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Abstract

How a high energy cosmic ray behaves in space is one of the major issues in astrophysics.

Cosmic ray propagation in the astronomical environment can be explained as a diffusion

phenomenon. My research used the Monte Carlo technique to calculate diffusion tensors

and analysed the energy dependence of the diffusion tensor on the cosmic ray energy and

magnetic field turbulence.

T\rrbulent magnetic fields exist in an astronomical environment. The power spectrum

of the turbulence is proportional to k-513, where k is the wavenumber. This turbulence is

called the Kolmogorov-like magnetic freld.

To understand cosmic ray propagation in the astronomical environment, it is useful

to study cosmic ray diffusion in turbulent magnetic fields. Monte Carlo simulation is the

most suitable technique for the study of the cosmic ray diffusion in turbulent magnetic

fi.elds. The aim of my research is to determine the diffusion tensors by using the Monte

Carlo simulation and to study how the magnetic field turbulence scale affects the cosmic

ray diffusion. My research is applied to simulation of an actual astronomical phenomena,

known as shock acceleration.

Chapter 1 provides a brief introduction of high energy cosmic rays and Kolmogorov-like

magnetic field. Chapter 2 introduces three different simulation methods for cosmic ray

diffusion.

Chapter 3 describes the sirnulation technique by Honda [11]. He sampled vector po-

tentials to produce Kolmogorov-like turbulent magnetic fields.

Chapter 4 describes the simulation technique by Giacalone and Jokipii t7] [S] [9]. They

used a superposition of isotropic plane waves to produce Kolmogorov-like magnetic field.

Chapter 5 discusses the application of a cosmic ray diffusion simulation method to
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cosmic ray shock acceleration. In this chapter, the simulation method by Giacalone and

Jokipii was selected to investigate cosmic ray shock acceleration.

Chapter 6 presents a summary of whole work in my research and future work to extend

this study.
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Chapter 1

Introduction

1.1 Cosmic rays

Cosmic rays are atomic and subatomic particles from astronomical sources travelling in

space at nearly the speed of light. It is known that the low energy cosmic rays consist

mostly of protons. Cosmic rays are divided into two kinds, primary and secondary cosmic

rays. As the primary cosmic rays encounter the Earth's atmosphere, they collide with

molecules in the atmosphere. These collisions produce secondary cosmic rays. Figure

1.1 illustrates the energy spectrum of cosmic rays, and indicates the energy of cosmic

ray reaches to the earth [4]. The energy spectrum of cosmic rays can be characterized

by a power law, namely FIux(E) x Eo. In Figure 1.1, the power law of the energy

spectrum changes at around 3 x 1015eV and again at around 3 x 1018eV. These points

are called "knee" and "ankle" respectively. Any kind of theory about cosmic ray origin

and acceleration must explain this "knee" and "ankle". This implies that there may be

different origins and acceleration mechanisms of cosmic rays in space. The study of cosmic

ray propagation in space helps us to understand the origin and acceleration mechanism of

cosmic rays.
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Figure 1.L: Energy spectrum of cosmic rays. The slope change of the spectrum at around
3 x 1015eV is called "knee". The slope change of the spectrum at around 3 x 1018eV is
called "ankle". [4]
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1.2. OBSERVING MAGNETIC FIELD IN SPACE 3

L.2 Observing magnetic field in space

To study cosmic ray propagation, it is necessary to know the environment of space. The

magnetic fields in space have significant influence upon cosmic ray propagation. Precise

information about the magnetic frelds in space is very important for understanding prop-

agation of cosmic rays. There are several techniques to determine the magnetic fields.

Faraday Rotation and Zeeman Splitting are the frequently among the techniques used.

The following sections introduce these two techniques commonly used to determine the

magnetic fields in space.

t.z.I Faraday Rotation

Magnetic fi.elds pervade the ionised interstellar or inter-cluster gases. The angle of the

plane of linearly polarised radio wave emission is rotated as the emission passes through

a region containing free electrons and magnetic freld. This phenomenon is called Faraday

Rotation. Faraday Rotation provides us information about cosmic magnetic fields.

The rotation angle of linearly polarised emission is given by

(1.2.1)

where B¡¡ (tesla) is the magnetic field component parallel to the line of propagation, fr.

(particles/rn3) is the number density of free electrons, and the quantity 0lÀ2 is called

Rotation Measure and denoted as RM.

'When RM > 0, the field lines are towards the observer, whereas RM < 0, the freld

Iirres are away from the observer. The strength of magnetic field can be estimated from

following relation,

(Br) ' 
RM fin"B¡d'tx;rvr*ffi Q'2'2)

o :8.L2x 103À2 [' n.a¡at (radians)
Jo
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where D M is called Dispersion Measure and is obtained from the delay time of the arrival

of radio signals, due to propagation through the interstellar medium, as a function of

frequency. The dispersion Measure and rotation measure have been obtained from pulsar

observation.

L.2.2 Zeernan Splitting

The Zeeman effect is the splitting of the spectral lines when an atom exists in an external

magnetic field. The Zeeman effect is widely used for determining the magnetic fields in

astronomical objects. However, the magnetic fleld strengths need to be large enough to

actually observe line splitting, otherwise the line splitting appears as line broadening. The

strengths of weak magnetic fields can be deduced by measuring two circular polarisation

components from Zeeman splitting if the magnetic field lines are parallel to the line of

sight

1.3 Kolmogorov spectrum turbulent magnetic field

The Kolmogorov [15] [16] [17] turbulence model has been well accepted in fluid mechanics

since 1941. The model states that turbulent energy injected into large eddies in turbulent

fl.uid transfer or cascade to smaller eddies. The energy spectrum of turbulence S(k) follows

power low namely,

,9(k) x k-', (1.3.1)

where k is wavenumber and defined as f (À: wavelength) o, T (,L: eddy size). In the

Kolmogorov model, energy spectrum is proportional to le-s/t. This is called the Kol-

mogorov 5/3 power law. For three-dimensional wavenumber space, o is 11/3. Magnetic

fi.elds in space have Kolmogorov-like turbulence character. The following sections describe
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ma,gnetic fields in space and also present the evidence that magnetic fields in space are

Kolmogorov-type turbulence.

Following Equation 1.3.1, observational data in Section 1.3.1 to 1.3.3 show that energy

spectrum lB'(k)l is proportional to k-5/3, and lB2(Ë)l is proportional ¡o ¡r-t'r/s for a

three-dimensional k-space.

1.3.1 Magnetic fields from solar wind
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wind and the solar wind creates magnetic fields in the solar system. The solar wind

magnetic fleld strength is about 5 x 10-eT or 50¡rG. Sari and Ness [22] studied the Pioneer

6 interplanetary magnetic field data and the calculated power spectra of magnetic fields.

The data was collected from December 1965 to March 1966. Figrue 1.2 shows r-, gr- and

z-component of porü¡er spectra of interplanetary magnetic field energy density per unit

frequency. The dashed lines in Figure 1.2 represent the power law f -2lines. The spectra

are not as steep a,s f -2 [nes, perhaps closer to the power law of Í-u/".
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Jokipii [13] presented observational data of solar wind magnetic fields obtained from
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magnetometers of spacecraft Mariner 4. Figure 1.3 is power spectrum of the magnetic field

from Mariner 4 magnetometer data obtained from 29 November to 30 December, L964.

Jokipii noted that the index a of power-law spectrum k-o (fr:wavenumber) had the range

1.5<a<2.0.

Goldstein et aì. [10] presented in their review paper that the po\t¡er spectrum of mag-

netic field fluctuations from Mariner 10 magnetometer data collected on March L0, L974,

and this also showed the spectral slope is close to -513.

These results suggest that the magnetic fields in the solar system follow a Kolmogorov

power law.

L.3.2 Interstellar magnetic field

Interstellar matter consists of about 9970 gas and ITo fine dust grains. About 70To of the

gas is hydrogen, 28% is helium and 2To is heavier elements. Ionised interstellar gas creates

magnetic fields in the galaxy, and the strength of the galactic magnetic field is estimated

from 10-10T to 10-eT. Lee and Jokipii [18] analyzed data on interstellar scintillation of

3 pulsars (CP 0323, PSR 0333-45 and NP 0532) and concluded that interstellar magnetic

fi.elds follow a Kolmogorov power law. F\rrthermore, Armstrong and Rickett [1] used inter-

stellar scintillation to observe 17 pulsars and study interstellar electron density. Figure 1.4

shows the electron density spectra of two pulsars (PSR 0329+54 and PSR 1642-03) a,mong

17 pulsars for two different centre frequencies ((a) 408MHz and (b) 340MHz). The spectra

are consistent with the solid lines, which are 11/3 power law lines appropria[e Lo Lhree-

dimensional k-space. Armstrong and his colleagues [2] used the interstellar scintillation

technique to observe the interstellar electron density at distances less than lkpc. They

concluded that the spectrum of electron density follows a Kolmogorov law. This provides
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evidence supporting that interstellar magnetic fields are also Kolmogorov-like magnetic

fields
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L.3.3 Inter-cluster magnetic field

Intergalactic magnetic frelds have been studied by observing diffuse radio and X-ray emis-

sion coming from ciusters of galaxies. Schlickeiser et al. [23] observed the diffuse halo from

PSR 0329 + 54
408 MHz
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4æ MHz
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the Coma cluster at a waveiength ì : 11 cm. Together from these two observations of

the diffuse radio and hard X-ray emission from the Coma cluster of galaxies, the aver-

age strength of the magnetic field of intergalactic matter has been found to be between

4 x 10-12T and 72 x 10-10T.

Vogt and Ensslin [25] measured Faraday Rotation of 3 clusters (Abell 400, Abell 2634,

Hydra A) and plotted the power spectrum of magnetic fi.eld shown in Figure 1.5. The

spectral indices o of the power-law spectrum k-o lie in the range from 1.6 to 2.0. The

Kolmogorov spectrum index is 5/3 x 1.67, so the Kolmogorov spectrum slope is within

this range. Therefore, magnetic fields outside of the Galaxy may also have a Kolmogorov

turbulence character.
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Figure 1.5: The po\Mer spectra of magnetic fi.elds tr(k) of three clusters (Abell 2634, Abell
400 and Hydra A). The solid curves are calculated frompspaced response functions, where
p is scale of magnetic irregularity. [25]

It can be concluded that the magnetic fields in space are probably Kolmogorov-type
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turbulent magnetic frelds.
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L.4 Cosmic ray di sion in turbulent magnetic fields

How cosmic rays behave in the space is one of the big issues in astrophysics. Cosmic

rays created by astronomical sources interact with the interstellar or inter-cluster medium

while traveling in space. It is already known that magnetic fields exist in space, and

that charged cosmic rays diffuse in those magnetic fi.elds. Equation 1.4.1 is the well

establishe diffusion equation in three-dimensions, and describes how the cosmic ray diffuse

in turbulent magnetic fields.

anTÐ 
- Ky2n(r-,t) : ee,Ð. (1.4.1)

at

In Equation 1.4.1, n represents the number density of particles. The second term of

the equati n is expressed as the fl.ux caused by diffusion and K represents the diffusion

coeffi,cient which dominates diffusion of the particles. The right hand side of the equation

Q(r-,t) is source term.

When N¡ particles are injected at (n,U,z): (0,0,0) and at f :0 (initial condition),

and are free to diffuse in an infinite medium (boundary condition). The solution of the

diffusion equation is

n(r',t):ffi"*o(-h). (1.4.2)

If cosmic ray diffusio is occurs in a medi m moving at velocity d, such as in the solar

wind, the diffusion equation can be expressed as this,

7n(r-,t)
at

¡ õ . í nQ-, t) - KY2 n(r', t) : Q U-, t) (1.4.3)

In the case of anisotropic diffusion the diffusion equation becomes

4P 
å ä*,.'iftnØ't) 

: Q(r-'t) (r.4.4)
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where K¿¡ is the diflusion tensor,

Jokipii [12] proposed that the diffusion tensor for the regular component of Bs in the

z-direction, is

K** Kna K*

Ko, Koo Ko"

Kr* Kza Kr"

Kt -K¡ 0

KtKa0

00K¡

where K1 is tensor component perpendicular to regular magnetic field. K¡¡ is tensor

component parallel to regular magnetic field. Ka is the component which causes a net

flux in the r-direction if there is a gradient in the gr-direction, or vice versa. The diffusion

tensor is calculated from following relations.

\r'l :2K¡t, (1.4'5)

(" + a') : 4K¡t, (1'4'6)

These equations come from the solution for diffusion equation I.4.2.

Cosmic ray diffusion in turbulent magnetic fields depends on the scale of irregularity

in the magnetic fields compared to the gyroradius as well as the momentum and charge. If

the gyroradius is much smaller than the irregularity, the particle will follow the magnetic

field line and will not be scattered by the magnetic field. If the gyroradius is much larger

than irregularit¡ the magnetic field does not affect particle motion much, so little diffusion

results. However, if the gyroradius is close to irregularity, the particle will be scattered

by the magnetic field. Therefore, determining the effective range of the irregularities is an

important issue in cosmic ray diffusion. The next section will discuss numerical simulations

of cosmic ray diffusion

K¿j
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Chapter 2

Cosmic ray diffusion simulation

This chapter discusses the numerical simulation of cosmic ray diffusion. Section 2.1 dis-

cusses the limitations of numerical simulation. Section 2.2 discusses three different meth-

ods of simulation of cosmic ray diffusion using the Monte Carlo method, which have been

used previously.

2.L Numerical error and computational time

Numerical simulations are ofben used in astrophysics to model astrophysical phenomena,

or to check observational data. However, in implementing a numerical simulation, it is

important to consider the limitations of numerical method.

\Mhile computers are now a universal computational tool with a wide range oI applica-

tions, there are several factors that need to be considered when used in situations involving

extensive and complex calculations of the type used in this research. The main two factors

to be considered are numerical error and computational efficiency.

13
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2.1.L Numerical error

Generally speaking, there are two kinds of essential errors in numerical calculation; Tbun-

cation Error and Round-Off Error.

1. Thuncation Error

The truncation error may occur when an iterative method is implemented in the

computer. The concept of infinity is common in mathematics but cannot be imple-

mented in a computer. Consider, for example, the Fourier Thansform given by

r(k): t: .F(ø)exp (-i2rkr)dn. (2.1.1)

However the Fourier transform is more often evaluated using the discrete Fourier

transform, namely

(2.7.2)

The Fourier transform, Equation 2.1.1 involves integration from -oo to foo but a

computer can only evaluate the function between two finite limits and therefore any

result must be less accurate. In addition, a computer uses discrete mathematics and

the above function must be implemented by the summation over a number of finite

rather than an infinite number of intervals. As a result the evaluation of the Fourier

transform in Equation 2.7.t by using that of Equation 2.1.2 is improved by having

very large limits of integration function and having a very large number of intervals.

2. Round-Off Error

Numbers, other than integer, presented by any computing devices have some im-

precision. Computers usually use floating-point numbers of fixed storage length, so

they can not precisely represent any irrational numbers and some rational numbers.

rr:*Ï" ""r(#)
æ:O

This error is called round-off error.
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3. Statistical errcrs associateC with Monte Carlo methods

Statistical errors associated with Monte Carlo methods should be taken into account.

Occurrence of statistical errors is inevitable in Monte Carlo simulation because an

infinite number of samples can not be obtained in the simulation. This type of error

can be reduced by increasing the number of the samples.

2.L.2 Computational Efficiency

Computational efficiency is also a main issue in numerical simulation. Computational time

depends on the number of equations in the algorithm and the nature of the statements and

the implementation of in-built functions. Computational efficiency sometimes conflicts

with precision of numbers. For exampie, if double precision is used rather than single

precision, then a more accurate calculations result. However using double precision is

more time consuming than using single precision and so the time taken for the simulation

increases. In order to avoid numerical errors and excessive simulation times, the simulation

should

1. use as simple a routine as possible

2. reduce the number of time consuming calculations.

The study will attempt to simplify algorithms to reduce computational time. If the

simpler algorithm gives results as accurate as for a more complicated algorithm, then the

study will adopt the simpler algorithm in the simulation
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2.2 Three cosmic ray diffusion simulations

Cosmic ray diffusion in turbulent magnetic fields have been studied both analybically and

numerically. Among the studies of cosmic ray diffusion, three different diffusion simulations

have been selected for investigation into cosmic ray propagation in space

1. The simulation proposed by Honda (1987, [11]).

2. The simulation proposed by Giacalone and Jokipii (1999 [9])

3. The simulation proposed by Casse, Lemoine and Pelletier (2001, [5]).

These researchers applied a Monte Carlo method to the calculation of the diffusion tensor.

Monte Carlo simulation is a useful stochastic method, which randomly generates values

for uncertain variables many times to estimate the behaviour of the model,

Figure 2.1 indicates the flow chart of the cosmic ray diffusion simulations. In general,

the cosmic ray diffusion simulations follow this flow chart. The three simulations are

similar to each other except for the procedure of creating magnetic fields

1. The frrst step is creating turbulent magnetic fields, The observational data indicate

that magnetic fields in space are Kolmogorov-type magnetic fields. So the turbulent

magnetic fields used in the diffusion simulation should show a Kolmogorov spectrum.

2. The next step is the injection of relativistic charged particles into the magnetic fields.

The typical relativistic cosmic ray is proton. The number of particles injected should

be sufficiently large to obtain a reliable statistical outcome. The initial velocity vector

of the cosmic ray should be isotropic.

3. The third step is to calculate the positions of the particles at various times. A small

number of cosmic ray trajectories are plotted for checking purposes, e.g. the size
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BASICFLOW CHART OF
PARTICLE DIFFUSION

SIMULATION

Figure 2.1: Basic flow chart of simulation of cosmic ray diffusion in turbulent magnetic

field. The diffusion simulation can be divided into 4 steps.
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of time step used in the simulation which is a compromise between accuracy and

simulation time.

4. The last step is to calculate the diffusion tensor by using Equations 1.4.5 and 1.4.6

In the three simulations, the total magnetic field consists of a regular part and an

irregular part. The regular magnetic field lines are straight lines directed toward one

direction, for example the z-direction. The irregular magnetic fields has isotropy and are

generated using the Monte Carlo method, namely

Éroror: Boê, + õÉ (2.2.r)

The three simulations do not consider electric fields because the interstellar plasma has

high conductivity, and so static electric fields hardly exist in space. The simulations

assumed that the turbulent magnetic flelds are static. Therefore, cosmic rays change its

direction but do not change energy.

Using a mesh or grid space to simulate turbulent phenomena is common in fluid dy-

narnics. The simulations by Honda [11] and Casse et al. [5] used a grid space to express

the turbulent magnetic fields, whereas Giacalone and Jokipii [9] used a different way to

create the turbulent magnetic fields. Section 2.2.t to 2.2.3 will review the three different

simulations of cosmic ray diffusion.

2.2.L Simulation by Honda (1987)

Honda [11] simulated cosmic ray propagation in the turbulent galactic magnetic fields, and

calculated diffusion tensors. The cosmic rays he simulated were relativistic particles, so

the energy range was 1016eV < E < 1018eV. The corresponding gyroradius for a 3 x 10-107

magnetic field is from 3 to 300pc. Honda assumed that the total magnetic fields Ê¡o¿o¿ in
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a galaxy ûonsists of two parts, a regular part .És and an irregular part ô-d, such that

Eroro, : Eo + õÉ. (2.2.2)

The direction of the regula,r magnetic field Bo was the z-direction and the irregular mag-

netic field ôB was isotropic. He assumed that the regular magnetic field strength was about

3 x 10-10T(: 3pG) and the irregular magnetic field strength was about 1.5 x 10-1oT(:

1.5¡lG). Since he assumed the magnetic fields in his simulation to be static, there was no

effect of convection and Fermi type of acceleration. He also neglected any electric fields.

In order to duplicate the galactic magnetic field, Honda developed three-dimensional

lattices. Magnetic fields on each grid point were calculated by using vector potentials.

Honda calculated random vector potentials from Monte Carlo simulations, and these po-

tentials obeyed an exponential distribution. The vector potential was sampled at each

grid points of the lattice. Calculating the curl of vector potential,

6É:i x 6Ã, (2.2.3)

produced the magnetic fields at each grid point'

Honda made several lattices with a different grid spacings to create a Kolmogorov-type

turbulent magnetic field. The magnetic field placed on each grid point had a magnitude

dependent upon the grid spacing. Honda proposed the magnetic fields for different grid

spacing with the lattice constani -L¿, was

L¡: Lg-i/270, (i,: !12,3,. . .) (2.2.4)

where .Ls is the largest scale of irregularities and corresponds to the maximum grid spacc

length. After the contributions to the magnetic fields, magnitudes corresponding to dif-

ferent grid scales are placed on the grid points, the magnetic fields at the grid points are

vectorially added to create the irregular part of the magnetic field. For a Kolmogorov
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spectrum, the weight of the field energy density of the superimposed magnetic fields is

proportion al to L!/3 .

Honda injected a number of charged particles into the lattice. The charged particles

were propagated in the magnetic fields according to the equation of motion for charged

particle in the magnetic fields.

(2.2.5)

Each component of momentum p- after a time increment Aú is

p'r : p1 cos (øAú) - p1 sin (øAú), (2.2.6)

p+ :p1 sin (øAú) * pr cos (øAt), (2.2.7)

Pl1¡: P11, (2.2.8)

where p1 and p¡¡ are components perpendicular and parallel to the mean magnetic field

Éroror, respectively. The component pr is perpendicular to both pa and p¡¡. ø is the

gyrofrequency and is defined as

fr: øtt' È)

,:#: 
fr(Hz 

rad) (2.2.e)

where e (coulomb) and .E (eV) are the charge and the energy of the cosmic ray, respectively.

& (-) is the gyroradius. Since the computer needed to be operated efficiently and avoid

numerical errors, Honda had to choose an appropriate time increment for the simulation, a

compromise between computational time and error. He found Aú : # : # AS

the time increment. Positions of the particle for each time can be obtained from Equation

2.2.5

bestwas

Since Honda supposed that the regular magnetic fields lines are parallel to the z=
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direction, the elements of ihe diffusion tensor become,

K* Kna K*" KL -Kt 0

K¡j: Ko, Koo Ko, K¡K¡O

2t

K* Kza Kr" 00K¡

lll¡ is a diffusion tensor component parallel fu És,, K1 is perpendicular to .Ë0. Ka is

the component which causes a net flux in the ø-direction if there is a gradient in the

gr-direction, or vice versa. In order to calculate the diffusion tensor K¡j, he carried out a

number of simulations and took averages of distances for each time, tt: A;t,tz:2 At,

and so on. After calculating the average distance for each time increment, the plots of

squared average distance versus time could be created by using the following relations,

("+a'):4Kat'
(2.2.10)

("') :2K¡t'

Each component of the diffusion tensor will be the slope in the average squared distance

versus time plot is illustrated in Figure 2.2.

Honda calculated the diffusion tensor perpendicular to z-direction K1 and parallel

to z-direction K¡¡ for different energies ranging from 1016eV to 1018eV. Figure 2.3 shows

d.iffusion tensors K f cLs versus gyroradius Rnl Lo (,L¡: turbulence scale) for various values

of the ratio,

(ôB) 2n (, : 0, L,2,3). (2.2.rr)
Bs 4'

The ratio Ç "*pr"rses 
the degree of turbulence. If B aa 1, the regular magnetic field

dominates the total magnetic field and the magnetic fluctuations are very small. On the

other hand if B tr 1, the irregular magnetic field dominates the total magnetic field

and the magnetic fields become more isotropic. Figure 2.3 (LEFT) shows the parallel

diffusion tensor K¡f cLs versus gyroradius RnlLo and (RIGHT) shows the perpendicular
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<x2+y2> or <22> VS. time
26

20
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a
N
V
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õ

0
0 10 15 20 26

tí:me T

Figure 2.2: Schematic diagram of squared average distance (r' + A2) or (22) vs. time T.
The slope of line becomes diffusion tensor component.
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K^./cL0
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Figure 2.3: Diffusion tensors fr ""a ft
(LEFr) # ".. X (RIGHT) *t u.. X
æ-:1 and, "x" for W :2. [11]

vs. gyroradius fi t", various values of (#.
,,o,' for W : L, 

,,A" for S : ], "!" for

diffusion tensor K¡f cLs versus gyroradius RnlLo obtained by Honda. Honda noted that

the behavior of the diffusion tensors changed suddenly ú X: 1. This implies that this

feature of the diffusion tensors is dependent on the ratio ff and two regime, which are

(* a 1) regime and (ff > 1) regime, exist. Honda introduced the fitting function for the

perpendicular and parallel diffusion tensors.

(#):(h)(x)"(s#)', (2.2,t2)

where i represents ll and I. He pointed out that the value of the index a in Equation

x

0s

r

x

H

x

û

A

c

x
tr

ô

o

¡(
H

ô

o

x

o

t

x
tr

À

o

2.2.12 is different for the (* .1) regime and the (* r 1) regime'
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2.2.2 Simulation by Giacalone and Jokipii (1999)

Giacalone and Jokipii [9] simulated the collisionless scattering motion of cosmic rays in

turbulent magnetic fields. The procedures are also explained in their earlier papers [7]

and [8]. This section summarizes how they implemented this simulation.

Cosmic rays which Giacalone and Jokipii were interested in had an energy range from

106eV to 10eeV and the range of the corresponding gyroradii for Bo : 5nT was 4.46 x

10-6AU< rn < 4.46x 10-34U. The turbulent magnetic fields were interplanetary magnetic

fields produced by the sun. The total magnetic field Broror consisted of a mean magnetic

field Bo and irregular magnetic field ô8. The mean magnetic field Bo was parallel to

the z-direction and has the magnitude of 5.0nT. Giacalone and Jokipii proposed that

the irregular part dÉ@,,y,2) be a superposition of isotropic plane \ryaves with random

polarisations and phases. They defined the irregular part dÉ@,y, z) of.the total magnetic

fleld as

Nn
6É@, a, z) : D {nò(cos e.nê',nf i sin o,ê!o) exp (ilenz!, + iþ,) (2.2.13)

where

n:L

fr'

a'

z'

cos d' cos @r, cos d, slnþn - sin 0r,

- sin /r, cos /r, 0

sind' cos /,., siná," sin@r, cos0n

r

a

z

In Equation 2.2.L2,, an arrd Bn arc the r¿-th random polarisation and phase, respectively,

and a, makes ôd isotropic. The matrix is the combination of the rotations along the ø-

axis and the g-axis. Due to this matrix, Equation 2.2.t3 automatically satisfies V.Ë : 0.

-ðy'- is the upper limit of the summation. If N- becomes large, then ô,ã wil be isotropic.

Giacalone and Jokipii sampled irregular magnetic fields by collecting four different values
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of cos 0n, ó, û?? and Bn randarc'ly from each range,

-1 < cosdr, < 1 (n: 1,2,"')

0 < þn < 2r (n : L,2,.' ')
(2.2.14)

0<ar<2r (n:1,2,'..)

0 < 0n < 2r (n: I,2,. ' ')

A(k") in Equation 2.2.13 is expressed as the amplitude of the n-th wave mode with wave

number len, and A(k") determines the power spectrum of magnetic flelds. As a Kolmogorov

envelope to the power spectrum,

-1Nm

A'(t ,) : o2G(lcn) Dc&") (2.2.r5)
n:L

where

(2.2,16)

In Equations 2.2.15 and 2.2.16, o2 ar.id L. are the wave variance and the correlation

Iength, respectively. The correlation length corresponds to the maximum scale of magnetic

irregularity. AÇ is a normalization factor. For a three-dimensional turbulence, AW :

 trleflLk.. Giacalone and Jokipii noted that the index 7 also depends on the dimension

of the turbulence. The index .y is * for a three-dimensional Koimogorov spectrum, This

irregular magnetic field 6E is classified as an "isotropic" turbulent magnetic field.

Giacalone and Jokipii introduced another irregular- magnetic field, which was called

"composite" turbulent magnetic field to represent the interplanetary magnetic field. The

composite magnetic field was a superposition of a slab component representing Alfven wave

propagation, The composite turbulence consists of one-dimensional component tÊtrlz¡

G(k,):iffi
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tÉro1r¡ 6É2p@,s)

Equation 2.2.74 0n:0 0n: I and an: ç

Equation 2.2.L6 LW: A,k, and 'y : I LVn:2rlen\,len and ^y : $

Table 2.1: Conditions to obtain one-dimensional component tÈrrçz) and two-dimensional
component õE2p@,y).

and two-dimensional component 6E2p@, gr) and is given by

õÉØ:õÉnQ)+õÉ2p@,s) (2,2.17)

Table 2.1 shows the conditions to obtain AÉtoQ) and, 6È2p(r,y), In table 2.1, Equa-

tion 2.2.14 expresses the phases and polarisations of plane waves and Equation 2.2.16 is

associated with the amplitudes of the plane waves

Giacalone and Jokipii applied two kinds of magnetic fields, isotropic and composite

magnetic field, to the propagation of cosmic rays. The motion of the charged particles

along the total magnetic field is described by equation of motion,

(2.2.r8)

where q is the charge of the particle. Giacalone and Jokipii calculated the magnetic fields

from Equation2.2.L3 for the particle's current position at each time step as it changes its

position, and so this method does not need magnetic field interpolation, whereas Honda

[11] sets magnetic fields at each lattice point initially, before following the trajectory of a

particle, and therefore in Honda's method magnetic field interpolation vras necessary.

Figure 2.4 shows the trajectories of two protons with different energy (lMeV:106eV

and 100MeV:108eV) in turbulent magnetic fields. The magnetic fields are isotropic tur-

bulence in Figure 2.4. If the particle energy is higher, then the gyroradius will become

larger and the particles are more scattered compared to lower energy protons.

fr: n@' d)'
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3

2

zlLc 0

-1

-2

-3
-1.5 1 -0.5 0 0.5 1.51

Figure 2.4: T\ajectories of two protons (1MeV:106eV and 100MeV:10seV) in turbulent
magnetic fields [9]. The dotted lines are magnetic fi.eld lines'

Giacalone and Jokipii were interested in how the diffusion tensors change with respect

to various parameters. Figure 2.5 shows the behaviors of the diffusion tensor with respect

to particle energy from lMeV< E < L00MeV. Figure 2.5 (UP) shows perpendicular com-

ponent Æa versus particle energy .Ð and Figure 2.5 (DOWN) shows the ratio fr versus

particle energy E. They applied the simulation data to the least square method and ob-

tained Æa o( 60'68. Figure 2.5 also indicates that the ratio fr does not change much with

particle energy .8.

Figure 2.6 shows the behaviors of the diffusion tensor with respect to the correlation

length ,L". The correlation length -L" corresponds to 0.01 x \*o, (\^o': maximum wave-

length) and 100 x )^¡* (\*¿n: minimum wavelength). In Figure2.6, the correlation length

is

L.:1g(n-3)12, n:1,2,3,4 (2.2.19)

L"= o.o1 AU

1 MeV proton

100 MeV proton

Figure 2.6 (UP) shows /r1 v€rsrls and correlation length ,L" and Figure 2.6 (DOWN) shows
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the ratio $ versus correlation length .L". Giacalone and Jokipii used the least squareñll

method and obtained rc1 o L}'nu. They also noted that the ratio is slightly dependent

upon the scale of the correlation length.

1000

100

Ka( x1018Ë')

10

0.1

Kl

0.01

0.001 10 100 1000

Partide Energy, E (MeV)

Figure 2.5: (UP) Perpendicular diffusion component rc1 vs. particle energy E. (DOWN)
The ratio fr tt. E. "o" represents isotropic magnetic field and "o" represents composite
magnetic field. [9].

2.2,3 Simulation by Casse, Lemoine and Pelletier (2001)

Casse, Lemoine and Pelletier [5] simulated cosmic rays diffusion in turbulent magnetic

fields. This section summarizes how they simulated the propagation of charged particles.

1

1

Kf

1

o
Io

oz o
I

o
a

o
o

o
ao

a

SsoGtct
o2 = 1.0 82

L"= o'01 AU

I lsotropic

O Composite

They set the three-dimensional grid space and placed magnetic fields on each grid point
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100

Kr( x1o18T')

29
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0.1

0.001 0.01

Turbulence Correlation Length, L.(AU)

Figure 2.6: (UP) Perpendicular diffusion componentrcl vs. turbulent correlation length.L".

(DOWN) The ratio fr tr. 1,.. "o" represents isotropic magnetic freld and "o" represents

composite magnetic field. [9].
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The total magnetic fields ã(rl consisted of a mean homogeneous field .d6 toward z-direction

and an irregular part õB(fl, as in the simulations by Honda [11], and Giacalone and

Jokipii [7] [8] [e],

E(û : Eo + ¿É(t (2.2.20)

The method of Casse et al. to create the irregular magnetic flelds is similar to that of

Giacalone and Jokipii [9] except that they used a three-dimensional lattice. The irregular

part ðE(r] of the magnetic field was a superposition of isotropic plane waves, and was

defined as,

õ EØ= o f eG)¿G) "*rl':!''1I l, r^"' ) 
(2'2'2r)

In Equation 2.2.2L, Ë is u three-dimensional wavevector, rc is a normalization factor, and

a(ã) is a unit vector perpendicular to Ë. tfrir ensures that õE(Ò is perpendicular to the

wavevecto, d, ro i .dÉ:0 is automatically satisfiea. A(ã) is the amplitude of the field

component and is related to the spectrum of turbulence. For a three-dimensional Kol-

mogorov spectrum, (A'Gù is proportional to ¡-rr/3, so that the spectrum of turbulence

follows a Kolmogorov power law. The simulation of Casse et al. used periodic boundary

conditions, and set the period as L^or. The length between any two closest grid points is

Lrnin: "ff, *h"re lú, expresses the number of wavenumber modes along one direction.

The typical N, for their simulation was 256.

Casse et al. defined the turbulence level given by

q: $É'l---_õ- -B.
õÉr)

(2.2.22)
4 + gd'l

Thus, when q K 7 and 6B(fl ( Bo, Bs dominates the total magnetic fleld ã(r] ana

the turbulence rvas weak. On the other hand, when T Þ t, 6B(û dominated the total

magnetic fieta E(r], ro 814 became more isotropic. They calculated the diffusion tensors

for various turbulence levels.
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Casse et ai, applied a Fast Fourier Thansform (FFT) algorithm to Equation 2.2.21to

reduce the number of calculations and to save computational time. FFT is more efficient

than Discrete Fourier Tfansform (DFT) algorithms, the difference between FFT and DFT

being the number of multiplications. If the number of data values in DFT is l/, the

number of multiplications is N2, whereas with the FFT, the number of multiplications

is reduced to lr/ log, l/. For example, the number of data is 210 : L024, the number of

multiplications in DFT is - 1.05 x 106, whereas in FFT, it is reduced to - I.02 x 104.

However, the number of data values in FFT must be a power of 2.

The irregular part 6É of the magnetic fields for both the FFT method (Equation

2.2.2I) and the method of Giacalone and Jokipii (Equation 2.2.t3) [O] took very similar.

However, there are several differences. The method does not calculate the magnetic field

on a discrete grid beforehand; rather, the magnetic fields are calculated during particle

propagation from the sum of plane v¡aves, as mentioned in Section 4.2'2

The spatial diffusion coefficient parallel to the mean magnetic freld B¡ is

/A*2\ a

Dr=#:|r2r, (2.2.23)

where r" is the scattering time. The transverse diffusion coeffi.cient perpendicular to the

mean magnetic field is

t\r2,\ 1o rs_ \--x _ -1'2_______"_ (2.2.24)Dt=nñ: gu-L+(uLr,y

where u¡,is the Larmor frequency. Casse et al. plotted both parallel and perpendicular

components of the diffusion tensor versus a dimensionless rigidity p (Figures 2.7 and 2.8),

written in terms of gyroradius r, and the largest scale of irregularity L*o*,

2rro
^ - --------!- (2.2.25)
'- L*o|

They also plotted the ratio of two diffusion components DalDllversus rigidity p (Figure

2.9 ). In Figures 2.7 and 2.8, they noticed that the FFT method and the method proposed
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1000.0

100.0

10.0

1.0

0.1

0,001 0.010 0.100 1.000 10.000
p

Figure 2.7: Parallel diffusion tensor D¡1 versus dimensionless rigidity p with various tur-
bulence levels q. [5].

10_000

1_000

0.100

0.010
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Figure 2,8: Perpendicular diffusion tensor D1 versus dimensionless rigidity p with various
turbulence levels ?. [5].
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a,tound massive star (OB stars) associations in the interstellar medium. Parizot and

Drury [20] estimated the typical superbubble radius as

Rsn(t)= 66pc (- ¿ \ å r 
þ)* ,in".. (2.2.27)

11038erg .F/ \ k

The maximum energy for acceleration in superbubbles is

êsn = 4 x 70,2 zs (å) tfli],ev. (2.2.28)

In this equation, t¡a* is the superbubble life time in mega year units and g is the scattering

function, i.". *, where ú¿ is Larmor time and r" is scattering time.

Extra-galactic jets from quasars are thought to be the a possible source of ultra-high

energy cosmic rays, which have energy above 1018eV. Casse et al. applied their simulation

to Cygnus A and Centaurus A. In the Cygnus A case, inside the jet radius Rj : 1pc, the

strength of the magnetic field B is about 10-5T. The maximum energy for acceleration is

€manaLo2'p'.zt (å) (,ft) * (2.2.2e)

In this equation, I is the jet's Lorentz factor, and in this case I - 10 is needed for a

cosmic ray energy larger than 1020eV

2.3 Summary and Conclusion

Section 2.2.1to 2.2.3 review three simulations of cosmic ray diffusion in turbulent magnetic

fields. The following is a summary of three simulations.

1. Simulation proposed by Honda (1987)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

Éroror: Êo + 6È.
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(b) Three-dimensional grid space is used in the simulation, so the interpolation

between the grid points is necessary.

(.) ü x A'i, applied to create irregular magnetic fields 6ÉØ'

2. Simulation proposed by Giacalone and Jokipii (1999)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

Éroror:Èo+õÉ

(b) The simulation does not use three-dimensional grid space, Instead they calcu-

lated magnetic fields for every step.

(c) The superposition of plane waves is used to create irregular magnetic flelds

õÈØ.

3. Simulation proposed by Casse, Lemoine and Pelletier (2001)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

Éroror: Eo + ¿É.

(b) Three-dimensional grid in k-space (k: wavenumber) is used in the simulation,

generated by FFT methods, so the interpolation between the grid points is

necessarv

(c) The superposition of plane waves is used to create irregular magnetic fields

õEØ.

'Ihe method Honda used to create irregular magnetic fieid is <liflerent from the two

other simulations as he used ü x l to create ¿d. ttre simulation by Giacalone and Jokipii

and the simulation by Casse et al are very similar to each other because both simulations

applied the superposition of isotropic plane waves to create irregular magnetic fields 6ÉØ
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However, Giacalone and Jokipii did not use three-dimensional lattice, whereas Casse et

al. used the k-space lattice (k: wavenumber). Therefore, even though Casse et al. used a

Fast Fourier T[ansform algorithm to reduce computational time, the Giacalone and Jokipii

simulation may be faster than the Casse et al. simulation. For this reason, this research

selected two simulations, namely the simulation proposed by Honda and the simulation

proposed by Giacalone and Jokipii. These two simulations were repeated and results

analysed.



Chapter 3

Honda's Simulation

3.1 Summary of Hondats simulation

This section summarizes Honda's simulation [11] of cosmic ray propagation in turbulent

galactic magnetic fields. He calculated diffusion tensors based on the positions of the

cosmic rays in the turbulent galactic magnetic flelds.

The turbulent magnetic field Ér*"t(Ò is composed of the mean magnetic fre\d Boê' and

the irregular magnetic field õÈØ. To create an irregular magnetic field, Honda used a

three-dimensional lattice and placed random vector potentials Ãç4 "t each lattice point.

The vector potentials are sampled from Monte Carlo simulation. The vector potentials

are isotropic and the potentials obey exponential distribution. Then he took the curl of

the vector potentials to create the irregular part of thc magnetic fields, namely

6BØ:i x Ãç4 (3.1.1)

The curl of the vector potential ensures V ' B equals to 0

To create Kolmogorov-iike magnetic frelds, Honda set the lattice space to have grid

spacings. The magnetic fields placed on each grid point had a magnitude which depended

JI
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upon the grid spacing, the smaller magnitude for a smaller grid spacing, and the larger

magnitude for the larger grid spacing. The magnetic field on the i-th smaller grid spacing

was proportional to L¿: !0-i/2Lo, where .Lo is the scale of turbulence and corresponds to

the maximum grid spacing. Then the next smallest grid spacings were Lof L01/2, Lo/70r

and so on. After the magnetic fields with corresponding magnitudes on different grid

scales were placed on the grid points, thc magnctic fields at each grid point was vectorially

added to create the irregular part of the magnetic field. For a Kolmogorov spectrum, the

weighting of the field energy density of the superimposed magnetic frelds is proportional

to Ll/3.

Honda calculated the positions of particles according to the equation of motion. To

draw smooth trajectories in the simulation, setting an appropriate time step Aú was

important. He found that Aú : kwas best for the time step, where ,R, is the gyroradius

of the particle and c is the speed of light.

In order to calculate the diffusion tensor K¿¡ (i : r, At z and j : r, U, z), Honda

projected a number of particles into the magnetic fields and took the averages of distances

for each time step. Then the diffusion tensor components were calculated from the plots

of squared average distance versus time.

(r') :2K¡t, (3.1.2)

(*"+u'):4K¡t, (3.1.3)

where K¡¡ is the diffusion tensor component parallel to the z-direction and K1 is the diffu-

sion tensor component perpendicular to the z-direction. Each component of the diffusion

tensor was the slope in the average squared distance versus time plot
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3.2 Repeating flonda's Method (The case of single

grid space)

Section 3.2 describes how Honda's simulation was reproduced for the case of a single grid

spacing for the magnetic freld, and discusses the results of the simulation.

3.2.L Producing and Sampling Magnetic Fields

z

(2,2,1)

(1,1, 1) (2,1,1)

v

X

Figure 3.1: Single grid spacing three-dimensional lattice space. Magnetic frelds Ér'r",(û
are placed on each lattice point. In order to create Kolmogorov-type magnetic fields,

lattice spaces which have different scale of grid spacing are used.

This section describes how the magnetic fields on the grid points are set. Firstly, the

thrcc-dimensional lattice was set to place magnetic fi.elds (Figure 3.1). Periodic boundary

conditions were used to repeat the lattice. Honda sampled the vector potentials randomly

l,o calculate irregular magnetic field ô8. Honda sampled from an cxponential distribution.

However, since the directions of magnetic fleld lines are isotropic, it would be better to

sample both positive and negative vector potentials. Hence the normal distribution was

used in this study to allow for both positive and negative values of vector potentials. After

(2,2,2)(1

(2,1,2)(1,1,2)

(t,2,r)
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sampling the vector potentiak .Ã,

õÉ: V t,4-, (3.2.1)

was calculated. The algorithm of Equation 3.2,1 is as follows. Firstly the vector potentials

Ãrrr -- (Aî¡r,AIir,Aí¡ù were sampled from the Monte Carlo simulation. The index number

i, j, k represents the grid point where the vector potential is located. According to the

definition of V x '4 
: (Bî¡r,BIir,Bí¡o), r-, u- and z-components are

dAí¡o dAIir
dg dz

Bli (3.2.2)

The root mean square (r.m.s.) value of B was set to be 1.0 x 10-10 T(:1.0¡¿G) and of

,4 *"r set to be 1.0 x 10-10T.pc. The intervals Aø, /rg, Az, which correspondto grid

spacing, were 1.0 pc. The infinitesimal vector potential AÃn¡r(û along the r-: (r,A,z)

direction was calculated as

Biir

Bí¡

k

)

)

)*: (

dAí¡o

dr
dAi¡r

ds

dAiir
dz

!tu
dr

Az (1.0 pc)

The periodic boundary condition was applied in the simulation so that the index number

repeated after the end of grid points, and so the calculation of Èr,¡,ç4 : (Bîin, BI¡n,Bí¡o)

lVAS

Bii _ AAíir LAI¡r _
Ly Az

_ AAi¡* LAíi* _
Az Ar

LAI¡r LAi¡n

A2

^¿+t.ik - Aîi*

Aiir

LAi¡* 
-Lr

LAIi* 
-Ly

LAí¡r 
-

A¿+un - Anjn

(1.0 pc)

Aoj+rx - Aujr
(1.0 pc)

Aojn+, - A¿¡n

(1.0 pc)

Ai¡n+t - Ai¡r

Alt*tr - Aí¡n Aonjr*, - AT¡r

(1.0 pc)

(3.2.3)

k

Broio
(1.0 pc)

Aor*rjr - AT¡*

(1.0 pc)

^r. 'ii+Ik
(1.0 pc) (1.0 pc)

Bí¡r An Ag

(3.2.4)
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The follcwing two cases Ì¡uere compared.

DISTRIBUTION OF DISTRIBUTION OF
1.0 1.0

S o.o
È

3 o.a
À

0 4 0 4

a=B*ç lpcl

Figure 3.2: Distributions of ø-component of magnetic fields. (a) Distribution of B¿¿,.¿¡,r.

Ê¿¿r""t are sampled directly from Monte Carlo simulation. (b) Distribution of. 8,. Vector

p-otentials are initially sampled from Monte Carlo simulation and B is calculated from
V x A. The solid curves were calculated from Equation 3.2.5

0.000
-2-4 2

Il,'cla=8.
2-2-4

1. The magnetic fields are sampled directly (CASE 1).

2. Vector potentials are sampled, and the magnetic fields are calculated from i " ,4

(CASE 2).

The calculation of CASE 1 simulation is faster than that of CASE 2 simulation. Therefore

if the magnetic fields sampled directly from the Monte Carlo simulation CASE 1 agree

with the magnetic fields from CASE 2 simulation, it would be better to choose CASE 1

for simulation, to reduce computational time. Figure 3.2 shows the distribution of the z-

component of the irregular magnetic fields by using a Monte Carlo simulation. The smooth

solid curves in Figure 3.2 were calculated from normal distribution function defined as

32?88ll ot
lãd=1.0lpc]
Bo-r..¡-= 8.42E-03t¡¿cl
B"**= l.ooE+oo[r¿G]

32764of#

t@,): o:ffi*o[;(#h)') (3.2.5)
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Figure 3.2 (a) shows the distribution of B¿4¡..¡,, sampled directly from the Monte

Carlo simulation (CASE 1), and Figure 3.2 (b) shows the distribution of. 8,, which was

calculated bv ü x,4'ICASE 2). Figure 3.2 (a) shows that the distributioÍL of B¿¡,."¿,,

is consistent with the normal distribution curve (Equation 3.2.5) with B*,r^ : 1.0¡.1G,

whereas in Figure 3.2 (b), lhe B, distribution from CASE 2 simulation has a different

distribution pattern. The B, distribution spreads morc widely than Bdir".t,, distribution

and B* distribution agrees to the normal distribution curve (Equation 3.2.5) with the r.m.s.

value, Bd,irect,n,rm":2.0p,G. The calculation of ü x Ã 
^uy 

affect the B* distribution and

Br,r^". Therefore, the normalisation of. B, by Br,r*" :2.0pG was implemented and the

B, histogram which agreed to the normal distribution curve with Br,r* : 1.0pG was

obtained.

3.2.2 Verifying the magnetic fields

It is important to check whether the sampled magnetic fields are valid before they are used

as the irregular magnetic fields ¿ã. ttris section examines the magnetic fields sampled in

the Monte Ca¡lo simulation. Two tests were implemented. The first one is to test whether

the calculation of i " Ã, produces an appropriate magnetic freld .d. G".r..ully speaking,

any magnetic field .d must satisfy the relationships explained in the following paragraphs.

Suppose an initial field line is directed in the z-direction in a cylindrical coordinate

system,

Éo:1Ê¿c". (3.2.6)

One representation of the vector potential from the initial magnetic field is

(3.2.7)Ã: -Poc,,

where (p,p,") are cylindrical coordinates. The magnetic field finally created from this
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-rector potential is

É,: V ",t'
(3.2.8)

(21,2t,r)

(21,11,1)

(1,1,r) ( l r,l,l ) (21,r,1)

(a) (b)

Figure 3.3: (a) two-dimensional schematic diagram of vector potentiai lines in each cube.

(b) Testing magnetic fi.elds inside the cube to avoid "edge problem".

If the magnetic field is electro-magnetically correct, the initial magnetic fi.eld must

be consistent with the final magnetic fi.eld., ie, ld,l : lÈ.j . To test the magnetic fields

produced by ü x ã, thu edge of the lattice must be considered. Since the simulation uses

periodic boundary condition for the lattice, the vector potential lines at the boundary do

not fit to those of the next lattice cube. Figure 3.3 (a) is a two-dimensional schematic

picture of this prol,rlem involving the implementation of the first magnetic field test. The

box in Figure 3,3 (b) represents part of the lattice of 10 x 10 x 10 grid points. Figure 3.3 (a)

shows that the vector potential lines in a box are inconsistent with those of neighbouring

boxes. Therefore, the test was implemented only inside the initial cube to avoid this

(t,21,t) (1 l,2l,l)

( l,l r,l ) (r1,ll,r)
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DISTRIBUTION OF B

15

êto
R

0
0.0 0.6 1.0 1.6 2.O

g=B,lpîl

Figrue 3.4: Distribution of. B¡. Input value B¿: I.ïp,G

"edge problem", as shown in Figure 3.3 (b). Figure 3.4 shows that the distribution of final

magnetic fields B¡ in the first magnetic field test. Input value was 1.0 x 10-10 T(: 1.0¡¿G),

and the total grid points were 32 x 32 x 32 : 32768 points. The distribution of the B¡

was consistent with the initial value l.d¿1, namely 1.0¡rG. Therefore, the first test concludes

that the procedure of producing magnetic fields bV V x ,4 is valid.

The second test comes from Maxwell's equations (Faraday's law). According to the

Maxwell's equations and because magnetic fields have no point source to flow from, all

magnetic fields must satisfy this condition,

V.B:0. (3.2.e)

Testing the magnetic fields produced by the Monte Carlo simulation for the condition 3.2.9

was implemented. Numerical calculation of V'.d is explained as follows. By definition,

20

6

f of samples=82?68
L3r"ro= l.ooE+ooIpc]
Brnrt¡"r= 1.008 + 00[¡rG]
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Y7 Pi.v'2rÈ

í .Éoor:oB-^T'r *91tL *u"-^l'o' o:D oA oz
(3.2.10)

The infinitesimal magnetic

(3.2.11)

(3.2.12)

The intervals Az, Ly, Lz were set to be 1.0pc in this test

fre\d LBfr¡ along the r-: (r, y, z) direction is calculated as

ABTin :
Ln

ABro¡n :
Ly

aBl¡* :
Lz

BT*t¡r - Bi¡*
(1.0 pc)

BI,*ro - BI¡*

(1.0 pc)

Bl¡n+t - Bí¡*

(1.0 pc)

Finally the numerical result of the V ' B is obtained,

i.Eo,r:#."+."#
_ BT+ti¡ - Bi¡r Bí¡o*t - Bl¡u

(1.0 pc) (1.0 pc)

The test made a comparison among following three simulation cases:

1. The magnetic fields are sampled directly (CASE 1).

2. Vector potentials are sampled, and the magnetic fields are calculated from ü * ,Ã

(CASE 2).

3. Vector potentials are sampled, and the magnetic fields are calculated from V " 
,4,

and then all magnetic fields are normalized by the root mean square (r.m.s.) value

or E lcasn e).

The r'm.s. value of the magnetic fields was set to be 1'0 x 10-10T(: 1'0¡'¿G) for this test'

The number of the magnetic fields was ?? : 32 x 32 x 32 : 32768 and the mean values of

the ü , d *... calculated for each case. If the mean value of the ç È was close to 0, the

set of the rnagnetic fields will be realistic for the simulation.
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(CASE 1) (CASE 2) (CASE 3)

i 'Éa¡,"", i .E: V. (V x 1¡ V . E : V. (V x ã¡l"ormalized)

mean -1.738 x 10-28 T/m -7.942 x 10-43 T/m -5.259 x L0-44 Tf m

o 7.799x10-27Tfm 1.344 x 10-26 T/m 6.694 x 10-27 Tf m

o l'fr' 4.308 x 10-2e T/m 7.425 x 1o-2e T/m 3.698 x 10-2e T/m

Table 3.1: Mean, standard deviation and standard error of V.B for 3 cases. o is standard
deviation and o I 1fr, is standard error.

Table 3.1 shows the mean value, the standard deviation and standard error of V.-B in

three cases. Compared to the mean value, standard deviation and standard error of CASE

f V x.Ë, those values of V x.d calculated from CASE 2 and,CASE 3 simulations are small.

CASE 2 and. CASE 3 have (V.d) ( o, i.e. (V.E) is close to 0. Even though sampling

the magnetic fields directly from the Monte Carlo simulation can reduce the number

of calculations and save computational time, the magnetic fields from the É : i , .i

calculation are more valid than CASE 1 magnetic fields from the the electromagnetic

point of view.

3.2.3 Trajectories of charged particles in the magnetic fields

After testing the magnetic fields, the position of a charged particle in the turbulent mag-

netic freld was calculated by using the equation of motion. 'When the particle moves inside

the cube, the magnetic field at the position of the particle was interpolated. When the

motion of the charged particle is considered, it is important to set the time increment for

the numerical integration in the simulation.

A charged particle entering a uniform magnetic fields moves helically along the mag-

netic field lines as shown in Figure 3.5 (a). The gyroradius of a charged particle whose
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z-direction

B: Magnetic
field line

R; Gyroradius

V
(a) (b)

Figure 3.5: (a) Schematic diagram of the motion of a charged particle aiong uniform
magnetic field directing z-direction. (b) Two-dimensional view of the motion from z-

direction.

mass is rn is given by,

Rs: 1mu sin?
(3.2.13)

el

where 7 is Lorenz factor and u is a speed of the particle. ¡dl is the magnitude of the

magnetic fieid and d is the pitch angle. The position of the particle afber time ú/ : t I At

is given by

r-(tlAú) :i(t) +Ar-
(3.2.74)

: r'(t) + o-(t)At

To describe the particle trajectory, two things must be considered, the flrst is setting the

step size Aú for the simulation and the second is to physically correct for the artificial

increase of radial velocity when the trajectory is calculated. Supposing that a particle

moves in a circular orbit with the radius R, shown in Figure 3.5 (b). lAfll is given by

A?Rs, then the step size A¿ is given by

¿,t: llil : ^-!þ (3.2.1b)lr-l lr-l
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V+dV:
New dV:

Change
in
velocity

V: Current velocity

Figure 3.6: Unphysical increase of radial velocity in circular motion. A charged particle
does not circulate but it deviates from the circular orbit and moves spirally.

In order to save computational time and to draw a smooth trajectory, it is necessary to set

an appropriate Ad. Honda found that Ad should be as small as zr/1800 : L.745 x 10-3

rad or 0.1".

The second thing to be considered is the physical problem that the trajectory of a

particle deviates from a circular orbit when it moves. Figure 3.6 shows how the direction

of velocitv vector changes and the particle deviates from circular orbit. The static magnetic

fields should change only cosmic ray direction and but not its speed. However as shown

in Equation 3.2.16, the change in particle velocity At7 is added to current velocity ú.urr,

the magnitude of the new velocity increase.

ún". : ú.ur, + Lú, lü".-l > lú.,u| (3.2.16)

This causes a change in the speed of the cosmic ray and its deviation from a circular

orbit, as shown in Figure 3.6. To avoid this problem, the following treatment should be

implemented. Supposing the initial velocity is T7r, and the Lorentz force produces the

change in velocity A'u-, the new velocity ø-2 will be produced by adding AZ'to u-1. After the

new velocity õ2ís created, u-2 is normalised such that its magnitude, lu-21, is equal to that
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of the old','elocity lt-.| since in this simuiation'we are only interested in ultra relativistic

particles (lr-l : c), This normalisation of new velocities is repeated every time step, namely

ú : Initial velocity

úz: út + Aõ, ú2: (ú2c)llõ21

ût: úz * Au-, fu: (fuc)llúsl (3.2.17)

d¿ : ús + Lú, ûa: (úac) llúal

After these two treatments were done, the simulation was carried out to draw the

trajectory of a charged particle in the turbulent magnetic field. In the simulation, each

particle starts from the origin (0, 0, 0), but the direction of particle's velocity is arbitrary.

Table 3.2 shows the initial values of the cosmic ray energy and the magnetic field in the

simulation. In Table 3.2, a proton is chosen as the particle injected into the magnetic field

lattice. The range of the proton energy -E is 1013eV < E < 1017eV and the corresponding

gyroradius range for Bs : lQ-101 is 0.01pc< R, < 100pc. The root mean square (r.m.s.)

value of the irregular magnetic field, lôdr-"1, adopted in these simulations is 10-10 T. The

Lorentz factor 1 for E: 1015 eV is calculated as

B :1mrc2 (3.2.18)

Flom Equations 3.2.13 and 3.2,19, the gyroradius Rn for,Ð : 1015eV is

E 1015 cV

"''Y 
- #:.ffi:1'066 x 106

t2 -'Ymrusin9 - g.33g x 1016 mnn: 
"B 

-:

(3.2.1e)

(3.2.20)

: 1.082 pc

The angle 0 :90" was chosen so that R, is the maximum gyroradius for this energy,
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Particle proton (*o :938 MeV/c2)

Energy, .E 1013eV< .Ð < 1017eV

16É,^,1 10-10 T

Rs 0.01pc< ,Rn < 100pc

Grid space, L^in 1.Opc

Step size, Aú 1,9 x 103sec< Aú < 1.9 x 107sec

Number of grid points 32 x 32 x 32: 32768

Table 3.2: Some important values of the cosmic ray and the magnetic fields in the simu-
lation

The step size Aú is calculated by Equation 3.2.15 and the corresponding range of step

size for the energy range is 1.9 x 103sec< Aú < 1.9 x 107sec. The number of steps in the

simulation is 5 x 106 and trajectory of cosmic ray is displayed at every 100 steps. The

number of grid points is 32 x 32 x 32 and the periodic boundary condition is used, so that

the magnetic fields repeat every 32-grid.

I consider four possibilities:

1. Vector potentials Ã ur" sampled at grid points, and magnetic flelds Ê uru calculated

from V x 1-, and interpolated between grid points (CASE 1).

2. Magnetic frelds are sampled directly at grid points, and interpolated between grid

points (CASE 2).

3. Vector potentials Ã uru sampled at grid points, and magnetic fields É ur" calculated

from V x ã, bnt are not interpolated between grid points (CASE 3).

4. Magnetic fields are sampled directly at grid points, but are not interpolated between

grid points (CASE 4).
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YxA Interpolation

CASE 1 \J o
CASE 2 X

CASE 3 o X

CASE 4 X X

Table 3.3: The four cases of the simulation. Q represents the calculation is implemented.

x represents the calculation is not implemented.

Table 3.3 shows which of the four cases have been interpolated. In CASE 1 the magnetic

field is potentially the most realistic turbulent magnetic field among the four cases, but

CASE 1 takes much more computational time. In CASE 2 the simulation may not produce

a realistic magnetic field because freld ¿.d is directly sampled, and so the magnetic frelds

do not exactly satisfy the condition, ü . B :0. In CASE 3 and CASE 4, the turbulent

magnetic frelds are uniform inside each cube because the magnetic field inside a cube is

not interpolated but is set to that at the nearest grid point. However calculations using

CASE 3 or CASE 4 for simulation are much faster than CASE 1 or CASE 2 because no

interpolation subroutines are included. In practice, if any of the results from CASE 2,

CASE 3 and CASE 4 are simiiar to those at CASE 1, any one of the three methods could

be used to simulate cosmic ray diffusion in turbulent magnetic frelds.

Figures 3.7 to 3.12 show the examples of trajectories. In the simulation, the total

magnetic fre\d B¡o¿o¿ consists of mean and irregular magnetic field, and the mean part 86

is 10-10T and the r.m.s. value of the irregular part lô8 ,,,"1 is 0,5 x 10-10T'

Figure 3.7 (a) shows an example of the trajectory of a low energy proton (E : 1013eV)

in CASE 1 and Figure 3.7 (b) shows a trajectory of a low energy proton in CASE 2. In

Figure 3.7 (a) and (b), the proton moves helically along the magnetic freld lines due to



R¡= t.o6E-o?(pc)
lr,{d= 1.00E+00(Pc)

g
À
N

52 CHAPTER 3. .E[O¡\IDA'S SIMULATION

a) , E= l0rseV E= l0tseV
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Figure 3.7: (a) (CASE 1) Tbajectory of 1013eV proton. (b) (CASE 2) Thajectory of 1013eV

proton. The mean magnetic field Bo is 10-10T and the r.m.s. value of 6É is 10-10T. The
grid spacing (:turbulence scale) Lsrñ is 1.0pc.

the small gyroradius (Rn = 0.\LL,,M).

Figure 3.8 (a) shows the trajectory of a low energy proton (E : 1013eV) in CASE 3

magnetic fi,eld and Figure 3.8 (b) shows the trajectory of a low energy proton in CASE

4 magnetic field. In CASE 3 and CASE 4, the magnetic fields inside the cell are not

interpolated, so the magnetic fields inside the cell are uniform. In Figure 3.8, the low

energy protons follow the magnetic field with = O.\lLsr¿. of gyroradius. However, the

trajectories are not smooth in Figure 3.8, because of the magnetic fields inside the cell not

being interpolated.

Figures 3.9 and 3.10 show examples of trajectories of higher energy protons (E :

1015eV). The gyroradius of 1015eV proton for Bs : lQ-101 is - 1.Opc, and is comparable

to grid spacing Lsrid,.

tr'igures 3.11 and 3.12 show examples of trajectories of higher energy protons (E :

1017eV). In Figures 3.11 and 3.12, the proton energy is sufficiently high that it is less

t.0
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a CASE 3 +ô8, E= l0roeV CASE 4 dB, E= lOroeV
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0.t 0.2 o.2 0.4 0.8
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Figure 3.S: (a) (CASE 3) T[ajectory of 1013eV proton. (b) (CASE 4) Tlajectory of 1013eV

proton. The mean magnetic field Bo is 10-10T and the r.m.s. value of 6È is 10-10T. The
grid spacing (:turbulence scale) Lnr,a is 1.0pc.
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Figure 3.9: (a) (CASE 1) Ttajectory of 1015eV proton. (b) (CASE 2) T[ajectory of 1015eV

proton. The mean magnetic field Bo is 10-10T and the r.m.s. value of 6E is 10-10T. The
grid spacing (:turbulence scale) Ls,ta is 1.gpc'
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CASE dB, E= l0t6eV 4 ô8, E= 10róeV
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Figure 3.10: (a) (CASE 3) T[ajectory of 1015eV proton. (b) (CASE 4) Tbajectory of 1015eV
proton. The mean magnetic fietd Bo is 10-10T and the r.m.s. value of 6É is 10-10T. The
grid spacing (:turbulence scale) LsrM is 1.0pc.
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Figure 3.11: (a) (CASE 1) tajectory of 1017eV proton. (b) (CASE 2) Thajectory of 1017eV

proton. The mean magnetic freld Bo is 10-10T and the r.m,s. value of 6È is 10-10T. The
grid spacing (:turbulence scale) LsrM is 1.0pc.
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CASE ð8, E= l0r?eV CASE E= 10r?eV
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Figure 3.12: (a) (CASE 3) Tïajectory of 1017eV proton. (b) (CASE 4) Tlajectory of 1017eV

proton. The mean magnetic field Bs is 10-10T and the r.m.s. value of õÈ is 10-10T. The
grid spacing (:turbulence scale) LsrM is 1.0pc.

influenced by structure on smali scales magnetic field, whereas in the low energy cases

the protons tended to follow the magnetic freld lines. Moreover, there seems to be no

apparent difference among four cases in Figures 3.11 and 3.12 due to the smaller influence

from the magnetic frelds (note different scales of ø- and z-axis), whereas in the I energy

case shown in Figures 3.7 and 3.8, the appearance of the trajectory depends on how the

magnetic fleld is sampled.

3,2,4 Calculation of diffusion tensor (E*, - õ É)

Section 1.4 explains that the propagation of cosmic rays in turbulent magnetic fields can

be described by Equatiors 1.4.1 and 1.4.3. Kij in Equation 1.4.1 and 1.4.3 is the diffusion

tensor, which describes the particle motion in a turbulent flow. Diffusion tensors for

cosmic ray proton propagation in turbulent magnetic fields were investigated. First for

magnetic fields which consisted only of an irregular magnetic freld. The diffusion tensor

crdt=
R¡=

.00E+00(pc).üd-
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Figure 3.13: Schematic diagram of trajectories and displacements of the particle in the
first three steps.

was calculated from the positions of protons at various times. The method of calculation

of the diffusion tensors is explained as follows. Figure 3.13 is a schematic diagram of

pa,rticle trajectories and displacement for the first three time steps. The first particle's

displacements for each pre-determined time intervai Aúirr¿"r,'"1 are

nl, *L, ,tr, *L, ^r¿n-intervalsr (3.2.21)

where the superscript refers to the particle number and the subscript refers to step number.

Then the average squared displacement for each time interval was calculated. The example

of the average displacement for each time interval is

þ31, þ?), ("1-,"*.**) (3.2.22)

where .lü is the number of the particles injected, and N was set to be 1000 in the simulation.

The number of steps in the trajectory of each particle was 5 x 106, and the calculation of

the average squared displacement was implemented after every Aúi.t"..,ul : 2 x 104 time

steps. Therefore n-intervals in Equations 3.2.2I and,3.2.22 is ffi :250.

'When the simulation was implemented, the four different cases were compared. The

(,?):ËS,
i:L
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summary of the foür cases is sho-wn in Table 3.3.
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Figure 3.14: \r2l as a function of time, (a) .Ð: 1013eV. (b) E:!017eV. The four cases

corresponding to the lines are explained in Table 3.3.

Figure 3.14 shows the z-component of average squared distance \n2) as a function of

time. Figure 3.14 (a) is for 1013eV protons and Figure 3.14 (b) it for 1017eV protons.

In Figure 3.14 CASE 1 and CASE 2 plots are steeper than CASE 3 and CASE 4 plots.

The difference between CASE 1, 2 and CASE 3, 4 is in the interpolation. In CASE 1

and CASE 2,the magnetic fields inside the cell are interpolated, whereas in CASE 3 and

CASE 4, the magnetic fields are not interpolated and the magnetic fields inside the cell are

uniform. The difference in the results between interpolation and non-interpolation cases

in Figures 3.1a (a) are clearly caused by differences in the interpolation method. At low

energies, in the non-interpolation case particles quickly travel across a cell having uniform

fi.eld, while for rrorr-uuifonn d it tok"t longer to cross a cell.

Figure 3,15 is the schematic diagram of the magnetic freld distribution in ø-direction

for an extreme case. The dots in the upper diagrams of Figure 3.15 indicate the magnetic

field in the r-direction at grid points and the solid lines in the upper diagrams of Figure

-cAsE 
I

.....CASE ?

--CASE 3

-.-CASE 4

0 7602600?660
(po)ct

26
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3.15 show the magnetic field that would be used in a simulation. The lower diagrams of

Figure 3.15 show 16É'1. If magnetic fleld interpolation is not implemented inside the cell,

the value of the magnetic fleld is the same everywhere inside the cell as shown in the upper

diagrams of Figure 3.15 (a). As a result, in this extreme example the mean square value

of the magnetic fietd (dd2) becomes 1 as shown in lower diagram of Figure 3.15 (a), On

the other hand, if magnetic fi.eld interpolation is implemented inside the cell, as shown in

the upper diagram of Figure 3.15 (b), the mean square value of the magnetic fretd (ô82)

becomes 1/3. Even though the fields were sampled such that they should have the same

(68'>, in practice, differences in (ô82) between the interpolation and non-interpolation

cases arise. This r.m.s. value difference may cause the difference between CASE 1, 2

and CASE 3, 4 in Figure 3.14. Therefore, it might make sense for the magnetic frelds in

CASE 1 and CASE 2 to be normalized by the root mean square value of the magnetic

fields lõÉ,*"1, so that the average values of the magnetic fields will become 1, and then

hopefully the plots in CASE 1 and CASE 2 could become consistent with those of CASE

3 and CASE 4.

Figrue 3.16 is the plots of (22) as a function of time where CASE 1 and CASE 2

magnetic fields in Figure 3.16 are normalised by the r.m.s. value lõÉr^"l.The normalized

CASE 1 and CASE 2 curves in Figure 3.16 become lower than the CASE 1 and CASE 2

curves in Figure 3.14. As a result, the normalized CASE 1 and CASE 2 curves in Figure

3.16 (a) become lower than CASE 3 and CASE 4. On the other hand, the CASE 1 and

CASE 2 curves in Figure 3.16 (b) become close to the CASE 3 and CASE 4 curves, but the

CASE 1 and CASE 2 curves are still not consistent with the CASE 3 and CASE 4 curves.

Therefore, normalization after implementing interpolation was not used in the simulation.
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Figure 3.15: The schematic diagram of the magnetic field distribution (upper diagrams)

and the squared magnetic field distribution (lower diagrams). (a) No interpolation case.

(b) Interpolation case.
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Figure 3.16: (r2) as a function of time. (a)E : 1013eV. (b) E' : 1017eV. The magnetic

fi.elds in CASE 1 and CASE 2 are normalised by the r.m.s. value 16É,*"1'
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The difiusion coefficient K, was calculated from Equation 3.2.23,

o -L 
(*'),,,-2 t (3.2.23)

The least squares fitting method was applied to the calculation of + in the simulation.

The values of the diffusion coefficients can be estimated from the appearance of the proton's

trajectory using Random Walk Theory. For higher energy, the gyroradius becomes larger

than the grid spacing (Rs > ¿).

Figure 3.17 shows the schematic diagram of the trajectory of a proton with a high

energy inside the cell. In Figure 3.17 (a), the change in angle ôd is approximately

L
õ0 x 

- 
(3.2.24)

where .Rn is proton's gy'roradius and L is the minimum grid spacing of the lattice. After

the proton propagates through .lú cells, the final scattering angle in Figure 3.17 (b) is

0"* = N(õq2 9.2.26)

For one scattering mean free path, the final angle needs to be 0¡,¡ x zr'. Flom Equations

3.2.24 and 3.2.25,

N(60)2 x 12

L
R, ) ='r2¡/ (

2

.'.N ær2 Rs

L( )' (3.2.26)

Therefore, the proton's mean free path Àr"r¿ becomes approximately,

\scanN NL=ry (3.2.27)

Using Equation 3.2.27 and Quasi-linear approximation K x l),"*¿¡u, the diffusion coeffi-

cient for higher energy protons Kn¿sn becomes

Kn¿sn=Ir\""rrru - (+). (3.2.28)
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I

N cells
L: grid spacing

(a) (b)

Figure 3.17: Schematic diagram of trajectory of a high energy proton. (a) Thajectory in
one cell. ôg is a change in angle per one cell scattering. (b) Thajectory in N cells. d, is
the final angle with respect to the initial proton direction after N-cell scattering.

We shall next consider the case of low energies where the gyroradius becomes smaller

than the grid spacing (Æs <. L). Figure 3.18 shows the schematic diagram of trajectory

of a proton with low energy inside the cell. The mean squared distance of proton after it

propagates through I/ cells is

(22) æ NL2 (3.2.29)

.rM N \/ñL (3.2.30)

Flom Equation 3.t.2,

(22) x Kt. (3.2.31)

The time for crossing l/ cells ú is

0N

NL
LN-

a
* =!, (3.2.32)
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B

L: grid spacing

Figure 3.18: Schematic diagram of trajectory of a low energy proton. The gyroradius for
a low energy proton is smaller than a grid spacing.

Flom Equations 3.2.29,3.2.31 and 3.2.32, the diffusion coefficient for low energy protons

K¿s¡¿ approximately becomes

In the simulation, the grid spacing ir # t 0.03pc and u N c:10-8pc/s. For protons

with E : 1017eV, the gyroradius is - 100pc, and using Equation 3.2.28, the diffusion

coefficient would be

(r') = NL2 =ff - utr

:.KmoN u

Kn¿sn=(+),:#x1o-8

= 10-3 pc2ls.

(3.2.33)

(3.2.34)

B
B

For a proton with E : 1013eV, the gyroradius is - 0.01pc, and using Equation 3.2.33, the
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diffusion coefficient would be

Km, x Lu:0.03 x 10-8
(3.2.35)

= 10-10 pc2ls.

-E : 1013eV E : L}rTeY

K* [pc2/sec] K* [pc2/sec]

(CASE 1) 1.11 x 10-io 4.51 x LO-a

(CASE 2) 7.64 x 10-11 9.72 x I0-5

(CASE 3) 9.71 x 10-i1 1.78 x 10-a

(CASE 4) 8.49 x 10-11 6.78 x 10-5

Table 3.4: The diffusion tensor components for four cases of the simulation. K' represents

ø-component of difiusion tensor. The total magnetic field is É¡o¡o¡: õÉ and is isotropic.

Table 3.4 describes the values of 1013eV and 1017eV diffusion coeffi.cient in four cases.

The diffusion tensors of 1013eV protons are approximately 10-10 pczls, which is reasonably

close to the approximation expressed by Equation 3.2.35. However the diffusion coefficients

of 1017eV protons are smaller than the approximation 3.2.34. The diffusion coefficient value

of CASE 1 is the closest value of the four cases. Therefore the CASE 1 simulation will be

better to use to obtain precise values of diffusion coefficient.

g.2.6 Calculation of diffusion tens or (Étut : Boê, + ôd)

In Honda's simulation, the turbulent magnetic fields were composed of irregular plus

uniform magnetic fields. In this section the diffusion tensors in the magnetic field composed

of the two kinds of magnetic fields are investigated. Figures 3.19 to 3.27 arc the plots of

(22) and, (*' + A2) as a function of time. Honda introduced the turbulence level lf",o fo
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Fignre 3.19: (") (r') as a function of time. (b) ("' + U2) as a function of time. The
turbulence level is f#rro : 0.5 and the proton's energy is .E : 1013eV. The four cases
corresponding to the lines are explained in Table 3.3.
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explain how the diffusion tensor depends on the magnetic turbulence. The turbulence

level /rf,u is

(3.2.36)

Equation 3.2.36 describes how much the irregular magnetic field 6E is related to the total

magnetic field, È¡o¡o¿. If Íf"ro< 1, ðE dominates the total magnetic freId È¡o¿o¿ and E¿o¡o¿

becomes more isotropic.

In Figrue 3.19 the turbulence level is Í#"ro:0.5 and the proton's energy is .E : 1013eV.

In Figure 3.20 f#,b: 0.5 and E: 1015eV, and in Figure 3.21 ffl,b: 0.5 and ,Ð : 1017eV.

The four cases corresponding to the lines are explained in Table 3.3.

Figure 3.19 suggests that two regimes exit in 1013eV proton diffusion; the linear regime

and the diffusive regime. Figure 3.19 (a) shows the slopes of plots changes at about

ct : 20pc and the slopes at ct 1 20pc are steeper than those at ct ) 20pc. This may

imply that the low energy protons (E : 1013eV) tend to propagate linearly in the turbulent

, -èe-

Partlole #=
odt= 1.89E-06(pc)
R¡= 1.08E-02(pa)
La,=3.128-02(pc)
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Figure 3.20: (") (t') as a function of time. (b) ("' + A2) as a fun_ction of time. The

turbulence level is f#,ra :0.5 and the proton's energy is .E : 1015eV. The four cases

corresponding to the lines are explained in Table 3.3.

magnetic fields, but do not have enough energy to overcome the influence of the magnetic

fi,elds at ct ) 20pc. Figure 3.19 (b) shows that the slope changes at about cú : 5pc, and

that the slopes at ct 1 5pc are steeper than those at ct ) 5pc. The plots are very close

to the straight lines at ct < 1pc, whereas the plots are wobbling at cú ) 5pc, possibly be

due to circular motion in the øgr-plane. Therefore, it may be concluded that the turbulent

magnetic field has less effect on the propagation of low energy protons in the linear regime,

but that the influence of the turbulent magnetic fi.elds become larger and so the magnetic

fi.elds dominate the propagation in the diffusion regime'

On the other hand, two distinctive regimes, such as the linear regime and the diffusion

regime in Figure 3.19 (1013eV), are not observed in the curves in Figures 3.20 and 3.21.

The gyroradius of a 1015eV proton for Bs : 10-10T is - 1.0pc, and is comparable to

Lsrid.The gyroradius of a 1017eV proton for Bs : 10-10T is - 100pc. In Figure 3'21 (a)'

for diffusion parallel to Eo all four curves are close each other, whereas the four curves in

partlole il=

t,ooE+oo(pc)

cat= r.ssE-03(pc)
R¡= 1.oBE+oo(po)
L-u=3, l2E-02(pc)
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Figure 3.21: (") (r') as a function of time. (b) ("' + U2) as a function of time. The
turbulence level is f#,n : 0.5 and the proton's energy is -Ð : 1017eV. The four cases
corresponding to the lines a,re explained in Table 3.3.
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Figure 3.21 (b) for diffusion perpendicular to És are not consonant with each other.

The parallel and perpendicular diffusion coefficients were calculated from the plots of

average displacements (22) and (r2 + A2) as a function of time shown in Figures 3.19 and

3.2L, To calculate the slope for (22) vs. time and (r" + 92) us. time curves, the least

squares method was used. Then using Equations 3.1.2 and 3.1.3, the parallel component

of the diffusion tensor K¡¡ and the perpendicular component of the diffusion tensor K1

were calculated. Note that these are the relations for the case where the mean magnetic

fields exist in z-direction, and so K¡¡ and K1 are referred to the diffusion parallel and

perpendicular to z-direction, respectively.

Table 3.5 shows the values of K¡¡ and K1 for four different methods of creating magnetic

flelds. The values of K¡¡ is larger than K1 because f{lro ir 0.5, which meâns the mean

magnetic field Bo dominates the total magnetic freId B¿o¡o¿. Therefore the values of K¡¡ is

close to the approximation expressed in Equations 3.2.34 and 3.2.35.

a, 
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.E : L013eV E: 1017eV

K¡ [pc2/sec] K¡ [pc2/sec] K¡ [pc2/sec] K¡ [pc2/sec]

(CASE 1) 1.30 x 10-e 1.18 x 10-11 L.72 x I}-a 5.43 x 10-11

(CASE 2) 7.26 x 10-10 1.22 x l0-rr 2.09 x 10-a 6.33 x 10-10

(CASE 3) 6.25 x 10-10 6.97 x 10-12 2.36 x 10-a 1.67 x 10-10

(CASE 4) 5.53 x 10-10 9.70 x 10-12 2.15 x 10-a 7.97 x 10-10

Table 3.5: The diffusion tensor components for four cases of the simulation. K¡¡ represents

diffusion coefficient parallel to the mean magnetic field. llr represents diffusion coefficient
perpendicular to the mean magnetic field.

The analysis and discussion of diffusion tensors were carried out for Kolmogorov-type

turbulent magnetic field.

3.3 Repeating I{ondats method \{/ith a Kolmogorov

spectrum

Section 3.2 describes how to calculate the trajectories of protons and the diffusion tensors

in a single grid space magnetic field model. In this section I explain how to produce a

Kolmogorov-type turbulent magnetic field, and discusses cosmic ray diffusion simulation

in this field.

3.3.1 Repeating Kolmogorov magnetic fields

This section presents the method to create a Kolmogorov-like magnetic field. Firstly, the

lattice space is set with different grid spacing. The largest is L^o,, and the next largest is
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.+
Lmin (a) 2Lmin (b)

Figure 3.22: Two-dimensional diagram showing two different lattice spacings. The filled
circles in the diagram are calculated magnetic fields. (a) The smallest grid spacing. (b) The
next larger grid spacing. The open circles indicate where no magnetic fields are initially
calculated. but will be interpolated from the magnetic fields at surrounding points.

L^o,12. This routine is repeated n times until grid space becomes L*¿n, ie,

, _ L*o, L*o* L*o* L*o* L*o, îLrnaæ: Ë, 
tf , Ë, Ë, " ' , ö!: Lmin (3.3.1)

Figure 3.22 shows the two-dimensional diagram for just two different lattice spaces. The

magnetic fields are placed at each grid point for each of the different lattice spacings.

Figure 3.22 also shows how the magnetic fields among the grid points are interpolated.

The root mean square (r.m.s.) value of magnetic fields for larger grid spacing should be

larger than that of the smaller grid spacing. Honda [11] introduced a Lattice Constant

to determine the r.m.s. value of magnetic fields for different grid spacings. The magnetic

fields for different grid spacings were then added vectorially to create a Kolmogorov type

turbulent magnetic field. According to Honda's simulation [11], the lattice constant which

governs the magnitude of the irregular magnetic field for different grid spacings is

r,1/3 : ( Lo \u/t (; --1, \I0¡/z ) ' (¿ : 1, 2,3,' '') (3'3'2)

I

I

+
I

I

0
I

I

I

Io
I

I

I

o
¡

¡



3.3. REPEATING HONDA'S METHOD WITH A KOLMOGOROV SPECTRUM 69

VS. x De of Fields
0.10 -21

o.05

-0.06

-29

_?A
-o.10 1.2

-?,2q
e
E:
Èr
o

o.00

(5

-1
1
a

0 5101õ20263035 060.40.0

' þcl LosÁh)

Figure 3.23: (a) Strength of irregular magnetic fields aiong the ø-direction. (b) Average

enãrgy density of irregular üragnetic frelds on logarithmic scale. The solid line is -513
line. The results were obtained when Equation 3.3.3 was applied.

where ¿,o is the maximum grid spacing, and corresponds to the scale of irregularity. How-

ever, since the grid spacing is reduced by the factor of 2 in the simulation, the lattice

constant becomes,

-s/s / Lo \5/3Llt-:t---;-l , (i:I,2,3,,..) (3.3.3)
\2i/2 /

Figure 3.23 (a) shows that the magnitude of the magnetic field and Figure 3.23 (b) shows

the average energy density of the magnetic fietd lBr(k,)12 along the r-direction, when the

lattice constant 3.3.3 is applied. The plots of spectrum lBr(k,)12 were created by using

the Discrete Fourier Tlansform (DFT) algorithm. The simulation was run 100 times using

d.ifferent random numbers and average and standard errors (error bars) were calculated.

For Kolmogorov turbulence, the spectrum of the magnetic fi,elds must follow the -5/3

line. However, the slope of the spectrum is steeper than the _513 line (solid line) shown

in Figure 3.23 (b).

Stanev ef aL l24l discussed the spectrum of turbulent magnetic fields and proposed a

s=-6/3
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Figure 3.24: The schematic diagram of the energy density /(fr) in k-space (k: wavenum-
ber).

new lattice constant. By definition, a Kolmogorov spectrum is

(3.3.4)

where ,k is wavenumber, and /(k) is the energy density of the magnetic field per unit

wavenumber le. ks is the smallest wavenumber and corresponds to the largest turbulence

scale or irregularity. Because they were considering a limited range of energies, to simplify

the problem, they used just three wavenumbers from lesto lc2,ie k¿:2iko, (i:0,1,2).

Figure 3.24 shows the schematic diagram of the energy density for wavenumbers from k6

to lc2. The space between two adjoining wavenumbers is 1 in Iogrk scale. Therefore, the

energy density for ¿-th wavenumber is

,n: [*'*o*'' ,çr¡or = ffia(log, k). (8.3.b)
J xu-ax¡z

Since

d(rosrk) 1

dk kln2 (3.3.6)
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Figure 3.25: (a) Strength of irregular magnetic fields along the z-direction. (b) Average

enãrgy d.ensity of irregular ilragnetic fields on logarithmic scale. The solid line is -513
line. The results were obtained when Equation 3.3'9 was applied'
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Equation 3.3.5 becomes

ffi^(tog2 k) : 
^(*)-ut' 

ktn'

: rokor"z(*)-t'

Therefore, the lattice constant is proportional to ¡r-2/3, ie,

Lattice Constant x Iç-2/3 x L2/3

where ,L is grid spacing. Finall¡ the lattice constant chosen was

(3.3.7)

(3.3.8)

(3.3.e)L?/' : (
213Lo

2rÞ
(i,:L,2,3,,...)

)

Figure 3.25 (a) shows the strength of the magnetic fi.elds along ø-direction and Figure

3.25 (b) shows their spectrum when the final lattice constant was applied. The solid line in

Figure 3.25 (b) is the -513line. Figure 3.25 (b) shows that the energy density spectrum

lB(k,)12 is consistent with -5/3 line. This concludes that the Kolmogorov magnetic field

can be created if the r.m.s. value of the magnetic field ô-d is proportional to Equation

s=-5,/3 ltne

3.3.9
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Figure 3.26: (a) (CASE 1) Thajectory of 1013eV proton. (b) (CASE 2) tajectory of 1013eV
proton. The mean magnetic freld Bo is 10-10T and the r.m.s. value of õÉ is 0.5 x 10-10T.
The maximum grid spâcing (:turbulence scale) L*o* is 1.0pc.

In the next section I will discuss proton trajectories \Mhen Kolmogorov-type magnetic

fields are applied in the simulation

3.3.2 Trajectories of charged particles (Kolmogorov magnetic

fields)

After producing Kolmogorov-like magnetic fields, the simulation injects 1000 protons into

the magnetic fields to calculate the positions of the protons at various times. This section

discuss the proton trajectories.

The initial values of the particles and magnetic fields are the same as Table 3.2, so

that the results can be compared with the trajectories in the single grid spacing case. The

calculation of the protons' positions is described in Section 3.2.3. When the simulation

was implemented, the four different cases were compared. The summary of the four cases

was shown in Table 3.3 in Section 3.2.3.

-0.373 -0,140 0.099

" 
(po)

o+dt=

l,hh--3.
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Figure J.27: (a) (CASE 3) Tlajectory of 1013eV proton. (b) (CASE 4) T[ajectory of 1013eV

proton. The mean magnetic field Bo is 10-i0T and the r.m.s. value of õE is 0.5 x 10-10T.

The maximum grid spacing (:turbulence scale) L^o* is 1'0pc'
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Figure 3.28: (a) (CASE 1) Ttajectory of 1015eV proton. (b) (CASE 2) Ttajectory of 1015eV

proton. ThemeanmagneticfieldBeisl0-10Tandther.m.s. value of 6È is0.5x10-10T.
The maximum grid spacing (:turbulence scale) L^o, is 1'0pc'
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Figure 3.29: (a) (CASE 3) Tfajectory of 1015eV proton. (b) (CASE 4) Thajectory of 1015eV

proton. The mean magnetic field .86 is 10-10T and the r.m.s. value of õÉ is 0.5 x 10-10T.
The maximum grid spacing (:turbulence scale) L*o, is 1.0pc.
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Figure 3.30: (a) (CASE 1) Tlajectory of 1017eV proton. (b) (CASE 2) Thajectory of 1017eV

proton, The mean magnetic field Bo is 10-10T and the r.m.s. value of õB is 0.5 x 10-10T.
The maximum grid spacing (:turbulence scale) L*o,ls 1.0pc.
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Figure 3.31: (a) (CASE 3) Thajectory of 1017eV proton. (b) (CASE 4) Ttajectory of 1017eV

prol,or. The mean nagnetic field Bo is 10-10T and the r.m.s. value o1 õÊ is 0.5 x 10-10T.

The maximum grid spacing (:turbulence scale) L*o, is 1.0pc.

Figures 3.26 to 3.31 show the examples of proton trajectories in the Kolmogorov-type

magnetic field background. The total magnetic field in the simulation consists of the mean

magnetic field .áo and the irregular magnetic field ô8, and .do is 10-10T and the r.m.s.

value lõÉr^rl is 0.5 x 10-10T. The maximum grid spacing L-o* is 1.Opc and minimum grid

spacing L*¿, is # : 0.031pc, where 32 is the number of grid points in one direction.

Figures 3.26 and 3.27 show the trajectories of low energy protons (E :1013eV). The

trajectories of the four cases h similar appearance to each other, whereas in the 1013eV

proton trajectories for the single grid spacing shown in Figures 3.7 and 3.8, the appearances

of CASE 1 and CASE 2 trajectories are different from CASE 3 and CASE 4 trajectories

due to three-dimensional magnetic field interpolation. The trajectories shown in Figures

3.26 to 3.27 are different from those of the single grid spacing magnetic fields shown in

Figures 3.7 and 3.8, This may be because the structure of turbulent magnetic field is

different between the single grid spacing magnetic field and Kolmogorov-like magnetic

crdt=
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field, the introduction of smaller scales making the results less sensitive to whether or not

interpolation is used.

Figures 3.28 and 3.29 show the trajectories of low energy protons (E : 1015eV). The

gyroradius of 1015eV for Bs : 10-10T is - 1.0pc and is comparable to the maximum grid

spacing L*or.

Figures 3.30 and 3.31 show the trajectories of higher energy protons (E :1017eV).

The trajectories of the four cases are also similar in appearance to each other. However,

the 1017eV proton trajectories in the Kolmogorov-like magnetic field shown in Figures

3.26 and 3.27 are different from those in the single grid spacing magnetic fields shown in

Figures 3.11 and 3.12. The trajectories of 1017eV protons in single grid spacing magnetic

fields shown in Figures 3.11 and 3.12 have more fluctuations than those in Kolmogorov-like

magnetic fields shown in Figures 3.26 and 3.27. This also may be due to the structural

difference between the single grid spacing magnetic field and the Kolmogorov-like magnetic

field,

In the next section I will discuss the proton diffusion in Kolmogorov-like magnetic fields

adopting CASE 1 magnetic freld.

3.3.3 Calculation of diffusion tensor (Kolmogorov magnetic fields)

Diffusion tensors for propagation of cosmic ray protons in Kolmogorov-type turbulent

magnetic fields were obtained from the positions of the protons at various time by using

Equation 3.1.2 and 3.1.3. The procedure was explained in Section 3.2.4. The CASE 1 was

adopted for cosmic ray diffusion simulations because CASE 1, CASE 2 and CASE 3 could

not replace CASE 1 simulation even though they saved calculation time, because CASE

1 magnetic field is the most realistic among four cases.
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Figure 3.82: (a) (z2l as a function of time. (b) (r2 +A2) T u function of time. A turbulence

lerr"l is ffra :0.5 and the proton's energy is E : 1013eV. The irregular magnetic field

has a Kolmogorov spectrum of turbulence.

Figure 8.32 shows the plots o1 (22) and, (r2 +y2) as a function of time for 10i3eV protons

in Kolmogorov-type magnetic fi.elds. The turbulence level parameter , fturb in Figure 3.32,

was introduced by Honda and is defined as

(3.3.10)

The maximum grid spacing in this simulation is 1.0pc and is about 100 times larger than

the gyroradius for a 1013eV proton.

Figure 8.33 shows plots of (22) and, (*' + A\ us a function of time for 1015eV protons

in Kolmogorov-type magnetic frelds. The gyroradius of 1015eV proton for B¡ : lQ-101

is - 1.0pc and is comparable to L*or. In Figure 3.33 the curves in region ct < 4kpc

seem to be parabolic curves and the curves in region ct > Akpc are close to straight lines.

This implies that two regimes ma,y exist in 1015eV proton diffusion, namely iinear regime

(cú < 4kpc) and difiusive regime (cú > 4kpc).

Figure 8.34 shows plots of (22) and 1r2 +a2) as a function of time for 1017eV protons in
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Figure 3.33: (a) (22) as a function of time. (A) þ2 +y2) as a function of time. A turbulence
level is l#,ru :0.5 and the proton's energy is .E : 1015eV. The irregular magnetic field
has a Kolmogorov spectrum of turbulence.
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Figure 3.34: (") (r') as a function of time. (b) ("' t A'l as a function of time. The
turbulence level is f#"ra : 0.5 and the proton's energy is .Ð : 1017eV. The irregular
magnetic freld is Kolmogorov turbulence.
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Figure 3.35: (a) Diffusion coefficients parallel to the mean magnetic freId Boê" as a ftrnction

of. nsf L,no,. (b) Diffusion coefficients pcrpcndicular to the mean magnetic field Boê, as a

function of. Rsf L*o,. Solid lines are fits to Honda's results.

Kolmogorov-type magnetic fields. The slopes in Figure 3.34 decrease at time cú = 400kpc,

which is of the order of the gyroradius in the regular field. The magnetic fields may prevent

1017eV protons from diffusing in lhe ct > 400pc region'

,E: 1013eV E: 1017eV

K¡ [pc2/sec] Kt [pc2/sec] K¡ [pc2/sec] Kt [pc2/sec]

(CASE 1) 4.26 x 10-10 8.32 x 10-12 1.19 x 10-4 6.91 x 10-7

Table 3.6: The diffusion tensor components for the 1013eV and 1017eV protons in Kol-

mogorov magnetic fi.elds. K¡¡ represents diffusion tensor component parâllel to the mean

magnetic field. Kr represents diffusion tensor component perpendicular to the mean mag-

netic field.

The difiusion tensors K¡¡ and K1 were calculated from the slopes of (22) vs. time plots

and. \r2 * 92) vs. time plots respectively. Table 3.6 shows the values of the diffusion

coefficients for the 1013eV and 1017eV protons in Kolmogorov magnetic fields.

Honda analysed the ffi dependence of the diffusion components. The parallel (K¡¡)

-3
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and perpendicular (K1) ditrusion components were calculated by using CASE 1 simulation

and compared with Honda's results. Figure 3.35 shows the plots of ffi and #*
as a function of ff. The maximum grid spacing is 10pc. The energy range of the

protons is 101aeV< .Ð < 1018eV and the corresponding gyroradius for this energy range is

0.1pc< Ae < 1000pc for Bo : 10-10T. The solid lines in Figure 3.35 are fits to simulations

by Honda [11] who found that the slope of K vs. R, changed at logro l#l: 0. Ilowever,

the simulation results do not agree with Honda's result. In Figure 3.35 (a) the data in

the region \ogrolfl---] > 0 have the same slope as the solid lines, whereas the data in the

region l"erol#] < 0 are not consistent with the solid lines. In Figure 3.35 (b) the present

results in the region logro[*] - 0 are of the same order of magnitude as the solid lines,

but elsewhere the present data deviate from the solid lines. There are several possible

explanations for this difference. This simulation uses a periodic boundary condition for

producing turbulent magnetic fields, which Honda did not mention in his study. In Honda's

study, the vector potentials ô,4 follow an exponential distribution. However, in the present

Honda simulation, the normal distribution was used instead to allow for negative values

of the Cartesian components of ô,Ã. This may also cause the difference in the results.

The different index c in the turbulence energy density on different scales, [L¿]" (.L¿: the

i-th grid spacing), may be one of the causes for the different results shown in Figure 3.35.

Honda's original work used a : E, whereas here c : f was used as we found that the

magnetic fields with o : f showed a Kolmogorov spectrum as indicated in Figure 3.25.

Another possibility is that the number of time steps were not large enough for protons to

reach the diffusion state.

Figure 3.36 shows the plots of K¡ and K1 as a function of energy .8. In Figure 3.36

the energy dependence of K¡¡ and K1 change at E :107GeV (: 1016eV). The maximum
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Figure 3.36: (a) The plots of diffusion tensor parallel to the mean magnetic field 86ê, as a
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freId Boê" as a function of E(GeV).

grid spacin E L^o, is 10pc and the gyroladius Rn of. 1016eV protons for Bs : lQ-ro1 it

about llpc. Appearances in Figure 3.36 are consistent with those in Figure 3'35 since r?,

is proportional to -8.

Figure 3.37 shows the time offset cúoffset fuomct:0 as afunction of ,E(GeV). When

the least squares fitting method was used to calculate the slopes Ç and, eP in the

simulation, the the lines of best frt did not exactly start at ct: 0. The time offset is the

difierence between ct : 0 and. the starting point of the line of best fit. The time offsets

are close to 0 in the region E < 106GeV. However, they start increasing at 107GeV and

increase rapidly at 108GeV. This suggests that in the lower energy region (E < 107GeV)

the plots of \22) and (r2 * E2) vs. ct are close to straight lines starting from ct : 0,

whereas in the higher energy region the large offset may imply a combination of diffusive

and linear propagation.
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Figure 3.37: (a) The plots of time offset from cú : 0 as a function of E(GeV) when the
diffusion tensor is parallel to the mean magnetic freld Bsêr. (b) The plots of time offset
from cú : 0 as a function of E(GeV) when the diffusion tensor perpendicular to the mean
magnetic freld Bsê, .

3.4 Summary and conclusion

Honda studied cosmic ray diffusion in Kolmogorov-type turbulent magnetic fields. He used

a three-dimensional grid. space and calculated V x 6Ã at each grid point to produce an

irregular magnetic field ô8. The vector potentials in his original simulation were sampled

from a Monte Carlo simulation and followed an exponential distribution.

In repeating Honda's simulation, trvo types of turbulent magnetic fields were exam-

ined; single grid spacing magnetic fields and Kolmogorov-type magnetic fields. To create

turbulent magnetic fields, Monte Carlo simulation was used for sampling vector potential

components from a normal distribution. The simulation applied periodic boundary con-

ditions to the turbulent magnetic fields to save calculation time. The turbulent magnetic

fields on the grid points were calculated from ü x ô,Ã and interpolation was implemented

inside a cube between grid points. This simulation was named CASE 1 and was compared

to other three cases:

r...r...1. ']"'¡'

partlcle 1000

I*,=h= 1.00E+01(pc)

grld polnts= 32
3.12E-01(pc)
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i. ü x ô.Ã calculation, aud irrterpolation: (CASE 1).

2. No ü x ðA'calculation, and interpolation: (CASE 2).

3, ü x ð.Ã calculation, and no interpolation: (CASE 3)

4. No ü x ôl calculation, and no interpolation: (CASE 4)

These three cases (No.2 - No.4) had less calculation time than CASE l,and the CASE 3

and CASE 4 simulations were much faster than the CASE 1 simulation because interpola-

tion at each proton position were not implemented. However, proton trajectories of these

three simulation cases had different features from the CASE 1 simulation, and the values

of diffusion tensor components from these three simulations were not consistent with the

diffusion tensor components from the CASE 1 simulation. The quasi-linear theory approx-

imation agreed with the diffusion tensors calculated from CASE 1 simulation to an order

of magnitude. Therefore, CASE 1 simulation method was used for the simulation of high

energy proton diffusion in a turbulent magnetic freld.

Kolmogorov-type magnetic frelds were created by using grid spaces with different grid

sizes L¡ : 2-i/2 Lo, where .L6 is the maximum grid spacing. The magnitude of the magnetic

fi.eld, for each grid spacing was [-D¿]'. Honda proposed that it is [¿¿]5/3 for a Kolmogorov-

type magnetic field. Stanev ef al. 124] calculated the energy density of the Kolmogorov

magnetic nefa d(Ë). They showed that

Eld¡ o ¡r-2ß o72/3, (3.4.1)

where ñ is th" wavevector. The energy density B(k.) was calculated by using discrete

Fourier transform method, and the two forms (o : E by Honda or o : f by Stanev et

at.) were compared. It seemed that the energy density by applying d : f was close to
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Kolmogorov spectral line as shown in Figure 3.25, Therefore lL¿]213 was chosen for creating

a Kolmogorov-type turbulent magnetic field.

Diffusion tensors calculated from the present version of Honda's simulation were com-

pared to the results from Honda's original work. The plots of parallel diffusion com-

ponent K1¡ in Figure 4.6 do not agree with Honda's results in the low energy region

(Iogro l*l < 0), and the plots of the perpendicular diffusion coefficient I(r in Figure

4.6 do not agree with Honda's results in the high energy region (logro l#l > 0). These

differences could be explained by four possibilities:

1. The present simulation used the normal distribution instead of exponential distribu-

tion to sample vector potentials ôã.

2. The present simulation used periodic boundary conditions, so the magnetic fields

repeated every 32 grid points.

3. The present simulation used c: f instead of a: $ for lattice constant lLo]'.

4. The number of time steps was not large enough to accurately calculate diffusion

tensors.

Cosmic ray diffusion simulations proposed by Giacalone and Jokipii will be discussed,

and compared with present results using Honda's simulation method, in the next section.



Chapter 4

Simulation by Giacalone and Jokipii

(1eee)

4.L Summary of Giacalone and Jokipii simulation

The simulation method used by Giacalone and Jokipii [9] is summarised in the follow-

ing paragraphs. Giacalone and Jokipii used the superposition of plane \¡/aves to create

a Kolmogorov-like magnetic field for the irregular part of the magnetic fi.eld. They pro-

posed that the irregular part õÉ(r,y, z) bethe superposition of plane v¡aves with isotropic

directions, and with random polarisations and phases, The irregular part õÉ@,g,2) is

Nm

õÈ(r,u, z) : D ¿(r")(cos anê',n* i sin anê'yn) exp (ik*z!n + iP") (4.1.1)

n:I

where

cos?ncosþr, cos?,-sin/r, - sin0r,

- sin /r, cos þn 0

sin 0r, cos þn sin d' sin /r, cos d,,

This matrix is the combination of rotation along the ø-axis and the gt-axis. This ensures

¡E is perpendicular to the waveveúor Ën and V . È :0 is automatically satisfied.In
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Equation 4.I.I, o' and Bn are the n-th polarisation and phase respectively, and o, makes

ôB isotropic.

0n, ón, an and Bn arc sampled randomly from each range,

-1 < cosd," < 1 (n: 1,2,...)

0 < þn < 2r (n: I,2,. . .)
(4.r.2)

0 <an<2r (n:1,2,...)

0 < B, < 2n (n:1,2,. . .)

A(k") expresses the amplitude of the rz-th wave mode with wave number k,, as a

Kolmogorov envelope to the power spectrum, and is proportion ar to le;t/t . A'(kr) is given

by

-1
(4.1.3)

where

G(k'): #tF' (4't'4)

In Equations 4.1.3 and 4.1.4, o2 and L" are the wave variance and the correlation length,

respectively. AÇ is a normalization factor. For three-dimensional turbulence, AVn :

&rk2^Ak*. Giacalone and Jokipii noted that the index 7 also depended on the dimension

of the turbulence. The index Z is * for three-dimensional Kolmogorov spectrum.

The trajectories of the charged particles were calculated by the equation of motion.

They calculated new magnetic fields from the constants en, 0n, . . . etc., each time a

particle changed its position, whereas Honda [11] set magnetic fields at each lattice point

initially and interpolated. Interpolation was not necessary in the Giacalone and Jokipii

simulation. The method of calculation of diffusion tensors is the same as that used by

A' (k*) : o2 G(ten) 
lå ",r,]
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Honda

4.2 Repeating Giacalone and Jokipii simulation

4.2.L Creating Kolmogorov magnetic fields

Giacalone and Jokipii [9] simulated Kolmogorov turbulent magnetic fields by using the

superposition of plane v¡aves. The superimposed plane waves which Giacalone and Jokipii

proposed is defined as Equation 4.1.1. However, Equations 4.L1,4.1.3 and 4.1.4 seem

unnecessarily complicated, and therefore, a simpler but equivalent plane wave method

was applied to generate an irregular magnetic field. Equation 4.2.1is a revised dcfinition

of irregular magnetic fields.

N^
6ËØ:t A(k,)ñcos(k,Ç.F-rþ,), (4.2.L)

n:1

where kn ls n-th wavenumber and {, is n-th unit vector, giving the direction of the wave,

so the r¿-th wavevector is Én: kn€n. The minimum wavenumber is defined as k*¿n: f ,

where .Ls is the scale of the turbulent magnetic frelds and is assumed to be 1pc (parsec)

: 3 x 1016m. The maximum wavenumbet is k^o*: I\skrn¡n. 'Wavenumber k,, was obtained

from following method. In logarithmic scale the minimum and maximum wavenumber are

Inle^¡n : l¡¡
2r
L,

lnle*o*: ln [103k-¿,r] (4.2.2)

Using Equation 4.2.2, n-th wavenumber is

lnlen: exp [ln lc^¡n 1- q(Inle*o* -Ink^¿")]
(4.2.3)

exp [ln k^¿n * 4ln 103]

where ry is randomly selected from 0 < r¡ < l.

ry',, is the phase, sampled randomly from 0 S 1þ" < 2n. The number of plane waves lú-

is set to be 100, so that ôd becomes isotropic. The vector ñ, is the r¿-th unit vector giving
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the direction of the field and is sampled uniformly in azimuth in a plane perpendicular to

€r,, .o ñ,.€, becomes 0 and therefore V . (ôE) : 0 is ensured.

The amplittde A(le") is also simplified instead of using Equations 4.1.3 and 4.I.4 di-

rectly. If the index ? : + is applied to G(k.), because LW:  trlcfll,k^ o kl, G(kr) will

become

(4.2.4)
kl

k\^rlt

where Ak, is space between kn¡1 and kn, and is proportional to k,, because + : cons't.

In Equation 4.1.3, IDX:rG(k")]-t is a normalization factor and is a constant. o2 is also

a constant. Therefore the amplitude A(k") becomes

A,(k*) : o2G(rçn) li ",*,,f-' 
o r-,,,

"'A(k") 
x lc;r/s @'2'5)

Finally the simpler version of irregular magnetic field ðB is

tN^
õÉØ : 

"Ðk;t/"ñcos 
(k,Ç .r'_ rþn), (4.2.6)

where C is a normalization constant. Due to A(ler) x Iç;L/s in Equation 4.2.6, the energy

density lõB!)|'z wil show the Kolmogorov spectrum.

In Equation 4.2.6, unit vectors fi, and Ç must be normal t each other to satisfy

ü .E : 0. In order to make fi, and Ç rthogonal, the following algorithm is used.

Firstly arbitrary wavevecto, Énç: krer) is s lected. The vector prod.uct of the unit vector

2 : (0,0, 1) and ã, is calculated as (a) of Figure 4.1 shows

o( : k-2/3 for krL" > |

(4.2.7)Ft:kx2
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(4.2.8)

(4.2.e)

kk

(a) O)
Figure 4.1: Schematic diagram of unit vectors p1 and pz which_ are p€rpendicular to
wavevecto, Ë*. çu¡ Calculation of Ë x 2 gives p-r. (U) Calculation of p-1 x lc gives f2.

Calculating the vector product of ã and p-1 produces 12, so that' É,p-1 and f2 aîe orthogonal

to each other shown in Figure 4.1 (b).

The vectors p-1 and f2 a,re then divided by their magnitude to obtain unit vectors f1 and

Pz

p1

Arbitrary angles S are chosen from the angle range 0 < Ó S 2n lor isotropy to create unit

vector perpendicular to Ër, namely,

*sin@

As a result, components of the irregular magnetic fi,elds ðB become perpendicular to the

wavenumber vectors É' and assures ü'¿E : o'

Pt,,

Pr,g

Pr,z

Pz,n

Pz,a

P2,z
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4.2.2 Trajectories of charged particles

Table 4.1 shows the values of the important parameters in the simulation. A proton is

selected as a charged cosmic ray.

Particle proton (^o :938 MeV/c2)

Energy, .E 1013eV{ E ( 1016eV

Bo 1o-1oT (: 1¡,¿G)

16È,*,llBo ï,+, 1,2

T garo 0,01pc< rnoro 4 t}pc

Wavenumber k 2r .¿jp; - k<?x1000
- rpc

Step size, cAú 0.0L x rsyro

Table 4.1: Some important values of the cosmic ray and the magnetic fields in the simu-
lation.

In the study of Giacalone and Jokipii [7] [8] [9], they applied their simulation to the

interplanetary magnetic fields. The range of the particle energy they assumed was 106eV(

-E < l0eeV and they set the mea,n homogeneous magnetic fleld being 50 x 10-10T(: b¡¡¿G).

However, this research focuses on the propagation of relativistic cosmic rays (E > 1015eV),

and so the energy rânge was changed to 1013eV< E ( 1016eV. The Galactic magnetic fields

were considered in this study and so the strength of the mean magnetic field was set to

Bo:1 x 10-10T(: 1¡¿G). The ratios of the irregular and mean magnetic fields are

(r: 0, I, 2, 3) (4.2.10)

The ratios are the same a,s those of Honda's simulation [11], so the outcome of the simula-

tion can be compared to Honda's result. The gyroradius reyrohas the range from 0.01pc

to 10pc, This range correlates to the proton's energy range. The gyroradius is calculated

2n

4'
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from Ðquation 4.2.11',

91

(4.2.r4)

(4.2.1t)

where 1o is the Lorentz factor of the proton and the range is

^lp:I0$+n)12, (n:0, 1, ..., 6). (4,2.12)

The minimum wavenumber is defined as kmún: fr, where .Lo is the turbulence scale and

is set to 1pc(: 3 x 1016m). The maximum wavenumber lr*o* is set to be 1000 times larger

than the minimum wavenumber k^¿n, following Giacalone and Jokipii.

The time step size is set as follows. The product of the speed of light c and the time

increment Aú represents the step length and must be much smaller than the gyroradius,

c\t K. rsyro. (4.2.13)

The typicalty, the step size needs to be 100 times smaller than the gyroradius to maintain

a circular orbit, namely

rsv,.(Ò:(#)(6ffi) 0",

c\t:0.0I x rnsro.

In order to d.raw the trajectories of cosmic rays in the turbulent magnetic fields, the

following method was applied. Firstly the velocity unit vector ,

1

la("1I
(4.2.r5)Brn -- (pl.,lplo,lø") (ur,uwu")

is defined. This expresses the direction of the particle. The proton starts at the origin

and the initial direction (þr, go,llr) 
"f 

the particle is randomly selected. Then the change

in relativistic three-momentum in the units of mcls calculated by using the Lorentz f.orce
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F:q@xË),

,,n i O.\L1rplrlBl 
" - l\l "LBlr)

u,n * 0.0I1rWl,lBl, - l\l,lBl ")

",n 
* 0.0!1opl.lBl, - l/lrtBl,)

where (lBl,,,lB]r,[B],) is the unit magnetic field vector and is defined as

(4.2.16)

a (Ò : ([B],, lB)r, lal") : (8,, By, Br)

Fbom Equation 4.2.L5 to 4.2.77, the new direction of the particle þr".(û is calculated as

(4.2.r7)

(4.2.78)

Finally, the particle's (n + 1)-th position, ín+t: (rn*r,Un+r,t zn+t) is calculated from

frnlr: rn ¡ Br,nfc\t,"f

Un*r: An * þo,nfc\trl

znlr: zn ¡ þ",nfc\tn]

(4.2.1e)

where (þ*,n, Ê0,n, \r,n) is the r¿-th velocity unit vector and [catr,] is the n-th step size.

In the simulation, the maximum time scale [cú]-o, is introduced. The time span should

be large enough for the particle to reach the diffusion regime. The results from Honda's

simulation [11] are used for setting the maximum time scale [cú]-or. The maximum time

scales for kff ( 1 are

0,.-(Ò : ([P),,1p]r,lBl,): ffiø *,py,p")

tctt^o,,l: 1oo " t,(H)(?) ^' (T)^'
: 100 x ,Ls(0.e81)({#)-''nuu ('no:")0'332

rctl*o,,t_: 1oo 
" t"(#) (+)"' (T)u'

: 1oo x trs(o.o76r)(?)' 
uou 

(",ï')o 
n'o

(4.2.20)

(4.2.21)
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ñr ! r:___ - _^^l^^ t^_ TaUro \ 1 ^_^t Ite lllaxrlllurll Lulre Þu¡1lc¡i L|-JL -T; 2 r .7'tY

lctf^o*,,: 100 x ¿0(0.e81)(ry)-'nuu ('ï:")1e07 Ø.2.22)

lctf^o,,t: 100 x trs(0.076r)(?)'uou('nl;')oo" (4.2.23)

Figures 4.2 anð.4.3 show examples of trajectories of protons with smaller energy (.8 :

1013eV), and Figures 4.4 and 4.5 show examples of trajectories of protons with larger

energy (E: 1016eV). The turbulence parameter, fturb is defined as

, lõ8,*,1ftu,b: 

=: 

(4.2.24)

Equation 4.2.24 represents thc ratio of the magnetic fluctuation lô8",,,"1 to the mean

magnetic field Bo.

Figure 4.2 shows .E : 1013eV proton trajectories fot f¿ur6: ä (u) and f¡u,6: å (¡)'

Figure 4.3 shows -Ð:1013eV protontrajectorieslor f¡ur6: t (a) and f¡u,6:2 (b)' The

gyroradius in the regular field Bo : 10-10T for energy -Ð : 1013eV is 0.01pc according to

Equation 4.2.11, and is smaller than the turbulent scale, tro : lpc. Therefore, the low

energy protons tend to follow the magnetic field lines. Moreover, if the ftura is smaller, this

means the magnetic fluctuations are very small, and the effect of the mean magnetic field,

Bs becomes significant. Hence, the magnetic field lines with the small f¡yy6 o"Íe close to

straight lines toward z-direction. As a result, the cosmic rays in small f¿yy6 ma,gnetic field

environment have tendency to move along z-direction, whereas in the latge f¡ur6 magnetic

field environment, the cosmic rays have more chance to move in the r-direction and the

gr-direction.

Figure 4.4 shows ,Ð : 1016eV proton trajectories fot f¡,,6: å (u) and f¡u,6: å (U)'

Figure 4.b shows E: 1016eV proton trajectories for f¡u,6: t (a) and f¡u,6: 2 (b). The

gyroradius for the energy .Ð : 1016eV is 10pc according to the Equation 4.2.tI and is
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larger than the turbulence scale, tro : lpc. This implies that higher energy proton will be

affected by the magnetic fields but it is unlikely to follow single magnetic field lines. Figure

4.5 also shows that the high energy proton has an inclination to propagate in r-direction

and gr-direction if the large f¡,¡6 ma.grretic fields exist.

4.2.3 Calculation of diffusion tensor

Diffusion tensor calculations were implemented in the energy range 1013eV( E S 1016eV.

The diffusion coefficients perpendicular and parallel to the regular magnetic fields, Bs are

the average of squared distance divided by time, which are,

(t')x|: I Ø.2.25)

Kt: *' + a")
(4.2.26)

4t

In Equations 4.2.25 and4.2.26, the average of positions (ø, g, z) is calculated over 2000

protons (No :2000).

Figure 4.6 shows the behavior of the fl (a) and # (b) with respect to ff on a

logarithmic scale. In Figure 4.6, Lo represents trubulence scale and correspondsto ffi,
and c represents the speed of light. The rr(: rssro) is the gyroradius and is proportional

to proton energy. The f flro represents the turbulence parameter in Honda's simulation

and is defined as

cH
J hnh

(õ8,^,)
(4.2.27)

Bo

If ff,ru ) 1, the irregular magnetic field ôd dominates the total magnetic field .Ë¿o¿o¿ and

the total magnetic field fluctuates significantly. On the other hand, if f{,ra ( 1, the mean

magnetic freld Bsê." dominates the total magnetic field.

The dashed lines in Figure 4.6 indicate the diffusion tensors calculated from Honda's

result. As Honda noted, the behavior of the diffusion tensor is different for logro (ff) a t
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Figure 4.6: Diffusion tensor plot in logarithmic scale. Dotted curves from Honda for some

ffl,6 vahte.. (u) fl .,"rrrrt fi plot. (b) # versus ft plot.

and logro (ff) t 1. It seems that difference between fl and ft i.tcreases as ft becomes

smaller.

The diffusion tensors K¡¡ and K¡ al high energy (IoS(ft) > 1) are consistent with

Honda's result. However, in the low energy regime (t"g (ft) < 1), the present result

deviates from the dashed lines.

Casse et al. [5] have also performed propagation calculations using a method qualita-

tively similar to the method of Giacalone and Jokipii and applied it to relativistic particles.

I shall compare my results with theirs. In the Casse et al. simulations [5], however, there

is interpolation of the turbulent magnetic fields and so rt ' É: 0 is not exact.

Figure 4.7 shows the behavior of f and, fþ with respect to 2ff in logarithmic scale'

The turbulence parameter in Casse et al' term ff'r, i,

rfu,,: :Yþ4-= ( 4.2.28)'b- B3+QB1^")'

Distributions of the final distance of protons were compared for various f f;,, and proton

energies. The distributions of the proton's finai positions for different injection angles were
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also investigated. The range of angles is defined schematically in Figure 4.8. The upper

angle range shown in Figure 4.8 (b) is (á1 < 0u 10r), and the lower angle range shown in

Figure a.8 (c) is (0 > 0" ) 0r, 0z 10" < r).

Figures 4.9, 4.10, 4.11 and 4.12 show the distributions of the final proton distance

normalized by 1Æct, where ú is the final time: (a) is ø-component and (b) is z-component.

The solid curves in Figures 4.9, 4.L0,4.11 and 4.12 represents the Gaussian distribution

based on the position of the particles. For example of r-component, the Gaussian c¡rve

/(z) is given by

r@):#"rl#1, (4.2.2s)

where K, is ø-component of diffusion tensor calculated by Equations 4.2.25 and 4.2.26.

The dotted histogram represents the distribution of the particles starting with upper

injection angle. The mean magnetic field Eo [es in z-direction. Thus the dotted histograms

in Figures 4.9, 4.L0,4.11 and 4.12 correspond to the angular range of protons at injection

as in Figure 4.8 (b).
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(a) Angles with respect to
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z-direction

eu
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(b) Upper injection
angle

(c) Lower injection
angle

Figure 4.8: Schematic diagram of the range of angle with respect to z-direction when

protons were injected at the origin: The mean magnetic field Bo lies in the z-direction'

ia) Angles d1 and 0zwlth respect to z-direction. (b) Upper injection angle range 0u. @)

Lower injection angle range 0r.
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Figure 4.9: Distributions of the proton position from the origin: (a) r-component' (b) ,-
component . lturu:0.25 and E : 1016eV, The solid lined histogram shows the distribution

for all injection angle range and the dotted histogram shows the distribution for upper

injection angle range.
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Figure 4.10: Distributions of the proton position from the origin: (a) ø-component. (b)
z-component. fa.,ra:2 and.Ð : 1016eV. The solid lined histogram shows the distribution
for all injection angle range and the dotted histogram shows the distribution for upper
injection angle range.

Figures 4.9 and 4.10 show the distribution f.or E: 1016eV. In Figure 4.9 the turbulence

parameter ftu,u is 0.25, so the effect of the irregular magnetic fleld ôE is small, whereas in

Figure 4.10, which ísf.or f¡u,6:2, theeffect at õÈ is large and the total magnetic field Éroro,

appears to be a more random. The distribution for high energy protons obeys the Gaussian

distribution, which is defined by Equation 4.2.29, This is expected because the solution of

the diffusion equation 1.4.1 is a Gaussian. It is also noticed that the r-component of the

proton's position is concentrated near the origin in the case of f#,ra:0.2b. On the other

hand, if f#",a is 2, r-component of the proton position distribution spreads out due to the

highly disordered magnetic field.

However, in the low energy regime, the position distribution of protons is different

from the distribution in the high energy case. Figures 4.11 and 4.12 show the position

distribution for .Ð : 1013eV. Figure 4.11 shows the position distribution of 1013eV protons

for the fturb:0.25 case. Figure 4.11 shows the position distribution of 1013eV protons
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for the Íturb:2 case. In Figures 4.11 and 4.I2,therc exists a high peak near the origin,

in particular the z-component of the position distribution shown in Figure 4.11 (a) has

an acute peak. The dotted histograms in Figures 4.11 and 4.I2 also show acute peaks

at the origin. This implies that protons with low energy have tendency to remain close

to the same position and to diffuse more slowly in turbulent magnetic flelds. Figure 4.13

shows a schematic diagram of a 1013eV proton's trajectory along the turbulcnt magnetic

fields. If the pitch angle of the proton is high due to the high incident angle shown in

Figure 4.8 (b) and insufficient energy to escape from the magnetic fields, the proton tends

to be trapped by the magnetic fields and to move circularly. F\rrthermore, if the turbulent

parameter fn u is small and the magnetic turbulence is weak, the proton also tends to

move circularly at the origin. For these reason, the dotted histogram in Figure a.11 (a)

shows a high peak at the origin. On the other hand, if the turbulence parameter Ítura is

Iarge and the magnetic fields become more random, the chance to escape from the origin

will increase. Therefore in Figurc 4.L2 (a), the distribution has slightly smaller peak than

the distribution in Figure a.11 (a).

x È

z
v

Figure 4.13: Schematic diagram of the trajectory of proton with low energy (.Ð > 1013
ev) along the turbulent magnetic fields in the case of high pitch angle.
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4,3 Summary and Conclusion

The simulation proposed by Giacalone and Jokipii [9] is described in this chapter. They

used the superposition of plane waves to create the irregular magnetic field õÉØ' How-

ever, the simpler, but equivalent, version of superposition of plane waves' shown in Equa-

tion 4.2.6 was used tor õEQ).

The trajectories of the cosmic rays are presented in Section 4.2.2. The Figures 4.2 and

4.3 show examples of low energy cosmic ruy (E : 1013eV) trajectories' The Figures 4.4

and. 4.5 show examples of high energy cosmic ray (E: 1016eV) trajectories' According to

the Figures from 4.2 to 4.5, it seems that the cosmic ray diffusion is dependent upon the

particle energy. It also depends on the turbulence level defined by Equation 4.2.24.

In Section 4.2.3, the calculation of diffusion tensors was presented. The results using

the Giacalone and Jokipii method are compared with those of the Honda's simulation

and the Casse et al. simulation. Figures 4.6 and 4.7 show the results are in reasonable

agreement at high energy with the results of Honda and the Casse et al. simulation.

However, the diffusion tensors are different in the low energy regime. This is perhaps

d.ue to different methods. The big difference between Giacalone and Jokipii method and

the method of Honda and Casse et al. is the method of creating the turbulent magnetic

fields. Honda and Casse et al. used a three-dimensional grid space, whereas Giacalone and

Jokipii did not use any grid space. In the Honda and Casse et al simulations, magnetic

fi.eld interpolation was implemented. This could be a cause of the difference at low energy.

The sensitivity to Lmin, the minimum grid spacing, and the size of time step could also be

the reason for the difference between the results of using Giacalone and Jokipii method,

and the other two methods.

In conclusion, the modifi.ed Giacalone and Jokipii method used here is adequate in the
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high energy regime, and therefore this method will be used to investigate shock acceleration

phenomena.



Chapter 5

Application to shock acceleration

In Chapters 3 and 4 I discuss two different simulation methods for cosrnic ray diffusion

in turbulent magnetic fields. In these two simulations by Honda [11], and by Giacalone

and Jokipii [7] [S] [9], the turbulent magnetic fields are assumed to be static, and this

approximation is fine for propagation of cosmic rays exert in regions where cosmic ray

acceleration takes place. The magnetic fields in supernova shock phenomenon are an

example of non-static magnetic fields, and so the supernova phenomenon is a possible

acceleration source of Galactic cosmic rays.

In this chapter I use the simulation method proposed by Giacalone and Jokipii [7] t8] t9]

and applied it to shock acceleration, and so Chapter 5 describes an application of diffusion

simulation methods used for static magnetic flelds to a real astronomical phenomena.

5.1 Mechanisms of cosmic ray acceleration

The cosmic ray acceleration process has been studied since Fermi first proposed the original

theory of acceieration in 1949 [6]. This section is mainly based on Chaptet 2l of "High

Energy Astrophysics" by M.S. Longair [19].
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Section 5.1.1 is a brief introduction of particle acceleration. This section describes

how the electromagnetic fields are associated with the cosmic ray acceleration mechanism.

Section 5.1.2 outlines Fermi's original theory of particle acceleration known as Second

Order Fermi Acceleration. Section 5.1.3 presents the problems in Second Order Fermi

Acceleration that require a ne\l/ theory to be developed to solve these problems and to

adequately explain cosmic ray acceleration. In Section 5.L4, thc modified Fermi theory

of particle acceleration, known as First Order Fermi Acceleration or diffusive shock accel-

eration, is explained. The modifications of Fermi's original theory were made in the late

1970's. Section 5.1.4 also presents the theory as described by Bell in 1978 [3]. In Section

5.1.5 I discuss how the cosmic ray power-law spectrum arises in the First Order Fermi

Acceleration.

5.1.1 Particle acceleration

Equation 5.1.1 describes the motion of a charged particle in electric and magnetic fields.

d,
ft1*t):e(È+txÉ¡ (5.1.1)

The right hand side of Equation 5.1.1 is called the Lorentz force. In static magnetic fields,

the fields may change the direction of the particle but no work is done on the particle.

Magnetic fields only change the direction of the particle. However, if the magnetic fields

are time dependent, induced electric fields are produced according to Maxwell's equation

(Faraday's law),

-==AÈVxE:- A, (5.1.2)

In most astrophysical environments, static electric fi.elds cannot be maintained because

ionised gases have very high electrical conductivity. Therefore, astrophysical acceleration
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mechanisms can only be associated either with dynamic electric fields, or with time-varying

magnetic fields

6.L.2 Second Order Fermi Acceleration

This section considers Fermi's original theory of particle acceleration. In 1949 Fermi

[6] proposed a particle acceleration process in which acceleration resulted from particles

colliding with clouds in the interstellar medium.

To make calculation simple, this theory assumed the cloud to be a mirrot, so a collision

between a particle and a mirror is elastic. The d was defrned as a angle that a particle's

initial direction with respect to the normal to the cloud's surface, as shown in Figure

5.1. Supposing the cloud is infrnitely massive so that its velocity I/ is not affected by the

collision, then the particle energy in cloud frame is

E' : 'yu(E *Vpcos 9) (5.1.3)

where 7.,, is the gamma factor in cloud frame, E and p a,re the particle energy and mo-

mentum in the frame outside of the cloud, and B, is the cloud velocity over the speed of

light, hence

1V
'Y": ffi 

and' ÌJ,:7

The z-component of the relativistic three momentum in the centre of momentum frame is

P'": ^tvþ,+ % (5'1'4)

In the collision, the particle's energy is conserved, and its momentum in the z-direction is

reversed. Therefore, the particle's energy in the observer's frame is

8,, :.yr(E, +Vp,r) (b.l.b)
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Vtffi vrffi

e

z-direction z-direction

V,M

(a) Head-On type collision (b) Following type collision

Figure 5.1: The schematic diagram of the collision between relativistic particle and inter-
stellar cloud. (a) Head-on type collision. (b) Following type collision. o and rn are the
velocity and mass of the relativistic particle. V and M are the velocity and mass of the
cloud.

Using p,lE: ucos 0f c2,Equrations 5.1.3 and 5.1.4 become

€

tv")
Et : jv@ +Vp ( ) (5.1.6)

Substituting Equations 5.1.6 and 5.1.7 into Equation 5.1.5, Equation 5.1.5 becomes

P'" :'r,(P" * Tl : r, (Y!y . T) (5.1.7)

(5,1.8)

Therefore, the energy change A.E becomes

E" - E: A,E:A# * B', (5.1.e)

Figure 5.1 shows the collision path between a relativistic particle and the interstellar

cloud. In Figure 5.1 ¿' and n1, are the velocity and mass of the relativistic particle. V

and M are the velocity and mass of the cloud. The probability of a collision at angle g

is proportional to u tV cosd in the case of the head-on type collision ((a) of Figure 5.1),

Cloud Cloud

e
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whereas in a following type collision, the probability is proportional to ø - Vcosá ((b) cf

Figure 5.1). Since the particle is relativistic and u N c) the probability of the collision at

angleárangefrom0tozrandisproportionalto?,,(1 + /rcosd). Theprobabilityof the

pitch angle is proportional to sinïdï(: -d(cosd)). Therefore the average of the first term

in Equation 5.1.9 in the relativistic limit ('r.' --+ c) is

(2Bu cos?) :20, f , cos d[1 + B, cosl]d,(cos0)

:24,
/1r[r + 0,, 

"os 
o]d'(cos o)

2n o
sYv 

-2a2z -9"
(5.1.10)

(5.1.11)

The average energy gain per collision in the relativistic limit is,

(AE) 2
0'" + 0'" :E3

gz5

5

The increase of energy is a factor of P?. This is the Fermi's original theory of particle

acceleration and called the "Second Order Fermi Acceleration".

5.1.3 Problems in Second Order Fermi Acceleration

There are several difficulties in Fermi's original theory as a mechanism for accelerating the

Galactic cosmic rays:

1. The random velocities of interstellar clouds in the Galaxy are very small in compar-

ison with the velocity of light, namely þu a 70-n.

2. The original theory estimates the mean free path of the cosmic rays in the interstellar

medium to be the order of lpc. This suggests that the number of collisions would

be roughly one per year, resulting in very slow gain of energy by the particle.

3. The original calculation does not consider the effect of energy loss upon the accel-

eration process. Ionisation losses in particular prevent the acceleration of particles
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from low energy. If the acceleration mechanism is to be effective, the particles must

either be injected into the acceleration region with energies greater than that cor-

responding to the maximum energy loss rate, or else the initial acceleration pïocess

must be sufficiently rapid to overcome the energy loss.

4. The theory does not explain why the exponent of the energy spectrum should be

roughly 2.5 everywhere.

In particular, Fermi's original theory is inadequate to explain the acceleration of particles

to a high energy.

5.L.4 First Order Fermi Acceleration (Diffusive Shock Acceler-

ation)

Many researchers in the late 1970's attempted to describe a more efficient particle accel-

eration process. The following model proposed by Bell in 1978 [3] has been found to be

useful in addressing the limitations outlined in Section b.1 B.

According to Bell [3], Figure 5.2 illustrates the vicinity near â shock front for a strong

shock case as in the case of a supernova explosion.

1. In the shock frame, the shock front is stationary, and the ratio of the upstrea,mfi

to the downstream velocity V¿ for a strong shock is

W 'y+t
(5.1.12)

where 7 is the ratio of specific heat of gas. For a monatomic and fully ionised plasma

in the case of supernova, 1 : 513 and then the downstream velocity is one fourth of

the upstream velocity.

V¿ 'y-I'

uo:f;w (5.1.13)
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Figure 5.2: The schematic diagram of shock phenomenon. (a) Shock front frame. (b)
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2. In the upstream (unshocked region) frame namely Figure 5.2 (b), the downstream

gas moves at f;U (t/ : shock front velocity) compared to the upstream gas velocity.

'When a high energy particle crosses the shock front and enters the downstream

region, it gains energy of the order of - I as a result of collisionless scattering.

Once the particles enter the downstream region, they are then scattered by turbulent

magnetic fields, so the velocity distributions of the particles become isotropic.

3. In the downstream (shocked region) frame of Figure 5.2, the gas in upstream region

moves toward the shock front at velocity, f U. Once the particles in the downstream

frame enter the upstream region, they feel the upstream gas moving against them

with the same velocíty, f;U. As a result, when the particle crosses the shock front,

it also obtains the same amount of energy increase # - l.

According to the model proposed by Bell [3], the high energy particles gain energy when-

ever it crosses the shock front. In this model there are mainly head-on type collisions, and

so the particles gain energy of the order - U, whereas in Fermi's original theory there are

both head-on type and following type collisions with almost equal frequency.

The following is the derivation of the average energy increase when the particle crosses

from the upstream to the downstream region. If the gas in the downstream region moves

toward the particle at velocity V(: Vaorn) : |tl, then the particle's energy when it passes

into the downstream region is

Et : .yv(E - p,V) (b.1.14)

where the z-coordinate is perpendicular to the shock front. It is assumed that the shock

is non-relativistic, namely

V<,c and 1u:L (5.1.15)
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However the particles are relativistic, so

113

(5.1.16)E: pc and

Therefore, the energy change AE is

LE : pV cosî

E
Pz: -- COS9

c

+ -- B, coso (5.1.17)

The probability of a particle crossing the shock front with angle 0 can be derived. The

number of particles within the angles of 0 to e + d0 is proportional to sinïdî. The rate

at which the particles approach the shock front is proportional to ccosd. Fbom the above

result, the probability of a particle crossing the shock front is proportional to sin 0 cosîd,0.

Therefore, the probability distribution function over the angle range from 0 to f becomes

P(0) :2sin0 cosîdî (5.1.18)

Finally the average gain in energy on crossing the shock front is

+: lo"'",{,)^}ae
l2

2cos2 0sinïdï (5.1.le)

The particle gains energy when it crosses the shock front, so the average energy increase

for the return trip is

(AE) 4 U
(5.1.20)þ,E 3 c

The average increase in energy of the particle is proportionall,o Bu. This is called the

First Order Fermi Acceleration and is a more efficient acceleration model than the Second

Order Fermi Acceleration.

p,

2-IJ: gP'



LL4 CHAPTER 5. APPLICA?IOIV TO SHOCK ACCELERA"TO¡ú

5.1.5 Power-law Spectrum

The power-law spectrum can be explained by the result from the First Order Fermi Ac-

celeration, and the derivation of the cosmic ray energy spectrum follows.

The average energy of the particle after fr-th crossing of the shock front is expressed as

E : ak Eo (b.1.21)

where a is small fractional change in particle energy, and ,Eo is the initial particle energy.

The number of the particles with energies .E : ak Eo afiber k collisions is

¡/: ¡úoP*, (5.r.22)

where Pr"t is the probability of the particle returning to the upstream region after one

shock crossing (probability of returning). Taking natural logarithms of both Equations

5.1.21 and 5.7.22, and eliminating k.

N

^¡o

( (5.1.23))
E
E,

alnP""t /ln

Flom equation 5.1.23, the power-law spectrum is derived,

N (E)dE : cons't * B-l+(lnP""t/ rne) ¿B (5.r.24)

The next step is to calculate the index (1" Pr"lln a) from the first order Fermi acceleration

result. Starting from the average of the fractional energy increase,

(AE') _ 4 o
E _iP, (5.1.25)

and using E - Eo: (4.Ð), a becomes

": !Er:r+lp, (b.1.26)

The probability of returning P¡s1 can be derived as follows. For an isotropic distribution,

the flux of particles crossing the shock front is |Nc, where lú is the number density of
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particles. Once the particies enter the shocked (downstream) region, the particles are

removed from that region. The rate at which the particles are transported from the

shocked region is iVV : ïNU , where U is shock front velocity. Therefore, the fraction of

the particles lost downstream per shock crossing (escape probability: P.."'pu)

Po".-. : iryy - 
(J 

Ø.1.27)'ape- jNc- c.

Finally, the probability of returning to the shock P,"¡ becomes

nUlret:1-P"."up.:1-l (5'1'28)

Then, taking logarithm of both P.u¡ and a, and using the approximation, lnr = I * r,

In P.", : 1n
U1--
c

U
c

U
Ai -- c

lna: ln 1

Therefore, the (ln Pr.tf Ina) becomes

ln P,."t GU l") 1ñ:ffi--l (5'1'2e)

Finally, the differential energy spectrum of the particle is obtained,

N(E)dE o ¿-1+(-1) dE : E-2dE (5.1.30)

The observed energy spectrum is in the range approximately from -3.2 to -2.5, which

is different from the spectrum above because of energy-dependent cosmic ray diffusive

transport in our Galaxy (e.g. Leaky Box Model).

The theory of First Order Fermi Acceleration succeeded in explaining cosmic ray accel-

eration of supernova explosion and other shock phenomena. It also can explain the cosmic

ray energy spectrum, and so the theory has been widely accepted in the field of astro-

physics. In the next section I will describe the numerical simulation of cosmic ray diffusive

shock acceleration by using the simulation method of Giacalone and Jokipii [7] [S] [9] for

the diffusion.

( ( )* lB")
.u _4
c3 13,,



116 CHAPTER 5. APPLICATION TO SHOCK ACCELERATTON

6,2 Simulating Shock Acceleration Process

This section presents the application of the simulation method of Giacalone and Jokipii

to cosmic ray shock acceleration and discusses the result from the simulation.

5.2.1 Creating shock environment

This section describes how to simulate the shock phenomenon. In Chapters 3 and 4

I discussed high energy cosmic ray (proton) diffusion in turbulent magnetic fields. In

previous simulations by Honda [11], Giacalone and Jokipii [7] [S] [9], the magnetic fi.elds

are "static". However, in the shock phenomena, the magnetic fields are time varying and

due to this phenomena, relativistic particles may gain energy.

In the simulation of shock acceleration, it is assumed that there are two regions, a

downstream region which contains shocked plasma and an upstream region which contains

unshocked plasma. The shock front separates them. Each region has its own frame of

reference. Therefore, once a cosmic rays crosses the shock front, Lorentz transformation

to the other frame must be considered. Returning to the original frame after scattering

causes an energy increase in the cosmic rays.

Figure 5.3 shows a schematic diagram of the shock at t :0 sec in the shock simulation.

The shock front starts at the origin for convenience of calculation. Then it moves toward

the *z-direction with constant speed, U : 0.03 x c :9.0 x 106 m/s, where c is the speed of

light; this is typical supernova shock speed. At the same time, a relativistic proton starts

moving and crosses the shock front, Figure 5.4 shows the range of the injection angle. The

proton injection angles are randomly sampled from

-1<cosd{0, 0<ó12r, (b.2.1)

where 9 is the direction angle with respect to z-axis as shown in Figure 5.4 (a), and @ is
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(r=0) U=0.03c

Vu =U
Shock front

Relativistic particle

LT7

" (x,y,z)=(0,0,0)

Upstream region

z-direcition

Figure 5.3: The beginning of the shock simulation. The shock front starts aT' z: 0 and

moves toward *z-direction. The shock front speed is U : 0.03 x c. Protons start at origin

with injection angle range defined by Equation 5'2,L.

X X

0 I

(a) z-x plane (b) Y-x Plane

Figure 5.4: Injection angle. (a) z-r plane. The range of d is -1 < cosd ( 0. (b) A-"
plane. The range of / is 0 < Ó 12r.

the direction angle with respect to gr-axis as shown in Figure 5.4 (b). If the direction of

the shock front is the same as the direction of the mean magnetic field ão of the total

turbulent magnetic fleld, this shock is called a 'Parallel Shock'. If the direction of the

shock front is perpendicular to the direction of .do, thit shock is called a 'Perpendicular

Shock'.

In the downstream region, because it is a shocked region, the plasma gas and the

magnetic fields are compressed. Therefore, a special treatment is necessary for simulating

vz
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Figure 5.5: The schematic diagram of the proton position in downstream region. (u)
Proton position z1 in the compressed scale and proton position z2 in the uncompressed
scale. (b) Proton position in the simulation space. The positioÍr zs-4("r-21) was named
'Effective Position', where z" is the shock front position.

the downstream region of the shock. In the shock frame of reference, the plasma speed

in upstream region is the shock speed [/, which is four times faster than downstream

plasma gas. This leads to the downstream region plasma being compressed into I of its

scale in the z-direction. Figure 5.5 shows a schematic diagram of the proton position in

the downstream region. Figure 5.5 (a) describes the proton position in the compressed

downstream space. The dashed lined scale in Figure 5.5 (a) is the scale of uncompressed

space and the solid lined scale is the scale of compressed space. Supposing that the proton

entering the downstream region moves to the position 21, the position .z1 would correspond

to position z2 in the uncompressed space as shown in Figure 5.5. This means that the

magnetic field at position z1 should be ÈQ) compressed in the z-direction.

Figure 5.5 (b) shows how to express positions 21 and z2 in the simulation space. As-

suming zlis a position of proton in Figure 5.5 (b), z2 in Figure 5.5 (a) can be expressed

âs Z"¡o"¡ - 4(z"r,o"r. - z1) shown in Figure 5.5 (b), where zr¡o"¡ is the position of the shock
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front. This was nameci the 'FieÌ<i Position', r-6"1¿ and the comporrerrts of the freld position

in the downstream region are

lxfreld: I

Afreld: U
(5.2.2)

zfreld: Zshock - A(zr¡o.y.- z)

The magnetic fi.eld at position í: (*, A, ò E"(fln"ra) is appropriately compressed,

where Eu(¡h"ro) is the magnetic fleld that would have been present at r-6"1¿ before the shock

arrived. The strength of the magnetic field that the proton perceives also changes due to

the compression of the plasma in the downstream region. The scale in the downstream

region is compressed into ] of its original scale in the z-direction. Thus the distance in

the z-direction between two magnetic field lines is four times smaller if the plasma were

not compressed in the z-direction. This leads to the r- and gt-component of the magnetic

fi,eld becoming four times larger than the original magnitude. Equivalent expression of

the compressed magnetic field at position r' : (ï, U, z) in the simulation space can be

d.one by expanding r- and gr-components of the magnetic field by factor of four as shown

in Figure 5.6. Therefore when the proton enters the downstream region and reaches the

position r': (Í,, A, z), the magnetic freld that affects the proton at position r-is

È(Ò : aBi Fnaa)î +  Bi ("-na¿)û + 8"" (r-naa)2 (5.2.3)

The following sections will explain how to draw the trajectory of relativistic proton in

the shock environment and discusses the characteristics of the proton trajectories.
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Figure 5.6: The schematic diagram of the downstream magnetic fleld in the simulation
space. The z- and E-components of the magnetic field d(r*6"ra) are expanded to four times
of the original ø- and g-components.

6.2.2 Drawing the trajectories of relativistic protons

The method of Giacalone and Jokipii for simulation of turbulent magnetic field was applied

to shock acceleration simulations. In the simulation, the initial data for the particle and

the magnetic flelds were the same as those in the Giacalone and Jokipii simulation. A rel-

ativistic proton in the energy range 1013eV< .E < 1016eV was injected. The corresponding

gyroradius range for this energy range is 0.01pc< rssro 110pc for a mean magnetic field

Bo : 10-10T. Step síze c\t is as usual (0.01x rssro).The turbulent magnetic field consists

of a mean magnetic field Bs and an irregular magnetic field ô8. The mean magnetic field

strength is assumed to be 1.0 x 1010T and the irregular magnetic field is a Kolmogorov

type magnetic field. The turbulence parameter fflro in this simulation is

¡H - 
-WE,-*1 

2n
Iä,u: -E: :1, (r:0, I, 2, 3) (5.2.4)

and this is the ratios of the r.m.s. value of the irregular magnetic fre\d, õÈr*" to mean

magnetic field Be
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Figure 5.7: The schematic diagram of a relativistic particle's trajectory at t : tt. When the

relativistic particle enters the downstream region from upstream region,, a Lotentz trans-

formation to downstream frame is applied to the particle l(F,E,r-,ct) ---+ (pt,E',fl,ct')).
When it returns to upstream region, a Lorenz transformation to upstream frame is applied

to the particle l(p' , E' ,,C , ct') - (p-' , E" ,r'' , ct")l

A relativistic proton is injected at the origin as the shock front passes z : 0 with

velocity y : (0.03 x c). Figure 5.7 shows the schematic diagram of a relativistic particle's

trajectory after ú - ús. Once the relativistic particle crosses the shock front into the

d.ownstream region, a Lorentz transformation to the downstream frame will be applied to

the particl e l(F, E , í, ct) ---+ (f , E' ,, r- , ctt)]. If the particle returns from the downstream to

the upstream region, a Lorenz transformation of the upstream frame will be applied to

the particlu [(pt, E',rt,ctt) ---+ (p-',8",1',ct")]. This was repeated until the particle was

considered to have escaped downstream,

Table 5.1 (a) shows the Lorentz transformation when the particle enter the downstream

region. In Table 5.1 (a),7¿ is the Lorentz factor in downstream frame and is (7- 133)-t/',

where 0o : Y. V¿ represents the velocity of downstream plasma with respect to the

upstream plasma, and is f;U çU: shock front velocity). Table 5.1 (b) shows the Lorentz

transformation when the particle returns to the upstream region. V, represents the velocity
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(5.2.5)

Table 5.1: Lorcntz transformation. (a) FTom upstream to downstream frame. j¿ --(l - P3)-t/2 and 0o: \, where Vd: lU. Subscript "d" represents downstream frame.
(b) FYom downstream to upstream frame. "yu : (I - þ?")-tt' and Bu : 2, where W : lnu .

Subscript "r^1" represents upstream frame.

d-,, : jut

of upstream plasma with respect to the downstream plasma, which is also f t/.

The energy gain by particle acceleration at shock, depends on how many times the

particle crosses the shock front, according to the study by Bell [3]. In other words, if

the particle proceeds far away from the shock front and remains in the same region, it

will not gain any more energy. For the computer simulation it is necessary to stop the

simulation when a proton is never likely to return to the shock, and so it is necessary to

set a maximum distance downstream from the shock front before the simulation for that

proton is stopped. The simulation then considers the trajectory of the next particle. The

following is the idea of how to settle this maximum distance from the shock front. Firstly,

the convection distance d-ru is defined as the distance between the shock front and the

particle if the particle is stationary with respect to the downstream plasma,

(u) Upstream Downstream (b) Downstream Upstream

(f , E, r', ct) (P- , E' ,r- , ctt) (f , E' ,C, ctt) (pt' , E" ,r-t, cttt)

Pz gtt,:1d,(r" - ry) P," p'!: .Yuþ: * ry)
E E':"y¿(E-\acpr) Et 8,, :.lu(E, I þucp,r)

7 z' :.la(z - þact) z":-lu(z'*Buct',)

ct stt:1¿(ct-0¿z) ctl gttt :1r(ct, t l3uz,)

The diffusion transport root mean square distance represents how far the particle will
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r.f l' / -! I:------ rI------- ^-^l:^ l^C-^l ^^olfiuse accoluurB L() qua¡jr-rure¿i[ urleury ilrlu ls (lerlrlcu ¿l,D

d,¿¿rr: \/2K"t, (5.2'6)

where K. is diffusion coefficient and a :ll for the parallel diffusion coefficient and a :I

for the perpendicular diffusion tensor. The values of K. were calculated from Honda's

fi.tting function [11]. The diffusion tensor components for ff < 1 are

A:(0.e81)(/úr,b)-r 
465 (*)"" (5'2.7)

h: (0.076b)(/#"0¡r sos (*)"", (5.2.8)

where R, ir proton's gyroradius and -Ls is the turbulence scale. The diffusion tensor

componentsforff)1are

# : (0.e81) (/#',¡-r aor (X)

h : e.oT 65) u :1,,¡ 
r sos (*)

Fþom Equations 5.2.5 and 5.2.6, the maximum distance will be calculated,

,Kod*o,: rt1; (5.2.11)

In Equation 5.2.11, 4 is the constant and in the simulation 4 was chosen between 2 < n < 3'

If the relativistic proton is farther than the maximum distance downstream, d^ou the

particle is regarded as trapped in the downstream region, and then the simulation is

terminated.

5.2.3 Propagation of relativistic protons near parallel shocks

The propagation of protons in a parallel shock environment was investigated. In a parallel

shock, the shock normal is parallel to the direction of the mean magnetic field do. In the

simulation, the z-direction is the direction of the mean magnetic field vector,

1.907

0880

(5.2.e)

(5.2.10)
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Figure 5,8: Tbajectories of 1015eV protons in the parallel shock. (a) Thajectory in Íf",u:
0.25 magnetic field. (b) Tïajectory in Íf,,a:0.5 magnetic field. The mean magnetic held
and the shock front is in z-direction.

Figures 5.8 and 5.9 show examples of proton trajectories near a parallel shock. ru

and zu in Figures 5.8 and 5.9 indicate ø- and z-components of proton's upstream-frame

position. The initial energy of the proton is 1015eV. Figure 5.8 (a) and (b) show the

trajectories of the protons in f#,ru: 0.25 magnetic field and f{lru :0.b magnetic field

respectively. Figure 5.9 (a) and (b) show trajectories of protons in a ffl,6: 1.0 magnetic

field and a Í{1,,u : 2.0 magnetic freld respectively. f#,ro i, the turbulence level parameter

and is defined in Equation 5.2.4. If the turbulence level ff,r6 is smaller than 1.0, the

mean magnetic field dominates the total magnetic fleld. If f{ln is larger than 1.0, the

irregular magnetic fleld dominates the total magnetic field and the magnetic field become

more isotropic. The simulation for low ff,ru took longer time for a proton to reach the

maximum distance d*o, in downstream because d^o, for bw f[",a is larger than that for

high f#r, according to Equation5.2,7. The protons in Figure 5.8 tend to diffuse more in

the z-direction than the protons in Figure 5.g due to the \ow fflr6.

Figures 5.10 (a) shows an example of the z-component of a 1015eV proton's upstream-
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Figure 5.9: T[ajectories of 1015eV protons in the parallel shock. (a) tajectory in ff",a:
1.0 magnetic field. (b) Ttajectory in f#",a:2.0 magnetic freld. The mean magnetic field

and shock front is in z-direction.

frame position vS. upstream-frame time ctu in a r#,,a : 0,25 magnetic field. The solid

Iine in Figure 5.10 (a) indicates the position of shock front, and the dotted line indicates

the distance of protons from the shock front at which they are considered to have es-

caped downstream. If a proton reaches the maximum distance, the simulation will stop.

Figures 5.10 (b) shows the proton's energy vs. upstream-frame time ctu. The energy of

proton in Figure 5.10 goes up every acceleration cycle. Figrue 5.10 (b) shows that the up-

stream energy is constant while the proton propagates in the upstream region, whereas the

upstream energy oscillates gyro-motion while the proton propagates in the downstream

region. Figures 5.11 (a) shows an example of the z-component of the 1015eV proton's

position with time ctu in f#,ra :2.0 magnetic field. Figures 5.11 (a) shows the proton's

energy vs. time cúr'

Figures 5.12 shows that the distribution of lú."1,r.,,. Iú."tu.r, is the number of times a

proton returns to the upstream region before escaping the downstream. Figures 5.12 (a) is

the case of 1015eV protons i" f[l,u:0.25 magnetic fields and Figures 5.12 (b) is the case

00

0
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Figure 5.10: (a) z-component of proton's position as a function of time ctu in shock
environment. Solid line indicates the position of shock front and dotted line indicates
the maximum distance from the shock front. Initial energy of proton is 1015eV: 106GeV
and the turbulence level is fl,ra: 0.25. (b) Thansition of proton's energy in the shock
environment.
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of 1015eV protons ln Íl,ru: 0.5 magnetic fretd. The number of sample trajectories is 100.

The dashed lines in Figure 5.12 indicate the mean value of ÀI.u¡''r,,. The solid curves in

Figures 5.12 and 5.13 indicate the n-th probabilities of returning to the shock (P,"ru.,,)" fot

various values of P."t'rn from the range 0.9 < P."tu.n < 1.0. The Pruto.,' could be estimated

as foliows. The probability of returning more than n' times is

oZn 
-tD 

\nr return - \r return/ (5.2.r2)

Using Equation 5.2.12, the probability of returning r¿ times is

Dn -p2n - 
pln*7I return - ¡ return 'return

(5.2.13)

: (Pr"t,rrr,)t - (Pr"ru.n)t*1

Po"rp" x U f c: 0.03, and so the probability of returning at least once is

P.eturn - 1 - Po".p" : 0.97 (5.2.r4)

Therefore Equation 5.2.13 becomes

Pfiro.,, : (0.97)" - (0.97)"+1 (5.2.15)

Figures 5.13 shows that the distributiofi of Iú¡s¿¡¡¡. Figures 5.13 (a) is the case of 1015eV

protons í" Í#,,a: 1.0 magnetic field and, Figures 5.13 (b) is the case of 1015eV protons

in f[",o : 2.0 magnetic field. When the protons propagate in high fn"ro magnetic field

Uf,_u> 1.0), the distribution of .4I,"¡o.,, tends to spread and the chance of never returning

to the shock becomes small. Especially in Í#",u: 2.0 case as shown in Figure 5.13 (b), the

d.istribution is more extensive and the mean value and its uncertainty is 16.31t 1'60. This

may also be due to the isotropic pattern of the turbulent magnetic field and therefore the

proton propagation will not be confined in z-direction'
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Table 5,2 shows average energy change S anci escape probabiiity P"r"u.p" for proions

with initial energies 101aeV, 1015eV and 10r6eV in various turbulence level magnetic field.

The number of proton trajectory samples is 100. According to First Order Fermi Accel-

eration Theory, discussed in Section 5.I.4, given the average energy increase for return

trip,

(6E') u
(5.2.16)

E¿
)

c

where ô,8 is energy change for return trip and E¿ is an initial energy of protons. In the

simulation the shock front velocity U was assumed to be 0.03 x c, therefore Equation 5.2.16

becomes

(u=t) :oot, (5.2.17)
E¿

Average energy changes ff tot various initial energy are relatively similar to the expected

value in Equation 5.2.17.

Escape probability was discussed in Section 5.1.5 and is P*"'o. = Ï:0.03' In Table

5.2, values of the escâ,pe probability Po"upu were estimated from the solid curves (P""".0"

fitting lines) in Figures 5.12 and 5.13. Uncertainties of P*",p" in the Monte Carlo sim-

ulation were calculated from the simulation data. Uncertainties are very high because

of small number of proton trajectory samples which is 100. Po"np" for various ff;ru in

E : l}laeV protons are close to 0.03. On the other hand, P"""up" in higher energy tend

to increase. This suggests that higher energy protons have a tendency to escape from the

shock front after entering the downstream region.

5.3 Summary and corrclusion

Shock acceleration was investigated by applying the cosmic ray diffusion simulation method

proposed by Giacalone and Jokipii t7] tS] [9]
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10laeV 1015eV 1016eV

@)
E¿

P"r"u,p"
g4)

E¿
P"."rou @t

E¿
DI escape

f#,*:0.25 0.024 0.03+0.03 0.012 0.10+0,01 0.009 0.05+0.02

Íf,,u: 0'5 0.026 0.03+0.04 0.016 0.09+0.01 0.011 0.08+0.02

f{|,,u:7.0 0.026 0.04+0.06 0.016 0.08+0.01 0.014 0.I2+0.02

l#,,u:2'0 0.026 0.05+0.07 0.019 0.04+0.02 0.015 0.07+0.02

Table 5.2: Average energy change S and escape probability Po"u.p" for protons with
initial energies 101aeV, 1015eV and 1016eV. The number of sample trajectories is 100.

Section 5.1 I explained the development of shock acceleration theory. Second Order

Fermi [6] Acceleration IMas proposed in 1949 and it concluded that the average energy

increase was the order "t (ï)', *h"ru U is the cloud velocity. A more efficient cosmic ray

diffusive shock acceleration theory was developed in the late 1970's, and Bell [3] showed

that the average energy increase was proportional to f;. In this First Order Fermi Acceler-

ation, the differential form of cosmic ray spectrum is N(E)dE x E-2d,8 on acceleration.

In Section 5.2 I described on acceleration methods for the shock acceleration simulation.

In this study, the simulation of Giacalone and Jokipii was applied to simulating the shock

acceleration. The study investigated the Parallel Shock Case, in which the direction of the

mean magnetic field is parallel to the shock front direction, which in the present simulation

was the z-direction. To investigate the parallel shock acceleration of protons, four routines

were included in the shock simulation:

1. Shock front moves toward z-direction with the speed U : 0.03 x c.

2. Compressed magnetic field was created in downstream region. The magnetic field

was compressed by factor of 4 in z-direction,
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3. Lorentz transformation between downstream and upstream frame.

4, The maximum distance of protons downstream position from the shock front was

set, so that the simulation stops before a proton is stuck in the downstream region.

The shock simulation was implemented for various proton energies and various turbulence

level ff,,,.

In conclusion, the values of W and P*"uou are close to the expected values from the

First Order Fermi Acceleration.
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Chapter 6

Summary and further work

6.1 Cosmic ray diffusion simulation

In this research, the diffusion of high energy cosmic rays (protons) in turbulent magnetic

fields was investigated bv using a Monte Carlo technique. Propagation of cosmic rays in

turbulent magnetic fields can be described by three-dimensional diffusion Equations 1.4.1

and 1.4.3. Cosmic ray diffusion in turbulent magnetic fields was discussed in Section 1.4'

In the research I selected two cosmic ray diffusion simulation techniques which used

Monte Carlo methods to investigate the propagation of cosmic rays in turbulent magnetic

fields. The two simulations were:

1. The simulation method proposed by Honda [11]

2. The simulation method proposed by Giacalone and Jokipii t7] t8] [9]

In the two simulations, the magnetic field was assumed to be static, and the total magnetic

field was divided into two components: the regular part.d¡ and the irregular patt 6É,

133
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namely,

Err",(û:ão + õBØ
(6.1.1)

: Boê" + tÊç4.

The regular part of the total magnetic field in Equation 6.1.1 is directed toward tlne z-

direction, and the irregular part was a Kolmogorov-like turbulent magnetic field in both

simulations. A Kolmogorov-like magnetic field is typical of the turbulent magnetic field

which exist in the interstellar medium. The power spectrum of the Kolmogorov-type

magnetic field follows a po\ /er taw lÈ2 (Ë)l o lro , where a : -5 1 3. The detailed discussion

of the Kolmogorov magnetic field was given in Section 1.3, The method used to generate

a l{olmogorov-like magnetic field differs between Honda's simulation and the Giacalone

and Jokipii simulation.

In the cosmic ray diffusion simulations, relativistic charged cosmic rays (protons) were

injected into the turbulent magnetic fre\d, É¿o¡o¿ and the positions of the protons were

calculated at time ú. In the simulations a number of cosmic rays were injected into the

Kolmogorov turbulent magnetic fields, and the average squared distances, namely (22)

and (n2 * A2l ,, for each time ú were calculated. Then the diffusion tensor components were

calculated from Equation 6.1.2,

(r') :2K¡t, (*' + a2) : 4K¡t, (6.1.2)

where K¡¡ represents diffusion tensor components parallel to the regular magnetic field Bs,

which is in z-direction and K1 represents the components perpendicular to the regular

magnetic field.

In this study, Honda's simulation, and the simulation studied by Giacalone and Jokipii,

were repeated, and the results were investigated and compared with the original results.

Then one of these two simulation method was selected to investigate the propagation of
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high energv protons in the shock environment and the proton acceleration by the shock.

6.2 Honda's simulation

In the present research I first investigated the cosmic ray diffusion simulation method that

Honda had proposed. Honda used a three-dimensional lattice and placed random vector

potentials at each lattice point [11]. The vector potentials lffere sampled from the Monte

Carlo simulation and following an exponential distribution. Then he created irregular

rnagnetic fields by using Equation 6.2.1

õE:vxôã. (6.2.1)

The curl of vector potential ensures ü'¿d : O.

I decided to compare Honda's method with a simpler method in which the magnetic

field on grid points is sampled directly. Also, I decided to investigate whether or not it

is necessary to interpolate the magnetic field for positions between the grid points. Thus

there were four cases considered:

7. ,î. ú grid points sampled, È :i x Ã, È interpolated'

2. É at grid points sampled, .d interpolated.

3. Ã atgrid points sampled, É:i x,Ã, tto interpolation.

4. É at grid points sampled, no interpolation.

While, the no-interpolation cases saved considerable computing time, the results were not

consistent with the cases where interpolation was done. In particular, the parallel and

perpendicular difiusion coefficients were calculated from the simulation results in each

case and compared to the low and high energy limits which can be obtained theoretically
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from random walk theory. This comparison was made in Table 3.4 of Chapter 3. It was

found that only CASE 1 was consistent with the theoretical result, and hence I adopted

Honda's method with interpolation of .d between grid points.

Secondly, the proton diffusion in the Kolmogorov-like magnetic field was investigated.

The same calculations and analyses of the proton diffusion were carried out in Kolmogorov-

type magnetic field environment. In the Kolmogorov-type magnetic field a lattice space

with a different length of grid spacing was used. The magnetic fields placed on each grid

point have an r.m.s. value dependent upon the grid spacing. Then the magnetic fields at

the grid points were vectorially added to create the irregular part of the magnetic field.

The energy-dependent diffusion tensors of high energy protons in Kolmogorov magnetic

fields were discussed in Section 3.3.3. In Section 3.3.3, the results using Honda's method

were compared to Honda's original results.

In Figure 4.6 the plots of # oo not agree to Honda's results in logro l*] < o

region and the plots of # do not agree to Honda's results logro [#] > 0 region.

These differences can be explained by four reasons:

1. The simulation used a normal distribution to sample vector potentials ôÀ, whereas

an exponential distribution was used in the Honda's original simulation .

2, The simulation used the periodic boundary condition which was not mentioned in

Honda's study.

3. The simulation used o: f , whereas Honda used o : $ for [trr]"

4. The number of time steps might not have been large enough to calculate difiusion

tensors.
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6.3 Giacalone and Jokipii simulation

The next simulation to be repeated and investigated was developed by Giacalone and

Jokipii. Giacalone and Jokipii used the superposition of plane rü/aves to create the Kolmogorov-

Iike magnetic frelds for the irreguiar part of the magnetic field [7] [8] [9]. They proposed

that the irregular pa* õÈ@,A,2) be a superposition of plane wâ,ves with isotropic propa-

gation directions and with random polarisations and phases.

The trajectories of the charged particles were calculated from the equation of motion.

Giacalone and Jokipii created new magnetic fields at each time step as a particle changed

its position, whereas Honda set magnetic fields at each lattice point initially. So a magnetic

field interpolation is not necessary in Giacalone and Jokipii simulation. The diffusion

tensors were calculated by using Equation 6,1.2 and the results were compared to Honda's

result, and the result from the Casse et al. simulation. The diffusion tensors for high

energy protons (bg (;ä) ) 1) were consistent with the results from Honda and Casse et

al. However the diffusion tensors with low energy protons (l.g (tr) ( 1) were inconsistent

with the Honda and Casse et al. results.

For the above reâson, distributions of the proton's final position were investigated.

The distribution of the final position \ryas expected to be a Gaussian distribution, but the

Iow energy protons (E :1013eV) showed a high peak at the origin. This implied that

the 1013eV protons were strongly influenced by the magnetic field and were likely to be

trapped by the magnetic field.

The peak shape in the distribution of the position of the low energy protons might

depend upon the pitch angle of the protons. The simulation selected the final positions of

the protons with larger initial pitch angles and the their distribution was analysed. The

protons with larger initial pitch angles showed a much higher peak than those with smaller



138 CHAPTER 6, suMMARy A¡\rD FunrHER woRK

initial pitch angle. The 1013eV protons with large initial pitch angles were likely to stay in

the vicinity of the origin, and they seemed to be trapped by the magnetic field, whereas

the 1013eV protons with small initial pitch angles had more opportunity to travel further

from the origin.

In comparing the Honda simulation with the Giacalone and Jokipii simulation, the

latter does not need magnetic field interpolation. Moreover a periodic boundary conditions

was applied in Honda's simulation method, and so the turbulent magnetic fieid repeated

every 1.0 pc. The sensitivity to the minimum grid spacing Lp¡n and, size of time step can

also cause Honda's result to differ from the results of the Giacalone and Jokipii simulation.

For these reâsons) the modified Giacalone and Jokipii simulation was used to investigate

the shock acceleration phenomenon.

6.4 Shock acceleration

The study used the simulation method proposed by Giacalone and Jokipii tZ] t8] [g] for

the application of shock acceleration at a shock parallel to the mean magnetic field jo

(Parallel Shock).

The shock simulation was implemented for various proton energies and various turbu-

lence level lflru. Ya\ues of $ and P*"uo" were found to be close to the expected values

of the S and Po"rp".

6.5 F\rrther work

There is further work to extend the study of cosmic ray shock acceleration.

In the study, the cosmic ray acceleration in the Parallel Shock was investigated. The



6,5, FURTHER WORK 139

same study could be done on Perpendicular Shock. In a Perpendicular Shock, the direction

of the shock front is perpendicular to the mean magnetic field vector of the turbulent

magnetic field. Figure 6.1 shows a schematic diagram of a Perpendicular Shock. The

direction of the mean magnetic fi.eld can be either the ø- or 3t-direction'

B lines

Upstream z-direction
reglon reglon

front

Figure 6.1: The schematic diagram of the Perpendicular Shock. The direction of the shock

front is perpendicular to the mean magnetic field'

In a Perpendicular Shock simulation, Lorentz transformation of the electromagnetic

field should be considered. Figure 6.2 shows the schematic diagram of two different frames

of references. In Figure 6.2, frame K is stationary and frame K' is moving with velocity o in

z-direction. When a relativistic particle moves from one frame of reference to other frame,

the Lorentz transformations should be applied to the position-time four-vector and the

four-momentum of relativistic protons. In the shock simulation, a subroutine to calculate

the Lorentz transformation of four-vector and four-momentum was included. Lorentz

transformation of a perpendicular magnetic field, an electric field appears in the new

frame. Equations 6.5.1 and 6.5.2 give the Lorentz transformations of the electromagnetic

fi.eld from frame K Io ftame Kt, the frame K remaining stationary and frame K' moving

U
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X,
frame K

(ct, x, y, z)

X frame K'
(ct', x' ,y' , z')

V

v
Figure 6.2: The schematic diagram of two frames of reference. The frame K is fixed frame
and the frame K/ is moving toward z-direction.

toward z-direction with speed o

ELkt',, ra) :118,("t, û - dBnþt, fl]

E'o@t', /) : l[Enkt, Ò t úÙ,(ct, fl] (6.5.1)

E'"(ct', rt) : E"(ct, û

Bt (ct', ra) :1lB*("t, ù) + fløuþt, 41

z
Z

)
v

B'nþt', ra) :1lBnþt, û - fø,çct, 4] (6.5.2)

Bt(ctt, rt) : B"(ct, t
Performing a Perpendicular Shock simulation, and comparing with a Parallel Shock

acceleration, will give us more useful information about shock acceleration of protons,

and including the Lorentz transformation of electromagnetic field will refine the shock

simulation. These could be done to extend this study.
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