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SUMMARY 25 

Most studies that forecast the ecological consequences of climate change target a single 26 

species and a single life stage.  Depending on climatic impacts on other life stages and on 27 

interacting species, however, the results from simple experiments may not translate into 28 

accurate predictions of future ecological change. Research needs to move beyond simple 29 

experimental studies and environmental envelope projections for single species towards 30 

identifying where ecosystem change is likely to occur and the drivers for this change. For this 31 

to happen, we advocate research directions that (1) identify the critical species within the 32 

target ecosystem, and the life stage(s) most susceptible to changing conditions, and (2) the 33 

key interactions between these species and components of their broader ecosystem. A 34 

combined approach utilising macroecology, experimentally derived data and modelling that 35 

incorporates energy budgets in life-cycle models may identify critical abiotic conditions that 36 

disproportionately alter important ecological processes under forecasted climates. 37 

 38 

Keywords: climate change; ocean acidification; global warming; species interactions; 39 

ecosystem shift; productivity and consumption. 40 
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1.  INTRODUCTION 43 

The role of global environmental change in altering marine ecosystems has received 44 

increasing attention over the past decade. Global sea surface temperatures have been 45 

warming at ~0.13°C per decade since the current period of climate warming began in the 46 

mid-1980s [1]. Further, marine waters have absorbed ~30% of CO2 emissions and many 47 

marine species are already being forced to cope with increasing ocean acidification in 48 

combination with rising temperatures and other anthropogenic stressors (e.g. eutrophication 49 

and over fishing) [1, 2].  While there is now a substantive body of literature demonstrating 50 

some of the potential negative and positive effects of these combined stressors, the vast 51 

majority of studies currently focus on a single species and life-stage and very few examine 52 

effects on species which play dominant structuring roles in ecosystems (e.g. herbivores, [3]; 53 

habitat forming species [4, 5]). Knowledge of the physiological responses of individual 54 

species to environmental change and their limits to performance is an informative first step in 55 

understanding the possible effects of climate change [6]. Extrapolating these physiological 56 

effects on single life history stages of individual species to generalise about changes in 57 

populations or ecosystems is, however, fraught with potentially large forecasting errors 58 

because it fails to take into account two important aspects: (1) the effect of altered 59 

environmental conditions across entire life cycles of the organism; and (2) the interactions of 60 

these species with other components of their ecosystem (e.g. trophic interactions). Yet 61 

experimental manipulations of complete life histories and whole-ecosystems are often 62 

impractical, so an approach which combines experiments and modelling may be necessary. 63 

 64 

To reconcile these issues, a workshop was convened at the University of Plymouth, UK, 28th 65 

June – 1st July, 2011, to identify gaps in the current research into the role of climate change in 66 

causing ecosystem shifts, how these shifts may be countered by adaptation of plants and 67 
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animals, and to set future directions for linking seemingly disparate fields of research (e.g. 68 

physiology and macroecology). The workshop included a selection of international specialists 69 

spanning plant and animal physiology, experimental and broad-scale ecology, and ecosystem 70 

modelling.  71 

 72 

2.  INTEGRATING INFORMATION ACROSS LIFE STAGES 73 

(a) Empirical experiments 74 

Understandably, most experimental studies to date have focused on the most easily 75 

manipulated life stage of species, usually mature adults, to quantify physiological changes 76 

and early life stages (e.g. larvae and spores) for growth and development. However, adult 77 

stages often respond differently to earlier life stages and either or both, may be responsible 78 

for regulating population growth and equilibrium population size. For example, it may be of 79 

limited predictive value to detect minor effects of increasing temperature on the adult stage of 80 

a species if it has higher thermal tolerances and/or lower body temperatures than the juvenile 81 

stage [e.g. 7]. Conversely, altered mortality of the early life-stages may be trivial if 82 

recruitment rates are more than sufficient to saturate adult habitat [e.g. 8].  83 

 84 

In addition to this current narrow focus, the perceived necessity of having significant 85 

biological differences among treatments in order to publish has meant that experimental 86 

conditions are often manipulated to unrealistic levels (e.g. CO2 of >1500 ppm, acute 87 

temperature gradients >20°C) to detect an effect on the more robust adult life stages. While 88 

such extremes are informative about the tolerance limits of the species in question, their use 89 

neglects to identify smaller biological effects that may have multigenerational effects in 90 

populations. Further, these extreme manipulations may not reflect real changes to conditions 91 

over the next century. For example, mature marine molluscs may survive temperature 92 
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increases within what is predicted in the next 100 years [9, 10], yet if increased temperatures 93 

within this range cause altered reproductive capacity which is not identified in short-term 94 

experiments, then potentially important population and ecosystem effects may not be 95 

predicted. One way to potentially overcome this issue would be to identify the energy budget 96 

of animals and how they allocate resources to different biological processes. This should then 97 

identify if individuals are changing their allocation of energy to ensure maximum survival in 98 

altered environmental conditions at the expense of, or benefit to, other processes important to 99 

population dynamics, such as gonad development [11].   100 

   101 

(b) Multi-life stage models 102 

Identifying the stage in the life cycle which is most susceptible to changing environmental 103 

conditions can be challenging, yet necessary to discover where population effects may occur 104 

and any appropriate management or conservation actions to counter them. Detection of an 105 

effect of predicted future conditions (e.g. increased CO2 and temperatures) with empirical 106 

experiments does not necessarily demonstrate that a particular life stage is the most 107 

susceptible to these conditions or that impacts on this life stage will alter population size 108 

unless experiments are conducted across all of the life stages and these life stages are 109 

integrated into a complete life cycle. Demographic population models incorporating all life-110 

cycle stages, which force different scenarios of environmental conditions, can be useful tools 111 

to identify which life-stages are most susceptible, and how this susceptibility may respond to 112 

different combinations of stressors. For example, time-series data for co-occurring species of 113 

warmwater, coldwater and non-native barnacles in the UK have been used to build population 114 

models which show alternate responses of the species to changing conditions; the coldwater 115 

Semibalanus balanoides is directly affected by temperature, with pre-recruitment larvae 116 

being the most susceptible stage, whereas the warmwater Chthamalus montagui and C. 117 
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stellatus are predominantly controlled by competition for settlement space. Importantly, the 118 

invasive Austrominius (Elminius) modestus is least likely to be affected by temperature or 119 

acidification, due to its wide thermal and pH tolerance ranges [12, 13], suggesting that a 120 

community shift is likely under future conditions. We suggest that this comparative approach 121 

between interacting species is one of the next key steps in identifying potential ecosystem 122 

shifts driven by changing environmental conditions.  123 

 124 

3.  CASE STUDY 125 

Variation in abundance of ecosystem dominants (e.g. kelp forests, coral reefs) reflects a 126 

balance between rates of primary production and its consumption, and ecosystem shifts may 127 

occur when environmental conditions cause large changes in consumption [e.g. 14, 15, 16] or 128 

production [e.g. 17]. We chose to use temperate rocky reefs naturally dominated by kelp 129 

forests as a case study. For simplicity, we assumed that no new species were introduced to the 130 

system because of changing conditions (c.f. range expansion of herbivores due to warming 131 

and the associated ecosystem shift; [18]). In this system, predictions of phase-shifts from kelp 132 

forests to small filamentous turf-forming algae centre on increased productivity of turfs with 133 

increased CO2 and temperature [17, 19]. However, metabolic theory predicts that herbivores 134 

should be able to consume this additional primary productivity and biomass [15], thus 135 

enabling the system to resist the phase-shift. On the level of an individual adult herbivore this 136 

may be true [20]. When a stressor is integrated across all stages of the life-cycle, however, a 137 

population-level response may become apparent. For example, adult herbivores, in this case 138 

predominantly molluscs, but also including urchins, may be able to function at their normal 139 

levels under temperatures predicted in the next century. Indeed, they may increase their 140 

consumption to compensate for their responses to increasing stress [21]. In short-term 141 

experiments at this single level of ecosystem organisation, it would appear that herbivores 142 
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increase ecosystem resistance to elevated temperature and CO2 by consuming the extra algal 143 

biomass resulting from greater rates of primary productivity. Yet natural long-term 144 

experiments at CO2 vents show that this is unlikely, as herbivore populations tend to decline 145 

under predicted conditions [21]. Therefore, while initial experiments suggested increased 146 

ecosystem resilience as a result of increasing herbivory, population responses to stressors can 147 

be diminished [21], leading to a reduction in ecosystem resilience and potential phase-shifts 148 

as kelp competitors increase in abundance [17, 22]. 149 

 150 

4.  OUTCOMES AND CONCLUSIONS 151 

There is clearly a need for research into the potential effects of climate change to move 152 

beyond studies of single species and towards identifying where ecosystem change is likely to 153 

occur and the drivers for this change. The derivation of conceptual models that can be tested 154 

across multiple coastal systems globally will also help to address the current problem faced 155 

by studies of regime shifts; namely that although detection of past shifts is improving with 156 

the benefit of time-series spanning multiple trophic levels, it is still not possible to predict 157 

when and where future events may occur [23]. For this to happen, we advocate two directions 158 

of research: (1) identifying the critical species within the ecosystem in question, and the life 159 

stage(s) which is most susceptible to changing conditions and (2) the interactions of these 160 

species with other components of their ecosystem (e.g. increased or decreased consumption, 161 

whether individual or population based). A combined approach using macroecology, 162 

manipulative experiments and modelling, incorporating energy budgets in life-cycle models, 163 

may identify points where critical biological processes are strongly altered at predicted future 164 

conditions. Importantly, bringing this group of researchers together from seemingly disparate 165 

fields revealed consensus on the need for the field to progress beyond single species studies. 166 

We advocate that with a combined approach it may be possible to predict likely ecosystem 167 
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changes before reaching what is currently thought of as critical thresholds that are notoriously 168 

difficult to predict. 169 

 170 
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