Characterising the role of the neuropeptide substance P in experimental subarachnoid haemorrhage

Christine Barry

Discipline of Anatomy and Pathology, School of Medical Sciences

The University of Adelaide

February 2011

Thesis submitted to the University of Adelaide in fulfilment of the requirements

for the degree of Doctor of Philosophy

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for photocopying and loan, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the university to restrict access for a period of time.

Christine Barry

Date:

PUBLICATIONS

The following articles have been published or accepted for publication during the period of my PhD candidature, and sections of these articles are included in the present thesis.

Published papers

Barry C, Helps S, van den Heuvel C and Vink R (2011) Characterizing the role of the neuropeptide substance P in experimental subarachnoid haemorrhage. *Brain Research* doi:10.1016/j.brainres.2011.02.082

Barry C, Koblar S and O'Carroll D (2007) Frontier technologies for brain repair. *Australasian Science* 28:16-18.

Published abstracts (reviewed)

Barry C, Helps S, van den Heuvel C and Vink R. Intracranial pressure and oedema in two models of subarachnoid haemorrhage. Cerebrovasc Dis. 2010;29 (suppl 2)

Barry C, Helps S, ven den Heuvel C and Vink R. Inflammation and oedema in two models of subarachnoid haemorrhage. Proceedings of the Australian Neuroscience Society, Vol. 20 ISSN 1034-3237

Acknowledgements

This project was made possible by the expertise and support of a number of individuals and organisations, and I express my sincere gratitude to them here.

In particular I wish to acknowledge and thank my supervisors, Professor Robert Vink and Dr Corinna Van Den Heuvel.

Generous assistance and advice were provided by the staff of the IMVS and I am especially grateful to Professor Peter Blumbergs, Head of Neuropathology for the Hanson Institute Centre for Neurological Diseases, Dr Barbara Koszyca and Jim Manavis and the staff of the neuropathology laboratory. I am likewise grateful to Dr Tim Kuchel, Head of Veterinary Sciences and Brian Lewis and the staff at the Animal Care Facility.

Special thanks to Dr Stephen Helps, whose expertise in establishing the experimental models was essential, and to the other post-doctoral researchers in the Vink laboratory, Emma Thornton, Renée Turner and Jenna Ziebell.

Particular thanks to Tim Kleinig, Frances Corrigan, and other past and present research students in this laboratory, especially Damian Amato, Naomi Cook, Levon Gabrielian, Elizabeth Harford-Wright, Kate Lewis, Anna Leonard, Rowena Newcombe, Adam Wells and Luke Willshire.

Acknowledgements

The Stroke Foundation (Australia) and the Neurosurgical Research Foundation provided the greatly appreciated financial support that enabled these studies to be undertaken.

Special thanks are extended to Professor David O'Carroll and Associate Professor Simon Koblar, for passing on their enthusiasm for neuroscience research.

Thanks also to my family and friends.

ABBREVIATIONS

°C	degrees Celsius
μL	micro litres
μm	micrometres
5-HT	5-Hydroxytryptamine (serotonin)
ACE	angiotensin converting enzyme
aCSF	artificial cerebrospinal fluid
ANOVA	analysis of variance
ATP	adenosine triphosphate
BBB	blood-brain barrier
BP	blood pressure
CBF	cerebral blood flow
CGRP	calcitonin gene-related peptide
cm	centimetres
CNS	central nervous system
СРР	cerebral perfusion pressure
CSD	cortical spreading depolarisation
CSF	cerebrospinal fliud
d	day
DAB	diamimobenzidene
eNOS	endothelial nitric oxide synthase
G	gauge
h	hours

Abbreviations

H and E	haematoxylin and eosin
$\mathrm{H}^{\scriptscriptstyle +}$	hydrogen ion
ICA	internal carotid artery
ICH	intracerebral haemorrhage
ICP	intracranial pressure
icv	intracerebroventricular
iv	intravenous
IU	international units
K^+	Potassium ion
L/min	litres per minute
MABP	mean arterial blood pressure
MCA	middle cerebral artery
mg/ml	milligrams per millilitre
mins	minutes
ml	millilitres
mm	millimetres
mmHg	millimetres of mercury
mRNA	messenger ribonucleic acid
n	number
NAT	n-acetyl-L-tryptophan
NEP	neutral endopeptidase
NK1	tachykinin receptor to which SP binds selectively
NK2	tachykinin receptor to which NKA binds selectively
NK3	tachykinin receptor to which NKB binds selectively

Abbreviations

NKA	neurokinin A
NKB	neurokinin B
NMDA	N-methyl-D-aspartate
NO	nitric oxide
pCO ₂	carbon dioxide partial pressure
PNS	peripheral nervous system
pO ₂	oxygen partial pressure
PPT	preprotachykinin
rpm	revolutions per minute
Rx	treatment
S	seconds
SAH	subarachnoid haemorrhage
SEM	standard error of the mean
SD	standard deviation
SP	substance P
TRPV1	transient receptor potential vanilloid 1

TABLE OF CONTENTS

1 INT	RODUCTION	2
1.1 De	finition of subarachnoid haemorrhage	2
1.2 Ep	idemiology and outcome	2
1.3 Ae	tiology	3
1.4 Pa	thophysiology of subarachnoid haemorrhage	5
1.4.1	Raised intracranial pressure following SAH	6
1.4.2	Brain oedema	11
1.4.3	Hydrocephalus	15
1.4.4	Cerebral vasospasm	15
1.4.5	Cerebral microvascular dysfunction	18
1.4.6	Ischaemic depolarisations	18
1.4.7	Rebleeding	19
1.5 Ma	anagement of subarachnoid haemorrhage	19
1.5.1	Surgical management of subarachnoid haemorrhage	20
1.5.2	Medical management of subarachnoid haemorrhage	20
1.6 Su	bstance P and brain pathophysiology	22
1.6.1	Substance P	22
1.6.2	Influences of SP on vascular tone	25
1.6.3	The role of SP in neurogenic inflammation	27
1.6.4	Possible role in subarachnoid haemorrhage	31
1.7 Su	mmary	37
1.8 Stu	udy aims	38
2 MA	TERIALS AND METHODS	40
2.1 M	odel selection	40
2.1.1	Overview of SAH models	40
2.1.2	Species and strain	41
2.1.3	The prechiasmatic cistern injection model of SAH	42
2.1.4	The endovascular filament perforation model of SAH	45
2.2 Ar	imal care	48
2.2.1	Ethics	48
2.2.2	General	48
2.3 Ex	perimental procedures	48
2.3.1	Anaesthesia	48
2.3.2	Femoral vessel cannulation	51
2.3.3	Physiological monitoring	52
2.3.4	Induction of subarachnoid haemorrhage	53
2.3.5	Drug treatment	56
2.3.6	Post-surgery recovery	56
2.3.1	Assessment of functional outcome	37
238	Assessment of brain oedema	60

2 2	.3.9 .3.10	Assessment of brain histology Statistical analysis	61 68
3 OU HA	SUE TCC EMC	STANCE P EXPRESSION, BRAIN OEDEMA AND FUNCTIONAL ME FOLLOWING INJECTION AND FILAMENT SUBARACHNOID ORRHAGE	- D 70
3.1	Intr	oduction	70
3.2	Met	hods	71
3	.2.1	Experimental groups	71
3	.2.2	Intracranial pressure monitoring	74
3	.2.3	Functional outcome	/5 75
3	.2.4	Histology and immunohistochemistry	75
3	.2.5	Semi-quantification of albumin and SP immunostaining	75
3	.2.7	Statistical analysis	76 76
3.3	Res	ults	76
3	.3.1	Mortality	76
3	.3.2	Functional outcome	77
3	.3.3	Brain oedema	80
3	.3.4	Histology	85
3.4	Disc	cussion	94
3.5	Con	clusions	96
4	СНА	RACTERISATION OF INTRACRANIAL PRESSURE AND CEREI	BRAL
PE	RFU	SION PRESSURE IN EXPERIMENTAL SAH	98
4.1	Intr	oduction	98
4.2	Mat	erials and methods	99
4	.2.1	Experimental groups	99
4	.2.2	Intracranial pressure monitoring	99
4	.2.3	Cerebral perfusion pressure monitoring	100
4	.2.4	Statistical analysis	101
4.3	Res	ults	101
4	.3.1	Baseline physiological parameters	101
4	.3.2	Mortality	102
4	.3.3	Intracranial pressure	102
4	.3.4	Cerebral perfusion pressure	108
4.4	Disc	sussion	110
4.5	Con	clusions	112

5 THE EFFECT OF SUBSTANCE P BLOCKADE ON BRAIN OEDEMA, HISTOLOGY AND FUNCTIONAL OUTCOME FOLLOWING EXPERIMENTAL SAH. 114

5.1 Introduction	114
 5.2 Materials and methods 5.2.1 Experimental groups 5.2.2 Functional outcome 	115 115 116
5.2.3 Brain oedema5.2.4 Histology and semiquantification of immunostaining5.2.5 Statistical analysis	116 116 116
5.3 Results 5.3.1 Mortality 5.3.2 Functional outcome 5.3.3 Histology	117 117 117 119
5.4 Discussion	121
5.5 Conclusions	123
6 THE EFFECT OF SUBSTANCE P ANTAGONISM (FOLLOWING EXPERIMENTAL SAH	ON ICP AND CPP 125
6.1 Introduction	125
 6.2 Methods 6.2.1 Experimental groups 6.2.2 Intracranial pressure monitoring 6.2.3 Cerebral perfusion pressure monitoring 6.2.4 Statistical analysis 	126 126 126 126 127
 6.3 Results 6.3.1 Baseline physiological parameters 6.3.2 Mortality 6.3.3 Intracranial pressure 6.3.4 Cerebral perfusion pressure 	127 127 128 128 130
6.4 Discussion	131
6.5 Conclusion	134
7 GENERAL DISCUSSION	136
 7.1 Overview 7.1.1 Principle findings 7.1.2 Areas for further research 7.1.3 Implications for clinical management 	136 136 138 140
7.2 Limitations	142
7.3 Conclusions	143

List of Figures

Figure 1.1 A: View of the base of the brain with common sites of aneurysm formation circled. B: Dissected Circle of Willis showing 3 aneurysms.	4
Figure 1.2 ICP trace (rat) showing small variation with the respiratory and cardiac cycles.	6
Figure 1.3 Compliance curve for intracranial pressure.	7
Figure 1.4 Components of the blood-brain barrier.	13
Figure 1.5 Overview of SP in neurogenic inflammation.	30
Figure 2.1 The prechiasmatic cistern injection model of SAH.	44
Figure 2.2 SAH produced by the prechiasmatic cistern injection model.	45
Figure 2.3 Endovascular filament perforation model of SAH.	46
Figure 2.4 Rat positioned in stereotaxic frame for injection SAH.	54
Figure 2.5 A: SP staining within the motor cortex.	67
Figure 3.1 Summary of injection SAH animals in this study.	72
Figure 3.2 Summary of filament SAH animals in this study.	73
Figure 3.3 Functional deficits demonstrate by Neuroscore following SAH.	77
Figure 3.4 The impact of ICP-guidance on neuroscore after filament SAH.	78
Figure 3.5 Rotarod endurance score following filament SAH.	79
Figure 3.6 Sticky label removal latency following filament SAH.	80
Figure 3.7 Brain water content following injection SAH.	81
Figure 3.8 Whole brain water content at 24 and 48 hours following non-ICP guided filament SAH.	82
Figure 3.9 Brain oedema following ICP-guided filament SAH.	83
Figure 3.10 Correlation between neuroscore and brain water content at 24 hours after filament SA	н. 84
Figure 3.11 Haematoxylin and eosin staining at 24 hours after filament SAH.	85
Figure 3.12 Haematoxylin and eosin staining in the dentate gyrus region of the hippocampus at 24 hours. A: Following sham procedure. B: Following filament SAH.	86
Figure 3.13 Haematoxylin and eosin staining in the motor cortex at 24 hours. A: Following sham procedure. B: Following filament SAH, showing dark cell change and vacuolation.	87
Figure 3.14 Fluoro-jade staining in the hippocampus.	88

Figure 3.15 Coronal rat brain sections immuno-stained for albumin.	89
Figure 3.16 The intensity of albumin immunostaining following injection SAH.	90
Figure 3.17 Albumin immunostaining following filament SAH.	91
Figure 3.18 Neuroscore correlated with motor cortex albumin immunoreactivity after filament SA	H. 91
Figure 3.19 Substance P immunostaining within the motor cortex at 5 hours. A: Following filament sham procedure. B: Following filament SAH.	t 92
Figure 3.20 The intensity of SP immunoreactivity within the motor cortex following SAH.	93
Figure 3.21 Correlation between Albumin and SP immunoreactivity in the motor cortex at 24 h following filament SAH.	94
Figure 4.1 Ictal ICP increase during injection SAH. A: ICP trace of a single animal demonstrating transient rise at the ictus. B: Graph summarising ICP in the acute phase of injection SAH.	a 104
Figure 4.2 Ictal ICP increase in filament SAH. A: ICP trace of a filament SAH animal demonstrati prolonged rise at the ictus. B: Graph summarising ICP in the acute phase of filament SAH.	ing a 105
Figure 4.3 Secondary ICP increases observed following A: injection SAH and B: filament SAH.	106
Figure 4.4 ICP from 1 to 5 hours following A: injection SAH and B: filament SAH.	107
Figure 4.5 ICP trace at 15 min to 30 min following filament SAH demonstrating late waves of ICP increase and partial recovery.	108
Figure 4.6 CPP following injection SAH (A) and filament SAH (B).	109
Figure 4.7 Physiological events leading to cerebral circulatory failure after filament SAH.	110
Figure 5.1 The impact of NAT treatment on functional outcome at 24 hours after filament SAH. As Neuroscore. B: Rotarod. C: Sticky paper removal latency.	: 118
Figure 5.2 The impact of NAT treatment on brain water content after filament SAH. A: Brain water content at 24 and 48 hours. B: Water content in each of 4 brain regions.	er 119
Figure 5.3 The impact of NAT treatment on SP immunostaining in the motor cortex.	120
Figure 5.4 The impact of NAT treatment on motor cortex SP immunoreactivity following filament SAH.	120
Figure 5.5 The impact of NAT treatment on motor cortex albumin immunoreactivity.	121
Figure 6.1 The impact of NAT treatment on secondary ICP increase following SAH.	128
Figure 6.2 The impact of NAT treatment on ICP at 1 to 5 hours after SAH.	129
Figure 6.3 The impact of NAT treatment on CPP following experimental SAH.	130
Figure 6.4 Impact of NAT on CPP following SAH after excluding "brain dead" animals.	131

List of tables

Table 1.1 Altered SP immunoreactivity following experimental SAH	32
Table 1.2 The effect of SP blockade in experimental SAH. Prevention of vasospasm an	nd improvement
in cerebral blood now are consistent midings.	54
Table 2.1 The Neuroscore score used to assess functional outcome following SAH or s Higher scores indicated more profound neurological deficits.	ham procedure. 58
Table 4.1 Baseline physiological variables prior to induction of SAH.	101
Table 4.2 Summary of ICP data from baseline to 5 hours after SAH	103
Table 6.1: Baseline physiological parameters.	127

ABSTRACT

Background

Raised intracranial pressure (ICP) following SAH predicts poor outcome and is due to hemorrhage volume and possibly brain oedema, hydrocephalus and increased volume of circulating intracranial blood. Interventions that reduce oedema may therefore reduce ICP and improve outcome. The neuropeptide substance P (SP) mediates vasogenic oedema formation in animal models of ischemic stroke, intracerebral hemorrhage and brain trauma, and may contribute to the development of increased ICP. Blockade of the SP NK1 tachykinin receptor using n-acetyl-l-tryptophan (NAT) reduces brain oedema and improves outcome in these models. This intervention had not previously been tested in models of SAH. This study therefore assessed whether SP mediates oedema formation in experimental SAH, and whether NAT treatment impacted on ICP and functional outcome.

Methods

SAH was induced in adult male Sprague-Dawley rats by either injection of autologous blood into the prechiasmatic cistern (injection SAH) or by endovascular arterial puncture of the Circle of Willis (filament SAH). NAT was injected (i.v.) at 30 minutes after induction of SAH. Subgroups were assessed for brain water content, immunoreactivity to SP, albumin immunoreactivity and functional outcome at 5, 24 and 48 hours, or ICP and cerebral perfusion pressure during SAH and over the following 5 hours.

Results

In both models a primary ICP increase occurred during SAH and a secondary ICP increase occurred within 2 hours. Injection SAH was followed by a non-significant increase in brain water content and caused no functional deficits. In contrast, brain oedema followed filament SAH (p < 0.001) and correlated with functional deficits (r = 0.8, p < 0.01). Increased albumin immunoreactivity (p < 0.001) indicated vasogenic brain oedema. Cerebral perfusion pressure was diminished after filament SAH and some animals demonstrated plateau waves of ICP. NAT treatment did not improve ICP, oedema or outcome.

Conclusion

SAH produced secondary ICP elevation, vasogenic brain oedema and functional deficits, but it is unclear if oedema contributed to ICP. Blockade of SP did not improve any outcome parameters, suggesting that SP-mediated neurogenic inflammation may be less critical to outcome than other factors in these models.