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ABSTRACT 

Background 

Raised intracranial pressure (ICP) following SAH predicts poor outcome and is due to 

hemorrhage volume and possibly brain oedema, hydrocephalus and increased volume of 

circulating intracranial blood. Interventions that reduce oedema may therefore reduce ICP 

and improve outcome. The neuropeptide substance P (SP) mediates vasogenic oedema 

formation in animal models of ischemic stroke, intracerebral hemorrhage and brain 

trauma, and may contribute to the development of increased ICP. Blockade of the SP NK1 

tachykinin receptor using n-acetyl-l-tryptophan (NAT) reduces brain oedema and 

improves outcome in these models. This intervention had not previously been tested in 

models of SAH. This study therefore assessed whether SP mediates oedema formation in 

experimental SAH, and whether NAT treatment impacted on ICP and functional outcome. 

Methods 

SAH was induced in adult male Sprague-Dawley rats by either injection of autologous 

blood into the prechiasmatic cistern (injection SAH) or by endovascular arterial puncture 

of the Circle of Willis (filament SAH). NAT was injected (i.v.) at 30 minutes after 

induction of SAH. Subgroups were assessed for brain water content, immunoreactivity to 

SP, albumin immunoreactivity and functional outcome at 5, 24 and 48 hours, or ICP and 

cerebral perfusion pressure during SAH and over the following 5 hours. 
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Results 

In both models a primary ICP increase occurred during SAH and a secondary ICP increase 

occurred within 2 hours. Injection SAH was followed by a non-significant increase in 

brain water content and caused no functional deficits. In contrast, brain oedema followed 

filament SAH (p < 0.001) and correlated with functional deficits (r = 0.8, p < 0.01). 

Increased albumin immunoreactivity (p < 0.001) indicated vasogenic brain oedema. 

Cerebral perfusion pressure was diminished after filament SAH and some animals 

demonstrated plateau waves of ICP. NAT treatment did not improve ICP, oedema or 

outcome. 

Conclusion 

SAH produced secondary ICP elevation, vasogenic brain oedema and functional deficits, 

but it is unclear if oedema contributed to ICP. Blockade of SP did not improve any 

outcome parameters, suggesting that SP-mediated neurogenic inflammation may be less 

critical to outcome than other factors in these models. 
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