LC08] 12. The encoding scheme is based on the Chinese

Remainder Theorem and can encode a path to a serial number level. A query

processing language is also proposed. The idea of this model is to represent the

paths as a forest. Each starting location is presented by the root of a tree and

receiving locations are child nodes of sending locations. Figure 2.6 illustrates the

model by an example.

12The authors did not give a name to the model. For the convenience of discussion, we call
it “KAIST Trace Model”.

Chapter 2. Background 47

Each node in the network is marked by a unique prime number. Thus, each

path can be encoded by a number namely Element List Encoding Number, which

is the multiplication of the prime numbers from the root to the leaf node. For

example, the path A→ B → C is encoded as 2 ∗ 3 ∗ 5 = 30. Moreover, according

to Chinese Remainder Theorem, an Order Encoding Number is introduced to

calculate the order of a node in a path for decoding. Interested readers are

referred to [LC08] for more details.

Experiments have proved that this encoding scheme with the query processing

method efficiently discovers the path information for a given object. In particular,

for most queries, the KAIST model is better than RFID Cuboid. In addition,

similar to the RFID-Cuboid model, it significantly decreases the data storage

size. However, this model does not assume that the object moves in groups, so it

can be used in more scenarios. The KAIST trace model is path-centric and can

efficiently process path-oriented queries.

KAIST trace model has several issues which prevent it from being used in dis-

tributed environments. Firstly, the encoding/decoding scheme is path-oriented,

thus data from different nodes must be stored in the same sever, otherwise it is

not difficult to build the tree. Secondly, once the tree is built, any change in the

network requires to rebuild the whole tree. In dynamic distributed environments,

this process is costly in both time and bandwidth.

2.3.4 SPIRE Model

None of the aforementioned models discuss how the containment relationship is

captured. How to automatically infer the containment relationship is still an open

problem. It is a multiple-layer problem which involves hardware configuration,

data cleansing, uncertain data management and other techniques. SPIRE is a

Chapter 2. Background 48

representative work on this problem.

An earlier work from SPIRE [Coc07] proposes two options to detect contain-

ment relationships. One option is the manual approach, the other is to configure

RFID readers so that it can read only the most outer container’s tag. However,

it does not solve the regrouping problem. In addition, due to the unreliability

of RFID readers, it will not work perfectly even with the assumption that no

regrouping exists. In a recent work by the same authors [CTD08], the SPIRE

system is improved to detect containment relationship using a statistical method.

In this approach, the containment is inferred by the historical co-location of tags.

A time-varying colored graph model is proposed as shown in Figure 2.7.

1

2 3

74 5 6

1

2 3

74 5 6

T1 T2

L1 L2

Time

Location

Level 1

Level 2

Level 3

Figure 2.7: RFID Data Model Overview : SPIRE Model

The edges indicate possible containment relationship, while the objects de-

tected together at the same location are marked with the same color. At the

beginning, the edges are added from the higher level container to lower level

objects/containers if they are at the same location. After they move to a new

location, some edges are removed if the co-location relationship does not exhibit

any more. Ideally, after some point, there should be exactly one path from the

Chapter 2. Background 49

root to a certain leaf. However, this rarely happens because of regrouping. To

solve this problem, a probabilistic inference method is proposed in SPIRE. The

basic idea is to assign weights to the co-location records and recent record gets

higher weight. The incoming edges to a node are sorted by the weighted sums of

the co-location records. SPIRE chooses the edge with highest sum to update the

containment relationship.

However, the containment relationship is inferred by co-location of tags but it

cannot distinguish between co-location and containment. To solve this problem,

it is necessary to encode the containment level information in the tag. This makes

this model inflexible and expensive, because the tag must be unified across all

organizations.

2.3.5 Comparison and Open Issues

Underlying data models play an important role in shaping the higher level ar-

chitectures for RFID traceability networks. A well-designed data model can sig-

nificantly improve system performance and decrease persistent data storage re-

quirements. We compare the aforementioned data models using the requirements

identified in Section 2.2.3.2, as well as the traceability queries supported by each

data model. Table 2.2 and Table 2.3 summarize the results.

From the tables we can see that significant work remains in RFID data models

and traceability query processing:

• Distributed data model. Most RFID traceability applications are distributed

and spread across organizations. It is difficult to assume or require data to

be stored in centralized databases. Distributed data models therefore need

to be carefully designed to support traceability queries. However, at the

Chapter 2. Background 50

time of writing, to the best of our knowledge, there are no existing data

models that meet all the requirements we have outlined. We believe that

extensive researches are needed for modeling distributed RFID data.

• Statistical queries over paths. Realizing these queries can provide data

flow statistics through particular nodes or paths, which is vital for high-

level business decisions in traceability applications. Unfortunately, these

statistical queries are not well supported by existing data models.

• Containment queries. Containment queries over object paths are also im-

portant, especially in product recalls where an object (e.g., tainted pork)

from a node should be recalled. For these scenarios, it is necessary to find

all other objects (e.g., other pork that traveled in the same pallet) that have

a containment relationship with the object in question, obtain their paths

and recall them. Unfortunately, containment queries are also not supported

by most of the existing data models.

• Uncertainty. Most existing data models do not take uncertainty of RFID

data into consideration. However, as we have discussed in Section 2.2.3.2,

uncertainty should be treated as first class citizen in RFID traceability

networks.

2.4 Overview of Architectures for Traceable RFID Net-

works

In the past decade, the rapid deployment of RFID technology is making the

collection, processing, integration and sharing of RFID data an active area of

Chapter 2. Background 51

Temporal
Abstrac-
tions

Spatial
Abstrac-
tions

Statistical
Constructs

Containment
Relation-
ships

Uncertainty

DRER Transaction
entity

Location
entity

Not ad-
dressed
explicitly

Observation
event

Not ad-
dressed

RFID-
Cuboid

Stay table Stay table Data mining
queries

Not ad-
dressed
explicitly

Not ad-
dressed

KAIST Time table Path table
and path
encoding
scheme

Partially ad-
dressed

Not ad-
dressed

Not ad-
dressed

SPIRE Time
stamps

Object-
Containment
Graph

Not men-
tioned

Object-
Containment
Graph

Not ad-
dressed

Table 2.2: Comparison: Data Models vs. Data Model Requirements

Track Trace (Tem-
poral Con-
straints)

Trace (Spa-
tial Con-
straints)

Trace
(Statisti-
cal)

Trace
(Contain-
ment)

DRER Partially
supported
(path
related
queries not
supported)

All supported All support Not sup-
ported
directly*

Partially
Supported

RFID-
Cuboid

All sup-
ported

All supported All supported Supported No

KAIST All sup-
ported

All supported All supported Not sup-
ported
directly

No

SPIRE Not sup-
ported
directly

All supported All supported Not sup-
ported
directly

Supported

* “Not supported directly” implies that these queries can only be answered
by composing low level queries.

Table 2.3: Comparison: Data Models vs. Supporting Traceability Queries

Chapter 2. Background 52

research and development [SLZ08b]. In this section, we first introduce the EPC-

global standards for traceable network. Then we present an overview of current

efforts being developed to achieve traceable RFID networks. We study these ap-

proaches and compare them using the system development requirements outlined

in Section 2.2.3.1. Based on the analysis, we also point out some challenges and

open issues that need to be addressed.

2.4.1 EPCglobal Architecture Framework

EPCglobal [EPC] is an organization focusing on developing standards to support

RFID in information rich trading networks. The major standards in EPCgloal

Framework Architecture (EAF) are illustrated in Figure 2.8. EAF is widely

regarded as one of the most well-known RFID network architectures. EAF is

a collection of standards for hardware, software and data interfaces, together

with several core services (i.e., “EPC Network Services”) as shown in Figure 2.8.

This framework is a layered architecture that separates functionalities into three

isolated modules, namely identity, capture, and exchange.

Identity The identity layer standardizes data representation in RFID tags (i.e.,

“Reader Air Interface and EPC Spec”). An important standard in this layer is

the Electronic Product Code (EPC, not shown in the figure). EPC is designed

to be a scalable license-plate identification number that enables linking between

an individual product and its associated information resources or backend infor-

mation services. The air interface standards define the specifications for data

and commands to be transferred between tags and readers (e.g., the Class 1

Generation 2 UHF Air Interface Protocol Standard or “Gen 2”13).

13http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2

Chapter 2. Background 53

ONS DS

EPCIS

Instance

EPCIS

Instance

EPCIS

Instance

EPCIS Instance Structure

EPCIS Query Interface

Application Level Events (ALE) Interface

EPCIS Capture Interface

Reader Protocol Interface

Reader Reader Reader

Reader-Tag Air Interface

Tag TagTag Tag Tag

Publish DataPublish Data

Application

Query for

EPCIS Adress Traceability

Query

Query for

Object

Information

Notify

Figure 2.8: EPCglobal Architecture Framework

Capture The capture layer consists of standards for reader management, reader

protocols and most importantly, the Application Level Event (ALE) interface.

Chapter 2. Background 54

ALE is a common interface for accessing processed RFID data and controlling the

collection of raw RFID event data sent from RFID readers. The ALE specification

describes the behavior of aggregating and filtering of RFID data within a period

of time. This period of time is called Event Cycle (EC). At the end of an event

cycle, the data collected is processed and transformed into a report with filtered

event data containing what, when and where information. ALE also defines these

report specifications.

Exchange The data exchange layer is designed as a service-oriented architec-

ture [PTD07]. In this layer, there are three core services defined, namely EPC

Information Service (EPCIS), Object Naming Service (ONS) and Discovery Ser-

vice (DS):

EPCIS is the first step to enable data sharing and object tracing between

partners. It defines a set of interfaces for data capture and query. It also defines

a high-level data model which classifies data as either Master Data (static) or

Event Data (dynamic). The cooperation and data sharing methods are achieved

by two interfaces, namely EPCIS Query Control Interface and EPCIS Query

Callback Interface. Both interfaces define access control policies to allow only

authorized trading partners to access data.

ONS functions like Domain Naming Service (DNS) in Internet protocol stack.

It uses the ID of an object to retrieve the address of the EPCIS containing its

data. It is based on DNS and uses a particular type of DNS record, called Naming

Authority Pointer (NAPTR) record14, to provide for future flexibility. It should

be noted that, ONS only resolves the address of the EPCIS instance where the

14IETF RFC 2915

Chapter 2. Background 55

EPC is originally assigned to the object, although the object may be scanned

and stored in other EPCIS instances.

DS is currently under development15. This service is expected to discover in-

formation which may distributed across many EPCIS instances, for a specific

object.

2.4.2 BRIDGE

Building Radio frequency IDentification for the Global Environment (BRIDGE)16

is an European Union funded project to develop networked RFID systems. Al-

though BRIDGE utilizes the EPCglobal standards, it explores many related fields

including hardware, software and security with extensions. Work carried out

within the BRIDGE project includes the implementation of the EAF (see Sec-

tion 2.4.1), development of prototype Discovery Services, definition of essential

interfaces such as DS publish interface, and development of algorithms and tools

for building traceability applications. The BRIDGE project has explicitly taken

track and trace into consideration and designed specific services for traceability

queries while taking into account uncertainties. A number of successful industrial

trials have been achieved in the project17.

To support the Serial Level Lookup Service, BRIDGE has leveraged and ex-

tended the EPCglobal standards by developing a DS Query and Publisher inter-

face along with the development of Discovery Services . The BRIDGE project has

addressed an existing gap in the EAF by developing the key services necessary

to enable traceability applications18.

15http://www.gs1.org/gsmp/kc/epcglobal/discovery
16http://bridge-project.eu
17http://bridge-project.eu/index.php/bridge-public-deliverables/en/
18Researchers from IBM Almaden Research Center have also developed prototype

Chapter 2. Background 56

An important part of BRIDGE is a Supply Chain Node Network Hierarchy

Model that encapsulates a supply chain model for capturing physical flow of

objects in terms of nodes and connections. The track and trace model is used

to model the actual state of an object and the observed state reported by the

RFID devices based on a hidden Markov model (HMM), which distinguishes

between the actual and the latest observed state. The HMM model describes

the uncertainty under which the observed state reflects the actual successive

states of the object. The Tracking Algorithms which consist of probabilistic and

non-probabilistic algorithms provide procedures for track, trace, and prediction

queries. Probabilistic algorithms are particularly designed to address uncertainty

of reported observations (e.g., missing reads).

Architecture extensions developed within BRIDGE certainly overcome some

limitations of the EPC Network (e.g., uncertainty, discovery services and support-

ing interfaces) and meets all the requirements already satisfied by the EPCglobal

Architecture Framework (e.g., explicit support for a unique identifier, hetero-

geneity, security and privacy). Security is even further strengthened in BRIDGE

through strict access control policies governing published records as well as par-

ties authorized to publish to DS. This is beneficial to prevent corporate espionage

and surreptitious collection of business sensitive information.

However there are still some limitations in BRIDGE:

• Flexibility. The track and trace model based on HMM overcomes uncer-

tainties. This is handled in BRIDGE based on a static business model and a

learning phase used to establish the network parameters such as transition

probabilities for objects that move across a network of nodes. Consequently

DS [RKB06]. However, the BRIDGE project in particular has demonstrated the use of DS
along with the EPCglobal architecture in various industrial projects

Chapter 2. Background 57

the model is hard to adapt to dynamic changes in the physical world (e.g.,

additions or removals of supply network nodes).

• Scalability. The Discovery Services model has been selected specifically to

allow parties on a traceable RFID network to exercise fine grain control

over data related objects. However, the need for access control policies for

individual object instances and the volume of potential records for the DS

to provide an adequate level of support for serial level (item level) trace-

ability queries raises concerns regarding the scalability of the approach. In

particular, the access control policies are complex to manage given multiple

trading parties and billions of units of items moving through a network.

• Data Model. BRIDGE defines additional data model, the Supply Chain

Node Network Hierarchy model, on top of EAF data model. By encap-

sulating prior knowledge about the supply network, this model does not

maintain dependencies of nodes. This might be a significant problem since

all supply chain partners must maintain an individual supply network model

and communicate physical changes to all other parties in an off-line man-

ner. Such an unprecedented degree of collaboration may not be desired by

businesses in practice.

• Traceability Queries. The track and trace model and the supply chain

network structure model are used to answer track, trace and prediction

queries. More specifically, BRIDGE supports track queries, trace queries

with spatial and temporal constraints, containment trace queries and pre-

diction queries. Other types of queries (e.g, statistical trace queries) are

not supported explicitly. Execution of these unsupported queries must be

implemented at the application level by aggregating data through low level

trace queries.

Chapter 2. Background 58

2.4.3 IBM Theseos

IBM’s Theseos [CKS07a] is a query engine capable of processing complex queries

across organizations to enable the development of traceability applications in a

completely distributed setting. Theseos relies on a novel traceability data model

that eliminates any data dependencies between organizations, which serves as

a global schema that allows the formulation of a query without knowledge on

how the data is stored or where it is located, and how a tracking query is ex-

ecuted [ACK06a]. In particular, Theseos introduces two attributes in its data

model, namely sentTo and receivedFrom, that each organization is required to

maintain for the movement path of an object. With this information, it is possi-

ble to minimize the number of nodes to be visited without flooding queries to all

nodes in the network. Traceability queries are first processed locally. Based on

the outcome of this process, the query is further analyzed. It may be rewritten

and then forwarded to other distributed databases. The results retrieved from

the network are added to the local results and post-processed are required to

yield the final response.

One advantage of Theseos is that the data is not centrally maintained and

each organization has the ability to selectively share traceability data with other

trading partners. Another advantage is its scalability. Since data is processed

and stored in each individual node, the workload is naturally distributed. Un-

fortunately, to obtain the sentTo and receivedFrom information, Theseos requires

high synchronization with other enterprise data (e.g., billing or accounting infor-

mation). This is impractical for many applications where such enterprise data

may be unavailable. Another significant disadvantage of Theseos is its instability.

If any of the peers is down, all queries relevant to that peer will fail. This is be-

cause of the difference between peer-based RFID solutions and other peer-based

Chapter 2. Background 59

data sharing applications such as Bittorrent [WFC05]. Bittorrent allows redun-

dancy to exist and makes good use of this feature to increase data availability

and reliability. But peer-based RFID solutions keep data strictly private at each

node (i.e., there is no redundancy).

Theseos allows enterprises to selectively control access to traceability data

using Hippocratic Database (HDB) [AKS02] technology based on ten principles

rooted in privacy regulations. Consequently, successful execution of a traceability

query requires the inquiring party having the access privileges to the data stored

at the nodes along the movement paths of an object.

2.4.4 DIALOG

Distributed Information Architectures for cOllaborative loGistics (DIALOG) [DIA,

FN09] is a collection of projects focusing on developing a distributed informa-

tion sharing system. The DIALOG system is an open-source solution built on

a P2P architecture for tracking objects using the DIALOG middleware system.

Similarly to Theseos, DIALOG stores the data at places where it is collected.

However, DIALOG requires the manufacturer of the tagged goods to maintain

a server (software agent) which records the movement of the objects. Each In-

formation Provider node notifies the specific DIALOG agent when an object is

identified by its ID@URI identifier which consists of two components, a unique

ID string and a URI (Uniform Resource Identifier) where the DIALOG Software

Agent of the object resides.

Most of the recent developments in DIALOG have been achieved through

an EU funded project named PROMISE19 (Product Lifecycle Management and

Information Tracking using Smart Embedded Systems). The central advantage

19http://www.promise.no/

Chapter 2. Background 60

of DIALOG lies in its open architecture where messages are automatically routed

using existing DNS infrastructure. However, using DIALOG with the ID@URI

product instance identifiers still does not address the issues of re-routing when

URLs change and the relatively long identifiers of the DIALOG system. Conse-

quently, the questions of what product instance identifiers should be used and

how to lookup or discover information sources about those instances are still

largely an open issue.

The requirement that the manufacturer has to maintain the history informa-

tion about an object makes the system inflexible. Although DIALOG claims to

be P2P, the manufacturer-centric architecture is in fact centralized. As a result,

the scalability cannot be guaranteed.

2.4.5 Hierarchical P2P-based RFID Code Resolution Network

In a work presented in [ZLL09, ZLZ09], the authors propose a hierarchical peer-

to-peer (P2P) architecture to solve the load balancing and single node failure

problems in ONS and DS type resolution infrastructure we have discussed in

Section 2.4.1 and 2.4.2. The resolution infrastructure is divided into groups and

each group has a super node and the collection of super nodes form a higher level

group (i.e., super node group). All groups are organized as P2P networks with

unique node identifiers. The super node of each group is usually maintained by

the resolution service provider and the load in the group is distributed to the

member nodes by its super node.

The objects flowing through a supply chain network are assigned to groups

according to the prefix of their EPC. The prefix selected is segmented into two

portions C1 and C2 where C1 is the manager number section of an EPC and C2

segment corresponds to product type code and serial number portions of an EPC

Chapter 2. Background 61

identifier. Group nodes maintain the mapping information between individual

EPCs and services endpoints responsible for each EPC such as the URL of an

EPCIS. Super nodes are responsible for both starting a query and returning the

query result.

The proposed dynamic resolution network in [ZLL09] based on the static

network described above is a hierarchical P2P solution for implementing a DS

type infrastructure to record object movements and support track and trace type

queries. Every event in a local EPC Network should be registered within the

group nodes in the form of < EPC,EPCISAddress+event type+timestamp >.

Upon notification from a group node of the low level index, the super node of the

group, Si, creates a secondary index in the from of < EPC, vi IP Address >.

Finally, based on the P2P protocol used, one or more super nodes, for example

vk, are chosen by the group super node vi to store the secondary index record

in the form of < Hash(EPC), vi IP Address >. It is then recorded in the

secondary index table of super node vk. Since each object has a unique EPC,

all records related to a specific EPC generate the same secondary index hash

values as the object moves through a supply chain network. Consequently, all

the records related to a particular EPC is managed by a specific set of super

nodes with pointers to group nodes that contain mappings between EPCs and

service endpoints that observed the movement of the the object.

The architectural extensions only provide a means to enable track and trace

queries given an underlying EPC Network architecture. Hence there is no effi-

cient mechanism for realizing high-level track and trace queries. Also, this P2P

approach will result in longer and indefinite response times.

Chapter 2. Background 62

2.4.6 Comparison and Open Issues

The aforementioned architectures are compared using the traceability require-

ments presented in Section 2.2.3.1. Table 2.4 summarizes the results. From

the table we can see that despite recent progress in RFID traceability research,

many issues still remain to be resolved at the system architecture level in RFID

traceability networks.

Unique Identifier Tracking, tracing and predicting the state of individual ob-

jects require an unique identification scheme that can be manipulated by infor-

mation systems. EPCglobal Network, BRIDGE and the Hierarchical P2P based

architectures are all built upon EPC. DIALOG relies on ID@URI approach. The

cost of guaranteeing the uniqueness of the EPC’s company identifier (manager

number) requires subscription to EPCglobal20. ID@URI approach relies on each

company owning a unique domain name. There are three significant differences

with the two approaches: i) the cost of domain name registration is nominal while

subscription to EPCglobal is more expensive, ii) as a result of using URIs, the

DIALOG architecture requires relatively more expensive RFID tags (rewritable)

compared to write-once RFID tags used with the EPCglobal approach, and iii)

EPCs are centrally managed by EPCglobal, which guarantees the uniqueness

with a global scope. The URI used in the DIALOG system is usually a URL,

which is quite fragile. For example, if the URL or more specifically the local path

of the software agent is changed, objects whose tags have been written with the

URL might fail to resolve on the DIALOG network.

20No subscription is required for use of USDOD-64 and USDOD-96 EPC identifier types
designated for North American military use.

Chapter 2. Background 63

Uncertainty and Prediction Query Support Most of the existing architec-

tures do not address uncertainty explicitly. The assumption that the underlying

data capturing technologies are perfect is not correct. Uncertainty in captured

data significantly affects the results generated by traceability queries. In recent

years, uncertainty has become an active research topic [ABS06, CSP05]. Only ar-

chitecture extension supported by BRIDGE has provided high-level models and

algorithms capable of modeling the uncertainty. However, an important issue

with the approach is the need of supervised learning for the models to be use-

ful. Significant work is needed to i) investigate other modeling techniques such

as conditional random field (CRF), skip chain CRF [SM07] and Emerging Pat-

terns [GWT09] and ii) consider more dynamic models that does not require a

learning phase [RCG10, HFS08].

Scalability The existing architectures have achieved scalability based on either

federated or P2P architectures. EPCglobal Network and BRIDGE are federated.

The problem with this approach is that the Discovery Service (Serial Lookup

Service in BRIDGE) becomes a bottleneck. This issue is considered by the Hier-

archical P2P approach by implementing Discovery Service in a pure distributed

manner (refer to Section 2.4.5) and by DIALOG (refer to Section 2.4.4) based

on its multi-agent design. In general, in a P2P based approach, each node dele-

gate a query to its neighbors if it cannot answer the query itself. For example,

in Theseos, queries are processed locally and re-written before forwarded to the

next node. However, a significant issue for P2P based approach is that each node

must take an equal equity in the network and be open to the idea of having its

data stored on different peers that may be controlled by competitive businesses.

Chapter 2. Background 64

Heterogeneity Most of the existing architectures follow the EPCIS standards

in the EPCglobal Architecture Framework so that the backend system imple-

mentations do not affect the high-level architecture. Perhaps one of the most

important distinctions is that EPCglobal Network provides a layered architec-

ture stack with well defined standard interfaces. In contrast, DIALOG does not

provide standard interfaces such as the EPCIS for exchanging object related data.

Use of standards is critical when dealing with data exchange between multiple

organizations and heterogeneous environments. Standards also play a role in en-

hancing competition in the technology and systems provider market by allowing

multiple vendors to compete for system components and technologies.

Timely Response EPC Network, BRIDGE and DIALOG use subscription

mechanisms (“push” based approaches) to support real-time data requirements.

However in query processing, P2P architectures are not capable of providing

time constraints although this is an important requirement for traceability ap-

plications. For P2P architectures, a query may be propagated several times and

this significantly increases the processing time. Improving the timeliness of query

responses is a significant issue and we encourage more research in this direction.

Chapter 2. Background 65

U
U
ID

S
u
p
p
o
r
t

S
c
a
la
b
il
it
y

H
e
te

r
o
g
e
n
e
it
y

S
e
c
u
r
it
y

a
n
d

P
r
i-

v
a
c
y

T
im

e
ly

R
e
sp

o
n
se

U
n
c
e
r
ta

in
ty

B
R

ID
G

E
U

se
s

E
P

C
m

a
n

a
g
ed

b
y

E
P

C
g
lo

b
a
l

S
im

il
a
r

to
th

e
E

P
C

-
g
lo

b
a
l

N
et

w
o
rk

b
u

t
w

it
h

D
S

im
p

le
m

en
-

ta
ti

o
n

s
b

a
se

d
o
n

th
e

D
ir

ec
to

ry
o
f

R
es

o
u

rc
es

m
o
d

el
[C

G
P

1
0
].

D
S

m
a
y

b
e

a
b

o
tt

le
n

ec
k

d
u

e
to

co
m

p
le

x
se

cu
-

ri
ty

p
o
li

ci
es

re
q
u

ir
ed

to
m

a
n

a
g
e

in
d

iv
id

u
a
l

E
P

C
re

co
rd

s

U
se

s
E

P
C

g
lo

b
a
l

st
a
n

-
d

a
rd

s
b

u
t

n
ew

in
te

r-
fa

ce
s

d
ev

el
o
p

ed
a
re

y
et

to
b

e
st

a
n

d
a
rd

iz
ed

D
ir

ec
to

ry
o
f

R
es

o
u

rc
es

m
o
d

el
a
n

d
a
cc

es
s

co
n

-
tr

o
l
p

o
li
ci

es
fo

r
in

d
iv

id
-

u
a
l
E

P
C

re
co

rd
s

en
su

re
th

a
t

a
n
y

D
S

cl
ie

n
t

w
il
l

h
a
v
e

to
p

a
ss

tw
o

a
c-

ce
ss

co
n
tr

o
ls

:
i)

a
t

th
e

D
S

to
o
b

ta
in

th
e

li
st

o
f

E
P

C
IS

li
n

k
s

a
n

d
ii
)

a
t

th
e

su
b

se
q
u

en
t

q
u

er
y

to
th

e
E

P
C

IS
to

o
b

ta
in

d
et

a
il
ed

ev
en

t
in

fo
rm

a
-

ti
o
n

)

S
u

b
sc

ri
b

in
g

m
ec

h
-

a
n

is
m

fo
r

re
a
l-

ti
m

e
re

sp
o
n

se
s

P
a
rt

ia
ll

y
a
d

d
re

ss
ed

th
ro

u
g
h

p
ro

b
-

a
b

il
is

ti
c

a
l-

g
o
ri

th
m

s
a
n

d
su

p
p

ly
ch

a
in

n
et

w
o
rk

d
a
ta

m
o
d

el
.

A
l-

g
o
ri

th
m

s
a
re

b
a
se

d
o
n

h
id

-
d

en
M

a
rk

o
v

m
o
d

el
s

(H
M

M
)

a
n

d
a
re

a
v
a
il
-

a
b

le
to

su
p

p
o
rt

a
p

p
li
ca

ti
o
n

s
th

ro
u

g
h

A
P

Is
IB

M
T

h
e-

se
o
s

A
b

le
to

u
se

ex
is

ti
n

g
U

ID
s

in
cl

u
d

in
g

E
P

C
D

is
tr

ib
u

te
d

a
n

d
P

2
P

b
a
se

d
a
rc

h
it

ec
tu

re
,

h
ig

h
ly

sc
a
la

b
le

V
en

d
o
r

n
eu

tr
a
l

st
a
n

-
d

a
rd

s
b

a
se

d
o
n

E
P

C
-

g
lo

b
a
l

st
a
n

d
a
rd

s

A
p

ee
r

co
n
tr

o
ls

a
cc

es
s

to
it

s
o
w

n
d

a
ta

u
si

n
g

fi
n

e
g
ra

in
ed

a
cc

es
s

co
n

-
tr

o
ls

b
a
se

d
o
n

H
ip

p
o
-

cr
a
ti

c
D

B
te

ch
n

o
lo

g
y

C
a
n

n
o
t

g
u

a
ra

n
te

e
re

a
l-

ti
m

e
re

sp
o
n

se
s

b
ec

a
u

se
o
f

P
2
P

q
u

er
y

la
te

n
cy

N
o
t

a
d

d
re

ss
ed

ex
p

li
ci

tl
y

D
IA

L
O

G
U

se
s

th
e

ID
@

U
R

I
id

en
ti

fi
er

.
R

el
ie

s
o
n

ea
ch

co
m

p
a
n
y

o
w

n
in

g
a

u
n

iq
u

e
d

o
m

a
in

n
a
m

e
(h

o
w

ev
er

co
st

s
a
re

m
in

im
a
l)

M
u

lt
i-

a
g
en

t
b

a
se

d
d

is
-

tr
ib

u
te

d
sy

st
em

.
S

in
-

g
le

a
g
en

t
fo

r
a

p
ro

d
u

ct
cl

a
ss

o
r

ty
p

e
m

a
y

b
e

a
b

o
tt

le
n

ec
k

N
o

D
IA

L
O

G
sp

ec
ifi

c
st

a
n

d
a
rd

s.
H

o
w

ev
er

,
D

IA
L

O
G

a
g
en

ts
su

p
-

p
o
rt

im
p

le
m

en
ta

ti
o
n

o
f

a
n
y

d
a
ta

ex
ch

a
n

g
e

st
a
n

d
a
rd

su
ch

a
s

P
M

I
in

P
R

O
M

IS
E

.
A

lt
h

o
u

g
h

ID
@

U
R

I
a
p

p
ro

a
ch

is
fl

ex
ib

le
,

U
R

L
s

in
th

e
id

en
ti

-
fi

er
a
re

fr
a
g
il
e

a
n

d
in

fl
ex

ib
le

D
a
ta

so
u

rc
e

(e
.g

.,
m

a
n
u

fa
ct

u
re

rs
)

n
o
m

-
in

a
te

d
b
y

ID
@

U
R

I
h

a
v
e

co
n
tr

o
l

o
v
er

a
ll

th
e

d
a
ta

a
b

o
u

t
o
b

je
ct

s
a
n

d
p

a
rt

n
er

n
o
d

es
n

ee
d

to
u

p
d

a
te

th
e

d
a
ta

so
u

rc
e.

O
th

er
p

a
rt

ic
ip

a
n
ts

th
er

ef
o
re

la
ck

co
n
tr

o
l

o
n

th
e

d
a
ta

E
x
te

n
si

o
n

s
m

a
d

e
to

su
p

p
o
rt

re
a
l-

ti
m

e
re

-
sp

o
n

se
th

ro
u

g
h

ca
ll
-

b
a
ck

a
n

d
p

u
ll
-b

a
se

d
m

ec
h

a
n
is

m
s

N
o
t

a
d

d
re

ss
ed

ex
p

li
ci

tl
y

H
ie

ra
rc

h
ic

a
l

P
2
P

N
et

-
w

o
rk

U
se

s
E

P
C

m
a
n

a
g
ed

b
y

E
P

C
g
lo

b
a
l

D
is

tr
ib

u
te

d
a
n

d
P

2
P

b
a
se

d
,

h
ig

h
ly

sc
a
la

b
le

U
se

s
v
en

d
o
r

n
eu

tr
a
l

st
a
n

d
a
rd

s
d

ev
el

o
p

ed
b
y

E
P

C
g
lo

b
a
l

D
efi

n
ed

se
cu

ri
ty

m
ec

h
-

a
n

is
m

fo
r

co
m

m
u

n
i-

ca
ti

o
n

s
b

et
w

ee
n

p
ee

rs
a
n

d
a
cc

es
s

to
d

a
ta

R
ea

l-
ti

m
e

re
sp

o
n

se
s

ca
n

n
o
t

b
e

g
u

a
ra

n
te

ed
b

ec
a
u

se
o
f

P
2
P

q
u

er
y

la
te

n
cy

N
o
t

a
d

d
re

ss
ed

ex
p

li
ci

tl
y

T
ab

le
2.

4:
C

om
p
ar

is
on

:
S
y
st

em
A

rc
h
it

ec
tu

re
s

v
s.

S
y
st

em
D

ev
el

op
m

en
t

R
eq

u
ir

em
en

ts

Chapter 2. Background 66

Security and Privacy To enable traceability in a distributed RFID system,

there must be some level of data sharing between nodes. Access control in DIA-

LOG is shifted away from parties down the supply chain towards manufacturers.

Manufacturers of objects exercise dominant control over collecting information

from other parties and sharing of that information with client applications. In

contrast, the EPCglobal Network (through the Discovery Services mechanism

developed in BRIDGE) allows highly granular access control policies to be speci-

fied by parties collecting information in order to determine access rights by other

entities to product related data. There are trade-offs between the privacy and

data sharing. For example, P2P architectures protect privacy adequately by pro-

viding nodes with ownership of the data and the choice to respond only queries

from desirable parties, which also means some constraints for data sharing. Thus

techniques for dealing with the tradeoff between privacy and data sharing is still

a research challenge.

2.5 Summary

During the past decade, RFID technologies have developed rapidly and are in-

creasingly used in large-scale, mainstream applications. Traceability is a criti-

cal aspect of majority of these RFID applications. Enabling traceability using

networked RFID systems brings some fundamental research and development is-

sues. Most of these challenges are due to the large volume of data generated from

different organizations, the unwillingness of participants to share data, and data

quality issues that arise as a result of the physical layer. Consequently, we need to

propose novel solutions to make RFID traceability applications scalable, robust,

and secure. In particular, a well-defined data model that takes into consideration

unique characteristics of RFID traceability applications such as temporal and

Chapter 2. Background 67

spatial characteristics of RFID data, uncertainty and containment relationships

that exist between objects.

We overview the current approaches to enable traceability in RFID networks.

By comparing and analyzing these architectures and data models, we have con-

cluded that the area of RFID traceability networks presents many interesting

challenges and opportunities that need to be resolved before global traceable

RFID networks can be fully realized. In the remaining sections of this disser-

tation, we propose novel data models and architectures for scalable large-scale

traceable RFID networks. Our solutions address most of the requirements pro-

posed in this chapter.

Chapter 3

Peer-to-Peer Model and

Architecture for Traceable

Networks

Data models are very important for realizing efficient, effective and scalable trace-

able network. On the one hand, as we have summarized in Chapter 2, existing

traceability models are mostly best-suited in centralized database. The data

schemas cannot be easily adopted in distributed networks because they either

require synchronization with enterprise database, or are static. On the other

hand, traceable RFID networks are mostly cross-organization. As a result, it is

not only technically difficult to utilize centralized models, but also infeasible in

the sense of business development.

In this chapter, we present our proposed distributed traceability model [SWR10,

WSR11b, WSR11a]. This model is inspired by the distributed model introduced

in IBM Theseos [CKS07b] (Section 2.4.3). However, our model is more sophis-

ticated because it explicitly defines the traceability data structures, including

movement, path and related measurements. Based on this model, we propose a

Peer-to-Peer architecture for traceable RFID networks. This architecture sup-

Chapter 3. MOODS 69

ports all kinds of queries efficiently and is highly scalable and flexible. It is built

on the top of DHT (Distributed Hash Table) overlay network. For quickly trace-

ability query processing, we index an object at a node determined solely by the

object’s ID. Unlike Theseos, our architecture does not require synchronization

with enterprise data. Contrarily, we propose an algorithm to maintain the model

in a P2P fashion.

In order to further reduce the bandwidth costs and balance the workload

among all the nodes, we introduce an enhanced algorithm to maintain the trace-

ability model. We extract the key factor which influences both the bandwidth

cost and load balancing, and propose the formula to determine its value in dif-

ferent environments (i.e., bandwidth first or load balancing first). In addition, a

set of replication policies is proposed to provide robust, highly available service.

This chapter is organized as follows. In Section 3.1, we introduce the trace-

ability model MOODS (Model for mOving Object in Discrete Space). In Sec-

tion 3.2, we introduce a Peer-to-Peer traceable RFID network architecture built

on the top of MOODS and the algorithm used to maintain the traceability data

structures. In Section 3.3, we propose an enhanced algorithm to maintain the

model, and the formulas to decide the key factor. We then introduce traceability

query processing algorithms in the architecture in Section 3.4 and the fault recov-

ery policies in Section 3.5. Finally, we discuss some related work in Section 3.6

and conclude this chapter in Section 3.7.

Chapter 3. MOODS 70

3.1 The MOODS Model

In existing models for moving objects, both time and space domains are con-

tinuous. This is necessary because the query result domain is also continuous.

However, in many traceability applications (e.g., RFID-enabled supply chains),

objects are only captured at fixed locations (signified by nodes and receptors).

The queries refer to a finite set of fixed locations instead of a point or region

in an infinite space. The traditional continuous models can be adopted in these

applications. However, they are unnecessarily heavy because of the definition and

maintenance of various spatial elements. We therefore propose a new model that

can represent moving objects and their attributes in an economic way, namely

MOODS (a Model for mOving Objects in Discrete Space).

3.1.1 The Key Traceability Functions

In this section, we first revisit the notations in Section 2.2.1 and use them to

define the basic operations that should be provided by a traceability model.

L(o, t) : O × T 7→ V (3.1)

Equation 3.1 shows the signature of the function for locating an object. Given

an object o in the object set O and a point of time t in the time domain T , the

locating function L derives the location where the object o was/is/will be at t.

If o is not in the system, the result of L is nil (indicating “nowhere”).

In RFID traceable networks, the time domain T is continuous because read-

ers are working continuously to capture moving objects. The time-parameterized

queries may take any moment as an input. However, as we discussed in Sec-

tion 2.2.1, the space domain is discrete. Instead of a continuous infinite domain,

Chapter 3. MOODS 71

we define the space domain as a finite set of nodes V = {v1, v2, ..., vm} (Same as

the one defined in Section 2.1.2). The set is dynamic since new nodes can join

and existing nodes may leave the network. The object domain is the same as the

existing models, i.e. O = {o1, o2, ..., on}.

The function L essentially locates an object. Another important function is

to find the trace of an object. Similar to L, we define the trace function T R as:

T R(o, tstart, tend) : O × T × T 7→ P (3.2)

P : {(vk1 , vk2 , . . . , vkp , . . . , vkl)|vkp ∈ V , 0 < l ≤ m} (3.3)

Given an object o and a time range (tstart to tend), T R finds the trace of o

during that time frame. P denotes the domain of path. A path is a sorted list

of nodes (can be empty) in V as defined in Section 2.2.1. The sorting is done by

the order of the nodes visited by object o (i.e., by time).

3.1.2 The Design of the MOODS Model

The basic idea of MOODS is that instead to model the RFID events (like the

DRER model 2.3.1), we try to describe the change of locations, which is the base

for traceability. The schema of MOODS is very simple (a single relation):

Stay : {ID, start time, from, end time, to} (3.4)

This Stay relation represents two separate events. The from and start time

attributes represent the source and the time of arrival, meanwhile the to and

end time attributes represent the destination and the time of departure. It

Chapter 3. MOODS 72

should be noted that to and end time can be nil because objects can stay at a

node indefinitely. The primary key of Stay relation is {ID, start time}, because

an object can visit a node for more than once. We do not use {ID, from} as

primary key because an object can visit a node from the same source for more

than once.

v1 v2 v3

Movement m1 Movement m2 Object o

DB

Stay1
ID : o

from : nil

start_time : t1

to : v2

end_time : t2

Stay2
ID : o

from : v1

start_time : t3

to : v3

end_time : t4

DB

Stay3
ID : o

from : v2

start_time : t4

to : nil

end_time : nil

DB

m1 = (Stay1.ID, V1, Stay1.end_time, Stay1.to, Stay2.start_time)

Link Stay1 and Stay2

by Stay1.to

p = (Stay1.ID, V1, Stay1.to, Stay1.to.to, nil)

or p = (Stay3.ID, V3, Stay3.from, Stay3.from.from, nil)

Link All Stay Records

by to or from, until to or from == nil

Two movements forming a path p

Figure 3.1: MOODS Model Design Overview

Using the Stay relation, we can represent the distributed traceability struc-

tures easily. Figure 3.1 illustrates the Movement and Path structure in a dis-

tributed environment with Stay. Movement can be represented by linking two

Stay record. This can be done at both nodes (source or destination, only the

representation from source is shown in the figure), yielding two different represen-

Chapter 3. MOODS 73

tations (for convenience of presentation, when we use “source” or “destination”

in the equations, they are presenting the Stay record.):

m = (ID, source, source.end time, source.to, source.to.start time) (3.5)

m = (ID, destination.from, destination.from.end time,

destination, destination.start time)
(3.6)

The two forms are semantically same, however they are used at different nodes.

It is clear that at the source, Equation 3.5 should be used and Equation 3.6 should

be used at the destination.

Similarly, path can also be composed in two ways:

p = (ID, source, source.to, ..., until to is nil) (3.7)

p = (ID, destination, destination.from, ..., until from is nil) .reverse (3.8)

Equation 3.7 is used at the source and Equation 3.8 is used at the destination.

Although MOODS is defined very simple, it is powerful. Using the equations

above, we can answer the two key functions introduced in Section 3.1.1. Given

an object o, suppose the queries are issued from a node v1 which is on o’s moving

path, we have (please note that the dot operation may be a remote call to another

node):

T Rv (o, tstart, tend) = (from, from.from, ..., until from is nil or start time < tstart)

+v + (to, to.to, ..., until to is nil or end time < tend))

(3.9)

1L and T R are subscripted with v to indicate that v is the node where the queries are issued

Chapter 3. MOODS 74

if t < start time :

Lv (o, t) = from or from.from or ..., where from is nil or start time < t

if t >= start time and t <= end time :

Lv (o, t) = v

if t > end time :

Lv (o, t) = to or to.to or ..., where to is nil or end time > t

(3.10)

We can see that the MOODS model can answer the two queries in a distributed

way just by the from and to attributes. Unfortunately, as we discussed in Chap-

ter 2, these two attributes are not available unless synchronizing the model with

other enterprise data. Also, the above two equations have a strong assumption

that the queries are issued from a node v which is on o’s moving path. Although,

in most cases this is true, we cannot accept this assumption in all the applica-

tions. In the next section, we introduce a P2P architecture working on the top of

the model, which can not only get the two attributes but also use them to answer

kinds of queries issued from any node in the network.

3.2 A P2P Traceable RFID Network Architecture

Our architecture is built on the top of Distributed Hash Table [BKK03] (DHT).

The basic idea is to index (DHT.put(key, value)) an object in the DHT overlay

network. In our design, there are two sets of DHTs. For the first one, the key

in the DHT is the ID of an object, and the value is its latest location. For the

second one, the key is the ID of a node, and the value is its URI. We name the

two DHTs DHTo and DHTv.

Chapter 3. MOODS 75

Figure 3.2 illustrates the workflow when a movement happens.

V1V2

V3

1. Index o at DHTo(o.ID)

2. DHTo(o.ID)

3. Update o.latest from V2 to V1

Notify V1 and V2

Object o moved from V2 to V1

4.2. DHTv(V2)

5.1. o.to = V1

4.1. DHTv(V1)

5.2. o.from = V2

Index

Notification

Movement

Figure 3.2: P2P Traceable RFID Network Workflow

When object o moved from node v2 to node v1, MOODS creates a new record

(o, nil, nil, v1, t1), then an indexing message (message 1) is sent to the node

DHTo(o.ID). Essentially, this message is a DHT put operation, i.e., the lat-

est location (v1) of o is put into the DHT and stored at DHTo(o.ID), which is v3

in this example. v3, which we call the Gateway Node for object o, is responsible

to record the latest state of o. After update its record for o by changing o.latest

from v2
2 to v1, v3 notifies both v1 and v2, about the previous or current states of o,

respectively (4.1 and 4.2). Upon receiving of the notifications, v1 updates o.from

as v2 and v2 updates o.to as v1. In this way, the MOODS model is completed.

With this structure, we can answer item-level traceability queries by querying the

gateway node first to get the address of the node which has the latest information

of the given object, then following the linked list of the object’s moving path to

get the information needed.

The place where the index is stored (Gateway Node) is determined solely by

the id of the object thanks to DHT’s determinism, so that from anywhere in the

2The information about v2 at v3 was acquired in the same way

Chapter 3. MOODS 76

network, the object can be located by its ID3. The abstract data structure is

essentially a double linked list distributed in the DHT network. The head of the

list is the Gateway Node. When the object moves to a new node, the gateway

node is updated and the list is expanded.

In our approach, the information of objects’ moving path is stored at nodes in

a distributed way as a linked list. An alternative way is to store it only at gateway

nodes. However, by doing this, we will not be able to answer range queries (e.g.,

“how many objects moved from n1 to n2 during last month?”) because objects

traveling together may not be indexed at the same gateway node, due to the

uniformity of the hash function. Storing the links at gateway nodes is therefore

not a good idea in the sense that we have to flood the network to answer range

queries.

We do not require the nodes along the routing path from the original node to

the gateway node to store the index to the latest location of an object, although

doing so increases the availability of indexes and statistically decreases the time

to route queries or indexes to gateway nodes. However, our approach can still

achieve similar advantages without this extra storage cost. The reason is that

links information is stored along the moving path of objects. Whenever a query is

routed to a node that keeps part of the moving path of the corresponding object,

the processing of the query can commence without routing to the gateway node.

It is worth mentioning that our architecture is built on top of the existing DHT

networks and we do not explicitly deal with the dynamicity of the underlying

networks. One reason is that we choose Chord as DHT which adapts well with

the dynamic networks. When new peer joins, only a small portion of nodes will

migrate their data. Similarly, when a peer leaves, it will migrate its data to

3In order to take this advantage, we hash the object’s raw id using the SHA-1 function.
Thus the ids of the objects and the nodes are in the same space.

Chapter 3. MOODS 77

another peer [Sto01]. The data migration can be expensive when its amount is

huge. However, since the nodes in the traceable networks are reliable servers,

they have their own replication policies and the offline time is normally very

short. We will discuss more about replication and fault recovery in Section 3.5.

3.3 An Enhanced Model Maintenance Algorithm

3.3.1 The Overview of the Design

A problem of this naive MOODS maintenance method is the indexing cost. When-

ever an object arrives at a node, the system has to issue 3 messages (1 message

from the node and 2 messages from the object’s corresponding gateway node) in

order to establish the links. This is clearly an expensive approach for large-scale

applications where order of magnitude is often thousand. In order to solve this

problem while still having the MOODS links established, we next introduce a

enhanced maintenance algorithm for MOODS.

In a large traceable network, the data volume might be very high. Indexing

each individual object will cause enormous number of messages to flood the net-

work. An obvious solution to solve this problem is to classify the objects arriving

at a node within a small period of time into different groups. In particular, ob-

jects’ raw IDs can be hashed using the secure hash algorithm SHA-1 and grouped

by the prefixes of their hashed IDs. Figure 3.3 illustrates how data are grouped

and how the gateway nodes are chosen. In general, we define a global prefix

length (4 in this example) and group the objects according the prefix of their

IDs. The objects are indexed in groups to the gateway node which is chosen

according to the prefixes by the DHT.

The index/notify process is the same with the one in Figure 3.2. The only

Chapter 3. MOODS 78

V1V2 Objects moved from V2 to V1

V3

 … …

Group 0000

0000 0000 0000 0001

0000 0100 0000 0001

0000 0200 0000 0001

0000 0300 0000 0001

0000 0400 0000 0001

0000 0500 0000 0001

0000 0600 0000 0001

0000 0700 0000 0001

0000 0800 0000 0001

1. Index group 0000 at

DHTg(SHA-1('0000'))

V4

Objects moved from V4 to V1

Group all objects arriving during the same time frame

2.1 Notify V4

2.2 Notify V2

Figure 3.3: Group-based P2P Traceable RFID Network Workflow

difference is that in this approach, the objects are grouped and we index the

groups in the DHT, instead of each individual object. Firstly, we define the

Sliding Window, which is a time frame. During each window, we collect the data

and group them according their hashed-ID’s prefix. The objects may come from

different sources. For example, in Figure 3.3, we have two sources for node v1:

v2 and v4 during the same window. At the end of the window, the groups are

indexed at the gateway nodes for each group, by a DHT lookup DHTg. The ID

of the group is SHA-1(prefix). The notifications to the sources are in group too.

This approach can significantly reduce the bandwidth cost. For example, if

1024 objects arrived at a node n and we choose a prefix length of 4, there are

at most 24=16 prefixes. As a consequence, instead of indexing all these 1024

objects, we simply classify them into at most 16 groups by prefixes (with prefixes

as the group IDs), and index the groups. The indexing message contains all the

objects in the group, and the gateway node still record the latest state for each

individual object. Since it is possible to compress the message now, we can save

the bandwidth cost significantly.

Chapter 3. MOODS 79

Based on this concept, we show our enhanced algorithm as pseudo code in

Listing 3.1.

Listing 3.1: Pseudo Code : Group-based Indexing Algorithm

// The following code is ran at each node as the main event loop

while (true) {

for each window

determine the length of prefixes;

group the collected data by their prefixes;

send the groups to their gateway nodes;

end for

}

// The following code is triggered when the node

// receives notifications from gateway nodes

if (message is about source)

update source for each object in the group;

end if

if (message is about destination)

update destination for each object in the group;

end if

3.3.2 Determining the Width of the Sliding Window

A group function is invoked periodically at time intervals of Tinterval or triggered

by other conditions (to be discussed later) to divide the objects captured during

this time frame into groups. Two objects belong to the same group when their

ids have l prefix bits in common.

Tinterval, is the width of windows of the object stream. We take the objects

in the same window for grouping and indexing at one cycle. This parameter is

Chapter 3. MOODS 80

introduced to restrict the size of the indexing message. Unfortunately, a fixed

value of Tinterval will cause problems when the object stream is unstable. For

example, if an object stream suddenly has an extremely high volume (e.g., more

products enter the warehouse in one cycle), the number of objects in the same

window will be very high thus the size of indexing messages becomes larger.

In our work, we exploit an adaptive scheme to determine the width of win-

dows. In particular, we define a maximum time interval, Tmax, and the maximum

number of objects received at each cycle, Nmax. After Tmax has passed, or when

the number of objects received has exceeded Nmax, the current cycle ends and the

grouping process is started on the received objects during this cycle. Meanwhile,

a new cycle is started. In order to limit the message size sent for indexing the

objects, we believe an upper bound on the number of received objects in each

cycle (Nmax) is necessary. With a small Tmax, it is possible to enable real time in-

dexing so that the objects will not be delayed too long for indexing when volumes

become very low. The value of Tmax can be determined by the system’s timeliness

restriction and is configurable. Similarly, the value of Nmax can be configured.

Also, these values are not necessarily the same universally. Each node can define

its own configuration values for them for the best of the performance. Listing 3.2

shows the pseudo code of the algorithm.

Listing 3.2: Pseudo Code : Determining the Width of the Sliding Window

while (true) { // the main event loop

start := current system time;

time := start;

number := 0;

while ((time - start) < Tmax or number < Nmax) {

sleep(1); // sleep for one second to capture RFID data

do the indexing;

Chapter 3. MOODS 81

time ++;

number += number of objects received during last seconds

}

}

3.3.3 The Key Factor : The Length of Prefixes

The length of the prefix l is the key to determine the total number of groups in

the system and should be chosen wisely. If it is too big, the number of groups is

high and in the worst case, it is close to the number of objects. As a result, the

number of messages will not be significantly decreased. On the other hand, if it

is too small, only a small portion of the nodes in the network will be responsible

for indexing, thus the work load is not well balanced. Essentially, it is important

to find an optimal value of l that can guarantee that almost every node in the

network has the opportunity to index at least one prefix (i.e., group). We denote

the probability that a node has at least one group to index as Prg. Because

prefixes are distributed uniformly at random over the nodes by the hash function,

according to probability theory, we have:

Prg = 1−
(|V| − 1

|V|

)2l

(3.11)

The optimal value of l should yield the value of Prg as close as possible to 1.

If 2l ← |V|, we have:

Chapter 3. MOODS 82

lim
|V|→∞

Prg = lim
|V|→∞

(
1−

(|V| − 1

|V|

)|V|)
= 1− lim

|V|→∞

1(
1 + 1

−|V|

)(−|V|)

= 1− 1

e
= 0.6321 < 1

(3.12)

Obviously, when l is log2 |V|, the probability that all |V| nodes are used for

indexing is only 0.6321, which is not large enough for good load balancing.

When 2l is |V| ∗ log2 |V|, we have:

lim
|V|→∞

Prg = lim
|V|→∞

(
1−

(|V| − 1

|V|

)|V| log2 |V|
)

= 1− lim
|V|→∞

((|V| − 1

|V|

)|V|)log2 |Nn| (3.13)

It is easy to prove that the limit value of Equation 3.13 is 1. Thus we can

determine the Lp value:

l > log2 (|V| log2 |V|) = log2 |V|+ log2 log2 |V| (3.14)

According to Equation 3.14, as long as l is chosen larger than log2 |V| +

log2 log2 |V|, we have a high probability to give each node in the network a chance

to be responsible for a group. In our system, we choose dlog2 |V| + log2 log2 |V|e
for l.

As new nodes join and existing nodes leave, |V| is dynamic. As a result, there

Chapter 3. MOODS 83

is no precise way to calculate this value. However, there are existing algorithms

available to estimate the value of |V|. Interested readers are referred to [JM04] for

details. According to Equation 3.14, l increases much slower than |V|. Therefore

there is no need to recalculate l every time the network changes. Instead, l can

be adjusted at a relatively long interval.

During the bootstrap of the network, however, |V| should be re-calculated

more frequently to quickly detect a change of l because |V| starts from a small

value and changes frequently. According to Equation 3.14, |V| will also begin with

small values and keep changing, thus at the beginning, the number of groups is

small and objects are indexed nearly individually. To solve this problem, we

introduce lmin, a minimum value of l. The value of l is also configurable and

applies to all nodes in the network.

3.3.4 Prefix Triangle

After the groups are built, the node that captured objects will send indexing

messages to the gateway node for each group. The gateway node is determined by

the hash value of the group id. For example, objects belonging to the group “00”

will be indexed in the node hash(“00”)4. The indexing message contains the list

of objects in the group “00”. The gateway node stores the indexing information

for each object individually. We apply gzip compression on the message to reduce

the size of the message.

However, we cannot simply store and lookup the index at the gateway nodes.

There are two issues we need to address because of the introduction of the group-

ing scheme.

4Note that the parameter for the hash function is a string, instead of an integer, because
“00” and “000” are different prefixes

Chapter 3. MOODS 84

Firstly, changes of l cause grouping inconsistencies. For example, at node v1,

l was 2 and we grouped objects 0000 and 0001 into the same group 00. The

index was stored at the gateway node hash(“00”). Before these objects arrived

at node v2, new nodes joined that caused l to become 3. After objects 0000 and

0001 arrived at node v2, they are grouped into group 000 and the corresponding

gateway node becomes hash(“000”). At this moment, the node hash(“000”) does

not have previous information about these two objects and it may assume that

node v2 is the first node on the path of these objects, which in fact should be v1.

A similar situation also happens when the size of the network decreases. This

causes the links to be updated incorrectly.

Secondly, when new nodes join the network, the increase of number of nodes

does not cause l to increase, there are always at least |V| − 2l nodes idle. The

load is then not well balanced.

V1

V2 V3

V1 stores index for SHA-1('000')

V2 stores index for SHA-1('0000') V3 stores index for SHA-1('0001')

DHTg(SHA-1('0000'))
DHTg(SHA-1('0001'))

DHTg(SHA-1('000'))

DHTg(SHA-1('000'))

Figure 3.4: Prefix Triangle Example

To solve the above two problems caused by l, we introduce a distributed data

structure called Prefix Triangle. A prefix triangle consists of three nodes in the

Chapter 3. MOODS 85

network. The roles of them are not symmetric. Figure 3.4 shows an example

of the triangle. Essentially, prefix triangle is a simplified version of Distributed

Prefix Hash Tree [RRH04].

The gateway node is responsible for indexing objects whose IDs are prefixed

by “000” (current prefix length is 3). The two child nodes are responsible for

indexing “0000” and “0001”. But the child nodes do not index groups directly,

instead they are secondary storage for their parent. The parent delegates part of

the indexing data according to the next bit in an object id after the prefix to the

child nodes respectively. With this data structure, even if the network changes

so significantly that the value of l changes, we can still find the previous index

by following the links between the parent and children in the triangle.

We can also prove that the load balancing is well maintained even when the

network constantly changes.

Suppose to increase the current |V| by 1, we need ∆ new nodes to join. We

have:

dlog2((|V|+ ∆) log2 (|V|+ ∆))e − dlog2 (|V|log2|V|)e = 1 (3.15)

Removing the ceilings, we have:

log2((|V|+ ∆) log2 (|V|+ ∆))− log2 (|V| log2 |V|) < 2 (3.16)

It is easy to verify that ∆ is less than 3|V|. When ∆ = |V| or ∆ = 2|V|, the

inequality holds, while when ∆ = 3|V|, it does not. Since the equation on the

Chapter 3. MOODS 86

left is a monotonically increasing function of ∆, we can conclude that the value

of ∆ satisfying the equality in Equation 3.15 must be between 2|V| and 3|V|.

In the worst case, there are ∆ nodes idle. For a traceable network whose prefix

length is l, we use extra 2l+1 logical nodes (the child nodes in the prefix triangle)

for indexing. The 2l+1 + 2l = 3|V| log2 |V| logical nodes are distributed among at

most ∆ + |V| < 4|V| physical nodes. By similar inference to Equation 3.14, there

is a high probability that all physical nodes have at least one group to index.

With the changes to the network (nodes join and leave), the child nodes may

have their children. However, the tree is not necessary. From the analysis above,

we can see that the prefix triangle is good enough to maintain a well balanced

workload. Maintaining a tree introduces longer delay for looking up. Trees also

cost more for processing indexes. For all new objects, unless we fully traverse

the tree, it is impossible to determine whether they are new or have historical

information stored somewhere in the tree. In this case, each object will be looked

up in each level of the tree, so for |O| objects and a tree of height h, the total

number of DHT lookup operations is h ∗ |O|, which clearly is expensive.

Fortunately, we do not maintain the whole tree all the time. Instead, once the

network size changes and causes the prefix length to change, we start a splitting-

merging process. If the prefix length increases, then the child nodes in the triangle

become parent nodes in new triangles. The data stored in the old parent will all

be delegated into the two new parent nodes which are its child nodes. Similarly, if

the prefix length decreases, the parent node in the triangle becomes a child node

of another node that is indexing a shorter prefix, the parent node’s two child

nodes migrate the data they are indexing to the parent node. Thus eventually

we always maintain only triangles, instead of trees. To look up an object which

does not exist locally, we only need to ask the parent and its two children. Taking

Chapter 3. MOODS 87

Figure 3.4 as an example, after the prefix length increases from 3 to 4, the node

indexing prefix “000” will split all its data into “0000” and “0001” according the

fourth bit of their IDs. It is not necessary to start the splitting-merging process

as soon as the prefix length changes. Instead it can be done during the system’s

free time.

3.3.5 The Group-based Indexing Algorithm on Prefix Triangle

Figure 3.5 summarizes our indexing algorithm. The index algorithm first tries to

update the index stored locally (line 1) and gets a list of objects whose index is

stored either in ascents or descents by a set difference operation (line 2). Then

we refresh the local indexing records by searching up and down in the tree (lines

4 and 5) for the objects in the difference set. After the index of all objects are

downloaded to the local storage, the index will be grouped by source nodes and

sent back to child nodes (not shown in the algorithm).

The two refresh procedures are used to retrieve the indexes by traversing

the tree up and down, respectively. Before sending the fetching request to the

respective nodes, the object list is filtered by the prefix (the filter function in line

4 of refresh from ascent and lines 1, 6 of refresh from descent) for pruning.

The address of the parent and children can be cached to save the cost of DHT

lookup.

For the delegate procedure, the system first finds the objects not having been

stored (line 1). Then it checks whether it is necessary to delegate some records to

the two child nodes (line 2). There can be different strategies to determine this.

For example, whether the local storage for this prefix exceeds a certain amount, or

whether there have been a number of records older than a pre-configured time. If

a delegation is required, we select the earliest α∗ |O| (0 < α ≤ 1) objects indexed

Chapter 3. MOODS 88

Algorithm : Index
Input: prefix pf with length l and objects O belong to the group hash(pf)
Output: None (the algorithm only updates indexing information)
1: update the index for objects local.objects ∩ O
2: O′ ← local.objects−O // get the set of objects which are not stored locally
3: if O′ is not empty
4: refresh from ascent(O′, p)
5: refresh from descent(O′, p)
6: end if
7: delegate(objects)

refresh from ascent
Input: prefix pf with length l and objects O belong to the group hash(pf)
Output: None (the algorithm refresh local index with ascents)
1: i← 1
2: do
3: pf ′ ← pf.substring(1, l − i)
4: O′ ← filter(O, pf ′)
5: if O′ = Φ break
6: update index with information from gateway node for pf ′

the gateway node for pf ′ also updates its index
7: i← i+ 1
8: while there exists gateway node for prefix pf ′ and i ≤ l − lmin

refresh from descent
Input: prefix pf with length l and objects O belong to the group hash(pf)
Output: None (this algorithm refresh local index with descents)
1: O′ ← filter(O, pf + ‘0’)
2: if O′ is not empty
3: update index with information from gateway node for pf + ‘0’

the gateway node for pf + ‘0′ also updates its index
4: refresh from descent(O′, p + ‘0’)
5: end if
6: O′ ← filter(O, p + ‘1’)
7: if O′ is not empty
8: update index with information from gateway node for pf + ‘1’

the gateway node for pf + ‘1′ also updates its index
9: refresh from descent(O′, p + ‘1’)
10:end if

delegate
Input: prefix pf with length l and objects O belong to the group hash(pf)
Output: None (the algorithm only updates indexing information)
1: O′ ← objects not stored in any node in the tree
2: if delegation is required
3: select α ∗ O′.count earliest local indexing records as O′′

4: delegate O′′ to the two children according to the l bit of their IDs
5: end if

Figure 3.5: Algorithm for Indexing a Group of Objects

Chapter 3. MOODS 89

at this gateway and delegate them to the two child nodes. The delegation is

similar to the FIFO cache replacement policy. This is based on the observation

that the latest records are more likely to be read and updated in the near future.

Here α is a global configuration to control the number of objects to be delegated.

It should be noted that the splitting-merging process is trivial and we have not

included the details of the algorithm.

In Figure 3.5, we always try to traverse a tree. This is not only because we

do not do immediate splitting-merging, but also because the detection of prefix

length changes at different nodes is not synchronized, thus it is possible that at

some time (usually after a prefix change), there are trees existing in the system.

3.3.6 Algorithm Analysis

The indexing process consists of three phases: namely grouping, routing and

index-persisting. The grouping phase simply scans the |O| new objects. Its

complexity is Θ(|O|).

Chord routing takes O(log2 |V|) hops with high probability. To route the

objects in 2l groups will take O(2l log2 |V|) hops in total. When objects are routed

individually, it takes O(|V| log2 |V|) hops. Since the number of received object |V|
can be very large, while 2l = |V| log2 |V| is relatively small, our grouping index

algorithm can significantly decrease the P2P routing cost.

However, the index-persisting phase is complicated because of the Prefix Tri-

angle structure and the possible trees extended from it. In the best scenario, all

the indexing information for new objects are stored in the gateway node, then the

persisting will only involve local lookup and storage. The complexity is O(|O|)
in the measure of database operations.

In the worst scenario, all the new objects have their history indexes stored

Chapter 3. MOODS 90

in either ascent nodes or descent nodes, or all the objects are new to the whole

network thus there is no historical information in the tree (then the tree has to

be fully traversed). Index persisting may involve both refreshing (i.e.,

refresh from ascent and refresh from descent) and delegation. Suppose that

the tree is complete binary and its height5 is h, and all the historical indexing

information is stored either in the deepest leaves or in the root. Therefore, it

requires at most h DHT lookup to obtain the information. So the complexity of

the worst case of the index persisting is O(h ∗ |O|). However, as the tree will be

split or merged when prefix length changes, its height is well controlled. In most

cases h is 1 (only children) or 2 (parent and children). Then the index persisting

phase can be done in constant time.

3.4 Traceability Query Processing Algorithms

In this section, we introduce the algorithms to process two kinds of tracing

queries, namely item level and statistical queries.

3.4.1 Item Level Queries

To perform the trace function T R (see Section 3.1.1), we need to find the gateway

node of the given object. From the gateway node, we can discover the node where

the object is seen for the last time and simply traverse back using the MOODS

links. In addition, as mentioned in Section 3.2, if any node along the route from

the query requesting node to the gateway node has the information of the object,

the trace query can be processed from this node by traversing backward and

forward using the linked list. In this way, we do not have to find the gateway

5The height of a tree is defined as the number of edges from the root to the deepest leaf.

Chapter 3. MOODS 91

node of the object. With T R solved, it becomes straightforward to process other

kinds of item level queries, include but not limited to:

• Dwell time query. For example, “How long did o1 stay at node v1?”.

• Arrival time query. For example, “When did o1 arrive at node v1?”.

• Source node query. For example, “Where did o1 come from before it arrived

at node v1?”.

3.4.2 Statistical Queries

Statistical queries are used to find out the aggregated information for a given

criteria. For example, “How many objects moved from node v1 to node v2 during

last month?”. In our architecture, with the help of MOODS, this query can be

processed at either node v1 or v2, despite the fact that it involves two nodes.

Suppose the query is being processed at v1:

SELECT COUNT(*) FROM RECORDS

WHERE TO = v2 AND

END_TIME BETWEEN ‘2011-04-01’ AND ‘2011-04-30’

This query is segment-oriented. A more complex range query can be path-

oriented. For example, “How many objects moved along the path v1 → v2 →
...→ vk during last month?”. With our solution, this query can also be efficiently

answered. First, the node initiating the query finds the nodes involved in the

query via Chord lookup interface. Then it asks the node vi (i from 2 to k) to

answer the query: “Which objects moved from node vi−1 during last month?”.

Chapter 3. MOODS 92

This query can be easily answered. Finally, the results from the k − 1 nodes are

intersected to get the result.

Other range queries regarding either path or segment can be handled in a

similar way.

3.4.3 Algorithm Analysis

3.4.3.1 Item Level Queries

There are two cases for query processing according to where the L function (see

Section 3.1.1) is answered, which will be discussed separately in the following.

Gateway. If there is no relevant node along the routing path from the node

where the query is issued to the gateway node, then the L is answered by the

gateway node. The routing process takes O(log2|V|) hops. At the gateway node,

there is a high probability that the lookup algorithm in takes O(1) hops.

Intermediate Node. If during the routing, a node along the routing path has

the information for the queried object, the routing will be terminated and the

intermediate node will start to process the query. Although the routing cost

remains O(log2 |V|), the constant coefficient is reduced.

After the node v where the query can be answered is found, the complexity of

query processing is solely based on the type of the query. For example, L takes

O(l) (l is the length of the object’s lifetime trajectory) DHT lookups in the worst

case (when the object was at the end or start of the trace for the given time) and

O(1) for the best case (when the object was at v for the given time). However,

for a trace query T R that requires the lifetime trajectory to be found, it will

always take O(l).

Chapter 3. MOODS 93

3.4.3.2 Statistical Queries

For statistical queries that only involve segments, the cost is solely based on the

query processing method of local database. There is no network cost, except

when the query is initiated from a third party node (This rarely happens), a

Chord lookup is used to first find the node involved which cost log2|V| hops.

For statistical queries that involve paths, the length of paths determines the

cost. Suppose the length of a path involved in a query is l, l ∗ log2|V| hops are

used to find all the involved nodes. All the other calculations are done locally

in either memory or DBMS, which can be ignored compared to the cost of P2P

lookup.

3.5 Replication and Fault Recovery

Due to limitations of the RFID hardware and dynamic network environments, the

recorded data do not perfectly map the real movements of objects. Uncertainty

is a very broad topic and it is not a single layer problem. For example, research

that addresses uncertainties spans from data storage and data modeling to query

processing and knowledge engineering [WRS11]. In this section, we briefly discuss

the typical uncertainty problems in the traceable RFID networks and how they

are handled.

3.5.0.3 Hardware Faults

A reader may miss identifying an object or a temporal malfunction of a device

may cause a systematic error in events generated at a node. A missed tag read

results in no data collected since data, such as the identifier stored on the tag, is

not captured by the reader. Figure 3.6 shows an example of this scenario. When

Chapter 3. MOODS 94

v1 v2 v3

o's gateway node

t1: o is read at v1,
indexed, IOP

updated

t3: o is read at v3,
indexed, IOP

updated

o moved from v1 via v2 to v3,
but the reader at v2 failed to capture it

o o

…
t1: o is at v1
t3: o is at v3

...

Index

Figure 3.6: An Example of Missing Readings

object o arrives at node v2, it fails to be read by the reader. Consequently, the

record at the corresponding gateway node is outdated. When object o arrives at

node C, the record is corrected. A missing reading is a fatal and unrecoverable

problem to all RFID systems. In this example, from the point of the system,

object o never appears at node v2. We handle this situation and the outdated

record at the gateway node is corrected as soon as the object moves to a new

node.

3.5.0.4 Network Faults

A node may leave the network for various reasons, such as network or power

outage, system failure etc. When this occurs, all data stored at that node become

unavailable. A general approach for data recovery in P2P system is replication.

In PeerTrack, we replicate the RFID data and its index in different ways.

The index is replicated by using a secondary hash function when choosing

Chapter 3. MOODS 95

v1 v2

primary gateway

node

DHT2(o.ID)

o

Index

secondary

gateway node
Index

DHT1(o.ID)

Figure 3.7: Replication of Indices

v1 v2

o's gateway node

o

v1' v2'

v1' = DHT'(v1) v2' = DHT'(v2)

v2 is offline

Q : Find all the nodes o has been

Q

Q

movement

replication

index

query rewrite

Figure 3.8: Replication of MOODS

Chapter 3. MOODS 96

gateway node. This is depicted in Figure 3.7. In addition to the primary hash

function (DHT1), a secondary hash function (DHT2) is used to choose a sec-

ondary gateway node. When the primary gateway node leaves the network, the

system upgrades the secondary one to primary and use it to maintain the index.

The approach is flexible in the sense that if a third replication is necessary, the

only change is to add a third hash function.

The MOODS data is replicated at a node chosen by a unified hash function

DHT ′, i.e., the node that keeps the replication of node v1, v′1, is chosen by

DHT ′(v1). Figure 3.8 shows an example of using IOP replications to answer

tracing queries. When v2 is offline, v′2 will be queried. As a result, the routing

path of the query becomes Gateway → v′2 → v1, instead of Gateway → v2 → v1.

3.6 Related Work

Successfully tracing objects in a distributed environment is not a single layer

problem. In this section, we overview the relevant techniques to our work.

The first step of modeling moving objects is to abstract the basic elements

such as time, region and velocity. [SWC97] introduces a data model called MOST

(Moving Objects Spatio-Temporal) for databases with dynamic attributes, i.e.,

attributes that change continuously as a function of time. A language called

Future Temporal Logic (FTL) has been designed to support queries for dynamic

attributes. This work models the moving objects and their attributes in a generic

way that can be easily adapted into various applications in different domains.

[EGS98] proposes a similar model with a method to represent the continuous

attributes such as time and space discretely.

Later works mostly use the same or similar idea. With the elements modeled,

Chapter 3. MOODS 97

it is possible to answer basic queries such as location of an object at a certain

time. In order to answer more complicated queries, such as an aggregate query

“how many objects are in region R now?” and a future state query “where will

the object O be after one hour?”, various complex and domain-specific models

have been developed. For example, in [SPT04], adaptive multi-dimension his-

togram (AMH) is used in answering aggregate queries about past, present and

future. It can estimate the number of objects that will satisfy some spatial condi-

tion for a near future time. It does not require the knowledge of velocity vectors,

but uses an exponential smoothing based stochastic approach. Since this kind of

work focuses on aggregate queries, it does not address the single-instance queries.

In [CAA01], the moving objects are associated with four variables (starting time,

starting location, destination, initial velocity) in order to predict their future

locations. There are some other works focusing on various problems of model-

ing and querying moving objects by employing different techniques. However,

they share some common characteristics. Firstly, space and time are modeled as

continuous attributes, although the underlying representation in physical storage

can be discrete. Secondly, most of the works define region or similar concepts

that cover a finite area in a continuous infinite domain in order to answer range

queries.

Index is often used to quickly answer range queries for a specific attribute.

For example, if the space is divided into cells and objects are indexed by cell,

it is easy to answer queries such as “how many or which objects are in cell

c?”. However, dividing the space into fixed-size cells does not work well in

dynamic environments because the boundary of the space must be decided in

advance. Early works, including R-Tree, R∗-tree, TR-tree, TB-tree, TPR-tree,

TPR∗ R-tree and some other similar trees [MGA03], dynamically decide which

point or region to index and optimize the indexing process in different ways.

Chapter 3. MOODS 98

[JLO04] considers streaming data that require frequent updates and proposes

an efficient B+-Tree based indexing method which represents the moving-object

locations as timestamped vectors. SINA (Scalable INcremental hash-based Al-

gorithm) [MXA04] supports concurrent and continuous spatial-temporal queries

by abstracting the continuous queries as a spatial join between a set of moving

objects and a set of moving queries. [PCC04] indexes the predicted trajectories

to quickly predict future locations of moving objects. Many recent works such

as [BMN08, GCL08, LDR08, TYJ09, ZCJ09] focus on other specific problems and

provide corresponding solutions. These index methods all operate in centralized

environments.

In recent years, some generic peer-based database management systems [HRZ08]

have been proposed to support large volume data and complicated queries. PIER

[HHL03] presents a distributed query engine based on a P2P-based overlay net-

work.However, PIER requires every data tuple to be shared in the network, which

brings two significant issues. Firstly, the amount of messages that are sent for in-

dexing are proportional to the number of data tuples. It is problematic when the

approach is used in large databases with millions or billions of tuples. Secondly,

the data is made public in PIER thus there is no privacy among participants.

PISCES [WLO08] identifies a subset of data tuples to index based on some cri-

teria (e.g., query frequency, update frequency, indexing cost). This significantly

saves the cost of indexing and storage. However, because its objective is to

improve efficiency of range queries, PISCES does not work well with single in-

stance query. If the column in the search criteria that is used to search for an

individual object is not indexed, the query has to be flooded into the whole net-

work. Although these generic solutions lays the foundation for peer-based spatial

databases, they are not dedicated to efficiently manage spatial data and answer

spatial queries. [MS05] presents an analytical model to predict the cost of query

Chapter 3. MOODS 99

algorithms based on query location, query size and the moving objects’ distribu-

tion so that the final scheme chosen to perform the query is optimal. [LKG03]

proposes a distributed hash technique to answer range queries, which scales well

under certain assumption about the query distributions. [ZKC04] introduces a

middleware design based on distributed R-tree and Quadtree to support both

range and kNN (k Nearest Neighbors) queries.

The work presented in [THS07] extends Quadtree index into a P2P network to

answer range queries efficiently while keeping the load on the nodes in the network

well balanced. [LZ05] provides a linear yet distributed structure that facilitates

multiple search paths to be mixed together by sharing links. These distributed

index methods are all based on spatial elements such as point, link or region thus

they work well for range queries but not single-instance queries. In [ZWS10],

the authors proposed a generic model to deal with the event matching problem

of content-based publish/subscribe systems over structured P2P overlays. This

model is useful in a distributed RFID system if it is event-driven instead of query-

driven.

3.7 Summary

In this chapter, we have presented a distributed traceability data model and

a generic approach that enables applications to share traceability data across

independent enterprises in a P2P fashion. Our main contributions include:

• We built our approach on the top of a DHT-based overlay network. The

partners do not need to send all the data to a centralized database so that

they can fully control the access to only allow certain partners.

• Objects are indexed at deterministic gateway nodes that are responsible

Chapter 3. MOODS 100

for updating objects’ status at the source and destination nodes for their

movements. In this way, the moving path of objects are established, which

are critical to support efficient processing of traceability queries.

• To reduce the indexing overhead from massive volumes of data in large-

scale traceability applications, we further proposed an enhanced group-

based indexing approach.

We have implemented the proposed model and architecture and conducted an

extensive set of experiments for the performance evaluation. We will report the

details of the implementation and performance evaluation in Chapter 6.

Chapter 3. MOODS 101

Chapter 4

Mining Moving Patterns from

Distributed RFID Streams

In Chapter 3, we introduced the model MOODS and a P2P architecture to enable

traceability in item level. However, in some other scenarios, it is also important

to be able to find out the implicit characteristics of the business workflows behind

the scene. For example, in a supply chain network, a manager may be interested

in how the sales change in terms of time of the year. This is difficult to be

answered by MOODS or other OnLine Transaction Processing (OLTP) systems,

because this requires to go through all the data.

Some of the existing mining methods, such as regression analysis, require to

read the data for multiple times. Meanwhile, others require to prepare the data

beforehand, e.g., data cubes. These methods are not suitable for processing RFID

data, because through the connection of billions of tags and sensors, applications

will generate RFID streams with unprecedented volume. In addition, RFID net-

works are federated systems formed by autonomous nodes, just like the Internet

itself. The sovereignty of data should therefore be maintained (See Chapter 2).

Indeed, object movements and related data are valuable business information that

companies may be very reluctant to put such data in a shared central warehouse.

Chapter 4. Mining Moving Patterns 103

Instead of maintaining the exact movements of objects, we propose in this

paper a probabilistic model that maintains the object flow patterns. An object

flow pattern is a function of time, which describes the volume/frequency of object

movements at a specific time. Our goal is to extract and model the patterns of ob-

ject flows from high-volume, highly dynamic RFID data streams in autonomous

network environments. With these patterns, the efficiency of distributed data

processing and mining can be significantly improved. It should be noted that

this is a challenging task because the movement of an object is implicit. It is

impossible to acquire such information without querying other nodes in the net-

work. Ideally, the model should be established with a limited number of network

calls without flooding the whole network. Our contributions are summarized as

follows:

• We propose a new model called Tilted tIme Series of Histograms (TISH)

that combines two techniques, namely Histogram and Tilted Time Frame [HK06].

Essentially, TISH is a synopsis of the object flow. It represents the patterns

of object flow between two nodes for a long history using limited memory.

The pattern for a given period of time is represented by one or more his-

tograms. The model suggests the probability that an object comes from

a particular node at a specific time. TISH does not require any kind of

indices. It is highly efficient in storage and bandwidth.

• We develop a Peer-to-Peer (P2P) architecture and a set of algorithms to

establish and maintain the TISH model. To avoid long delays and extra

bandwidth usage caused by network queries, we further develop an algo-

rithm to choose the neighbors which are most possible to have the quested

information as the target of query rewriting to avoid unnecessary network

traffic. To avoid data migration when the underlying P2P layer changes

Chapter 4. Mining Moving Patterns 104

(nodes leave or join), we introduce a simple but effective data structure

for maintaining network topology. Based on the TISH model and the P2P

architecture, our proposed algorithm on the item-level tracking and trac-

ing query processing, statistically keeps the number of network calls to a

minimum.

The rest of this chapter is organized as follows. We formally define the prob-

lems, and discuss why a centralized solution is not feasible in Section 4.1. In

Section 4.2, we introduce the architecture of a distributed RFID system which

is built based on our proposed model. In Section 4.3 and Section 4.4, we de-

scribe the TISH model, and its related maintenance algorithms. In Section 4.5,

we analyze the costs in maintaining the proposed model and performing tracking

and tracing using our proposed techniques. The related works are discussed in

Section 4.6. Finally, Section 4.7 provides some concluding remarks.

4.1 Problem Definition

We define the object flow pattern as two functions: Fout(ta, tb, vi, vj) and Fin(ta, tb, vj, vi),

where ta and tb define the range of time under consideration, vi and vj are two

ends of the connection. Fin and Fout define the inbound and outbound flow

patterns respectively. They are formally defined as:

Fout(ta, tb, vi, vj) =
|M(ta, tb, vi, vj)|∑

vk∈D(ni)
|M(ta, tb, vi, vk)| (4.1)

Fin(ta, tb, vj, vi) =
|M(ta, tb, vj, vi)|∑

vk∈S(vi)
|M(ta, tb, vk, vi)|

(4.2)

Where M(ta, tb, vi, vj) movements from vi to vj during time ta to tb, S(vi)

Chapter 4. Mining Moving Patterns 105

(resp., D(vi)) is the set of source (resp., destination) nodes of the inbound (resp.,

outbound) connections of vi. The two functions describe object flow patterns in

both time and space dimensions. In a distributed environment, these object flow

patterns can be used as heuristic knowledges in the discovery of source/destina-

tion node. For example, we can sort the candidate source nodes for an object in

the order of Fin and query them sequentially to save time and bandwidth.

If data from different nodes are stored in a centralized database using the

schema above, the definitions themselves are efficient enough. Proper indices can

improve the performance. However, there are still some significant performance

issues in large scale systems where the number of nodes and objects could be very

large. We discuss below why a centralized solution does not scale by considering

the characteristics of RFID data management.

• Frequent Updates. Data in RFID networks are generated as streams and

update becomes a frequent operation comparing to traditional database

management systems that are optimized for frequent-read scenarios. With a

centralized database (or database clusters), frequent updates to the database

not only increase the storage cost, but more importantly, cause high costs

in index maintenance. For example, for streaming data, a B+ tree index

could be potentially huge. The space cost for the index itself is very huge

too.

• Row Level Security Requirement. Business applications often require high

security. Even in a federated system, the partners want to control their own

data. For example, a supermarket wants to hide the buying information

about the same product from one supplier to another, while the suppliers

can access the data related to their own products. This requires row level

authentication and the authentication overhead for space is high.

Chapter 4. Mining Moving Patterns 106

• Archiving. RFID data, similar to other time series data, is sensitive to

time. Recent records are more interesting to the analyzers than the distant

ones. For the purpose of storage efficiency, it is often necessary to archive

the old data in order to make room for the new data. However, different

participants may have different definitions of oldness (i.e., when the data

should be archived). As a result, when old records are archived, a range

query has to be performed. Furthermore, because the records for different

nodes are likely to be stored in different pages, after deletion, the pages will

have a lot of fragments. The rearrangement of records in these pages could

be very costly and time consuming.

• Mining Efficiency. Stream mining techniques such as online aggregation,

critical layers or popular path materialization all require a significant amount

of memory in a central server.

Our goal is to build a distributed model which can be used as a middleware

in a federated system. It does not require any centralized server for coordination,

nor full access to data at other partners for its establishment and maintenance.

The model is expected to be able to represent the pattern defined above for any

time-and-node pair, and to be used to expedite distributed tracing and tracking

query processing.

4.2 The Architecture for Distributed Stream Mining

The architecture of the mining middleware at a node is depicted in Figure 4.1.

The TISH Model is updated repeatedly for every event cycle by the Model Main-

tainer. The model maintainer takes a small random Sampled Data out of the

large volume of Preprocessed Data as input, analyzes the sample by querying the

Chapter 4. Mining Moving Patterns 107

Tagged
Objects...

... RFID
Readers

Raw RFID Data
Preprocessed

Data

Preprocess

Sampled Data

Sample

Model
Maintainer

Query

Processor

TISH Model

P2P

Middleware

Node

queries

Core

P2P
Network

Node ...

Data Stream Model Maintainance Path Query Processing Path P2P Overlay Connection

Figure 4.1: The Architecture for Distributed Stream Mining

Chapter 4. Mining Moving Patterns 108

neighbors via the P2P Middleware, and refines the model using the result. The

Query Processor is responsible for answering queries from either local or remote

users. It makes use of the TISH Model to find the candidates to rewrite the query

if necessary.

We maintain two layers of neighbors for a node vi in this architecture, namely

the network layer and the business layer. Nodes in the network layer are used to

maintain the P2P overlay. Since many P2P overlays have been developed (e.g.,

Gnutella [Rip01], CYCLON [VGS05]), we assume these nodes can communicate

with each other through packet relaying and we will not be concerned about how

this is implemented in this work.

The business layer is the key for object flow pattern abstraction. Neighbors

in this layer consist of two sets: the source, and the destination nodes of vi. For

each source (resp., destination) node vj, we maintain the pattern of object flow

(defined in Section 4.1) from (resp., to) vj to (resp., from) vi using the Tilted

tIme Series of Histogram (TISH) model. The details of the TISH model and its

maintenance will be described in Section 4.3 and Section 4.4.

This model is built by exploiting the fact that movements of objects are likely

to be continuous and bulky in both time and space, so a connection which is

active in the previous window is likely to be active in the current window. In

other words, an object received in the current window is likely to have originated

from one of the source nodes of the active connections in the previous window1.

Based on this observation, when looking for the source node of an object, it is

more efficient to first query the source nodes in previously active connections,

which can be obtained by searching the business layer neighbors. It is worth

mentioning that the unstructured P2P query is much more expensive. We only

1The same argument holds for destination nodes.

Chapter 4. Mining Moving Patterns 109

use it when i) the business layer has no nodes; ii) an object is from a node which

is not in the business layer.

This architecture adapts well with the characteristics discussed in Section 4.1:

• Frequent Updates. We sample the input and use only a small portion of

incoming data to maintain the model. Thus the system scales well with

frequent updates. Also, using the tilted time frame model, we can store a

long history of object flow patterns in the main memory.

• Row Level Security Requirement. Since data is never stored at central

servers, each node can have its own security schema. Each node owns

the data physically and fully controls who can access which portion of its

data. This model is strictly private, because there is no super user who can

access data from every node.

• Archiving. Partners can archive their data whenever they deem appropriate,

with flexible strategies. The archiving process is fast, because the records

are stored in the order of time. To archive the records before a particular

date, we only need to find the first record that is younger than the given

criteria using a binary search, and move all the pages before it to the archive

media.

• Mining Efficiency. The model maintained at each node contains the pat-

terns for the object flow. It can be used as a starting point for online

aggregation, materialized data cube and data visualization.

Chapter 4. Mining Moving Patterns 110

4.3 The TISH Model

4.3.1 The Overview of TISH Design

In RFID applications, the object flow among nodes is determined by business

actions and follows certain patterns. For example, a supplier sends products to a

supermarket on a regular basis, such as once a week or once a month. Different

products may (usually) have different patterns, so do the same products from

different suppliers. If the patterns are known, we can use them to find out which

supplier is most likely to be a source node from which a given object comes.

In some applications, the patterns are not static. Instead, they evolve from

time to time. For example, during Christmas, big sales require the supermarkets

to order more frequently with more products in each order than usual.

The problem of modeling these patterns can be categorized as time-series

data mining [HK06]. A popular method is regression analysis in modeling time-

series data and finding trends. However, we do not use this method because:

i) regression analysis cannot cover the time-varying patterns in the sense that

it essentially tries to find a function which best fits the given data for all the

time; ii) we do not necessarily need a global function in this problem, as we only

need local statistics; and iii) regression analysis often requires reading data for

multiple times, which is not possible with RFID streams.

Our model is based on two important techniques in data mining: Tilted Time

Frame and Histogram. Tilted time frame is very useful in data stream analysis,

because it gives more details on the recent data than on the old data. There

have been many ways to design a tilted time frame, but the most important

ones are : i) Natural Tilted Time Frame Model, ii) Logarithmic Tilted Time

Frame Model, and iii) Progressive Logarithmic Tilted Time Frame Model. We

Chapter 4. Mining Moving Patterns 111

will not introduce the details of these models here, interested readers are referred

to [HK06] and [GHP03].

TT2T4T8T16T……

Figure 4.2: The Logarithmic Tilted Time Frame

In this work, we choose Logarithmic Tilted Time Frame (LTTF) model for

its simplicity and flexibility. As illustrated in Figure 4.2, the first (right most)

slot represents the data for the time range of T0, while the ith slot si represents

a range of 2i ∗ T0. Each time unit (slot) in LTTF occupies the same amount

of memory, but the most recent time slot provides the statistics with the finest

granularity, while the older ones are with coarser granularities.

We combine the two techniques and propose a new structure, namely Tilted

tIme Series of Histograms (TISH). By combining the two techniques, it is possi-

ble to model the dynamics of RFID streams in both time and spatial dimensions.

Tilted time series capture the changes of streams at different times, while his-

tograms measure the distributions of streams from different nodes.

The basic idea of our model is that within each slot (i.e., [(2i− 1)∗T0, (2
i+1−

1) ∗ T0)) in the tilted time frame model, histograms are used to summarize the

object flow pattern for each business neighbor for the period of time represented

by the slot. The height of each bar in the histogram represents the volume

of object flow from/to a specific node. Using this model, we can calculate the

probability of an object being from/to a specific neighbor at a given time, based

on the statistics.

The time representing “now” is 0, and the more distant the time is from

“now”, the larger the number is. Although this is a little counterintuitive, it is

easy for calculation. It should be noted that the distant slot might contain some

Chapter 4. Mining Moving Patterns 112

Symbol Description
we The width of an event cycle
si The ith slot in the tilted time frame
bi The ith neighbor
hij The histogram for bj in slot si
fi The frequency of object flow for neighbor bi

in a new event cycle
ws The maximum number of Exponential Event Cycles (EECs) in the slots.

It is a constant.
m The size of the reservoir sample
n The number of business neighbors
l The number of slots in the model (i.e., the length of the model)
Ti The time represented by the ith slot

Table 4.1: Symbols in The Overview of TISH

nodes which do not exist in the most recent one (e.g., v4 in Figure 4.3). This is

because not all the neighbors are sending/receiving objects at present, although

they may have sent/received objects before.

The symbols used in the following discussion are summarized in Table 4.1.

TT2T4T8T16T……

V1

V2

V3

V1
V2

V3

V4

Figure 4.3: An Example of Tilted Time Frame Series of Histograms

We use source (resp., destination) LTTF to record histories for the source

(resp., destination) nodes. The time series are split into Event Cycles (also known

as the Sliding Windows) of fixed time interval . All the slots manage a number of

(at most ws) units, which we name as Exponential Event Cycles (EEC), because

Chapter 4. Mining Moving Patterns 113

the unit in the ith slot (si) manages the compressed data for 2i event cycles. The

most recent slot s0 maintains the uncompressed event cycles, while the others

maintain compressed ones. We denote the jth EEC in the slot si as EECij. It is

easily inferred that T0 = ws ∗we and the time covered by slot si is Ti = 2i ∗ T0 =

2i ∗ ws ∗ we.

Figure 4.4 shows an example structure of the slot si in LTTF. Slot si represents

the data of the time interval [(2i−1)∗T0, (2
i+1−1)∗T0). It is split into ws EECs.

In this example, ws is 3. For each EEC, we maintain a histogram which models

the distribution of data from/to a neighbor. The current size of a slot is defined

as the number of used EECs in it, so si.size ≤ ws.

V1

V2

V3

V1

V2

V3

V1

V2

V3

Figure 4.4: The Structure of a Slot in TISH

The reason why we split the slots further into EECs and maintain histograms

for each of them, instead of maintaining one histogram for each slot, is because

we want a finer control over the memory usage. By splitting the slots, we can

limit the memory usage for each slot by changing the value of ws. The larger

ws is, the more memory the model requires, and the more accurate the model is.

In an extreme case, when ws is 1, the slots are not split and the accuracy is the

lowest.

The height of the bars in the histogram of each EEC is the volume of objects

Chapter 4. Mining Moving Patterns 114

flow from/to a neighbor for the time represented by that EEC. The x-axis of

the histogram represents the neighbors. The length of the model is defined as

the number of slots within it. A model of length l can store the history of

ws ∗ we ∗
∑l−1

i=0 2i. We can calculate the length of the model which stores the

history for the past t time units using:

l = log2 (
t

ws ∗ we

+ 1) = log2 (
t

T0

+ 1) (4.3)

Suppose we define the width of an event cycle as an hour and for each slot,

there are 24 EECs with in it, i.e., we is an hour and ws is 24, we only need

dlog2 365e = 9 slots to store the history of one year. This efficiency in space

enables the storage of these slots in main memory.

In the following sections, we will introduce the algorithms to sample the input

streams, retrieve the source/destination data information and use such informa-

tion to support the model.

4.3.2 Algorithm : RFID Stream Sampling

At node vi, we only have the local information of the object sent to vi, such as

arrival time and departure time. To get the information about the object’s moving

path, it is necessary to query its neighbors. In the worst case, the underlying

unstructured P2P overlay is used to locate the object. Because P2P queries are

more expensive than direct combinations, we need to avoid such a case as much

as possible. In addition, due to the large volumes of RFID data in the stream, we

cannot afford building the model using all the data. Instead, we use a sample of

the original data in each event cycle for the stream. In this section, we introduce

the sampling algorithms.

Chapter 4. Mining Moving Patterns 115

Random sampling can be used as a summarization technique to capture the

essential characteristics of a data set. The problem of random sampling can

be informally defined as “select a random sample of m records out of a pool of

x records”. In data streams, x is unknown. This makes all algorithms that

require scanning the data more than once infeasible. The reservoir sampling

algorithm [Vit85] makes only one pass over the data set without knowing its

size beforehand. So it is well suited for data streaming sampling. Its output

is a uniform sample of the given data set. There are also some other sampling

methods such as [AGP00] and [BCD03] that produce non-uniform samples for

a specific type of queries. In our work, the reservoir algorithm is used because

the samples are only used to maintain the histograms in the model introduced in

Section 4.3.1.

The key of reservoir sampling is that for the kth(k > m) record in the data

set, the probability of keeping it and replacing one of the record in the reservoir

is m/k, where m is the size of the reservoir. The main feature of the reservoir

algorithm is that it guarantees that the reservoir is always a true random sample

of the data seen so far. A more in-depth discussion of this algorithm is beyond

the scope of this work. Interested readers are referred to [Vit85].

Before the data stream is sampled, it should be preprocessed (see Figure 4.1).

This introduces the problem of out-of-order data. In the raw data stream pro-

duced by each RFID reader, the data is sorted by the timestamp in the record.

However, after the preprocessing (including cleansing, filtering etc.), the order

might not be retained. Moreover, the preprocessor may join data streams from

different RFID readers together. Thus the data records are interleaved (again

the order is not guaranteed). Fortunately, the order of records does not influence

the result of sampling, so it is unnecessary to sort the records. The reason is

Chapter 4. Mining Moving Patterns 116

that reservoir algorithm guarantees that the reservoir is always a true random

sample, and therefore changing the position of a record in the set will not affect

its probability to be included in the final sample.

4.3.3 Algorithm : Update for the Current Slot

After the data, which are collected during an event cycle, have been preprocessed

and sampled, the sample is sent to the modeler for the local model update.

We use the P2P tracking and tracing algorithm which we will introduce in the

Section 4.4. We call the information of source and destination nodes for all the

objects in the sample as Flow Synopsis. This synopsis is then added to the most

recent slot (s0). If the slot is full, it is moved to the slot before it (s1). Otherwise,

s1 is summarized and merged into s2, and then s0 is compressed and stored in s1.

If s2 is also full, the summarization and merging process repeats until we find a

non-full slot, or we reach the end of the LTTF. In the latter case, a new slot is

created and appended to the tail.

The algorithm for updating the model is described in Figure 4.5. First we add

the synopsis from the new event cycle to the slot (line 1–7). If a new neighbor

joins, a new entry is inserted into the hash table (line 4). If an existing neighbor

did not send anything, it is set to zero (this is not shown in the figure).

If the new event cycle fills the most recent slot s0, all slots si are merged if

necessary (the merge function in line 10, this is introduced in Section 4.3.4). s0

is then cleared to be ready for the coming event cycles (line 11).

Chapter 4. Mining Moving Patterns 117

Algorithm 1 : Update the Model: update
Input: Neighbor set B = {b1, b2, . . . , bn}. Corresponding frequency set F =
{f1, f2, . . . , fn}
Output: The refined model M
1: for bi in B
2: Gets its histogram h0i ← s0[bi]
3: if h0i is nil
4: H0i ← new array with size ws, s0[bi]← h0i
5: end if
6: h0i[s0.size+ 1] = fi
7: end for
8: s0.size← s0.size+ 1
9: if s0 is full
10: merge(s0,M)
11: clear s0
12:end if

Figure 4.5: Algorithm to Update the LTTF Model

4.3.4 Algorithm : Merging with the Next Slot

When the new event cycle fills the most recent time slot s0, the second most

recent slot s1 will be merged to the succeeding slots recursively.

The merge algorithm first checks whether the next slot in the model is full.

If so, it will be merged (line 4). This process is done recursively until either a

non-full slot is found or all the existing slots are full. In the latter case, a new

slot is created and appended to the model. Then the slot being merged will be

integrated into the first non-full slot (line 5 – 14). It is compressed by merging two

consecutive EECs into one (line 12). Note that in this algorithm, we assume that

the width of slots ws is even. This assumption does not affect the performance

of the algorithm.

4.4 Building TISH in a P2P Fashion

The TISH model and its maintenance have been introduced in Section 4.3. In

this section, we answer the unresolved question “how the model finds the source

Chapter 4. Mining Moving Patterns 118

Algorithm 2 : Merge the Model: merge
Input: The slot which is being merged si and the model M
Output: The merged model
1: if si+1 does not exist in M
2: si+1 ← new slot, M.append(si+1)
3: end if
4: if si+1 is full, merge(si+1, M)
5: for each neighbor bj in si
6: hi+1,j ← si+1[bj]
7: if hi+1,j is nil
8: si+1[bj]← hi+1,j ← new array size of ws

9: end if
10: move hi+1,j [1] ∼ hi+1,j [ws/2] to hi+1,j [ws/2 + 1] ∼ hi+1,j [ws]
11: for k ← 1 to ws/2
12: hi+1,j [k]← si[bj][2 ∗ k] + si[bj][2 ∗ k + 1]
13: end for
14:end for

Figure 4.6: Algorithm to Merge the LTTF Model

and destination node of an object?” by introducing the P2P tracking and tracing

algorithm. We also introduce a Business Neighbor Tree structure to ensure the

stability of the whole system.

4.4.1 Tracing and Tracking Objects

With a centralized setting, like the one we introduced in Section 4.2, answering

tracing queries is easy. However due to privacy and performance issues, it is

impractical to use in real applications. In a fully distributed, federated environ-

ment, our model avoids using Discovery-Service-like index or flooding the whole

network. The idea is to utilize the history maintained in the model to rewrite the

query to the node which has the most possibility to be the source of the requested

object. The tracing algorithm is defined in Figure 4.7. Tracking is almost the

same except the direction is reversed to tracing, and instead of retrieving all the

nodes on the object’s moving path, only the latest one is retrieved.

The key idea is to query the neighbors about the object(s) in the order of the

Chapter 4. Mining Moving Patterns 119

Algorithm 3: Trace an Object: trace
Input: The object to trace o

The query initiating node n
Output: A list of nodes that o has been, sorted by time
1. locate any node that has had o using P2P overlay
2: tstart ← select Start from Record where Id=o
3: if tstart is nil, return
4: s← the index of slot which covers tstart
5: B ← the set the neighbors in slot s and adjacent slots adjacent slots : c1 to the

recent and c2 to the distant
6: P ← an array of size B
7: for each neighbor bi in B
8: P[i]← p1(bi, s) // Equation 4.4
9: end for
10: sort(P,B) // sort B in descending order according to P values
11: sequentially ask all the nodes in B that whether it is source or destination node

of o
12: upon receiving the query, bi repeats 2–11 on itself if it had o otherwise, return a

negative result.
13: bi then sends message to n confirming the appearance of o with extra information

including arrival/leaving timestamps, and application-specific data

Figure 4.7: Algorithm to Trace an Object

probability calculated according to Equation 4.4 where p1(bj, s) is the probability

of the given object coming from neighbor bj, s is the slot covering the given time

t, n is number of neighbors, c1 and c2 are two constants that we use to control

the range of past and future data under consideration, respectively. It should

be noted that using more history data (i.e., larger c1 and c2) does not increase

the accuracy. This is because the flow patterns are unknown and may frequently

vary, and as a result using more history data may add more bias.

p1(bj, s) =

∑max(s+c2,l)
i=min(s−c1,0)(

1
2|i−s| ∗

∑ws
k=1 hi,j [k]∑n

l=1

∑ws
k=1 hi,l[k]

)∑max(s+c2,l)
i=min(s−c1,0) 2|i−s|

(4.4)

It is easy to get s from the requested time t, because

s0.size+ ws ∗
s−1∑
i=1

2i−1 ≤ t < s0.size+ ws ∗
s∑

i=1

2i−1 (4.5)

Chapter 4. Mining Moving Patterns 120

Thus,

s = blog2

t− s0.size

ws

+ 1c (4.6)

In essence, p1 is an approximation of Fin and Fout defined in Section 4.2. The

calculation of p1 only involves a very small portion of the data, thus it is efficient.

The tracing algorithm is shown in Figure 4.7. The neighbors are sorted (line

10) by the probabilities calculated using Equation 4.4. Then the query is redi-

rected to the neighbor with the highest probability (line 11). If the neighbor does

not return the positive result, the second possible neighbor is queried, and so on.

Note the query contains the timestamp returned from previous queries, and the

neighbor only returns positive result if the timestamp is earlier than the one in

the query. Otherwise, an infinite loop may happen if the object visited a node

more than once.

This algorithm is an online process. It does not return the result immediately

or in real time, but generates the result (which is a list) gradually over time. The

sacrifice of timeliness brings space efficiency and privacy. In addition, with our

model, P2P queries can be avoided so the time complexity is almost optimized.

4.4.2 Building the Flow Synopsis

After the data within an event cycle is sampled, we need to ask the neighbors

to get the source nodes. Instead of flooding the network, the history of object

flow (i.e., the histogram) is used to find the most possible neighbors who may

be the source nodes. Assuming that the object flow pattern changes smoothly,

we choose the recent slots in the model to compute the probability of a neighbor

being the source node for the objects. Instead of only using the most recent slot,

Chapter 4. Mining Moving Patterns 121

we introduce a zipf-weighted method to compute the probability with several

recent slots. This mechanism is introduced to smooth the data flow in case

that there are some peak moments for a neighbor. Equation 4.7 shows how the

probability is computed. It is easy to see that p2(bj) is a variant of p1(bj, s) that

we introduced in Section 4.4.1. Essentially, flow synopsis building is a simplified

version of tracing. The differences between the two are:

1. Flow synopsis building happens on a node which must have the objects,

whereas tracing does not have this advantage so it has to invoke the under-

lying P2P layer to first locate a node having had the object being traced.

2. Flow synopsis building happens when objects have arrived at a new node.

So there is no future information. When calculating the probability, there

are no future slots. In contrast, when answering tracing queries, future data

has to be included.

3. There is no time or slot parameter for p2, because p2 is used to calculate

the probability of a neighbor being the source node for objects in the most

recent slot, i.e., the implicit time parameter is “now”.

p2(bj) =
1∑c
i=0 2i

∗
c∑

i=0

(
1

2i
∗

∑ws

k=1 hi,j[k]∑n
l=1

∑ws

k=1 hi,l[k]
) (4.7)

Where c is a configurable constant (similar to c2), representing the number

of slots under consideration, and n is the number of business neighbors. The

factor
∑c

i=0 2i is for normalization.
∑n

l=1

∑ws

k=1 hi,l[k] calculates the total number

of objects for a slot, while
∑ws

k=1 hi,j[k] is the number of objects from bj. The

factor 1
2i

assigns weights to different slots. The most recent slot has the highest

weight of 1, and the weight decrease exponentially. In implementation, the sum

Chapter 4. Mining Moving Patterns 122

of frequencies for all nodes in a slot (
∑n

l=1

∑ws

k=1 hi,l[k]) can be calculated and

cached.

With Equation 4.7, the neighbors can be sorted by probability p2. We can

first try to contact the neighbor with the highest probability. If there are objects

without source node after this query, the neighbor ranked the second is queried.

The process repeats until we find the source nodes for all objects in the sample,

or we have tried all the neighbors. For the latter case, if there are still objects

without source node, we will have to rely on the P2P overlay to locate the object.

When a node receives the request to verify whether it is the source node

for a list of objects, it not only responds, but also updates the model for the

destination nodes, if the requested objects, or part of them, are from itself. The

update algorithm is exactly the same as the one to update the source LTTF,

which is introduced in Section 4.2.

Figure 4.8 shows the details of the algorithm to gather the source node infor-

mation for the TISH model. First the probabilities P for all the neighbors are

calculated and the neighbor list is sorted according to the probabilities (line 1

–4). Then we query the neighbors for the list of objects with unknown sources,

in descending order of sorted probabilities (line 6–11). After querying the neigh-

bors, if there are still objects with unknown sources, we have to use underlying

P2P overlay to find the sources of the objects (line 12–18). Finally, the neighbors

and the corresponding frequencies are used to update the TISH model (line 19).

Note that the frequency is scaled (at line 8, 15) to the size of the original

data set. The reason is that we need not only the object distribution between

different neighbors, but also the volume changes of the object flow from the same

neighbor.

Chapter 4. Mining Moving Patterns 123

Algorithm : Building Flow Synopsis
Input: A set of sample objects O = {o1, o2, . . . , om}

A set of neighbors B = {b1, b2, . . . , bn}
Number of objects in the unsampled event cycle: x

Output: The updated sender LTTF model
1: P ← an array of size n
2: for each neighbor bi in B
3: P[i]← p2(bi) // Equation 4.7
4: sort(P,B) // sort B in descending order according to P
5: F ← a map from bi to its frequency
6: for each neighbor bi in B
7: result set R← query(bi,O)
8: F(bi)← R.size/m ∗ x
9: O ← O −R
10: if O = Φ, break
11:end for
12: if O 6= Φ
13: for each object oi in O
14: b← P2POverlay.locate(oi)
15: if b exists in M, F(b)← F (b) + x/m
16: else F(b) = x/m; B.append(b)
17: end for
18:end if
19:update(B,F)

Figure 4.8: Algorithm to Build Flow Synopsis

In real applications, it is not often that new neighbors join. So in most

cases, underlying P2P queries do not happen. In addition, since the change of

patterns is infrequent in most applications, normally we only need to query a few

neighbors till we have all the objects’ source nodes. Nevertheless, this algorithm

is very sensitive to the changes of patterns or the network. For example, if a

new neighbor vj starts sending objects to vi, in the first round vi has to use P2P

queries to find out that vj is a source node. However, because we assign higher

weights to the recent data, vj will have high ranking in the candidate list for the

coming event cycles.

Chapter 4. Mining Moving Patterns 124

Vj Vi Vk Vc

Va Vb

Figure 4.9: An Example of Sideway Problem

4.4.3 The Business Neighbor Tree

There are two critical issues in real-life applications. Firstly, a node may go offline

with or without notification to other nodes in the network (but objects are still

moving from/to that node). In this case, the information of connections relevant

to that node becomes unavailable. Secondly, a node vi and one of its source nodes

vj may both be the direct source node of vk. We call this situation the Sideway

Problem. Due to this, the algorithms in Figure 4.8 and Figure 4.7 may fail to get

the actual source node. As shown in Figure 4.9, suppose object o moved from vj

to vi, then from vi to vk. Both vi and vj are in the vk’s business neighbor set, and

for the past few event cycles, vj has more objects moving to vk. Since vj is the

first to be queried, it will be treated as the source node of object o from which it

moves to vk. Clearly, this is not correct because the source node should be vi.

A source tree at a node vk is a subgraph of the whole network topology, with vk

as the root, representing the topology of nodes that have either direct or indirect

connections to vk. Figure 4.10 depicts the source tree maintained at vk in the

sub-network shown in Figure 4.10. The root of the tree is vk. Its child nodes are

the direct source nodes of vk (i.e., vi, vj and vb in Figure 4.9).

Chapter 4. Mining Moving Patterns 125

Vj Vi

Vk

Va

Vb

Vj

Figure 4.10: An Example of Business Neighbor Tree

The maintenance of the source tree is done simultaneously with the flow syn-

opsis building. In the algorithm to gather the source node information (Fig-

ure 4.8), neighbors also include its source tree in the result set R. This source

tree is then merged with the local source tree. In this way, the source tree is built

recursively.

This structure adds more connectivity to the network, which increases the

stability of the system in the case that some nodes may leave. However, it does

not require replication of any form. It also helps to solve the Sideway Problem.

Solving Node Leaving Problem. With the source node tree, when a neighbor vi

leaves the network, we can query its direct source nodes S(vi) to check whether

an object comes from vi, because if an object comes from a node’s direct source

node vi, it must also come from one of vi’s direct source nodes. In the source

node tree, the LTTFs for all the nodes in S(vi) are maintained, together with

Chapter 4. Mining Moving Patterns 126

the LTTF for vi itself. If an object comes from a node va in S(vi), it is used in

the maintenance of the LTTFs for both vi and va. In this way, even when vi is

offline, its LTTF is kept accurate.

We do not remove vi from the tree when it leaves. Instead, we mark it as

“disconnected”. After it is back online, we remove the “disconnected” mark. This

is useful to deal with temporary departure of nodes (e.g., short server breakdown).

The LTTFs for nodes in S(vi) are deleted because we no longer need them to

build the flow synopsis. In this way, even when some nodes in the network leave,

we can still respond to tracing queries and continue to build flow synopsis.

If after a certain configurable time, vi is still offline, it will be removed from

the tree and its LTTF will be deleted or archived.

Solving Sideway Problem. To solve the Sideway Problem, for the algorithms to

answer tracing queries and building the flow synopsis, if a node has both direct

and indirect connection to the root node, it will be queried regardless of the order

of probabilities. For example, in Figure 4.10, not only vj is the direct source

node of the root node vk, but there is also an indirect connection (vj → vi → vk)

between vj and vk. vj is queried regardless of its order in the sorted neighbor list.

After receiving the result set, we compare the arrival timestamps of the objects

which are included in the result sets from more than one neighbors and select the

node with the latest timestamp as the source node. For example, if the arrival

timestamp for an object is earlier in vj than that in vi, it is clear that the object

was sent through the path vj → vi → vk.

4.4.4 Determining ws and we

Generally, our model is a synopsis for the RFID stream. A generic descrip-

tion of such a data structure is that it supports two operations, update and

Chapter 4. Mining Moving Patterns 127

computeAnswer [BBD02]. In our model, the update operation takes more time

than computeAnswer, because it involves network queries). More importantly,

it may be so slow that the histograms for the past event cycle have not yet been

constructed when it starts constructing the histograms for the current event cy-

cle. In this case, the most recent histograms in slot s0 is actually an old one.

If this happens, the most valuable data is not used because it is not ready yet.

Figure 4.11 illustrates such situation. At the end of the second event cycle (EC2),

the construction of histograms for EC1 has not been done (which will be done at

we + tu, where tu is the time used for update).

0 we 2we we+tu

EC1

EC2

EC3

Figure 4.11: An Example of Overlapped Sliding Windows

To avoid this problem, we should be large enough, i.e., we should be larger

than the maximum possible value of tu. But it should not be too large. If it is

too large, the pattern of object flow may change during an event cycle. In this

case, the change is not captured. tu is determined by the size of the sample, the

number of the business neighbors and the size of the whole network as discussed

in Section 4.2. It is a dynamic value. A good way to determine we would be to

make it a function of the three parameters. However maintaining the size of the

whole network is not an easy task, and is costly. In this work, we propose an

Chapter 4. Mining Moving Patterns 128

adaptive approach.

When a node joins the network, it sets we to a default value. During the

maintenance process of the model, if tu
2 becomes larger than we or smaller than

we

2d
, we ← d ∗ tu(d > 1) (d is a constant between 1 and 2). In real applications,

after the network becomes stable, tu will likely become stable too, so we is almost

a constant. Our algorithms, which are based on the assumption that we is a

constant, are not affected. To deal with the unstable phase of model construction,

each event cycle in the model is parameterized with a timestamp tend for the end

of the cycle.

The maximum number of EECs in a slot (i.e., ws) has the influence on the

memory usage of the LTTF model. Generally, the memory usage of the model is

O(l ∗ws ∗ n) (l is the length of model and n is the number of neighbors). ws can

be large, as long as the memory is sufficient. Larger ws ensures the model with

a finer granularity.

4.5 Performance Analysis

4.5.1 Model Maintenance Cost

The time complexity for maintaining the TISH model consists of three parts: i)

sampling the input, ii) querying the source nodes, and iii) updating the model.

Suppose tu is the time used to update the model for an event cycle, we have:

tu = tsample + tquery + tupdate (4.8)

Using the reservoir algorithm, we only need to scan the input once, and this

2tu is an observable variable.

Chapter 4. Mining Moving Patterns 129

B v1 v2 v3 v4 v5
50 30 20 0 0

B′1(δ = 0)
v1 v3 v2 v4 v5
50 30 20 0 0

B′2(δ = 2)
v1 v2 v4 v5 v3
50 30 10 10 0

B′3(δ = 1)
v1 v2 v4 v3 v5
50 30 10 10 0

Figure 4.12: Example of Performance in Modeling Accuracy

can be done on-the-fly. So the cost for this part is O(x), where x is the total

number of objects in the current event cycle.

For the worst case, the algorithms in Figure 4.7 and Figure 4.8 will go through

the whole model, with a complexity of O(l), where l is the number of slots in the

model. It should be noted that we can avoid the movement of histograms shown

in Figure 4.7 (line 10). l is often small as we discussed in Section 4.2.

The most costly part is querying the source nodes, as the network latency is

typically much longer than the local processing time. Obviously, when querying

the source nodes, the queries can be sent out simultaneously. However, the

network traffic cost will be O(n) (n is the number of neighbors). This is not

economical because building the flow synopsis is not necessary to be done in real

time. Indeed, the TISH model is only updated when an event cycle ends, and

the maintenance time tu is controlled to be less than an event cycle.

With the algorithm shown in Figure 4.8, we can save the network traffic cost

by querying the nodes which have most possibility to be the source node first.

Moreover, we can also avoid the underlying P2P queries when there are no new

business neighbors joining. Even if there is one, after the first event cycle, the

new neighbor will be in the LTTF model with high probability according to

Equation 4.4. As a result, the network cost is reduced.

Chapter 4. Mining Moving Patterns 130

The accuracy of the model is very important for reducing network traffic cost

to maintain the model. We represent the real distribution of objects’ source

nodes during a specific time period as B, which is the neighbor list sorted in

descending order by the real distributions (e.g., B in Figure 4.12). For example,

in Figure 4.12, there are five possible source nodes (v1 to v5) with the possibilities

of 50% for v1, 30% for v2, and 20% for v3. The distributions modeled by the TISH

model in the same period of time is denoted as B′. Figure 4.12 depicted different

scenarios for the accuracy of the TISH model.

Suppose that, the m objects (the value of m does not matter in this discus-

sion), which we want to query their source nodes, come from y different nodes.

In this case, y ≤ m. In Figure 4.12, y is 3, because in the real distribution B, the

m objects can only come from v1, v2 and v3.

In the best case scenario, y queries are needed. Because we have to query the

first y nodes in order to find source nodes for all objects. B′1 is one of the best

scenarios. Although the order of v2 and v3 are not the same as B, 3 queries are

still enough to find the source nodes. In general, the best scenario happens as

long as the first y nodes in the model B′ are the same as the first y nodes in the

real distribution B, regardless of the order.

In the worst case scenario, all the nodes in the neighbor list are queried. B′2
is one of these cases. The neighbor v3 which indeed is a source node, is ranked

the last in B′2, so we have to query all the 5 neighbors to find the source nodes

for all objects. In general, the worst case happens when there exists one node in

the first y nodes of B being ranked the last in B′.

Suppose δ is the number of extra queries made in addition to the optimized

value y, we can conclude that:

Chapter 4. Mining Moving Patterns 131

δ = maxyi=1(B′.rank(B[i]))− y (4.9)

For example, in Figure 4.12, δ is 0 for B′1 because all first 3 nodes in B are still

ranked first 3 in B′1, thus max3
i=1(B′1.rank(B[i])) is 3. For B′2, v3 in first 3 of B is

ranked 5 in B′2, thus max3
i=1(B′2.rank(B[i])) is 5, so δ is 2 (i.e., 5 - 3). Similarly

for B′3, v3 is ranked the 4th in B′3, so δ is 1. The goal of our model is to keep the

average value of δ as small as possible.

4.5.2 Performance of Building Flow Synopsis

The cost of tracking and tracing consists of two parts. If the initiating node of

the query is not on the movement path of the object, the query should first be

redirected to a certain node on the path. The cost of this step is the cost of the

underlying P2P overlay lookup cost. However, in real applications, it is rare that

the query is initiated by a third party. So in most cases, this part of the cost

does not exist.

The second part is the query cost. The total cost of a trace query (ttrace) is a

function of the length of the object’s moving path. In general, ttrace =
∑l

i=1 ti,

where ti is the time used to establish the ith segment in the path and l is the

length of the path. We assume that ti is proportional to the number of queries

(q) made, so ti = q ∗T where T is a constant representing normal remote query

processing time. Clearly, the cost is determined by q. It is easy to infer that if

the object comes from the jth neighbor in B, then j queries are needed to find it.

Thus, the optimized average value of q is (in this section, we reuse the definition

of notations in Section 4.5.1.):

Chapter 4. Mining Moving Patterns 132

B[j] probability
Number of Queries
B B′1 B′2 B′3

v1 0.5 1 1 1 1
v2 0.3 2 3 2 2
v3 0.2 3 2 5 4

q or q′ 1.7 1.8 2.1 1.9

Figure 4.13: Examples of Tracing Efficiency

q =

y∑
j=1

(j ∗ B[j].probability) (4.10)

i.e., the order of the querying follows the actual order of the neighbors sorted

by the probability that the object comes from them.

The number of queries q′ by using the TISH model is:

q′ =

y∑
j=1

(B′.rank(B[j]) ∗ B[j].probability) (4.11)

Figure 4.13 shows an example of the optimized cost and the cost with the TISH

model by using the examples in Figure 4.12. If the actual order (B) is followed

when querying the source node, we only need, on average, 0.5∗1+0.3∗2+0.2∗3 =

1.7 queries. But in a different order, for example, in B′1, the order of v2 and v3

is reverted. In this case, we have to use 0.5 ∗ B′1.rank(v1) + 0.3 ∗ B′1.rank(v2) +

0.2 ∗B′1.rank(v3) = 0.5 ∗ 1 + 0.3 ∗ 3 + 0.2 ∗ 2 = 1.8 queries.

The goal of tracing query processing is to make q′ as close to q as possible.

4.6 Related Works

In [CKR04b] and [DOL07], the fundamental problems in RFID data management

and query processing are discussed. One of the important topics lies in how to

Chapter 4. Mining Moving Patterns 133

develop an efficient model to infer the implicit business knowledge from large

volumes and distributed RFID data streams. In this section, we review the

major techniques that are most closely related to our proposed approach.

4.6.1 Data Structures and Data Transformation

A raw RFID record is a triple tuple (ID, time, location) [CKR04b], which presents

little value until it is transformed into a form suitable for application-level interac-

tions. In addition, such data has implicit meanings and associated relationships

with other RFID records where applications have to make appropriate infer-

ences [SLZ08a].

In one of the earliest efforts on RFID data modeling, Wang et al. propose

an RFID data model that abstracts static and dynamic entities including object,

reader, location and transaction [WL05b, WLL10] . It models the interaction

between them as either state or event based relationships. The data model also

provides a rule-based data filter engine. In [LWL06], RFID applications are

classified into a set of typical scenarios and a generalized data modeling framework

with constructs for each typical scenario is proposed. In [HSC05], Hu et al. focus

on the path encoding by using a Bitmap data type and they demonstrated that

significant storage savings can be achieved. In [LC08], a novel data structure

and algorithms to efficiently encode, decode and query an object’s moving path

in an RFID database are proposed. The approach has been further improved

very recently in [LC11] to cope with the situation where the moving path is long.

Finally, Lin et al. propose in [LEB07] a “Multi-Table” model in which path and

containment relationships can be defined.

Chapter 4. Mining Moving Patterns 134

4.6.2 Knowledge Discovery

For an RFID data warehousing approach proposed by Gonzalez et al. in [GHL06b],

the authors observe that individual objects tend to move and stay together (i.e.,

bulky object movements in supply chain). They propose a novel model to com-

press RFID data without information loss. The model consists of a hierarchy

of highly compact summaries of data aggregated at different abstraction levels

where analysis takes place. These summaries are represented as RFID-cuboids.

Each RFID-cuboid records object movements and stores product information for

each RFID object, information on objects that stay together at a location, and

path information necessary to link multiple stay records. This work is further im-

proved in [GHC10] by discovering the Gateway nodes that have either high fan-in

or high fan-out edges. The RFID cuboids are created based on this discovery to

save more space. This method is restricted to process static data in centralized

environments. It is not suitable for processing RFID data streams.

In [LP08], Lee and Park propose a dynamic tracing model for supply chain

management, which considers not only the movements, but also the combination

and splitting of RFID-attached objects. In [NUY10], an algorithm to extract

frequent sequential patterns from RFID data streams is proposed. The authors

also introduce a decision tree model to determine the prime movements of tagged

objects by using the extracted patterns. TMS-RFID [LLSar] is a system to

manage temporal RFID data, which extracts complex temporal event patterns

over RFID streams. In [GYG09], the authors propose a probability evaluation

model and algorithms for moving range query processing. These models focus on

different aspects of modeling RFID data, but they all have the same limitations

as RFID-cuboid.

SPIRE [NCCar] is a novel RFID data interpretation and compression system.

Chapter 4. Mining Moving Patterns 135

It extracts location and containment relationships over RFID streams by apply-

ing a probabilistic algorithm over a time-varying graph model. This model can

be deployed in either centralized or distributed environments. However, it still

requires full access to all the data.

The BRIDGE project 3 is an implementation of the EPCglobal framework,

whose features and limitations will be discussed in the next section. It includes

a probabilistic model to predict future location of RFID-attached objects using

Markov Chain. However, this model is designed specifically for supply chain

management systems. It requires synchronization with static supply chain model,

which makes it inflexible.

4.6.3 Distributed Modeling and Query Processing

Due to the large volume of RFID data streams, centralized solutions are often

infeasible in large-scale RFID applications, especially those involving several or-

ganizations/companies. Researchers have invested a lot of efforts to develop new

distributed systems or adapt the centralized ones for distributed environments.

EPCglobal4 is an organization focused on developing standards to support

RFID in information rich trading networks. It has developed a Discovery Service

standard which is used to trace individual items. To enable the traceability,

partners have to register all the objects to the service. This architecture is not

fully distributed and scalable.

The authors of [CSD11] extend their work on SPIRE [NCCar] to adapt to

large-scale RFID networks. The location and containment relationships are in-

ferred in a distributed way. [ACK06b] proposes a pure distributed RFID data

3http://bridge-project.eu
4http://www.epcglobalinc.org

Chapter 4. Mining Moving Patterns 136

model. Two attributes sentTo and receivedFrom are associated with each object.

The distributed path is formed by records in correlated nodes. However, this

work does not solve the problem on how to acquire these attributes. Sheng et al.

solve this problem by using a DHT-based architecture [SWR10]. This work re-

quires every item to be indexed in the network which makes the approach costly.

This same effort is further extended in [WSR11a] by introducing a model which

indexes the objects in a structured P2P network and algorithms to maintain

the model. However, this model supports item-level and aggregation traceability

queries along with the cost of indexing spaces.

Query processing in a P2P environment is essentially searching for the proper

resource to answer the query. The general P2P architectures, such as [LXN07], [BJ01]

and [Sto01], can be applied. However, RFID records have implicit knowledges

about the distribution of objects, which can direct the search in a more effi-

cient fashion than the general methods. In [KCW09], Jinoh et al. proposes the

notation of accessibility to capture both availability and performance as a mea-

surement in node selection. However, this work is still too generic to consider

the data itself as a reference. Most existing Content-Aware P2P systems, such

as [CJLar] and [THI10], focus on efficient replication of the data to increase its

availability based on the content of data. They are not feasible in processing

RFID data streams because the partners require sovereignty of the data. In ad-

dition, compared to texts or multimedia resources, replicating RFID data is often

unnecessary since only a very small portion of them is going to be queried.

Finally, in a very recent work in [AH11], the authors propose a framework for

RFID-based inter-organizational cooperation. This work includes a cooperative,

complex event processing method, which is based on event notification services.

Chapter 4. Mining Moving Patterns 137

4.7 Summary

In this chapter, we have introduced a distributed model and algorithms for mining

sovereign RFID data streams. The main features of our approach include:

• By combining the techniques of Titled Time Frame and Histogram, we can

describe the changes of moving patters in both dimensions of time and

space.

• The model is purely distributed. As a result, it is scalable. We developed

distributed algorithms to establish and maintain the model.

• Our proposed model and algorithms are efficient in terms of bandwidth

cost and querying time. We demonstrated the usefulness of this model in

processing tracking and tracing queries.

We have implemented the proposed techniques in our prototype. The details

of the implementation and performance study can be found in Chapter 6.

Chapter 5

PeerTrack Cloud: An Affordable,

Flexible and Scalable

Architecture for Traceable RFID

Networks

In Chapter 3, we introduced a P2P architecture and data model for item-level

traceability in distributed RFID networks. In Chapter 4, we further proposed a

distributed mining model for discovering object moving patterns from distributed

RFID streams. These works solve the requirements of Scalability, Privacy and

Heterogeneity which we examined in Chapter 2. However, due to the character-

istics of P2P architecture, the Timeliness requirement has not been addressed.

These P2P architectures are not suitable for applications under real-time con-

straints.

On the other hand, each node in the network is required to engage an upfront

commitment of capacity for the peak of object flows1. As we have discussed

in Chapter 4, RFID data often exhibits certain patterns in both time and space

1This is not a specific problem for our architecture, but also for most data intensive appli-
cations.

Chapter 5. Traceability as a Service 139

dimensions, which means, the peak volume appears very rare. In most of the time,

the upfront commitment of hardware and bandwidth is a waste of resources.

Fortunately, the evolution of Cloud Computing [AFG10] has brought us the

chance to solve these problems. Cloud computing eliminates the requirement

for users to plan ahead for the provisioning because it provides pay-as-you-go

scheme for the hardware and bandwidth. However, this is not the only benefit of

cloud computing. Cloud computing can also lower the operating costs, reduce the

business risks and provide easy access to developers and users [ZCB10]. These are

all important factors for the success of large-scale RFID applications. Another

important benefit of cloud computing is the reliability and availability of data.

Cloud providers replicate the data in several data centers which are distributed

all over the world [AFG10] so that the single failure of a server will not cause

the interruption of the whole service. And the requests can be routed to the

geographically nearest data centers so that the processing time can be optimized.

In this chapter, we first introduce a Cloud-based architecture for traceable

RFID networks which takes the advantages of the aforementioned benefits of

cloud computing. This architecture is built on the top of the techniques that

we proposed in Chapter 3 and Chapter 4. It enables item-level traceability and

object moving patterns mining. We call this architecture “PeerTrack Cloud”.

More importantly, we introduce the algorithm for RFID data replication so that

the data for all (or most of) the nodes along a path are replicated in the same

data centers which are “closer”2 to the nodes along the given path. In this way,

the traceability queries can be answered by visiting only one data center.

Our contributions are summarized as follows:

• We introduce a Cloud-based architecture for traceable RFID networks and

2The definition of “closer” will be introduced in Section 5.3.

Chapter 5. Traceability as a Service 140

expose the Traceability as a Service(TaaS) interfaces. This architecture

does not require the partners in the network to plan for the provision-

ing beforehand. Instead, they pay the storage and bandwidth fees for the

amount that they have used. This elasticity makes it affordable for more

partners in supply chain networks to join the traceable network because

the smaller business owners no longer need to worry about the costs for

hardware and maintenance. The architecture is built on the top of the

distributed traceability network and mining models that we introduced in

this dissertation. However, it is not a simple data migration, but a different

paradigm in system architecting.

• We develop algorithms to replicate the RFID data. Cloud providers often

have some kind of replication strategy. However, these replication strategies

are too generic to adopt to traceable RFID networks directly. Objects move

in certain patterns in RFID networks, which generate data distributions in

corresponding patterns. Based on the data model and algorithm to discover

the patterns that we introduced in Chapter 4, we further introduce the

moving pattern based algorithms for data replication.

• The underlying techniques make the system elastic. As a result, new nodes

can join and existing nodes can leave at any time. The elasticity is very

important in realizing “Internet of Things” where the network is highly

dynamic.

The rest of this chapter is organized as follows. In Section 5.1, we discuss

the problems in existing systems and the motivation to move large-scale RFID

applications to the Cloud. In Section 5.2, we introduce the Cloud-based archi-

tecture for RFID traceable networks. We then introduce the algorithms for data

Chapter 5. Traceability as a Service 141

replication in Section 5.3. In Section 5.4, we analyze the performance of the

Cloud-based architecture and replication algorithms and compare the storage

and bandwidth costs of our architecture with other architectures. The related

works are discussed in Section 5.5. Finally, Section 5.6 provides some concluding

remarks.

Chapter 5. Traceability as a Service 142

5.1 Motivations and Challenges

The paradigm behind the existing RFID applications (including ours) is known

as “Data on Network” [DMS07]. Its basic idea is that the tags attached to

the objects carry only reference numbers, meanwhile the data pertaining to the

objects are stored in a network of databases and they can be retrieved with the

reference numbers. In this way, the data storage and the objects are physically

isolated. This makes it possible to build the system in a distributed environment

because it is possible to access the data without physical access to the objects.

In some applications, downstream business operations may require fast access

to data records from upstream part of the object moving path. For example, a

distribution center in a supply chain needs to get the destination information from

the source of the delivery. When the distributing process is fully automatically

operated by integrating RFID and robotic techniques, it is necessary that between

the time when the object is scanned by the RFID reader and the time when it

reaches the redistribution point, the destination information must be retrieved.

Another example is that the downstream business partners (e.g., wholesalers and

retailers) should be warned immediately when they receive the wrong products.

Existing architectures for large-scale RFID applications all feature distributed

architectures (See Chapter 2). On the one hand, the distributed architectures do

provide high scalability. On the other hand, they are not feasible under real-time

constraints, because they often require several remote data access steps to get

this information. For example, with EPCglobal architecture, we must invoke the

Discovery Service (DS) first to get the list of EPC Information Service (EPCIS)

instances. Then we query the EPCIS instances to get the required information.

For P2P networks, the number of nodes visited in the processing of a query is

O(log2|V|) where |V| is the size of the network (see definitions of notations in

Chapter 5. Traceability as a Service 143

Chapter 2). These long latencies can cause problems whenever a process requires

fast responses. To solve this problem, we need to find a new method which is

distributed (i.e., scalable) and responsive.

Peak

Capacity

Average Usage

Waste

0 time

resource

usage

Figure 5.1: The Waste of Resources in Existing Deployment Scheme

The common deployment scheme in existing RFID applications mandates the

capacity of hardware to match the peak volume of the data. This causes a waste of

bandwidth and power resources. Figure 5.1 illustrates this problem. As we have

discussed in Chapter 4, the movement of objects often exhibits certain patterns.

More specifically, they often move in groups (e.g., in supply chain network, objects

are transported together in containers). As a result, the RFID stream exhibits

corresponding patterns. Existing applications require the system to run in the

capacity higher than the estimated peak volume of the stream. However, the peak

volumes rarely happen. Consequently, the resources are wasted by (capacity −
average usage)∗time. Another problem is, the peak volume can only be obtained

by estimation, and it changes. For example, it is possible that the CEO of a large

supermarket corporation decides to push a major sale, which leads to an un-

scheduled peak. To overcome this problem, the IT department has to rent or buy

Chapter 5. Traceability as a Service 144

more servers.

Cloud computing is a different deployment paradigm for large-scale applica-

tions [AFG10]. There are many definitions for cloud computing [VRC08]. In

our opinion, among them, the National Institute of Standards and Technology

(NIST) definition3 covers all the essential aspects:

Cloud computing is a model for enabling convenient, on-demand network ac-

cess to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.

Hardware

Infrastructure

Example : Amazon EC2, linode

Platform

Example : Amazon S3, Google AppEngine, Microsoft Azure

Software

Example : Saleforce, Facebook

Infrastructure as a
Service (IaaS)

Platform as a
Service (PaaS)

Software as a
Service (SaaS)

Figure 5.2: Cloud Computing Architecture

Most of the technologies used in cloud computing is not new. On the contrary,

they have existed for a long time. However, cloud computing is a new operation

model which brings together these technologies and provides various kinds of

3http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

Chapter 5. Traceability as a Service 145

services (storage, computing etc.) to users in an economic way. The architec-

ture of cloud computing environment is a layered structure, which is depicted in

Figure 5.2 [ZCB10].

In cloud computing architecture, the upper layers depend on the services

provided by the layer below, like in the OSI network layers. Services in each

layer can be provided to end users via a set of predefined service interfaces. For

example, Amazon4 provides EC2 (Elastic Compute Cloud) virtual machines as a

service in the infrastructure layer, meanwhile, it also provides Amazon S3 (Simple

Storage Service) as a storage service in the platform layer. Users of these services

do not need to engage an upfront commitment for their usage. Contrarily, they

only need to pay for the amount that have been consumed.

Cloud computing brings a lot of benefits [ZCB10, AFG10] including but not

limited to:

• On-Demand Service The usage of storage and network resources is fully

determined by the demand of consumers. There is no upfront commitment

and users can quit at any time. This advantage solves the problem in

Figure 5.1.

• Geo-distribution Access The cloud providers build several data centers

in different locations around the globe. Users will be directed to the nearest

data center which can serve their requests. As a result, user experience is

globally same for people in different regions/countries.

• Shared Resource Pooling The cloud providers offers a pool of resources

and dynamically assign them to users according to their needs. The providers

4http://www.amazonaws,com

Chapter 5. Traceability as a Service 146

take care of the maintenance of the resources and have the chance to glob-

ally maximize the resource utilization.

There are also many other benefits of cloud computing which interested read-

ers can find in [ZCB10, AFG10]. In our opinion, the above three are the most

important features of cloud computing for traceable RFID networks. On the one

hand, because the service can be provisioned on demand, we need not to esti-

mate the peak anymore. And since the resources are shared and pooled, when

the peak volume happens, the user does not need to do anything and leave all

the reassignment of resources to the cloud providers. On the other hand, thanks

to the geo-distributed data centers, we can redirect the requests to the nearest

or most responsive data center to expedite the traceability query processing.

To successfully build a cloud-based traceable RFID network, there are two

major challenges that we have to consider.

• System Architecture The architecture of the system must be carefully

redesigned in order to make the most use of the benefits from adopting

proper services from different layers of cloud computing architecture. And

the system should provide the services to end users in a flexible yet powerful

way.

• Data Replication Strategy Although cloud providers replicate data in

several data centers for geo-distribution and better availability, the repli-

cation strategy is not designed specifically for RFID data. RFID data at

different nodes have closer relationship than regular data. For example,

the downstream node often requires to read the data from upstream node

and two adjacent nodes are often close to each other geographically. It will

expedite the traceability query processing if the data for all related nodes

Chapter 5. Traceability as a Service 147

in a path are already stored in the same data center.

In the next two sections, we will introduce our cloud-based traceable RFID

network architecture and a novel data replication algorithm.

5.2 The Architecture of PeerTrack Cloud

Hardware

Infrastracture
Amazon

EC2

PT-LBS2

PT-IS
PeerTrack

Platform

Services

PT-T2SPT-CS

PeerTrack

Software

Services

RFID Reading :

EPC, Node, Timestamp

Item-level

Query

PT-S2

Statistical

Query

Figure 5.3: PeerTrack Cloud Architecture

5.2.1 Modules of the Architecture

The architecture of the PeerTrack Cloud consists of five major modules.

Chapter 5. Traceability as a Service 148

• PeerTrack Location-Based Storage Service (PT-LBS2). PT-LBS2 is

a PaaS module. It is built on the top of other cloud providers’ infrastructure

services, such as Amazon EC2, to provide the storage service for RFID

reading data or other traceability structures.

• PeerTrack Index Service (PT-IS). PT-IS is also a PaaS module. It is

a key-value store and responsible for the indexing of various RFID data,

such as the latest locations of objects and their moving paths. The indices

are stored via the PT-LBS2 to the underlying infrastructures. We do not

require the key to be an EPC code. In contrast, they can be anything

reasonable.

• PeerTrack Capture Service (PT-CS). PT-CS is a SaaS module. Its

sole responsibility is to capture the RFID data. It accepts the raw readings

and cleans them before sending to the PT-IS for index building and PT-

LBS2 for storage. PT-CS complies to the EPCglobal Capture Interface so

that the users can configure their readers to send data directly to it.

• PeerTrack Track and Trace Service (PT-T2S). PT-T2S is the key

module for processing item-level tracking and tracing queries. It relies on

the underlying PT-IS. It is also a SaaS module. Note that PT-IS is not

only used by PT-T2S. It can be used by any other RFID applications which

require quick access to each individual object.

• PeerTrack Statistical Service (PT-S2). PT-S2 is the key module for

processing statistical tracking and tracing queries. It also relies on the

underlying PT-IS. However, the statistical information are stored in main

memories of PT-S2 servers and PT-IS is used as the permanent storage.

PT-S2 does not invoke PT-IS frequently.

Chapter 5. Traceability as a Service 149

The modularization makes the system flexible so that it complies to the cloud

computing philosophy. Users can choose when to join and leave, what services to

use and how much to use. For example, if a customer only wants to find an online

storage service for his RFID data, he can choose to rent the PT-CS without the

PT-IS and PT-T2S. In this case, the data will be sent from PT-CS directly to

PT-LBS2. Contrarily, if he wants to be able to track every object, he can choose

to rent the PT-T2S and PT-CS. All he needs to do is to configure the readers to

send the data directly to PT-CS. Then he can use PT-T2S to do tracking and

tracing.

However, there is an exception that the PT-S2 depends on PT-T2S. This is

because the statistical information will not be available if the item level informa-

tion is not acquired, which is done in PT-T2S.

The software services layer (PT-CS, PT-T2S and PT-S2) has no knowledge

about how the underlying layers work. They do not need to worry about the

replication of data and load balancing. Meanwhile, the PT-IS and PT-LBS2 are

responsible for the infrastructure level requirements.

One of the most important features of PeerTrack Cloud is its replication

strategy. Unlike other cloud services which choose locations to replicate the

data evenly distributed across the globe, we choose to replicate the data at the

locations which are close to the related moving path. This is because that in

most cases, the data will not be frequently accessed from a non-related location.

For example, in a supply chain network, a retailer of a product may frequently

access the data at the manufacturer to get information about the product. But

it is rarely true that another retailer which is not selling the product (i.e., there

is no RFID readings about this product), accesses the data frequently. In fact,

in the latter case, the retailer should not be allowed to access that information

Chapter 5. Traceability as a Service 150

at the manufacturer.

Also, data for the objects along the same moving path are mostly stored in

the same data center. The benefit is that we do not need to visit more than one

data center to answer a tracking or tracing query because the data are stored in

the same location. The details about this strategy and the algorithms will be

introduced in Section 5.3.

It should be noted that the terminology is a little different in this chapter

than that in previous chapters. In cloud computing environments, we do not have

the concept of “Node”, which represents a location in traceable networks and a

server running at that location in previous chapters. Instead, cloud computing

environments represent the whole system as a single central server to the users.

As a result, we no longer use the term “Node”, instead, when we need to refer to

a location in the network, we simply use “Location”.

5.2.2 PT-T2S Data Model

The PT-T2S maintains the data models used in the tracking and tracing appli-

cations and provides interfaces for the applications to query about the location

and history of individual objects. In this chapter, we reuse the idea introduced

in Chapter 3 that the location of an object is indexed at a gateway. The dif-

ference is that PT-T2S does not choose a node as the gateway. Instead, it uses

the PT-IS which is the index service handling all the indexing requests. And the

underlying storage makes sure that the index is stored successfully and replicated

wisely. The index structure is a little different too. Instead of indexing the latest

location only (see Chapter 3), we index the full trace for an object. The structure

of the index is:

Chapter 5. Traceability as a Service 151

Algorithm : Updating Index in PT-T2S
Input: An RFID reading (o, v, t) from PT-CS
Output: None
1: p← PT-IS.get(o) // get the moving path of o
2: if p is nil
3: p← a new list with one record (v, t, t, nil, nil)
4: else
5: r ← p[p.length− 1] // get the last record in the moving path
6: if r.location == v // this is a reading at the same location
7: r.end← t
8: else
9: r′ ← new record (v, t, t, r.location, nil), p.add(r′)
10: r.to← v
11: end if
12:end if
13: PT-IS.put(o, p)
14: if PT-S2 is enabled
15: PT-S2.put(p)
16:end if

Figure 5.4: Algorithm to Update Index in PT-T2S

EPC → list of (location, start, end, from, to) (5.1)

The key of the index is the EPC code, i.e., the ID of an object. The value

is a list of records sorted by the start field. This list represents the moving

path of the object. In essence, we take the distributed linked list introduced in

Chapter 3 and make it a non-distributed data structure. The benefits of doing

so is twofold. Firstly, in the cloud computing environment, we no longer need to

worry about the workload balancing in the software layer (Recall that one of the

purposes of distributing the data in Chapter 3 is for load balancing). Secondly,

with this simple yet powerful data structure, tracking and tracing queries can be

done by a single query to the index, instead of querying the whole network in a

P2P way. As a result, the query processing complexity is reduced significantly

from O(log2|V|) to O(1) in the sense of remote data access.

The algorithm to update the index is shown in Figure 5.4. If the object is first

Chapter 5. Traceability as a Service 152

observed in the whole network, a new record is inserted to its moving path (line

3). Otherwise, if this reading is from the same location as the previous reading,

only the end attribute is updated (line 6 and 7). If this reading is from a new

location, a new record is inserted into the moving path, with the from attribute

set as the location attribute of the previous record (line 9), and the to attribute of

the previous record is updated as the new location (line 10). Finally, the moving

path is put back to the PT-IS service. And if PT-S2 is enabled, this information

is also sent to it to update the statistical information.

Compared with the distributed algorithm in Chapter 3, this algorithm is

almost the same except that the moving path is updated in the PT-T2S and

the only remote calls are the retrieval and update of the index in PT-IS. It is

clear that the complexity in terms of remote calls is O(1).

Similar to the distributed algorithm, the algorithm in Figure 5.4 also suffers

from the problem that when the volume of RFID streams is high, we have to

frequently access the PT-IS. This is a time consuming task and it burdens the

PT-IS unnecessarily. To avoid this, we introduce a group-based index update

algorithm which is similar but much simpler than the distributed one.

This algorithm is shown in Figure 5.5. The main enhancement in this algo-

rithm is to access the PT-IS in groups (line 2 and line 16). The moving path

update part (line 4–15) is exactly the same as the one in Figure 5.4. The under-

lying PT-IS is responsible for the load balancing and replication of the batches of

data. Note that the parameter T is introduced as the width of sliding windows

for data caching. It is configurable and should be set according to the real-time

constraints of the system. Specifically, suppose the maximum allowed delay of

index update is D and the latency of accessing PT-IS is Tlatency, we have:

Chapter 5. Traceability as a Service 153

Algorithm : Updating Index in PT-T2S in Groups
Input: RFID readings R from PT-CS during time T
Output: None
1: O ← set of IDs of all objects in R
2: P ← PT-IS.getAll(O) // get the moving path of for all objects in O

// P is a map, whose key is the ID of an object and value is its moving path
3: for each record (o, v, t) in G
4: p← P.get(o) // get the moving path of o
5: if p is nil
6: p← a new list with one record (v, t, t, nil, nil)
7: else
8: r ← p[p.length− 1] // get the last record in the moving path
9: if r.location == v // this is a reading at the same location
10: r.end← t
11: else
12: r′ ← new record (v, t, t, r.location, nil), p.add(r′)
13: r.to← v
14: end if
15: end if
16: P.put(o, p)
17:end for
18: PT-IS.putAll(P)
19: if PT-S2 is enabled
20: PT-S2.putAll(P)
21:end if

Figure 5.5: Algorithm to Update Index in PT-T2S

T ≤ D + 2 ∗Tlatency (5.2)

The item-level tracking and tracing query processing algorithm is straightfor-

ward. For a given object o, all its information can be retrieved from the PT-IS

via a PT-IS.get(o) call and the complexity is O(1). The latest location is the last

record in the returned list, and the list itself is the full moving path with time

information.

5.2.3 PT-S2 Data Model

In order to gather and represent the changes of object moving patterns in both

time and space dimensions, as we do in Chapter 4, we introduce a graph model

Chapter 5. Traceability as a Service 154

and incremental algorithms to maintain the statistical information and capture

the dynamicity.

The essential data structure is a directed graph as shown in Figure 5.6. The

vertices represent the locations in the network, and the directed edges represent

the amount of objects moved along the connections between locations. It should

be noted that as shown in the figure, the graph is not necessarily a fully-connected

one. The two isolated sub-graphs represent two isolated sub-networks in the

system.

V1

V2

V3

V4

V5

V6

V7

Sub-Network

Sub-Network

Figure 5.6: PT-S2 Graph Model

In order to capture the changes of the moving patterns, the model is designed

to be incrementally maintained. The basic idea is to store the change ∆Gi during

the ith event cycle. ∆Gi is also a graph. It represents the movements happened

during the ith event cycle. The width of the event cycle is a configurable param-

eter C which controls the granularity of the statistics. For the convenience of

discussions, we name ∆Gi the ith slice. All the slices are stored in the PT-LBS2

Chapter 5. Traceability as a Service 155

by the PT-S2. Meanwhile, PT-S2 stores the latest S slices. The reason is that

it is most likely the latest statistics are going to be accessed frequently. In this

case, PT-S2 acts as a cache for PT-LBS2. S is also a configurable parameter,

which balances the storage used in PT-S2 and possibility of answering a query

without querying PT-LBS2.

V1 V2 V3

V1

V2

V3

0

10

0

20

10

0

10

0

0

V1 V2 V3 V4

V1

V2

V3

V4

0

0

0

0

20

10

0

10

0

0

0

0

10

0

0

0

Empty

from from

to to

+

V1 V2 V3 V4

V1

V2

V3

V4

0

10

0

0

40

20

0

10

10

0

0

0

10

0

0

0

from

to

Figure 5.7: Example of PT-S2 Graph Model

Figure 5.7 demonstrates the idea using a fully connected network with 4 loca-

tions. From the slice ∆G1, we can infer that during the first event cycle, there are

20 objects moved from v2 to v1 and 10 objects moved from v1 to v2. Note that the

graph is directed, thus there may be movements in both directions. During the

second event cycle, there are no movements at all, thus ∆G2 is empty. During

the third event cycle, a new location v4 joined the network and there were 10

Chapter 5. Traceability as a Service 156

objects moved from v4 to v1. From these slices, we can infer the statistics for any

range. For example, as shown in the figure, the statistics of time range [1, 3] is

inferred by combining the three slices together. Similarly, ∆G[1,2] = ∆G1 + ∆G2

and ∆G[2,3] = ∆G2 + ∆G3. In general:

∆G[a,b] =
b∑

i←a

∆Gi (5.3)

Using Equation 5.3, we can retrieve the aggregation information for any time

frame.

The algorithm to build ∆Gi is straightforward. After the movement data is

received from PT-T2S, the changes of locations are transformed to the edges in

a slice. The PT-T2S is supposed to send only the records with new locations to

PT-S25.

5.3 Data Partition and Replication

Data partition and replication are very important topics of data management in

cloud computing environments. Their purposes are to increase the availability

of data and decrease the access time by directing requests to the nearest data

center to the requester. Partition and replication are symbiotic. The whole data

space is partitioned to groups according to a certain strategy, then each group is

replicated at several data centers. A request is redirected by a high-speed proxy

server to the most proper data center based on the network latency and the load

balancing policy.

Existing works ([BCD11, XCZ11, CCG11]) are mostly generic solutions and

adaptable in most applications. However, RFID data, as one of the location-

5This is omitted in Figure 5.5.

Chapter 5. Traceability as a Service 157

based data, has its special characteristics. The most important one is that the

distribution of data has certain patterns in the spatio dimensions. For example,

in a supply chain network, the supplier-consumer relationships are not changed

frequently due to the fact that a contract is often valid for several months or

years. Also, a query regarding a path is more likely from a location on the path

than from a random location in the whole network, for example, the downstream

operations often require information from upstream nodes in supply chain net-

works. Consequently, if the data is copied to a data center close to the requesting

location, the time for data accessing will be shortened. In this section, we in-

troduce the location-based data partition and replication algorithms in PT-LBS2

for traceable RFID networks in the cloud.

It should be noted that the PT-LBS2 is built as a generic service providing

storage for all kinds of location-based data. It is not specifically designed for the

services in the upper level services in Figure 5.3.

According to whether a record has a key or not and whether the key is a

location, we categorize them to three categories: Non-Location-Keyed, Location-

Keyed and Keyless. For non-location-keyed records, the same partition-replication

schemes are adopted because the requester for those records has no location infor-

mation, thus the access cannot be accelerated by the location-based replication

scheme.

For the other two kinds of records, there are three main location related data

structures in the system, namely point, path and graph. Records of these struc-

tures can be either key or value in the Location-Keyed records. For these three

structures, we introduce different partition and replication algorithms according

to their characteristics. In general they all belong to eager primary copy repli-

cation scheme. I.e., the writing operation is first performed at a primary master

Chapter 5. Traceability as a Service 158

copy6 and then propagated from this master copy to the secondary copies. The

details of this algorithm and other alternatives can be found in [WPS00]. The

primary/secondary copies are chosen differently for different structures. Next,

we will introduce the methods to determine the copies and to partition the data

space.

5.3.1 Point-Based Data Partition and Replication

Point-based data are the records where there is only one location related. The

location must be the key if the record is location-keyed, otherwise the record is

keyless. For this kind of data, we partition the data space by the location v. Two

records r1(v1) and r2(v2) belong to the same group, if and only if their closest

data center is the same. The closeness is defined by the network latency between

a location and a data center7. We denote closest data center for a location vi by

cdc(vi).

cdc(v1) = DC1

cdc(v2) = DC1

cdc(v3) = DC3

cdc(v4) = DC4

cdc(v5) = DC4

DC1

DC3

Figure 5.8: Example of Partitioning Point-based Data

Figure 5.8 shows an example of the partition. According to the mapping of the

6The request is not always directed to the “Primary master copy”. This copy is meaningful
only for the update and propagation phase.

7To ensure consistency, the network latency is measured once before the system starts. As
a result, it is a static measurement and will not change after the system starts.

Chapter 5. Traceability as a Service 159

location to its nearest data center, we partition the 6 records into three groups.

A group is identified by the common nearest data center of all its members. The

primary copy is stored in the common nearest data center. For a replication policy

with m copies, the m − 1 secondary copies are stored in the order of closeness

to the primary data center. In this way, the data is stored close to the locations

from where it might be requested.

5.3.2 Path-Based and Graph-based Data Partition and Replication

Path-based data are the records where there is an ordered list of locations. For

example, the structure we used in PT-T2S to represent a moving path (See Sec-

tion 5.2.2) is a path-based data structure. Graph-based data are the records

where there is a graph of locations. For example, the structure we used in PT-

T2S to represent a network (See Section 5.2.3) is a graph-based data structure.

Two records r1(p1) and r2(p2) (p1 and p2 are paths) or r1(g1) and r2(g2) (g1 and

g2 are graphs) belong to the same group, if and only if they share the common

closest sets of data centers, which is denoted by CSP or CSG, for path-based or

graph-based data, respectively. CSP and CSG are formally defined as (V (p) is

the set of locations in p, V ′(g) is the set of disjoint subgraphs in g):

CSP(p) = {cdc(vi)|vi ∈ V (p)} (5.4)

CSG(g) = {CSP(gi)|gi ∈ V ′(g)} (5.5)

The groups are identified by CSP(or CSG). Figure 5.9 illustrates the scheme

by an example of path-based data. For p2 and p3, although p2 and p3 contain

different sets of locations, i.e., V (p2) = {v1, v3, v4} and V (p3) = {v2, v3, v5}, since

Chapter 5. Traceability as a Service 160

p1 : v1 → v2 → v3

p2 : v1 → v3 → v4

p3 : v2 → v3 → v5

p4 : v1 → v4 → v5

p5 : v2 → v4 → v5

CSP(p1) = {DC1, DC3}
CSP(p2) = {DC1, DC3, DC4}
CSP(p3) = {DC1, DC3, DC4}

CSP(p4) = {DC1, DC4}
CSP(p5) = {DC1, DC4}

cdc(v1) = DC1

cdc(v2) = DC1

cdc(v3) = DC3

cdc(v4) = DC4

cdc(v5) = DC4

DC{1,3}

Figure 5.9: Example of Partitioning Path-based Data

v4 and v5 share the same closest data center and v1 and v2 share the same closest

data center too, the two paths share the same CSP . As a result, they belong

to the same group identified by DC{1,3,4}. It should be noted that CSP is a set,

thus the elements within it are not ordered (e.g., p2 and p3).

The partition schemes for the two types of data are almost the same. Es-

sentially, the path-based data space and graph-based data space are partitioned

by the subsets of all data centers. However, not all the subsets are used. To

make the partition and replication more sensible to the location information, this

scheme chooses the subsets for which the locations nearby have objects moving

among them. The difference between them is how to generate the subsets. For

path-based data, it is simple because a path can only generate one subset. It is

more difficult for the graph-based data because we have to traverse the graph to

find out all the possible paths. We use depth-first graph traversal algorithm to

get all the possible paths.

The replication schemes for the two types of data are different.

Path-based Data. The primary master copy is stored at the data center in

the CSP with the smallest ID. For a m-degree replication, if m > |CSP|, the first

|CSP| − 1 copies are stored in the unused |CSP| − 1 data centers in CSP . Then

the rest m − |CSP| copies are stored at other data centers evenly distributed.

Chapter 5. Traceability as a Service 161

Otherwise, all copies are stored in data centers in CSP in the order of their IDs.

Algorithm : Replicating the Graph-based Data
Input: A Graph G and a piece of data about this graph
Output: m data centers to replicate the data
1: V ′ ← set of subgraphs of G // using depth-first traversal
2: CSG ← Φ
3: for each subgraph g in V ′

4: CSP(g)← {cdc(vi)|vi ∈ V (g)}
5: sort CSP(g) by the IDs of the data centers
6: CSG.add(CSP(g))
7: end for
8: sort CSG
9: c ← 0, l ← 1 // c is the count of replications, l is the index of data center used

in each loop below
10:RS ← Φ // the result
11:while c ≤ m AND not all data centers are used
12: for each CSP in CSG
13: RS.add(CSP(l))
14: c+ +
15: end for
16: l + +
17:end while

Figure 5.10: Algorithm to Replicate the Graph-based Data

Graph-based Data. As the definition indicates in Equation 5.5, the CSG(g)

is in fact a set of CSPs. Each CSP is identified by the smallest ID of the data

centers within it. If there is a tie (i.e., two CSP has the same data center with

the smallest ID), the second smallest ID is the tie breaker and we identify the

CSP using the first two IDs, and so on. Then the CSPs are sorted by their IDs.

To keep the consistency of replication, the primary master copy is stored at the

first data center in the first CSP . For a m-degree replication, the rest m − 1

copies are stored in the other m−1 CSPs’ first data centers, in the order of their

IDs, if m <= |CSG|. Otherwise, after storing the first |CSG| − 1 copies in the

CSPs, the second data centers in the CSPs are used in the same order, and so

on. The detailed steps of this algorithm is shown in Figure 5.10.

Chapter 5. Traceability as a Service 162

5.4 Performance Analysis and Comparison

The main advantage of the PeerTrack Cloud is the ability of handling the real-

time constraints requirement8. In this section, we briefly analyze the performance

in terms of query response time for different queries in PeerTrack Cloud. We also

compare the performance with that of EPCglobal Architecture Framework (EAF)

and the general P2P solution that we have introduced in Chapter 3.

Tracking Query. The first query that we want to analyze is the tracking query

(Qtrack): find the latest location of an object o. In PeerTrack Cloud, since this is

a non-location-keyed record, the PT-LBS2 replicates it evenly distributed in the

whole network around the globe. As a result, the performance at worst is two

remote access: to the PT-T2S and the data center found in the PT-LBS2. The

response time of this query tPTCloud
track = tPT−T2S + t̄DC . In EAF, the query is sent

to Object Naming Service (ONS), then to the Discovery Service (DS). Note that

DS is not implemented in EAF at the time of writing9. Consequently, we can only

assume that the best case for accessing DS is one remote call and the average case

is d calls. The worst case is undetermined. Because the DS is most likely to be

implemented in a distributed way, in the worst case, d > 1. The response time of

the tracking query in EAF is calculated as tEAF
track = tONS +tDS = tONS +d∗ t̄remote.

In the P2P environment, the tracking is done by P2P lookups in a DHT, thus the

response time is tP2P
track = log2|V| ∗ t̄remote. Clearly, P2P architecture is the slowest

to answer the tracking queries, while PeerTrack Cloud provides the fast response

because it chooses the closest data center to get the data.

8The other common benefits of adopting cloud computing are also provided by PeerTrack
Cloud but we omit the discussions about them in this dissertation.

92011-12-01

Chapter 5. Traceability as a Service 163

Tracing Query. The second query that we want to analyze is the tracing query

(Qtrace): find all the locations that an object o has visited. Similarly, in PeerTrack

Cloud, two remote calls are required: to the PT-T2S and the data center in the

PT-LBS2. The response time is tPTCloud
trace = tPT−T2S + t̄DC). It is the same process

for EAF to answer the tracking and tracing query. So the response time for EAF

is tEAF
trace = tONS + tDS = tONS + d ∗ t̄remote. In the P2P environment, since the

trace is distributed along the moving path, it is required to access all the nodes

along the path to get the information. As a result, the number of remote calls is

the number of nodes in the resulting path. The response time is tP2P
trace = l̄ ∗ t̄remote

where l̄ is the average length of the moving paths. Similar to the analysis for

tracking query, PeerTrack Cloud provides the fast response for tracing query too.

Statistics Query. The third query that we want to analyze is the statistical

query (Qstat): find the number of objects sent to location v during last month.

In PeerTrack Cloud, this is a location-keyed record, so it is replicated to the

closest data center to the location in the request and its neighbors. Though we

still need two remote calls : to the PT-S2 and the data center in the PT-LBS2,

the data center chosen is likely near the requester. The response time is thus

tPTCloud
stat = tPT−T2S +min(tDC). It is hard to tell the performance of the EAF for

this kind of queries since this highly depends on the implementation. In the P2P

environment, because the data is stored at where it is collected, i.e., data about

v is stored at v, the number of remote calls is the number of hops to get to the

node. The response time is tP2P
stat = log2 |V| ∗ t̄remote.

We summarize the comparison of performances in different architecture for

these three major kinds of queries in traceable RFID networks in Table 5.1. The

actual measurements may depend on the configurations and environments. How-

ever, it is evident that PeerTrack Cloud outperform the other two architectures

Chapter 5. Traceability as a Service 164

Architecture
Response Time for Query

Tracking Tracing Statistical
PeerTrack Cloud tPT−T2S + t̄DC tPT−T2S + t̄DC tPT−T2S +min(tDC)
EAF tONS + d ∗ t̄remote tONS + d ∗ t̄remote N/A
P2P log2|V| ∗ t̄remote l̄ ∗ t̄remote log2 |V| ∗ t̄remote

Table 5.1: Comparison of Performance in Different Architectures

in most of the scenarios, in terms of response time.

It should be noted that this analysis measures the response time without

considering the influence of workload at the servers. In the environment where

the volume of the data is high, if the number of servers used in EAF’s DS is small,

each server gets high load and the response time is downgraded. Otherwise, when

there are a lot of servers in DS, the architecture requires more remote accesses.

As a result, it downgrades too in terms of response time. So the performance of

EAF depends on the environments and the actual design of DS.

5.5 Related Work

The researchers in UC Berkeley summarized the challenges and opportunities

of Cloud Computing in [AFG10] and [AFG09]. Among the ten obstacles that

they discussed, which include technical, financial and management issues, Data

Transfer Bottlenecks and Scalable Storage are the most interesting topics of data

management. There are many opportunities in the research of these areas. An-

other state-of-art overview of cloud computing [ZCB10] focused on the technical

challenges. The authors provided a comprehensive analysis and comparison over

the existing cloud products from the biggest providers (Amazon, Google and

Microsoft) from the architecture, file storage and management aspects.

Cloud computing for traceable RFID networks is a sub-topic in the big picture.

Chapter 5. Traceability as a Service 165

In this section, we overview the work that have done for mobile and location-

aware, especially RFID-based, cloud computing.

In [KMS10], a framework for the use of context information provided by mo-

bile cloud as a service is proposed. This work introduces the Heterogeneous

Access Management (HAM) concept and proposes a Context Management Ar-

chitecture (CMA) to acquire, process and manage the context information. This

is a generic framework for context-aware mobile services. In [LZZ09], the authors

propose a middleware framework for cloud computing to deploy mobile compu-

tation, especially mobile agent technology, in cloud services. Service composition

and service invocation techniques in this architecture are also introduced. These

architectural works are mainly focused to provide a generic framework for the

mobile cloud computing environment. As a result, they do not specifically con-

sider the traceability as a requirement. In [ZFM10], a framework designed for

high-speed data access in RFID networks is proposed. The authors present ex-

periments to explore the main bottlenecks in EPCglobal architecture to provide

a real-time environment for RFID data processing. The proposed cloud-based

service can provide real-time access to EPCIS. However, this work does not ad-

dress traceability either. To the best of our knowledge, traceability as a service

is still in its early stage of development.

Data management is a very important topic in cloud computing. In [PSL11],

a locality-aware resource allocation method is propose. It enables quick access

to data by reading them from local or close-by physical machines. This work is

mainly developed to expedite MapReduce jobs. Thus it is not generic enough to

be suitable for enabling traceability. In [CCG11], the authors proposed a storage

system for supporting both OLTP and OLAP, similar purpose for the work in this

chapter to support both item-level and statistical traceability queries. Though

Chapter 5. Traceability as a Service 166

this work is generic so that it can support traceability queries as well as queries

in other specific topics, it uses a P2P index system which causes longer response

time. In [XCZ11], the authors try to address the issue of how to intelligently man-

age the resources in a shared cloud database system. They propose SmartSLA, a

cost-aware resource management system which uses machine learning techniques

to learn a model that describes the possible profit margins and use it to optimize

the resource allocation. This work focuses on the management of resources in

terms of costs. We take this topic as a future research direction.

5.6 Summary

In this chapter, we introduced PeerTrack Cloud, which is a cloud computing

architecture built to enable Traceability as a Service (TaaS). The main features

of this system include:

• We modularize the architecture in layers, in order to provide a flexible and

affordable ecosystem for users with various needs. Users do not need to

sign up for all the features if they only want a specific one.

• The architecture features two major SaaS layer modules, PT-T2S and PT-

S2, for item-level traceability query processing and statistical query pro-

cessing, respectively. We proposed algorithms for the query processing and

data management in these modules.

• One of the purposes of this architecture is to enable real-time access to var-

ious data, to which the key is how to access the data as quickly as possible.

We designed a storage service (PT-LBS2) specifically for traceability data

structures, such as location, path and graph. Algorithms to partition and

replicate the data are designed to further expedite the data access.

Chapter 5. Traceability as a Service 167

The details about the implementation and performance evaluation can be

found in Chapter 6.

Chapter 6

Implementation and Performance

Study

This chapter is devoted to the implementation and performance study of our

proposed solutions for traceability. We implemented these techniques inside the

PeerTrack Platform. PeerTrack aims at providing a comprehensive platform for

enabling traceability in large-scale, distributed RFID networks. To validate the

feasibility and benefits of our approaches, we developed an asset management

system (PeerTrack AMS) using this platform, which provides support for various

kinds of traceability queries. We then conduct an extensive performance study

of our approaches.

This chapter is organized as follows. In Section 6.1, we give a brief overview

of the PeerTrack platform. In Section 6.2, we describe some implementation

details of PeerTrack. Then, in Section 6.3, we present the PeerTrack AMS that

illustrates the main features of PeerTrack. In Section 6.4, we reports the results

of a set of performance studies. Finally, in Section 6.5, we provide a summary of

this chapter.

Chapter 6. Implementation and Performance Study 169

6.1 PeerTrack Platform: An Overview

Enabling traceability is not a single layer problem [WRS11]. Large-scale global

networks have the potential to generate unprecedented amounts of data related

to individual objects. An important challenge centers on the efficient manage-

ment and sharing of this data in traceability applications. An obvious solution

is to publish all data collected within each organization to a central data ware-

house. Unfortunately, this approach has several severe drawbacks. Firstly, object

movement and related data are valuable business information that companies

may be very reluctant to put in a shared central warehouse. Secondly, such an

approach has very limited scalability and is not feasible for large-scale applica-

tions where the amount of data collected could be enormous [ACK06b, FJK05,

SLZ08a, WJO09]. The system architecture for data gathering, processing and

sharing must be scalable in order to deal with the data collected from networked

systems. For efficient processing and storage, data models must be carefully de-

signed. To allow business users making useful decisions and analysis in a timely

manner, different types of traceability queries as well as event-driven notification

services must be conveniently supported.

Motivated by these concerns, we have developed the PeerTrack platform for

efficiently tracking and tracing objects in large-scale traceability networks. Peer-

Track features a pure P2P architecture for data and query processing. In particu-

lar, we have implemented the data models introduced in Chapter 3 and Chapter 4,

which eliminate the data dependencies between organizations. Important track-

ing and tracing queries have been implemented as built-in features, meanwhile

we provide the flexibility of developing add-in queries.

We present the architecture of the PeerTrack Platform in Figure 6.1.

Chapter 6. Implementation and Performance Study 170

Tracking Engine

Indexer Query Processor

MOODS Data Model

Rule Engine

Event Processing Algorithms

Knowledge Base

Event Queue

RFID Data

Cleanser

 RFID Raw Readings

DHT Network

 Sensor Event

 Track Event

 Event

Requests from/to other Nodes

 RFID Data

Asset

Management

Inventory

Management

Supply Chain

Management

PeerTrack Platform

Other Applications

Applications

Rule-based Event

Processing Interface

Traceability

Query Interface

Subscription/Notification Tracking/Tracing queries

Sensors

Sampler TISH

Figure 6.1: The Architecture of PeerTrack Platform

Chapter 6. Implementation and Performance Study 171

PeerTrack exploits the distributed hash table (DHT) infrastructure Chord [Sto01]

to manage peers and route messages. Each organization is viewed as an equal

peer of the network. “PeerTrack Platform” in the Figure 6.1 shows the structure

of a peer. Within a peer, applications can access local data, as well as remote

data of other peers using the tracking engine via the DHT network.

The tracking engine includes traceability data models (MOODS and TISH),

an indexer, and a distributed query processor. Developers can implement various

kinds of traceability applications using the generic APIs built on top of these

modules. To support event-driven services (e.g., notifications), a rule engine has

been developed. It monitors an event queue which is public to other modules.

PeerTrack relies on the generic data model MOODS(See Chapter 3) for track-

ing and tracing each object individually in large-scale networks. A discrete space

refers to a finite set of nodes which represents all the organizations in the network.

MOODS eliminates the data dependencies between organizations by storing the

information about object movements at the nodes where the object has been

transported. In particular, MOODS introduces the distributed double linked list

to represent the path information, which includes properties that indicate the

departure and arriving information of objects. With this data structure, each

node maintains segments of objects’ moving paths and uses this information to

expedite P2P queries in the network. Details about MOODS can be found in

Chapter 3. TISH is implemented to provide mining support. It gathers the in-

formation from peers without having to use large amount of bandwidth. TISH

can run in the main memory because its small memory footprint. However, it

is powerful enough to support mining over a long period of time. Details about

TISH can be found in Chapter 4.

The indexer is the key to maintain the distributed moving paths. It indexes

Chapter 6. Implementation and Performance Study 172

an observed object and its latest location (i.e., the last node where the object is

observed) at a deterministic node called the gateway node. The gateway node is

solely determined by the id of the object thanks to the determinism of the DHT.

When the object is observed at a new node vd, the node sends the object’s id

to its gateway node via the indexer. The indexer at the gateway node uses this

information to update its index and sends a message back to vd, notifying it the

node where the object comes from (i.e., vs). Meanwhile, the indexer also sends a

message to vs, informing the node that the object has arrived at vd. As a result,

the moving path is established. To reduce the indexing overhead for large-volume

objects, we enhance the indexing algorithm by grouping the objects according to

the prefixes of their hashed ids. The scheme to determine the optimal length of

prefixes for grouping is carefully chosen in regard to both scalability and load

balancing.

The fundamental design principle of the query processor is to process a query

locally to the extent possible and, if necessary, enhance it using locally available

information before forwarding it to appropriate remote organizations. Due to the

introduction of MOODS and TISH, we do not have to flood the query to all the

nodes in the network. Instead, the query is processed following the distributed

link. As a result, the performance of query processing can be significantly im-

proved. To answer a tracking query, i.e., finding the current location of an object,

the query processor simply contacts the gateway node for the object via Chord.

A tracing query, i.e., finding the pedigree of an object, can be answered by first

tracking the object (i.e., finding its current location) and then simply tracing

back the list using the moving path information.

We used state-of-the-art technologies for the implementation. Table 6.1 sum-

marizes the technologies that we have used. The two interfaces, Traceability

Chapter 6. Implementation and Performance Study 173

Product Version Usage Descriptions
MySQL 5.5 DBMS Server.
xerces 2.4 XML processor.
JBoss Application Server 5.0 Java EE Application Server.
Drools 5.0 Event-Rule Processor.
iText 5.0 document generator.
log4j 1.2.15 logger.
MySQL JDBC Driver 5.1.16 Database connections.
Fosstrak ALE Middleware 1.0.2 ALE implementation.
Axis 1.4.0 SOAP provider.
OpenChord 1.0.5 DHT implementation.

Table 6.1: Enabling Technologies in PeerTrack Platform

Query Interface and Rule-based Event Processing Interface are deployed as web

services using Apache Axis. JBoss is used as our web and application server

where Axis is deployed. The Rule-based Event Processing Interface contains the

essential methods provided by the Rule Engine. We implemented the Rule Engine

using the open source event-rule processor, Drools1. Drools contain 5 modules, of

which we used Drools Expert and Drools Fusion as our rule and event processing

modules, respectively.

We adopted the open source Java project OpenChord2 as the implementation

of Chord [Sto01]. It supports storing all serializable Java objects within the DHT.

6.2 Implementation Details

The PeerTrack platform provides an environment for supporting the development

of distributed and large-scale traceability applications. It offers two interfaces to

application developers, namely the traceability query interface and the rule-based

event processing interface3, in the form of Java API. The query interface accepts

1http://www.jboss.org/drools
2http://open-chord.sourceforge.net/
3For convenience of discussion, we will refer to them as “query interface” and “rule interface”.

Chapter 6. Implementation and Performance Study 174

queries and executes them either locally and/or remotely at other nodes. The

rule interface can be used to specify business rules for event-driven services (e.g.,

out-of-stock alerts). These two interfaces are built on top of PeerTrack’s main

modules, namely the tracking engine and the rule engine.

6.2.1 Rule Engine

Listing 6.1: Example of a Rule

rule "Order Created"

when

$order : Order(status == OrderStatus.CREATED)

then

for (Object o : $order.getObjects()) {

o.setStatus(ObjectStatus.PROCESSED);

o.setOrder($order);

insert(o);

QueryProcessor.getInstance().getQueryProcessor().

updateObjectStatus(o);

}

QueryProcessor.getInstance().getQueryProcessor().

createOrder($order);

FeedGenerator.getInstance().generateOrderCreatedEvent(

$order);

System.out.println("order created : " + $order.getId());

end

Chapter 6. Implementation and Performance Study 175

Listing 6.1 shows an example of a rule (“Order Created”), which is triggered

by the event (indicated by the keyword “when”) that an order is input into the

system. The rule engine accepts the definition of rules as the example, via the

rule interface. The applications can then subscribe to the defined events, and

get notified when they occur. The rule engine is built on top of JBoss Drools4,

which includes five main modules. We used Drools Fusion and Drools Expert to

build our rule engine. The rule engine monitors an event queue which receives

events from other modules in PeerTrack and triggers corresponding actions if the

conditions are satisfied.

Figure 6.2: Screenshot of the Rule Editor

4http://www.jboss.org/drools

Chapter 6. Implementation and Performance Study 176

The editing of the rules is not simple because it requires programming skills

as shown in Listing 6.1. In order to make the system easier to use for people

without programming skills, a rule editor (Figure 6.2) is developed to provide

a visual interface for efficiently defining and editing business rules. It also con-

tains a knowledge base that assists users who do not have specialized knowledge

to define business rules with a semi-structured natural language. The rule edi-

tor supports the semantic specification of rules and automatically translates the

visual representation of rules to the Drools Rule Language.

The event filterer and cleanser have been implemented to filter and clean the

data stream collected from various data sources, e.g., RFID readers and barcode

readers. It mainly implements the algorithms proposed in [JAF06].

6.2.2 Tracking Engine

Tracking engine contains several major modules, namely Indexer, Query Proces-

sor, Sampler and TISH.

The indexer is transparent to the application developers. It implements the

group indexing and model maintenance algorithm described in Chapter 3. The

indexer reads data from the stream processor periodically. Objects observed

within a cycle are classified into groups according to the prefixes of their hashed

ids. We use SHA-1 as the hash function for its uniformity. The length of the

prefixes is determined by the function log2 |V|+ log2 log2 |V|, where |V| is the size

of the network, represented by the number of nodes within the network. The

anti-entropy aggregation protocol proposed in [JM04] has been implemented to

estimate the value of |V|.

The query processor accepts queries from both the application layer and the

DHT layer (rewritten from other nodes). A Dispatcher class has been im-

Chapter 6. Implementation and Performance Study 177

plemented to pick up a corresponding registered processor instance for an in-

coming query. All queries and their processor instances are implemented as

plug-ins. For example, for a tracking query TrackQuery that locates an ob-

ject, a TrackQueryProcessor is implemented. Both classes are registered

in the query processor via the register(Query q, Processor p) inter-

face at runtime, where Query and Processor are the Java classes for all

queries and processors. This mechanism ensures high flexibility and makes it

possible to dynamically upgrade the system without rebooting. We have im-

plemented some important traceability queries. A special implementation is the

RewritableQuery class, which represents queries to be rewritten for executing

at other nodes via DHT interface. Tracking and tracing queries are subclasses

of the RewritableQuery. The query objects are all serializable for seamless

integration with OpenChord.

The sampler accepts RFID data from the readers after they are cleaned, then

outputs a small set of records which is a true random sample of the input dataset.

This is guaranteed by the Reservoir Algorithm [Vit85]. The data set is read only

once so there is no cache for it. This makes the footprint of the sampler very

small.

The TISH module maintains the model that we proposed in Chapter 4 in the

main memory. It accepts the sampled dataset from the sampler, and asks other

nodes via the DHT interface about the origin of the objects in the sample. Upon

the receipt of the results, it updates its Titled Time Frame of Histograms. All

these operations are done in the main memory, thus it is quick and efficient. Also,

because the dataset has been sampled, the bandwidth usage is saved.

Chapter 6. Implementation and Performance Study 178

�������� ���	
��� ���
���
��

������ ���
���� ������	

������
�� ������������ ������ ���
���
�� ������������ ����� !���

Figure 6.3: Screenshot of the PeerTrack AMS Client

6.3 PeerTrack AMS: A Demonstration

We have developed several traceability applications on top of the PeerTrack plat-

form, including mobile asset management and supply chain management. In this

paper, we will focus on presenting a mobile asset management system. This sys-

tem has been deployed at a company that provides a suite of linen services for

over 200 customers (e.g., hotels, hospitals, and aged-care homes) in South Aus-

tralia. Each customer has one or more delivery locations (nodes). In this system,

trolleys (objects) are reusable containers for linens and they are attached with

RFID tags. They are transported among nodes and can be detected by RFID

readers when they arrive at a delivery location. An order is simply an aggregation

Chapter 6. Implementation and Performance Study 179

of several trolleys for the same customer. The mobile asset management system

developed from the PeerTrack platform offers an automated tracking and tracing

service with the capability to monitor and control their logistical operations in

real-time over 300 different locations.

We also developed a visual monitoring tool that has been deployed at each

customer’s site, together with the P2P services. Figure 6.3 shows the screenshot

of the visualization tool deployed at the clients’ desktop machines. We use this

application as the demo to show the advantages of our PeerTrack platform.

Tracing and Tracking. Tracing a trolley can be initiated using the “Order/Ob-

ject Search Tool” panel. After a user inputs the trolley id and clicks the “Trace

Trolley” button, the visualization tool creates TraceTrolleyQuery, which is a

subclass of the TraceQuery, and sends it to the PeerTrack platform. PeerTrack

traces it to the original location of the trolley following the moving path stored

in each node along its moving path. The search result is shown as highlighted

lines on the map of the query initiator.

Similarly, for tracking a trolley, the TrackTrolleyQuery is sent to the

corresponding gateway node via the underlying structured overlay. The gateway

node which maintains its latest location then sends back the node id of the current

location of the queried trolley. The result is shown at the query initiator as an

informational bubble (see the one at the left top of the “Global Delivery Network”

map in Figure 6.3).

With this architecture, the tracking and tracing can be done with minimum

number of network calls. In the implementation, to further reduce the network

cost, we cache the IP address of customers so that in most cases the underlying

P2P routing cost is eliminated.

Inventory monitoring. The query processor offers facilities for developer to

Chapter 6. Implementation and Performance Study 180

implement various kinds of queries and register them into the system. To real-

ize quasi-real-time inventory monitoring, an InventoryQuery class (which is

subclass of RewritableQuery) and its processor

InventoryQueryProcessor are implemented. The former defines the query

parameters including the node to monitor and the refreshing interval. When the

query is issued to the query processor, an InventoryQueryProcessor in-

stance is initialized for query processing. Specifically, the

InventoryQueryProcessor periodically sends the InventoryQuery ob-

ject via OpenChord to the monitored node.

When the node icon is clicked, a context menu is popped up with the option

to start monitoring the node. The inventory is displayed near the node (e.g., the

number “50”, “100”) and refreshed at a certain interval.

Real-time Monitoring. The users can define various kinds of rules in PeerTrack

and get notified when an event of interest occurs. The rules for successful and

incorrect deliveries have been created with the rule editor (Figure 6.2 shows the

definition for the “Successful Delivery” rule). When the successful delivery rule

is triggered, i.e., a trolley is delivered to the correct destination, the “Real-time

Order/Object Status Monitoring” area in Figure 6.3 is updated with the latest

information. Meanwhile, the “Global Delivery Network” map is updated by

showing an icon at the destination of the delivery.

This is realized by the indexer and the rule engine. As part of the moving

path acquisition process, the indexer will be notified by the gateway node after

an object has arrived at another node. This notification, as an event, is also sent

to the event queue which is monitored by the rule engine. In the application, we

also implemented the “Internal Workflow Monitoring” sub-system that monitors

the internal movements of the trolleys.

Chapter 6. Implementation and Performance Study 181

6.4 Performance Study

We conducted experiments for the technologies proposed in Chapter 3 and Chap-

ter 4 using the implemented prototype system, and conduct experiments for the

PeerTrack Cloud proposed in Chapter 5 using a simulation tool. This section

presents the experimental results for them.

6.4.1 Performance Study on the P2P Architecture and MOODS

In this experiment, we want to verify that the P2P architecture built on the top

of MOODS is scalable and efficient. Due to the limit of resources that we have

and the requirement of large-scale network, we replaced the real DHT overlay

with a simulated Chord implementation in OverSim [BHK07]. In our tests, the

maximum number of nodes was 512 and the maximum number of objects at each

node was 5,000, corresponding to the limit of our experiment environment. All

experiments were conducted on an Intel Core 2 Quad 2.4GHz system with 4GB

of RAM.

6.4.1.1 Performance Study on Scalability

We compared it with a centralized solution which we have implemented according

to [WL05a]. The comparison was done on four queries which belong to different

categories that we summarized in Section 2.2.2. The dataset was generated at

random. First, we generated a certain number of objects at each node. Then

we kept the system running for 10,000 event cycles. During each event cycle,

a set of randomly chosen objects at each node were moved from one node to

another randomly chosen node to build the moving paths. Thus, the maximum

length of a moving path was 9,999 and the minimum one is 0. Finally, we ran

Chapter 6. Implementation and Performance Study 182

Query
Q1 Where has object oi been?
Q2 Where is object oi?
Q3 How many objects moved from node vi to node vj?
Q4 How many objects moved along the path v1 → v2 → ... → vk

during last month?
Table 6.2: Testing Queries for Scalability of PeerTack and MOODS

the various queries in the network from a randomly chosen node. The results

presented in this section are the average values of running the same query with

different parameters (i.e., different objects or nodes).

The concrete queries are listed in Table 6.2.

Firstly, we fixed the number of objects at each node as 5,000 to see how the

system scales against the size of the network. Figure 6.4 shows the results when

we test on networks of size 64, 128, 256 and 512. From the figure we can see that

the query processing time increases slowly for the P2P approach, but increases

sharply for the centralized one. Since the data at each node in different settings

(number of nodes in the network) is of the same amount, the local processing

time does not change. Then, the query time of Q1, Q2 and Q4 in P2P network

is proportional to the logarithm of the size of the network. For Q3 (Figure 6.4

(c)), the cost for Q3 almost stays constant for P2P approach. This is because

that there is no P2P lookup involved. However, the cost for centralized approach

increases with the number of nodes.

For the centralized approach, because all the data is stored in the same

database, when the size of the network increases, the amount of the data in

the central database increases too. The time for querying is relevant (ultra-linear

because of the join queries used) to the size of the database, which is proportional

to the size of the network when the number of objects generated at each node is

Chapter 6. Implementation and Performance Study 183

(a) (b)

(c) (d)

Figure 6.4: Scalability on Network Size

fixed.

We can also see that when there are less nodes, centralized approach outper-

forms P2P one. However, when the number of nodes and records in the network

reaches certain amount, which is typical in large scale RFID networks, it will run

more slowly than the P2P approach.

Secondly, we fixed the number of nodes in the network at 512, while ran the

same queries with number of objects at each node from 500 to 5000, at a step

of 500, to see how the system scales against the volume of data. Figure 6.5

shows the query processing time for different data volumes. Similar result was

obtained. The processing time for Q1, Q2 and Q4 increases much more slowly

in P2P approach than in centralized one. The processing time for Q3 in P2P

Chapter 6. Implementation and Performance Study 184

approach increases too (Figure 6.5 (c)). This is because the volume of data at

each node increases. The high scalability shown in the experimental results is

due to the distributed linked list in our design.

(a) (b)

(c) (d)

Figure 6.5: Scalability on Data Volume

From the experiments, we can conclude that the P2P architecture and the

MOODS data model can realize a highly scalable traceable network.

6.4.1.2 Performance Study on Bandwidth Efficiency

The process of building the index in a P2P fashion introduces a larger usage

on bandwidth. We proposed a group-based indexing algorithm in Section 3.3 to

save the bandwidth costs. In this experiment, we verify that this algorithm can

significantly reduce bandwidth usage.

Chapter 6. Implementation and Performance Study 185

Figure 6.6: Bandwidth Cost in Different Scenarios

In this experiment, we built the dataset as we did in Section 6.4.1.1, and

recorded the total size of packets sent from all the nodes in bytes. The number of

nodes was fixed at 512. We ran the test 10 times and for the ith (1 ≤ i ≤ 10) time,

the number of objects generated at each node is 500∗i. To simulate the movement

of objects, 10% of the local objects at each node were moved along a trace of 10

nodes. The process was run on three different settings: 1) indexing the objects

individually, 2) indexing the objects in groups, with objects moving individually,

and 3) indexing the objects in groups, with objects moving in groups. The result

is depicted in Figure 6.6.

From Figure 6.6 we can see that, when the data volume is not high (e.g.,

500), the group indexing algorithm does not show much of an advantage. This

Chapter 6. Implementation and Performance Study 186

is because that when the number of objects is small, most of the groups contain

only one or two objects. The number of groups is close to the number of the ob-

jects. Thus the group indexing algorithm costs almost the same as the individual

indexing algorithm. However, with increasing data volume, the indexing cost of

the group indexing algorithm increases much slower than the individual index-

ing algorithm, because data is grouped and compressed before sent to gateway

node. It is also clear that when the objects move in groups, the indexing cost

is further reduced. Even when there are fewer objects, the performance is much

better. This is because that when objects move in groups, it is highly possible

that most objects fall into the same window, so in that window, the number of

objects is high. In reality, particularly large-scale applications, there are much

more objects than nodes. Clearly, these applications can take advantage of the

benefits brought by our proposed group indexing approach.

6.4.1.3 Performance Study on Load Balancing

Load balancing is an other important requirement of P2P applications. In this

experiment, we verify that the carefully chosen parameter l (the length of group-

ing prefix) can guarantee that the workload is well balanced. In this experiment,

we studied the different schemes of l and tested their corresponding load bal-

ancing capabilities. Figure 6.7 shows the result for the three different schemes

(i.e., Scheme 1: l=log2 |V|, Scheme 2: l=log2 |V| + log2 log2 |V|, and Scheme 3:

l=2 log2 |V|). Scheme 2 is the one that we have chosen for our system (which is

also the scheme used in all other experiments). We studied Scheme 1 and Scheme

3 in this experiment as they are asymptotically smaller/bigger than Scheme 2,

respectively.

We illustrate the load balance by showing the load percentage (i.e., the num-

Chapter 6. Implementation and Performance Study 187

Figure 6.7: Load Balancing with Different Schemes

ber of objects handled by a given set of nodes divided by the total number of

objects) for a given node percentage (i.e., the number of nodes in the set divided

by the total number of nodes). A well balanced scheme should yield a linear

relationship between the load percentage and the node percentage (where y = x,

i.e., diagonal), meaning that each node receives the same number of objects to

index. The farther the curve is away from the diagonal, the worse it is.

As we can see from Figure 6.7, when Scheme 1 was chosen as the length of

prefix l, the load is not well balanced. The curve is far away from the diagonal

and shows some saltations. Scheme 3 performs best among the three because it is

very close to the diagonal, which implies that the load is well balanced. However,

Scheme 3 makes l too long and the number of groups becomes too big, leading to

Chapter 6. Implementation and Performance Study 188

less objects in each group. This significantly affects the indexing cost. Overall,

from our study, Scheme 2 provides a good choice for l, with which the work load

is also well balanced.

There is a tradeoff between indexing performance and load balancing. To

improve the former, l should be smaller, which leads to poor load balancing. To

improve the latter, l should be bigger to ensure that all nodes have groups to be

responsible for, which leads to a higher indexing cost. Scheme 2 shows acceptable

results on both indexing performance and load balancing. In reality, we can

choose different schemes for different scenarios. For example, if the performance

of an application is very important, Scheme 1 will be a good choice.

6.4.2 Performance Study on the TISH Model

In this section, we present the experimental results for the TISH model that we

proposed in Chapter 4. Since TISH is a model to capture the dynamicity of

object moving patterns, its accuracy is important to the applications those use

it as the foundation of further mining or assistance. So, the first experiment that

we ran is to verify its accuracy for various networks within which the objects

moving in different patterns. Also, in large-scale applications, the volume of data

is huge. We want to see whether TISH can scale well and does not cost enormous

bandwidth.

Experiments were conducted on a Core 2 Quad 2.40GHz machine with 4GB

RAM. We simulated a network with 1,000 nodes. This network is built with

the following characteristics: i) the network overlay is a connected unidirectional

graph; ii) there are no hot or cold spots in the network; and iii) the fanout of

the nodes follows normal distribution with a given average (see Figure 6.8) and

variance (0.01). The first characteristic guarantees that every node is involved in

Chapter 6. Implementation and Performance Study 189

the experiments, so there are no outliers. The last two help to keep the variance of

calculating averages low. The edges in the graph represents a business connection,

along which objects move.

All nodes in the network have V objects of their own at the beginning of the

experiments. Each connection is associated with a time-varying pattern from a

pre-defined pattern set (see Table 6.9)5. All the nodes send objects to neighbors

with the amount determined by the associated pattern. These patterns vary in the

volume of object flow for time t (i.e., g(t)) where V is a constant coefficient and

random() returns a number which is within (0, 1]. If there are less objects than

g(t), the node generates enough objects to make up for the objects. Parameters

a and b in the patterns are random numbers between 0 and 1 (inclusive), and are

chosen before the experiments and remain constant during the experiments.

For each epoch, a node randomly chooses half of its connections to send

objects. The connections with/without objects moving on inside an epoch are

called active connections/idle connections, respectively.

An RFID object generator has been implemented to generate RFID objects

for each pattern.The settings of the experiments are summarized in Table 6.8.

Parameter Default Value

Number of Nodes 1000
Fanout 10
Number of Slots 10
Value of V, c and ws 1000, 2, 10
Size of Sample (m) 50

Figure 6.8: Default Settings of Experiments for TISH

5It should be noted that “Random” is actually not a pattern, we use it to see how randomness
affects the performance and accuracy of our model.

Chapter 6. Implementation and Performance Study 190

Pattern Name Definition (g(t))

Constant a ∗V (a is chosen randomly)
Random V ∗ random()
Segmentary a ∗V, if 2 ∗ seg ≤ t < 2 ∗ seg + 1

b ∗V, if 2 ∗ seg + 1 ≤ t < (2 + 1) ∗ seg
seg is 100 Event Cycles
a, b are chosen randomly

Sinusoidal |V ∗ sin(t)|
Figure 6.9: Patterns in Experiments for TISH

6.4.2.1 Accuracy of TISH

Since the TISH model keeps more information on recent data, we expect that the

accuracy decreases for the distant data. However, the accuracy loss should not

be significant. The error for the TISH model in a given time frame is defined as

the difference between the real and the modeled distribution of objects’ source

nodes. To accurately represent this, we first calculated the average of δ (described

in Section 4.5.1) as δ̄ for all neighbors at each node. We then calculated the error

of the model as the average of δ̄ for all nodes in the system.

We ran the simulation using the default settings in Figure 6.8 for 1000 event

cycles. During each cycle (called an epoch), several objects were sent from one

node to another according to the pattern associated with this connection, if it is

active. The objects are randomly chosen from local objects, including the ones

initially assigned to a node and those sent to it by its neighbors. The experiments

were done for each pattern separately (i.e., all connections are associated with

the same pattern) and all patterns together (i.e., each connection is associated

with a randomly chosen pattern). In this experiment, after the 1000 event cycles

finished, we calculated the error ε, for each epoch.

The result is shown in Figure 6.10 and Figure 6.11. The time axis represents

Chapter 6. Implementation and Performance Study 191

Figure 6.10: Accuracy of the Model for Different Patterns

the epochs from the most recent (1st) to the most distant (1000th).

Figure 6.10 shows the error of the TISH model in experiments that only a

single pattern is chosen for all nodes in the network (“Random Pattern” is not

included, as “Random” is actually not a pattern at all). We note that the error

is very low. Although it increases for distant epochs, the increasing rate is not

high. In theory, “Constant Pattern” should not generate any error because the

distribution of objects are never changed. In practice, the sampling process and

idle epochs add randomness to the system. For “Sinusoidal Pattern”, although

the volume changes, the distribution does not. So the orders of B and B′ are

not changed. This explains why it shows almost exactly same results with the

“Constant Pattern”. “Segmentary Pattern” shows an periodic pattern where

Chapter 6. Implementation and Performance Study 192

Figure 6.11: Accuracy of the Model with Mixed and Random Pattern

every 100 epochs, the error increases. This is caused by the change of patterns

described in Figure 6.9. However, after the change finished, the error quickly

decreases to almost the same with “Constant Pattern” again.

The impact of randomness on the accuracy of the TISH model is important.

We ran the simulation with “Random Pattern” (all connections are associated

with “Random Pattern”), reusing the settings in the experiments without “Ran-

dom Pattern”. We also ran the simulations for the scenarios of “Mixed” (each

node randomly picked a pattern from Figure 6.9 individually) and “Mixed With-

out Random” (each node randomly picked a pattern from Figure 6.9 without

“Random Pattern”). For “Mixed” or “Mixed Without Random”, connections

are associated with different patterns. Figure 6.11 adds results for “Random

Chapter 6. Implementation and Performance Study 193

Pattern”, “Mixed Without Random” and “Mixed”. The “Mixed Without Ran-

dom” experiment shows that even when the nodes in the network choose different

patterns for different connections, the TISH model is still able to describe them

accurately. Compared to the “Constant Pattern”, the extra error for the “Mixed

Without Random” experiment is caused by the mixing “Segmentary Pattern” and

“Sinusoidal Pattern”. Since the change in “Sinusoidal Pattern” is continuous, at

some point (when sin(t) = a or sin(t) = b), the order of B is changed.

“Random Pattern” generates a high error because it is not a pattern and is

unpredictable. Mixing it with other patterns also increases the average error.

6.4.2.2 The Cost of Model Maintenance

The main performance bottleneck in our model is caused by the procedure of

querying neighbors for new incoming objects. It is also possible that when the

new patterns are being established, more network calls are used due to the use of

the underlying P2P overlay. However, as discussed in Section 4.4, our model is

sensitive to these kind of network changes and adapts quickly with the changes.

In this experiment, we verified this rapid dynamic adaptation of the model

by counting the number of network calls at different time points. The system

setting is the same as the “Mixed without Random” one. Figure 6.12 shows the

result. We can see that during the time of system bootstrap, the network traffic

is higher. This is because at that time there was no history information and all

the objects were found by P2P calls. However, after the TISH model has been

established, only a few network calls are used and the number of network calls

stays stable.

Another interesting performance evaluation is to investigate how many net-

work calls are used per query for the model maintenance, and the type of distri-

Chapter 6. Implementation and Performance Study 194

 0

 50000

 100000

 150000

 200000

 0 200 400 600 800 1000

n
u
m

b
er

 o
f

n
et

w
o
rk

 c
al

ls

epoch

Total Network Calls vs. Time

Figure 6.12: Number of Network Calls vs. Time

Figure 6.13: Distribution of Number of Network Calls for Model Maintenance

bution we obtain. We illustrate the result in Figure 6.13, by using a histogram.

We note that the majority of the queries use less than 10 (the average number

of fan-out) network calls in order to maintain the TISH model. According to the

analysis in Section 4.5, we expect that the average number of network calls for

model maintenance is close to the effective fan-outs, which is the average number

Chapter 6. Implementation and Performance Study 195

of active (non-idle) connections for all the nodes (5 in our experiments). The

average number of network calls in this experiment is 5.11, which is close to what

we expect.

6.4.3 Performance Study on the PeerTrack Cloud

The PeerTrack Cloud architecture aims at reducing the query processing time so

that it can be used in time-constrained environments. In this section, we verify

that the query time is significantly shorter than that in either the EPCglobal

Architecture Framework or the P2P architecture. We conducted the experiments

on the CloudSim simulation platform [CRB10]. In this section, we present the

results of these experiments.

The queries that we used in these experiments are the same as the ones used

in Section 6.4.1, Table 6.2. We simulated a network with 512 locations (nodes)

and each node generated a certain number of objects at the beginning of the

tests. The number of generated objects increases from 500 to 5,000, at the step

of 500. Then we ran the system for 10,000 event cycles to build the object moving

datasets6. Finally, we ran the queries and recorded the average response time.

The settings for the P2P and centralized solution are almost the same as the

ones in Section 6.4.17, except that in this experiments, we randomly assigned

a coordination to each location and assumed that the time of remote access

between two locations is proportional to the distance between them. For the

PeerTrack Cloud simulations, since the number of copies has serious influence

on the performance, we ran the experiments with different configurations on this

parameter. The number of data centers used in the simulation was 16, and they

6This process is the same as the one in Section 6.4.1
7The Discovery Service is implemented by a single database.

Chapter 6. Implementation and Performance Study 196

(a) (b)

(c) (d)

Figure 6.14: Query Processing Performance of PeerTrack Cloud

were distributed evenly around the globe.

The results of the experiments are shown in Figure 6.14. It illustrates two

important characteristics of PeerTrack Cloud compared with the other two ar-

chitectures.

Firstly, the response time for PeerTrack Cloud is barely influenced by the

volume of data. This is explained by our analysis in Section 5.4. Since the object’s

location information is stored in the PT-LBS2, where the data is replicated at

several data centers near those locations where the data is related to, the required

number of remote access is mostly two. On the contrary, for the track and

movement-based statistical queries (Q2 and Q3, respectively) in P2P architecture,

we have to redirect the query to the related node, and for trace and path-based

Chapter 6. Implementation and Performance Study 197

statistical queries (Q1 and Q4, respectively), the response time is proportional

to the length of the moving path. Thus, averagely, it stays the same. For the

centralized solution, the response time is affected by how the database responds

to the queries. The track queries can be answered by a select operation, which

in most cases is fast. However, the other three queries all require join operation

which needs much more time to execute. As a result, we can see from the figure

that for non-track queries, the response time in centralized solution rises quickly.

Secondly, the number of copies affects the performance of PeerTrack Cloud.

It is clear that the more copies, the quicker it answers traceability queries. From

Section 5.4, we know that the response time in PeerTrack Cloud is tPT−T2S + t̄DC

or tPT−T2S + min(tDC), respectively for tracking/tracing and statistical queries.

The more copies, the closer a request is to a data center with the data, averagely.

We can see that when there are 8 copies, the response time is very short and it

stays almost the same, while when there are only 2 copies, it is longer. However,

we cannot make unlimited number of copies, because of the hardware and band-

width costs. This experiment suggests that if the application requires real-time

access to the traceability data, more copies should be made. Otherwise, it is not

necessary.

6.5 Summary

In this chapter, we have presented the implementation of our proposed PeerTrack

Platform. To validate the feasibility and benefits of our proposed approaches, we

developed an asset management system on the top of the platform and conducted

an extensive set of performance studies. The findings can be summarized as

follows. Firstly, the developed application illustrates that our system can provide

not only interfaces for query processing, but also interfaces for rule-based event

Chapter 6. Implementation and Performance Study 198

processing in traceable RFID networks. Secondly, the extensive experiments

reveal that the distributed architecture and MOODS model is more scalable and

outperforms the centralized approach when the size of network or the volume

of data is large. Thirdly, the TISH model can accurately represent the object

moving patterns and quickly adapt to the changes of these patterns. Finally,

the PeerTrack Cloud system is able to provide quick response in a time-critical

environment.

Chapter 6. Implementation and Performance Study 199

Chapter 7

Conclusions

In this chapter, we summarize the contributions of this dissertation and discuss

future research directions for enabling traceability in large-scale RFID networks.

7.1 Summary

In the recent years, RFID is emerging as a promising technology to enable auto-

matic tracking and tracing in large, global business networks [CKR04a, SLZ08b,

WRS11]. However, with growth in the deployment of RFID technology, new

problems and challenges have been posed to application developers and service

providers to support traceability with RFID in large-scale traceable networks.

Adequate solutions to the new problems will be very important for realizing

traceability in a scalable, flexible and affordable way.

In this dissertation, we have proposed a generic P2P architecture and dis-

tributed data models for large traceable RFID networks. We also proposed a

cloud-based architecture which is built on the top of the distributed data mod-

els to provide real-time response to traceability queries. We implemented our

approaches in the PeerTrack platform and developed a real-world applications

based on it. In particular, we summarize our main research contributions in the

following:

Chapter 7. Conclusions 201

• Scalable, Privacy-Aware and Efficient P2P Architecture and Trace-

ability Model: We proposed a generic P2P traceable network architecture

where the partners in the system do not have to share their data in a central-

ized database, or in any other open ways. Instead, the partners can choose

which portion of their data to share, and to whom. This is very important

for business with confidential information. On the other hand, in order to

enable item-level traceability, the data much be shared in some way. Our

architecture features the fully-anonymous indexing that distributes the in-

dex into the whole network, so that nobody can access all the data from

any partner. This architecture is built on the top of a distributed trace-

ability model, namely MOODS. MOODS is essentially a distributed linked

list, where the nodes in the same moving path is connected by the source

and destination attributes. We proposed the algorithms to maintain these

information so that this model can be used to answer item-level tracking

and tracing queries, as well as statistical queries. These algorithms are care-

fully designed so that the workload among all the nodes are well balanced,

meanwhile the bandwidth usage is optimized.

• Mining Model for Object Moving Patterns: RFID streams have im-

plicit information about the patterns of objects’ movements. Discovering

these patterns and capturing their changes quickly can help the business

managers to make more rational decisions. We proposed a distributed min-

ing model, namely TISH, which is a combination of two important mining

tools, namely Titled Time Frame and Histogram. This model is able to

maintain the history of moving patterns between nodes for a long time

with small memory footprint. We also proposed the distributed algorithms

to maintain the titled time frame of histograms on the top of the P2P ar-

Chapter 7. Conclusions 202

chitecture. The input is firstly sampled to save the bandwidth cost for the

maintenance. And we make use of the recent information about the pat-

terns to guide the rewriting of queries to further reduce bandwidth costs.

This model can be used in various mining tasks.

• Cloud-based Infrastructure to Enable Real-time Query Response:

Some applications requires the query to be processed in a timely manner.

In P2P architectures, this is hard to achieve due to the fact that P2P access

often requires several intermediate hops in the network. Cloud computing

systems replicate the data to several locations so that it can lead a request to

the nearest data center that can answer it. It provides much faster response

that other architectures such as P2P or centralized solutions. However,

existing cloud computing architectures are too generic to take the advantage

of the characteristics of RFID data, which is location-based. We proposed

a new cloud infrastructure which is designed specifically for traceable RFID

network. This infrastructure features several loose-coupled modules which

can be provided to the users separately. Its location-based storage service is

designed to partition and replicate the traceability data according to their

location information. In this way, information about a location is stored

close to it, so that the queries can be answered efficiently.

• Implementation and Performance Study: We implemented these tech-

niques inside the PeerTrack Platform. We adopted a number of state-of-

the-art technologies for the implementation. Our implementation has led

to a comprehensive platform for enabling traceability in large-scale net-

works. We proved this by a real-world application that has been developed

and deployed at a local company. We studied the performance of the pro-

posed techniques with extensive experiments, including those for scalability,

Chapter 7. Conclusions 203

workload balancing, bandwidth usage and response time.

7.2 Future Directions

There are still some research issues need to be addressed, according to our

overview of the state-of-the-art development of traceability applications in Chap-

ter 2. This dissertation focuses on providing a privacy-aware, scalable and effi-

cient system, meanwhile the other important issues are left for future work. In

particular, we identify the following directions for future research: uncertainty

management, realizing the Internet of Things and complex event processing.

• Uncertainty Management: While RFID provides promising benefits in

many applications, there remains significant challenges to be overcome be-

fore these benefits are realized. Central to these challenges is the uncer-

tainty of the data collected by the underlying RFID networks. Although

current RFID reader accuracy is improving, erroneous readings still oc-

cur in RFID systems such as duplicated reads, missed and incorrect reads

due to interference or malfunction of RFID components. Raw RFID data

are therefore typically incomplete, imprecise, and even misleading [JFG08].

When such data streams are used directly in monitoring and tracking ap-

plications (e.g., product recall), the quality of the applications is often a

significant concern. Development of techniques for effectively managing un-

certainty in RFID traceability networks gains further significance in that it

offers the opportunity to ensure high-quality of many other innovative and

high payoff applications. In particular, we want to design a system that

can transform the uncertain information to probabilistic data with a cer-

tain confidential margin. Also, a database management system should be

Chapter 7. Conclusions 204

designed to store this kind of information and provide fast access methods

for them.

• Realizing Internet of Things: Internet of Things (IoT) is a global net-

work where everyday objects such as buildings, sidewalks, and commodities

are identifiable, readable, addressable, and even controllable via the Inter-

net [KS10]. Such a ubiquitous network offers the capability of integrating

the information from both the physical world and the virtual one, which

not only affects the way how we live, but also creates tremendous business

opportunities such as efficient supply chains, independent living of elderly

persons, and improved environmental monitoring. Traceability is one of

IoT’s key features. However, there are still some other challenges. For

example, RFID can only be used to trace objects’ locations at certain ob-

servation points. In order to realize full-time ubiquitous monitoring, other

technologies such as GPS, sensors must be seamlessly integrated into the

system.

• Complex Event Processing: As we discussed in Chapter 2, there are

some events that we cannot process at this moment. In particular, with-

out the help of specially designed hardware, it is impossible to capture the

containment relationship and the change of that relationship. For example,

at a distribution center, goods from different containers may be re-packed

into one container. Regular hardware can only capture the goods them-

selves, but not the change of containment relationship. This brings some

troubles in business management. It is impossible to tell whether a product

is going to be delivered to a wrong place until it arrives. Capturing these

kinds of complex events and processing them efficiently is a difficult task

and extensive research is needed [FJK05, JAF06].

Chapter 7. Conclusions 205

Appendix A

Curriculum Vitae

Personal Information

Name: Yanbo Wu

Tel: +61 8 8313 4728

Email: yanbo.wu@adelaide.edu.au

Home Page: http://www.cs.adelaide.edu.au/∼yanbo

Research Interests

RFID and Sensor Networks, Internet of Things, Distributed and Parallel Databases,

Data Mining, World Wide Web, Social Networks

Highlights

1. Published refereed technical papers in: i) top journals including Distributed

and Parallel Databases, Computer Journal, Data and Knowledge Engineer-

ing; and ii) international conferences such as ICPP’11, AINA’10.

2. Participated actively in academic activities: i) organized IWRT’11, acted

as program committee for APWeb’12, and ii) served as an external reviewer

Chapter A. Curriculum Vitae 207

for many journals and conferences.

3. Interned at IBM Almaden Research Center, 2010-2011. Worked on text

search and helped to improve the performance by 90%.

4. Awarded Google Top-up Grant, 2011. IBM Travel Award for ICSOC, 2008

5. Won the championship of TopCoder Open 2009.

6. Advanced programming experience in Java, Ruby and Object-C.

Awards, Honors, Fellowships

Oct 2011 Google Top-up Grant

May 2009 TopCoder Open 2009 Component Development Champion

Mar 2009 TopCoder “Coder of the Month”

Jun 2006 AFSI Scholarship of The University of Adelaide

Jun 2006 ARC Grant-funded Scholarship

2004 Tsinghua Friends - Zhifu Chen Scholarship

2003 Tsinghua Friends - Geru Zheng Scholarship

Chapter A. Curriculum Vitae 208

Education

2008-2011 Ph.D. in Computer Science

School of Computer Science

The University of Adelaide. Adelaide, Australia

Dissertation: Enabling Traceability in Large-Scale RFID Networks

Supervisor: Dr. Quan Z. Sheng

2001-2005 B.E. in Computer Science

Tsinghua University (THU). Beijing, China

1998-2001 High School Diploma

No. 6 High School. Laizhou, China

Final rank as top 1

Top 3 in the entrance test for college in Shandong Province

Chapter A. Curriculum Vitae 209

Research Experience

Jun 2008-present PhD Student at The University of Adelaide

Work on enabling traceability in traceable RFID networks. I

designed and implemented the PeerTrack Platform. This work

was published in several conference papers including ICPP’11,

AINA’10, WAMIS’11, together with journal papers including Dis-

tributed and Parallel Databases, Data and Knowledge Engineering

and Computer Journal.

Aug 2010-Feb 2011 Research intern at IBM Almaden Research Center (ARC)

Worked on text search performance.

Jun 2005-Oct 2005 Research associate at City University of Hong Kong

Participated in the research of Anti-Phishing. Developed

the commercial software “Reasonable Antiphishing” (http://

reasonables.com/antiphishing.aspx).

May 2003-Oct 2003 Research intern at IBM China Research Lab (CRL)

Work on natural language processing algorithms.

Chapter A. Curriculum Vitae 210

Industrial Experience

Nov 2006-Feb 2008 Component Manager at TopCoder Inc.

I managed the competitions at TopCoder Inc and maintained the

Online Review system at http://www.topcoder.com/tc.

Nov 2005-Oct 2006 Freelancer at TopCoder Inc.

Competed for TopCoder projects and won 15 projects with average

score of 93 and 55.56% winning rate. Projects included J2EE

systems for Fortune 500 companies and TopCoder UML Tool (Java

Swing).

May 2005-Feb 2006 Software Developer at Roxbeam Inc.

Developed a P2P Video-on-Demand system.

Chapter A. Curriculum Vitae 211

Publications

Refereed journal and conference publications

1. “Facilitating Efficient Object Tracking in Large Scale Networks”. Yanbo Wu,

Quan Z. Sheng and Damith Ranasinghe. Computer Journal, 2011 (to appear)

2. “A Semantically Enhanced Service Repository for User-Centric Service Discov-

ery and Management”. Jian Yu, Quan Z. Sheng, Jun Han, and Yanbo Wu. Data

and Knowledge Engineering, 2011 (to appear)

3. “RFID Enabled Traceability Networks: A Survey”. Yanbo Wu, Damith Ranas-

inghe, Quan Z. Sheng, Sherali Zeadally and Jian Yu. Distributed and Parallel

Databases. Vol 29, No 5-6, pp 397-443. 2011

4. “Peer-to-Peer Objects Tracking in the Internet of Things”. Yanbo Wu, Quan Z.

Sheng and Damith Ranasinghe. Proceedings of the International Conference on

Parallel Processing (ICPP’11). Taipei, Taiwan. September 12-17, 2011

5. “Tracing Moving Objects in Internet-based RFID Networks”. Yanbo Wu, Quan

Z. Sheng and Damith Ranasinghe. Proceedings of the International Symposium

on Web and Mobile Information Systems (WAMIS’11). Singapore, Singapore.

March 22-25, 2011

6. “Enabling Scalable RFID Traceability Networks”. Quan Z. Sheng, Yanbo Wu

and Damith Ranasinghe. Proceedings of the International Conference on Ad-

vanced Information Networking and Applications (AINA’10). Perth, Australia.

Chapter A. Curriculum Vitae 212

April 20-23, 2010

7. “Realizing the Internet of Things in Service-Centric Environments”. Yanbo Wu.

Proceedings of the International Conference on Service Oriented Computing (IC-

SOC’08). Sydney, Australia. December, 2008

Papers submitted/in preparation

8. “Modeling Object Flows from Distributed and Sovereign RFID Data Streams

for Efficient Tracking and Tracing”. Yanbo Wu, Quan Z. Sheng, Hong Shen

and Sherali Zeadally. IEEE Transactions on Parallel and Distributed Systems.

(submitted)

9. “Discovering Object Moving Patterns in the Internet of Things”. Yanbo Wu and

Quan Z. Sheng. International Conference on Advanced Information Systems

Engineering (CAiSE’12). (submitted)

10. “Modeling Sovereign RFID Data Streams in Collaborative Traceable Networks”.

Yanbo Wu and Quan Z. Sheng. International Conference on Extending Database

Technology (EDBT’12). (submitted)

11. “PeerTrack: A Platform for Tracking and Tracing Objects in Large-Scale Trace-

ability Networks”. Yanbo Wu, Quan Z. Sheng and Damith Ranasinghe. Interna-

tional Conference on Extending Database Technology (EDBT’12). (submitted)

Formal Presentations

1. Conference talk at ICPP’11, “Peer-to-Peer Objects Tracking in the Internet of

Things”, 14 September 2011, Taipei, Taiwan

Chapter A. Curriculum Vitae 213

2. Conference talk at AINA’10, “Enabling Scalable RFID Traceability Networks”,

20 April 2010, Perth, Australia

3. Conference talk at ICSOC’08, “Realizing the Internet of Things in Service-

Centric Environments”, 1 December 2008, Sydney, Australia

Professional Services

1. Program Committee Member, The 14th Asia-Pacific Web Conference (APWeb’12),

Kunming, China, April 11-13, 2012

2. Program Chair, International Workshop on RFID Technology - Concepts, Appli-

cations, and Challenges (IWRT’11), Niagara Falls, Ontario, Canada, September

19-21, 2011

3. Publicity Co-Chair, International Workshop on RFID Technology - Concepts,

Applications, and Challenges (IWRT’09), Milan, Italy, 6-7 May, 2009

4. External reviewer for journals like Information System Frontiers, Computer Com-

munications Journal, International Journal of Computational Sciences, IEEE

Communications Letters.

Chapter A. Curriculum Vitae 214

Teaching Experience

2009 Tutor for C++ Programming for Engineers

2008-2009 Tutor for Introduction to Software Engineering

2005 Tutor for Java Programming Language

2009 Honours thesis supervision

Xin Tang (Bachelor of Software Engineering)

Thesis: Implementation of a Peer-based RFID Event Processing Framework

2009 Honours thesis supervision

Yvonne Teo (Bachelor of Software Engineering)

Thesis: Intelligent Returnable Asset Management System

2008 Summer school project supervision

Xin Tang

Thesis: TnT : A Query Language for Tracing and Tracking Movable Objects

2009 Summer school project supervision

Yuguo Li (Bachelor of Software Engineering)

Thesis: PeerTrack Platform Evaluation

Skills

1. Proficient in RFID, Database Management Systems (DBMS).

Chapter A. Curriculum Vitae 215

2. Familiar with UML and model driven approach.

3. Languages: proficient in JAVA, Ruby, Object-C, C#; familiar with C/C++,

HTML, Javascript.

4. Databases: MySQL, Informix, Oracle, Drizzle.

5. Operating systems: Linux, Windows, Mac OSX.

Bibliography

[ABS06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,
Shubha Nabar, Tomoe Sugihara, and Jennifer Widom. “Trio: a
System for Data, Uncertainty, and Lineage.” In Proceedings of the
32nd International Conference on Very Large Data Bases (VLDB’06),
Seoul, Korea, 2006.

[ACK06a] Rakesh Agrawal, Alvin Cheung, Karin Kailing, and Stefan
Schonauer. “Towards Traceability across Sovereign, Distributed
RFID Databases.” In Proceedings of the 10th International Database
Engineering and Applications Symposium (IDEAS’06), Delhi, India,
2006.

[ACK06b] Rakesh Agrawal, Alvin Cheung, Karin Kailing, and Stefan
Schönauer. “Towards Traceability Across Sovereign, Distributed
RFID Databases.” In Proceedings of the 10th Intl. Database Engineer-
ing and Applications Symposium (IDEAS’06), Delhi, India, December
2006.

[AF05] Manfred Aigner and Martin Feldhofer. “Secure Symmetric Authenti-
cation for RFID Tags.” In Proceedings of the Telecommunication and
Mobile Computing (TCMC’05), Graz, Austria, 2005.

[AFG09] Michael Armbrust, Armando Fox, Rean Griffit, Anthony D. Joseph,
Randy H. Kat, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. “Above the Clouds: A
Berkeley View of Cloud Computing.” Technical report, Electrical En-
gineering and Computer Sciences, University of California at Berkeley,
February 2009.

[AFG10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. “A view of cloud computing.”
Communications of ACM, 53:50–58, April 2010.

[AGG] Keith Alexander, Tig Gilliam, Kathy Gramling, and Chris
Grubelic. “Applying Auto-ID to Reduce Losses Associated with
Shrink.” http://www.autoidlabs.org/uploads/media/
IBM-AUTOID-BC-003.pdf.

[AGP00] Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. “Con-
gressional Samples for Approximate Answering of Group-by Queries.”

BIBLIOGRAPHY 217

In Proceedings of the 2000 ACM International Conference on Man-
agement Of Data (SIGMOD’00), Dallas, Texas, USA, 2000.

[AH11] Leonardo Albernaz Amaral and Fabiano Hessel. “Cooperative CEP-
based RFID Framework: A Notification Approach for Sharing Com-
plex Business Events Among Organizations.” In Proceedings of the
5th IEEE International Conference on RFID (RFID’11), Orlando,
Florida, April 2011.

[AKS02] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong
Xu. “Hippocratic Databases.” In Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases (VLDB’02), 2002.

[Ang05] Rebecca Angeles. “RFID Technologies: Supply-Chain Applications
and Implementation Issues.” Information Systems Management,
22(1):51–65, December 2005.

[BBD02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. “Models and Issues in Data Stream Systems.” In
Proceedings of the 21th ACM Symposium on Principles of Database
Systems (PODS’02), Madison, Wisconsin, 2002.

[BCD03] Brian Babcock, Surajit Chaudhuri, and Gautam Das. “Dynamic
Sample Selection for Approximate Query Processing.” In Proceed-
ings of the 2003 ACM International Conference on Management Of
Data (SIGMOD’03), San Diego, California, 2003.

[BCD11] Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay
Kalhan, Gopal Kakivaya, David B. Lomet, Ramesh Manne, Lev
Novik, and Tomas Talius. “Adapting Microsoft SQL Server for Cloud
Computing.” In Proceedings of the 27th International Conference on
Data Engineering (ICDE 2011), Hannover, Germany, April 2011.

[BHK07] I. Baumgart, B. Heep, and S. Krause. “OverSim: A Flexible Overlay
Network Simulation Framework.” In Proceedings of the 10th Global
Internet Symposium (GI 2007), Anchorage, USA, 2007.

[BJ01] John D. Kubiatowicz Ben Y. Zhao and Anthony D. Joseph.
“Tapestry: An Infrastructure for Fault-tolerant Wide-area Location
and Routing.” Technical report, Berkeley, CA, USA, 2001.

[BKK03] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and I. Stoica.
“Looking up Data in P2P Systems.” Communications of the ACM,
46(2):43–48, 2003.

BIBLIOGRAPHY 218

[BMN08] V. Botea, D. Mallett, M. A. Nascimento, and J. Sander. “PIST:
An Efficient and Practical Indexing Technique for Historical Spatio-
Temporal Point Data.” Geoinformatica, 12(2):143–168, 2008.

[BO05] L. M. Buckley and C. W. Olson. “High Tech, High Stakes: Using
Technology to Smash the Fake Trade.” IPWorld, pp. 30–33, May
2005.

[CAA01] H. Chon, D. Agrawal, and A. Abbadi. “Storage and Retrieval of
Moving Objects.” In Proceedings of MDM’01, pp. 173–184, Hong
Kong, China, 2001. Springer-Verlag, London, UK.

[CCG11] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin
Ooi, Hoang Tam Vo, Sai Wu, and Quanqing Xu. “ES2: A Cloud
Data Storage System for Supporting Both OLTP and OLAP.” In
Proceedings of the 27th International Conference on Data Engineering
(ICDE 2011), Hannover, Germany, April 2011.

[CE11] Craig R. Carter and P. Liane Easton. “Sustainable Supply Chain
Management: Evolution and Future Directions.” International Jour-
nal of Physical Distribution and Logistics Management, 41(1):46–62,
1 2011.

[CGP10] José J. Cantero, Miguel A. Guijarro, Antonio Plaza, Guillermo Ar-
rebola, and Janie Baños. “A Design for Secure Discovery Services
in the EPCglobal Architecture.” In Unique Radio Innovation for the
21st Century: Building Scalable and Global RFID Networks. Springer,
2010.

[Cho11] Tsan-Ming Choi. “Coordination and Risk Analysis of VMI Supply
Chains With RFID Technology.” Industrial Informatics, IEEE Trans-
actions on, 7(3):497–504, 8 2011.

[CJLar] Hanhua Chen, Hai Jin, Xucheng Luo, Yunhao Liu, Tao Gu, Kaiji
Chen, and Lionel Ni. “BloomCast: Efficient and Effective Full-Text
Retrieval in Unstructured P2P Networks.” IEEE Transactions on
Parallel and Distributed Systems, 2011 (to appear).

[CKR04a] Sudarshan S. Chawathe, Venkat Krishnamurthy, Sridhar Ramachan-
dran, and Sanjay Sarma. “Managing RFID Data.” In Proceed-
ings of the 30th International Conference on Very Large Data Bases
(VLDB’04), Toronto, Canada, September 2004.

BIBLIOGRAPHY 219

[CKR04b] Sudarshan S. Chawathe, Venkat Krishnamurthy, Sridhar Ramachan-
dran, and Sanjay Sarma. “Managing RFID Data.” In Proceed-
ings of the 30th International Conference on Very Large Data Bases
(VLDB’04), Toronto, Canada, September 2004.

[CKS07a] Alvin Cheung, Karin Kailing, and Stefan Schönauer. “Theseos: A
Query Engine for Traceability Across Sovereign, Distributed RFID
Databases.” In Proceedings of the 23rd International Conference on
Data Engineering (ICDE’07), Istanbul, Turkey, 2007.

[CKS07b] Alvin Cheung, Karin Kailing, and Stefan Schönauer. “Theseos: A
Query Engine for Traceability Across Sovereign, Distributed RFID
Databases.” In Proceedings of the 23rd International Conference on
Data Engineering (ICDE’07), Istanbul, Turkey, 2007.

[Coc07] Richard Cocci. “SPIRE: Scalable Processing of RFID Event
Streams.” In Proceedings of the 5th RFID Academic Convocation,
Brussels, Belgium, 2007.

[CRB10] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov1, Csar A.
F. De Rose, and Rajkumar Buyya. “OverSim: A Flexible Overlay
Network Simulation Framework.” Software: Practice and Experience,
41(1):2350, 2010.

[CSD11] Zhao Cao, Charles Sutton, Yanlei Diao, and Prashant Shenoy. “Dis-
tributed Inference and Query Processing for RFID Tracking and Mon-
itoring.” VLDB Endowment, 4, February 2011.

[CSP05] Reynold Cheng, Sarvjeet Singh, and Sunil Prabhakar. “U-DBMS: a
Database System for Managing Constantly-evolving Data.” In Pro-
ceedings of the 31st International Conference on Very Large Data
Bases (VLDB’05), 2005.

[CTD08] Richard Cocci, Thanh Tran, Yanlei Diao, and Prashant Shenoy. “Ef-
ficient Data Interpretation and Compression over RFID Streams.” In
Proceedings of the 24th International Conference on Data Engineering
(ICDE’08), Cancun, Mexico, 2008.

[DIA] DIALOG. “Distributed Information Architectures for cOllaborative
loGistics.” http://dialog.hut.fi/.

[Dim05] Tassos Dimitriou. “A Lightweight RFID Protocol to Protect against
Traceability and Cloning Attacks.” In Proceedings of the 1st In-
ternational Conference on Security and Privacy for Emerging Areas

BIBLIOGRAPHY 220

in Communications Networks (SECURECOMM’05), Athens, Greece,
2005.

[DMS07] Thomas Diekmann, Adam Melski, and Matthias Schumann. “Data-
on-Network vs. Data-on-Tag: Managing Data in Complex RFID En-
vironments.” In Annual Hawaii International Conference on System
Sciences (HICSS 2007), Honolulu, Hawaii, Jan. 2007.

[DOL07] R. Derakhshan, M.E. Orlowska, and Xue Li. “RFID Data Man-
agement: Challenges and Opportunities.” In Proceedings of the 1st
IEEE International Conference on RFID (RFID’07), Vienna, Aus-
tria, march 2007.

[DRT01] Nicole DeHoratius, Ananth Raman, and Zeynep Ton. “Execution:
The Missing Link in Retail Operations.” California Management Re-
view, 43(3):136–151, April 2001.

[EGS98] Martin Erwig, Ralf Hartmut Güting, Markus Schneider, and Michalis
Vazirgiannis. “Abstract and Discrete Modeling of Spatio-Temporal
Data Types.” In Proceedings of GIS’98, pp. 131–136, Washington,
D.C., United States, 1998. ACM, New York USA.

[EPC] EPCGLOBAL. “EPCGLOBAL.” http://www.EPCGLOBAL.com.

[EV95] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides.
Design Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[FDA] FDA. “Combating Counterfeit Drugs, A Report of the Food and Drug
Administration.” http://www.fda.gov/oc/initiatives/
counterfeit/report02_04.html.

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer.
“Strong Authentication for RFID Systems Using the AES Algorithm.”
In Proceedings of the 6th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES’04), Cambridge, USA, 2004.

[Fin03] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applications
in Contactless Smart Cards and Identification. John Wiley & Sons,
Inc, 2003.

[FJK05] Michael J. Franklin, Shawn R. Jeffery, Sailesh Krishnamurthy, Fred-
erick Reiss, Shariq Rizvi, Eugene Wu, Owen Cooper, Anil Edakkunni,
and Wei Hong. “Design Considerations for High Fan-in Systems: The

BIBLIOGRAPHY 221

HiFi Approach.” In Proceedings of the Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), Asilomar, CA, USA,
January 2005.

[FN09] Kary Främling and Jan Nyman. “From Tracking with RFID to In-
telligent Products.” In Proceedings of 14th IEEE International Con-
ference on Emerging Technologies and Factory Automation, Palma de
Mallorca, Spain, 2009.

[GCL08] Y. Gao, G. Chen, Q. Li, B. Zheng, and C. Li. “Processing Mutual
Nearest Neighbor Queries for Moving Object Trajectories.” In Pro-
ceedings of MDM’08, pp. 2176–2195, Beijing, China, 2008. Elsevier
Science Inc., New York, USA.

[GHC10] Hector Gonzalez, Jiawei Han, Hong Cheng, Xiaolei Li, Diego Klabjan,
and Tianyi Wu. “Modeling Massive RFID Data Sets: A Gateway-
Based Movement Graph Approach.” IEEE Transactions on Knowl-
edge and Data Engineering, 22:90–104, 2010.

[GHL06a] Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego Klabjan. “Ware-
housing and Analyzing Massive RFID Data Sets.” In Proceedings of
the 22nd International Conference on Data Engineering (ICDE’06),
Atlanta, USA, 2006.

[GHL06b] Hector Gonzalez, Jiawei Han, Xiaolei Li, and Diego Klabjan. “Ware-
housing and Analyzing Massive RFID Data Sets.” In Proceedings of
the 22nd International Conference on Data Engineering (ICDE’06),
Atlanta, Georgia, USA, April 2006.

[GHP03] Chris Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and Philip S. Yu.
Next Generation Data Mining. AAAI/MIT, 2003.

[Gov] California Government. “California Business and Professions Code
Sections 4163.” http://www.leginfo.ca.gov/calaw.html.

[GS1] GS1. “GS1 Traceability.” http://www.gs1.org/
productssolutions/traceability.

[GWT09] Tao Gu, Zhanqing Wu, Xianping Tao, Hung Keng Pung, and Jian Lu.
“epSICAR: An Emerging Patterns Based Approach to Sequential, In-
terleaved and Concurrent Activity Recognition.” In IEEE Interna-
tional Conference on Pervasive Computing and Communications, Los
Alamitos, CA, USA, 2009.

BIBLIOGRAPHY 222

[GYG09] Yu Gu, Ge Yu, Na Guo, and Yueguo Chen. “Probabilistic Moving
Range Query over RFID Spatio-temporal Data Streams.” In Pro-
ceeding of the 18th ACM conference on Information and Knowledge
Management (CIKM’09), Hong Kong, China, 2009.

[HFS08] T. Huynh, M. Fritz, and B. Schiele. “Discovery of Activity Patterns
Using Topic Models.” In Proceedings of the 10th International Con-
ference on Ubiquitous Computing (Ubicomp ’08), Seoul, South Korea,
2008.

[HHL03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo,
Scott Shenker, and Ion Stoica. “Querying the internet with PIER.”
In Proceedings of VLDB’03, pp. 321–332. VLDB Endowment, 2003.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques. Elsevier, 2006.

[HRZ08] K. Hose, A. Roth, A. Zeitz, K. Sattler, and F. Naumann. “A Research
Agenda for Query Processing in Large-Scale Peer Data Management
Systems.” Information Systems, 33(7-8):597–610, 2008.

[HSC05] Ying Hu, Seema Sundara, Timothy Chorma, and Jagannathan Srini-
vasan. “Supporting RFID-Based Item Tracking Applications in Ora-
cle DBMS Using a Bitmap Datatype.” In Proceedings of the 31st In-
ternational Conference on Very Large Data Bases (VLDB’05), Trond-
heim, Norway, September 2005.

[IAM09a] Alexander Ilic, Thomas Andersen, and Florian Michahelles. “Increas-
ing Supply-Chain Visibility with Rule-Based RFID Data Analysis.”
IEEE Internet Computing, 13(1):31–38, January-February 2009.

[IAM09b] Alexander Ilic, Thomas Andersen, and Florian Michahelles. “Increas-
ing Supply-Chain Visibility with Rule-Based RFID Data Analysis.”
IEEE Internet Computing, 13(1):31–38, January-February 2009.

[JAF06] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong,
and Jennifer Widom. “Declarative Support for Sensor Data Clean-
ing.” In Proceedings of the 4th International Conference on Pervasive
Computing (Pervasive 2006), Dublin, Ireland, May 2006.

[JFG08] Shawn R. Jeffery, Michael J. Franklin, and Minos Garofalakis. “An
Adaptive RFID Middleware for Supporting Metaphysical Data Inde-
pendence.” The VLDB Journal, 17:265–289, March 2008.

BIBLIOGRAPHY 223

[JLO04] C. S. Jensen, D. Lin, and B. Ooi. “Query and Update Efficient B+-
tree Based Indexing of Moving Objects.” In Proceedings of VLDB’04,
pp. 768–779, Toronto, Canada, 2004. VLDB Endowment.

[JM04] M. Jelasity and A. Montresor. “Epidemic-Style Proactive Aggregation
in Large Overlay Networks.” In Proceedings of ICDCS’04, pp. 102–
109, Tokyo, Japan, 2004. IEEE Computer Society, Washington DC,
USA.

[JP02] Ari Juels and Ravikanth Pappu. “Squealing Euros: Privacy Protec-
tion in RFID-Enabled Banknotes.” In Financial Cryptography, pp.
103–121. Springer-Verlag, 2002.

[Jue06] Ari Juels. “RFID Security and Privacy: a Research Survey.” IEEE
Journal on Selected Area in Communications, 24(2):381–394, Febru-
ary 2006.

[KBM06] Thomas Kelepouris, Tom Baynham, and Duncan McFarlane. “Track
and Trace Case Studies Report.” http://www.autoidlabs.
org/uploads/media/AUTOIDLABS-WP-BIZAPP-035.pdf,
2006.

[KCW09] Jinoh Kim, A. Chandra, and J.B. Weissman. “Using Data Accessibil-
ity for Resource Selection in Large-Scale Distributed Systems.” IEEE
Transactions on Parallel and Distributed Systems, 20(6):788 – 801,
june 2009.

[KF08] Michael Ketzenberg and Mark Ferguson. “Managing Slow Moving
Perishables in the Grocery Industry.” Production and Operations
Management, 17(5):513–521, September-October 2008.

[KMS10] Andreas Klein, Christian Mannweiler, Joerg Schneider, and Hans D.
Schotten. “Access Schemes for Mobile Cloud Computing.” Proceed-
ings of the 11th IEEE International Conference on Mobile Data Man-
agement (MDM 2010), May 2010.

[KPD07] Thomas Kelepouris, Katerina Pramatari, and Georgios Doukidis.
“RFID-enabled traceability in the food supply chain.” Industrial
Management and Data Systems, 107(2):183–200, 1 2007.

[KS10] Noboru Koshizuka and Ken Sakamura. “Ubiquitous ID: Standards for
Ubiquitous Computing and the Internet of Things.” IEEE Pervasive
Computing, 9(4):98 –101, october-december 2010.

BIBLIOGRAPHY 224

[Lan05] Jeremy Landt. “The History of RFID.” IEEE Potentials, 24(4):8–11,
October 2005.

[LC08] Chun-Hee Lee and Chin-Wan Chung. “Efficient Storage Scheme and
Query Processing for Supply Chain Management Using RFID.” In
Proceedings of the 28th ACM SIGMOD International Conference on
Management of Data (SIGMOD’08), Vancouver, Canada, 2008.

[LC11] Chun-Hee Lee and Chin-Wan Chung. “RFID Data Processing in
Supply Chain Management Using a Path Encoding Scheme.” IEEE
Transactions on Knowledge and Data Engineering, 23(5):742–758,
2011.

[LDR08] R. Lange, F. Dürr, and K. Rothermel. “Scalable Processing
of Trajectory-based Queries in Space-partitioned Moving Objects
Databases.” In Proceedings of GIS’08, pp. 31:1–31:10, Irvine, USA,
2008. ACM, New York, USA.

[LEB07] Dan Lin, Hicham G. Elmongui, Elisa Bertino, and Beng Chin Ooi.
“Data Management in RFID Applications.” In Proceedings of the
18th International Conference on Database and Expert Systems Ap-
plications (DEXA’07), Regensburg, Germany, 2007.

[LKG03] X. Li, Y. Kim, R. Govindan, and W. Hong. “Multi-dimensional Range
Queries in Sensor Networks.” In Proceedings of SenSys’03, pp. 63–75,
Los Angeles, USA, 2003. ACM, New York, USA.

[LLSar] Xue Li, Jing Liu, Quan Z. Sheng, Sherali Zeadally, and Weicai Zhong.
“TMS-RFID: Temporal Management of Large-scale RFID Applica-
tions.” Information Systems Frontiers, 2011 (to appear).

[LP08] Dongmyung Lee and Jinwoo Park. “RFID-based Traceability in
the Supply Chain.” Industrial Management and Data Systems,
108(6):713–725, 2008.

[LWL06] Shaorong Liu, Fusheng Wang, and Peiya Liu. “Integrated RFID Data
Modeling: an Approach for Querying Physical Objects in Pervasive
Computing.” In Proceedings of the 15th ACM International Con-
ference on Information and Knowledge Management, Arlington, Vir-
ginia, USA, 2006.

[LXN07] Yunhao Liu, Li Xiao, and Lionel Ni. “Building a Scalable Bipar-
tite P2P Overlay Network.” IEEE Transactions on Parallel and Dis-
tributed Systems, 18:1296–1306, 2007.

BIBLIOGRAPHY 225

[LZ05] W. Lee and B. Zheng. “DSI: A Fully Distributed Spatial Index
for Location-Based Wireless Broadcast Services.” In Proceedings of
ICDCS’05, pp. 349–358, USA, 2005. IEEE Computer Society, Los
Alamitos, CA.

[LZZ09] Xuhui Li, Hao Zhang, and Yongfa Zhang. “Deploying Mobile Com-
putation in Cloud Service.” In Proceedings of the 1st International
Conference on Cloud Computing (CloudCom 2009), Beijing, China,
November 2009.

[MGA03] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. “Spatio-Temporal
Access Methods.” IEEE Data Engineering Bulletin, 26:40–49, 2003.

[MS05] A. Meka and A. Singh. “DIST: A Distributed Spatio-Temporal Index
Structure for Sensor Networks.” In Proceedings of CIKM’05, pp. 139–
146, Bremen, Germany, 2005. ACM, New York, USA.

[MXA04] M. F. Mokbel, X. Xiong, and W. G. Aref. “SINA: Scalable Incremen-
tal Processing of Continuous Queries in Spatio-Temporal Databases.”
In Proceedings of SIGMOD’04, pp. 623–634, Paris, France, 2004.
ACM, New York, USA.

[NCCar] Yanming Nie, R. Cocci, Zhao Cao, Yanlei Diao, and Prashant Shenoy.
“SPIRE: Efficient Data Interpretation and Compression over RFID
Streams.” IEEE Transactions on Knowledge and Data Engineering,
2011 (to appear).

[NUY10] Takanobu Nakahara, Takeaki Uno, and Katsutoshi Yada. “Extract-
ing Promising Sequential Patterns from RFID Data Using the LCM
Sequence.” In Proceedings of the 14th International Conference on
Knowledge-Based and Intelligent Information and Engineering Sys-
tems (KES’10), Cardiff, UK, 2010.

[OP07] Jan Ondrus and Yves Pigneur. “An Assessment of NFC for Future
Mobile Payment Systems.” In Proceedings of the International Con-
ference on the Management of Mobile Business, Toronto, Canada, 7
2007.

[OTY09] Kyosuke Osaka, Tsuyoshi Takagi, Kenichi Yamazaki, and Osamu
Takahashi. “An Efficient and Secure RFID Security Method with
Ownership Transfer.” In RFID Security, pp. 147–176. Springer US,
2009.

BIBLIOGRAPHY 226

[PCC04] J. M. Patel, Y. Chen, and V. Chakka. “STRIPES: An Efficient Index
for Predicted Trajectories.” In Proceedings of SIGMOD’04, pp. 635–
646, Paris, France, 2004. ACM, New York, USA.

[PSL11] Balaji Palanisamy, Aameek Singh, Ling Liu, , and Bhushan Jain.
“Purlieus: Locality-aware Resource Allocation for MapReduce in a
Cloud.” In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC 2011),
Seattle, WA, USA, November 2011.

[PTD07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank
Leymann. “Service-Oriented Computing: State of the Art and Re-
search Challenges.” IEEE Computer, 40(11):38–45, 2007.

[RC08] Damith C. Ranasinghe and Peter H. Cole. Networked RFID Systems
and Lightweight Cryptography: Raising Barriers to Product Counter-
feiting. Springer, 2008.

[RCG10] Michal Rosen-Zvi, Chaitanya Chemudugunta, Thomas Griffiths,
Padhraic Smyth, and Mark Steyvers. “Learning Author-topic Mod-
els from Text Corpora.” ACM Transactions on Information Systems,
28:4:1–4:38, January 2010.

[RCT06] Melanie R. Rieback, Bruno Crispo, and Andrew S. Tanenbaum. “The
Evolution of RFID Security.” IEEE Pervasive Computing, 5(1):62–
69, March 2006.

[RDT09] George Roussos, Sastry S. Duri, and Craig W. Thompson. “RFID
Meets the Internet.” IEEE Internet Computing, 13(1):11 –13, 1-2
2009.

[Rip01] M. Ripeanu. “Peer-to-Peer Architecture Case Study: Gnutella Net-
work.” In International Conference on Peer-to-Peer Computing
(P2P’01), Los Alamitos, CA, USA, 2001.

[RKB06] Ralf Rantzau, Karin Kailing, Steve Beier, and Tyrone Grandison.
“Discovery Services - Enabling RFID Traceability in EPCglobal Net-
works.” In 13th International Conference on Management of Data
(COMAD’06), Delhi, India, 2006.

[RRH04] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and
Scott Shenker. “Brief Announcement: Prefix Hash Tree.” In Proceed-
ings of PODC’04, pp. 368–368, St. John’s, Canada, 2004. ACM, New
York, USA.

BIBLIOGRAPHY 227

[RSZ10] Damith C. Ranasinghe, Quan Z. Sheng, and Sherali Zeadally. Unique
Radio Innovation for the 21st Century: Building Scalable and Global
RFID Networks. Springer, 2010.

[RWN07] C. Robson, Y. Watanabe, and M. Numao. “Parts Traceability for
Manufacturers.” In Proceedings of the 23rd International Conference
on Data Engineering (ICDE’07), Istanbul, Turkey, April 2007.

[SBE01] Sanjay Sarma, David Brock, and Daniel Engels. “Radio Frequency
Identification and the Electronic Product Code.” IEEE Micro,
21(6):50–54, 11/12 2001.

[SLZ08a] Q. Z. Sheng, X. Li, and S. Zeadally. “Enabling Next-Generation RFID
Applications: Solutions and Challenges.” IEEE Computer, 41(9):21–
28, September 2008.

[SLZ08b] Quan Z. Sheng, Xue Li, and Sherali Zeadally. “Enabling Next-
Generation RFID Applications: Solutions and Challenges.” IEEE
Computer, 41(9):21–28, September 2008.

[SM07] C. Sutton and A. McCallum. “An Introduction to Conditional Ran-
dom Fields for Relational Learning.” In L. Getoor and B. Taskar,
editors, Introduction to Statistical Relational Learning. MIT Press,
2007.

[SPT04] J. Sun, D. Papadias, Y. Tao, and B. Liu. “Querying about the Past,
the Present, and the Future in Spatio-Temporal Databases.” In Pro-
ceedings of ICDE’04, pp. 202–211, Boston, USA, 2004. IEEE Com-
puter Society, Washington, DC, USA.

[Sto01] I. Stoica et. al. “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications.” In Proceedings of SIGCOMM’01, San Diego,
USA, 2001. ACM, New York, USA.

[SWC97] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. “Modeling and
Querying Moving Objects.” In Proceedings of ICDE’97, pp. 422–432,
Pennsylvania, USA, 1997. IEEE Computer Society, Washington, DC,
USA.

[SWR10] Quan Z. Sheng, Yanbo Wu, and Damith C. Ranasinghe. “Enabling
Scalable RFID Traceability Networks.” In Proceedings of the 24th
International Conference on Advanced Information Networking and
Applications, Perth, Australia, 2010.

BIBLIOGRAPHY 228

[THI10] Juan M. Tirado, Daniel Higuero, Florin Isaila, Jess Carretero, and
Adriana Iamnitchi. “Affinity P2P: A Self-organizing Content-based
Locality-aware Collaborative Peer-to-peer Network.” Computer Net-
works, 54(12):2056 – 2070, 2010.

[THS07] E. Tanin, A. Harwood, and H. Samet. “Using a Distributed Quadtree
Index in Peer-to-Peer Networks.” The VLDB Journal, 16(2):165–178,
2007.

[TYJ09] K. Tzoumas, M. Yiu, and C. S. Jensen. “Workload-aware Indexing of
Continuously Moving Objects.” PVLDB, 2(1):1186–1197, 2009.

[VGS05] Spyros Voulgaris, Daniela Gavidia, and Maarten van Steen. “CY-
CLON: Inexpensive Membership Management for Unstructured
P2P Overlays.” Journal OF Network and Systems Management,
13(2):107–217, 2005.

[Vit85] Jeffrey S. Vitter. “Random Sampling with a Reservoir.” ACM Trans-
actions on Mathematical Software, 11(1):37–57, 1985.

[VRC08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lind-
ner. “A Break in the Clouds: Towards a Cloud Definition.” Computer
Communication Review, 39:50–55, December 2008.

[Wan06] Roy Want. “An Introduction to RFID Technology.” IEEE Pervasive
Computing, 5(1):25–33, January-March 2006.

[WFC05] Baohua Wei, Gilles Fedak, and Franck Cappello. “Scheduling Inde-
pendent Tasks Sharing Large Data Distributed with BitTorrent.” In
Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing (GRID’05), Seattle, USA, 2005.

[WJO09] Sai Wu, Shouxu Jiang, Beng Chin Ooi, and Kian-Lee Tan. “Dis-
tributed Online Aggregations.” PVLDB, 2(1):443–454, 2009.

[WL05a] Fusheng Wang and Peiya Liu. “Temporal Management of RFID
Data.” In Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB’05), Trondheim, Norway, 2005.

[WL05b] Fusheng Wang and Peiya Liu. “Temporal Management of RFID
Data.” In Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB’05), Trondheim, Norway, September 2005.

BIBLIOGRAPHY 229

[WLL10] Fusheng Wang, Shaorong Liu, and Peiya Liu. “A Temporal RFID
Data Model for Querying Physical Objects.” Pervasive and Mobile
Computing, 6(3):382–397, 2010.

[WLO08] Sai Wu, Jianzhong Li, Beng Chin Ooi, and Kian-Lee Tan. “Just-in-
time Query Retrieval over Partially Indexed Data on Structured P2P
Overlays.” In Proceedings of SIGMOD’08, pp. 279–290, Vancouver,
Canada, 2008. ACM, New York USA.

[WPS00] M. Wiesmann, F. Pedone, A. Schipe, B. Kemme, and G. Alonso.
“Understanding Replication in Databases and Distributed Systems.”
In Proceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS 2000), Taipei, Taiwan, April 2000.

[WRS11] Yanbo Wu, Damith C. Ranasinghe, Quan Z. Sheng, Sherali Zeadally,
and Jian Yu. “RFID Enabled Traceability Networks: a Survey.” Dis-
tributed and Parallel Databases, 29(5-6):397–443, 2011.

[WSR11a] Yanbo Wu, Quan Z. Sheng, and Damith Ranasinghe. “Peer-to-Peer
Objects Tracking in the Internet of Things.” In Proceedings of the 40th
International Conference on Parallel Processing (ICPP’11), Taipei,
Taiwan, 2011.

[WSR11b] Yanbo Wu, Quan Z. Sheng, and Damith C. Ranasinghe. “Tracing
Moving OBjects in Internet-Based RFID Networks.” In Proceedings
of the 25th International Conference on Advanced Information Net-
working and Applications Workshops, Singapore, Singapore, 2011.

[XCZ11] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Cal-
ton Pu, and H. Hacigumus. “Intelligent Management of Virtualized
Resources for Database Systems in Cloud Environment.” In Proceed-
ings of the 27th International Conference on Data Engineering (ICDE
2011), Hannover, Germany, April 2011.

[YG01] Beverly Yang and Hector Garcia-Molina. “Comparing Hybrid Peer-
to-Peer Systems.” In Proceedings of the 27th International Conference
on Very Large Data Bases, Roma, Italy, 2001.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: state-
of-the-art and research challenges.” Journal of Internet Services and
Applications, 1:7–18, 2010.

[ZCJ09] M. Zhang, S. Chen, C. S. Jensen, B. Ooi, and Z. Zhang. “Effectively
Indexing Uncertain Moving Objects for Predictive Queries.” PVLDB,
2(1):1198–1209, 2009.

BIBLIOGRAPHY 230

[ZFM10] Holger Ziekow, Benjamin Fabian, Cristian Mller, , and Oliver Gn-
ther. “RFID in the Cloud: A Service for High-Speed Data Access in
Distributed Value Chains.” In Proceedings of the 16th Americas Con-
ference on Information Systems (AMCIS 2010), Lima, Peru, August
2010.

[ZKC04] Roger Zimmermann, Wei-Shinn Ku, and Wei-Cheng Chu. “Efficient
Query Routing in Distributed Spatial Databases.” In Proceedings of
GIS’04, pp. 176–183, Washington DC, USA, 2004. ACM, New York,
USA.

[ZLL09] Wen Zhao, Xueyang Liu, Xinpeng Li, Dianxing Liu, and Shikun
Zhang. “Research on Hierarchical P2P Based RFID Code Resolu-
tion Network and Its Security.” In Proceedings of the Fourth Interna-
tional Conference on Frontier of Computer Science and Technology,
Shanghai, China, 2009.

[ZLZ09] Wen Zhao, Xueyang Liu, Shikun Zhang, Bingchen Chen, and Xinpeng
Li. “Hierarchical P2P Based RFID Code Resolution Network: Struc-
ture, Tools and Application.” In Proceedigns of International Sympo-
sium on Computer Network and Multimedia Technology (CNMT ’09),
Wuhan, China, January 2009.

[ZWS10] S. Zhang, J. Wang, R. Shen, and J. Xu. “Towards Building Effi-
cient Content-Based Publish/Subscribe Systems over Structured P2P
Overlays.” In Proceedings of ICPP’10, pp. 258–266. IEEE Computer
Society, Washington, DC, USA, 2010.

[ZZP03] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun
Lee. “Location-based Spatial Queries.” In Proceedings of the 22th
ACM Special Interest Group on Management of Data, San Diego,
USA, 2003.

	TITLE: Enabling Traceability in Large-Scale RFID Networks
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Originality Statement
	Acknowledgments

	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 Peer-to-Peer Model and Architecture for Traceable Networks
	Chapter 4 Mining Moving Patterns from Distributed RFID Streams
	Chapter 5 PeerTrack Cloud: An Affordable, Flexible and Scalable Architecture for Traceable RFID Networks
	Chapter 6 Implementation and Performance Study
	Chapter 7 Conclusions
	Appendix A Curriculum Vitae
	Bibliography

