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Abstract

Extensive range shift and mass extinctions resulting from climate change are predicted to impact all 

biodiversity on the basis of species distribution models of wide-spread and data-rich taxa (i.e. vascular 

plants, terrestrial invertebrates, birds). Cases that both support and contradict these predictions have 

been observed in empirical and modelling investigations that continue to under-represent small 

mammal species (Introduction). Given small mammals are primary or higher order consumers and 

often dispersal limited, incorporating resource gradients that define the fundamental niche may be vital 

for generating accurate estimates of range shift. This idea was investigated through the influence of 

coarse to fine resolution, landscape- and quadrat-scale data on the range dynamics of four temperate-

and five arid-zone small mammals.

This investigation determined:

i. Landscape-scale edaphic and biotic factors improved model fit, robustness and transferability for 

five species, especially arid species, via improved discrimination of unsuitable habitat (specificity) 

or suitable habitat for a wet-heath specialist (Rattus lutreolus lutreolus; Chapters 1 & 4)

ii. Quadrat-scale biotic factors improved model fit for three species; a dense understorey preferring 

species (Isoodon obesulus obesulus), granivore (Notomys cervinus) and insectivore (Sminthopsis

macroura; Chapters 2 & 4),

iii. Coarse or fine resolution environmental data were more strongly correlated with the occurrence of

different species across variables, reflecting the known ecology of these species (Chapters 2 & 4),

and

iv. Fine resolution environmental data directly affected the spatial representation of available habitat

in a coupled niche-population model, resulting in smaller shifts being detected for a greater

number of species (Chapter 3).

Biotic interactions can drive adaptations that can lead to species becoming dependent on resource 

availability for survival or reproduction (Chapter 5). Complex ecosystem dynamics can make it 

difficult to distinguish resource partitioning caused by specialist adaptations (fundamental niche) from

contemporary interactions (realised niche). In this investigation, evidence of biotic environmental 

variables defining the fundamental niche was provided by improved model transferability: 

representing direct (e.g. suitable habitat - R. l. lutreolus) or indirect influences on species’ occurrence 

(e.g. rainfall via food availability on I. o. obesulus, N. cervinus and Dasyuroides byrnei). In addition to 

better representing resources, fine-scale environmental data affected the spatial configuration of 

available habitat, leading to smaller estimates of range shift. Hence, it is vital to consider species-

environment relationships and conceptualise direct or proximal variables in order to construct robust 

SDMs. Improving this practice will also identify key relationships that influence community dynamics 

and require further empirical research (Chapter 5).
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Abstract 

Australian mammals are unique in many respects and may not be well represented by current world-

wide forecasts of the impact of climate change on range shifts, or empirical investigations that have 

detected changes in mammal morphology, phenology, density and distribution. World-wide 

predictions are typically biased towards plant, bird and invertebrate taxa with wide ranges, while 

empirical investigations target species that are charismatic, threatened, data deficient, have unique 

characteristics or are associated with the spread of disease. To determine whether recommendations 

derived from world-wide or international investigations can be applied in an Australian context, we 

need to consider how well Australian mammals with unique ecology and natural history are 

represented, and if not, ensure these species are sufficiently represented in prioritising national efforts 

to conserve native wildlife. 

Introduction

The decline in Australian mammals over the last 200 years has been dire: 27 species or subspecies 

have become extinct, contributing a high proportion of all recorded global vertebrate extinctions 

(Short and Smith 1994, Johnson 2006). Another 94 species are recognised as threatened under the 

EPBC Act (www.environment.gov.au/epbc/, accessed on 31 January 2012), which is likely to be an 

underestimate as many species are being increasingly effected by the additional threat of climate 

change (Steffen et al. 2009, Burbidge et al. 2008).

Empirical support for and against the effects of climate change on range-shifts

A number of empirical investigations have already detected affects of recent climate change on 

mammal morphology, phenology, density and distribution (see reviews by Root et al. 2003, Parmesan 

and Yohe 2003, Isaac 2008). These changes may be driven via changes in habitat availability 

supporting activity periods and reproduction (e.g. ground squirrels and lemmings; Steenhof et al. 

2006, Kausrud et al. 2008), the distribution of food resources (e.g. mat forming lichens for reindeer, 

Heggberget et al. 2002), or quality (e.g. nutrient availability for herbivores; Hughes 2003, Prowse et 

al. 2009). Ultimately, these changes are expected to cause further extensive restructuring of mammal 

communities and distributions (Levinsky et al. 2007, Lawler et al. 2009, Blois et al. 2010, McCain 

and Colwell 2011, Svenning et al. 2011).

Range shifts have been confirmed for a number of species, including rodents in a tropical valley in 

Senegal, Africa (over a 30 year period; Thiam et al. 2008), and various small mammals along an 

elevation gradient in Yosemite National Park, California, USA (over a 90 year period; Moritz et al. 

2008). Shifts in species’ ranges have led to hybridisation between species (e.g. flying squirrels; 

Garroway et al. 2010) and restrictions in the distribution of generalist species to narrow climatic zones 
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with limited habitat diversity, leading to species being misidentified as habitat specialists (e.g. a sub 

species of Peromyscus mouse; Yang et al. 2011). From the range shifts observed to date, a rate of 0.4 -

2.1 km yr-1 has been estimated (based on 20 small to medium-sized mammals in northern Indiana, 

USA, from 1930s to 1970s; Francl et al. 2009). In future, the rate of range shift is expected to increase 

considerably to up to 4 km yr-1 (Francl et al. 2009); tracking suitable climatic or environmental 

conditions may become increasingly difficult due to dispersal limitations and other factors such as 

Allee effects at the expanding range margin (e.g. range pinning, Keitt et al. 2001).

Other landscape dynamics can induce range shifts and affect whether range shifts in response to 

climate change are realised. In a mountainous area experiencing increasingly warmer and drier 

climates, xeric species (arid-adapted) were expected to expand their ranges upslope, but instead mesic 

species (adapted to wetter environments) increased in abundance (Rowe et al. 2010). In another 

investigation, small mammals occupying a fragmented landscape in mesic environments demonstrated 

a greater resilience to climate change than species occupying relatively undisturbed arid environments 

(McKenzie et al. 2007). These results were attributed to mesic species responding to a landscape 

recovering from intensive grazing (Rowe et al. 2010) and regional differences in productivity 

(McKenzie et al. 2007), respectively. 

Environmental and taxonomic variability in predicted range shifts

Regional differences in the direction and rate of shift in mammal species distributions are predicted 

worldwide (Burrows et al. 2011). For example, the proportion of mammals predicted to go extinct by 

2050, include between 2 - 20 % in Mexico, but 24 - 59 % in South Africa, 10 - 80 % in Queensland, 

Australia (the latter estimated from dispersal scenarios only; Thomas et al. 2004) and 10 -15 % all of 

Africa (Thuiller et al. 2006). The susceptibility of mammal populations to climate change may further 

differ at a bio- or ecoregion scale (e.g. between 10 and over 90 % species turnover between regions; 

Lawler et al. 2009). At the bio- or ecoregion scale (Olsen and Dinerstein 1998), a unique composition 

of mammal richness (and subsequently range size), habitats and climate can be found (Smith et al. 

1994, Williams et al. 2003) and more accurate climate change projections developed (e.g. rainfall 

projections obtained in Mediterranean ecosystems; Yates et al. 2010), which enable vulnerable 

ecosystems to be identified (e.g. alpine zone, coastal fringe, freshwater systems, wet tropics and south-

west Western Australia; Hughes 2011).

In additional to regional variability, ecological traits are likely to drive variability across species 

(Davidson et al. 2009). Many species-specific investigations into range shift have targeted charismatic 

species (e.g. moose and koala; Darimont et al. 2005, Adams-Hosking et al. 2011), threatened species 

(endangered lagomorphs and Iberian desman; LaFever et al. 2007, Anderson et al. 2009, Morueta-

Holme et al. 2010), data deficient species (African forest squirrels; Peterson and Martinez-Meyer 

2007), carnivores (marten and lynx; Carroll 2007), volant species (European bats; Rebelo et al. 2010) 
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and species associated with the potential spread of diseases (e.g. rodents; Lijun et al. 2010). Additional 

investigations into demographic factors that influence abundance and therefore distribution (i.e. 

survival and reproduction) have also targeted charismatic and threatened species (polar bear, wild ass 

and lemur; Molnar et al. 2010, Saltz et al. 2006, Dunham et al. 2011). However, this small (and as a 

consequence taxonomically and evolutionarily biased) sample of investigations represents only a 

fraction of the world’s total mammalian diversity. 

How suitable are world-wide recommendations for Australia’s mammals?

Existing reports of the global-scale effects of climate change on biodiversity typically target specific 

regions and taxa (see Root et al. 2003, Isaac 2008, Parmesan and Yohe 2003). These investigations are 

unlikely to represent trends in Australian mammals for a number of reasons:

i. Mammals are rarely included in meta-analysis (e.g. 1 out of 143 species: Root et al. 2003) or are 

represented by rodents (e.g. McCain and Colwell 2011). Forecasts based on rodents may 

overestimate rates of adaptation by other taxa or, if biased towards dietary specialists, 

underestimate use of new habitats (Cameron and Scheel 2001). 

ii. Coarse-scale investigations can exclude narrow-ranged species. For example, only mammals 

occupying more than 125 000 km2 had sufficient data to be included in the evaluation by Lawler et 

al. (2006). An analysis at this scale, if applied to Australian non-volant terrestrial mammals, would 

exclude over 43 % of species (Murray and Dickman 2000). 

iii. Forecasts derived at coarse resolutions (50 km, 100 km and 200 km; Lawler et al. 2006), may not 

incorporate suitable habitat (e.g. rock outcrops; Smith et al. 1994), limiting the benefits of 

integrating population demographics, dispersal, and other ecological and life-history details 

required for robust estimates of range shift (Huntley et al. 2010). 

iv. Australian species range dynamics are influenced by climate variability, correlated with distance 

from the coast, unlike in other areas where species range dynamics follow generalised patterns, 

such as decreasing range size with latitude (Rapoport’s rule; Smith et al. 1994, Brown et al. 1996). 

v. Approximately 85 % of Australian mammals are endemic to the continent, including many of the 

world’s marsupials and monotremes (Steffen et al. 2009). 

vi. Finally, extinctions of Australian mammals are uniquely biased towards the loss of small- to 

medium-sized mammals (e.g. 35 g to 5.5 kg; Short and Smith 1994, Chisholm and Taylor 2010).
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Conclusion

Better understanding the unique ecology and natural history of many small to medium-sized 

Australian mammals is key to enabling the adoption of forecasts derived from areas outside of 

Australia, understanding regions with contrasting historic and future (predicted) sensitivity of species 

loss (e.g. arid regions; Thomas et al. 2004, McKenzie et al. 2007), and informing ecologically realistic 

species distribution models (e.g. see Austin and van Neil 2011) that aid in conserving our native 

wildlife into the future.  

Overview of the goals of this investigation

The influence of small mammal ecology on estimated range dynamics were investigated through the 

hypotheses:

1. That the addition of landscape variables to a climate-only model will improve both model 

accuracy and transferability tested in a rigorous out-of-region validation (Chapter 1),

2. That abiotic and biotic landscape and quadrat-scale environmental data, sampled at high-

resolution, more effectively represents the ecology of small mammals and improve SDM accuracy 

(Chapter 2), and

3. That finer-resolution data used in species distribution models produces a more complex spatial 

configuration of predicted available habitat (via increased patch number and patch variability), 

leading to improved connectivity between patches to facilitate dispersal across the landscape in 

response to a changing climate (Chapter 3).

The relationship between these hypotheses is illustrated in Fig. 1. These investigations targeted four 

temperate-zone mammals, which may not represent dynamics influencing arid-zone mammals. As a 

result the following hypothesis was raised:

4. That given adaptations of small mammals in the arid-zone, additional (landscape) features are 

more important than climate variables in predicting species distribution, and that these correlations 

are best represented at finer scales despite animals being relatively mobile (Chapter 4). 

Finally, the importance of considering species’ ecology and biotic resources when modelling small 

mammal range dynamics as a result of the temporal relationship between biotic interactions, evolution 

and SDMs was reviewed (Chapter 5).
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Fig. 1. Schematic diagram of the modelling processes followed. 
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Chapter 1

IMPROVING PERFORMANCE AND TRANSFERABILITY OF

SMALL-MAMMAL SPECIES DISTRIBUTION MODELS

N. A. Haby, S. Delean, B. W. Brook

The Environment Institute and School of Earth & Environmental Sciences, 

University of Adelaide, Adelaide SA 5005, Australia

In review: Acta Oecologia
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Abstract

In theory, interpretation and transferability of species distribution models (SDMs) should be improved 

by including abiotic and biotic factors that directly influence a species’ fundamental niche. We tested 

this expectation by investigating whether the addition of topographic, soil and vegetation variables to a 

climate-only model improved model performance and predictive capacity in a rigorous out-of-region 

validation for four coastal small mammal species. We used two commonly applied methods for 

species distribution models: generalised linear models (GLM) and boosted regression trees (BRT).

The inclusion of landscape variables improved the structural goodness of fit for all four species (e.g. 

2.6 – 47.6 % increase in deviance explained), and the information-theoretic rankings (based on AICc, 

BIC and DIC) for the wet-heath specialist (Muridae, Rattus lutreolus lutreolus) and peramelid 

(Peramelidae, Isoodon obesulus obesulus). For both species, improved model performance transferred 

to improved predictive capacity in the out-of-region validation (increase in the area under the curve, 

AUC). However, this result was poorly supported by trends in the successful classification of 

presences and absences (kappa), which often reflected trends in specificity (classification of absences), 

indicating a modelling bias caused by low prevalence of species occurrence. Across all SDMs 

additional abiotic and biotic landscape variables contributed more than 5 % explanatory strength. Our 

results supported the expectation that additional landscape variables can have a more direct influence 

on the fundamental niche as demonstrated by increased model fit and transferability. Additional 

abiotic and biotic landscape variables may enhance correlative SDM robustness in assessments of the 

impact of climate change on species’ distributions.  

Introduction

Species distribution models (SDM) are a tool used to describe the factors underpinning a species’

spatial distribution and extent, and for investigating the potential effect of management scenarios and 

climate shifts (Guisan and Thuiller 2005; Peterson 2006). Typically, SDMs incorporate climate 

variables which are: (i) considered to have a direct influence on flora (e.g. through plant productivity) 

(Austin 1985) at coarse scales (Franklin 1995), (ii) were easily obtained (Austin 2002) and (iii) have a 

wide coverage, to facilitate out-of-region predictions (Austin and Meyers 1996). These principles 

governing climate data use in SDMs have continued to be used to generate estimates of the potential 

impact of climate change on species distributions at the global scale (Pearson and Dawson 2003). 

However, these models may not be sufficiently accurate at a fine scale to inform on-ground 

conservation actions (e.g. Ellis 2011).

More robust SDMs can, in principle, be developed using factors that define the fundamental niche that 

underpins the realised niche and distribution of a species (Pearson and Dawson 2003; Araújo and 

Guisan 2006; Austin 2007). The fundamental niche in which a species can theoretically survive and 

reproduce is defined by a suite of environmental factors (Hutchinson 1957; Pulliam 2000). Ideally, 
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these factors will have a physiological influence on a species either directly (are not consumed) or via 

resource availability (consumed), therefore enabling causal (proximal) rather than correlated (distal) 

relationships to be incorporated in SDMs (Franklin 1995; Guisan and Zimmermann 2000; Austin 

2002). The development of SDMs of plants using climatic variables alone follows this biologically 

informed logic, given these primary producers are directly influenced by these abiotic variables 

(Austin 2002). However, climate-only analyses have been applied extensively in vertebrate SDMs 

without strong justification, and have constrained the perception of environmental factors that 

influence the fundamental niche to abiotic variables (e.g. Sillero 2011).

There are several limitations to using climate-only data to represent the fundamental niche of small 

mammals in SDMs. First, climate variables are often distally correlated with the distribution of 

terrestrial vertebrates, via their effect on shelter or food availability (Hirzel and Le Lay 2008). Second, 

variables such as temperature or precipitation can be influenced by local topography (e.g. elevation, 

slope and aspect) (Franklin 1995; Hirzel and Le Lay 2008). Consequently, any SDMs created using 

only climate variables may not be representative across regions or time periods (Austin 2002; Guisan 

and Thuiller 2005). In addition, to better define a species’ fundamental niche by incorporating more 

appropriate environmental factors, it may be necessary to reconsider the scale used to sample the data 

(Wiens et al. 1987; Pearson and Dawson 2003; Guisan and Thuiller 2005). Microclimate variables 

have already been used to better represent mechanistic influences on the physiology of an ectotherm 

(Kearny 2006). 

Environmental factors used to define the fundamental niche do not need to be abiotic (Hutchinson 

1957; Pulliam 2000). An example of a resource provided by a biotic factor that influences the 

fundamental niche, is the presence of a host plant on the survival of a parasitic vine or shrub, such as 

mistletoes, order Santalales; or native cherry, Exocarpos cupressiformis. Biotic factors that 

characterise required habitat (Dennis et al. 2003), or limited resources (Orians and Wittenberger 

1991), have been found to improve model fit in a variety of mammals and bird investigations (e.g. 

vegetation communities; Ford et al. 2006; Luoto et al. 2007). Direct and resource gradients should also 

improve model transferability (Guisan and Zimmermann 2000). However, the application of less 

rigorous evaluation techniques (cross-validating or bootstrapping the original dataset), compared with 

using a wholly independent dataset (Guisan and Thuiller 2005), has made it difficult to assess the 

value of additional landscape variables on model transferability (out-of-region predictions), leading, in 

turn, to a lack of agreement on whether biotic variables are useful (e.g. Thuiller et al. 2004). 

Well-designed models that reflect our current understanding of species ecology and are underpinned 

by adequate data for parameter estimation should produce more accurate geographic maps of species 

distributions across its range, and over time, that can be reliably interpreted (Caughley et al. 1988; 

Araújo and Guisan 2006). As landscape variables may have a direct or proximal influence on small 

mammal occurrence, representing gradients of the fundamental niche, we propose the addition of these 
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variables to a climate-only model will improve both model accuracy and transferability tested in a 

rigorous out-of-region validation. To investigate these hypotheses, we evaluated model performance 

(fit to observations, and predictability in an out-of-region validation) for a climate-only and a climate-

and-landscape variable model, for four small ground dwelling mammals. 

Materials and methods

Study area

This investigation targeted several coastal subregions of the Interim Biogeographic Regionalisation of 

Australia (Fig. 1, Appendix I). These encompassed naturally occurring subsets in the distribution of 

four mammal species, fragmented by the Coorong, Gulf St Vincent and Spencers Gulf of the state of 

South Australia. 

Fig. 1   Map of Interim Biogeographic 

Regionalisation of Australia (IBRA) 

sub-regions used to parameterise the 

species distribution models (dashed 

lines) and those used for out-of-region 

validation of the model predictions 

(stippling). The IBRA sub-region codes 

shown represent Eyre Hills (EYB3), 

Talia (EYB4), Mount Lofty Ranges 

(FLB1), Kangaroo Island (KAN1), 

Fleurieu (KAN2), Bridgewater (NCP1), 

Glenelg Plain (NCP2), Lucindale 

(NCP3) and Mount Gambier (VVP2).

General small mammal ecology

The southern brown bandicoot, Isoodon obesulus obesulus (Peramelidae; Shaw 1797), yellow-footed 

antechinus, Antechinus flavipes flavipes (Dasyuridae; Waterhouse 1838), bush rat, Rattus fuscipes 

greyi (Muridae; Gray 1839), and swamp rat, Rattus lutreolus lutreolus (Muridae; Gray 1841), are four 

of South Australia’s more widespread coastal mammals (Robinson et al. 2000). These species 

currently occupy remnants within FLB1, KAN1-2, NCP1-3 and VVP2; FLB1, KAN2 and NCP2-3; 

EYB3-4, FLB1, KAN1-2, NCP1-3 and VVP2; and KAN2, NCP1-3 and VVP2, respectively (refer to 

Fig. 1, with further detail on these species provided in Appendix II).
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Available data

Presence locations of each species were determined from a baseline inventory of the distribution of 

South Australia’s flora and fauna (Biological Databases of South Australia, December 2008). This 

inventory contains data from a variety of sources, including systematic regional biological surveys of 

representative, intact vegetation communities (Heard and Channon 1997; Owens 2000), and 

opportunistic records from the South Australian Museum and a variety of other sources. Only records 

collected using reliable methods, < 100 m location accuracy and post-1970 were used (Appendix III). 

Where areas were subject to more intensive survey or monitoring effort (e.g. Belair National Park), 

records were restricted to a random sub-set to retain a more consistent density of records across the 

study area.

To assist in identifying less suitable habitat (Barry and Elith 2006), sufficient information was 

available to determine a selection of ‘true absences’ (rather than ‘pseudoabsences’ that are often 

defined without any on-ground verification). These absence sites were defined as biological survey 

sites trapped for a minimum of four nights, using Elliott or cage traps, that failed to capture the target 

species. These criteria reflect a reasonable opportunity to capture the target species if it was present in 

the area at the time of the survey. This systematic approach reduces the risk of including false 

absences as Rattus spp. are often quick to detect, facilitated by Elliott traps being placed in run-ways. 

Resident Antechinus f. flavipes are often detected within four nights (Marchesan and Carthew 2008), 

while the less abundant I. o. obesulus can also be detected by other methods used (e.g. hair tubes and 

signs of diggings). Finally, to reduce influence of false absences and maximise the benefit of a limited 

number of presences on model outputs, we used the Maximum Sum of Sensitivity and Specificity 

threshold (MSS; calculated in R using PresenceAbsence) to identify presences because it has 

been shown to down weight the influence of false-absences (Freeman 2007).

Presence and absence data were used to sample information from a selection of available vector and 

raster environmental spatial layers using ArcInfo 9.2 (ESRI 2009; Appendix IV). Altogether, these 

variables represented climate, topography, soil and vegetation that may influence or represent required 

resources, such as preferred habitat (e.g. woodland or wetland), food (e.g. invertebrates, fungi, plant 

material) or shelter (e.g. understory cover and tree hollow availability).

Species distribution model comparison

Data from the northern extent of the survey area (EYB3-4, KAN1-2, FLB1; see Fig. 1), represented 

the range of values across the study area and were used to create two candidate models specifying 

species distribution as a function of available climate variables (MT, RW, RS) (Model 1) or 

combination of abiotic (MT, RW, RS, E, S, lnWC, M and H) and biotic (GEN) landscape variables 

(Model 2) (Appendix IV). 
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Species occurrences were modelled with generalised linear models (GLM) using a binomial error 

distribution and logit link function, fitted in R v2.8.0 (R Core Development Team 2009; www.r-

project.org). Overall model structural goodness of fit was assessed based on the per cent deviance 

explained relative to the null model (% DE). The model with the best predictive capacity was 

identified using several measures of fit (R v2.8.0, R Core Development Team 2009; WinBUGS v1.4, 

Imperial College and MRC 1996): Akaike’s Information Criterion (corrected for small sample sizes), 

Bayesian Information Criterion and Deviance Information Criterion presented as the difference from 

the highest-ranking model (ΔAICc, ΔBIC, ΔDIC), and weight scaled to a sum of 1 (wAICc, wBIC, 

wDIC). The AICc involves information-theoretic bias correction, which implicitly accounts for model

parsimony. The BIC gives it a more conservative response to the inclusion of additional parameters 

(Burnham and Anderson 2002). The DIC (following McCarthy 2007) was also calculated initially to 

provide a third value for comparison, derived from a different statistical framework.

To avoid generating biased results due to assuming linear species response curves, a complementary 

approach was also used; the more flexible boosted regression trees (BRT) (Guisan and Zimmermann 

2000). BRTs were fitted using the R package ‘GBM’ (Elith et al. 2008; Ridgeway 2009). Optimal tree 

complexity and learning rate were selected by within-sample cross-validation for each species 

(Appendix V), bag fractions were set at 0.5 and the relative proportion of deviance explained by each 

model was calculated from the summary statistics (J. Elith, University of Melbourne, pers. comm., 

2009).

Out-of-region validation

Out-of-region validation was used to test the predictive ability of the SDMs fitted via GLM and BRT 

in the IBRA units NCP1-3, VVP2 (see Fig. 1); implemented using R packages ‘PresenceAbsence’ 

(Freeman 2007) and ‘GBM’ (Elith et al. 2008; Ridgeway 2009). The range of data values in this 

geographic region were considered sufficient for a relative comparison of model performance. Several 

species had low prevalence in this area (0.08-0.24), increasing the risk of variable validation statistics 

and difficulty in assessing performance (Liu et al. 2005; Meynard and Quinn 2007). Therefore, three 

methods were used to evaluate relative predictive performance: a) the mean difference between the 

predicted probability of occurrence and the actual value (0 or 1), b) the area under the receiver-

operating characteristic curve (AUC) (independent of prevalence, Manel et al. 2001), and c) Kappa, 

sensitivity and specificity statistics (Fielding and Bell 1997). To calculate the last three statistics, the 

Maximum Sum of Sensitivity and Specificity (MSS) threshold was calculated using the R package 

‘PresenceAbsence’ (Freeman 2007) given its suitability for small datasets (Jiménez -Valverde and 

Lobo 2007). 
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Identifying model bias

To determine whether model bias affected estimates of  Kappa, sensitivity and specificity statistics, 

and their subsequent trends when comparing between models, the predicted values were compared to 

the mean of each statistic’s empirical distribution, generated by re-applying the two models to 1 000 

bootstrapped samples from the original dataset.

Contribution of variables

The explanatory strength (relative importance) of each variable in describing the four species’ 

distributions was calculated as the combined change in per cent deviance explained (% DE) when each 

variable was removed from the saturated GLM and added to the null (intercept only) GLM (Garnett 

and Brook 2007). For comparison, the ‘relative influence values’ from BRT summary outputs are also 

presented (Elith et al. 2008). Variable odds ratios and 95 % confidence intervals were also derived for 

the saturated model (Model 2) using GLM.

Results

Influence of landscape variables on model performance

Overall, the climate-only GLM (Model 1) explained between 16.5 and 43.8 % of the deviance in 

species’ occurrence (Table 1). A further 2.6 – 47.6 % of deviance, across species, was explained after 

incorporating additional landscape variables into the model (Model 2; Table 1). The wAICc values 

showed Model 2 to be the highest-supported model (for most species). The stronger penalty of 

additional parameters in Model 2 applied using wBIC and wDIC, resulted in only a slight 

disagreement between the wAICc, wBIC and wDIC values for I. o. obesulus and R. f. greyi (of < 7 % 

and 34 %, respectively), however, a substantial disagreement for A. f. flavipes suggesting a less 

parsimonious representation of variation in the occurrence of this species (97 %; Table 1).

The BRT models, which allow implicitly non-linear responses and interactions, outperformed GLM 

(based on % DE) when using the climate-only model to describe the distribution of the dense 

understorey preferring I. o. obesulus and R. f. greyi (Table 1). Adding landscape variables to the 

climate-only BRT improved model-fit (1.3 – 13.0 %), with the most substantial improvement being 

for the wet-heath specialist R. l. lutreolus.  
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Table 1 Explanatory strength of null and a priori predictive generalised linear models (GLM) and boosted 

regression trees (BRT) containing climate-only (Model 1: Species ~ MT + RS + RW) or climate and landscape 

parameters (Model 2: Species ~ MT + RS + RW + E + S + lnWC + GEN + M + H). Shown are the number of 

parameters (k), minimised negative log-likelihood (-LL), Akaike’s information criterion corrected for small 

sample sizes, Bayesian Inference Criterion and Deviance Information Criterion presented as the difference from 

the highest-ranking model (ΔAICc, ΔBIC, ΔDIC) and weight scaled to a sum of 1 (wAICc, wBIC, wDIC), and 

the per cent deviance explained by the model relative to the null (% DE) for each method.

model k -LL ΔAICc wAICc ΔBIC wBIC ΔDIC wDIC
% DE

GLM

% DE

BRT

I. o. obesulus (323 presence : 393 absence sites, 716)  (prevalence 0.45)

Model 1 4 -364.4 36.8 0.00 5.1 0.07 36.7 0.00 26.1 41.4

Model 2 11 -338.9 0.0 1.00 0.0 0.93 0.0 1.00 31.2 42.7

A. f. flavipes (72 presence : 354 absence sites, 426) (prevalence 0.17)

Model 1 4 -108.8 6.7 0.03 0.0 1.00 7.2 0.03 43.8 41.9

Model 2 11 -98.2 0.0 0.97 21.1 0.00 0.0 0.97 49.3 45.8

R. f. greyi (145 presence : 299 absence sites, 444) (prevalence 0.33)

Model 1 4 -234.3 0.0 0.72 0.0 1.00 0.0 0.66 16.5 26.1

Model 2 12 -227.0 1.9 0.28 34.7 0.00 1.4 0.34 19.1 27.4

R. l. lutreolus (21 presence : 411 absence sites, 429) (prevalence 0.05)

Model 1 4 -68.7 68.4 0.00 31.5 0.00 66.4 0.00 18.3 25.4

Model 2 12 -28.7 0.0 1.00 0.0 1.00 0.0 1.00 65.9 38.4

MT, average monthly minimum temperature; RS / RW, average monthly rainfall during summer (Nov-Jan) and 

winter (Jun-Aug); E, elevation; S, slope; lnWC, distance from nearest water course or body transformed using 

the natural log; GEN, broad vegetation community; M, root zone water holding capacity; H, soil acidity.
Obtained from 45 235 out of the intended 100 000 runs (following a 10 000 run ‘burn-in’) due to the limited 

presence data in some parameters.

Influence of additional landscape variables on out-of-region predictive performance

Additional abiotic and biotic landscape variables improved the out-of-region classification of species 

occurrence (based on AUC) for the understorey-preferring I. o. obesulus and wet-heath specialist R. l. 

lutreolus, had little effect on the classification of the woodland generalist A. f. flavipes occurrence and 

reduced the classification of the understorey-preferring R. f. greyi occurrence (Fig. 2). Positive or 

negative trends in AUC were reflected in the Kappa statistics in some cases (I. o. obesulus, GLM; R. l. 

lutreolus, BRT; R. f. greyi, BRT), but appeared driven by specificity, indicating the low prevalence of 

species records affected the classification of species’ occurrence, despite using the MSS threshold 

(Fig. 3). Additional support for improved classification of species’ presence was provided by 

increased sensitivity statistics in the case of I. o. obesulus (BRT) and R. l. lutreolus (GLM) (Fig. 3). 

While these results focus on an increase in validation metrics with the addition of landscape variables 

to the climate-only model, the decline in AUC and sensitivity for R. f. greyi may better align with the 

low explanation of deviance in species occurrence and also support improved model performance.  
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Fig. 2   Out-of-region predictive performance of 

fitted species distribution models, measured as the 

difference between area under the curve (AUC) 

values obtained from the prediction of occupancy for 

Model 1(M1) and Model 2 (M2) using generalised 

linear modelling (GLM) and boosted regression trees 

(BRT). AUC values range from 0.5 to 1.0, 

representing random discrimination by the model to 

perfect discrimination, respectively (Fielding and 

Bell 1997). Error bars are calculated as standard 

deviation. For model definitions, see Table 2.

Fig. 3   Out-of-region predictive performance, 

illustrated using three measures of agreement: Kappa 

(top), sensitivity (middle) and specificity statistics 

(bottom; Fielding and Bell 1997). These metrics 

were derived from probability estimates using the 

Maximum Sensitivity and Specificity threshold 

(MSS) for each model (generalised linear modelling, 

black line and boosted regression tree modelling, 

grey line) and species where I. o. obesulus, A. f. 

flavipes, R. f. greyi and R. l. lutreolus have 0.08, 

0.16, 0.46 and 0.24 prevalence in the predict region, 

respectively. Error bars are calculated as standard 

deviation.
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Resolving model bias

The Kappa, sensitivity and specificity statistics generated were mostly unbiased. A comparison of the 

predicted validation statistics to the mean of their empirical distributions identified bias in the climate-

only model for R. l. lutreolus (GLM) (Fig. 4), leading to slightly lower Kappa and specificity statistics 

and higher sensitivity statistics. This slight bias would reduce the increase in sensitivity and decrease 

in specificity and Kappa when comparing the climate-only and climate-and-landscape models, but not 

sufficiently to alter the trend observed. 

Fig. 4   Illustration of model bias using average 

generalised linear modelling-generated statistics, 

based on 1 000 bootstrap samples (black diamonds), 

and the initial predict values (grey diamonds) 

calculated using the Maximum Sensitivity and 

Specificity threshold (MSS) for each model. Shown 

are the Kappa (top), sensitivity (middle) and 

specificity statistics (bottom). Error bars are 

calculated as standard deviation

Core influential variables

On average, seasonal rainfall (RS, RW), elevation (E) and log-distance to water course (lnWC) were 

consistently ranked in the top four variables explaining species occurrences across all species and 

regardless of the type of statistical model used (Table 2). Soil acidity (H) or broad vegetation 

description (GEN) were the next-highest ranked explanatory variables, using GLM or BRT, 

respectively. Variable effect size (expressed as odds ratios) varied between SDMs and indicated useful 

contributions particularly from climate variables, forest and mallee forest and soil acidity in describing 

I. o. obesulus occurrence; climate variables, distance to water course, forest and mallee forest and root 
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zone water holding capacity for A. f. flavipes; climate variables for R. f. greyi, and climate variables, 

distance to water course, sedgeland, fernland and grassland and shrubland, root zone water holding 

capacity and soil acidity for R. l. lutreolus (Appendix VI).   

Discussion

The inclusion of available abiotic and biotic landscape variables to a climate-only model improved the 

predictive ability of SDMs for four small mammal species from Australia’s southern sclerophyll 

habitats. Our results supported the expectation that additional abiotic and biotic landscape variables 

increased model fit (% DE and wAICc) and predictive performance assessed in an out-of-region 

validation, indicating better representation of causal influences or resources that define the 

fundamental niche. Improved model fit was demonstrated for three of the four species; the wet-heath 

specialist, R. l. lutreolus, dense understorey-preferring I. o. obesulus and woodland generalist A. f. 

flavipes. Predictive performance measured by AUC values on out-of-region validation were 

comparable to those estimated by Wintle et al. (2005) (0.75 – 0.77) and Gibson et al. (2004) (0.66 –

0.86), and occasionally exceeded 0.9, suggesting these models were successfully transferred (Manel et 

Table 2   Explanatory strength of each variable calculated using generalised linear modelling (GLM) and boosted 

regression tree (BRT) modelling. The explanatory strength for each variable was derived in GLM by combining 

the per cent deviance explained (% DE) when a variable  is deleted from the saturated model with the % deviance 

explained when adding that variable to the null model and dividing that value by the degrees of freedom (as per 

Garnett and Brook 2007). The explanatory strength of each variable using BRT was derived from the relative 

influence values (RI) calculated using the package ‘GBM’ in R (Elith et al. 2008; Ridgeway 2009).

Variable df

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus
Ave. across 

species

Rank 

across species

GLM

% DE

BRT

% RI

GLM

% DE

BRT

% RI

GLM

% DE

BRT

% RI

GLM

% DE

BRT

% RI
GLM BRT GLM BRT

RS 1 31.6 40.2 47.3 53.4 19.3 44.5 30.7 32.1 30.8 42.6 1 1

RW 1 21.3 16.0 31.7 9.9 12.9 17.0 1.1 4.6 17.4 11.9 2 3

E 1 18.3 10.7 23.3 13.5 8.7 20.7 12.3 19.7 14.9 16.2 3 2

lnWC 1 8.3 10.7 12.4 7.1 3.0 5.0 13.9 12.1 10.3 8.7 4 4

H 1 10.4 1.5 10.5 0.0 4.4 0.6 12.0 1.2 10.1 0.9 5 9

M 1 0.7 0.9 9.9 1.2 2.1 0.1 10.9 5.0 6.8 1.8 6 8

MT 1 10.5 8.9 11.0 1.8 4.2 5.0 0.1 5.2 6.5 5.2 7 7

GEN* 2, 2, 3, 3 2.6 3.6 5.0 7.5 0.8 2.1 8.3 15.4 3.8 7.2 8 5

S 1 7.1 7.5 5.3 5.6 2.2 5.0 0.2 4.6 3.7 5.7 9 6

MT, average monthly minimum temperature; RS / RW, average monthly rainfall during summer (Nov-Jan) and 

winter (Jun-Aug); E, elevation; S, slope; lnWC, distance from nearest water course or body transformed using 

the natural log; GEN, broad vegetation community; M, root zone water holding capacity; H, soil acidity.

*Only communities represented by both presence and absence records are included for each species.
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al. 2001; Vanreusel et al. 2007). However, additional indicators of predictive performance that were 

more sensitive to the number and prevalence of species occurrences (Kappa, sensitivity, specificity) 

demonstrated only limited support. As such, while these additional landscape variables arguably 

improved SDM performance and transferability, they only partially resolve the current difficulty in 

modelling small mammal distributions using available environmental data. 

As SDMs are correlative, it is not at first clear whether strong support for a variable reflects direct or 

resource gradients on a species, or whether it acts as a surrogate for indirect variables influencing the 

realised niche. In this study, there was strong support for climate variables used in all four species 

SDMs we developed. Austin (2002) argued that variables often do not fit exclusively into a specified 

category (direct, resource or indirect), using water as an example: it acts as a resource gradient when 

in low availability, or indirect gradient when abundant, causing water logging and anaerobic 

conditions for plants. Without an ecologically thoughtful consideration of the relationships between 

species and their environments, climate variables may represent a direct influence on the physiological 

tolerances of a species or substantial indirect (bionomic) variables (e.g. physiological tolerances of a 

key competitor). 

There are several ways through which the known ecology of a species should provide insight into the 

relationships represented by available data. First, empirical investigations into species’ resource use 

and life history attributes would indicate variables required for basic survival and reproduction. For 

example, soil water holding capacity may represent increased availability of invertebrate prey for I. o. 

obesulus and A. f. flavipes and plant material consumed by R. l. lutreolus. Second, it may be possible 

to use similarities between species. In the case of soil water-holding-capacity, the lack of support 

across burrowing species (R. l. lutreolus and R. f. greyi) suggests this variable does not singly 

represent ease of burrow construction. Finally, improved representation of biotic interactions and 

therefore, representation of the realised niche in the geological landscape should be less likely for 

small mammals that co-occur in their native range (i.e. already established different niche position and 

breadth), and especially for strong competitors (e. g. R. l. lutreolus that can outcompete R. f. greyi).  

In addition to species’ ecology, statistical tools should help evaluate whether variables included in a 

SDM have enhanced the representation of the fundamental niche or realised niche. In both cases 

model performance should increase. However, only models with improved representation of the 

fundamental niche should demonstrate an increase in validation statistics used to measure model 

transferability. 

The failure of additional variables expected to directly influence a species fundamental niche to 

improve SDM may assist in identifying gaps in data availability and resolution. For example, the 

biotic variable, broad vegetation community, captured more than 5 % of the deviance for the wet-

heath specialist R. l. lutreolus and woodland generalist A. f. flavipes. This variable appeared to more 
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adequately represent nesting sites and specialised habitat required by these species, than the low 

diverse understorey preferred by I. o. obesulus or R. f. greyi. Given this, it is reasonable to assume 

additional variables describing more detailed components of the environment (e.g. understorey) are 

required to further improve model performance and transferability. 

Limited data availability for ground-dwelling small mammals

Detailed statistical models can be developed if there are sufficient location data to support a range of 

abiotic and biotic predictive variables. Data are often difficult to obtain for rare or sparsely-distributed 

species (e.g. Barry and Elith 2006); however, threatened species, such as the endangered I. o. 

obesulus, often receive additional targeted survey and monitoring effort, and are the focus of the 

development and implementation of species-specific sampling methods (e.g. Haby 2006). In this 

study, records for this species exceeded the number and spatial coverage of A. f. flavipes (vulnerable), 

R. l. lutreolus (rare) and R. f. greyi (not currently threatened) records. These last three species can be 

locally common and do co-occur with I. o. obesulus, suggesting these species are not recorded as 

comprehensively or data collated adequately during field surveys. This potentially jeopardises further 

investigations relating to their conservation. To date, few surveys have targeted less threatened or 

common native mammals in southern Australia, thus limiting our understanding of relationships 

between the distribution of small mammal species and the common drivers of these distributions.

Capacity to improve model interpretation through realised niche characteristics

SDM performance is limited by available data for fitting (see below), and the failure to 

(parsimoniously) include important factors that modify the fundamental niche when modelled across 

the landscape (i.e. the realised niche); including biotic interactions, dispersal, or catastrophic events 

(Araújo and Luoto 2007; Barry and Elith 2006; Brooker et al. 2007; Elith and Lethwick 2009; Fox and 

Monamy 2007; Pulliam 2000). For example, competition between R. l. lutreolus and R. f. greyi, may 

restrict R. f. greyi from suitable habitat (Maitz and Dickman 2001; Manley et al. 2002). Another 

common but difficult-to-quantify problem is the representation of transient individuals detected in 

unsuitable habitat during field surveys. Antechinus f. flavipes may fall into this category where surveys 

were performed during the breeding season when males are dispersing. In addition, the history of 

vegetation clearance in the landscape may cause the reasonably dispersal limited I. o. obesulus, R. f. 

greyi and R. l. lutreolus to be absent from suitable patches due to local extinctions, or occupy 

suboptimal habitat. All of these dynamics lead to more complex species responses to environmental 

gradients (Holt et al. 2005), increased uncertainty or bias in SDM predictions. 
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Chapter 2

SPECIALIST RESOURCES ARE KEY TO IMPROVING

SMALL MAMMAL DISTRIBUTION MODELS

N. A. Haby, S. Delean, B. W. Brook

The Environment Institute and School of Earth & Environmental Sciences,

University of Adelaide, Adelaide SA 5005, Australia.

Austral Ecology 37: 216-226.

doi:10.1111/j.1442-9993.2011.02267.x



Specialist resources improve distribution models 23

STATEMENT OF AUTHORSHIP

SPECIALIST RESOURCES ARE KEY TO IMPROVING
SMALL MAMMAL DISTRIBUTION MODELS

Austral Ecology doi:10.1111/j.1442-9993.2011.02267.x

N. A. H. Collated and prepared data, performed analyses, interpreted data, wrote manuscript and is 
corresponding author. S. D. contributed to conceptualising the manuscript, planning the analyses and 
provided editorial comments. B. W. B. provided editorial comments, including the presentation of key 
results.

All contributors certify that the statement of contribution is accurate and give permission for the 
inclusion of this material in the thesis.



24 Specialist resources improve distribution models

Abstract

Small ground-dwelling mammals can have complex ecological relationships with environmental 

factors that limit the usefulness of coarse data in predictive species distribution models (SDM). We 

investigated the relative importance of available abiotic and biotic, landscape and quadrat-scale data 

for predicting the distributions of four small mammals using data at three resolutions: 150 m, 500 m 

and 1 000 m. At 150 m, the inclusion of landscape-scale data to a climate-only model improved the 

predicted occurrence of the wet heath specialist and woodland generalist, but not the two dense 

understorey species. Limited improvement was obtained with the inclusion of available quadrat-scale 

data (possibly due to missing or insufficiently detailed descriptive variables). As the models of best fit 

were re-applied to lower resolution environmental data (500 m and 1 000 m), the variance explained 

decreased for the wet heath specialist and two dense understorey species. These trends corresponded 

with reduced variance explained predominantly by biotic variables or abiotic landscape variables, 

respectively. In contrast, the resolution of environmental data had no effect on the woodland generalist 

SDM, indicating the habitat for this more mobile species was sufficiently represented at the lowest 

resolution (1 000 m). These results highlight the potential value of landscape and finer-scale variables

in modelling the distributions of small mammals. Where such variables are unavailable, higher-

resolution climate data could better represent resource availability (indirectly) or suitable 

microclimates (directly), especially for more vulnerable, above-ground nesting species. We encourage 

the collection of additional detailed and high-resolution environmental information to facilitate the 

development of more accurate models of the extent and distribution of small mammals. 

Introduction 

The performance and accuracy of species distribution models (SDM) depend on the ecological 

relevance of the data used to build them (e.g. Austin 2002). Abiotic factors typically used in SDM tend 

to have an indirect influence on terrestrial mammal habitat (Fox 1998, Andrews & O’Brien 2000), so 

including biotic environmental data with a proximal (causal) influence should enhance their accuracy 

(Austin 2002, Beever et al. 2003, Farraz et al. 2009). Adding complexity is that the resources 

represented by abiotic and biotic environmental data will be patchily distributed throughout the 

landscape, at a range of scales (Kotliar & Wiens 1990). The appropriate scale at which to represent 

environmental data for any one species may be challenging to identify (Morris 1987, Wiens et al.

1987, Orians & Wittenberger 1999).

Landscape-scale, abiotic climate and topographic data have been used successfully to model the 

distribution of several small mammal species (Carbajo & Pardiñas 2007, Kirk & Zielinski 2009). 

Higher-resolution climate data are also increasingly being used (Orrock et al. 2000) to indirectly 

represent food resources or levels of predation pressure (Haythornthwaite & Dickman 2006, Southgate 

et al. 2007), and low resolution biotic environmental data (e.g. vegetation communities represented at 
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> 1 km2; Anderson et al. 2002, Acevedo et al. 2007), to represent more proximal influences on species 

occurrence (Caughley et al. 1987). Landscape-scale abiotic and biotic environmental data could 

improve SDM for small, predominantly ground-dwelling mammals with a clear dependency on 

specific features in the landscape. For example, in Australia the swamp rat, Rattus lutreolus lutreolus,

depends on resources provided in wet heath communities (Taylor & Calaby 1988). A SDM for R. l. 

lutreolus should, therefore, be improved by including additional biotic environmental data 

representing this vegetation community. 

Fine-scale data, representing more detailed features within the landscape, are difficult to acquire and 

implement statistically, and so are often ignored (Santos & Beier 2008). Such data, however, could 

strengthen the ecological foundation of SDMs (Austin 2002), improve our ability to model generalist 

species (Manning & Edge 2004), facilitate our interpretation of habitat suitability maps (Dennis et al.

2003, Hirzel & Le Lay 2008) and may even be necessary to distinguish between distribution models 

for different species using similar input data (Traba et al. 2010). A variety of fine-scale environmental 

data can be used to represent proximal relationships with small mammals (Catling et al. 2000, 

Larrucea & Brussard 2008). For example, understorey cover may represent suitable habitat in 

Australia for the southern brown bandicoot, Isoodon obesulus obesulus. Hence, models for small 

ground-dwelling mammals that respond to subtle changes in the environment may be improved by 

including fine-scale environmental data. 

We expected abiotic and biotic landscape and quadrat-scale environmental data, sampled at high-

resolution, to more effectively represent the ecology of small mammals and improve SDM accuracy. 

To investigate this we aimed to quantify the predictive performance of a set of a priori models, created 

using available landscape and quadrat-scale variables at three resolutions (i.e. 150 m, 500 m or 1 000 

m) for four small mammals.

Methods

Study area and species

This investigation targeted several coastal sub-regions of the Interim Biogeographic Regionalisation of 

Australia (Fig. 1, Appendix I). This area encompassed naturally occurring subsets in the distribution of 

four mammal species, fragmented by the Coorong, Gulf St Vincent and Spencers Gulf. The four 

species were Rattus fuscipes greyi, Rattus lutreolus lutreolus, Antechinus flavipes flavipes and Isoodon 

obesulus obesulus (details on species ecology are provided in Appendix II).
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Fig.1 Interim Biogeographic 

Regionalisation of Australia (IBRA) 

sub-regions used to define the study 

area (see Appendix I).

Species presence and absence

Both landscape and quadrat-scale environmental data were only available at Biological Survey of 

South Australia (BSSA) survey sites (see Heard & Channon 1997, Owens 2000). Species ‘presences’ 

were then defined as BSSA survey sites within a radius of  150 m, 500 m, and 1 000 m of a known 

species record locality, obtained from the Biological Databases of South Australia (December 2008) 

(Fig.2). The three resolutions aimed to maximise the number of available records (150 m), more 

liberal dispersal (500 m), and what is often referred to in the literature as ‘fine-scale’ (1 000 m). The 

remaining BSSA survey sites that were more than the specified distance from a known record locality 

(i.e. 150 m, 500 m or 1 000 m) were used to represent species ‘absence’. While species absence is 

difficult to determine, there had been no captures of any of the target species during a four night 

survey using cage or Elliott traps at these sites (see Owens 2000).

Available environmental data

A range of available landscape and quadrat-scale data were used to generate individual spatial layers 

from which the values at BSSA survey sites were extracted in ESRI ArcGIS 9.2 (Appendix IV). 

Landscape-scale climate layers were derived by fitting thin-plate spline models to meteorological 

station data (Australian Bureau of Meteorology) and elevation (250 m Digital Elevation Model; 

Geoscience Australia 2008) (see Fordham et al. In press). Topographic features, included higher 

resolution elevation, slope and distance to water course. Soil and vegetation mapping were modified to 

create a series of simple spatial layers representing root zone water holding capacity, soil acidity and 

general vegetation community. 



Fig. 2 In order to determine the influence of spatial resolution on multiple-scale environmental data used in SDMs, and that was only 

available from Biological Survey of South Australia survey sites, species record localities () were used to reclassify survey sites as 

‘presences’ and ‘absences’. Survey sites that fell within a radius of 150 m (left panel), 500 m (centre panel) and 1000 m (right panel) of 

a known record locality of a species were reclassified as ‘presences’ (), while survey sites outside of these distances were retained as 

‘absences’ (). To illustrate this point, I. o. obesulus record localities, and corresponding ‘presences’ and ‘absences’, are shown in the 

vicinity of Belair National Park and Mark Oliphant Conservation Park, approximately 13 km south-east of Adelaide (hatched lines).
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A range of quadrat-scale data (30 x 30 m) were available from regional BSSA surveys conducted 

across the state (Heard & Channon 1997). From these a selection was made following a series of 

preliminary investigations (using the 150 m dataset). Initial data exploration identified variables with 

incomplete data that could be removed. Scatter-plots identified variables with no or few species 

presences, or that did not appear to be correlated with species presence / absence. Compositional 

analysis (Resource Selection for Windows; Leban 1999) and principal component analysis (PCA, R 

Core Development Team 2009), did not further refine the number of variables because all variables 

were used disproportionately to their availability, or variability within the dataset, respectively. 

Finally, the variables were discussed with a botanist (P. Lang, Department of Environment and 

Natural Resources, pers. comm., 2009), to identify those representing unique floristic or structural 

components that would complement available landscape data (Appendix IV). 

Categorical landscape and quadrat-scale variables were simplified to reduce the number parameters 

that would be included in the SDMs. For example, to account for observer error when sampling open 

sclerophyll native flora in South Australia (P. Lang, Department of Environment and Natural 

Resources, pers. comm., 2009), understorey cover in the 30-70 % and 70 – 100 % Muir code 

categories (Muir 1977 in Heard & Channon 1997) were combined. Binomial thresholds were applied 

to other variables. For example, soil acidity was initially comprised of multiple categories reflecting 

surface and sub-soil acidity, neutrality or alkalinity. These categories were grouped to whether the sub 

or surface-soil was acidic (1), or neutral or alkaline (0) (Appendix IV).  

Model selection 

A series of simple candidate models was derived a priori to represent a gradient of increasing

emphasis on finer-scale and biotic information, including a climate-only landscape model (average 

monthly minimum temperature, MT; average rainfall during summer, RS), an abiotic landscape 

variable model (RS; distance to watercourse, lWC; slope, S; root zone water holding capacity, M; soil 

acidity, H), a mixed abiotic and biotic landscape variable model (including broad vegetation 

description, GEN), and a mixed abiotic and biotic landscape and quadrat-scale variable model 

(including diversity of flora taller than 2 m, C3; shrub cover between 0.5 - 1.0, SC; or sedge cover 

under 0.5 m, VL) (Table 1). The number of sites occupied by each of the four species was generally 

small (between 35 and 197), so to reduce the risk of over-fitting we restricted the number of 

parameters in any given model to better accommodate the recommended 10 records per parameter (see 

Wintle et al. 2005). Correlated variables (r > 0.6) were not used in the same candidate model. 

Throughout, modelling was performed in R v2.8.0 (R Core Development Team 2009).
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We predicted species occurrence using both linear and nonlinear modelling approaches. Generalised 

linear models (GLM) were used to predict species occurrence for the highest resolution date (i.e. 150 

m scale)  using a binomial error distribution and logit-link function. Overall model fit was assessed as

per cent deviance explained relative to the null model (% DE) (Garnett & Brook 2007). The model 

with the highest predictive capacity was identified using the difference in Akaike’s Information 

Criterion (corrected for small sample sizes, AICc) and relative model weight (wAICc). Bayesian 

Information Criterion and Deviance Information Criterion are also reported in Appendix VII. 

To avoid generating biased results caused by assuming linear species response curves, boosted 

regression trees (BRT) (Guisan & Zimmermann 2000) that implicitly account for nonlinearity and 

interactions were used. BRTs were fitted using the R package GBM (Ridgeway 2009) (following Elith 

et al. 2008). Optimal tree complexity and learning rate were selected by cross-validation for each 

species (Appendix VIII), bag fractions were set at 0.5 and the relative proportion of deviance 

explained by each model was calculated from the summary statistics (J. Elith, University of 

Melbourne, pers. comm., 2009).

Model and variable performance at multiple scales

To determine whether the resolution of environmental data affected our ability to accurately model 

species distributions, we also fitted GLMs to the 500 m and 1 000 m resolution datasets (Fig. 2). The 

model fitted to each of these datasets contained the same terms from the most parsimonious GLM 

identified using the ‘within 150 m’ data (and its corresponding set of single variable models). We 

calculated the difference in overall model fit by subtracting the value derived when using the 150 m 

and 500 m datasets from the 1 000 m dataset. 

Results 

Effect of additional abiotic and biotic variables on model performance

Abiotic and biotic landscape and quadrat-scale variables explained substantial variation in the 

presence of some of the species (Table 1, Appendix VII, VIII). The biotic landscape variable (GEN) 

contributed to the model of best fit (identified as the top ranking model in % DE and wAICc) for the 

wet heath specialist R. l. lutreolus (M4) and mobile woodland generalist A. f. flavipes (M3). The 

inclusion of (biotic) quadrat-scale variables slightly improved model performance for the less

specialist species, occupying dense understorey (I. o. obesulus, M4: R. f. greyi, M5 GLM), but was 

most noticeable in contributing to relative model performance for the wet heath specialist (M5-7). 
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Table 1 Explanatory strength of null and a priori generalised linear models, where ‘occupied sites’ are 

represented by survey sites within 150 m of a known record locality. Shown are the number of parameters (k), 

minimised negative log-likelihood (-LL), the difference between the Akaike’s infor-mation criterion corrected 

for small sample sizes and the highest-ranking model (ΔAICc), weight scaled to a sum of 1 (wAICc), and the per 

cent deviance explained by the model relative to the null (% DE) for each method (GLM and BRT) and species.

Model Variables k -LL ΔAICc wAICc
% DE  

GLM

% DE 

BRT

I. o. obesulus (35 presences : 473 absence sites) (prevalence 0.07)

Null ~ 1 1 -127.4 65.6 0.00

M1 ~ MT + RS 3 -93.8 2.5 0.14 26.4 27.5

M2 ~ RS + lWC + H 4 -93.3 3.5 0.09 26.8 26.8

M3 ~ RS + GEN 4 -92.3 1.5 0.24 27.5 26.8

M4 ~ RS + lWC + C3 4 -92.1 0.0 0.51 27.7 25.9

M5 ~ RS + SC 5 -93.9 6.8 0.02 26.3 25.6

A. f. flavipes (66 presences : 440 absence sites) (prevalence 0.13)

Null ~ 1 1 -195.9 166.4 0.00

M1 ~ MT + RS 3 -114.8 8.2 0.02 41.4 45.6

M2 ~ RS + lWC + H 4 -117.6 15.9 0.00 40.0 39.7

M3 ~ RS + lWC + H + GEN 6 -107.6 0.0 0.98 45.1 47.6

M4 ~ RS + lWC + H + C3 5 -117.2 17.1 0.00 40.2 38.9

M5 ~ RS + lWC + H + SC 7 -114.5 15.9 0.00 41.5 38.5

R. f. greyi (197 presences : 388 absence sites) (prevalence 0.34)

Null ~ 1 1 -373.7 146.4 0.00

M1 ~ MT + RS 3 -298.5 0.0 1.00 20.1 32.4

M2 ~ RS + S + M + H 5 -307.9 22.8 0.00 17.6 23.6

M3 ~ RS + S + M + H + GEN 8 -306.9 27.0 0.00 17.9 23.5

M4 ~ RS + S + M + H + C3 6 -307.4 23.9 0.00 17.8 24.7

M5 ~ RS + S + M + H + SC 8 -302.5 18.3 0.00 19.0 24.9

R. l. lutreolus (63 presences : 504 absence sites) (prevalence 0.11)

Null ~ 1 1 -197.8 146.7 0.00

M1 ~ MT + RS 3 -173.2 101.5 0.00 12.5 27.2

M2 ~ RS + S + lWC 4 -152.5 62.3 0.00 22.9 28.9

M3 ~ RS + S + M + H 5 -143.1 45.4 0.00 27.7 29.5

M4 ~ RS + S + M + GEN 7 -118.3 0.0 1.00 40.2 39.3

M5 ~ RS + S + M + C3 5 -133.9 27.0 0.00 32.3 30.3

M6 ~ RS + S + M + SC 7 -128.3 19.9 0.00 35.1 32.8

M7 ~ RS + S + M + VL 6 -144.9 51.2 0.00 26.7 29.1

MT, average monthly minimum temperature; RS, average monthly rainfall during summer (Nov-Jan); S, slope; 

lWC, distance from nearest water course or body transformed using the natural log; GEN, broad vegetation 

community; M, root zone water holding capacity; H, soil acidity; C3, diversity of flora taller than 2 m; SC, shrub 

cover between 0.5 – 1.0 m in height; VL, sedge cover under 0.5 m. 
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Effect of decreasing resolution of environmental data on model and variable performance

Declining resolution of environmental data affected model performance for each species to varying 

degrees (Fig. 3, Appendix IX, X). Model performance deteriorated for the wet heath specialist (R. l. 

lutreolus ~ RS + S + M + GEN) and a dense understorey species (I. o. obesulus ~ RS + lWC + C3, R. 

f. greyi ~ MT + RS). These trends corresponded with reduced variance explained by biotic landscape 

and quadrat-scale variables and abiotic landscape variables, respectively (Fig. 4, Appendix XI). In 

contrast, model performance improved slightly for the mobile woodland generalist (A. f. flavipes ~ RS 

+ lWC + H + GEN), suggesting the variables used to represent interactions with their environment 

were adequately represented at a low-resolution (1 000 m). 

Discussion

Abiotic and biotic landscape and quadrat-scale environmental data, sampled at high-resolution, can be 

used to represent specialised resource requirements and improve the accuracy of small mammal SDM. 

Support for this increases with the degree of specialised habitat, diet and shelter required across the 

four small mammals targeted in this investigation, from the wet heath specialist and herbivore (R. l. 

lutreolus), woodland generalist and insectivore (A. f. flavipes), dense understorey omnivore (I. o. 

obesulus), and more widespread, dense understorey omnivore (R. f. greyi). 

The benefits of including abiotic and biotic landscape and quadrat-scale environmental data were 

species specific. Abiotic and biotic landscape-scale information improved the SDM for the wet heath 

specialist and woodland generalist, but not for either dense understorey species. Additional biotic 

quadrat-scale data again contributed somewhat to the wet heath specialist SDM and negligibly for the 

dense understorey species SDM. These results encourage us to more carefully consider the ecology of 

species being modelled, rather than targeting utmost specialists as easier subjects to model (e.g. 

Swihart et al. 2006).   

Lower-resolution environmental data caused the model performance to deteriorate for the wet heath 

specialist and both dense understorey species. These trends corresponded with fine-scale interactions 

that suggest habitat for the wet heath specialist was defined by features within the landscape other than 

climate, while indirect or proximal influences of climate on the dense understorey species were better 

represented at a higher-resolution (especially for the more vulnerable above-ground nesting species). 

In contrast, low-resolution environmental data had minimal effect on the woodland generalist A. f. 

flavipes, indicating that coarse environmental data sufficiently described its distribution, or that there 

were additional limitations, not represented in the SDM, that prevented improved model performance 

(see below). 
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Fig. 3   Change in deviance explained (% DE) by 

the single best (identified as the top ranking 

model in % DE and AICc) model for each species 

applied to datasets where species occupancy is 

represented at three different levels of association 

(i.e. species ‘presence’ was adjusted to survey 

sites with complete environmental data at 150 m, 

500 m and 1000 m from original species record 

localities).

Fig. 4   Change in deviance explained by single-

variable models based on decreasing resolution 

of environmental information (% DE at 1000 m -

% DE at 150 m). Only variables demonstrating a 

consistent increase (coarse-scale correlation) or 

decrease (fine-scale correlation) in % DE are 

shown. The remaining variables either had a 

variable response across these scales, or were not 

used in any of the candidate models (Appendix 

IX). The variables shown on the x-axis are: MT, 

average monthly minimum temperature; RS, 

average monthly rainfall during summer (Nov-

Jan); S, slope; lWC, distance from nearest water 

course or body transformed using the natural log; 

GEN, broad vegetation community; M, root zone 

water holding capacity; H, soil acidity; C3, 

diversity of flora taller than 2 m; SC, shrub cover 

between 0.5 – 1.0 m; VL, sedge cover under 0.5 

m.
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Despite potential limitations, the SDMs used in this investigation appeared to predict some niche 

separation between the four species. This was illustrated in the direction of change in model 

performance when lower-resolution landscape and quadrat-scale variables were used to predict species 

occupancy. The presence of I. o. obesulus appeared to be strongly correlated at a fine-to-coarse-scale 

across these variables; a pattern that was weaker for R. f. greyi, not apparent for A. f. flavipes and 

reversed for R. l. lutreolus. This result indicates that ecological relationships are at least partially 

represented in simple a priori SDMs, especially when comparing SDMs for different species.

Model limitations and further research

The most obvious limitation to model performance is that key environmental data were missing from 

the candidate models for each species. A variety of fine-scale variables are known to influence species 

occurrence, including floristics and cover, understorey stem density, fallen wood and litter moisture 

(Orrock et al. 2000, Mac Nally et al. 2001, Manning & Edge 2004, Brannon 2005, Haythornwaite & 

Dickman 2006, Larrucea & Brussard 2008, Mapelli & Kittlein 2009). The importance of fine-scale 

variables like these, have even been demonstrated for the generalist species, mulgara, Dasycercus 

cristicauda, and hairy-footed dunnart, Sminthopsis hirtipes (Masters 2008, Pearson & McKenzie 

2008). However, data representing these features were unavailable for these SDMs, or had insufficient 

detail. 

Quadrat-scale data are often recorded in the field using coarse categories, making them less suitable 

for modelling (Bowman et al. 2001, Pearce et al. 2001). In this investigation, the variable shrub cover 

between 0.5 and 1.0 m (SC) represented the 60 - 70 % understorey cover preferred by I. o. obesulus

(Paull 1992) within a single broad 30 - 70 % Muir cover category (Heard & Channon 1997). A lack of 

sufficient detail to represent ecological relationships may explain why, contrary to expectations, the 

inclusion of quadrat-scale variables provided limited or no improvement to SDMs. Examples include,

the importance of vegetation cover in defining A. f. flavipes and R. f. fuscipes habitat (Catling et al.

2000), and floristic composition and structure and R. l. lutreolus habitat (Cockburn 1981, Braithwaite 

& Gullan 1978). For fine-scale variables to contribute to SDMs, more appropriately scaled (Jorgensen 

2004), detailed or continuous data are required, especially since interactions between species and 

environmental factors are often unknown prior to field surveys. Furthermore, spatially explicit maps of 

fine-scale variables are required to generate maps of the extent and distribution of a species. This 

remains a challenging task. 

Model performance may also be limited by demographic stochasticity and dispersal. Tyre et al. (2001) 

found these factors restricted the variance explained to < 50 %, when modelling greater glider, 

Petauroides volans, habitat. This may be further exaggerated in a fragmented landscape, since small 
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mammals can be sensitive to connectivity (e.g. Fitzgibbon et al. 2007). However, the degree of effect 

of these factors on SDM performance requires further research. 

Another factor potentially limiting model performance is biotic interactions, such as competition and 

predation, masking the influence of environmental variables on species occurrence (Pulliam 2000). 

For example, R. l. lutreolus can outcompete R. f. greyi (Maitz & Dickman 2001), which may initially 

enhance our confidence in building a SDM for R. l. lutreolus, but not R. f. greyi. However, model 

performance may be further confounded by local interactions with predators (Fox & Monamy 2007). 

It is difficult to determine the distribution, density and behaviour of widespread predators from 

available presence and absence data. Typically, detailed information on biotic interactions are 

generally only obtained from long-term demographic investigations (e.g. Brook et al. 2000). However, 

for some species, environmental variables may represent both habitat preference (directly) and biotic 

interactions (indirectly) (Orrock et al. 2000). 

Conclusion

Abiotic and biotic landscape (coarse-scale) and quadrat-scale (fine-scale) environmental information 

can be valuable contributors when predicting the occurrence of small mammals. However, the value of 

incorporating fine-scale information will depend on the level of detail it represents. For fine-scale 

variables to be successfully used in SDMs, more detailed descriptive or continuous data collected at 

appropriate scales are required, particularly when interactions between species and environmental 

factors are often unknown prior to field surveys. Where data representing core aspects of a species 

ecology are unavailable, or model complexity is limited by the number of species occurrences, model 

accuracy can still be improved by using high-resolution environmental data. For example, general 

climatic variables, such as rainfall during summer, were found to influence I. o. obesulus and R. f. 

greyi at a fine-scale in this investigation. Ultimately, environmental data used to create SDMs should 

be justified by the ecology of the target species.  
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Abstract 

For investigating potential range shifts in a changing climate it is becoming increasingly common to 

develop models that account for demographic processes. Metapopulation models incorporate spatial 

configuration of occupied habitat (i.e. arrangement, size and quality), population demography, and 

inter-patch dispersal making them suitable for investigating potential threats to small mammal range 

and abundance. However, the spatial scale (resolution) used to represent species-environment 

dynamics may affect estimates of range shift and population resilience by failing to represent stepping 

stones of suitable habitat and refugia, respectively. We aimed to determine whether relatively fine-

scale environmental information and associated model resolution influenced predictions of 

metapopulation persistence and range shift. The case study includes four small terrestrial mammals 

from southern Australia. Species distribution models were constructed using environmental predictors 

measured at 0.01 or 1 km2 resolution and combined with demographic information to parameterise 

coupled niche-population models (using RAMAS-GIS). These models simulated population dynamics 

projected over 40-years under both a stable and changing climate. The total area of predicted available 

habitat was similar at both spatial scales. However, at the fine-scale, more patches were modelled (ca. 

10 times) and were more variable in shape (range in perimeter : area 0.032 at the fine-scale; 0.002 

coarse-scale), leading to increased connectivity between patches (ave. no. patches within dispersal 

distance, < 57 fine-scale; 0 coarse-scale). At the fine-scale, small patches were not more prone to 

extinction (i.e. per cent loss of populations ~ habitat), although species vulnerability was greater 

(higher rate of population decline and lower expected minimum abundance). Despite this, greater 

range shifts were measured at the coarse-scale (for species illustrating a shift at both scales). These 

results illustrate that potential range shifts and species vulnerability information may be 

misrepresented if more advanced modelling techniques that incorporate species demographics and 

dispersal inadequately represent the scale at which these processes occur. 

Introduction

Anthropogenic climate change is forecast to cause contractions in the range of many species of 

mammals (e.g. Levinsky et al. 2007). Whether these changes occur depends on the capacity of a 

species to track a suitable climate envelop within the landscape: a reflection of not just climatic 

suitability, but additional factors including the configuration of suitable habitat and demographic and 

dispersal dynamics within and between patches (Huntley et al. 2010). Depending on these conditions, 

populations may persist, decline or disappear across a species’ range. Metapopulation models provide 

a framework to explore simultaneously the multiple factors that influence species extinction risk 

(including synergistic effects; Keith et al. 2008, Fordham et al. 2012) and have been successfully used 

to explore rates of change in the leading and trailing edges of a species’ range (Anderson et al. 2009).
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Metapopulation models are often underpinned by species distribution models (SDM; Franklin 2010): 

the accuracy and relevancy of which is influenced by the scale (resolution) of environmental data used 

to represent species – environment dynamics (Huntley et al. 2010, Austin and van Niel 2011a, Haby et 

al. 2012). Coarse-scale climate information is considered to be the predominant factor affecting 

species distribution and useful for avoiding biotic interactions (Pearson and Dawson 2003). However, 

climate is most likely to influence species such as small ground-dwelling mammals via resource (food) 

availability (Claridge et al. 2008), which can fluctuate at a finer scale than a species' home range 

(Kotlier and Wiens 1990, Claridge et al. 2002). 

The use of overly coarse environmental information in SDMs can limit the strength of correlation 

between environmental variables and species’ occurrence (e.g. Haby et al. 2012), under-represent 

factors influencing species survival (e.g. human resources on winter opossum survival; Kanda et al. 

2009), and directly affect the predicted extent and distribution of suitable habitat (Kriticos and Leriche 

2010). This includes misrepresenting key microrefugia with stable climates that buffer against 

stochasticity and potentially enable persistence in a changing climate (Randin et al. 2009, Willis and 

Bhagwat 2009, Sublette Mosblech et al. 2011). Microrefugia can be especially important for the 

persistence of poor dispersers (Ashcroft 2010). Using coarse environmental information can also lead 

to low cohesion between patches of suitable habitat that prevent simulated populations from tracking 

suitable habitat in a changing climate (Sondgerath and Schroder 2002, Opdam and Wascher 2004), 

while allowing large scale, extreme weather events to cause large gaps of unoccupied habitat within in 

a species’ range (Opdam and Wascher 2004). Overall, these limitations can lead to underestimates or 

overestimates of extinction risk (Sublette Mosblech et al. 2011). 

Generally, small mammal populations are suitable candidates for metapopulation models because they 

have limited dispersal capacity and short generation times (Olivier et al. 2009). Indeed, a number of 

investigations have focused on metapopulation function and dynamics (e.g. Brito and da Fonseca 

2007), including the potential effects of development and management programs on small mammal 

persistence (e.g. Anderson et al. 2009). The scale of environmental data used to define the spatial 

configuration of available habitat incorporated into metapopulation models may be, however, 

particularly important for small mammals because they may occupy habitat that is not well represented 

by currently available data.  

While fine-scale environmental information used in modelling species’ distributions has previously 

been represented at 1 km2 (e.g. for a rare species, Lomba et al. 2010), we expected finer-resolution 

data to represent a more complex spatial configuration of available habitat (via increased number of 

patches that are more variable in size and shape), leading to improved connectivity between patches to 

facilitate dispersal across the landscape in response to a changing climate. To investigate this, coupled 

niche-population models were constructed in RAMAS-GIS (Akçakaya 2005), and run over 40-years 

of simulated climate change.  These models integrated SDMs built with environmental information 
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sampled at 0.01 or 1 km2 resolution. The 1 km2 ‘coarse’ resolution represents a scale often reported in 

SDM investigations (e.g.,  Lomba et al. 2010), above which little change has been found on 

representing landscape parameters (i.e. between 1-3 km; Price et al. 2010). The 0.01 km2 ‘fine’ 

resolution was expected to better represent the ecology of the species (e.g. dispersal capacity; Table 1), 

and factors driving their patchy occupation of remnant habitat (e.g. Gooch and Haby 2003), while 

being computationally feasible. As a case study, we considered differences and similarities among 

four small mammal species across two regions of southern Australia. Several outputs at each scale 

were compared for each species (as recommended by Beissinger and Westphal 1998) to investigate 

differences in the spatial configuration of available habitat (i.e. patch number, size, shape and 

connectivity), and population vulnerability via: i) rate of change in abundance, ii) expected minimum 

abundance (McCarthy and Thompson 2001), and iii) shifts in regional range centroids and boundary.

Methods 

Study species

The four small terrestrial mammals (two marsupials and two rodents) we modelled have differing 

autoecological and life history traits (Table 1, Appendix XII). Habitat loss and fragmentation for 

agricultural production has resulted in the southern brown bandicoot (Peramelidae, Isoodon obesulus 

obesulus) being listed as endangered (Environment Protection and Biodiversity Conservation Act 

1999), and the yellow-footed antechinus (Dasyuridae, Antechinus flavipes flavipes) and swamp rat 

(Muridae, Rattus lutreolus lutreolus) regionally vulnerable and rare, respectively (South Australia 

National Parks and Wildlife Act 1972). The bush rat (Muridae, Rattus fuscipes greyi) is common.  

Coupled niche-population model

Species presence and absence data and available environmental information were used to generate a 

species distribution model (SDM) for each species. SDMs were combined with a stage-structured 

stochastic and demographically explicit population viability analysis model to create a coupled niche-

population model in RAMAS-GIS (Akçakaya 2005). 

Species presences and absences

SDM are ideally based on presence-absence data (Kent and Carmel 2011), but absences are usually 

unavailable, unreliable or limited (Lobo et al. 2010, Kent and Carmel 2011). The Biological Survey of 

South Australia presents a unique opportunity to extract presence-absence data from an extensive, 

systematic baseline survey of intact, remnant vegetation communities (Heard and Channon 1997, 

Owens 2000). Additional records of occurrence were sourced from local survey and monitoring 

programs, and the South Australian Museum (Biological Databases of South Australia, December 
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2008). Records were limited to those collected using reliable methods (e.g. captures, sightings and 

signs unlikely to be confused with other species), < 100 m location accuracy and post-1970. Species 

absences were represented by biological survey sites that incorporated four nights trapping, using 

Elliott, cage traps and pitfall traps, and failed to capture the target species. This systematic approach 

reduces the risk of including false absences as Rattus spp. are often quick to detect, facilitated by 

Elliott traps being placed in run-ways. Resident Antechinus f. flavipes are often detected within four 

nights (Marchesan and Carthew 2008), while the less abundant I. o. obesulus can also be detected by 

other methods used (e.g. hair tubes and signs of diggings). Finally, to reduce influence of false 

absences and maximise the benefit of a limited number of presences on model outputs, we used the 

Maximum Sum of Sensitivity and Specificity threshold (MSS; calculated in R using 

PresenceAbsence) to identify presences because it has been shown to down weight the influence 

of false-absences (Freeman 2007).

Environmental data

Features within the environment representing climate, topography, soil and vegetation types were 

available in a series of spatial layers (Appendix IV). These spatial layers were resampled to 0.01 and 1 

km2 pixel resolution using ArcInfo 9.3 (ESRI 2009). 

Species distribution model and patch structure

SDMs were constructed using all available occurrence data and environmental variables previously 

found to be correlated with species occurrence (Chapter 1). The generalised linear models (GLM) with 

a binomial error distribution and logit link function were fitted in R v2.13.1 (R Core Development 

Team 2011; www.r-project.org; Chapter 1). The model structure goodness-of-fit was reported as the 

per cent deviance explained relative to the null model (% DE) and performance statistics calculated 

(area under the receiver curve (AUC), Kappa, sensitivity and specificity) using a Maximum Sum of 

Sensitivity and Specificity threshold calculated using the R package PresenceAbsence (Freeman 

2007). The performance of each of these SDMs is evaluated in Appendix XIII.

Each SDM was then predicted across 0.01 and 1 km2 pixel environmental data that included climate 

projections from 2001 to 2041 and the MSS threshold used to convert probability values into binomial 

habitat suitability maps. Habitat patches were then created by grouping pixels of suitable habitat 

within frequent dispersal distance likely to represent contiguous populations using the neighbourhood 

cell distance parameter (Table 1). 
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Stage-matrix parameters

An age-structured post-breeding matrix population model was constructed for each species using 

available information on fertility and mortality of subadult and adults (Table 1). Juvenile mortality 

was then adjusted in a cohort life table until a stable population was reached (Caughley 1977). As 

these species establish independent home ranges that may overlap with individuals with the opposite 

sex, the population demographic models were limited to one sex (females). 

Table 1 Demographic parameters applied in the coupled niche-population models using RAMAS-GIS. This 

process requires a habitat suitability map generated using a species distribution model. Once a threshold value is 

applied, the map represents unsuitable and suitable habitat (0 and 1, respectively) and habitat pixels combined 

into patches using the neighbourhood distance. These patches then form the basis of the population demographic 

model. Where two parameters are presented, the left and right values were applied to the 0.01 and 1 km2 models, 

respectively. 

A. f. flavipes I. o. obesulus R. f. greyi R. l. lutreolus

Species biology

Family Dasyuridae Peramelidae Muridae Muridae

Status VU (Sth Aust.) EN (Aust.) No listing Rare (Sth Aust.)

Weight (g) 21 - 79 400 - 1850 40 - 225 50 - 200

Habitat preference
structurally 

complex

dense and low 

vegetation

dense and low 

vegetation

tall grass and 

sedge

Diet
insectivorous and 

carnivorous
omnivorous omnivorous herbivorous

Shelter
tree hollows, 

Xanthorrhoea spp.

mounds of leaf 

litter, dense shrubs
burrows burrows

Habitat suitability index

Number of recordsb 80:390 or 293 209:426 or 317 198:344 or 260 52:446 or 338

Regions of occurrence 

included in modelsc FP, SE FP, KI, SE EP, FP, KI, SE FP, SE

Threshold (MSS) 0.15a, 0.17a 0.39 a, 0.43a 0.565 a, 0.61a 0.07, 0.115

Neighbourhood 

distance
2.5, 1.5 1.5, 1.5 1.5, 1.5 1.5, 1.5

Population demographic parameters

Life history table / stage matrix

 No. stages 3 (≤ 2 yr) 4 (≤ 3 yr) 3 (≤ 2 yr) 4 (≤ 3 yr)

 Age at first breeding 1 1 1 1

 Fertility (/yr) 

(young*litters/♀)
(8*1)/2 = 4

(3.1*3)/2 = 4.62

Don't breed in 4th

breeding season

(5*3.5)/2 = 8.75

Don't breed in 2nd

breeding season

(5*2)/2 = 5

Don't breed in 3rd

breeding season

SD ± 33.75 % ± 36 % ± 30 % ± 30 %

(cont.)
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(cont.) Table 1

A. f. flavipes I. o. obesulus R. f. greyi R. l. lutreolus

    Survival rates (%)
24.7 (0 – 1)

1.72 (1 yr)

10.5 (0 – 1)

65 (1+ yr)

11.2 (0 – 1)

2.53 (1+ yr)

12.47 (0 – 1)

60.1 (1+ yr)

SD ± 5 % ± 5 % ± 5 % ± 5 %

    Rmax 1.574 (biol.) 1.72 (biol.)
2. 075 (oregan vole; 

biol. 2.25)

1.243 (ave. watervole

muskrat; biol. 1.78)

Initial abundance & 

carrying capacity (K)
2 ha-1, 200 km-1 3 ha-1, 300 km-1 10 ha-1, 1000 km-1 7 ha-1, 700 km-1

Dispersal function, Mij 

= a.exp(-Dijc/b), where 

D is the distance from 

patch i to j

0.8.exp(-Dij0.6/0.24) 0.5.exp(-Dij0.95/0.1) 0.5.exp(-Dij0.6/0.2) 0.5.exp(-Dij0.9/0.1)

Max. dispersal (Dmax) 1.55 km 0.6 km 0.75 km 0.45 km
aThreshold used to convert probabilities into suitable and unsuitable habitat. 
bThe limited number of presences available was retained at both scales by manually inserting missing 

environmental data no longer represented at 0.01 or 1 km2 resolution before the species distribution models were 

created. 
cRegion codes represent Eyre Peninsula (EP), Fleurieu Peninsula (FP) Kangaroo Island (KI) and South East 

(SE).  

Initial abundance, carrying capacity and density dependence

Demographic parameters were sourced from local investigations that generally targeted good quality 

habitats. As a result, all habitats modelled were assumed to represent good quality habitat capable of 

supporting a high density of individuals at carrying capacity (i.e. number of cells*density; Table 1).  

Without considering a range of habitat qualities and the subsequent effect on survival and reproduction 

parameters, the estimated number and size of populations is likely to be overly optimistic (e.g. 

Southwell et al. 2008). In addition, all patches of suitable habitat were allowed to be occupied at the 

start of the simulation (excluding single-pixel populations at the fine resolution; see ‘Stochasticity’ 

below). To ensure a stable metapopulation structure prior to the integration of a changing climate, the 

initial abundance of single-pixel populations were set to 0 at the first time step for models built at the 

fine-scale. The occupancy of these patches would then be driven by immigration during a 20-year 

burn-in period of stable climate preceding each simulation (see ‘Simulation’ below).  Over-estimating 

patch occupancy and animal abundance is not expected to inhibit a relative comparison of model 

function at two scales, however, these results should not be considered absolute representations of 

species distributions. 

Density dependence was assumed as scramble competition (i.e. Ricker logistic), whereby resources 

available to all individuals decrease as abundance of ‘all stages’ increases , affecting all vital rates 

(only survival rate for R. l. lutreolus). The theoretical maximum possible increase of a population 
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completely unconstrained from intraspecific competition (Rmax) was estimated for each species from

literature on their biological constraints, or selected from long-term monitoring programs of species 

with similar biological traits where available (Herrando-Perez et al. Unpubl.).  

Stochasticity

Environmental stochasticity was simulated as a correlated lognormal distribution around survival and 

fertility rates. There was no correlation set between populations, stochasticity in carrying capacity or 

dispersal. 

Dispersal

Field-based programs rarely estimate the proportion of individuals that disperse from natural 

populations or the distance travelled. However, estimates of maximum dispersal were available and 

were used in a negative exponential dispersal functions to calculate the proportion of individuals 

moving between patch edges (i.e. edge to edge dispersal; Table 1). These values  may over-estimate 

actual dispersal capacity represented by a single case within contiguous vegetation (Jacobson and 

Peres-Neto 2010), or underestimate dispersal ability (e.g. for the banner-tailed kangaroo rat; Winters 

and Waser 2003).

Simulation

The coupled niche-population models were constructed at each resolution, for each species, across two 

regions that encompass natural subsets in the distribution of the species (Fleurieu Peninsula and South 

East), using a stable climate scenario and 40-years of climate change based on a no-climate-policy 

reference (no stabilization) scenario (MiniCAM Ref.; Clark et al 2007). Maggicc/Scengen v5 

(Fordham et al. 2012) was used to generate  multi-model climate averged annual forecasts (2001 -

2041) based on  seven general circulation models, previously shown to be suitable for Australia 

(Fordham et al. 2011).  Each simulation incorporated a 20-year burn-in period over a stable climate 

(held constant at 2001 level), followed by 40-years climate change (time step = 1 year) or stable 

climate, and 1000 replications. The only case where these parameters were not applied was for R. l. 

lutreolus in the South East, which were constrained to 35 years climate change due to limitations in 

program capacity when modelling populations at a finer resolution. 

Sensitivity analyses 

Additional sensitivity analyses included indirectly enhancing patch connectivity by increasing 

maximum dispersal (Dmax) to 5 km, but altering the dispersal-distance function to retain the same 

proportion of individuals dispersing (i.e. same area under the curve; SA 1), increased variation in 



44 Scale dependency of metapopulation models

survival rates from 5 % to 10 % (SA 2) and a combination of these (SA 3). Maximum dispersal and 

survival were chosen for the sensitivity analyses to indirectly represent habitat not represented at these 

scales (e.g. along roadsides) that would facilitate dispersal in a fragmented landscape and adult 

survival is the governing vital rate in the stability of r-selected species.   

Evaluating spatial and temporal changes in the metapopulation

Extent and configuration of available habitat 

Differences in the spatial configuration of available habitat were evaluated through their effect on 

range extents and landscape metrics describing the distribution of available habitat at the two scales. 

Landscape metrics such as number of patches, were obtained from RAMAS-GIS output files, and 

additional ‘patch area’ and ‘perimeter-to-area ratio’ metrics in R using packages raster (Hijmans and 

van Etten 2011), maptools (Lewin-Koh et al. 2011) and SDMtools (VanDerWal et al. 2011). The 

‘minimum distance between patches’ exported from RAMAS-GIS was calculated using the R package 

raster. The range medoid of available habitat was generated using a euclidean distance dissimilarity 

matrix across latitude and longitude values of patch centroids within an entire region (i.e. the number 

of clusters equalled 1; using R package cluster (Maechler et al. 2011). 

Shifts in range centroids and margins

The range centroid of occupied habitat was derived from RAMAS-GIS output files at the first and last 

time step and the northern, southern, eastern and western range extents were calculated from the 

centroids of occupied patches (using the ‘GetMeans’ and ‘GetNonzeroPoints’ tools available at 

purl.oclc.org/globalecology/ramas/). The ‘GetMeans’ tool extracts from RAMAS-GIS output files the 

centroid of occupied populations at the initial time step and measures the relative shift for each 

subsequent time step. The ‘GetNonzeroPoints’ tool extracts the centroids of populations (i.e. occupied 

habitat), enabling the northern, southern, eastern and western populations to be identified. All spatial 

coordinates were converted back to latitude and longitude (GDA 94) in Microsoft Excel for 

comparison with available habitat.

Metapopulation abundance and patch occupancy

Changes in the abundance of individuals and populations were extracted from RAMAS-GIS. The rates 

of decline (or increase) in the number of populations and individuals over time were explored using a 

simple linear regression in R. Patch occupancy was explored as a function of patch metric variables 

using a non-parametric Cox proportional hazards regression (survival package in R; Lumley 2011), 

which accounts for time dependent data and the 40-year, right-censored data. The overall model 

structure goodness of fit was reported as the per cent deviance explained relative to the null model (% 
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DE), along with the predictive capacity represented by the Akaike's Information Criterion (corrected 

for small sample sizes, AICc) and relative model weight (wAICc). The explanatory strength (relative 

importance) of each variable in describing the average occupancy duration of a patch was calculated as 

the combined change in deviance explained when each variable was removed from the saturate model 

and added to the null (intercept only) model (Garnett and Brook 2007).  

In addition, the expected minimum abundance was extracted from RAMAS-GIS, which provides a 

measure of species vulnerability more resilient to changes in mean population growth rate than 

extinction risk (McCarthy and Thompson 2001). 

Results 

Effect of patch metrics on the duration of local occupancy

Habitat area estimated according to fine-scale SDMs was similar to that estimated at the coarse-scale 

(Table 2). Differences in estimates of areas occurred between species; a larger area was estimated at 

the fine-scale than coarse-scale in one case (R. l. lutreolus, FP), similar area in two cases (A. f. 

flavipes, FP; R. l. lutreolus, SE), and smaller area by approximately 10 % for three cases (I. o. 

obesulus, R. f. greyi, FP), or 21 % and 35 % for the remaining cases (R. f. greyi, SE and A. f. flavipes, 

SE, respectively; Appendix XIII). The general similarity of habitat area between scales was reflected 

in the initial total number of individuals (slightly scaled for each species; Fig. 1a), but not in the total 

number of patches and occupied populations which were an order of magnitude higher at the finer 

scale (Fig. 1b, Table 2).

Available habitat was found to be more irregularly shaped at the fine-scale than at the coarse-scale, 

based on the greater perimeter-to-area ratios (Table 2) and lower correlation between patch area and 

perimeter-to-area ratio (mean Pearson's r -0.36 and -0.66, respectively). This enabled greater 

opportunities for dispersal between neighbouring patches, with no dispersal possible at the coarse-

scale (i.e. distance between patches exceeded maximum dispersal capacity; Table 2).

At the fine-scale, environmental stochasticity drove local extinctions in the stable population 

demographic models within the 40-years of stable climate simulations for each species. This enabled 

patch occupancy (i.e. ‘duration of local occupancy’) to be explored as a function of landscape metrics. 

Larger and less-isolated patches (influenced by irregular shape and the presence of small patches of 

suitable habitat to act as ‘stepping stones’) were expected to persist for longer. Patch occupancy was 

most strongly correlated with patch area, followed by the perimeter-to-area ratio (X-CH; Fig. 2). 

Average patch occupancy duration was strongly correlated with minimum distance between 

neighbouring patches for the more mobile woodland generalist A. f. flavipes and R. f. greyi. 
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The strength of correlation between patch occupancy during climate change and patch metrics was 

weaker relative to the stable climate scenario, illustrating an indiscriminate effect of climate change on 

population persistence at a regional scale (CH; Fig. 2). 

Effect of scale on persistence and population dynamics in a changing climate

Over 40-years of simulated climate change, the number of small mammals declined at both scales (Fig 

1a). The rate of decline was lower at the fine-scale (especially in the FP; Table 2, Appendix XIII), but

was associated with greater population loss (Table 2) and lower median expected minimum abundance 

(%) after 40-years of simulated climate change (Fig. 3), especially in the South East. These results 

were obtained despite more frequent movement of animals into available patches generated as a 

consequence of fragmentation, new habitat becoming suitable within dispersal distance or 

recolonisation of previously suitable habitat (Fig. 1b, Table 2). Results obtained from the sensitivity 

analyses supported elevated metapopulation abundance for some species at the fine-scale in response 

to increased dispersal capacity (SA1, SA3; Appendix XIV).

Fleurieu Peninsula: 0.01 km2 1.0 km2 South East: 0.01 km2 1.0 km2

Fig. 1  Number of a) individuals, and b) populations simulated over 40-years of projected climate change using 

coupled niche-population models incorporating environmental information at two scales of spatial resolution 

(0.01 and 1 km2). Temporary peaks (e.g. A) indicate time steps where habitat suitability of many pixels falls 

below threshold, leading to a substantial alteration in the configuration of available habitat and temporarily 

increasing the number of transitional populations. Unsustainable populations perish in the subsequent time steps. 

The absence if these peaks from trends at the coarse resolution are an additional reflection of low metapopulation 

function.

0

1

2

3

0 20 40

N
o.

 a
ni

m
al

s 
(x

 1
00

00
0) a. number of  animals

0 20 40 0 20 40 0 20 40

0

1

2

0 20 40

N
o.

 p
op

ul
at

io
ns

(x
 1

00
0)

b. number of populations

0 20 40 0 20 40 0 20 40

A



Scale dependency of metapopulation models 47

Table 2  Summary of the a) initial habitat and population, and b) changes over 40-years of projected climate 

change (1000 simulation iterations, for the species' range on the Fleurieu Peninsula and South East. Values are 

calculated across species and include the average (SD) or median (min-max) values. More detailed values are 

provided in Appendix XIII. 

Fleurieu Peninsula South East

resolution: 0.01 km2 1.0 km2 0.01 km2 1.0 km2

a. Initial spatial configuration of available habitat and number of occupied patches:

Ave. habitat area (km2) 193 (121) 199 (128) 221 (212) 244 (198)

Ave. no. patches 1123 (148) 72 (41) 919 (1112) 98 (83)

Ave. no. popn1 943 (238) 72 (41) 787 (899) 98 (83)

Ave. max no. patches within 

dispersal dist. 

57 (56) 0 (0) 17 (7) 0 (0)

Median patch area (hectares)
2.75 

(1-4246)

100 

(100-3675)

3.75 

(1-2947)

125 

(100-3425)

Median p:a ratio
0.032 

(0.008-0.04)

0.004 

(0.002-0.004)

0.028 

(0.002-0.04)

0.004 

(0.002-0.004)

Median distance between 

patches (km)

0.3 

(0.2-5.7)

3.6 

(1.8-15.2)

0.3 

(0.2-7.8)

2.6 

(1.8-14.7)

b. Changes following 40 years of climate change: 

Total available habitat that is 

occupied (%)
78 (27) 92 (4) 73 (14) 92 (4)

Patch no. (%) -55 (30) -41 (28) -23 (22) 11 (88)

Habitat area (%) -67 (24) -47 (35) -35 (18) -16 (18)

Population no. (%) -44 (38) -37 (29) -25 (22) -15 (23)

No. new populations created 744 (417) 15 (10) 168 (74) 8 (6)

Ave. abund. animals yr-1 -1329 (2041) -3733 (2497) -897 (918) -804 (1304)

No. occupied popns yr-1 -9 (9) -1 (1) -5 (5) 0 (1)

Expected minimum 

abundance (%)
37 (25) 49 (30) 64 (14) 78 (15)

1Averaged from 1000 simulations over the burn-in period 

The difference between habitat loss (%) and the decline in the number of populations (%) indicates 

increased fragmentation of populations at both scales (Fig. 4). There was no indication that a loss of 

smaller populations was more prevalent at the fine-scale.    

Range shift to track habitat availability

The largest shifts in the range centroid (influenced by both the extent and density of occupied 

populations) were towards the north-east (higher elevation) in the Fleurieu Peninsula and south-east in 

the South East region (Fig. 5). At the finer scale, predicted changes in the range centroid (unweighted 

by abundance) were often less than observed at the coarse-scale (more resilient), but detected 

additional changes for A. f. flavipes (more sensitive; Fig. 5). This was also the case for detecting 
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changes in the centroid of available habitat (Appendix XV), which in most cases, shifted NE or SE at a 

faster rate than occupied patches. Results obtained from the sensitivity analyses generally agreed with 

these values (Appendix XV).

The NE range shift in the Fleurieu Peninsula and SE shift in the South East coincided with contracting 

SW and NW range edges, respectively, for some species (Fig. 6, Appendix XVI). At the fine-scale, 

contractions were lower than illustrated at the coarse-scale in the Fleurieu Peninsula, while the reverse 

was true for the South East. More instances of range contractions in available habitat were also 

detected at the fine-scale (i.e. R. l. lutreolus in the Fleurieu Peninsula and A. f. flavipes in the South 

East; Appendix XVI).  

Fig. 2  Average (SD) strength of each 

landscape variable in explaining the patch  

occupancy predicted during the stable 

climate (X-CH) and 40 years of projected 

climate change (CH) at 0.01 and 1 km2

resolution (there was insufficient 

environmental variability to cause local 

extinctions at 1 km2 in the X-CH 

scenario). Variables include the natural 

log of patch area, perimeter-to-area ratio 

and minimum distance between patches. 

These variables were uncorrelated at 0.01

km2, but correlated at 1 km2 (mean 

Perason's r -0.36 and -0.66, respectively). 

Patch metrics from transitional 

populations are not included.

Fig. 3  Difference between per cent

expected minimum abundance (EMA) 

at 0.01 and 1 km2 following 40-years 

of climate change.
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Fig. 4  Test for bias in loss of small 

populations (decline in number of 

populations > decline in available 

habitat). A greater loss of small 

populations at the fine-scale is not 

evident. Instead, a greater loss in 

available habitat (%) than number of 

populations (%) indicating increased 

habitat fragmentation is shown across all 

scales and regions. 

Fleurieu Peninsula South East

Fig. 5 Shift in the centre-point of occupied habitat at 0.01 and 1 km2 resolution (solid 

or hollow symbols, respectively), in the two study areas: Fleurieu Peninsula and South 

East. Shift is greater at the coarse resolution for species illustrating a shift at both 

scales, contrary to evidence supporting increased patch connectivity at the fine-scale 

(i.e. greater number and variability in shape within dispersal distance). Species are 

represented by diamonds (I. o. obesulus), triangles (A. f. flavipes), squares (R. f. greyi) 

or circles (R. l. lutreolus). 
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Fleurieu Peninsula South East

Fig. 6  Contractions in the extent of 

occupied habitat at 0.01 km2 (grey solid 

line) and 1 km2 resolution (dark grey dashed 

line), within the Fleurieu Peninsula, and 

South East. Contrary to expectations greater 

contractions were detected at the coarse-

scale in the Fleurieu Peninsula. Only minor 

range expansions were predicted (positive 

values). In the South East, expansion in the 

south-easterly direction is constrained by 

the coast (south) and this investigation being 

constrained by a state boundary (east). 

Discussion

This investigation detected a number of scale-dependent inconsistencies that related small changes in a 

landscape populated by fewer, more isolated populations with greater estimated rates of decline in the 

number of individuals and range shift (when detected) using coarse-scale environmental information.  

At both scales the average total area of available habitat and maximum patch size were similar (Table 

2). However, patches of available habitat defined at the fine-scale were i) much greater in number (ca 

10 times) and included small patches that may act as stepping stones for shifting populations, ii) more 

irregularly shaped (greater range of p:a values), iii) had a greater core area (max p:a 0.04 at a fine-

scale; 0.004 coarse-scale), and iii) were more often within dispersal distance (>200 m fine-scale; 

>1800 m coarse-scale). 

The greater number of populations modelled at the fine-scale declined at a faster rate (Table 2) and 

had a lower expected minimum abundance (Fig. 3). The higher vulnerability of populations at this 

scale may reflect the increased sensitivity of small populations to stochastic extinction events (e.g. 

containing 10-20 individuals; Brito and da Fonseca 2007), which can increase the extinction risk of 

metapopulations comprised of small populations (Forys and Humphry 1999). However, a greater rate 

of loss of small populations relative to habitat fragmentation is not supported in this investigation (Fig. 

4). This is reassuring as colonisations of very small populations can aid in species’ persistence (Crone 
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et al. 2001). Furthermore, the abundance of individuals declined at a slower rate (Table 2), suggesting 

higher resilience in this parameter when measured using finer-scale models.  

The faster rates of decline in the number of populations estimated at the fine-scale were associated 

with higher rates of translocations caused by fragmentation of existing patches, dispersal to newly 

available habitat or recolonisation of previously occupied habitat. There were several indications of 

increased translocation, including i) a sharp increase in population abundance in response to a sudden 

loss of habitat and subsequent change in habitat configuration (e.g. Fig 1 “A”), ii) a greater number of 

transitionary populations (Appendix XIII), iii) increased rates of fragmentation (Fig. 3), and iv) 

increased occupation of available habitat in response to altered dispersal capacity (i.e. SA 1 and 3; 

Appendix XIV). 

Increased translocation implies increased cohesion within the metapopulation with the potential to 

facilitate inter-patch movements and range shift (Opdam and Wascher 2004). Based on this, we would 

expect range shifts to be greater at a fine-scale than coarse-scale. This was the case for one species that 

was not detected to shift at the coarse-scale (A. f. flavipes), however, lower range shifts were predicted 

for species illustrating a shift at both scales (Fig. 5). The exaggerated range shifts at the coarse-scale 

supports the assertion that coarse environmental data risks overestimating species’ extinction risk 

(Austin and van Niel 2011b). 

Although potentially more realistic, models that integrate climate, habitat, demographic and 

population dynamics, especially at fine spatial scales, obviously require more data (Huntley et al. 

2010), in particular, demographic information such as population growth rates and vital rates (e.g. 

Coulson et al. 2001), habitat requirements, availability and quality (Southwell et al. 2008), and 

information on inter-patch dispersal (Jacobson and Peres-Neto 2010). This information is likely to 

influence estimates of species persistence in different ways. Empirical investigations have illustrated 

the influence of patch size on occupancy, patch area, habitat quality and distance to ditches on 

extinction risk, and connectivity and patch occupancy on recolonisation rates (e.g. muskrats; Schooley 

and Branch 2009). 

Overall, the coupled niche-population models showed the highest sensitivity to climate change for R. f. 

greyi, followed by I. o. obesulus, R. l. lutreolus and A. f. flavipes (based on the per cent loss of 

populations and habitat, Appendix XV; range shift, Fig. 5 and contractions of range edge, Fig. 6). This 

ranking is the reverse of SDM predictive capacity (% DE; Appendix XIIa), but reflects species SDMs 

influenced more by climate variables, indicating additional environmental variables can confound 

predictions (e.g. topographic, soil and vegetation variables for the wet-heath specialist, R. l. lutreolus 

and A. f. flavipes). The importance of fine-scale information representing habitat geometry and quality 

and subsequently population demography and dispersal potential has empirical support across a 

variety of additional taxa (e.g. Löbel et al. 2006, Hokit et al. 2010, Baguette et al. 2011).
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This investigation focused on a relative comparison of multiple points of reference to determine the 

influence of scale on metapopulation persistence, function and shift in a changing climate. We found 

greater inter-patch dispersal, lower rates of decline (in individual abundance) and range shift 

represented at the fine-scale. Consequently, where little is known of the ecology of a species to 

parameterise a metapopulation model, environmental information is too coarse to enable dispersal and 

regions where the effects of climate change may over-ride the influence of landscape metrics on patch 

occupancy (as indicated in this investigation; Fig. 2) we recommend simple SDMs be used to 

approximate species’ distributions. 
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Abstract 

The direct and synergistic effects of anthropogenic climate change are forecast to cause temperatures 

to rise and rainfall to become less reliable, threatening many species. Hot and highly variable rainfall

already defines the climate of arid Australia, leading to the evolution of various physiological and 

behavioural adaptations by small mammals to survive in this environment (e.g. insectivorous diets, 

torpor, nocturnal activity and sheltering in burrows). Features within the landscape associated with 

these traits may be critical for predicting the distribution of arid species. Here we explored the 

contribution of landscape and quadrat-scale environmental variables, sampled up to 10 000 m from 

known records, in a range of small mammal species distribution models (SDMs). The inclusion of

landscape variables increased the per cent deviance explained (% DE) in species occurrence by up to 

55.2 % using generalised linear modelling (GLM) and 24.7 % using boosted regression trees that 

included complex, non-linear interactions (BRT). These improvements were supported by increased 

discrimination of species occurrence in an out-of-sample cross-validation (i.e. area-under-the curve, 

Kappa) for Antechinomys laniger, Dasyuroides byrnei and Notomys cervinus. For these species, model 

performance (% DE) increased with the resolution of environmental data used (< 5 000 m for the 

endemic D. byrnei), reflecting a coarse-scale relationship with distance to watercourse (e.g. at 1 000 

m), but masking a fine-scale relationship with rainfall during winter (at 150 m). Our results show that 

additional (landscape) features can be more important than climate variables in predicting the 

distribution of arid mammals within their existing range. Useful variables included environmental 

gradients that vary over finer scales (i.e. strata richness or cover). However, species–environment 

correlations varied across scales, indicating while additional data may be useful at coarse scales, 

accurate fine scale data may be required to represent climate–species relationships. 

Introduction

Anthropogenic climate change is forecast to produce a warmer, drier and more variable climate in 

Australia (Dunlop and Brown 2008); potentially leading to the loss of many native species (Williams 

et al. 2003; Sander and Wardell-Johnson 2011). However, the mean and variability in temperature and 

rainfall differ between regions (CSIRO and Bureau of Meteorology 2007). Arid environments are 

defined by high temperatures, intense solar radiation, lack of water and high evaporation rates 

(Bartholomew and Dawson 1968), with high spatial and temporal variability (Morton et al. 2011). 

These factors have a strong influence on biotic resource productivity and availability (Kotler and 

Brown 1988). In order to exploit these unpredictable environments, small mammals have had to be

flexible and adaptive. 

Small terrestrial mammal communities within the arid zone of Australia are dominated by dasyurids

(Dasyuridae) and rodents (Baverstock 1982; Morton 1982). Species have evolved to consume a 

broader range of foods (i.e. insectivorous and carnivorous dasyurids; Bartholomew and Dawson 1968; 
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Baverstock 1982), produce more concentrated urine (esp. rodents; Baverstock 1982), store fat in their 

tail (Morton 1982), have thicker fur (Dawson and Dawson 1982), produce more than one litter a year 

(Morton 1982), and/or undergo torpor to conserve up to 97 % of metabolic energy (dasyurids only; 

Morton et al. 1989; Geiser and Kortner 2010). Additional behavioural adaptations that aid species' 

persistence in these harsh environments, include nocturnal activity (Bartholomew and Dawson 1968), 

use of burrows and plant cover for shelter (Bartholomew and Dawson 1968; Baverstock 1982; Morton 

1982), nest sharing (including Sminthopsis crassicaudata with Mus musculus; Wallis 1982), and 

increased mobility in the landscape (Morton 1982).

As a result of these multiple adaptations, the influence of rainfall on species survival is confounded by 

complex interactions that vary across species, space and time (Foulkes et al. 1995; Dickman et al. 

1999; Thibault et al. 2010; Morton et al. 2011). Rainfall increases primary productivity and 

availability of food resources: followed by eruptions of desert rodents and to a lesser degree dasyurids, 

and their predators (Predavec 1994; Letnic et al. 2005; Haythornthwaite and Dickman 2006). 

Although species responses might follow a lag period (e.g. Dickman et al. 2001), or be further 

influenced by interspecific interactions influencing population demographics (Abramsky 1988; Letnic 

et al. 2005; Lima et al. 2008). 

Some of these relationships can be adequately or best represented using coarse-scale environmental 

data. Species can respond to large-scale climatic events with long-term environmental variation (e.g. 

rodent abundance has been correlated with El Nino Southern Oscillation; Brown and Heske 1990;

Letnic et al. 2005; Orland and Kelt 2007; Magnusson et al. 2010). Large-scale topographic features 

can also influence small mammal abundance and diversity through providing refuge habitat (e.g. 

active or inactive floodplains, respectively; Finlayson 1939; Denny 1975; Ellison and van Riper III 

1998); distribution (e.g. high ground during floods; Dickman et al. 1993); foraging behaviour (e.g. 

kangaroo rats; Sullivan et al. 2001) and movement (i.e. along low-lying floodplains, claypans and 

gibber plains; Finlayson 1939). 

However, environmental gradients can also vary at much finer scales. Rainfall regimes can differ 

within 50 km (Letnic and Dickman 2005) or less, with most rainfall coming from thunderstorms less 

than 8 km in diameter (Noy-Meir 1973). At even finer scales, micro-relief (2cm) can influence 

flooding and vegetation growth (Williams 1982; Tongway and Hindley 2004), and combined with the 

influence of soil, provide suitable microclimates for shelter, nesting material and prey (e.g. cracks and 

burrows; Hoover et al. 1977; Read 1984): influencing foraging (e.g. Sminthopsis spp. in cracking clay 

soil cracks or granivores via soil particle size; Read 1984; Kotler and Brown 1988), caching and 

pilfering behaviour of small mammals (e.g. desert rodents; Swartz et al. 2010). As a result, 

characteristics of the microhabitat (“small-scale, fine-grained, and quantifiable variation in floral and 

edaphic characteristics of communities”) can act on species independently of macrohabitat (e.g. in 

rodent species composition; Stevens and Tello 2009). 
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Finally, species persistence in the arid zone is likely to be facilitated by metapopulation dynamics 

(Brandle and Moseby 1999), including local extinctions (e.g. 1-3 km from suitable habitat; Milstead et 

al. 2007), and dispersal (facilitated by rainfall) from suitable (refuge) habitat (Dickman et al. 1995;

Dickman et al. 2011). These dynamics may only be recognisable at fine scales (Kotler and Brown 

1988).

As vegetation and soil influence resources available for small mammals, we propose a) additional 

(landscape) features are more important than climate variables in predicting the distribution of arid 

mammals within their existing range, and b) that these correlations are stronger at finer scales despite 

animals being relatively mobile. To investigate these hypotheses, we evaluated model performance (fit

to observations, and predictability in a cross-validation) for a climate-only and a climate-and-

landscape variable model, for five small ground dwelling mammals. We then assessed the predictions

of a set of a priori models, created using available landscape and quadrat-scale variables, sampled at 

increasingly distant sites from the original species record (i.e. 150 m, 500 m, 1 000 m, 5 000 m and 10 

000 m) for five small mammals in the Channel Country of Australia. Identifying environmental factors 

that have a proximal, direct influence on species occurrence is critical in determining robust SDMs 

required for predicting the effects of climate change (Austin 2002), especially for species that have 

evolved strategies to survive in climatically unpredictable environments. 

Methods

Study area and species

We targeted five species of small mammal within several arid sub-regions of the Channel Country 

Interim Biogeographic Regionalisation of Australia region (Fig. 1, Appendix XVII). The climate is 

defined by hot dry summers and short, dry, moderately cool winters (Brandle 1998). Rainfall is 

temporally and spatially highly variable (Allan 1982). Geological features include stony (gibber) 

plains, rocky outcrops and sand ridges and plains intersected by ephemeral creeks and permanent 

water holes (Morton 1982; Brandle 1998). This area supports a high diversity of patchily distributed 

habitats with unique floristic or structural composition, dominated by low open chenopod shrubland 

and grassland (Brandle 1998; Williams 1982). In this region soil texture and landform type have been 

correlated with plant diversity that together influence the small mammal community (Brandle 1998). 

The species we modelled included two species endemic to the Channel Country IBRA region (a 

carnivore, Dasyuroides byrnei, Dasyuridae, and a granivore Notomys cervinus, Muridae) and three 

widespread but uncommon species (two insectivores Antechinumys laniger and Sminthopsis 

macroura, Dasyuridae, and an omnivore Leggadina forresti, Muridae; information on individual 

species’ ecology is provided in Appendix XVII).
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Fig. 1   This investigation targeted species 

occurrence and environmental information from the 

South Australian extent of the Coongie (6), 

Diamantina-Eyre (4), Lake Pure (7) and the Sturt 

Stony Desert (2) Interim Biogeographic 

Regionalisation of Australia (IBRA) sub-regions of 

the Channel Country region (defined in Appendix 

XVII).

Species presence and absence and environmental data

Species occurrence was initially determined from a baseline inventory of the distribution of South 

Australia’s flora and fauna (Dataset 1; Biological Databases of South Australia, December 2010). This 

inventory contains data from a variety of sources, including the Biological Surveys of South Australia 

(BSSA; Heard and Channon 1997; Owens 2000). Presences were represented by records collected 

using reliable methods, < 100 m location accuracy and post-1980 (Appendix XIX). Absences were 

defined as BSSA survey sites trapped for a minimum of four nights, using Elliott traps and pit fall

traps, that failed to capture the target species (see p12). 

To permit species-environment relationships to be modelled at multiple scales, a second dataset was 

used (Dataset 2). ‘Presences’ were reclassified as BSSA survey sites within a radius of  150 m, 500 m, 

1 000 m, 5 000 m and 10 000 m of a known species record locality (more detail provided in Haby et 

al. 2012). As more sites were generally within the radius of known records at greater distances, the 

number of presences increased with resolution. BSSA survey sites that were more than the specified 

distance from a known record locality remained ‘absence’ sites. 

Presence and absence data were used to sample information from a selection of climate, topography, 

soil and vegetation data available from vector and raster spatial layers using ArcInfo 9.3 (ESRI 2009; 

Appendix IV). 
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Comparison of climate-only and abiotic-and-biotic landscape variable models (dataset 1)

Model selection

The initial dataset (excluding the 20 % reserved for out-of-sample validation) was used to construct 

models that specified species distribution as a function of available climate variables (RS, RW) 

(Model 1) or combination of abiotic (RS, RW, E, lnWC and PAWHC) and biotic (GEN) landscape 

variables (Model 2; Appendix IV). 

Species occurrences were modelled with generalised linear models (GLM) using a binomial error 

distribution and logit link function, fitted in R v2.8.0 (R Core Development Team 2009; www.r-

project.org). Overall model structural goodness of fit was assessed based on the per cent deviance 

explained relative to the null model (% DE). The best-supported model was identified using Akaike’s 

Information Criterion (corrected for small sample sizes) and Bayesian Information Criterion, both 

represented as relative model weight (wAICc, wBIC). 

To allow non-linear species response curves to be fitted, a complementary regression approach was 

also used; boosted regression trees (BRT) (Guisan and Zimmermann 2000). BRTs were fitted using 

the R package ‘GBM’ (Elith et al. 2008; Ridgeway 2009). Optimal tree complexity and learning rate 

were selected by within-sample cross-validation for each species (Appendix XXa), bag fractions were 

set at 0.5 and the relative proportion of deviance explained by each model was calculated from the 

summary statistics (J. Elith, University of Melbourne, pers. comm., 2009).

Cross-validation

Cross-validation was done on the remaining 20 % of data to test the predictive ability of the SDMs 

fitted via GLM and BRT; implemented using R packages ‘PresenceAbsence’ (Freeman 2007) and 

‘GBM’ (Elith et al. 2008; Ridgeway 2009). Several species had low prevalence in the cross-validation

dataset (0.01-0.30), increasing the problem of variable validation statistics and difficulty in assessing 

performance (Meynard and Quinn 2007; Liu et al. 2005). Therefore, three methods were used to 

evaluate relative predictive performance: a) the mean difference between the predicted probability of 

occurrence and the actual value (0 or 1), b) the area under the receiver-operating characteristic curve 

(AUC) (independent of prevalence, Manel et al. 2001), and c) Kappa, sensitivity and specificity 

statistics (Fielding and Bell 1997). The last three statistics required probability values to be 

transformed into predicted presence and absence values by specifying a Maximum Sum of Sensitivity 

and Specificity (MSS) threshold (calculated using the R package ‘PresenceAbsence’; Freeman 2007), 

recommended for small datasets (Jiménez -Valverde and Lobo 2007). 
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Checking for model bias

To determine whether model bias affected estimates of Kappa, sensitivity and specificity and their 

subsequent trends when comparing between models, the predicted values were compared to the mean 

of each statistic’s empirical distribution, generated by re-applying the two models to 1 000 

bootstrapped samples from the original dataset.

Evaluating variable contribution

The explanatory strength (relative importance) of each variable in describing the five species’ 

distributions was calculated as the combined change in per cent deviance explained (% DE) when each 

variable was removed from the saturated GLM and added to the null (intercept only) GLM (following 

Garnett and Brook 2007). For comparison, the ‘relative influence values’ presented in BRT summary 

outputs (Elith et al. 2008) are also presented. 

Comparison of mixed landscape and quadrat-scale variable models (dataset 2)

Using the second dataset, a series of simple candidate models was derived a priori to represent a 

gradient of increasing emphasis on finer-scale and biotic information, including a climate-only 

landscape model (RS, RW), an abiotic landscape variable model (RS, lnWC, PAWHC), a mixed 

abiotic and biotic landscape variable model (including GEN), and a mixed abiotic and biotic landscape 

and quadrat-scale variable model (C2, SD; Appendix IV). Species occurrence was represented by 167 

sites (2 to 50 presences). To reduce the issue of over-fitting, we restricted the dimensions any given 

model to at least 10 records per fitted parameter (see Wintle et al. 2005) and avoided using correlated 

variables (r > 0.6) in the same candidate model. The candidate SDMs for each species were originally 

generated using 150 m resolution data and linear and nonlinear modelling approaches and compared 

using the methods specified above in R v2.8.0 (R Core Development Team 2009; Appendix XXb).  

Model and variable performance at multiple scales (dataset 2)

To determine whether the resolution of environmental data affected our ability to model species 

distributions accurately, we also fitted GLMs using the 500 m, 1 000 m 5 000 m and 10 000 m 

resolution datasets. The model fitted to each of these datasets contained the same terms from the most 

parsimonious GLM (based on AICc) identified using the ‘within 150 m’ data (and its corresponding 

set of single variable models). We calculated the difference in overall model fit by subtracting the 

value derived when using the 150 m and 500 m datasets from the 1 000 m dataset (Haby et al. 2012). 
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Results

Influence of additional landscape variables on SDM performance

Model performance

Overall, the climate-only GLM (Model 1) explained less than 4.5 % of the deviance in species’ 

occurrence (Table 1). A further 5.2 – 55.2 % of deviance was explained across species after 

incorporating additional landscape variables into the model (Model 2; Table 2). The wAICc values 

showed Model 2 to be the highest-supported model for A. laniger, D. byrnei and N. cervinus. The

stronger penalty of additional parameters in Model 2 applied using wBIC resulted in a disagreement 

between the wAICc and wBIC values for L. forrest, suggesting a less parsimonious representation of 

variation in the occurrence of this species (Table 1). However, BIC-selected models based on small to 

modest sample sizes (~22 to 200 samples), as used in this investigation, can be biased (Burnham and 

Anderson 2004).   

Table 1   Explanatory strength of null and a priori generalised linear models (GLM) and boosted regression 

trees (BRT) containing climate-only (Model 1: Species ~ RS + RW) or climate and landscape parameters 

(Model 2: Species ~ RS + RW + E + lnWC + GEN + PAWHC; see Appendix IV for variable definitions). 

Shown are the number of parameters (d.f.), minimised negative log-likelihood (-LL), Akaike’s information 

criterion (corrected for small sample sizes) and Bayesian Inference Criterion represented as the difference from 

the highest-ranking model (ΔAICc, ΔBIC), weight scaled to a sum of 1 (wAICc, wDIC), and the per cent 

deviance explained (% DE) by the model relative to the null for each method. 

model d.f. -LL ΔAICc wAICc ΔBIC wBIC
% DE  

GLM

% DE 

BRT

A. laniger (41 presence : 117 absence sites, 158)  (prevalence 0.26)

Model 1 3 -86.3 70.8 0.00 53.5 0.00 4.5 29.5

Model 2 9 -44.4 0.0 1.00 0.0 1.00 50.9 43.6

D. byrnei  (19 presence : 127 absence sites, 146) (prevalence 0.13)

Model 1 3 -55.7 45.9 0.00 29.1 0.00 1.3 18.5

Model 2 9 -26.3 0.0 1.00 0.0 1.00 53.4 43.2

L. forresti (24 presence : 106 absence sites, 130) (prevalence 0.19)

Model 1 3 -61.2 3.3 0.12 7.8 0.02 1.6 7.6

Model 2 9 -53.1 0.0 0.56 20.7 0.00 14.7 6.3

N. cervinus (19 presence : 126 absence sites, 145) (prevalence 0.13)

Model 1 3 -56.3 49.1 0.00 32.4 0.00 0.0 43.0

Model 2 9 -25.2 0.0 1.00 0.0 1.00 55.2 55.2

S. macroura (45 presence : 89 absence sites, 134) (prevalence 0.34)

Model 1 3 -84.6 2.3 0.23 8.0 0.02 1.1 2.2

Model 2 9 -80.1 6.7 0.03 28.4 0.00 6.3 2.9
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The climate-only BRT models, which allow implicitly non-linear responses and interactions, 

explained greater variation in species occurrence for  all climate-only GLMs (Table 1). However, 

additional landscape variables improved model-fit (0.7 – 24.7 % DE), especially for A. laniger, D. 

byrnei and N. cervinus (> 12.2 % DE).  

Cross-validation predictive performance and model bias

Additional abiotic and biotic landscape variables predominantly improved the classification of A. 

laniger, D. byrnei and N. cervinus occupancy as illustrated by both increased AUC (Fig. 2) and Kappa 

(Appendix XXI), although, Kappa closely reflected specificity, indicating these validation statistics 

were affected by the low prevalence of species records, despite using the MSS threshold.

To identify bias in the Kappa, sensitivity and specificity, the estimated validation statistics were 

compared to the mean of their empirical distributions. Estimates were least biased for species with

good model and predictive performance (i.e. D. byrnei, A. laniger and N. cervinus; Appendix XXII). 

Bias was detected in the estimates for A. laniger (inflating M2 sensitivity), the data-poor N. cervinus  

(inflating M2 Kappa), and species with poor model performance: L. forresti (inflating sensitivity and 

lessening specificity of M1) and S. macroura (inflating sensitivity and lessening specificity of M2; 

Appendix XXII). The effect of this bias on the direction of trends discussed was negligible for N. 

cervinus, but masked lower sensitivity of M2 for A. laniger and improved sensitivity of M2 for L. 

forresti. 

Fig. 2   Out-of-region predictive performance, 

measured as the difference between area under the 

curve (AUC) values obtained from the prediction of 

occupancy for Model 1(M1) and Model 2 (M2) using

generalised linear modelling (GLM, black) and 

boosted regression trees (BRT, grey; Table 1). AUC 

values range from 0.5 to 1.0, representing random 

discrimination by the model to perfect discrimination, 

respectively (Fielding and Bell 1997). Error bars are

calculated as standard deviation. 

GLM BRT

Identifying influential variables

Distance to watercourse or body (lnWC) was the top ranking variable explaining species’ occurrence

using both GLM and BRT (Table 2). This variable was followed by soil water holding capacity of the 
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solum (PAWHC), broad vegetation community (GEN) and rainfall during summer (RS) using GLM, 

or rainfall during winter (RW), RS and elevation (E) using BRT. Variable effect size (coefficient and 

standard error) indicated useful contributions particularly from lnWC for modelling the occurrence of 

A. laniger, D. byrnei and N. cervinus; RS for A. laniger and PAWHC for A. laniger (Appendix XXIII).

Value of additional quadrat-scale biotic variables

Abiotic and biotic landscape and quadrat-scale variables explained substantial variation in the 

presence of some of the species. The abiotic variables lnWC and PAWHC contributed to the model of 

best fit (top ranking model based on % DE and wAICc) for A. laniger, D. byrnei and N. cervinus (M2 

GLM; Table 3). GEN was present in the top-ranking L. forresti model (M4, GLM and BRT); and the 

biotic quadrat-scale variable C2 contributed to the top ranking model for N. cervinus (M3, GLM), and 

SD for S. macroura (M5, GLM) and A. laniger (M5, BRT). These variables explained reasonable 

amount of variance in species occurrence (up to 15.4 % RI (BRT) and 12.7 % DE (GLM) for C2 and 

SD, respectively; Table 4). However, the improvement in model performance was insufficient to 

overcome the stronger penalty applied using wBIC, or the small sample size limiting the effect of 

variables being detected in the model, resulting in the null model ranking highest for N. cervinus, L. 

forresti and S. macroura (150 m candidate models, Appendix XXIV). 

Table 2 Independent explanatory strength of each variable calculated using generalised linear models (GLM) 

and boosted regression trees (BRT). The explanatory strength for each variable was derived in GLM by 

combining the per cent deviance explained (% DE) when a variable is removed from the saturated model with 

the % DE when adding to the null model and dividing that value by the degrees of freedom (as per Garnett and 

Brook 2007). The explanatory strength of each variable using BRT was derived from the relative influence 

values (% RI) calculated using the package ‘GBM’ in R (Ridgeway 2009) (Elith et al. 2008). Variables are 

defined in Appendix IV.

Variable df

A. laniger D. byrnei L. forresti N. cervinus S. macroura Average Rank 
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RS 1 10.0 16.0 4.8 3.8 2.2 15.6 1.0 0.8 2.8 10.2 4.2 9.3 4 3

RW 1 1.3 7.4 1.5 6.3 0.1 49.3 0.9 2.3 0.5 37.5 0.9 20.6 6 2

E 1 2.8 8.6 0.2 9.7 1.1 11.2 2.4 0.9 0.6 11.3 1.4 8.3 5 4

lnWC 1 44.0 49.1 50.6 70.1 1.9 12.4 78.8 95.9 0.4 29.8 35.1 51.5 1 1

GEN 3 7.2 2.0 9.3 5.0 6.2 7.5 5.6 0.1 2.7 10.4 6.2 5.0 3 5

PAWHC 1 23.3 16.9 21.3 5.0 5.2 4.0 8.7 0.1 0.5 0.8 11.8 5.4 2 6
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Table 3   Explanatory strength of null and a priori generalised linear models (GLM) and boosted regression 

trees (BRT), where ‘occupied sites’ are classified as BSSA survey sites within 150 m of a known species record 

locality. Shown are the number of parameters (d.f.), minimised negative log-likelihood (-LL), the difference 

between the Akaike’s information criterion corrected for small sample sizes and the highest-ranking model 

(ΔAICc), weight scaled to a sum of 1 (wAICc), and the per cent deviance explained by the model relative to the 

null (% DE) for each method and species. Variables are defined in Appendix IV.

Model Variables d.f. -LL ΔAICc wAICc % DE  GLM % DE BRT

A. laniger (17 presences : 150 absence sites) (prevalence 0.11)

Null ~ 1 1 -54.9 28.8 0.00

M1 ~ RS + RW 3 -48.2 19.4 0.00 12.3 11.5

M2 ~ RS + lnWC + PAWHC 4 -37.4 0.0 0.97 31.8 23.1

M3 ~ RS + lnWC + C2 4 -41.1 7.2 0.03 25.3 28.3

M4 ~ RS + GEN 5 -42.8 12.9 0.00 22.0 42.8

M5 ~ RS + SD 5 -45.5 18.2 0.00 17.2 46.7

D. byrnei (11 presences : 156 absence sites) (prevalence 0.07)

Null ~ 1 1 -40.6 26.4 0.00

M1 ~ RS + RW 3 -36.3 22.0 0.00 10.5 NA

M2 ~ RS + lnWC + PAWHC 4 -24.2 0.0 0.89 40.2 NA

M3 ~ RS + lnWC + C2 4 -26.3 4.2 0.11 35.0 NA

M4 ~ RS + GEN 5 -31.4 16.4 0.00 22.7 43.1

M5 ~ RS + SD 5 -36.7 26.9 0.00 9.6 43.4

L. forresti (27 presences : 140 absence sites) (prevalence 0.16)

Null ~ 1 1 -73.9 3.9 0.07

M1 ~ RS + RW 3 -71.6 3.4 0.09 3.1 11.9

M2 ~ RS + lnWC + PAWHC 4 -70.0 2.4 0.16 5.3 4.4

M3 ~ RS + lnWC + C2 4 -71.1 4.6 0.05 3.8 18.6

M4 ~ RS + GEN 5 -67.7 0.0 0.52 8.3 24.3

M5 ~ RS + SD 5 -69.3 3.1 0.11 6.2 23.1

N. cervinus  (2 presences : 165 absence sites) (prevalence 0.01)

Null ~ 1 1 -10.8 2.8 0.11

M1 ~ RS + RW 3 -9.9 5.1 0.03 8.3 NA

M2 ~ RS + lnWC + PAWHC 4 -6.4 0.0 0.42 41.3 NA

M3 ~ RS + lnWC + C2 4 -6.3 0.0 0.43 41.5 NA

M4 ~ RS + GEN 5 -9.0 7.4 0.01 17.0 79.5

M5 ~ RS + SD 5 -10.0 9.5 0.00 7.6 36.4

S. macroura  (50 presences : 117 absence sites) (prevalence 0.30)

Null ~ 1 1 -101.9 1.7 0.23

M1 ~ RS + RW 3 -100.5 3.0 0.12 1.4 3.9

M2 ~ RS + lnWC + PAWHC 4 -100.4 4.9 0.05 1.5 1.2

M3 ~ RS + lnWC + C2 4 -100.6 5.4 0.04 1.3 4.6

M4 ~ RS + GEN 5 -99.7 5.6 0.03 2.2 4.0

M5 ~ RS + SD 5 -96.9 0.0 0.54 5.0 2.0
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Table 4   Independent explanatory strength of each variable calculated using generalised linear models (GLM) 

and boosted regression trees (BRT). The explanatory strength for each variable was derived in GLM by 

combining the per cent deviance explained (% DE) when a variable is removed from the saturated model with 

the % DE when adding to the null model and dividing that value by the degrees of freedom (as per Garnett and 

Brook 2007). The explanatory strength of each variable using BRT was derived from the relative influence 

values (RI) calculated using the package ‘GBM’ in R (Ridgeway 2009) (Elith et al. 2008). Variables are defined 

in Appendix IV.

A. laniger D. byrnei L. forresti N. cervinnus S. macroura Average Rank 

Variable df %
D

E

%
R

I

%
D

E

%
R

I

%
D

E

%
R

I

%
D

E

%
R

I

%
D

E

%
R

I

G
LM B
R

T

G
LM B
R

T

RS 1 20.1 43.1 9.8 22.3 3.1 16.4 1.4 NA 1.5 14.5 7.2 24.1 5 2

RW 1 0.1 6.2 9.0 18.1 1.0 38.2 10.6 NA 0.6 30.5 4.3 23.3 6 3

lnWC 1 18.1 33.4 35.8 47.2 0.2 5.7 61.8 NA 0.0 21.4 23.2 26.9 1 1

PAWHC 1 12.6 7.6 18.9 5.3 12.2 7.6 5.6 NA 1.5 3.3 10.2 6.0 3 6

C2 1 1.7 6.1 0.7 3.1 2.2 15.0 0.4 NA 0.2 15.4 1.0 9.9 7 4

GEN 3 16.5 2.9 20.0 3.8 16.0 9.1 17.2 NA 2.3 9.0 14.4 6.2 2 5

SD 1 12.7 0.7 4.5 0.2 7.1 7.9 6.4 NA 8.5 5.9 7.8 3.7 4 7

Effect of decreasing resolution of environmental data on model and variable performance

Increasing the resolution of environmental data resulted in an increase in out-of-sample performance 

of the models that better explained species occurrence (A. laniger, D. byrnei and N. cervinus; Fig. 3). 

A threshold was apparently reached for the endemic D. byrnei (around 5 000 m), but not the endemic 

and data poor N. cervinus (prevalence also increased from 0.01 to 0.1 at 150 m and 10 000 m, 

respectively; Appendix XXIV). The trend for increased model performance with resolution had mixed 

support from the single-variable models: lnWC was more correlated with A. laniger, D. byrnei and N. 

cervinus occurrence at a coarse scale and RW with D. byrnei and N. cervinus at a fine scale (Fig. 4). 

These trends altered with the definition of ‘coarse’ and ‘fine’ scales (e.g. 1 000 m or 5 000 m for 

coarse-scale; Fig. 4b). 

Fig. 3   Change in deviance explained (% DE) by 

the single best model (based on % DE and AICc) 

applied to datasets where species ‘presence’ was 

classified as survey sites with complete 

environmental data at 150 m, 500 m, 1 000 m, 5 000 

m and 10 000 m from original record localities. 0
10
20
30
40
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150 500 1000 5000 10000
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Fig. 4   Difference in per cent deviance explained by 

single-variable models based on increasingly coarse 

environmental data (squares: % DE at 1 000 m - % 

DE at 150 m, crosses: % DE at 5 000 m - % DE at 

150 m). Where RS, ave. monthly rainfall during 

summer; RW, ave. monthly rainfall during winter; 

lnWC, dist. from watercourse/body; PAWHC, root 

zone water holding capacity; GEN, broad vegetation 

community; C2, diversity of shrubs < 2m; SD shrub 

cover < 0.5 m.
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Discussion

Our results show that additional (landscape) features can be more important than climate variables in 

predicting the distribution of arid mammals within their existing range. Useful variables included 

environmental gradients that vary over finer scales (i.e. strata richness or cover). However, species–

environment correlations varied across scales, indicating additional coarse-scale data can assist in 

modelling species occupancy, but that accurate fine scale data may be required to represent climate–

species relationships. 

In the naturally highly variable climate of the Channel Country IBRA region, climatic factors alone 

were insufficient to describe the occurrence of a range of small dasyurids and rodents (i.e. < 4.5 % DE, 

GLM). Species occurrence was considerably better represented using BRT that allow for more 

complex species response curves (< 43.0 % DE), but for all five small mammal species, a variety of 

landscape environmental variables representing climate, topography, soil and vegetation better 

modelled occurrence (< 55.2 % DE, GLM, BRT; Table 1). Further support for improved 

representation of species occurrence was provided in the out-of-sample cross-validation and increased 

AUC and Kappa for A. laniger, D. byrnei and N. cervinus. 

The distribution of the best modelled species (A. laniger, D. byrnei and N. cervinus) was mostly 

explained by the variables distance to watercourse (lnWC), soil water holding capacity of the solum 

(PAWHC), rainfall during summer (RS, excluding N. cervinus) and broad vegetation community 

(GEN; GLM, Table 2). The relative rank of variables as determined using BRT differed, especially in 

regards to broad vegetation community (decreased). Using a second dataset that allowed additional 

quadrat-scale variables to be considered within the candidate set, top ranking models (based on % DE, 

wAICc) included diversity of shrubs under 2 m (C2; N. cervinus) and shrub cover under 0.5 m (SD; A. 

laniger, BRT and S. macroura, GLM; Table 3). These variables also ranked within the top four (based 

on their independent contribution to a saturated model) for L. forresti, and S. macroura (GLM; Table 

4). 

The relationships detected reflect species distribution and ecology (see Appendix XVIII). The best 

modelled species were endemic or occurred throughout the Channel Country IBRA region (D. byrnei

and N. cervinus or A. laniger, respectively). D. byrnei is carnivorous and capable of exploiting smaller 

mammals and reptiles as additional food source. This larger species is also capable of sprinting faster 

than the other small mammals targeted in this investigation (Garland et al. 1988). N. cervinus builds 

deep burrows, and has a bipedal gait that generally enables species to better exploit patchy and sparse 

resources and better escape predation (Kotler and Brown 1988; Shenbrot et al. 1999). A. laniger also 

has bipedal gait and generalist diet of more readily available invertebrates. The two remaining species 

were poorly modelled: L. forresti and S. macroura. Both L. forresti and S. macroura are quadrupeds, 

the slowest sprinters of the five species and construct only shallow burrows (Garland et al. 1988). As a 
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result these species require cover to provide food resources, avoid predation and shelter from 

environmental fluctuations (Kotler and Brown 1988). It is likely the SDMs were lacking key variables

representing refuge habitat, or that the areas surveyed within the Channel Country IBRA region 

contained sub-quality habitat for these species that is only occupied during periods of greater resource 

availability. 

Substrate and vegetation have an important influence on arid rodents (e.g. Munger et al. 1982, 

Shenbrot 1992; Orland and Kelt 2007), reflecting a long period of evolution and speciation in a 

challenging and sometimes extreme environment (e.g. dasyurids, Cramb et al. 2009). This could 

explain why additional environmental variables improved the SDMs; by enhancing the representation 

of a species’ fundamental niche (see Hutchinson 1957 and related papers). Unfortunately, the potential 

additional influence of environmental variables on predation risk, and competition, and therefore 

realised niche, may make it difficult to identify the value of environmental factors in terms of the 

fundamental or realised niche (Munger et al. 1982).

Fine scale variability in substrate and vegetation can affect resource availability (e.g. Price 1978; 

Kotler and Brown 1988; Tongway and Hindley 2004). This effect was not supported by model 

performance increasing with data resolution (Fig. 3). However, this relationship could reflect i) the 

low prevalence of data, which also increased with resolution, or ii) improved correlations for some 

dominant environmental variables that were better represented at a coarser resolution (e.g. distance to 

watercourse at 1 000 m). Stronger correlations were detected between species and rainfall during 

winter at a fine scale (150 m), providing further support that the influence of environmental gradients 

at different scales is species-specific (see also Haythornthwaite and Dickman 2006). 

Adaptations to arid environments may enhance the resilience and preservation of small mammals in a 

changing climate. Heterothermic capabilities (e.g. torpor) have been attributed to a species ability to 

resist extinction processes (e.g. Geiser and Kortner 2010).  Fewer species are expected to go extinct in 

hot deserts compared with other biomes across the world (Thomas et al. 2004). However, most 

surveys in the arid zone have occurred during relatively wet conditions (e.g. decadal average rainfall; 

Kerle et al. 2007, Bureau of Meteorology 2012), where current climate variability facilitates 

population persistence though allowing for one good season in seven generations (e.g. Morton 1982). 

Given this context, as the climate becomes more variable (e.g. Chesson et al. 2004), arid species may 

become increasingly sensitive to a changing climate.
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Abstract   

In many correlative species distribution models biotic factors are excluded as interactions that have a 

secondary influence on species' occurrence via the realised niche, irrespective of a species’ ecology. 

Over time biotic interactions can drive natural selection and changes within the fundamental niche, 

resulting in a contemporary dependency on resource availability for survival or reproduction. 

Resource availability may not be closely correlated with coarse climate variables, but represent the 

dynamics of nutrients and water availability cascading through trophic webs. Identifying biotic 

resources might therefore be key to understanding the distributions of many competitively dominant 

specialists and generalists in environments where limiting resources are rare (e.g. pollinators in 

degraded systems). Further empirical investigations into species interactions are required to 

distinguish between limiting resources (e.g., food, space, nutrients, nest sites) verses constraining 

biotic interactions considered to affect species abundance. In the mean-time, species for which we can 

have a reasonably good understanding of the possible mechanisms driving the evolution of traits may 

provide biologically realistic case-studies in the development of community models. 

Introduction

Species distribution models (SDMs) may have reached their limit as a guide for policy makers and 

managers involved in species conservation (Sinclair et al. 2010). Most SDMs are based on climate 

data, which is believed to underpin species’ morphological and physiological adaptations and range 

boudaries, and be an important driver of future change (Parmesan 2006; Sexton et al. 2009). The use 

of SDMs at relatively coarse scales has allowed simple spatial models of complex systems to be 

created, while avoiding finer-scale stochastic influences of biotic interactions (Pearson and Dawson 

2003). In modelling the impact of climate change, observed correlations between climate and a 

species’ current distribution are projected forward, transferring the rate of change in climatic variables 

to the rate of change in a species’ distribution. However, the influence of climate on species can be 

buffered by adaptations (e.g. controlled hypothermia,  torpor; Chaplin 1976; Kelm and von Helversen 

2007), resulting in climate variables being correlated with or out performed by other environmental 

factors in SDMs (e.g. Beale et al. 2008; Heikkinen et al. 2010). Climate change can affect species 

physiology, phenology or range through a number of mechanisms that cannot yet be explained (Sexton 

et al. 2009). 

SDMs were originally developed to investigate drivers of ecological patterns (Elith and Leathwick 

2009). However, the adequacy of geographical range shifts predicted using SDMs is questioned in the 

literature because they ignore or oversimplify biotic interactions, habitat heterogeneity and 

connectivity, dispersal, disturbances, history of occupancy, extinction debt, evolutionary change, 

glacial refuges and diseases (e.g. Sinclair et al. 2010). Recommendations have been made repeatedly 

to strengthen the overall ecological foundations of SDMs (e.g. Austin 2007; Austin and van Niel 
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2011a). One way to develop more robust and accurate models is to identify ecological variables that 

have a direct, proximal influence on species distributions (Austin 2002). Variables can include biotic 

factors, which have been shown to improve SDM performance at a continental scale (e.g. dominant 

vegetation providing denning and nutritional requirements of arboreal mammal; Kearney et al. 2010). 

Additional biological realism can be achieved using new techniques and incorporating more 

information on species ecology (Elith and Leathwick 2009; Ellis 2011).

Here we review recent efforts to better capture the temporal relationship between biotic interactions, 

evolution and SDMs. This pioneering work is expected to be critical for improving models of 

specialist species or narrow-range species where limiting resources (including those of biotic origin) 

may impose strong constraints. 

Application of niche in SDMs

The use of biotic factors as direct, causal factors that can be usefully incorporated within SDMs has 

been limited by the confusion of the niche concept (Whittaker et al. 1973; Araújo and Guisan 2006) 

and its representation in SDMs (Morrison 2001; Austin 2002; Elith and Leathwick 2009). The 

‘fundamental (Grinnellian) niche’ is the ecospace within which a species can theoretically survive and 

reproduce and have positive population growth (Hutchinson 1957; Whittaker et al. 1973; Pulliam 

2000; Holt 2009). The most appropriate factors that define this space cause a physiological species’ 

response, either directly or through resource availability (e.g. nutrients and water; Guisan and 

Zimmermann 2000; Austin 2002). Yet abiotic physical variables are often considered the primary 

drivers of species survival, reproduction, physiology and behaviour (e.g. Soberón and Peterson 2005): 

generally represented by climate variables (i.e. temperature and precipitation) or indirectly via 

topography and soil variables. Resources are rarely included and are often assumed to influence 

species abundance or, in the case of resources provided by living (biotic) components of the system, 

misrepresented as biotic interactions influencing the realised niche (e.g. Whittaker et al. 1973; 

Soberón and Peterson 2005; Colwell and Rangel 2009). The ‘realised (Eltonian) niche’ represents the 

fundamental niche in geographic space after it has been modified by additional biotic interactions, 

dispersal dynamics, source-sink dynamics and other real-world constraints (Whittaker et al. 1973; 

Pulliam 2000; Pearman et al. 2008). 

There are two main problems with the interpretation of fundamental and realised niches in SDM. 

First, the tendency to treat all biotic factors as interactions that influence the realised niche ignores the 

evolution of intrinsic characteristics dependent on biotic components of the environment (e.g. 

environmental tolerance, resource requirements, life history, demographic and dispersal; Munger et al. 

1983; Brown et al. 1996). Second, the predominant role of climatic gradients on evolution and the 

fundamental niche is typically justified on the basis of plant physiology (e.g. Austin 2002). The effect 

of climate on non-primary producers can be complex and indirect via food and shelter (Noy Meir 
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1974; Morton et al. 2011). As a result, climate-primary producer interactions may not represent 

consumer species dependent on biotic resources for nutrients (e.g. parasitic plants or animals) or 

factors associated with germination, anchoring or reproduction (Colwell and Fuentes 1975; Catling et 

al. 2002). 

Trophic interactions leading to the evolution of adaptive traits

Species can interact when their fundamental niches overlap along a gradient, either partially or 

completely for one or both species (i.e. ‘niche inclusion’, ‘reciprocal niche overlap’, or ‘coextensive 

niches’, respectively), and can result in the realised niche of a species being constrained (i.e. as a 

result of competition, predation or parasitism; Colwell and Fuentes 1975). Alternatively, interactions 

can have an important, facilitative influence on species niche dynamics (e.g. mutualism, pollinators, 

soil mycorrhizal fungi, ecosystem engineers; Hooper et al. 2005; Lavergne et al. 2010), or contribute 

stochastic elements to community composition (e.g. mimicry, prey switching, pollinators forming 

search images, and demographic specific interactions; Colwell and Fuentes 1975). Overall, the 

outcome of species interactions may be difficult to understand with some interactions having a direct 

or combined influence on multiple species and change under different conditions (Hooper et al. 2005; 

Thorpe et al. 2011; McCluney et al. 2011).

In many cases, interactions may cause temporary responses in foraging behaviour and predator 

avoidance through segregating resources or habitat (e.g. Huh and Kitting 1985; Korpimäki 1987; 

Majolo and Ventura 2004; Sundell et al. 2008). Alternatively, natural selection may limit co-evolution. 

For example, herbivory may drive natural selection for increasing tolerance, cuing of compensatory 

growth and seed production or anti-herbivore defences (de Mazancourt et al. 2005; Farji-Brener 2007). 

The development of an antagonistic response is illustrated by Carduus nutans plants that germinate in 

leaf-cutting ants waste areas developing more abundant and longer spines, and tougher leaves (Farji-

Brener 2007).

Where resource selection improves survival or reproductive success of a species, natural selection can

lead to phylogenetic and ontogenetic adaptations, and promote polymorphism, adaptive radiation, or 

divergence: changes that are directly reflected in the fundamental niche (functional habitat) (Holt and 

Gaines 1992; Brown et al. 1996). For example, intraspecific competition broadens niches, leading to 

adaptive radiation or changes in life-history strategies (Alley 1982), and interspecific competition to 

divergence and narrower niches along an environmental gradient and interspecific and intrasexual 

variation in foraging behaviour (Colwell and Fuentes 1975; Feinsinger et al. 1979; Rusterholz 1981). 

Predatory risk can also result in morphological adaptations (e.g. bipedal locomotion and enlarged 

auditory bullae; Kotler and Brown 1988) or behavioural adaptations (e.g. predator mobbing; Eberle 

and Kappeler 2008). Overall, competition and predation can result in segregation of resources and 

habitat (e.g. Pianka and Pianka 1976; Hallett 1982; Schmitt and Coyer 1982; Holmes and Robinson 
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1988). The temporal relationship between species interactions and the evolution of functional traits 

relating to the fundamental niche is illustrated in Table 1. 

Species-specific interactions can evolve relatively quickly (e.g. < 10 years), and once evolved, the 

associated traits are likely to continue being improved rather than replaced, supporting conservation of 

the fundamental niche (Holt and Gaines 1992; Wiens et al. 2010; Thorpe et al. 2011). There are 

several additional factors that contribute to niche conservatism, including a strong phylogenetic signal, 

history of stabilising selection (e.g. regeneration niches), a large difference in survival and 

reproduction, or extreme rare or frequent inter-population dispersal (Pearman et al. 2008; Holt 2009). 

Overall, the dynamics of the fundamental niche are generally assumed to be conservative, as 

illustrated by species tracking suitable environments during past phases of climate change, such as 

during the Pleistocene glacial-interglacial cycles (Pearman et al. 2008). 

Table 1   Examples of competitor and predator influence on the realised niche (occupancy of suitable 

environment) and fundamental niche (via evolution).

Realised niche Fundamental niche

Competition

Time-varying alteration in 

foraging periods, patterns or 

diet, reduced abundance, local 

extinction

Specialisation (e.g. metabolic adaptations, increased 

aggression), diversification (e.g. shift in resource use or 

phenology) or generalisation (e.g. increased diversification, 

mobility and capacity to exploit environmental variability)

Predation
Retreat to shelter, reduced 

abundance, local extinction

Change in morphology (e.g. camouflage, locomotion), 

phenology, recognise environmental cues

Empirical test Competitor or predator release No release

SDM test Non-transferable Transferable

Evolved dependency on biotic factors for survival or reproduction

Morphological, physiological or behavioural adaptations may correspond to physiological tolerance, 

growth form, diet breadth, habitat selection, host use, resource selection and susceptibility to 

pathogens (e.g. Futuyma and Moreno 1988). Resources associated with these traits may be non-

limiting when specialisation in one species coincides with interactions with generalist species 

(asymmetric interactions, Bascompte and Jordano 2007). For example, the least weasel is a specialist 

predator that is capable of prey switching (type III functional response) between rodents (Sundell and 

Ylönen 2008). However, the specialisation of coexisting species can, in rare cases, lead to potential 

critical dependency on another species for survival (Howe 1984; Kotler and Brown 1988; Bascompte 

and Jordano 2007). For example mutually dependent species, including plants and mycorrhizal fungi 

(e.g. recruitment, Diez 2007), leaf-cutting ant and fungus (food and microclimate, Farji-brener 2007),

and long-tongued fly and its primary food plant (food and pollination, Anderson and Johnson 2008). 

evolution 
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In some cases these relationships have become obligatory for pollination or reproduction (e.g. fig and 

wasp, McLeish et al. 2010), nutrients (e.g. nectar bat and long-tubed flowers, Muchhala and Thomson 

2009), or dispersal (e.g. mistletoe birds, Barea and Watson 2007). 

In other cases, obligate, one-sided mutualism may occur where one species becomes dependent on 

another with high tolerance (e.g. host, de Mazancourt et al. 2005), or many others (e.g. vertebrate 

dispersers, Gautier-Hion and Maisels 1994). Avian brood parasites are dependent on their hosts to 

incubate and rear their young (Rothstein 1990). As the cost to the host is high via brood loss, reduced 

population and possible extinction (Siepielski and Benkman 2007), the host is under pressure to 

develop anti-parasitism adaptations (e.g. recognition of parasite eggs, increased inter-clutch variation), 

resulting in further adaptations via natural selection in the brood parasite (e.g. increased mimicry, 

Takasu 2005).

Resources and associated traits are especially important for species with distinct niches (McGill et al. 

2006). These effects may be observed across taxonomic groups, such as the dependency of arboreal 

mammals on nesting hollows (Dueser and Shuggart 1979), Australian typhlopid snakes on ant pupae 

and larvae (Shine and Webb 1990), amphibians and salamanders on cool moist microhabitats and 

ponds (Bartelt et al. 2010, Dillard et al. 2008), and butterflies on a variety of resources (Dennis et al. 

2003). In other cases, resources may be sought by rare, competitively dominant specialists within a 

group of coexisting species or guild (e.g. Hallett 1982). The occurrence of species with specialised 

resource requirements depends on resource availability, with upper limits in abundance set by social 

components (Dueser and Shuggart 1979). Some of the resources that have been recognised to date 

include a variety of nutrients (flowers, fruits, seeds, insects, animal carcasses, dung, urine, small 

mammals, coral spawning; Yang et al. 2008; Table 2). Individual traits that form an important 

component in ecological networks (e.g. Hooper et al. 2005), may assist in identifying limiting 

resources required to represent the fundamental niche in SDMs better (Fig. 1). 

Case study: Arid systems

The relationship between climate and consumers is well illustrated in ecosystem dynamics in arid 

environments. Here, community structure is driven by water availability (rainfall and flooding, soil, 

nutrients and topography), supporting primary productivity (plants, seeds), primary consumers 

(insects, rodents) and their predators (insectivores, carnivores) (Noy Meir 1973; Letnic and Dickman 

2010; Morton et al. 2011). Consequently, the effect of rainfall on vertebrates is via food availability or 

quality (Previtali et al. 2009; Dickman et al. 2011).This bottom up effect of resources on higher 

trophic levels is accentuated by resource pulses caused by rare, intense (extreme), brief events that are 

not predicted by associated resource consumers and so exceed the amount that can be used, initiating 

substantial bottom up effects and delayed top down effects (Yang et al. 2008). Yet while these   
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Table 2   Examples of additional non-climatic resources required for survival and reproduction and therefore 

have a stronger influence on a species’ distribution through the fundamental niche. Associations may primarily 

reflect required microhabitat (m), nutrients (n) or water (w) or features that facilitate predator aversion or 

reproduction.

Link Abiotic or biotic resource Species Source

m rocky areas snow vole, black mongoose Luque-Larena et al. 2002;

Rathbun and Cowley 2008

m trapdoor spider burrows pygmy bluetongue lizard M. Hutchinson pers. comm. 2012

m sandy, small particle soils desert pocket mouse Hoover et al. 1977

m, n soft soils, vegetation Mendoza tuco-tuco Albanese et al. 2010

m, p habitat complexity rock wallaby Murray et al. 2008

n genus/species-specific hosts buloke mistletoe, creeping mistletoe T. Croft pers. comm. 2012

n mistletoe painted honeyeater Barea and Watson 2007

n plant pollen-specialising bee Strickler 1979

n bamboo giant panda Loucks et al. 2003

n rabbit Spanish imperial eagle, Iberian lynx Ferrer and Negro 2004

n few hard coral species Chevon butterflyfish Lawton et al. 2011

w cactus Santiago Galapagos mouse Gregory and Macdonald 2009

p Triodia spp. Ningaui Bos et al. 2002

r avian hosts brood parasites Rothstein 1990

r pebble mounds Pseudomys spp. Ford and Johnson 2007

r Tasmanian blue gum swift parrot Hingston et al. 2004

r hunting perches, gecko prey, 

sites for drumming displays

Mauritius kestrel, ruffed grouse Burgess et al. 2011; 

Zimmerman and Gutierrez 2008

r, n black-tailed prairie dogs burrowing owls Lantz et al. 2007

Physiological (e.g. torpor) or 
behavioural traits (e.g. burrow 
microclimate, huddling)

Foraging habitat, host

Evolution of behavioural or 
morphological traits (specialisation)

Vectors (e.g. pollinators), habitat 
(e.g. display sites, den)

intra-specific competition, predation, 
disease, parasites

inter-specific competition, dispersal

Reproduction

Nutrients and water metabolism

Physiological tolerance

Fundamental niche:

Realised niche:

Abundance:
Fig 1 Separating biotic interactions with the 

capacity to influence species occupancy (realised 

niche) and abundance in suitable habitat from 

biotic factors required for the survival and 

reproduction of a species (fundamental niche). 
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relationships sound direct, they are confounded by synergistic effects (e.g. between intensity of 

rainfall, soil structure, nutrients and seeds in the seed back on primary productivity, Noy Meir 1973; 

Munger et al. 1983; Letnic and Dickman 2010), lags in response times (Southgate and Masters 1996) 

and negative interactions (e.g. abundant rain degrading food resources, Kelt 2011), which may be 

conditional or accentuated by interspecific interactions (e.g. animals that create pits while foraging, 

caching behaviour effects plant species, James et al. 2009; Kelt 2011).

To survive in this environment small mammals have developed a range of adaptations to efficiently 

use and conserve moisture and energy (e.g. torpor, highly concentrated urine, nocturnal activity, 

subterranean habits), and reliance on ephemeral (response to environmental cues, increased mobility, 

opportunistic breeding strategies, generalist diets, food caching) or perennial resources (sap or nectar 

specialists, insectivores, Noy Meir 1973; Dickman et al. 1995; Körtner and Geiser 2009; Kelt 2011;  

Morton et al. 2011). In addition to environmental gradients, adaptations form in response to 

interspecific interactions over evolutionary time, such as anti-predator behaviours (e.g. foraging under 

shelter) and morphology (e.g. faster bipedal locomotion and increased auditory sensitivity, Kotler et 

al. 1994; Shenbrot et al. 1999; Kelt 2011). Species’ response can be further confounded by relative 

changes in abundance of food resources, parasites, pathogens, predators and population density during 

dry periods (Southgate and Masters 1996). However, climate driven resource variability can override 

effects of interactions and nutrient limitations (Noy Meir 1974; Kelt 2011).

The concurrent influences of environmental gradients and interactions on species’ survival and 

reproduction can result in mechanisms being hard to identify and species specific responses that are 

difficult to predict (Munger et al. 1983; Price and Brown 1983; Holt et al. 1995). Yet, the distribution 

of reliable nutrients and moisture available in specific habitats can form refugia, allow coexistence, 

support a greater number of omnivores or opportunistic species sensitive to predation, and provide a 

temporal niche required for ongoing existence (e.g. recruitment) (Yang et al. 2008; Letnic and 

Dickman 2010; Kelt 2011): a species’ dependency on these resources can be exploited for the creation 

of robust SDMs reflecting species’ fundamental niche. For example, food resources for rodents are 

more directly represented by ephemeral plants which encompass the interactions and lag between 

rainfall, soil and vegetation properties; perennial plants may be closely correlated with invertebrate 

food sources or shelter for dasyurids, and additional prey dynamics may be required for improved 

SDM of higher order predators.   

Discussion

The selection of traits based on past biotic interactions, may result in contemporary resource 

availability strongly affecting a species’ survival or reproduction, and therefore improve SDM 

performance via the fundamental niche. Identifying biotic resources might therefore be key to 

understanding the distributions of specialists (Boulangeat et al. 2012). The effects of resource limiting 
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generalists may be apparent only during the initial colonisation period, after which a range of biotic 

interactions may provide a stable supply of resources (e.g. pollinators, Lavergne et al. 2010). 

However, even in this case, continual changes to community composition and dynamics might lead to 

relatively generalised interactions becoming limiting (Lavergne et al. 2010). The loss of effective seed 

dispersers has already been recorded in some systems (Meehan et al. 2002), and along with the 

potential loss of pollinators can induce cascading effects (Bascompte and Jordano 2007). As a result, 

drivers associated with conservative niche dynamics (i.e. endemic specialists) or becoming limited 

through deteriorating community dynamics with may be vital for confidently extrapolating SDMs 

across the landscape (Angilletta and Sears 2011).

Naturally dynamic systems drive the path and rate of evolution, extinction and phylogenetic 

divergence (Alley 1982); this moderates the impact of biotic interactions, stabilises food webs and 

shapes species’ ecology (Lavergne et al. 2010; Wiens et al. 2010). Relationships between abiotic and 

biotic interactions that lead to the development (or maintenance) of traits are poorly understood 

(Hooper et al. 2005; Angilletta and Sears 2011). This increases the risk of misinterpreting interactions, 

which in turn effects assumptions made about a species’ fundamental or realised niche. For specialists, 

sufficient information may be already available to improve conceptual models by distinguishing 

resources driving the fundamental niche from facilitative biotic interactions influencing the realised 

niche (e.g. woodpeckers creating nesting sites for boreal owls, Heikkinen et al. 2007). To remedy this 

problem for other species, further investigations are required into the demographic response to 

environmental gradients that may define the niche, how flexible those responses are across sites and 

given current and ongoing species evolution (Schmitt and Coyer 1982; Morrison 2001; Holt 2009). 

Identifying general mechanisms underlying the evolution of traits can aid in understanding and 

modelling community dynamics (McGill et al. 2006; Eronen et al. 2010; Wiens et al. 2010) and 

determining whether niches are likely to be conservative in novel environments (Lavergne et al. 2010; 

Sinclair et al. 2010). Yet the mechanisms may be difficult to identify, especially given each species 

has a unique niche within which it survives and reproduces (Holt et al. 1995; Brown et al. 1996). To 

overcome this sizeable challenge, recommendations have been made to focus on key evolutionary 

traits and ecological consequences (Price 1986; Kotler and Brown 1988). This should aid in 

rationalising gradients (recommended by Brown et al. 1996; Austin and van Niel 2011a), and 

identifying biologically useful and correctly scaled gradients (e.g. nectar availability, Zimmerman and 

Pleasants 1982; Dennis et al. 2003). 

Overall, this review builds on Holt (2009) by i) expanding on the role biotic interactions have on the 

development of adaptive traits over evolutionary time, leading to dependency on resources by higher 

trophic species, and ii) explaining why we should not be surprised when the inclusion of these factors 

improves SDMs (e.g. Pauses et al. 1997, Heikkinen et al. 2007, Dillard et al. 2008, Kearney et al. 

2010).    
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Conclusion

Ongoing confusion regarding the niche concept and its representation in species distribution modelling 

(SDM) has led to biotic factors being considered only in terms of interactions relating to the realised 

niche. However, over time, biotic interactions can drive natural selection of traits that enhance

resource exploitation, competitive dominance or predator avoidance. In these cases a species’ 

dependence on resource availability for positive population growth may outweigh the secondary 

effects of constraining interactions (e.g. competition and predation); especially for species that are 

mutually dependent, competitively dominant specialists, or generalists occupying degraded 

communities with limited species performing ecosystem functions (e.g. pollinators). This work 

evaluates the influence of landscape- and quadrat-scale data at varying resolutions on modelled range 

dynamics of nine species of temperate- and arid-zone small mammals.

Do biotic factors influence the fundamental niche?

Investigations into the relative contribution of additional edaphic and biotic factors (vegetation 

community structure) to climate-only species distribution models (SDM) determined improved 

performance for all temperate- and arid-zone small mammals (Chapters 1 & 4; Table 1). Most support 

was obtained for two endemic species (Dasyuroides byrnei and Notomys cervinus), a wet-heath 

specialist (Rattus lutreolus lutreolus), opportunistic insectivore (Antechinomys laniger) and 

understorey preferring Isoodon obesulus obesulus (i.e. increase in metrics reflecting strength of 

statistical evidence and structural goodness-of-fit: wAICc wBIC and  % DE). For these five species 

improved model fit transferred to improved predictability of species occurrence in an independent 

dataset (measured using AUC and Kappa scores): most noticeably for the three arid species (out-of-

sample validation). However, improved Kappa scores reflected improved discrimination of absences 

(specificity), except R. l. lutreolus, where it was instead associated with improved discrimination of 

presences (sensitivity). These trends were only weakly influenced by model bias, which predominately 

affected sensitivity estimates for species represented by few presences records and species with poor 

model performance (Leggadina forresti and Sminthopsis macroura). Overall, support for increased 

discrimination of the occurrence of three arid and two coastal species, tested in a rigorous out-of-

region (coast) or out-of-sample validation (arid), demonstrates improved model robustness as expected 

in the case of enhanced representation of the fundamental niche.  

For those SDMs that were enhanced by the addition of topographic, soil and vegetation variables 

(based on model fit and transferability), the contributions of individual variables are shown in Table 2. 

In general, climate variables were most useful in SDMs within the coastal Mediterranean environment 

and of little value in the arid Channel Country IBRA region where rainfall and flooding events are 

unpredictable. In both regions additional topographic, soil and vegetation data contributed more than 5 

% explanatory strength to many SDMs, while variables indirectly representing refuges were 
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particularly valuable in the arid region (distance to watercourse and soil water holding capacity). This 

pattern supports the dynamic interaction of moisture, soil and species on resource availability in arid 

ecosystems and importance of refuges harbouring populations during periods of drought (e.g. Morton 

et al. 2011, Dickman et al. 2011). 

A second dataset that represented species presence determined by proximity to known records (i.e. 

within 150 m) was used to explore the value of additional quadrat variables to landscape-scale SDMs 

(i.e. diversity of flora > 2 m or < 2 m, shrub cover < 0.5 m or 0.5-1.0 m; Chapters 2 & 4). Quadrat-

scale variables were present in the top ranking models for some species (I. o. obesulus, N. cervinus 

and S. macroura; Table 3). However, support was not unanimous across all information theoretic 

measures (wAICc, wBIC), indicating improved model performance was insufficient to overcome the 

additional penalty applied when using a greater number of parameters by the BIC, or the small sample 

size limiting the effect of variables being detected in the model. In these cases, there was no validation 

performed.

Table 1  Improved discrimination of species occurrence following the addition of topographic, soil (edaphic), 

and vegetation variables illustrated for species with improved model performance (a), and supported by an 

independent validation (b). Shown are the Akaike’s information criterion (corrected for small sample sizes) and 

Bayesian Inference Criterion represented as the weight scaled to a sum of 1 (wAICc, wBIC), the per cent 

deviance explained (% DE) by the fitted model relative to the null (mean field) model, the difference in % DE of 

the climate-and-landscape model relative to the climate-only model ( % DE), the area under the curve (AUC) 

and Kappa metrics, and Sensitivity (Sens) and Specificity (Spec) statistics (generated using a Maximum 

Sensitivity and Specificity threshold). Shaded values indicate no support for the methods indicated.

a. Model performance 

(e.g. GLM)

b. Trend1 and bias2 in 

validation statistics

wAICc wBIC % DE  % DE AUC Kappa Sens Spec

Coastal mammals (out-of-region validation)

I. o. obesulus 1.00 0.93 31.2 5.1 1 1 0 2

A. f. flavipes 0.97 0.00 49.3 5.5 0 0 1 -1

R. f. greyi 0.28 0.00 19.1 2.6 -1 -1 2 1

R. l.lutreolus 1.00 1.00 65.9 47.6 1 0 2B+ -2B-

Arid mammals (out-of-sample validation)

N. cervinus 1.00 1.00 55.2 55.2 2 2B+ 0B+ 2B+

D. byrnei 1.00 1.00 53.4 52.1 2 2 -1 2

A. laniger 1.00 1.00 50.9 46.4 2 2 0B- 2B+

L.. forresti 0.56 0.00 14.7 13.1 1 2 0B+ 2B-

S. macroura 0.03 0.00 6.3 5.2 -1 -1 2B+ -2B-

1 Direction and strength of trend: 2-increase (beyond S.D.), 1-slight decrease, 0-no change, -1-slight decrease, -2-

decrease (beyond S.D.).
2 Model bias indicating the trend should be in a negative direction (B-) or positive direction (B+). 
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Table 2  Independent contribution of climate, topographic, soil and vegetative variables in the saturated 

SDMs of coastal (a) and arid (b) mammals, where it performed better than the climate-only model (See 

Table 1). Shown are the per cent deviance explained values (%DE).  

Coastal mammals Arid mammals

I. o. 

obesulus

A. f. 

flavipes

R. l. 

lutreolus
Ave. 

A.

laniger

D. 

byrnei

N. 

cervinnus
Ave. 

MT 10.5 11.0 0.1 7.2

RS 31.6 47.3 30.7 36.5 10.0 4.8 1.0 5.3

RW 21.3 31.7 1.1 18.0 1.3 1.5 0.9 1.2

E 18.3 23.3 12.3 18.0 2.8 0.2 2.4 1.8

S 7.1 5.3 0.2 4.2 na na na na

lnWC 8.3 12.4 13.9 11.5 44.0 50.6 78.8 57.8

PAWHC na na na na 23.3 21.3 8.7 17.8

H 10.4 10.5 12.0 11.0 na na na na

M 0.7 9.9 10.9 7.2 na na na na

GEN 2.6 5.0 8.3 5.3 7.2 9.3 5.6 7.4

Climate variables: ave. minimum temperature (MT), ave. monthly rainfall during summer (RS) and winter 

(RW). Topographic variables: elevation (E), slope (S), distance to watercourse or line (lnWC). Soil (edaphic) 

variables: root zone water holding capacity (M or PAWHC), soil acidity (H). Vegetation (biotic) variables: 

broad vegetation community (GEN).

Table 3   Performance of top-ranking models relative to a climate-only model. Shown are the Akaike’s 

information criterion (corrected for small sample sizes) and Bayesian Inference Criterion represented as the 

weight scaled to a sum of 1 (wAICc, wBIC), the per cent deviance explained (% DE) by the model relative to 

the null and the difference in % DE of the top-ranking model relative to the climate-only model. 

Top ranking model  wAICc wBIC % DE Δ %DE

Coastal mammals

I . o. obesulus    ~ RS + lnWC + C3 0.51 0.04 27.7 1.3

A. f. flavipes    ~ RS + lnWC + H + GEN 0.98 0.10 45.1 3.7

R. f. greyi    ~ MT + RS 1.00 1.00 20.1 0.0

R. l. lutreolus    ~ RS + S + M + GEN 1.00 1.00 40.2 27.7

Arid mammals

N. cervinus    ~ RS + lnWC + C2 0.43 0.04 41.5 33.2

D. byrnei    ~ RS + lnWC + PAWHC 0.89 0.89 40.2 29.7

A. laniger    ~ RS + lnWC + PAWHC  0.97 0.97 31.8 19.5

L. forresti    ~ RS + GEN  0.52 0.02 8.3 5.2

S. macroura    ~ RS + SD 0.54 0.01 5.0 3.6

Additional climate variables not already defined in Table 2: Root zone water holding capacity of the solum 

(PAWHC), diversity of flora > 2 m (C3) or < 2 m (C2), shrub cover < 0.5 m (SD) or 0.5-1.0 m (SC).  
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In both the landscape-only and landscape-and-quadrat-scale models, not all patterns expected based on 

the ecology of these small mammals were apparent. For example, ‘broad vegetation community’ aided 

in describing the occurrence of the wet-heath specialist (R. l. lutreolus), but not an understorey 

preferring species (I. o. obesulus), which also failed to be aided by the addition of ‘shrub cover 

between 0.5 and 1.0 m’ (SC). The failure of these models to represent known species-environmental 

relationships reflects either i) limitations in the resolution of the available data (i.e. vegetation 

community mapping and classification biased towards the upper structural layer (canopy) and use of

broad categories to estimate cover in the field, e.g. 30 – 70 % cover), or ii) that these relationships are 

minor in comparison to others being detected, including indirect representation of resource availability 

by climate variables (e.g. by complex species response curves in BRT).  

Influence of scale on the representation of species-environmental interactions 

To explore the effects of scale on SDM performance, the landscape-and-quadrat-scale models of best 

fit previously identified were re-applied using datasets where species occurrence was represented at  a 

lower resolution (i.e. by environmental features within 500 m and 1 000 m of known species records; 

Chapters 2 & 4). With decreasing resolution, model performance decreased for the wet-heath 

specialist (R. l. lutreolus) and two dense-understorey species (I. o. obesulus and R. f. greyi; negative 

values), but increased for the remainder (positive values; Fig. 1). The latter trend can be explained by 

the ecology in some cases (e.g. the more mobile woodland generalist, A. f. flavipes, may obtain 

sufficient prey and nest sites from neighbouring woodland remnants), or potential data limitations in 

other cases (e.g. inconsistencies in the increase in model performance for two arid endemic species, D. 

byrnei and N. cervinus). 

Fig. 1   Change in deviance explained 

(% DE) by the single best model 

(identified as the top ranking model in 

% DE and AICc) based on the dataset 

representing species presence within 

150 m of known records relative to the 

dataset containing species presence 

within 1000 m.

To verify increased model performance with decreasing resolution, the explanatory strength of 

individual single-variable models were compared (Chapters 2 & 4). Patterns varied between species 

and variables, but indicated the trend of improved model performance with decreasing resolution for 

the arid species was being driven by the species response to distance to water-course variable (lnWC; 

Fig. 2). Overall, climate variables were closely associated with some species at a coarse resolution 

(e.g. RS-R. l. lutreolus), and others at a fine resolution (e.g. RS-I. o. obesulus). These patterns are 
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supported by the ecology of these species: R. l. lutreolus prefers wet-heath and sedgeland (represented 

by GEN, C3 or SC), which is dependent on water channelled into these habitats from across the 

catchment (explaining the weaker association with RS). The fine-scale association between rainfall 

and I. o. obesulus and D. byrnei may represent the influence of soil moisture for sustaining food 

availability over dry periods (fungi and invertebrates) or increased abundance of vertebrate prey (e.g. 

rodents, Letnic et al. 2005), respectively. 

Fig. 2   Change in deviance explained by 

single-variable models with decreasing 

resolution of environmental information at 

known sites (% DE at 1000 m - % DE at 150 

m). Illustrated are trends for (left) two coastal 

species, I. o. obesulus (solid diamonds) and 

R. l. lutreolus (hollow diamonds), and (right) 

two arid species, A. laniger (solid diamonds) 

and D. byrnei (hollow diamonds). Variable 

codes are described in Table 3.

Coastal mammals Arid mammals

Influence of scale on detecting range shift during a period of simulated climate change

The scale used in SDMs also directly influenced the extent and distribution of available habitat, which 

therefore affected estimates of population persistence and range shift predicted to occur in a changing 

climate (Chapter 3). This was demonstrated in coupled niche-population models simulating population 

dynamics projected over 40-years of a stable and of a changing climate. The underlying SDMs based 

on 100 m2 or 1000 m2 resolution environmental data predicted a similar area of available habitat 

(Table 4). However, at the fine scale, more patches were modelled (ca. 10 times) that were more 

variable in shape (range in perimeter : area 0.032 at the fine-scale; 0.002 coarse-scale), leading to 

increased connectivity between patches (average number of patches within dispersal distance, < 57 

fine-scale; 0 coarse-scale). As a result lower rates of decline in animal abundance and range shifts 

were forecast (although range shifts were detected for more species than at the coarse scale; Table 4, 

Fig. 3). These results illustrate that potential range shifts and species vulnerability information may be 

misrepresented if more advanced modelling techniques incorporating species demographics and 

dispersal inadequately represent the scale at which these processes occur. 
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Table 4   Summary of the a) initial habitat and population, and b) changes over 40-years of projected climate 

change (1000 simulation iterations, for the species' range on the Fleurieu Peninsula and South East. Values are 

calculated across species and include the average (SD) or median (min) values. More detailed values are 

provided in Table 1 of Chapter 3 and Appendix XIII. 

Fleurieu Peninsula South East

resolution: 100 m2 1000 m2 100 m2 1000 m2

a. Initial spatial configuration of available habitat and number of occupied patches:

Ave. habitat area (km2) 193 (121) 199 (128) 221 (212) 244 (198)

Ave. no. patches 1123 (148) 72 (41) 919 (1112) 98 (83)

Median p:a ratio 0.032 (0.008) 0.004 (0.002) 0.028 (0.002) 0.004 (0.002)

Median distance between patches (km) 0.3 (0.2) 3.6 (1.8) 0.3 (0.2) 2.6 (1.8)

Ave. max no. patches within dispersal dist. 57 (56) 0 (0) 17 (7) 0 (0)

b. Changes following 40 years of climate change: 

Habitat area (%) -67 (24) -47 (35) -35 (18) -16 (18)

Patch no. (%) -55 (30) -41 (28) -23 (22) 11 (88)

Population no. (%) -44 (38) -37 (29) -25 (22) -15 (23)

Ave. abundance animals yr-1 -1329 (2041) -3733 (2497) -897 (918) -804 (1304)

No. occupied populations yr-1 -9 (9) -1 (1) -5 (5) 0 (1)

Fig. 3   Shift in the centre-point of 

occupied habitat at 100 m2 and 

1000 m2 resolution (hollow or 

solid symbols, respectively), in the 

Fleurieu Peninsula and South East. 

Species are represented by 

diamonds (I. o. obesulus), triangles 

(A. f. flavipes), squares (R. f. greyi) 

or circles (R. l. lutreolus).

Fleurieu Peninsula South East

The consequence of inaccurate initial abundance and rates of change on model outcomes will depend 

on the duration of forward predictions. For example, at points in time along simulations at two scales 

(Fig. 4), estimates may be greater at one scale than another (e.g. A), produce similar results (B), or 

predict species extinction in one case (C). The risk of generating inaccurate results and misinforming 

policy further highlights the importance of: i) creating robust SDMs based on ecologically relevant 

predictors (e.g. Austin 2007, Ford and Johnson 2007, Angilletta and Sears 2011), and ii) continuing to 

acquire more accurate estimates of the initial parameters and confidence intervals (e.g. effect of 

environmental predictors on population fitness; Järemo et al. 1999, Ylönen et al. 2003, Gaillard et al. 

2010).
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Fig. 4 Illustration of the 

confounding effect of time on 

estimates of abundance and 

extinction using two different 

models with different initial 

abundances and slope.  

Overall, the coupled niche-population models showed the highest sensitivity to climate change for R. f. 

greyi, followed by I. o. obesulus, R. l. lutreolus and A. f. flavipes (Table 5; Chapter 3). This ranking 

was the reverse of SDM predictive capacity, but reflects the result that SDMs for these species were 

most influenced by climate variables. For the remaining species, the addition of static non-climate 

variables can stablise predictions (e.g. topographic, soil and vegetation variables for the wet-heath 

specialist, R. l. lutreolus, and woodland generalist, A. f. flavipes). The importance of fine-scale 

information to represent habitat geometry and quality, and the subsequent effects on population 

demography and dispersal potential has empirical support across a variety of additional taxa (e.g. 

Löbel et al. 2006, Hokit et al. 2010, Baguette et al. 2011).

Future directions: improving SDMs and priorities for empirical research

The use of SDMs for forecasting range shifts under global change is an important and established 

method, yet they often do not adequately reflect the ecology of a species’ niche. Morrison (2001) and 

others have recommended that in each investigation: i) the niche being referred to is clearly defined 

(also Elith and Leathwick 2009), ii) a conceptual model relating the target species to the ecosystem is 

provided (also Austin 2007), iii) the relationships under investigation are described (including the 

direction of influence; Chapter 5), and iv) limiting resources required for positive population growth 

(e.g., food, nutrients, nest sites) are clearly identified and distinguished from secondary constraining 

biotic interactions (e.g. competition and predation), or other spatial or temporal influences (e.g. 

dispersal potential, history of disturbance). 

For some small mammals, analysis of currently available data may adequately characterise species’ 

distributions where environmental factors directly influence species occurrence (e.g. suitable 

microclimates on nest site availability for non-fossorial species I. o. obesulus), or are associated with 

resources: proximally (e.g. woodland communities representing nest sites for the mobile, woodland 

generalist, A. f. flavipes), or distally (e.g. the influence of suitable microclimate on subterranean fungi 

and invertebrate availability for I. o. obesulus). However, where environmental factors have an 

indirect or distal indirect influence on species occurrence, forecast changes in range dynamics
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Table 5  Relative species ranks obtained from outputs derived at the fine-scale species reflecting model 

performance (a) and impacts predicted following 40-years of simulated climate change (b). Top ranking 

species are indicated by the arrow head or 1.

Confidence ranking

Species A. f. flavipes R. l. lutreolus I. o. obesulus R. f. greyi

Family Dasyuridae Muridae Peramelidae Muridae

Status VU Rare EN

Habitat preference complex tall grass sedge
dense, 

low veg

dense, 

low veg

Diet1 I, C H O O

Shelter
hollows, Xanth-

orrhoea spp.
burrows leaf litter, shrubs burrows

a. Initial extent:

SDM performance   
Contribution of:     MT2 1 2 3

RS2 1 2 3 4

RW2 1 3 2

Propn of climate: total 2 3 1 4

Area predicted 1 4 3 2

b. Simulated climate change

Habitat loss   
Population loss 3 4 2 1

Centroid shift 2 1

Fragmentation 1 1 1 2
1H-herbivore, O-omnivore, I-insectivore, C-carnivore
2Climate variables are defined in Table 2.

with climate change should be treated with caution (i.e. where climate is the only dynamic variable, 

imposing direct, immediate rates of change on species’ occupancy). 

Collecting empirical data continues to be an essential component of improving SDMs; by increasing 

the number of localities available to represent occurrence of data poor species, through to obtaining 

empirical information on demographic response to appropriately scaled environmental factors that 

represent direct, proximal influences on species population growth rates, or secondary biotic 

interactions (e.g. competition, predation and diseases) (Chapters 1 to 4). This information will improve 

our confidence in SDM forecasts, assist in redressing current bias in models towards data-rich taxa 

(plants, birds and invertebrates), and may become more important as ecosystems become degraded 

reducing the number of species performing ecosystem functions. However, the logistical difficulties in 
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achieving have been long recognised (e.g. Brown et al. 1996). To address this problem Austin and van 

Niel (2011a) suggested standardising environmental data used to represent gradients in SDMs. 

Another suggestion would be to target empirical investigations into functional guilds and mammalian 

species with key traits that are currently poorly represented in SDMs. 

Overall, the work in this thesis determined landscape- and quadrat-scale edaphic and biotic factors 

(including vegetation community structure, floristics and cover) can improve model fit and 

transferability. Cases of improved model robustness (transferability) imply improved integration of 

gradients that define the fundamental niche. The strength of species-environment relationships varied 

with resolution of environmental variables relative to known record localities: examples of improved 

correlation at fine and coarse scales were evident for many variables, including mean rainfall. In 

addition, the resolution of environmental data influenced habitat geometry, metapopulation function 

and estimates of range shift. As a result, appropriately scaled, ecologically relevant environmental data 

are required to redress the under-representation of small mammals in SDMs used to evaluate species 

sensitive to climate change.
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Appendix I   Landscape and vegetation characteristics of the Interim Biogeographic Regionalisation for 

Australia (IBRA) v6.1 sub-regions (Australian Government Department of the Environment, Water, Heritage 

and the Arts) spanning the study area. 

  
                          NOTE:   
   This table is included on page 106  
 of the print copy of the thesis held in  
   the University of Adelaide Library.
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Appendix II   Ecology of the four mammal species targeted in this investigation.  

Southern brown bandicoot, Isoodon obesulus obesulus (endangered, Environment Protection and Biodiversity 

Conservation Act 1999)

In general terms, I. o. obesulus occupies scrub, heath and ecotones, low ground cover, open paddocks and urban 

environments (Heinsohn, 1966). Suitable habitat usually incorporates a mosaic of communities (Broughton and 

Dickman 1991) and some component of mature vegetation (Stoddart and Braithwaite 1979; Lobert 1985; 

Claridge and Barry 2000). The understorey is required to support at least 50 % cover, preferably 60 – 70 % cover 

(Moro 1991; Paull 1992), or a certain floristic composition for species occurrence in poor quality habitats 

(Braithwaite and Gullan 1978). This territorial medium-sized ground-dwelling mammal is omnivorous, forages 

on a selection of invertebrates, fungi, plant material and small vertebrates and constructs nests using available 

leaf litter (Wood-Jones, 1924; Heinsohn 1966). The species currently occupies remnants within FLB1, KAN1-2, 

NCP1-3 and VVP2 (Fig. 1).

Yellow-footed antechinus, Antechinus flavipes flavipes (vulnerable, South Australia National Parks and Wildlife 

Act 1972)

Antechinus f. flavipes is a generalist (Wood-Jones 1923) and occurs in a variety of vegetation communities 

(Hockings 1981). The species prefers structurally complex vegetation (Stokes et al. 2004) with dense 

understorey (Hockings 1981), high ground leaf litter cover (Kelly and Bennett 2008) and Xanthorrhoea spp. or 

tree hollows for nest sites (Marchesan and Carthew 2004). Males of the species are capable of seasonal dispersal 

between patches of remnant vegetation (average 352 m) (Marchesan and Carthew 2008). The species is 

primarily insectivorous and carnivorous (Wood-Jones 1923) and currently occupies remnants within FLB1, 

KAN2 and NCP2-3 (Fig. 1).

Swamp rat, Rattus lutreolus lutreolus (rare, South Australia National Parks and Wildlife Act 1972)

Rattus l. lutreolus occurs in similar habitats to R. f. greyi, but where R. f. greyi will occur in woodlands (Maitz 

and Dickman 2001), the former prefers wetter environments with tall grasses, sedges (Braithwaite and Gullan 

1978) and dense (low) understorey (Hockings 1981; Norton 1987a; Monamy 1995; Holland and Bennett 2007). 

Individuals of the species actively deter those of R. f. greyi or younger R. l. lutreolus from preferred habitat 

(Maitz and Dickman 2001), but can occupy a broader range of habitats where R. f. greyi are absent (Lunney 

2008b). The species is herbivorous and consumes plant material, some insects and fungi (Norton 1987b; Taylor 

and Calaby 1988b) and currently occupies remnants within KAN2, NCP1-3 and VVP2 (no suitable records were 

available to represent the species’ distribution in KAN1 and the extensive Murray Lakes and Coorong sub region

was excluded for containing only a few R. lutreolus lutreolus records) (Fig. 1).

Bush rat, Rattus fuscipes greyi (not currently threatened)

Rattus f. greyi is widely distributed (Wood-Jones 1925; Lunney 2008a) and occupies a range of vegetation 

communities (Watts and Aslin 1981; Taylor and Calapy 1988a) in increasing abundance from rainforest, 

shrubland, forest, heathland to sedgeland (Lindenmayer et al. 2008). This reflects a preference for dense and 

diverse low vegetation (Stewart 1979; Hockings 1981; White et al. 1996; Spencer et al. 2005; Holland and 
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Bennett 2007). The species is associated with Xanthorrhoea spp. and the presence of fallen logs (Spencer et al. 

2005; Frazer and Petit 2007). A generalist fungivore, R. f. greyi has a seasonally variable diet of fungi, grasses, 

sedges, seed and arthropods, with increasing consumption of grasses over autumn and winter (Cheal 1987; 

Carron et al. 1990) when food is generally limited (Braithwaite and Lee 1979). Individuals construct burrows 

and are able to climb (Warneke 1971), but have limited dispersal between remnants (Bentley 2008). The species 

currently occupies remnants within EYB3-4, FLB1, KAN1-2, NCP1-3 and VVP2 (Fig. 1).
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Appendix III   Species occurrence data from the South Australian biological survey and additional site 

opportunistic data incorporated within the Biological Databases of South Australia (BDBSA, extracted 18th

December 2008).

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus

Year range 1975 – 2008 1972 – 2004 1971 – 2008 1972 -2004

Filters ≤ 100 m location accuracy, single observation per location

Sampling method 

 Cage trap 104 - 17 1

 Elliott trap 8 61 183 55

 Pit trap - 2 14 1

 Roadkill 30 - - -

 Observed (incl. spotlighting) 93 - 4 3

 Sign-diggings 113 - - 2

 Sign-dropping 2 - - -

 Sign-hair tube 10 - - -

 Sign-nest (in-active) 2 - 2 -

 Sign-track tube 7 - - -

 Sign-within scat 2 - - -

 Unknown / unspecified 26 20 19 4

Total 397 83 239 66



Appendix IV   Spatial landscape variables used, including categorical variables that were simplified to avoid over-parameterising models. 

Variable Description Method of creation and data source Range (min-max)

a.A b. c.B d.C

Landscape-scale data

Climate

MT Ave. monthly min.  temp.
Baseline climate layers were created from meteorological station data (Australian Bureau 

of Meterology), combined with elevation from a  250 m DEM (Geoscience Australia 

2008) and interpolated across the region using thin plate smoothing splines in 

ANUSPLIN to a 1 km resolution (Hutchinson 2006; Fordham et al. In press).

These were used to generate the initial SDMs. An ensemble of the top ranking global 

climate models (GCM) in Australia was then used to predict future climate using 

parameters from several climate change scenarios. A period of 40 years from the no-

policy-change 'reference' scenario (Fordham et al. 2011) was extracted for this 

investigation.

11.7-

15.9 °C

11.7-

15.9 °C

6.5-

7.9 °C

4.07-

8.65 oC

RS
Ave. monthly summer 

rainfall (Nov - Jan)

40.3-

97.0 mm

40.3-

96.3 mm

15.3-

30.5 mm

16.2-

31.7 mm

RW
Ave. monthly winter 

rainfall (Jun - Aug)

126.4-

490.6 mm

9.4-

16.4 mm

42.0-

132.4 mm

Topography

E Elevation Elevation and slope were derived from a 25 m DEM and the distance from the nearest 

watercourse from available watercourse and body vector information (Department for 

Environment and Natural Resources, DENR), using ArcGIS 9.2 (ESRI 2006). Values 

were transformed using the natural log. These finer scale topographic variables are more 

likely to represent the patchy distribution of available shelter and food for some species 

(eg R. l. lutreolus).

0-694 m 17.2-197.2 m-4.0-703.0 m

S Slope 0.0-30.6° 0.0-30.6°

lnWC
Distance from nearest 

water course / body
1.3-4.5 3.0-10.3 3.0-6.0 2.9-8.3

(cont.)
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Soil

M
Root zone water holding 

capacity 

Soil vector data were available from PIRSA (2001). Categorical root zone water holding 

capacity values were reclassified to1 where > 50 % area within a mapped polygon had 

high root zone water holding capacity, and 0 for polygons where > 50 % area had 

moderate to very low water holding capacity. Categorical soil acidity data were 

reclassified to 1 where polygons contained > 20 % acidic surface and sub-surface soil 

cover, and 0 where > 20 % of the area, neutral of alkaline soils. These finer scale soil 

variables were mapped with reference to the distribution of vegetation communities, but 

were selected to represent possible relationships with soil type preferred for burrowing, 

subterranean food availability and shelter.

In the Channel Country IBRA region soil vector data were available from the Atlas of 

Australian Soils (www.asris.csiro.au), representing root zone water holding capacity of 

the solum (A and B horizons) and cracking clay, red duplex and sandy soils types. The 

latter was strongly correlated and not used.

0, 1 0, 1 0, 1

H Soil acidity 0, 1 0, 1 0, 1

PAWHC
Root zone water holding 

capacity of the solum
0-157.0

Vegetation

GEN
Broad vegetation 

community

Vegetation communities > 15 ha were mapped from 1: 40 000 aerial photographs (1987), 

with assistance from the classification of structural and floristic data (Foulkes and Heard 

2003). Categorical data were reclassified as 1, sedgeland, fernland or grassland; 2, 

woodland or mallee woodland; 3 forest or mallee forest; 4 shrubland. As I. o. obesulus

and A. f. flavipes were absent from GEN1, this variable category was removed from the 

respective SDM. This finer scale variable was selected to directly represent preferred 

habitat, including available shelter (such as hollow), and food resources.

In the Channel Country IBRA region, categorical data were reclassified as 1, woodland; 

2, shrubland > 1 m; 3 shrubland < 1 m; 4 hummock grassland.

0,1, 2, 3, 4 0,1, 2, 3, 4 0,1, 2, 3, 4 0,1, 2, 3, 4
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(cont.) Appendix IV  
Quadrat-scale data

C3 Diversity of flora > 2 m 
Point data were available from DENR Biological Survey of South Australia (BSSA) sites. 

Prior to extraction this dataset was validated by a botanist (N. Neagle, DENR, pers. comm., 

2011, P. Lang, DENR, pers. comm., 2009). C3 represented counts of tree, mallee and large 

shrub species taller than 2 m, and C2 shrub species richness < 2 m. Point data were available 

from DENR BSSA survey sites containing modified Muir categories (1-10 %, 10-30 %, 30-

70 % and 70-100 %) (Heard & Channon, 1997) condensed to (0, 1-10 %, 10-30 %, > 30-70 

%). 

0-10 

species

C2 Diversity of shrubs < 2 m
1-67 

species

SC Shrub cover 0.5 – 1.0 m 0, 1, 2, 3

SD Shrub cover < 0.5 m 0, 1, 2, 3

VL Sedge cover < 0.5 m 0, 1, 2
A Some variables shared some correlation (r > 0.6), including between MT and RS (-0.60), RS and RW (0.77), RS and E (0.78), RW and E (0.82), RW and H (0.64).
B Correlated variables (i.e. MT and RS r 0.85, PAWHC and soil type r 0.96) were not included in the same model.
C Variables representing climate variability was also trialed, but found to be highly correlated with mean values (mean Pearson's r for MT 0.85, RS 0.98), and when used in place of 

mean variables, produced simular results (≤ 1.6% DE for all models, excluding the N. cervinus climate-only model that increased by 3.8% DE and was insufficient to outcompete the 

climate-and-landscape model).

A
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Appendix V   Explanatory strength of a priori predictive boosted regression tree models using climate (Model 1; 

~ MT + RS + RW) and landscape parameters (Model 2 ~ MT + RS + RW + E + S + WC + GEN + M + H). 

Shown are the optimal tree complexity (number of nodes) and learning rate (number of trees added to the model) 

used to apply the BRT model, the resultant number of trees required and the percentage deviance explained (% 

DE). 

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Tree complexity 5 3 2 2 4 3 2 2

Learning rate 0.01 0.01 0.005 0.005 0.01 0.005 0.01 0.005

No. trees 750 1250 1450 1400 1200 1100 500 1350

% DE 41.4 42.7 41.9 45.8 26.1 27.4 25.4 38.4

MT, average monthly minimum temperature; RS / RW, average monthly rainfall during summer (Nov-Jan) and 

winter (Jun-Aug); E, elevation; S, slope; lnWC, distance from nearest water course or body transformed using 

the natural log; GEN, broad vegetation community; M, root zone water holding capacity; H, soil acidity.
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Appendix VI   Coefficients estimated for each parameter of the more complex generalised linear model for 

each species (Model 2 ~ MT + RS + RW + E + S + WC + GEN + M + H), standard error (SE), z score and 

the associated p-value. Also shown are the effect size as an odds ratio, and 95 % confidence intervals around 

the odds ratio. 

Coefficient SE z score Pr(>|z|) Odds ratio 95 % CI

a.  I. o. obesulus

(Intercept) -27.411 3.564 -7.7 <0.000 <0.0 0.000-0.000

MT 1.201 0.193 6.2 <0.000 3.3 2.274-4.860

RS 0.103 0.014 7.5 <0.000 1.1 1.079-1.139

RW 0.012 0.003 4.4 <0.000 1.0 1.007-1.017

E -0.003 0.001 -2.5 0.011 1.0 0.995-0.999

S 0.007 0.020 0.3 0.727 1.0 0.968-1.048

lnWC 0.009 0.076 0.1 0.910 1.0 0.869-1.171

GEN3 -1.388 0.282 -4.9 <0.000 0.2 0.144-0.434

GEN4 0.066 0.368 0.2 0.857 1.1 0.518-2.202

M1 0.283 0.278 1.0 0.308 1.3 0.770-2.290

H1 0.851 0.250 3.4 0.001 2.3 1.434-3.824

b.  A. f. flavipes

(Intercept) -22.326 6.476 -3.4 0.001 <0.0 0.000-0.000

MT 0.788 0.384 2.0 0.040 2.2 1.033-4.677

RS 0.154 0.029 5.3 <0.000 1.2 1.101-1.235

RW 0.001 0.006 0.2 0.839 1.0 0.989-1.014

E -0.001 0.002 -0.3 0.727 1.0 0.995-1.003

S 0.029 0.034 0.9 0.385 1.0 0.964-1.100

lnWC -0.337 0.158 -2.1 0.033 0.7 0.523-0.974

GEN3 1.235 0.446 2.8 0.006 3.4 1.433-8.259

GEN4 0.316 0.741 0.4 0.670 1.4 0.320-5.883

M1 0.865 0.434 2.0 0.046 2.4 1.013-5.574

H1 0.481 0.454 1.1 0.290 1.6 0.663-3.951
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Coefficient SE z score Pr(>|z|) Odds ratio 95 % CI

c.  R. f. greyi

(Intercept) -25.559 3.340 -7.7 <0.000 <0.0 0.000-0.000

MT 1.081 0.187 5.8 <0.000 3.0 2.041-4.256

RS 0.104 0.012 8.4 <0.000 1.1 1.083-1.137

RW 0.013 0.003 4.8 <0.000 1.0 1.008-1.019

E -0.005 0.001 -3.8 <0.000 1.0 0.993-0.998

S -0.003 0.025 -0.1 0.898 1.0 0.950-1.046

lnWC 0.030 0.079 0.4 0.702 1.0 0.883-1.203

GEN3 -0.027 0.330 -0.1 0.934 1.0 0.509-1.856

GEN1 0.075 0.554 0.1 0.892 1.1 0.363-3.194

GEN4 0.199 0.312 0.6 0.524 1.2 0.661-2.250

M1 0.322 0.305 1.1 0.290 1.4 0.759-2.508

H1 0.062 0.272 0.2 0.820 1.1 0.624-1.813

d.  R. l. lutreolus

(Intercept) -44.914 8.701 -5.2 <0.000 <0.0 0.000-0.000

MT 2.099 0.476 4.4 <0.000 8.2 3.203-20.776

RS 0.191 0.032 6.0 <0.000 1.2 1.137-1.288

RW 0.011 0.006 2.0 0.050 1.0 1.000-1.022

E -0.018 0.004 -5.0 <0.000 1.0 0.976-0.989

S -0.073 0.073 -1.0 0.317 1.0 0.805-1.073

lnWC -0.525 0.181 -2.9 0.004 0.6 0.415-0.844

GEN3 0.194 0.727 0.3 0.789 1.2 0.291-5.064

GEN1 3.934 0.829 4.7 <0.000 51.1 10.037-260.470

GEN4 3.796 0.694 5.5 <0.000 44.5 11.386-173.923

M1 1.848 0.533 3.5 0.001 6.4 2.227-18.103

H1 2.638 0.700 3.8 <0.000 14.0 3.533-55.327

MT, average monthly minimum temperature; RS / RW, average monthly rainfall during summer (Nov-Jan) 

and winter (Jun-Aug); E, elevation; S, slope; lnWC, distance from nearest water course or body transformed 

using the natural log; GEN, broad vegetation community; M, root zone water holding capacity; H, soil acidity.



Appendix VII   Explanatory strength of null and a priori generalised linear models, where ‘occupied sites’ are represented by survey sites within 150 m of a known record locality. 

Shown are the number of parameters (k), minimised negative log-likelihood (-LL), Akaike’s information criterion corrected for small sample sizes (AICc), Bayesian Inference 

Criterion (BIC),  Deviance Information Criterion (DIC), difference from the highest-ranking model (ΔAICc, ΔBIC, ΔDIC), weight scaled to a sum of 1(wAICc, wDIC, wBIC), and 

the percentage deviance explained (% DE) by the model relative to the null.

Model Variables k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

I. o. obesulus (35 presence : 473 absence sites) (prevalence 0.07)

Null ~ 1 1 -127.4 256.8 65.6 0.00 261.0 54.7 0.00 256.8 64.4 0.00

M1 ~ MT + RS 3 -93.8 193.7 2.5 0.14 206.3 0.0 0.75 193.8 1.4 0.18 26.4

M2 ~ RS + lWC + H 4 -93.3 194.7 3.5 0.09 211.5 5.2 0.06 194.6 2.2 0.12 26.8

M3 ~ RS + GEN 4 -92.3 192.7 1.5 0.24 209.5 3.2 0.15 192.7 0.3 0.31 27.5

M4 ~ RS + lWC + C3 4 -92.1 191.2 0.0 0.51 212.2 5.9 0.04 192.4 0.0 0.36 27.7

M5 ~ RS + SC 5 -93.9 198.0 6.8 0.02 219.0 12.7 0.00 198.0 5.5 0.02 26.3

A. f. flavipes (66 presence : 440 absence sites) (prevalence 0.13)

Null ~ 1 1 -195.9 393.9 166.4 0.00 398.1 149.8 0.00 393.9 166.5 0.00

M1 ~ MT + RS 3 -114.8 235.7 8.2 0.02 248.3 0.0 0.90 235.4 8.1 0.02 41.4

M2 ~ RS + lWC + H 4 -117.6 243.3 15.9 0.00 260.1 11.8 0.00 243.3 16.0 0.00 40.0

M3 ~ RS + lWC + H + GEN 6 -107.6 227.4 0.0 0.98 252.6 4.3 0.10 227.3 0.0 0.98 45.1

M4 ~ RS + lWC + H + C3 5 -117.2 244.6 17.1 0.00 265.6 17.3 0.00 244.8 17.5 0.00 40.2

M5 ~ RS + lWC + H + SC 7 -114.5 243.3 15.9 0.00 272.7 24.4 0.00 243.2 15.9 0.00 41.5
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Model Variables k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

R. f. greyi (197 presence : 388 absence sites) (prevalence 0.34)

Null ~ 1 1 -373.7 749.5 146.4 0.00 753.8 137.7 0.00 749.5 146.8 0.00

M1 ~ MT + RS 3 -298.5 603.0 0.0 1.00 616.1 0.0 1.00 602.6 0.0 1.00 20.1

M2 ~ RS + S + M + H 5 -307.9 625.8 22.8 0.00 647.6 31.5 0.00 625.8 23.2 0.00 17.6

M3 ~ RS + S + M + H + GEN 8 -306.9 630.0 27.0 0.00 664.8 48.7 0.00 629.9 27.3 0.00 17.9

M4 ~ RS + S + M + H + C3 6 -307.4 626.9 23.9 0.00 653.0 36.9 0.00 626.9 24.2 0.00 17.8

M5 ~ RS + S + M + H + SC 8 -302.5 621.3 18.3 0.00 656.1 40.0 0.00 621.2 18.5 0.00 19.0

R. l.  lutreolus  (63 presence : 504 absence sites) (prevalence 0.11)

Null ~ 1 1 -197.8 397.6 146.7 0.00 401.9 120.9 0.00 397.6 146.9 0.00

M1 ~ MT + RS 3 -173.2 352.4 101.5 0.00 365.3 84.3 0.00 352.5 101.8 0.00 12.5

M2 ~ RS + S + lWC 4 -152.5 313.1 62.3 0.00 330.4 49.4 0.00 313.0 62.3 0.00 22.9

M3 ~ RS + S + M + H 5 -143.1 296.2 45.4 0.00 317.8 36.8 0.00 296.1 45.4 0.00 27.7

M4 ~ RS + S + M + GEN 7 -118.3 250.8 0.0 1.00 281.0 0.0 1.00 250.7 0.0 1.00 40.2

M5 ~ RS + S + M + C3 5 -133.9 277.9 27.0 0.00 299.5 18.4 0.00 306.3 55.6 0.00 32.3

M6 ~ RS + S + M + SC 7 -128.3 270.8 19.9 0.00 301.0 19.9 0.00 270.7 20.0 0.00 35.1

M7 ~ RS + S + M + VL 6 -144.9 302.0 51.2 0.00 327.9 46.9 0.00 301.9 51.2 0.00 26.7

MT, ave. monthly minimum temperature; RS, ave. monthly rainfall during summer (Nov-Jan); S, slope; lWC, distance from nearest water course or body transformed using the natural 

log; GEN, broad vegetation community; M, root zone water holding capacity; H, soil acidity; C3, diversity of flora taller than 2 m; SC, cover of shrubs between 0.5 – 1.0 m in height; 

VL, sedge cover under 0.5 m.
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Appendix VIII  Explanatory strength of null and a priori boosted regression tree models, 

where ‘occupied sites’ are represented by survey sites within 150 m of a known record locality. 

Shown are the optimal tree complexity (number of nodes) and learning rate (number of trees 

added to the model) used to apply the BRT model, the resultant number of trees required and 

the per cent deviance explained (% DE). Model composition follows that listed in Table 1. 

M1 M2 M3 M4 M5 M6 M7

I. o. obesulus

Tree complexity 1 2 1 1 1 - -

Learning rate 0.005 0.005 0.005 0.005 0.005 - -

No. trees 2200 550 1900 1000 800 - -

% DE 27.5 26.8 26.8 25.9 25.6 - -

A. f. flavipes

Tree complexity 2 2 2 4 2 - -

Learning rate 0.010 0.005 0.005 0.005 0.005 - -

No. trees 1600 1350 2950 700 850 - -

% DE 45.6 39.7 47.6 38.9 38.5 - -

R. f. greyi

Tree complexity 2 4 5 3 4 - -

Learning rate 0.010 0.005 0.005 0.005 0.005 - -

No. trees 2100 950 1050 1050 850 - -

% DE 32.4 23.6 23.5 24.7 24.9 - -

R. l. lutreolus

Tree complexity 2 3 2 3 3 2 4

Learning rate 0.010 0.010 0.005 0.005 0.005 0.005 0.005

No. trees 1950 1450 1050 800 1000 800 900

% DE 27.2 28.9 29.5 39.3 30.3 32.8 29.1



Appendix IX   Explanatory strength of the null and a priori generalised linear models, where ‘occupied sites’ are represented by survey sites within 150 m, 500 m and 1000 m of a 

known record locality. Shown are the minimised negative log-likelihood (-LL), Akaike’s information criterion corrected for small sample sizes (AICc), Bayesian Inference Criterion 

(BIC),  Deviance Information Criterion (DIC), difference from the highest-ranking model (ΔAICc, ΔBIC, ΔDIC), weight scaled to a sum of 1(wAICc, wDIC, wBIC), and the 

percentage of the deviance explained (% DE) by the model relative to the null.

a. I. o. obesulus Model k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

150 m 

35 pres : 473 abs 

prevalence 0.07

~ 1 1 -127.4 256.8 65.6 0.00 261.0 54.7 0.00 256.8 64.4 0.00

~ MT + RS 3 -93.8 193.7 2.5 0.14 206.3 0.0 0.75 193.8 1.4 0.18 26.4

~ RS + lWC + H 4 -93.3 194.7 3.5 0.09 211.5 5.2 0.06 194.6 2.2 0.12 26.8

~ RS + GEN 4 -92.3 192.7 1.5 0.24 209.5 3.2 0.15 192.7 0.3 0.31 27.5

~ RS + lWC + C3 4 -92.1 191.2 0.0 0.51 212.2 5.9 0.04 192.4 0.0 0.36 27.7

~ RS + SC 5 -93.9 198.0 6.8 0.02 219.0 12.7 0.00 198.0 5.5 0.02 26.3

500 m 

73 pres : 454 abs 

prevalence 0.14

~ 1 1 -212.0 426.0 88.2 0.00 430.3 79.7 0.00 426.0 88.3 0.00

~ MT + RS 3 -165.9 337.8 0.0 0.76 350.5 0.0 0.98 337.7 0.0 0.77 21.8

~ RS + lWC + H 4 -168.0 344.1 6.3 0.03 361.1 10.6 0.00 344.1 6.4 0.03 20.7

~ RS + GEN 4 -166.8 341.8 4.0 0.10 358.8 8.3 0.02 341.7 4.0 0.10 21.3

~ RS + lWC + C3 4 -167.0 342.0 4.2 0.09 363.2 12.7 0.00 342.1 4.5 0.08 21.2

~ RS + SC 5 -168.3 346.7 8.9 0.01 367.9 17.4 0.00 346.6 9.0 0.01 20.6

1 000 m 

129 pres : 425 abs 

prevalence 0.23

~ 1 1 -300.7 603.3 118.0 0.00 607.6 109.4 0.00 489.1 4.1 0.11

~ MT + RS 3 -239.6 485.3 0.0 1.00 498.2 0.0 1.00 485.1 0.0 0.88 20.3

~ RS + lWC + H 4 -245.9 499.8 14.5 0.00 517.0 18.7 0.00 499.8 14.8 0.00 18.2

~ RS + GEN 4 -246.0 500.0 14.7 0.00 517.2 19.0 0.00 500.0 15.0 0.00 18.2

~ RS + lWC + C3 4 -246.1 501.4 16.1 0.00 522.9 24.6 0.00 500.2 15.2 0.00 18.1

~ RS + SC 5 -244.1 498.2 12.9 0.00 519.7 21.5 0.00 498.2 13.2 0.00 18.8

(cont.)
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b. A. f. flavipes Model k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

150 m 

66 pres : 440 abs 

prevalence 0.13

~ 1 1 -195.9 393.9 166.4 0.00 398.1 149.8 0.00 393.9 166.5 0.00

~ MT + RS 3 -114.8 235.7 8.2 0.02 248.3 0.0 0.90 235.4 8.1 0.02 41.4

~ RS + lWC + H 4 -117.6 243.3 15.9 0.00 260.1 11.8 0.00 243.3 16.0 0.00 40.0

~ RS + lWC + H + GEN 6 -107.6 227.4 0.0 0.98 252.6 4.3 0.10 227.3 0.0 0.98 45.1

~ RS + lWC + H + C3 5 -117.2 244.6 17.1 0.00 265.6 17.3 0.00 244.8 17.5 0.00 40.2

~ RS + lWC + H + SC 7 -114.5 243.3 15.9 0.00 272.7 24.4 0.00 243.2 15.9 0.00 41.5

500 m 

77 pres : 436 abs 

prevalence 0.15

~ 1 1 -216.9 435.9 196.2 0.00 440.1 180.8 0.00 435.9 196.2 0.00

~ MT + RS 3 -120.3 246.6 7.0 0.03 259.3 0.0 0.94 246.3 6.6 0.04 44.6

~ RS + lWC + H 4 -123.8 255.6 16.0 0.00 272.5 13.2 0.00 255.6 16.0 0.00 42.9

~ RS + lWC + H + GEN 6 -113.7 239.7 0.0 0.97 264.9 5.6 0.06 239.7 0.0 0.96 47.6

~ RS + lWC + H + C3 5 -123.2 256.6 16.9 0.00 277.6 18.4 0.00 256.7 17.0 0.00 43.2

~ RS + lWC + H + SC 7 -119.3 252.7 13.1 0.00 282.2 22.9 0.00 252.8 13.1 0.00 45.0

1 000 m 

87 pres : 549 abs 

prevalence 0.14

~ 1 1 -234.6 471.3 211.5 0.00 475.5 195.0 0.00 471.3 211.6 0.00

~ MT + RS 3 -130.9 267.8 8.0 0.02 280.5 0.0 0.91 267.4 7.7 0.02 44.2

~ RS + lWC + H 4 -133.2 274.5 14.7 0.00 291.4 10.9 0.00 274.6 14.9 0.00 43.2

~ RS + lWC + H + GEN 6 -123.8 259.8 0.0 0.98 285.1 4.6 0.09 259.6 0.0 0.98 47.2

~ RS + lWC + H + C3 5 -132.8 275.7 15.9 0.00 296.8 16.3 0.00 275.7 16.1 0.00 43.4

~ RS + lWC + H + SC 7 -130.3 274.8 14.9 0.00 304.3 23.8 0.00 274.8 15.1 0.00 44.5

(cont.)
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c. R. f. greyi Model k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

150 m 

197 pres : 388 

absprevalence 0.34

~ 1 1 -373.7 749.5 146.4 0.00 753.8 137.7 0.00 749.5 146.8 0.00

~ MT + RS 3 -298.5 603.0 0.0 1.00 616.1 0.0 1.00 602.6 0.0 1.00 20.1

~ RS + S + M + H 5 -307.9 625.8 22.8 0.00 647.6 31.5 0.00 625.8 23.2 0.00 17.6

~ RS + S + M + H + GEN 8 -306.9 630.0 27.0 0.00 664.8 48.7 0.00 629.9 27.3 0.00 17.9

~ RS + S + M + H + C3 6 -307.4 626.9 23.9 0.00 653.0 36.9 0.00 626.9 24.2 0.00 17.8

~ RS + S + M + H + SC 8 -302.5 621.3 18.3 0.00 656.1 40.0 0.00 621.2 18.5 0.00 19.0

500 m 

241 pre : 377 abs 

prevalence 0.39

~ 1 1 -413.3 828.6 164.3 0.00 833.0 155.5 0.00 828.5 135.2 0.00

~ MT + RS 3 -329.1 664.3 0.0 1.00 677.5 0.0 1.00 663.8 -29.6 1.00 20.4

~ RS + S + M + H 5 -341.6 693.3 29.1 0.00 715.4 37.9 0.00 693.3 0.0 0.00 17.3

~ RS + S + M + H + GEN 8 -340.0 696.3 32.0 0.00 731.4 54.0 0.00 696.2 2.8 0.00 17.7

~ RS + S + M + H + C3 6 -340.1 692.4 28.2 0.00 718.8 41.3 0.00 692.2 -1.1 0.00 17.7

~ RS + S + M + H + SC 8 -338.3 692.7 28.5 0.00 727.9 50.4 0.00 692.6 -0.7 0.00 18.2

1 000 m 

290 pres : 367 abs 

prevalence 0.44

~ 1 1 -450.9 903.8 164.9 0.00 908.2 155.9 0.00 903.7 165.4 0.00

~ MT + RS 3 -366.4 738.9 0.0 1.00 752.3 0.0 1.00 738.4 0.0 1.00 18.7

~ RS + S + M + H 5 -381.4 773.0 34.1 0.00 795.3 43.0 0.00 772.9 34.5 0.00 15.4

~ RS + S + M + H + GEN 8 -379.9 775.9 37.0 0.00 811.6 59.3 0.00 775.8 37.4 0.00 15.8

~ RS + S + M + H + C3 6 -377.5 767.1 28.2 0.00 793.9 41.6 0.00 767.0 28.7 0.00 16.3

~ RS + S + M + H + SC 8 -378.1 772.5 33.6 0.00 808.2 55.9 0.00 772.4 34.0 0.00 16.1

(cont.)
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d. R. l. lutreolus Model k -LL AICc ΔAICc wAICc BIC ΔBIC wBIC DIC ΔDIC wDIC %DE

150 m 

63 pres : 504 abs 

prevalence 0.11

~ 1 1 -197.8 397.6 146.7 0.00 401.9 120.9 0.00 397.6 146.9 0.00

~ MT + RS 3 -173.2 352.4 101.5 0.00 365.3 84.3 0.00 352.5 101.8 0.00 12.5

~ RS + S + lWC 4 -152.5 313.1 62.3 0.00 330.4 49.4 0.00 313.0 62.3 0.00 22.9

~ RS + S + M + H 5 -143.1 296.2 45.4 0.00 317.8 36.8 0.00 296.1 45.4 0.00 27.7

~ RS + S + M + GEN 7 -118.3 250.8 0.0 1.00 281.0 0.0 1.00 250.7 0.0 1.00 40.2

~ RS + S + M + C3 5 -133.9 277.9 27.0 0.00 299.5 18.4 0.00 306.3 55.6 0.00 32.3

~ RS + S + M + SC 7 -128.3 270.8 19.9 0.00 301.0 19.9 0.00 270.7 20.0 0.00 35.1

~ RS + S + M + VL 6 -144.9 302.0 51.2 0.00 327.9 46.9 0.00 301.9 51.2 0.00 26.7

500 m 

89 pres : 510 abs 

prevalence 0.15

~ 1 1 -250.3 502.5 183.7 0.00 506.9 157.6 0.00 502.5 183.9 0.00

~ MT + RS 3 -212.1 430.2 111.3 0.00 443.3 94.0 0.00 430.0 111.4 0.00 15.3

~ RS + S + lWC 4 -193.5 395.1 76.3 0.00 412.6 63.3 0.00 395.1 76.4 0.00 22.7

~ RS + S + M + H 5 -176.7 363.6 44.7 0.00 385.4 36.0 0.00 363.5 44.8 0.00 29.4

~ RS + S + M + GEN 7 -152.3 318.9 0.0 1.00 349.3 0.0 0.97 318.7 0.0 1.00 39.1

~ RS + S + M + C3 5 -162.1 334.3 15.5 0.00 356.1 6.8 0.03 363.4 44.8 0.00 35.2

~ RS + S + M + SC 7 -167.8 349.9 31.0 0.00 380.3 31.0 0.00 349.8 31.2 0.00 32.9

~ RS + S + M + VL 6 -177.6 367.3 48.4 0.00 393.4 44.1 0.00 367.2 48.6 0.00 29.0

1 000 m 

123 pres : 494 abs 

prevalence 0.20

~ 1 1 -308.2 618.4 218.1 0.00 622.8 191.7 0.00 618.4 218.2 0.00

~ MT + RS 3 -256.0 518.1 117.8 0.00 531.3 100.2 0.00 518.1 117.9 0.00 16.9

~ RS + S + lWC 4 -236.5 481.1 80.8 0.00 498.7 67.6 0.00 481.0 80.8 0.00 23.3

~ RS + S + M + H 5 -212.2 434.5 34.2 0.00 456.5 25.4 0.00 434.4 34.2 0.00 31.1

~ RS + S + M + GEN 7 -193.1 400.3 0.0 1.00 431.1 0.0 0.99 400.2 0.0 1.00 37.4

~ RS + S + M + C3 5 -204.7 419.4 19.1 0.00 441.5 10.3 0.01 451.9 51.7 0.00 33.6

~ RS + S + M + SC 7 -205.6 425.3 25.0 0.00 456.1 25.0 0.00 425.3 25.0 0.00 33.3

~ RS + S + M + VL 6 -214.6 441.3 41.0 0.00 467.7 36.6 0.00 441.1 40.9 0.00 30.4
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Appendix X   Explanatory strength of the null and a priori boosted regression tree models, where ‘occupied sites’ are represented by survey sites within 150 m, 500 m and 1000 m 

of a known animal location. Shown are the optimal tree complexity (number of nodes) and learning rate (number of trees added to the model) used to apply the BRT model, the 

resultant number of trees required and the per cent deviance explained (% DE). Model composition follows that listed in Table 1, p13.

150 m 500 m 1 000 m

M 1 M 2 M 3 M 4 M 5 M6 M7 M 1 M 2 M 3 M 4 M 5 M6 M7 M 1 M 2 M 3 M 4 M 5 M6 M7

a I. o. obesulus

Tree complexity 1 2 1 1 1 - - 2 3 3 2 1 - - 2 3 3 2 1 - -

Learning rate 0.005 0.005 0.005 0.005 0.005 - - 0.010 0.005 0.001 0.005 0.005 - - 0.010 0.005 0.005 0.010 0.010 - -

No. trees 2200 550 1900 1000 800 - - 1200 1200 1800 1600 1500 - - 1200 1450 800 1200 1550 - -

% DE 27.5 26.8 26.8 25.9 25.6 - - 33.3 26.6 26.5 26.7 22.1 - - 35.9 28.8 26.1 27.6 25.2 - -

b A. f. flavipes

Tree complexity 2 2 2 4 2 - - 2 2 3 2 2 - - 2 2 3 2 2 - -

Learning rate 0.010 0.005 0.005 0.005 0.005 - - 0.010 0.005 0.005 0.005 0.005 - - 0.010 0.005 0.005 0.005 0.005 - -

No. trees 1600 1350 2950 700 850 - - 1400 1050 1200 1000 1450 - - 800 1500 1100 1600 1000 - -

% DE 45.6 39.7 47.6 38.9 38.5 - - 47.4 41.7 45.8 41.1 43.3 - - 46.4 42.4 47.5 42.9 42.3 - -

c. R. f. greyi

Tree complexity 2 4 3 5 4 - - 2 3 4 3 4 - - 2 3 4 3 4 - -

Learning rate 0.010 0.005 0.005 0.005 0.005 - - 0.010 0.005 0.005 0.005 0.005 - - 0.010 0.005 0.010 0.005 0.005 - -

No. trees 2100 950 1050 1050 850 - - 2650 2050 1800 1350 1200 - - 1800 1600 1150 1650 1250 - -

% DE 32.4 23.6 23.5 24.7 24.9 - - 35.4 25.2 27.3 24.2 25.9 - - 33.2 23.3 25.3 24.0 24.9 - -

d. R. l. lutreolus

Tree complexity 2 3 2 3 3 2 4 2 3 4 3 4 3 3 2 4 4 3 4 3 4

Learning rate 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.010 0.010 0.005 0.005 0.005 0.005 0.005

No. trees 1950 1450 1050 800 1000 800 900 3200 1600 1350 1300 1300 1350 1050 4750 1300 800 2000 1000 1300 1250

% DE 27.2 28.9 29.5 39.3 30.3 32.8 29.1 35.7 32.6 35.5 41.8 37.3 34.9 30.8 38.6 36.0 33.7 42.2 35.0 33.1 33.5
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Appendix XI   Explanatory strength of each variable represented by the percentage deviance 

explained (% DE) when added to the null model, divided by the degrees of freedom used by 

the variable (as per Garnett and Brook 2007). 

Variable k

Deviance explained (%)

150 m 500 m 1 000 m Difference†

a. I. o. obesulus

~ MT 1 3.4 2.4 1.7 -1.7

~ RS 1 25.2 20.2 17.8 -7.4

~ WC 1 2.2 2 2.4 na

~ H 1 10.2 7.6 6.1 -4.1

~ GEN 3 2.1 1.4 1 -1.1

~ CAT3 1 0.3 0 0.7 na

~ SC 4 1.3 1.8 2.4 1.1

b. A. f. flavipes

~ MT 1 1.7 1.6 1.5 -0.2

~ RS 1 35 37.2 36.9 na

~ WC 1 9 10 10.9 1.9

~ H 1 10 10.7 11.1 1.1

~ GEN 3 8.5 9 8.6 na

~ C3 1 0.3 0.3 0.3 0

~ SC 4 1.6 2.4 2 na

c. R. f. greyi

~ MT 1 1.5 1.5 1 -0.5

~ RS 1 17.2 17.1 14.9 -2.3

~ S 1 0.5 0.3 0.9 na

~ H 1 1.5 1 0.9 -0.6

~ M 1 4.8 4.6 3.5 -1.3

~ GEN 4 0.8 1 0.7 na

~ C3 1 0.1 0.3 0.6 0.5

~ SC 4 0.4 0.2 0.2 -0.2

(cont.)
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d. R. l. lutreolus

~ MT 1 4.9 4.6 4.4 -0.5

~ RS 1 12.4 15.2 16.7 4.3

~ S 1 4 3.4 2.7 -1.3

~ lWC 1 1.9 0.2 0.1 -1.8

~ H 1 1.6 0.6 1.2 na

~ M 1 10.5 14.9 16 5.5

~ GEN 4 19.7 16.5 14.4 -5.3

~ C3 1 7.7 7.4 5.1 -2.6

~ SC 4 11.5 6.1 5.1 -6.4

~ VL 3 1.6 1.2 1.6 na

†Calculated as the percentage deviance explained (% DE) at 1 000 m minus that 

calculated at 150 m. Where values increase or decrease inconsistently, across the 1 000 

m, 500 m and 150 m, a ‘na’ has been inserted. This could indicate variables with more 

complex relationships between species, or be an artefact of the small differences in % 

DE, so these variables were not included in Fig. 4, p34.  
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Appendix XII   Demographic parameters applied in the coupled niche-population models using RAMAS-GIS. 

This process requires a habitat suitability map generated using a species distribution model. Once a threshold 

value is applied, the map represents unsuitable and suitable habitat (0 and 1, respectively) and habitat pixels 

combined into patches using the neighbourhood distance. These patches then form the basis of the population 

demographic model. Where two parameters are presented, the left and right values were applied to the 100 m2

and 1000 m2 models, respectively. Sources of the population demographic perameters are also indicated.

A. f. flavipes I. o. obesulus R. f. greyi R. l. lutreolus

Species biology

Family Dasyuridae Peramelidae Muridae Muridae

Status VU (Sth Aust.) EN (Aust.) No listing Rare (Sth Aust.)

Weight (g) 21 - 79 400 - 1850 40 - 225 50 - 200

Habitat preference
structurally 

complex

dense and low 

vegetation

dense and low 

vegetation

tall grass and 

sedge

Diet
insectivorous and 

carnivorous
omnivorous omnivorous herbivorous

Shelter
tree hollows, 

Xanthorrhoea spp.

mounds of leaf 

litter, dense shrubs
burrows burrows

Habitat suitability index

Number of recordsb 80:390 or 293 209:426 or 317 198:344 or 260 52:446 or 338

Regions of occurrence 

included in modelsc FP, SE FP, KI, SE EP, FP, KI, SE FP, SE

Threshold (MSS) 0.15a, 0.17a 0.39 a, 0.43a 0.565 a, 0.61a 0.07, 0.115

Neighbourhood 

distance
2.5, 1.5 1.5, 1.5 1.5, 1.5 1.5, 1.5

Population demographic parameters

Life history table / stage matrix

 No. stages 3 (≤ 2 yr)R1 4 (≤ 3 yr)R5,6 3 (≤ 2 yr)R12 4 (≤ 3 yr)R19

 Age at first breeding 1 1 1 1

 Fertility (/yr) 

(young*litters/♀)
(8*1)/2 = 4R2

(3.1*3)/2 = 4.62

Don't breed in 4th

breeding seasonR5,7

(5*3.5)/2 = 8.75

Don't breed in 2nd

breeding seasonR12,14

(5*2)/2 = 5

Don't breed in 3rd

breeding seasonR12

SD ± 33.75 % ± 36 % ± 30 % ± 30 %

    Survival rates (%)
24.7 (0 – 1)

1.72 (1 yr)R1

10.5 (0 – 1)

65 (1+ yr)R5,8

11.2 (0 – 1)

2.53 (1+ yr)R14

12.47 (0 – 1)

60.1 (1+ yr)R12

SD ± 5 % ± 5 % ± 5 % ± 5 %

    Rmax 1.574 (biol.) 1.72 (biol.)
2. 075 (oregan vole; 

biol. 2.25)

1.243 (ave. watervole

muskrat; biol. 1.78)

Initial abundance & 

carrying capacity (K)

2 ha-1, 

200 km-1 R1

3 ha-1, 

300 km-1 R9,10

10 ha-1, 

1000 km-1 R15

7 ha-1, 

700 km-1 R15

(cont.)
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(cont.) Appendix XII   

A. f. flavipes I. o. obesulus R. f. greyi R. l. lutreolus

Dispersal function, Mij 

= a.exp(-Dijc/b), where 

D is the distance from 

patch i to j

0.8.exp(-

Dij0.6/0.24)R3

0.5.exp(-

Dij0.95/0.1)

0.5.exp(-

Dij0.6/0.2)

0.5.exp(-

Dij0.9/0.1)R\

Max. dispersal (Dmax) 1.55 kmR4 0.6 kmR11 0.75 kmR16,17,18 0.45 kmR15

aThreshold used to convert probabilities into suitable and unsuitable habitat. 
bThe limited number of presences available was retained at both scales by manually inserting missing 

environmental data no longer represented at 100 m2 or 1000 m2 resolution before the species distribution models 

were created. 
cRegion codes represent Eyre Peninsula (EP), Fleurieu Peninsula (FP) Kangaroo Island (KI) and South East 

(SE).  
R1Marchesan D, Carthew S (2004) Autoecology of the yellow-footed antechinus (Antechinus flavipes) in a 

fragmented landscape in southern Australia. Wildl Res 31:273-282.

R2Smith G (1984) The biology of the yellow-footed antechinus Antechinus flavipes (Marsupialia: Dasyuridae), I 

a swamp forest on Kinaba Island, Cooloola, Quensland. Aust Wild Res 11:465-480.

R3Marchesan D, Carthew SM (2008) Use of space by the yellow-footed antechinus, Antechinus flavipes, I a 

fragmented landscape in South Australia. Landscape Ecol 23:741-752.

R4Van der Ree R (2003) The occurrence of the yellow-footed antechinus Antechinus flavipes in remnanr linear 

habitats in north-eastern Victoria. Aust Mammal 25:97-100.

R5 Lobert B, Lee AK (1990) Reproduction and life history of Isoodon obesulus in Victorian heathland. In 

Bandicoots and Bilbies (eds Seebeck JH, Brown PR, Wallis RL, Kemper CM) Surrey Beatty & Sons (Australia) 

p311-318

R6 Paull DJ (2008) Southern Brown Bandicoot, Isoodon obesulus (Shaw, 1797). In The Mammals of Australia 

(3rd Edition) (eds van Dyck S, Strahan R) New Holland Publishers (Australia) p180-182.

R7 Paull D (1992) The distribution, ecology and conservation of the southern brown bandicoot (Isoodon obesulus 

obesulus) in South Australia. Masters Thesis. University of Adelaide, Adelaide. 
R8 Heinsohn GE (1966) Ecology and reproduction of the Tasmanian bandicoots (Perameles gunni and Isoodon 

obesulus). U Calif Publ Zool 80:1–96.
R9 Stoddart DM, Braithwaite RW (1979) A strategy for utilization of regenerating heathland habitat by the brown 

bandicoot (Isoodon obesulus; Marsupialia, Peramelidae). J Animal Ecol 48:165–179.
R10 Lobert B (1990) Home range and activity period of the Southern Brown Bandicoot (Isoodon obesulus) in a 

Victorian heathland. In Bandicoots and Bilbies (eds Seebeck JH, Brown PR, Wallis RL, Kemper CM) Surrey 

Beatty & Sons (Australia) p319-325

R11 Friend G (1990) Breeding and population dynamics of Isoodon macrourus (Marsupialia: Peramelidae): 

studies from the wet-dry tropics of northern Australia. In Bandicoots and Bilbies (eds Seebeck JH, Brown PR, 

Wallis RL, Kemper CM) Surrey Beatty & Sons (Australia) p357-365

R12 Braithwaite RW, Lee AK (1979) The ecology of Rattus lutreolus I. A Victorian heathland population. 

Australian Journal of Wildlife Research 6:173-189.
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R13 Taylor JM, Calaby JH (1988) Rattus fuscipes. Mammalian species 298:1-8.

R14 Robinson AC (1987) The ecology of the bush rat, Rattus fuscipes (Rodentia: Muridae), in Sherbrooke Forest, 

Victoria. Aust Mammal 11:35-49.

R15 Wilson BA, Bourne AR, Jessop RE (1986) Ecology of small mammals in coastal heathland at Anglesea, 

Victoria. Aust Wildl Res 13:397-406.

R16Warneke RM (1971) Field study of the bush rat (Rattus fuscipes). Wildl Contrib 14:1-115. 

R17Bentley JM (2008) Role of movement, interremnant dispersal and edge effects in determining sensitivity to 

habitat fragmentation in two forest-dependent rodents. Austral Ecol 33:184-196.

R18Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene 

flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182-1195.

R19Braithwaite RW (1980) The ecology of Rattus lutreolus III. The rise and fall of a commensal population. Aust 

Wildl Res 7:199-215.
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Appendix XIII   Evaluation of species distribution models.

Regardless of the spatial scale employed, SDMs better explained the occupancy of the more mobile woodland 

generalist and insectivore (A. f. flavipes), compared to the wet-heath specialist (R. l. lutreolus), and two 

understorey preferring species (I. o. obesulus and R. f. greyi) (50.1 - 25.6 % DE; Table 2a). Rainfall parameters 

were the most important predictors of species distribution in all cases. Distance to watercourse and root zone 

water holding capacity were also important predictors of R. l. lutreolus and A. f. flavipes occurrence (Appendix 

2b). Elevation, soil acidity and average minimum temperature during summer were most strongly correlated with 

the occurrence of the insectivore A. f. flavipes and omnivore I. o. obesulus.  

A suitable threshold to convert probability values into suitable and unsuitable habitat was determined by 

comparing the predicted probability with the actual occurrence of the model data. As all data were used, 

validation statistics provide an optimistic indication of the ‘best case’ performance of these models may be 

obtained when used to predict the original species occurrence. These models predictive performances were 

relatively good (AUC values: 0.82-0.94 Kappa values: 0.53-0.66; Table 2a), which were lower than expected 

probably as a result of small datasets.

Appendix XIIIa. Explanatory strength of null and a priori generalised linear models constructed using a) 100 

m2, and b) 1000 m2 resolution environmental data. Shown are the number of parameters (k), minimised negative 

log-likelihood (-LL) and the per cent deviance explained by the model relative to the null (% DE) for each 

species. Also shown is validation statistics derived from the model being predicted back onto the original 

dataset. These statistics include the area under the curve (AUC) and when the Maximum Sensitivity and 

Specificity threshold is used to convert the probability of occurrence into present, or absent, the Kappa, 

Sensitivity (Sens) and Specificity (Spec). Note: Where the resampling of environmental data caused missing 

values for presence records, values were manually substituted from the original environmental data layers.  

Species Model variables k -LL % DE
AUC

(SD)

Kappa 

(SD)

Sens 

(SD)

Spec 

(SD)

a. 0.01 km2

I. o. obesulus ~ MT+RS+RW+E+lWC+H+GEN 10 -279.0 30.6
0.85

(0.02)

0.53

(0.04)

0.76

(0.03)

0.79

(0.02)

A. f. flavipes ~ MT+RS+RW+E+lWC+M+H+GEN 11 -109.8 48.8
0.93 

(0.01)

0.60 

(0.04)

0.93 

(0.03)

0.84 

(0.02)

R. f. greyi ~ MT+RS+RW+E+lWC+GEN 9 -257.1 27.7
0.83

(0.02)

0.58

(0.04)

0.64

(0.03)

0.92

(0.02)

R. l. lutreolus ~ RS+E+lWC+GEN+M+H 9 -89.5 46.3
0.94

(0.01)

0.61a

(0.05)

0.79a

(0.06)

0.93a

(0.01)

(cont.)
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(cont.) Appendix XIIIa.

Species Model variables k -LL % DE
AUC 

(SD)

Kappa 

(SD)

Sens 

(SD)

Spec 

(SD)

b. 1 km2

I. o. obesulus ~ MT+RS+RW+E+lWC+H+GEN 10 -245.3 30.6
0.85

(0.02)

0.56

(0.04)

0.78

(0.03)

0.79

(0.02)

A. f. flavipes ~ MT+RS+RW+E+lWC+M+H+GEN 11 -96.8 50.1
0.93 

(0.02)

0.66 

(0.04)

0.95 

(0.02)

0.84 

(0.02)

R. f. greyi ~ MT+RS+RW+E+lWC+GEN 9 -230.2 25.6
0.82

(0.02)

0.57

(0.04)

0.64

(0.03)

0.91

(0.02)

R. l. lutreolus ~ RS+E+lWC+GEN+M+H 9 -85.9 43.9
0.94

(0.01)

0.62a

(0.06)

0.75a

(0.06)

0.93a

(0.01)
aDerived using a threshold to maximise the Kappa statistic (MaxKappa) due to the very low prevalence of 

presence records.

Appendix XIIIb. Explanatory strength of each variable calculated using generalised linear modelling (GLM), 

derived by combining the % deviance explained when a variable is deleted from the saturated model with the % 

deviance explained when adding that variable to the null model, divided by the number of degrees of freedom (as 

per Garnett and Brook 2007). Note: Where the resampling of environmental data caused missing values for 

presence records, values were manually substituted from the original environmental data layers.  

Variable df

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus

0.01 km2 1.0 km2 0.01 km2 1.0 km2 0.01 km2 1.0 km2 0.01 km2 1.0 km2

MT 1 3.9 4.2 5.7 8.0 0.5 0.3

RS 1 17.8 19.7 32.0 35.5 15.1 15.9 23.4 24.9

RW 1 26.2 26.8 34.2 34.5 26.7 25.6

E 1 14.0 14.7 25.2 25.9 3.2 3.4 6.2 5.2

lnWC 1 5.4 4.1 8.6 10.9 3.1 4.0 20.8 12.5

M 1 10.1 12.3 17.3 14.2

H 1 11.5 10.5 11.2 15.1 2.6 1.8

GEN 3 1.3 1.4 3.0 2.1 0.6 0.4 7.4 9.1

MT, average minimum temperature in winter (Jun - Aug); RS / RW, average monthly rainfall during summer 

(Nov-Jan) and winter; E, elevation; lnWC, distance from nearest water course or body transformed using the 

natural logarithm; M, root zone water holding capacity; H, soil acidity; GEN, broad vegetation community.
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Appendix XIV Change in distribution and extent of available habitat,  number of populations and species 

abundance predicted over 40 years of climate change, over 1000 iterations, for the species' range on the a) 

Fleurieu Peninsula and b) South East. No changes in the parameters below were reported over the burn-in period.  

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus

Resolution (km2) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

a. Fleurieu Peninsula

Initial area of habitat (km2) 198 221 317 306 227 255 28 15

Initial no. patches 1182 82 1292 113 947 76 1069 15

Ave. initial no. 

populations (SD)1

1011

(0.0)

82

(0.03)

1198

(0.0)

113

(0.1)

935

(0.0)

76

(0.06)

626

(0.0)

15

(0.0)

Max no. patches within 

dispersal dist.
35 0 137 0 47 0 8 0

and when Dmax = 5 km (SA1 

and 3) 
168 11 323 14 156 11 96 3

Changes following 40 years of climate change:

Habitat area (%) -74 -60 -37 -3 -94 -86 -62 -40

Population no. (%) -65 -52 -15 -4 -87 -69 -9 -22

No. new populations 

created
748 14 1095 21 975 22 157 1

Ave. abund. animals yr-1

(SE)

-694 

(37)

-3523 

(1481)

-135 

(28)

-4364 

(124)

-4364 

(124)

-6538 

(1693)

-123

(7)

-508

(58)

r2 (p value) 0.90** 0.74** 0.37** 0.14 0.97** 0.96** 0.89** 0.93**

No. occupied popns 

yr-1 (SE)

-13.4 

(1.0)

-0.8

(0.1)

-1.3 

(0.7)

-0.1 

(0.0)

-19.7 

(0.7)

-1.5

(0.1)

-2.3 

(0.3)

-0.1 

(0.0)

r2 (p value) 0.80** 0.74** 0.08 0.14 0.96** 0.96** 0.56** 0.93**

Expected minimum 

abundance (%)
24 40 58 85 8 14 57 57

(cont.)
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(cont.) Appendix XIV  

I. o. obesulus A. f. flavipes R. f. greyi R. l. lutreolus

Resolution (m2) 0.01 1.0 0.01 1.0 0.01 1.0 0.01 1.0

b. South East

Initial area of habitat (km2) 82 92 66 101 212 269 523 514

Initial no. patches 260 34 237 49 613 91 2567 217

Ave. initial no. 

populations (SD)1

223

(2.18)

34

(0)

213.4

(1.1)

49

(0.1)

604.9 

(0)

91

(0.1)

2108

(0)

217

(0)

Max no. patches within 

dispersal dist.
13 0 13 0 28 0 15 0

and when Dmax = 5 km (SA1 

and 3) 
42 4 35 5 102 10 99 9

Changes following 40 years of climate change:

Habitat area (%) -35 -15 -24 2 -61 -40 -20 -10

Population no. (%) -21 -15 -20 0 -56 -47 -3 3

No. new populations 

created
74 1 162 10 255 5 180 16

Ave. abund. animals yr-1

(SE)

-223 

(22)

-89

(7)

-97

(13)

14

(4)

-2052 

(58)

-2742 

(48)

-1217 

(113)

-400 

(76)

r2 (p value) 0.73** 0.80** 0.58** 0.28** 0.97* 0.99** 0.77** 0.45**

No. occupied popns 

yr-1 (SE)

-1.5 

(0.1)

-0.1 

(0.0)

-1.4 

(0.2)

-0.0 

(0.0)

-11.3 

(0.6)

-1.2 

(0.0)

-4.3 

(0.9)

0.12 

(0.03)

r2 (p value) 0.75** 0.61** 0.65** 0.10* 0.91** 0.99** 0.38** 0.30**

Expected minimum 

abundance (%)
65 80 68 89 44 56 78 88

1Average number of populations at the last time step of the 20 years of stable climate from 1000 iterations

*p value < 0.05, ** p value < 0.001
aNegative values indicate an overall range expansion, rather than contraction
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Fleurieu Peninsula South East 

0.01 km2 1.0 km2 0.01 km2 1.0 km2

a. Total abundance 

b. Number of populations

Appendix XV   Total number of animals (a) and populations (b) over 40 years of simulated climate change, 

represented at two scales of resolution (0.01 and 1.0 m2). Results for the sensitivity analyses are also shown, 

including  increasing potential habitat connectivity by increasing max dispersal to 5 km given environmental data 

are limited (SA1, dotted line), increasing the SD of mortality to 10 % (SA2, square dotted line), and a combination 

of both (SA3, dashed line).  Temporary peaks (e.g. A) indicate time steps where habitat suitability of many pixels 

falls below threshold, leading to a substantial alteration in the area and spatial configuration of available habitat 

and increase in translocated populations that perish in the subsequent time step.
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a. Occupied habitat

Fleurieu Peninsula South East

b. Available habitat

Appendix XVI   Shift in the centre-point of occupied (a) and available (b) habitat at 0.01

and 1.0 km2 resolution (solid or hollow symbols, respectively), in the Fleurieu Peninsula 

and South East. The centre points calculated during each of the sensitivity analyses 

performed on the metapopulation model are also shown, included increasing potential 

habitat connectivity by increasing maximum dispersal to 5 km given environmental data 

are limited (SA1, light grey), increasing the SD of mortality to 10 % (SA2, medium grey), 

and a combination of both (SA3, dark grey). 
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Fleurieu Peninsula South East

0.01 km2 1.0 km2 0.01 km2 1.0 km2

a. Occupied habitat

b. Available habitat

Appendix XVII  Contractions in the extent of occupied (a) and available (b) habitat at 0.01 and 1.0

km2 resolution, within the Fleurieu Peninsula, and South East. In the South East, expansion in the 

south-easterly direction is constrained by the coast (south) and this investigation being constrained 

by a state boundary (east).
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Appendix XVIII  Landscape and vegetation characteristics of the Interim Biogeographic Regionalisation for 

Australia (IBRA) v6.1 subregions spanning the study area. All subregions fall within the Channel Country 

region, which experiences dry, hot summers and unpredictable rainfall 

(http://www.anra.gov.au/topics/rangelands/overview/nt/ibra-chc.html). 

  
                          NOTE:   
   This table is included on page 137  
 of the print copy of the thesis held in  
   the University of Adelaide Library.
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Appendix XIX   Brief review of the ecology relevant to the five species targeted in this investigation.  

Kowari, Dasyuroides byrnei (vulnerable, Environment Protection and Biodiversity Conservation Act 1999)

Dasyuroides byrnei is a top marsupial carnivore (Lim 1992), weighing 100-170 g (Woolley 1971) that preys on a 

range of native vertebrates and invertebrates (Watts 1972, Ehman 2005; Lim 2008). Within a restricted 

distribution (Lim 2008), covering gibber plains that occur between dunes and river channels (Watts and Aslin 

1974; Lim 1992), Dasyuroides byrnei occupies low, very open shrubland or scrubland, woodland and hummock 

grassland (Brandle 1998). The species prefers areas with less than 25 % shrub and ground cover (Lim 2008) that 

produce abundant prey (Lim 1992; Letnic and Dickman 2010). The species is terrestrial, nocturnal, fossorial (i.e. 

burrows), solitary and nomadic (Woolley 1971; Lim 1992; Lim 2008). The species is capable of maintaining a 

higher body temperature than smaller species (e.g. N. cervinus; Dawson and Dawson 1982) and enters torpor less 

often and for shorter periods than smaller dasyurids (e.g. S. macroura; Geiser and Baudinette 1987).

Kultarr, Antechinomys laniger (endangered, NSW Threatened Species Conservation Act 1995)

Antechinomys laniger is a small insectivorous dasyurid, capable of preying on other small vertebrates (e.g. Mus 

musculus; Watts 1972; Valente 2008) and weighs 20 – 30 g (Woolley 1984). Within a contracting range (Smith 

and Medlin 1982; Dickman et al. 1993) this naturally rare, but once widespread species (Wood-Jones 1923; 

Kemper 1990) occupies low shrubland and low very open shrubland and scrubland, tussock grassland, on stony 

plains, flood plains and hill slope (Morton 1982; Brandle 1998). Within this environment, A. laniger nests 

opportunistically under logs, beneath saltbush and Spinifex tussocks, in deep cracks, at the base of Acacia spp. 

and Eremophilla spp. and in burrows constructed by other species (including N. cervinus) or in its own shallow 

burrows (Watts and Aslin 1974; Valente 2008). Species abundance fluctuates seasonally and is highest in April 

to October (Ayres et al. 1996; Owens 1997; Valente 2008). Heavy rainfall can cause numbers to fall as a result 

of drowning and decreased food supply (Woolley 1984). This species is nocturnal, terrestrial and solitary and 

can enter torpor to conserve energy and water (Watts 1972; Ayres et al.1996; Valente 2008).

Stripe-faced dunnart, Sminthopsis macroura (vulnerable, NSW Threatened Species Conservation Act 1995)

Sminthopsis macroura is also an insectivorous dasyurid (Watts 1972; Morton et al. 1983), that occasionally 

preys on mammals and lizards (Morton and Dickman 2008) and weighs approximately 20 g (Woolley 1982). 

This species has a widespread, although sparse, distribution across central Australia (Ayres et al. 1996), which 

has not changed since the arrival of Europeans (Morton and Dickman 2008). Sminthopsis macroura occupies a 

variety of habitats, including low very open shrub, scrubland, low shrubland, shrubland, woodland and hummock 

grassland on stony plains, drainage lines, hill slopes, rocky outcrops, dunes, sand plains and flood plains (Cole 

and Gibson 1991; Ayres et al.1996; Brandle 1998). Within this range of habitats, S. macroura prefers ungrazed 

tussock grasslands and dense shrubland often found in creek beds and gullies and recently flooded areas (Watts 

and Aslin 1974; Morton 1978; Woolley 1982; Morton and Dickman 2008). Sminthopsis macroura nests in 

cracks, under rocks and logs and in burrows constructed by other species’ (Brown 1974; Morton and Dickman 

2008) and burrows constructed by itself in suitable sandy substrates (Wood-Jones 1923; Watts 1972; Denny 

1975). This species is also nocturnal, solitary and fossorial (Watts 1972; Woolley 1982; Morton and Dickman 

2008).
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Forrest’s mouse, Leggadina forresti (vulnerable, Threatened Species Conservation Act 1995)

Leggadina forresti is a small rodent (13 - 30 g; Reid 2008) with an omnivorous or granivorous diet, depending 

on the degree to which invertebrates supplement its seeds and green vegetation-based diet (Watts 1979; Read 

1984; Murray et al. 1999; Moro and Bradshaw 2002). This species has a sparse distribution throughout central 

and north eastern arid Australia (Watts and Aslin 1981; Breed and Ford 2007), which has not changed since 

European arrival (Reid 2008). Leggadina forresti occupies a variety of vegetation communities, but most often 

captured in low and low very open shrubland and scrubland, followed by woodland, hummock grassland and 

shrubland on stony plains and flood plains, followed by drainage lines, hill slopes and dunes and sand plains 

(Philpott and Smyth 1967; Ayres et al. 1996; Brandle 1998). The species prefers plains and tussock grasslands 

(Read 1984; Ayres et al. 1996; Reid 2008) and numbers increase following rain and an increase in ephemeral 

cover (Owens 1997; Moro and Morris 2000). Individuals nest predominantly in shallow burrows under or near 

Atriplex rhagodiodes, dug after rain (Philpott and Smyth 1967) and in soil cracks and at the base of Spinifex 

tussocks (Finlayson 1941; Denny 1975). This species is nocturnal, terrestrial, solitary and nomadic (Philpott and 

Smyth 1967; Dickman 1993; Reid 2008).

Fawn hopping-mouse, Notomys cervinus (endangered, Territory Parks and Wildlife Conservation Act 2006; 

vulnerable National Parks and Wildlife Act 1972)

Notomys cervinus is also a small rodent (30-50 g; Breed 2008) with a predominantly granivorous diet of seed, 

green plant material and invertebrates (Watts 1970; Murray et al. 1999). This species has a sparse and restricted 

distribution (Ellis 1993; Robinson et al. 2000; Breed 2008). Notomys cervinus occupies low shrubland and 

tussock grasslands in stony plains and clay pans (Watts and Aslin 1981). Rain increases grass seed production 

and subsequently animal abundance (especially during the breeding season April – Dec; Philpott and Smyth 

1967). During flooding N. cervinus occupy high ground with vegetation of variable density above river channels 

(Dickman 1993). Notomys cervinus nests in deep, relatively simple burrows, compared to other Notomys spp. 

(possibly due to the substrate being penetrable shortly after rain only; Watts and Aslin 1981). This species 

nocturnal (Dickman 1993) and solitary, but can live in small groups (Watts and Aslin 1974; Watts and Aslin 

1981).
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Appendix XX  Original species occurrence data from the Biological Databases of South Australia (BDBSA, 

extracted April 2011, Department of Environment and Natural Resources). Fewer records were available for 

analysis due to gaps in environmental data or sub-setting data for validation (e.g. GEN).

A. laniger D. byrnei L. forresti N. cervinus S. macroura

Year range 1987 - 2008 1992 – 2008 1983 – 2008 1995 -2009 1993 - 2008

Filters ≤ 100 m location accuracy, single observation per location

Sampling method 

 Cage trap 1

 Elliott trap 44 20 7 4 24

 Pit trap 41 1 91

 Captured (by hand) 1 1

 Observed (incl. 

spotlighting) 11 4 3 19 2

 Sign-diggings 1

 Sign-dropping 1

 Unknown / 

unspecified 6 1 9 5 27

Total 61 29 60 30 144



Appendix XXI  Parameters applied to the a priori boosted regression trees (BRT) for candidate model set 1 (a) and 2 (b). Shown are the optimal 

tree complexity (Tc: number of nodes), learning rate (lr: the shrinkage applied to each tree) and the resultant number of trees (#) used in each BRT 

model. Variables are defined in Table 1, p62.

A. laniger D. byrnei L. forresti N. cervinus S. macroura

tc lr # tc lr # tc lr # tc lr # tc lr #

a. candidate model set 1: M1, spp ~ RS + RW; M2, spp ~  RS + RW + E + lnWC + GEN + PAWHC

M1 2 0.005 1500 2 0.005 850 2 0.005 600 2 0.005 450 2 0.001 800

M2 2 0.005 950 1 0.005 1150 2 0.001 1750 2 0.005 450 2 0.001 1250

b. candidate model set 1: M1, spp ~ RS + RW; M2, spp ~  RS + lnWC + PAWHC; M3, spp ~ RS + lnWC + C2; M4, spp ~ RS + GEN; M5, spp 

~ RS + SD; Sat; spp ~ RS + RW + lnWC + PAWHC + C2 + GEN + SD

M1 1 0.001 2400 - - - 1 0.005 1100 - - - 2 0.001 1800

M2 2 0.001 3200 - - - 2 0.001 1800 - - - 2 0.001 1250

M3 2 0.001 4900 - - - 3 0.001 4450 - - - 2 0.001 1900

M4 2 0.005 2000 2 0.005 1800 2 0.005 2300 2 0.01 1250 1 0.001 3950

M5 2 0.001 8550 2 0.005 2250 2 0.005 2250 2 0.001 4600 3 0.001 1700

Sat 2 0.001 2250 2 0.001 2200 2 0.001 2550 - - - 2 0.001 2850

A
ppendices                                                                                                                                                          143



144 Publications associated with this thesis

a. Kappa

b. Sensitivity

c. Specificity

Appendix XXII Out-of-region predictive performance, illustrated using three 

measures of agreement: Kappa, sensitivity and specificity statistics (Fielding and 

Bell 1997). These metrics were derived from probability estimates using the 

Maximum Sensitivity and Specificity threshold (MSS) for each model (generalised 

linear modelling, black line and boosted regression tree modelling, grey line) and 

species where A. laniger, D. byrnei, L. forresti, N. cervinus and S. macroura have 

0.31, 0.24, 0.21, 0.14 and 0.42 prevalence in the predict dataset, respectively. Error 

bars are calculated as standard deviation.
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a. Kappa

b. Sensitivity

c. Specificity

Appendix XXIII Illustration of model bias using average generalised linear 

modelling-generated statistics, based on 1 000 boot-strap samples (black 

diamonds), and the initial predict values (grey diamonds and lines) calculated 

using the Maximum Sensitivity and Specificity threshold (MSS) for each model. 

Error bars are calculated as standard deviation.
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Appendix XXIV Coefficients estimated for each parameter of the more complex 

generalised linear model for each species (M2: Species ~ RS + RW + E + lnWC + GEN 

+ PAWHC), standard error (SE), z score and the associated p-value and levels of 

significance to: * <0.05; ** < 0.01; *** < 0.001. Variables are defined in Table 1, p62.

Coefficient SE z score Pr(>|z|)

a.  A. laniger

(Intercept) 0.00 1.00 0.50 0.730

RS 0.42 0.53 0.06 0.502 **

RW 0.70 0.63 0.82 0.533

E 0.49 0.51 0.18 0.533

lnWC 0.77 0.58 0.98 0.500 ***

GEN2 0.16 1.00 0.50 0.731

GEN3 1.00 1.00 0.50 0.730

GEN4 1.00 1.00 0.50 0.730

PAWHC 0.49 0.50 0.09 0.505 *

b.  D. byrnei

(Intercept) 0.00 1.00 0.50 0.730

RS 0.59 0.56 0.83 0.528

RW 0.66 0.64 0.76 0.561

E 0.50 0.51 0.44 0.695

lnWC 0.78 0.60 0.96 0.500 **

GEN2 0.28 1.00 0.50 0.731

GEN3 1.00 1.00 0.50 0.730

GEN4 1.00 1.00 0.50 0.730

PAWHC 0.49 0.50 0.15 0.520 .

c.  L. forresti

(Intercept) 0.02 0.98 0.26 0.574

RS 0.52 0.52 0.72 0.585

RW 0.50 0.56 0.50 0.729

E 0.50 0.50 0.39 0.660

lnWC 0.46 0.54 0.26 0.575

GEN2 0.15 0.77 0.19 0.539

GEN3 0.82 0.70 0.86 0.517 .

GEN4 0.80 0.70 0.83 0.528

PAWHC 0.50 0.50 0.90 0.507 *

(cont.)
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Coefficient SE z score Pr(>|z|)

d.  N. cervinus

(Intercept) 0.00 1.00 0.50 0.729

RS 0.58 0.59 0.71 0.593

RW 0.70 0.71 0.72 0.585

E 0.49 0.51 0.35 0.628

lnWC 0.88 0.64 0.97 0.500 ***

GEN2 0.24 1.00 0.50 0.731

GEN3 1.00 1.00 0.50 0.730

GEN4 1.00 1.00 0.50 0.730

PAWHC 0.50 0.50 0.55 0.697

d.  S. macroura

(Intercept) 0.00 0.97 0.17 0.527

RS 0.53 0.52 0.85 0.521 .

RW 0.54 0.56 0.67 0.620

E 0.50 0.50 0.27 0.579

lnWC 0.50 0.54 0.50 0.730

GEN2 0.48 0.69 0.48 0.717

GEN3 0.55 0.69 0.56 0.692

GEN4 0.79 0.68 0.85 0.522 .

PAWHC 0.50 0.50 0.71 0.593
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Appendix XXV Explanatory strength of the null and a priori generalised linear models, where ‘occupied sites’ 

are represented by survey sites within 150 m, 500 m, 1000 m, 5 000 m and 10 000 m of a known record. Shown 

are the number of parameters (d.f.), minimised negative log-likelihood (-LL), Akaike’s information criterion 

corrected for small sample sizes (AICc), Bayesian Inference Criterion (BIC),  difference from the highest-

ranking model (ΔAICc, ΔBIC), weight scaled to a sum of 1(wAICc, wBIC), and the per cent deviance explained 

(% DE) by the model relative to the null. Variables are defined in Table 1, p62.

a. A. laniger 

Model d.f. -LL AICc ΔAICc wAICc BIC ΔBIC wBIC %DE

150 m (17 presence : 150 absence sites) (prevalence 0.11)

~ 1 1 -54.9 111.9 28.8 0.00 115.0 19.6 0.00

~ RS + RW 3 -48.2 102.5 19.4 0.00 111.7 16.4 0.00 12.3

~ RS + lnWC + PAWHC 4 -37.4 83.1 0.0 0.97 95.4 0.0 0.97 31.8

~ RS + lnWC + Cat2 4 -41.1 90.4 7.2 0.03 102.6 7.2 0.03 25.3

~ RS + GEN 5 -42.8 96.1 12.9 0.00 111.3 15.9 0.00 22.0

~ RS + SD 5 -45.5 101.4 18.2 0.00 116.6 21.2 0.00 17.2

500 m (20 presence : 147 absence sites) (prevalence 0.12)

~ 1 1 -61.2 124.4 37.5 0.00 127.5 28.4 0.00

~ RS + RW 3 -55.4 116.9 30.0 0.00 126.1 27.0 0.00 9.5

~ RS + lnWC + PAWHC 4 -39.3 86.9 0.0 0.98 99.1 0.0 0.98 35.7

~ RS + lnWC + Cat2 4 -43.1 94.5 7.6 0.02 106.8 7.6 0.02 29.5

~ RS + GEN 5 -47.8 106.1 19.2 0.00 121.3 22.2 0.00 21.8

~ RS + SD 5 -51.5 113.5 26.6 0.00 128.7 29.6 0.00 15.8

1 000 m (24 presence : 143 absence sites) (prevalence 0.14)

~ 1 1 -68.7 139.5 52.7 0.00 142.6 43.5 0.00

~ RS + RW 3 -61.3 128.7 41.8 0.00 137.9 38.8 0.00 10.9

~ RS + lnWC + PAWHC 4 -39.3 86.9 0.0 1.00 99.1 0.0 1.00 42.8

~ RS + lnWC + Cat2 4 -45.5 99.3 12.4 0.00 111.5 12.4 0.00 33.8

~ RS + GEN 5 -52.2 114.8 27.9 0.00 130.0 30.9 0.00 24.1

~ RS + SD 5 -57.4 125.2 38.3 0.00 140.4 41.3 0.00 16.5

5 000 m (44 presence : 123 absence sites) (prevalence 0.26)

~ 1 1 -96.3 194.6 82.4 0.00 197.7 73.3 0.00

~ RS + RW 3 -75.7 157.6 45.4 0.00 166.8 42.4 0.00 21.4

~ RS + lnWC + PAWHC 4 -52.0 112.2 0.0 1.00 124.4 0.0 1.00 46.0

~ RS + lnWC + Cat2 4 -65.5 139.3 27.1 0.00 151.5 27.1 0.00 32.0

~ RS + GEN 5 -60.3 131.0 18.8 0.00 146.2 21.8 0.00 37.4

~ RS + SD 5 -74.3 159.0 46.8 0.00 174.2 49.8 0.00 22.8

10 000 m (61 presence : 106 absence sites) (prevalence 0.37)

~ 1 1 -109.6 221.3 117.2 0.00 224.4 108.1 0.00

~ RS + RW 3 -84.8 175.8 71.7 0.00 185.0 68.7 0.00 22.6

~ RS + lnWC + PAWHC 4 -47.9 104.1 0.0 1.00 116.3 0.0 1.00 56.3

~ RS + lnWC + Cat2 4 -66.5 141.2 37.1 0.00 153.4 37.1 0.00 39.4

~ RS + GEN 5 -60.6 131.5 27.4 0.00 146.7 30.4 0.00 44.7

~ RS + SD 5 -83.2 176.7 72.6 0.00 191.9 75.6 0.00 24.1

(cont.)
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b. D. byrnei

Model d.f. -LL AICc ΔAICc wAICc BIC ΔBIC wBIC %DE

150 m (11 presence : 156 absence sites) (prevalence 0.07)

~ 1 1 -40.6 83.1 26.4 0.00 86.2 17.3 0.00

~ RS + RW 3 -36.3 78.7 22.0 0.00 87.9 19.0 0.00 10.5

~ RS + lnWC + PAWHC 4 -24.2 56.7 0.0 0.89 69.0 0.0 0.89 40.2

~ RS + lnWC + Cat2 4 -26.3 60.9 4.2 0.11 73.2 4.2 0.11 35.0

~ RS + GEN 5 -31.4 73.1 16.4 0.00 88.3 19.3 0.00 22.7

~ RS + SD 5 -36.7 83.7 26.9 0.00 98.9 29.9 0.00 9.6

500 m (14 presence : 153 absence sites) (prevalence 0.11)

~ 1 1 -48.1 98.2 36.3 0.00 101.3 27.2 0.00

~ RS + RW 3 -45.4 96.9 34.9 0.00 106.1 31.9 0.00 5.7

~ RS + lnWC + PAWHC 4 -26.8 61.9 0.0 0.90 74.2 0.0 0.90 44.2

~ RS + lnWC + Cat2 4 -29.0 66.3 4.3 0.10 78.5 4.3 0.10 39.7

~ RS + GEN 5 -37.0 84.3 22.4 0.00 99.5 25.4 0.00 23.1

~ RS + SD 5 -43.9 98.1 36.2 0.00 113.4 39.2 0.00 8.8

1 000 m (15 presence : 152 absence sites) (prevalence 0.09)

~ 1 1 -50.5 102.9 42.5 0.00 106.0 33.4 0.00

~ RS + RW 3 -47.5 101.1 40.7 0.00 110.3 37.7 0.00 5.9

~ RS + lnWC + PAWHC 4 -26.1 60.4 0.0 0.96 72.7 0.0 0.96 48.3

~ RS + lnWC + Cat2 4 -29.3 66.8 6.3 0.04 79.0 6.3 0.04 42.0

~ RS + GEN 5 -38.3 87.0 26.6 0.00 102.2 29.6 0.00 24.1

~ RS + SD 5 -45.8 102.1 41.6 0.00 117.3 44.6 0.00 9.1

5 000 m (27 presence : 140 absence sites) (prevalence 0.16)

~ 1 1 -73.9 149.8 81.9 0.00 152.9 72.8 0.00

~ RS + RW 3 -66.0 138.2 70.4 0.00 147.4 67.3 0.00 10.6

~ RS + lnWC + PAWHC 4 -29.8 67.9 0.0 1.00 80.1 0.0 1.00 59.7

~ RS + lnWC + Cat2 4 -41.9 92.1 24.3 0.00 104.4 24.3 0.00 43.2

~ RS + GEN 5 -55.9 122.2 54.3 0.00 137.4 57.3 0.00 24.3

~ RS + SD 5 -66.7 143.8 75.9 0.00 159.0 78.9 0.00 9.7

10 000 m (40 presence : 127 absence sites) (prevalence 0.24)

~ 1 1 -91.9 185.9 60.6 0.00 189.0 51.4 0.00

~ RS + RW 3 -75.8 157.7 32.3 0.00 166.9 29.3 0.00 17.6

~ RS + lnWC + PAWHC 4 -58.5 125.3 0.0 1.00 137.6 0.0 1.00 36.3

~ RS + lnWC + Cat2 4 -65.9 140.1 14.8 0.00 152.3 14.8 0.00 28.3

~ RS + GEN 5 -71.2 152.8 27.5 0.00 168.0 30.5 0.00 22.5

~ RS + SD 5 -77.6 165.7 40.3 0.00 180.9 43.3 0.00 15.5

(cont.)
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c. L. forresti 

Model d.f. -LL AICc ΔAICc wAICc BIC ΔBIC wBIC %DE

150 m (27 presence : 140 absence sites) (prevalence 0.16)

~ 1 1 -73.9 149.8 3.9 0.07 152.9 0.0 0.90

~ RS + RW 3 -71.6 149.3 3.4 0.09 158.5 5.6 0.05 3.1

~ RS + lnWC + PAWHC 4 -70.0 148.2 2.4 0.16 160.5 7.6 0.02 5.3

~ RS + lnWC + Cat2 4 -71.1 150.5 4.6 0.05 162.7 9.8 0.01 3.8

~ RS + GEN 5 -67.7 145.9 0.0 0.52 161.1 8.2 0.02 8.3

~ RS + SD 5 -69.3 149.0 3.1 0.11 164.2 11.3 0.00 6.2

500 m (28 presence : 139 absence sites) (prevalence 0.17)

~ 1 1 -75.5 153.0 5.2 0.05 156.1 0.0 0.90

~ RS + RW 3 -73.2 152.6 4.8 0.07 161.8 5.7 0.05 3.0

~ RS + lnWC + PAWHC 4 -72.0 152.2 4.4 0.08 164.4 8.3 0.01 4.7

~ RS + lnWC + Cat2 4 -72.8 153.8 6.0 0.04 166.1 9.9 0.01 3.6

~ RS + GEN 5 -68.7 147.8 0.0 0.71 163.0 6.9 0.03 9.0

~ RS + SD 5 -71.3 153.0 5.1 0.05 168.2 12.0 0.00 5.6

1 000 m (30 presence : 137 absence sites) (prevalence 0.18)

~ 1 1 -78.6 159.3 6.5 0.03 162.4 0.0 0.85

~ RS + RW 3 -76.2 158.6 5.8 0.04 167.8 5.4 0.06 3.1

~ RS + lnWC + PAWHC 4 -74.5 157.3 4.6 0.08 169.5 7.2 0.02 5.2

~ RS + lnWC + Cat2 4 -75.8 159.7 7.0 0.02 172.0 9.6 0.01 3.7

~ RS + GEN 5 -71.2 152.7 0.0 0.76 168.0 5.6 0.05 9.5

~ RS + SD 5 -73.7 157.7 4.9 0.06 172.9 10.5 0.00 6.3

5 000 m (49 presence : 118 absence sites) (prevalence 0.29)

~ 1 1 -101.1 204.2 9.8 0.01 207.2 0.0 0.69

~ RS + RW 3 -98.2 202.6 8.3 0.01 211.8 4.6 0.07 2.8

~ RS + lnWC + PAWHC 4 -97.7 203.7 9.3 0.01 215.9 8.7 0.01 3.3

~ RS + lnWC + Cat2 4 -98.3 204.9 10.5 0.00 217.1 9.8 0.01 2.7

~ RS + GEN 5 -95.7 201.8 7.5 0.02 217.0 9.8 0.01 5.3

~ RS + SD 5 -92.0 194.3 0.0 0.94 209.6 2.3 0.22 9.0

10 000 m (72 presence : 95 absence sites) (prevalence 0.43)

~ 1 1 -114.2 230.4 13.7 0.00 233.5 1.6 0.19

~ RS + RW 3 -109.0 224.1 7.5 0.02 233.3 1.5 0.20 4.5

~ RS + lnWC + PAWHC 4 -112.2 232.6 15.9 0.00 244.8 13.0 0.00 1.8

~ RS + lnWC + Cat2 4 -109.5 227.2 10.6 0.00 239.5 7.6 0.01 4.1

~ RS + GEN 5 -103.1 216.6 0.0 0.70 231.8 0.0 0.42 9.7

~ RS + SD 5 -104.0 218.4 1.8 0.28 233.6 1.8 0.17 8.9

(cont.)
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d. N. cervinus

Model d.f. -LL AICc ΔAICc wAICc BIC ΔBIC wBIC %DE

150 m (2 presence : 165 absence sites) (prevalence 0.01)

~ 1 1 -10.8 23.7 2.8 0.11 26.8 0.0 0.91

~ RS + RW 3 -9.9 26.0 5.1 0.03 35.2 8.4 0.01 8.3

~ RS + lnWC + PAWHC 4 -6.4 21.0 0.0 0.42 33.2 6.4 0.04 41.3

~ RS + lnWC + Cat2 4 -6.3 20.9 0.0 0.43 33.2 6.4 0.04 41.5

~ RS + GEN 5 -9.0 28.4 7.4 0.01 43.6 16.8 0.00 17.0

~ RS + SD 5 -10.0 30.4 9.5 0.00 45.6 18.8 0.00 7.6

500 m (4 presence:163 absence sites) (prevalence 0.02)

~ 1 1 -18.9 39.8 11.8 0.00 42.9 2.6 0.14

~ RS + RW 3 -18.7 43.6 15.6 0.00 52.8 12.5 0.00 0.9

~ RS + lnWC + PAWHC 4 -10.3 28.9 0.9 0.38 41.2 0.9 0.33 45.2

~ RS + lnWC + Cat2 4 -9.9 28.0 0.0 0.61 40.2 0.0 0.53 47.7

~ RS + GEN 5 -15.4 41.3 13.3 0.00 56.5 16.3 0.00 18.2

~ RS + SD 5 -17.5 45.3 17.3 0.00 60.5 20.3 0.00 7.4

1 000 m (4 presence : 163 absence sites) (prevalence 0.02)

~ 1 1 -18.9 39.8 11.8 0.00 42.9 2.6 0.14

~ RS + RW 3 -18.7 43.6 15.6 0.00 52.8 12.5 0.00 0.9

~ RS + lnWC + PAWHC 4 -10.3 28.9 0.9 0.38 41.2 0.9 0.33 45.2

~ RS + lnWC + Cat2 4 -9.9 28.0 0.0 0.61 40.2 0.0 0.53 47.7

~ RS + GEN 5 -15.4 41.3 13.3 0.00 56.5 16.3 0.00 18.2

~ RS + SD 5 -17.5 45.3 17.3 0.00 60.5 20.3 0.00 7.4

5 000 m (5 presence:162 absence sites) (prevalence 0.03)

~ 1 1 -22.47 46.96 18.28 0.000 50.05 9.15 0.01

~ RS + RW 3 -22.41 50.96 22.28 0.000 60.16 19.26 0.00 0.3

~ RS + lnWC + PAWHC 4 -10.82 29.88 1.21 0.353 42.11 1.21 0.35 51.9

~ RS + lnWC + Cat2 4 -10.21 28.67 0.00 0.647 40.90 0.00 0.64 54.5

~ RS + GEN 5 -18.19 46.75 18.07 0.000 61.97 21.07 0.00 19.0

~ RS + SD 5 -20.74 51.85 23.18 0.000 67.07 26.17 0.00 7.7

10 000 m (16 presence : 151 absence sites) (prevalence 0.10)

~ 1 1 -52.7 107.5 54.9 0.00 110.6 45.8 0.00

~ RS + RW 3 -52.1 110.3 57.7 0.00 119.5 54.7 0.00 1.3

~ RS + lnWC + PAWHC 4 -22.2 52.7 0.1 0.49 64.9 0.1 0.49 57.9

~ RS + lnWC + Cat2 4 -22.2 52.6 0.0 0.51 64.8 0.0 0.51 58.0

~ RS + GEN 5 -44.8 100.1 47.5 0.00 115.3 50.5 0.00 15.0

~ RS + SD 5 -50.4 111.2 58.6 0.00 126.4 61.6 0.00 4.4

(cont.)
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e. S. macroura

Model d.f. -LL AICc ΔAICc wAICc BIC ΔBIC wBIC %DE

150 m (50 presence : 117 absence sites) (prevalence 0.30)

~ 1 1 -101.9 205.9 1.7 0.23 209.0 0.0 0.97

~ RS + RW 3 -100.5 207.2 3.0 0.12 216.4 7.4 0.02 1.4

~ RS + lnWC + PAWHC 4 -100.4 209.1 4.9 0.05 221.3 12.3 0.00 1.5

~ RS + lnWC + Cat2 4 -100.6 209.5 5.4 0.04 221.7 12.8 0.00 1.3

~ RS + GEN 5 -99.7 209.8 5.6 0.03 225.0 16.0 0.00 2.2

~ RS + SD 5 -96.9 204.1 0.0 0.54 219.4 10.4 0.01 5.0

500 m (52 presence:115 absence sites) (prevalence 0.31)

~ 1 1 -103.6 209.2 1.2 0.26 212.3 0.0 0.97

~ RS + RW 3 -102.2 210.5 2.5 0.13 219.7 7.4 0.02 1.3

~ RS + lnWC + PAWHC 4 -102.1 212.4 4.3 0.05 224.6 12.3 0.00 1.5

~ RS + lnWC + Cat2 4 -102.2 212.7 4.6 0.05 224.9 12.6 0.00 1.3

~ RS + GEN 5 -101.1 212.6 4.6 0.05 227.8 15.6 0.00 2.4

~ RS + SD 5 -98.82 208.0 0.0 0.46 223.2 11.0 0.00 4.6

1 000 m (58 presence : 109 absence sites) (prevalence 0.35)

~ 1 1 -107.8 217.7 7.4 0.02 220.8 0.0 0.85

~ RS + RW 3 -105.4 217.0 6.7 0.03 226.2 5.4 0.06 2.2

~ RS + lnWC + PAWHC 4 -104.8 217.8 7.4 0.02 230.0 9.2 0.01 2.9

~ RS + lnWC + Cat2 4 -105.7 219.6 9.2 0.01 231.8 11.0 0.00 2.0

~ RS + GEN 5 -104.8 219.9 9.6 0.01 235.2 14.4 0.00 2.8

~ RS + SD 5 -100.0 210.4 0.0 0.91 225.6 4.8 0.08 7.3

5 000 m (92 presence:75 absence sites) (prevalence 0.55)

~ 1 1 -114.9 231.8 2.5 0.17 234.9 0.0 0.95

~ RS + RW 3 -113.1 232.3 3.0 0.13 241.5 6.6 0.04 1.6

~ RS + lnWC + PAWHC 4 -113.4 235.0 5.8 0.03 247.2 12.3 0.00 1.3

~ RS + lnWC + Cat2 4 -113.9 236.1 6.9 0.02 248.3 13.4 0.00 0.8

~ RS + GEN 5 -111.9 234.1 4.8 0.05 249.3 14.4 0.00 2.6

~ RS + SD 5 -109.4 229.3 0.0 0.60 244.5 9.6 0.01 4.7

10 000 m (92 presence : 75 absence sites) (prevalence 0.55)

~ 1 1 -114.9 231.8 2.5 0.17 234.9 0.0 0.95

~ RS + RW 3 -113.1 232.3 3.0 0.13 241.5 6.6 0.04 1.6

~ RS + lnWC + PAWHC 4 -113.4 235.0 5.8 0.03 247.2 12.3 0.00 1.3

~ RS + lnWC + Cat2 4 -113.9 236.1 6.9 0.02 248.3 13.4 0.00 0.8

~ RS + GEN 5 -111.9 234.1 4.8 0.05 249.3 14.4 0.00 2.6

~ RS + SD 5 -109.4 229.3 0.0 0.60 244.5 9.6 0.01 4.7
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9993.2011.02267.x)

Manuscripts – in review
 Haby, N.A., Foulkes, J. & Brook, B.W. How well do existing evaluations of climate change 

impacts on range dynamics represent Australian small mammls?

 Haby, N.A., Delean, S. & Brook, B.W. Improving performance and transferability of small-

mammal distribution models. 

 Haby N.A., Prowse T.A.A., Gregory S.D., Watts M.J., Delean S., Fordham D.A., Foulkes J. & 
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