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The recently developed Nambu-Jona-Lasinio—jet model is used as an effective chiral quark theory to

calculate the quark fragmentation functions to pions, kaons, nucleons, and antinucleons. The effects of the

vector mesons �, K�, and � on the production of secondary pions and kaons are included. The

fragmentation processes to nucleons and antinucleons are described by using the quark-diquark picture,

which has been shown to give a reasonable description of quark distribution functions. We incorporate

effects of next-to-leading order in the Q2 evolution, and compare our results with the empirical

fragmentation functions.
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I. INTRODUCTION

The understanding of quark fragmentation functions has
been rapidly evolving in recent years [1]. Based on precise
data on inclusive hadron production in hard scattering
processes [2–9], empirical fragmentation functions have
been extracted, and their behavior under scale evolutions
has been investigated in detail [10–12]. It is reasonable to
expect that in the near future an understanding of the
fragmentation functions will be attained, which is as pre-
cise as the present knowledge on quark distribution func-
tions. Very interesting prospects for the study of
fragmentation processes were opened by the HERMES
[13] and JLab [14–17] semi-inclusive measurements on
nuclear targets, which will be followed up by the planned
Electron-Ion Collider [18,19].

These exciting developments present a challenge for
effective theories of QCD. Because both the distribution
and fragmentation functions are basically nonperturbative
quantities, effective quark theories are powerful tools for
theoretical studies. In particular, the Nambu-Jona-Lasinio
(NJL) model [20,21], which was very successful in the
description of quark distribution functions [22], has been
combined recently with the ideas of the jet model of Field
and Feynman [23] to give a realistic description of quark
fragmentation functions [24]. In recent work, we have
applied this NJL-jet model to the fragmentation functions
for pions and kaons, and compared the results to the
empirical functions [25]. The main advantage of this
model, which is based on the multiplicative ansatz (product
ansatz) of Field and Feynman, is that the fragmentation
functions automatically satisfy the important momentum
and isospin sum rules without introducing any new pa-

rameters into the theory. Ultimately, the NJL-jet model will
provide a consistent framework to describe semi-inclusive
deep inelastic lepton-hadron scattering, as well as allowing
predictions for nuclear targets.
The purpose of the present paper is to extend the NJL-jet

calculations of quark fragmentation functions in the fol-
lowing three directions: First, we include the effects of
secondary pions and kaons, which come from the decay of
intermediate �, K�, and � mesons. We also include the
strong decays of the vector mesons to� andK two-particle
final states. Our aim is to investigate, in particular, the role
of the � meson for the softening of the pion momentum
distribution. The effects of three-particle decays, like the!
meson, will be left for future work, as those processes
require a treatment of nontrivial phase space factors that
cannot be evaluated analytically, which goes beyond the
usual convolution formalism.
Second, we will include the fragmentation processes to

nucleons and antinucleons. For this purpose, we will use
the splitting functions obtained in the quark-diquark de-
scription of baryons [26], taking into account only the
effects of the scalar diquark as a first step in extending
the model. The need to include the axial-vector diquark to
fully describe the nucleon structure and fragmentation
functions has been demonstrated in the earlier work
[27–29], thus this remains a priority for the future develop-
ments of the model. The NJL description of nucleons as
bound states of a quark and a scalar diquark has already
been applied to fragmentation functions in previous work
[30,31]. In the present paper, we will, however, go beyond
those earlier attempts by including the elementary frag-
mentations to nucleons and antinucleons in the cascadelike
processes also including pions, kaons, and vector mesons.
Third, we use the Monte Carlo (MC) method to solve for

the fragmentation functions within the quark-cascade
model as opposed to solving integral equations in previous
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work. We demonstrate the viability of this approach to
replace the integral equations by providing very similar
order of precision in determining the fragmentation func-
tions, at the same time allowing to relax the approxima-
tions necessary for formulating the integral equations and
easily incorporating the resonance decays into the model.

This paper is organized as follows: In Sec. II, we present
the calculations of the vector meson elementary fragmen-
tation functions and elementary fragmentation functions of
a quark to nucleon antinucleon pair. In Sec. III, we describe
the Monte Carlo method for calculating fragmentation
functions and include the vector meson decays. In
Sec. IV, we present the resulting solutions for the fragmen-
tation functions. Section V contains some concluding re-
marks and a future outlook for extending the model.

II. ELEMENTARY FRAGMENTATION FUNCTIONS

In this article, we extend our previous work of Ref. [25]
using the same notation and model parameters. In the
current section, we evaluate the ‘‘elementary’’ fragmenta-
tion functions of quarks to hadrons as a ‘‘one-step’’ process
in the NJL model using light-cone (LC) coordinates.1 The
NJL model we use includes only four-point quark interac-
tion in the Lagrangian, with up, down, and strange quarks
and no additional free parameters (see ,e.g. Refs. [32–34]
for detailed reviews of the NJL model). We employ
Lepage-Brodsky (LB) ‘‘invariant mass’’ cutoff regulariza-
tion for loop integrals (see Refs. [25] for a detailed de-
scription as applied to the NJL-jet model), except when
calculating meson-quark couplings as discussed further in
this section, and use our previous values for the constituent
quark masses for light and strange quarksMu ¼ 300 MeV,
Ms ¼ 537 MeV.

A. Pseudoscalar meson splitting functions

The elementary fragmentation function of quark q emit-
ting a mesonm carrying light-cone momentum fraction z is
depicted in Fig. 1. For completeness of the description, we
present the results for the pseudoscalar mesons derived in
[25], leaving out the details. In the frame where the frag-
menting quark has k? ¼ 0, but nonzero transverse mo-
mentum component kT ¼ �p?=z with respect to the

direction of the produced hadron, the relation for the
elementary fragmentation function is

dmq ðzÞ ¼ �Cm
q

2
g2mqQ

z

2

Z d4k

ð2�Þ4
� Tr½S1ðkÞ�þS1ðkÞ�5ðk�pþM2Þ�5�
� �ðk� � p�=zÞ2��ððp� kÞ2 �M2

2Þ (1)

¼ Cm
q

2
g2mqQz

Z d2p?
ð2�Þ3

� p2
? þ ððz� 1ÞM1 þM2Þ2

ðp2
? þ zðz� 1ÞM2

1 þ zM2
2 þð1� zÞm2

mÞ2
: (2)

Here Tr denotes the Dirac trace and the subscripts on the
quark propagators denote quarks of different flavor—also
indicated by q and Q, where the meson of type m under
consideration has the flavor structure m ¼ q �Q. The Cm

q is

the corresponding flavor factor given in the Table I. The
pseudoscalar meson-quark coupling constant, gmqQ, is

determined from the residue at the pole in the quark-
antiquark t-matrix at the mass of the meson under
consideration.
In LB regularization, the cutoff in the transverse mo-

mentum, P2
?, is given by

P2
? ¼ zð1� zÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q �
2

� ð1� zÞm2
m � zM2

2; (3)

where �3 ¼ 0:67 GeV denotes the 3-momentum cutoff
obtained in Ref. [35], yielding the following values for
the meson-quark couplings:

g�qQ ¼ 3:15; gKqQ ¼ 3:39: (4)

A consequence of LB regularization is a limited range
for z in corresponding regularized functions, 0< zmin �
z � zmax < 1, where zmin and zmax are determined by im-
posing the condition P2

? � 0 in Eq. (3). These range

limitations depend on the masses of hadrons and quarks
involved. For example, the z limits are very close to
endpoints (z ¼ 0 and z ¼ 1) for splitting functions to
pions, but are quite far from them for heavier hadrons
like nucleons or � meson.

FIG. 1 (color online). Quark splitting function for mesons.

TABLE I. Flavor Factors Cm
q .

Cm
q �0 �þ �� K0 �K0 Kþ K� �0 �þ �� K�0 �K�0 K�þ K�� �

u 1 2 0 0 0 2 0 1 2 0 0 0 2 0 0

d 1 0 2 2 0 0 0 1 0 2 2 0 0 0 0

s 0 0 0 0 2 0 2 0 0 0 0 2 0 2 2

�u 1 0 2 0 0 0 2 1 0 2 0 0 0 2 0
�d 1 2 0 0 2 0 0 1 2 0 0 2 0 0 0

�s 0 0 0 2 0 2 0 0 0 0 2 0 2 0 2
1We use the following LC convention for Lorentz 4-vectors

ðaþ; a�; a?Þ, a� ¼ 1ffiffi
2

p ða0 � a3Þ, and a? ¼ ða1; a2Þ.
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B. Vector meson splitting functions

In the experimental measurements of the quark hadro-
nization process, one usually directly detects only the
relatively long lived particles: pions, nucleons, and some-
times kaons. These particles can come either as direct
emissions of the fragmenting partons or as decay products
of hadronic resonances. We note that in the current article
we will only consider the strong decays of the hadrons. The
inclusion of the vector mesons in the NJL-jet model is
important, since it has a two-fold effect on the description
of the previously calculated pion and kaon fragmentation
functions. First, the availability of the new emission chan-
nels decreases the normalization of the direct quark split-
ting functions to pions and kaons. In fact, in the early
models for the quark fragmentation, it was assumed that
the ratio of the vector to pseudoscalar meson fragmenta-
tions should follow from the simple spin state counting
rule, 3:1. Later, it was shown experimentally that this
vector meson ratio is significantly smaller, especially in
the light quark sector (see, for example, Ref. [36]), and thus
has been attributed to dynamic effects like the masses of
the considered mesons having a strong influence on the
ratio. (The above mentioned rule holds only for those
mesons containing the heaviest quarks, where the differ-
ences in masses between pseudoscalar and vector mesons
are negligible.) Second, the strong decays of the vector

mesons produce pseudoscalar mesons with a z distribution
that is distinguishable from the ones emitted directly in the
quark fragmentation process, thus modifying the final z
dependence of the fragmentation functions.
The basic NJL interaction Lagrangian relevant for the

vector meson channels has the form �Gvð �c����c Þ2,
where � ¼ 0; 1; . . . 8 with �0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
1. If the 4-Fermi

coupling constant Gv is chosen to reproduce the mass of
the � meson as the pole of the q �q t-matrix, the calculated
masses of K� and � mesons agree well with the experi-
mental values (see Appendix C 3). Using the vector
meson—quark vertex gmqQ�

��� (versus {gmqQ�
5�� for

pseudoscalar mesons), the elementary fragmentation func-
tion can be written as

dmq ðzÞ ¼
X

�¼�1;0

Cm
q

2
g2mqQ

z

2

Z d4k

ð2�Þ4 Tr½S1ðkÞ�þS1ðkÞ

� ��ðk�pþM2Þ�	�
�ð�; pÞ
�	ð�; pÞ
� �ðk� � p�=zÞ2��ððk� pÞ2 �M2

2Þ; (5)

where the sum is over the polarization2 of the vector meson
m and Tr is over Dirac indices. The details of the calcu-
lation of the Tr and integration over plus and minus com-
ponents of the momentum are given in Appendix B. Here
we simply present the resulting expression:

dmq ðzÞ ¼
Cm
q

2
g2mqQz

Z d2p?
ð2�Þ3

2ðp2
?þ ðð1� zÞM1 �M2Þ2Þþ 1

z2m2
m
ððp2

?� z2M1M2 þð1� zÞm2
mÞ2 þp2

?z
2ðM1 þM2Þ2Þ

ðp2
? þ zðz� 1ÞM2

1 þ zM2
2 þð1� zÞm2

mÞ2
: (6)

The vector meson-quark couplings, gmqQ, are deter-

mined from the residue at the pole in the quark-antiquark
t-matrix at the mass of the meson under consideration.
Here we encounter a deficiency in LB regularization
scheme, where the mesons with mass larger than the sum
of constituent quark’s masses are not bound. This problem
is usually circumvented [37] by choosing a large enough
constituent quark mass accounting for the masses of all the
considered hadrons. Here to keep consistency with our
previous calculations, we choose to use a different ap-
proach: we will use the same constituent quark masses as
in the previous NJL-jet model calculations, but in order to
assess the vector meson-quark couplings we will use the
proper-time (PT) regularization scheme of Refs. [37–39]
that mimics confinement and eliminates the unphysical
decay thresholds. The details of these calculations are
presented in Appendix C, where we compare the pseudo-
scalar meson-quark couplings calculated both in LB and
PT regularization schemes and ensure that they are practi-
cally the same. Also, the strange constituent quark mass
determined from the experimentally measured kaon mass
is practically the same in both regularization schemes.
It is therefore reasonable to use the PT scheme for the

calculation of the vector meson-quark couplings in the
present model, while keeping the LB scheme for the regu-
larization of the elementary fragmentation functions.

C. N and �N fragmentation channels

In this section, we consider the elementary splitting
functions, which involve nucleons and antinucleons, i.e.,
q ! N �D and the subsequent process �D ! �Nq. Here, q ¼
u, d denotes the nonstrange quark, N ¼ n, p denotes the
nucleon, and D denotes a scalar diquark (J ¼ T ¼ 0, �3c).
The first process leads to the elementary fragmentation
functions dNq ðzÞ, represented as a cut diagram in Fig. 2(a),

and d
�D
q ðzÞ, which is shown in Fig. 2(b). We recall that for a

general process a ! bc, the fragmentation function dbaðzÞ
corresponds to the probability distribution of the LC mo-
mentum carried by b relative to a, and includes a sum over

2Since in this paper we consider only spin-independent frag-
mentation functions, we include the spin degeneracy factor
2sb þ 1 into the definition of the fragmentation function dbaðzÞ,
so as to facilitate the comparison to the empirical parametriza-
tions [10,12]. (We note that the operator definition used in
Ref. [24] does not include this degeneracy factor.)
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the spin-color quantum numbers of the spectator c.
Therefore, the two fragmentation functions of Fig. 2 are
simply related by

d
�D
q ðzÞ ¼ 1

3d
N
q ð1� zÞ: (7)

The second process �D ! �Nq leads to the elementary frag-

mentation functions d
�N
�D
ðzÞ, shown in Fig. 3(a), and dq�DðzÞ of

Fig. 3(b). The relation for this case is

dq�DðzÞ ¼ 1
3d

�N
�D
ð1� zÞ: (8)

To evaluate the functions dNq ðzÞ and d
�N
�D
ðzÞ, one can either

directly consider the cut diagrams of Figs. 2(a) and 3(a), or
one can make use of the fact that all elementary NJL
fragmentation functions are formally related to the more
familiar distribution functions fðxÞ by crossing and charge
conjugation, which is expressed by the relation3 [40,41]

dbaðzÞ ¼ ð�1Þ2ðsaþsbÞþ1ð2sb þ 1Þ z

�a

fba

�
x ¼ 1

z

�
; (9)

where �a is the spin-color degeneracy of a. Therefore, in
order to obtaindNq ðzÞ, we can use thewell-known expression
for the quark distribution function inside a nucleon, where
the nucleon is described as a bound state of a
quark (mass M) and a scalar diquark4 (mass MD).

This distribution function fNq ðxÞ is shown in Fig. 2(c).

It is easily evaluated by using the form of the nucleon vertex
function [42]

�NðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZN

MN

p�

s
uNðpÞ; (10)

where the Dirac spinors are normalized as �uNuN ¼ 1, and
the normalization factor ZN is given by

ZN ¼
�
�@�N

@p

��1

p¼MN

; (11)

with the quark-diquark bubble graph expressed by the
Feynman propagators of the quark and the diquark

�NðpÞ ¼ i
Z d4k

ð2�Þ4 SFðkÞ�sðp� kÞ; (12)

which yields for the normalization factor

Z�1
N ¼ 1

2

Z 1

0
dx

Z d2p?
ð2�Þ3

� ð1� xÞðp2
? þ ðMNxþMÞ2Þ

½M2
Nxð1� xÞ � p2

? �M2 � xðM2
D �M2Þ�2 :

(13)

We obtain from the Feynman diagram of Fig. 2(c)

fNq ðxÞ ¼ iMNZN �uN
Z d2k

ð2�Þ4 ðSFðkÞ�
þSFðkÞÞ�sðp� kÞ

��ðk��p�xÞuN
¼ 1

2
ZNð1� xÞ

Z d2kT

ð2�Þ3

� k2T þðMNxþMÞ2
½k2T þM2ð1�xÞþM2

Dx�M2
Nxð1�xÞ�2 : (14)

FIG. 2 (color online). Two contributions to the quark fragmentation function to a nucleon and antidiquark are depicted
on Figs. (a) and (b), and the quark distribution function in nucleon fNq ðxÞ is depicted in (c) as a cut diagram (left) and as the

equivalent Feynman diagram (right).

3We emphasize that this so called ‘‘Drell-Levy-Yan relation’’
can be used only to obtain the expressions for the elementary
unregularized fragmentation functions from the distribution
functions.

4The basic NJL interaction Lagrangian in the scalar diquark
(D) channel has the form Gsð �c�5C�2�

A �c TÞðc TC�1�5�2�
Ac Þ,

where �A ¼ ffiffiffiffiffiffiffiffi
3=2

p
�AðA ¼ 2; 5; 7Þ and C ¼ i�2�0. The diquark

mass MD is calculated as the pole of the qq t-matrix, and the
nucleon mass as the pole of the qD t-matrix [39]. The 4-Fermi
coupling constant Gs is chosen so as to reproduce the experi-
mental nucleon mass.
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Here, ðq;NÞ ¼ ðu; pÞ or ðd; nÞ, while for the other flavor
combinations the distribution function vanishes. The rela-
tion (9) then gives

dNq ðzÞ ¼ 1

6
ZNð1� zÞ

Z d2p?
ð2�Þ3

� p2
? þ ðMN þMzÞ2

½p2
? �M2zð1� zÞ þM2

DzþM2
Nð1� zÞ�2 :

(15)

The function d
�D
q ðzÞ can then be obtained from (7), which

completes the evaluation of the fragmentation functions of
Figs. 2(a) and 2(b).

For the fragmentation function d
�N
�D
ðzÞ of Fig. 3(a), we

note that charge conjugation invariance gives d
�N
�D
ðzÞ ¼

dNDðzÞ, where the latter function is related to the diquark
distribution function inside the nucleon (fNDðxÞ) by the
crossing relation (9). The function fNDðxÞ in turn is simply
obtained from the quark distribution function (14) by
replacing x ! 1� x. Summarizing, we obtain

d
�N
�D
ðzÞ ¼ z

2

3
fNq ð1� xÞjx¼1=z

¼ 1

3
ZN

Z d2p?
ð2�Þ3

� p2
? þ ðMz�MNð1� zÞÞ2

½p2
? þM2z�M2

Dzð1� zÞ þM2
Nð1� zÞ�2 ;

(16)

for both casesN ¼ p or n. The remaining function dq�DðzÞ is
then obtained from the relation (8). This concludes the
evaluation of the fragmentation functions of Figs. 3(a)
and 3(b).

Here, we note that another possible channel for a nu-
cleon emission within NJL formalism, q ! D �q and sub-
sequent D ! N �q is not included in the current version of
the model, as numerically the norm for the splitting func-
tion of this channel is 2 orders of magnitude smaller than
the norm of the splitting function for the channel described
above, thus proving insignificant.

III. MONTE CARLO APPROACH TO
CALCULATING THE FRAGMENTATION

FUNCTIONS

A. Monte Carlo simulations as an alternative to
the integral equation method

The Monte Carlo method for describing quark fragmen-
tation process using most notably the Lund string model
[43] has been long employed to successfully describe the
hadronization process [44] and has been implemented in
very sophisticated event generator frameworks like
PYTHIA [45]. These frameworks have been refined, ex-
tended, and tuned over several decades to cater for the
needs of the experimental data analysis. Our purpose here
is to develop a standalone MC simulation software that has
the specific purpose of implementing the quark-cascade
description of the hadronization process with quark split-
ting functions supplied from an effective quark model,
particularly NJL-jet model in the current article, and vector
meson decays to pseudoscalar mesons. This allows for
flexibility and simplicity of the software platform, making
it readily accessible for further development.
Previously, in the NJL-jet model the fragmentation func-

tions were obtained as solutions of a set of coupled integral
equations ([24,25]),

Dh
qðzÞdz ¼ d̂hqðzÞdzþ

X
Q

Z 1

z
d̂Qq ðyÞdyDh

Q

�
z

y

�
dz

y
; (17)

where Dh
qðzÞ denotes the fragmentation function of quark q

to hadron h carrying light-cone momentum fraction z, and

d̂hqðzÞ, d̂Qq ðzÞ are the elementary fragmentation functions

for the process q ! hQ, normalized as
P

h

R
d̂hqðzÞdz ¼P

Q

R
d̂Qq ðzÞdz ¼ 1, thus allowing an interpretation as the

probability of an elementary process. The sum on the right-
hand side is over all possible intermediate states in the
quark cascade (in our model that includes all the active
flavors of quarks and scalar antidiquarks). In formulating
the integral equations, one assumes that the quark has
infinite momentum and produces an infinite number of
hadrons, which physically corresponds to the Bjorken limit.
We propose to calculate the fragmentation functions

using Monte Carlo simulations akin to the method de-
scribed in Ref. [46] using the probabilistic interpretation:
Dh

qðzÞdz is the probability to emit a hadron h carrying the

FIG. 3 (color online). Two contributions to the antidiquark fragmentation function to an antinucleon and a quark are depicted on
Figs. (a) and (b).
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light-cone momentum fraction z to zþ dz of initial quark q
in a quark-jet picture. The quark goes through a cascade of
hadron emissions, where at every emission vertex we
choose the type of emitted hadron h and its light-cone
momentum fraction z (of the fragmenting quark) by ran-
domly sampling the corresponding probability densities of

the elementary fragmentations, d̂hqðzÞ, that are calculated

within the NJL model (in general these can be calculated in
any effective quark model). We keep track of the flavor and
the light-cone momentum fraction of the initial quark left to
the remaining quark, also recording the type and light-cone
momentum fraction of the initial quark transferred to the
emitted hadron in each elementary fragmentation process.
We stop the fragmentation chain after the quark has emitted
a predefined number of hadrons, NLinks. (Alternatively, one
could stop the chain after the remnant quark in the cascade
has less than a given fraction of the initial quark’s light-
cone momentum, zmin.) We repeat the calculation NSims

times with the same initial quark flavor q, until we have
sufficient statistics for the emitted hadrons. We extract the
fragmentation functions by calculating the average number
of hadrons of type h with light-cone momentum fraction z
to zþ �z, hNh

qðz; zþ�zÞi and expressing it as

Dh
qðzÞ�z ¼ hNh

qðz; zþ �zÞi 	
P
NSims

Nh
qðz; zþ�zÞ
NSims

: (18)

From the construction, it is obvious that the fragmenta-
tion functions calculated using the integral equations,
Eq. (17), should be equivalent to those calculated using
the MC method in the limit NLinks ! 1 and NSims ! 1.
The plots in Fig. 4 show that the solutions for fragmentation
functions from both methods are indeed equivalent with a

large enough number of emitted hadrons within statistical
errors. It follows from Eq. (17) that the solution to the
integral equations behaves as zDh

qðzÞ ! const as z ! 0.

This behavior originates in the assumption made by Field
and Feynman in the original jet model [23] that the total
fragmentation function can be expressed as an infinite
product of elementary fragmentation functions, which al-
lows one to formulate the integral equations. The deviations
of the MC solution from the solution of the integral equa-
tions for very small z is because in the MC calculation we
always use a finite number of hadrons emissions, although
in Fig. 4 this number was taken to be large enough so as to
demonstrate the equivalence to the integral equations.
MC also allows us to study the dependence of the

resulting fragmentation functions on the number of had-
rons emitted by the quark in the cascade, which could well
be relevant to many medium-energy experiments. Figure 5

shows that the solution for zD�þ
u ðzÞ with NLinks ¼ 1

[equivalent to the elementary fragmentation function

zd̂�
þ

u ðzÞ] is peaked at z
 0:8. As we increase the number
of emitted hadrons, the solution increases in the low z
region because of the hadrons emitted further in the quark
jet, where the fragmenting quark typically has a small
fraction of the initial quark’s light-cone momentum. We
can readily see that the solutions saturate after including
only a few emitted hadrons, where there is virtually no
difference between solutions with NLinks ¼ 8 and NLinks ¼
20, and the discrepancy to the solution of the integral
equations only occurs at extremely small values of z,
approaching the limit zDðzÞ ! const in the case of large
number of links. Thus, we can reliably use the solutions of
MC simulations with NLinks � 8.

B. Including the resonance decays

In the current version of the NJL-jet model, we included
the production of vector mesons, among the other hadrons
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FIG. 4 (color online). Comparison of the solutions for quark
fragmentation function D�þ

u ðzÞ in NJL-jet model with only non-
strange pseudoscalar mesons calculated from integral equations,
Eq. (17) and MC simulation.
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FIG. 5 (color online). The dependence of the solutions for
zD�þ

u on NLinks.
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directly emitted by the quark cascade (so called ‘‘primary’’
hadrons). The vector mesons considered have an extremely
short lifetime and decay quickly, thus in an experimental
setup one usually detects only their decay products
(‘‘secondary’’ hadrons), most often pions and kaons.
Schematically, the process is depicted in Fig. 6.
Consequently, to best describe the experimentally measured
fragmentation functions of a hadron h from the Eq. (18), we
should not only consider the number of primary hadrons
with a given range of light-cone momentum fraction of the
original quark, Nh

qðz; zþ�zÞ, but also add the number of

hadrons h satisfying the above criteria that originate from
the decays of primary vector mesons (or in general other
hadronic resonances). This is accomplished using the de-
pendence of the decay probability of a hadronic resonance h
on the fractions of its light-cone momentum, z1 to z1 þ
dz1; . . . ; zn to zn þ dzn;

P
izi ¼ 1, carried by the decay

products h1; . . . hn, denoted as dPh!h1...hnðz1; . . . ; znÞ. First
we perform the MC simulations described in the previous
section and record all the produced (primary) hadrons along
with the fractions of the initial quark’s light-cone momen-
tum. We calculate the fragmentation functions without the
decays using the formula in Eq. (18). Second, we consider
each encountered resonance particle h with a momentum
fraction of the initial quark z and its possible strong decay
channels, randomly selecting one according to the corre-
sponding relative branching ratio. Then we randomly gen-
erate the light-cone momentum fractions z1; . . . ; zn carried
by the decay products h1; . . . hn according to the probability
dPh!h1...hnðz1; . . . ; znÞ. The decaying hadron h is removed
from the list of the produced hadrons and the decay products
h1; . . . ; hn are added with their respective fractions of the
initial quark’s light-cone momenta zz1; . . . ; zzn. The frag-
mentation functions are once again calculated using the new
list of produced hadrons using the formula in Eq. (18). (In
general, the decay of a primary resonance can produce
another resonance of a lower mass that decays itself, so we
start the simulation of the decay process from the heaviest
resonances present and move on to the lighter ones.)

In the current article, we consider only the strong decays
of the vector mesons to two-body pseudoscalar meson final
states for simplicity. A generalization to include the three or
more-body final states is straightforward, although it re-
quires sampling the nontrivial phase space factors using
Monte Carlo techniques. We consider all of the two-body

strong decays of�, K�, and � mesons with the correspond-
ing relative branching ratios as given in the ‘‘Review of
Particle Physics’’ [47]. For calculation of the two-body
decay probability function, let us consider the initial hadron
h with massmh, momentum q decaying to hadron h1 with a
mass mh1, and a momentum p1 and hadron h2 with mass
mh2 , and momentum p2. We also denote the light-cone

momentum fraction of the h carried by h1 as z1 	 p�
1 =q

�
and the fraction carried by h2 as z2 	 p�

2 =q
�, where

trivially z1 þ z2 ¼ 1. Thus, the decay probability is a func-
tion of only one momentum fraction chosen to be the z1.
The dPh!h1;h2ðz1Þ is determined as a product of the decay
amplitude squared times a two-body phase space factor.
A detailed description of the decay amplitudes and the

branching ratios into different channels can be calculated
using specific models (for example model Lagrangians for
the interaction from Ref. [48]). Here, we are only con-
cerned with the dependence of the decay probability on z1,
where we average over the polarization of the vector
meson. Thus, the Lorentz invariance requires that ampli-
tude squares depend only on scalar products of the
4-momenta of the particles involved in the decay, which
in turn are trivially expressed through on-mass-shell con-
ditions in terms of their masses. Thus, the only dependence
on z1 comes from the two-body phase space factor. Our
goal is to express the elementary probability for the decay

as a function of z1, assuming a constant Ch1h2
h for the

amplitude squared of the decay. For that we integrate
over all components of momenta p1 and p2 with exception
of p�

1 , assuming q? ¼ 0 and using the light-cone form for

the two-body phase space factor:

dPh!h1;h2ðz1Þ ¼ Ch1h2
h dp�

1

Z d2p1?
ð2�Þ32p�

1

dp�
2 d

2p2?
ð2�Þ32p�

2

ð2�Þ4�4ðq� p1 � p2Þ (19)

¼ Ch1h2
h

8�
dz1

Z 1

0
dl�ðl� ½z1z2m2

h � z2m
2
h1 � z1m

2
h2�Þjz2¼1�z1 (20)

¼
8<
:

C
h1h2
h

8� dz1 if z1z2m
2
h � z2m

2
h1 � z1m

2
h2 � 0; z1 þ z2 ¼ 1;

0 otherwise:
(21)

FIG. 6 (color online). Quark-jet model with the decay of the
resonances.
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Here we note that the numerical values for the z1 ranges
for various decays exactly match those shown in the

plots in Fig. 2 of Ref. [49]. We determine the Ch1h2
h such

that the total probabilities
R
dPh!h1h2 of the decays to

different pairs fh1h2g relate as the corresponding relative
branching ratios and the normalization conditionP

fh1h2g
R
dPh!h1h2 ¼ 1 is satisfied.

IV. RESULTS

The plots in Fig. 7 depict the elementary fragmentation

functions, zd̂huðzÞ from a u quark for pseudoscalar, vector
meson, and nucleon emission with the mass of scalar
antidiquark MD ¼ 0:687 GeV from Ref. [50] and the fol-
lowing quark-hadron couplings (calculated in
Appendix C): g�qQ ¼ 3:15, gKqQ ¼ 3:387, g�qQ ¼ 1:5,

gK�qQ ¼ 1:91, and g�qQ ¼ 2:29.

In order to compare our results with experimental mea-
surements or empirical parametrizations, we evolve them
at next-to-leading order (NLO) from our model scaleQ2

0 ¼
0:2 GeV2 using the software from Ref. [51]. The details of
determination of the model scale are given in [25].

The solutions for the favored and unfavored fragmenta-
tion functions from an u quark to primary hadrons (without
any resonance decays), evolved at NLO to a typical scale
Q2 ¼ 4 GeV2, are shown in the plots in Fig. 8. Here, we
note that the fragmentation to nucleons is comparable to
the case of vector mesons.
The plots in Fig. 9 depict the total light-cone momentum

fractions of the initial quark carried by the emitted hadrons
of different species, calculated at model scale of Q2

0 ¼
0:2 GeV2. (As discussed in Ref. [25], the momentum and
isospin sum rules can only be reliably satisfied at model
scale, as the NLO QCD evolution kernels have known
singularities in the low z region, in practice leaving the
values of the fragmentations for z & 0:01 undetermined.)
Here we compare the fractions for elementary fragmenta-
tion functions, the solutions without the resonance decays
and the solutions after the resonance decays. The sum of
the fractions from elementary splitting functions calculated
in the NJL model amounts to about half of the initial
quark’s light-cone momentum, where the rest is carried
by the remnant quark. In the quark-jet picture, we sum up
the light-cone momentum fractions of all hadrons emitted
in the chain. This implies that the initial quark transfers all
of its light-cone momentum to the produced hadrons,
which we confirm in our numerical solutions (the sum
of all the fractions is 1 within numerical errors).
This shows that after resonance decays, the pions carry
approximately 67% and kaons carry about 24% of the
initial u (or d) quark’s light-cone momentum. In the case
of an initial s-quark, pions carry approximately 25% and
kaons carry about 72% of its light-cone momentum.
The rest of the momentum is carried by nucleons and
antinucleons, where the momentum sum rule is satisfied
within 0.1%.
The results for the solutions for fragmentation function

zD�þ
u and zD��

u prior to and after the vector meson decays
are shown in Fig. 10. Here, we see that the inclusion the
resonance decay slightly changes the shape of the function
in mid- to low-z region, bringing it closer to the empirical
parametrizations of the experimental data from Refs. [12]
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FIG. 7 (color online). Elementary fragmentation functions for
u quark, zd̂hu, for all included emission channels.
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FIG. 8 (color online). The solutions for (a) favored and (b) unfavored fragmentation functions from u quark to various hadrons
evolved at NLO to Q2 ¼ 4 GeV2.
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(HKNS) and [10] (DSS). Similarly, the results for zDK
u

prior to and after the vector meson decays are shown in
Fig. 11 and the results for zDP

u and zDN
u are shown in

Fig. 12. For zDP
u , the agreement with the empirical

parametrizations from Refs. [12] (HKNS) and [11] (DSS)
is reasonable, while our results for zDN

u are well below the
empirical curves. This is because we only include the
scalar diquarks in our model, making the fragmentation
of a u quark to N an unfavored process, while in the
empirical parametrizations it is usually assumed DP

u ðzÞ ’
2DN

u ðzÞ based on naive SUð2Þ flavor symmetry arguments.
In the future developments of the NJL-jet model, the
inclusion of the axial-vector diquark intermediate states
in the quark to nucleon splitting process will include a
favored channel [depicted in Fig. 2(a)] for emission of a
neutron from a u quark.

The solutions for the zDK�
s and zDKþ

s are shown in
Fig. 13. Here we see the strong discrepancies in the global
fits [10,12] of the experimental data that illustrates the need
for the model calculations providing additional insight into
the quark fragmentation process.

V. CONCLUSIONS AND OUTLOOK

In the current article, we added the vector meson, nu-
cleon, and antinucleon emission channels to NJL-jet
framework for calculating quark fragmentation functions.
We also included the two-body decays of the vector me-
sons to pseudoscalars, which allows for easier comparison
of the calculated fragmentation functions with the experi-
mental measurements or their parametrizations. We
employed the Monte Carlo method to obtain the fragmen-
tation functions in a quark-cascade description. Here we
demonstrated that the Monte Carlo approach to calculating
the fragmentation functions in NJL-jet framework is a
powerful and reliable method.We reproduced the fragmen-
tation functions calculated as solutions of the previously
employed integral equations, where only the light quarks
and pions were included. Moreover, we showed that the
MC approach allows for the flexibility to surpass the
model limitations necessary in formulating the integral
equations. That is, in the future MC studies we can assume

z 
D

+ u
(z

)

0

0.2

0.4

0.6

0.8

1.0

1.2

z
0 0.2 0.4 0.6 0.8 1.0

HKNS
DSS
NJL-Jet
with Decays

(a)

z 
D

- u
(z

)

0

0.2

0.4

0.6

0.8

z
0 0.2 0.4 0.6 0.8 1.0

HKNS
DSS
NJL-Jet
with Decays

(b)

FIG. 10 (color online). The solutions for fragmentation function zD�
u ðzÞ evolved at NLO to Q2 ¼ 4 GeV2. The results are compared

to the empirical parametrizations of the experimental data from Refs. [12] (HKNS) and [10] (DSS). Here ‘‘NJL-jet’’ and ‘‘with
decays’’ denote the fragmentation functions calculated without and with inclusion of pions originating from decays of vector meson
resonances. The shadows show the uncertainties of the empirical functions of Ref. [12].
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FIG. 9 (color online). The total fractions of momenta carried
by mesons of type m from the jet of (a) u and (b) s quarks
calculated using the numerical solutions for fragmentation func-
tions at the model scale Q2

0 ¼ 0:2 GeV2. Here ‘‘splittings’’

denote the momentum fractions calculated using the elementary
splitting functions hzd̂mq ðzÞi, ‘‘NJL-jet’’ and ‘‘with decays’’ de-

note the momentum fractions calculated from solutions for the
fragmentation functions without and with inclusion of pions and
kaons originating from decays of vector meson resonances (the
corresponding columns arranged from left to right for each
hadron).
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an initial quark carrying only a finite momentum and thus
emitting a finite number of hadrons. We demonstrated that
the medium and low z regions of the fragmentation func-
tions are greatly affected by the number of the emitted
hadrons, thus the finiteness of the quark momentum might
have a noticeable effect. The future development of the
NJL-jet model would also allow an access to the transverse
momentum distribution of the produced hadrons, thus
becoming relevant for the analysis of a large variety of
semi-inclusive data. The MC approach provides a robust
and efficient platform for implementing these and other
possible extensions of the NJL-jet model that would allow

for a much more detailed description of the physical
picture.
A further advantage of the MC approach is in reducing

the numerical task in solving for the fragmentation func-
tions when including many more channels for emitted
hadrons. Here, solving the integral equations requires in-
verting larger and larger matrices, while the MC procedure
can be drastically sped up by trivially parallelizing the task
and solving simultaneously on computer clusters.
The results for the fragmentation functions exhibit only

slight changes with addition of the new hadronic channels.
In particular, vector meson-quark couplings are relatively
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FIG. 11 (color online). Same as Fig. 10 for the case zDK
u ðzÞ.
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small in our model, lowering their relative contribution to
the fragmentation process. The resulting quark fragmenta-
tion functions exhibit a good agreement with the empirical
parametrizations in high z region, staying reasonably close
to them also in mid and low z regions in part due to the
slight modifications of the shape of the functions in this
region brought by the effects of the vector meson decays.
On the other hand, the plots in Fig. 9 show that pions,
kaons, nucleons, and antinucleons include the most
dominant contributions in fragmentation process, thus the
inclusion of higher resonance states is unlikely to be im-
portant. A notable underestimation of the fragmentation of
u quark to neutrons, shown on plots in Fig. 12(b), demon-
strates the need to include the axial-vector diquark for a
more realistic description of the fragmentations to nucle-
ons, which will be accomplished in the future develop-
ments of the model.

In this work, we followed our previous NJL-jet calcu-
lations and used the LB scheme to calculate the regularized
fragmentation functions. However, as we have pointed out,
the inclusion of vector mesons in the NJL model favors the
PT regularization scheme, which is free of unphysical
decay thresholds. Here, we have used this scheme only to
assess the vector meson-quark couplings, but in future
work on extensions of the model wewill use the PT scheme
consistently throughout.

The future development of the NJL-jet model using the
Monte Carlo framework will allow us to study the trans-
verse momentum dependence of the quark fragmentation
functions as well as polarized fragmentation functions.
This can be accomplished within the NJL framework,
without inclusion of any additional parameters.

Last, the medium modifications of the fragmentation
functions may be essential to our understanding of the
semi-inclusive processes on nuclear targets. Medium ef-
fects have long been studied in the NJL model, yielding a
successful description of modifications of nucleon proper-
ties in nuclei [22,39,42,52]. Thus the model should provide
a reliable framework for the calculation of medium mod-
ifications of quark hadronization process.
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APPENDIX A: FLAVOR FACTORS FOR
DISTRIBUTION AND SPLITTING FUNCTIONS

The flavor factors given in Table I are calculated from
the corresponding SUð3Þ flavor matrices (for details see,
e.g., Ref. [33]). With the interaction Lagrangian in the
vector channel given in Sec. II B, the � meson is a pure

s�s state, i.e., an ideal mixture of flavor singlet (�0) and
octet (�8).

APPENDIX B: VECTOR MESON SPLITTING
FUNCTIONS

In this appendix, we present the details for derivation of
vector meson splitting functions. We start with the expres-
sion in the Eq. (5)

dmq ðzÞ ¼
Cm
q

2
g2mqQ

z

2

Z d2kT

ð2�Þ3
1

2p�ð1=z� 1Þ
� Tr½ðkþM1Þ�þðkþM1Þ��ðk�pþM2Þ�	�

ðk2 �M2
1Þ2

�
�
�g�	 þ p�p	

p2

���������k�¼p�=z;ðk�pÞ2¼M2
2

; (B1)

where we used the following relation to sum over the
vector meson polarizations:

X
�¼�1;0


�ð�; pÞ
�	ð�; pÞ ¼
�
�g�	 þ p�p	

p2

�
: (B2)

We split the Tr in the Eq. (B1) into two parts:

TrdV 	 Tr

�
ðkþM1Þ�þðkþM1Þ

�
�
���ðk�pþM2Þ�� þpðk�pþM2Þp

p2

��

¼ Tr1dV þ Tr2dV
p2

: (B3)

Here,

Tr1dV 	�Tr½ðkþM1Þ�þðkþM1Þ��ðk�pþM2Þ���
(B4)

¼ 8
p�

zð1� zÞ fz
2k2T þ ðM2 � ð1� zÞM1Þ2

� 2ð1� zÞM1M2g: (B5)

And

Tr2dV 	 Tr½ðkþM1Þ�þðkþM1Þpðk�pþM2Þp�
(B6)

¼ 4
p�

zð1� zÞz2 fðð1� zÞp2 þ z2ðk2T þM1M2ÞÞ2

þ k2TðM1 �M2Þ2z4g: (B7)

In the above derivations, we used the on-mass-shell
condition for the emitted vector meson with mass mm

and fragmented quark in the frame where pT ¼ 0. Thus,
we obtain for the elementary splitting function
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dmq ðzÞ ¼
Cm
q

2
g2mqQz

Z d2p?
ð2�Þ3

2ðp2
? þ ðð1� zÞM1 �M2Þ2Þ þ 1

z2m2
m
ððp2

? � z2M1M2 þ ð1� zÞm2
mÞ2 þ p2

?z
2ðM1 þM2Þ2Þ

ðp2
? þ zðz� 1ÞM2

1 þ zM2
2 þ ð1� zÞm2

mÞ2
:

(B8)

APPENDIX C: QUARK-MESONCOUPLINGSWITH
PROPER-TIME REGULARIZATION

Here, we derive the vector meson-quark coupling con-
stants in NJL model using the (PT) regularization scheme
[37–39] to calculate the quark-vector-meson couplings.

1

Xn
¼ 1

ðn� 1Þ!
Z 1

0
d��n�1e��X

! 1

ðn� 1Þ!
Z 1=�2

IR

1=�2
UV

d��n�1e��X; (C1)

where X denotes the denominators of the loop integral after
an appropriate momentum shift andWick rotation,�IR and
�UV are the infrared (IR) and ultraviolet (UV) cutoffs,
respectively. It was demonstrated in Refs. [37,38] that
�IR mimics confinement by eliminating the unphysical
thresholds for the decay of the hadrons into quarks, while
in Ref. [39] it has been shown that this is crucial to describe
saturation of the nuclear matter binding energy in the NJL
model. Here, we fix Mu ¼ 0:3 GeV as in our previous
study [25] and �IR ¼ 200 MeV as in previous model
calculations of Ref. [42] and fit �UV to reproduce the
experimental value of pion decay constant f� ¼
93 MeV. We then obtain the strange constituent quark
mass requiring the calculated kaon mass to reproduce the
experimentally measured value mK ¼ 495 MeV. We will
verify that the pseudoscalar meson-quark couplings are
close to the values calculated in the LB regularization
scheme, indicating that it is reasonable to use the PT
scheme for the calculation of the vector meson-quark
couplings, while keeping the LB scheme for the regulari-
zation of the elementary fragmentation functions.

1. Pseudoscalar meson-quark coupling

Here, we follow our previous work of Ref. [25]. The
quark-meson coupling constant is determined from the
residue at the pole in the quark-antiquark t-matrix at
the mass of the meson under consideration. This involves
the derivative of the familiar quark-bubble graph

�ðp2Þ ¼ 2Nci
Z d4k

ð2�Þ4 Tr½�5S1ðkÞ�5S2ðk� pÞ�; (C2)

1

g2mqQ
¼ �

�
@�ðp2Þ
@p2

�
p2¼m2

m

: (C3)

Here Tr denotes the Dirac trace and the subscripts on the
quark propagators denote quarks of different flavor—also
indicated by q and Q, where the meson of type m under
consideration has mass mm and flavor structure m ¼ q �Q.

Using the proper-time regularization of Eq. (C1), we can
calculate the above integral as

�ðp2Þ¼8Nci
Z d4k

ð2�Þ4
�k2þk �pþM1M2

ðk2�M2
1Þððk�pÞ2�M2

2ÞÞ
(C4)

¼ � Nc

2�2

Z 1=�2
IR

1=�2
UV

d�

�2

Z 1

0
dx½1þ �ðB12ðx; p2Þ

� A12ðx; p2ÞÞ�e��A12ðx;p2Þ; (C5)

where

A12ðx; p2Þ 	 ð1� xÞM2
1 þ xM2

2 � xð1� xÞp2; (C6)

B12ðx; p2Þ 	 xð1� xÞp2 þM1M2: (C7)

For the quark-meson coupling we have

g�2
mqQ ¼ Nc

2�2

Z 1=�2
IR

1=�2
UV

d�

�

Z 1

0
dxxð1� xÞ½3þ �ðB12ðx;m2Þ

� A12ðx;m2ÞÞ�e��A12ðx;m2Þ: (C8)

2. Decay constant and fixing the UV cutoff

Here, we fix the �UV via the decay constant of the pion,
which is obtained in the NJL model from the one loop
contribution of the meson decay

ip�fm¼NcgmqQ

Z d4k

ð2�Þ4 Tr½�5S1ðkÞ
����5S2ðk�pÞ�jp2¼m2

m
; (C9)

fm ¼� iNcgmqQ

p2

Z d4k

ð2�Þ4 Tr½�5S1ðkÞp�5S2ðk�pÞ�jp2¼m2
m

(C10)

¼NcgmqQ

4�2

Z 1

0
dxðð1� xÞM1 þ xM2Þ

�
Ei

�
�A12ðx;m2

mÞ
�2

IR

�

�Ei

�
�A12ðx;m2

mÞ
�2

UV

��
: (C11)

Using the previously set values of Mu ¼ 0:3 GeV and
�IR ¼ 0:2 GeV, the fit to the experimental value of f� ¼
0:093 GeV yields for the UV cutoff �UV ¼ 0:703 GeV.
This allows us to determine the strange constituent quark
mass, Ms, requiring that the kaon mass determined from
the quark antiquark t-matrix pole reproduces the experi-
mental value. This gives Ms ¼ 0:539 GeV. The value of
Ms in the PT scheme is only marginally larger than the
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value used in the previous study [25], which was deter-

mined using LB regularization: MðLBÞ
s ¼ 0:537 GeV.

Then we can confirm that the values of the pseudoscalar
meson-quark coupling constants calculated in both regu-
larization schemes are indeed very close to each other

gðLBÞ�qQ ¼ 3:15; gðLBÞKqQ ¼ 3:39;

gðPTÞ�qQ ¼ 3:16; gðPTÞKqQ ¼ 3:41:
(C12)

3. Vector meson-quark couplings

The vector meson-quark coupling constant, gmqQ, can be

calculated in the familiar manner. First, we evaluate the
quark-bubble graph in vector channel using the PT regu-
larization scheme; here only the transverse component
contributes to the corresponding t-matrix for our model
Lagrangian with only the four-point quark-quark interac-
tions [33]

�ðTÞ
VVðp2Þ

�
g�	 � p�p	

p2

�
¼ 2Nci

Z d4k

ð2�Þ4 Tr

��
g�� � p�p�

p2

�
��S1ðkÞ

�
g	� � p	p�

p2

�
��S2ðk� pÞ

�

¼ �
�
g�	 � p�p	

p2

�
Nc

2�2

Z 1

0
dx

Z d�

�
ðM1M2 � ð1� xÞM2

1 � xM2
2 þ 2xð1� xÞp2Þe��A12ðx;p2Þ:

(C13)

Thus, we finally obtain for the coupling constant

g�2
mqQ ¼ �@�ðTÞ

VVðp2Þ
@p2

��������p2¼m2
m

¼ Nc

2�2

Z 1

0
dxxð1� xÞ

Z 1=�2
IR

1=�2
UV

d�

�
M1M2 � ð1� xÞM2

1 � xM2
2 þ 2xð1� xÞm2

m þ 2

�

�
e��A12ðx;m2

mÞ: (C14)

The masses of the vector mesons can be determined
within the NJL framework by fixing the quark coupling
in the Lagrangian using the experimental value for the �
meson. Then the masses for the K� and � mesons are

mðNJLÞ
K� ¼ 0:936 GeV; mðNJLÞ

� ¼ 1:088 GeV; (C15)

which are reasonably close to the experimental values,
given the simplistic Lagrangian used. In this work, we
choose to use the experimental values for all the vector

mesons in calculating the couplings and the splitting func-
tions in an attempt to best describe the measured fragmen-
tation functions. Then the corresponding values of the
couplings for the vector mesons considered in this article
are

g�qQ ¼ 1:5; gK�qQ ¼ 1:91; g�qQ ¼ 2:29:

(C16)
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