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Abstract

How a high energy cosmic ray behaves in space is one of the major issues in astrophysics.
Cosmic ray propagation in the astronomical environment can be explained as a diffusion
phenomenon. My research used the Monte Carlo technique to calculate diffusion tensors
and analysed the energy dependence of the diffusion tensor on the cosmic ray energy and
magnetic field turbulence.

Turbulent magnetic fields exist in an astronomical environment. The power spectrum
of the turbulence is proportional to k%3, where k is the wavenumber. This turbulence is
called the Kolmogorov-like magnetic field.

To understand cosmic ray propagation in the astronomical environment, it is useful
to study cosmic ray diffusion in turbulent magnetic fields. Monte Carlo simulation is the
most suitable technique for the study of the cosmic ray diffusion in turbulent magnetic
fields. The aim of my research is to determine the diffusion tensors by using the Monte
Carlo simulation and to study how the magnetic field turbulence scale affects the cosmic
ray diffusion. My research is applied to simulation of an actual astronomical phenomena,
known as shock acceleration.

Chapter 1 provides a brief introduction of high energy cosmic rays and Kolmogorov-like
magnetic field. Chapter 2 introduces three different simulation methods for cosmic ray
diffusion.

Chapter 3 describes the simulation technique by Honda [11]. He sampled vector po-
tentials to produce Kolmogorov-like turbulent magnetic fields.

Chapter 4 describes the simulation technique by Giacalone and Jokipii 7] [8] [9]. They
used a superposition of isotropic plane waves to produce Kolmogorov-like magnetic field.

Chapter 5 discusses the application of a cosmic ray diffusion simulation method to
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cosmic ray shock acceleration. In this chapter, the simulation method by Giacalone and
Jokipii was selected to investigate cosmic ray shock acceleration.
Chapter 6 presents a summary of whole work in my research and future work to extend

this study.
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Chapter 1

Introduction

1.1 Cosmic rays

Cosmic rays are atomic and subatomic particles from astronomical sources travelling in
space at nearly the speed of light. It is known that the low energy cosmic rays consist
mostly of protons. Cosmic rays are divided into two kinds, primary and secondary cosmic
rays. As the primary cosmic rays encounter the Earth’s atmosphere, they collide with
molecules in the atmosphere. These collisions produce secondary cosmic rays. Figure
1.1 illustrates the energy spectrum of cosmic rays, and indicates the energy of cosmic
ray reaches to the earth [4]. The energy spectrum of cosmic rays can be characterized
by a power law, namely Flux(EF) o< E® In Figure 1.1, the power law of the energy
spectrum changes at around 3 x 10'®%¢V and again at around 3 x 10'8e¢V. These points
are called “knee” and “ankle” respectively. Any kind of theory about cosmic ray origin
and acceleration must explain this “knee” and “ankle”. This implies that there may be
different origins and acceleration mechanisms of cosmic rays in space. The study of cosmic
ray propagation in space helps us to understand the origin and acceleration mechanism of

cosmic rays.
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spectrum of cosmic rays. The slope change of the spectrum at around

3 x 10'%V is called “knee”. The slope change of the spectrum at around 3 x 10%eV is

called “ankle”. [4]
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1.2 Observing magnetic field in space

To study cosmic ray propagation, it is necessary to know the environment of space. The
magnetic fields in space have significant influence upon cosmic ray propagation. Precise
information about the magnetic fields in space is very important for understanding prop-
agation of cosmic rays. There are several techniques to determine the magnetic fields.
Faraday Rotation and Zeeman Splitting are the frequently among the techniques used.
The following sections introduce these two techniques commonly used to determine the

magnetic fields in space.

1.2.1 Faraday Rotation

Magnetic fields pervade the ionised interstellar or inter-cluster gases. The angle of the
plane of linearly polarised radio wave emission is rotated as the emission passes through
a region containing free electrons and magnetic field. This phenomenon is called Faraday
Rotation. Faraday Rotation provides us information about cosmic magnetic fields.

The rotation angle of linearly polarised emission is given by
!
6 = 8.12 x 10°)? / n.Bydl  (radians) (1.2.1)
0

where B (tesla) is the magnetic field component parallel to the line of propagation, n.
(particles/m®) is the number density of free electrons, and the quantity 6/ A2 is called
Rotation Measure and denoted as RM.

When RM > 0, the field lines are towards the observer, whereas RM < 0, the field
lines are away from the observer. The strength of magnetic field can be estimated from

following relation,

R finBy

By) x x

(1.2.2)
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where DM is called Dispersion Measure and is obtained from the delay time of the arrival
of radio signals, due to propagation through the interstellar medium, as a function of
frequency. The dispersion Measure and rotation measure have been obtained from pulsar

observation.

1.2.2 Zeeman Splitting

The Zeeman effect is the splitting of the spectral lines when an atom exists in an external
magnetic field. The Zeeman effect is widely used for determining the magnetic fields in
astronomical objects. However, the magnetic field strengths need to be large enough to
actually observe line splitting, otherwise the line splitting appears as line broadening. The
strengths of weak magnetic fields can be deduced by measuring two circular polarisation
components from Zeeman splitting if the magnetic field lines are parallel to the line of

sight.

1.3 Kolmogorov spectrum turbulent magnetic field

The Kolmogorov [15] [16] [17] turbulence model has been well accepted in fluid mechanics
since 1941. The model states that turbulent energy injected into large eddies in turbulent
fluid transfer or cascade to smaller eddies. The energy spectrum of turbulence S(k) follows

power low namely,

S(k) x k™%, (1.3.1)
where k is wavenumber and defined as 2* (A: wavelength) or 2* (L: eddy size). In the

Kolmogorov model, energy spectrum is proportional to k~3/3. This is called the Kol-
mogorov 5/3 power law. For three-dimensional wavenumber space, « is 11/3. Magnetic

fields in space have Kolmogorov-like turbulence character. The following sections describe
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magnetic fields in space and also present the evidence that magnetic fields in space are
Kolmogorov-type turbulence.

Following Equation 1.3.1, observational data in Section 1.3.1 to 1.3.3 show that energy
spectrum |B2(k)| is proportional to k=5/3, and |B%(k)| is proportional to k~11/3 for a

three-dimensional k-space.

1.3.1 Magnetic fields from solar wind
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Figure 1.2: The z-, y- and z-component and magnitude F' of the power spectrum of
magnetic field energy density per unit frequency, B?(f)/f. The data came from Pioneer
6 spacecraft and obtained from December 1965 to March 1966. 1y = 10~3G. Dashed lines
represent the power law index a = 2. [22)

The sun is the most studied stellar object in space. It is known that magnetic fields

exist in our solar system. The flow of plasma from the sun’s corona is called the solar
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wind and the solar wind creates magnetic fields in the solar system. The solar wind
magnetic field strength is about 5 x 107°T or 50uG. Sari and Ness {22] studied the Pioneer
6 interplanetary magnetic field data and the calculated power spectra of magnetic fields.
The data was collected from December 1965 to March 1966. Figure 1.2 shows z-, y- and
z-component of power spectra of interplanetary magnetic field energy density per unit
frequency. The dashed lines in Figure 1.2 represent the power law f~2 lines. The spectra

are not as steep as f~2 lines, perhaps closer to the power law of f~5%/3,
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Figure 1.3: The power spectrum of magnetic field energy density, B%(w). The data came
from Mariner 4 magnetometer data obtained from 29 November to 30 December 1964. [13]

Jokipii [13] presented observational data of solar wind magnetic fields obtained from
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magnetometers of spacecraft Mariner 4. Figure 1.3 is power spectrum of the magnetic field
from Mariner 4 magnetometer data obtained from 29 November to 30 December, 1964.
Jokipii noted that the index « of power-law spectrum k= (k:wavenumber) had the range

1.5 <a<?2.0.

Goldstein et al. [10] presented in their review paper that the power spectrum of mag-
netic field fluctuations from Mariner 10 magnetometer data collected on March 10, 1974,

and this also showed the spectral slope is close to —5/3.

These results suggest that the magnetic fields in the solar system follow a Kolmogorov

power law.

1.3.2 Interstellar magnetic field

Interstellar matter consists of about 99% gas and 1% fine dust grains. About 70% of the
gas is hydrogen, 28% is helium and 2% is heavier elements. Ionised interstellar gas creates
magnetic fields in the galaxy, and the strength of the galactic magnetic field is estimated
from 1071°T to 107°T. Lee and Jokipii [18] analyzed data on interstellar scintillation of
3 pulsars (CP 0323, PSR 0833-45 and NP 0532) and concluded that interstellar magnetic
fields follow a Kolmogorov power law. Furthermore, Armstrong and Rickett [1] used inter-
stellar scintillation to observe 17 pulsars and study interstellar electron density. Figure 1.4
shows the electron density spectra of two pulsars (PSR 0329454 and PSR 1642-03) among
17 pulsars for two different centre frequencies ((a) 408MHz and (b) 340MHz). The spectra
are consistent with the solid lines, which are 11/3 power law lines appropriate to three-
dimensional k-space. Armstrong and his colleagues [2] used the interstellar scintillation
technique to observe the interstellar electron density at distances less than lkpc. They

concluded that the spectrum of electron density follows a Kolmogorov law. This provides
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evidence supporting that interstellar magnetic fields are also Kolmogorov-like magnetic

fields,
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Figure 1.4: Fluctuation power spectra of electron density from interstellar scintillation
data. (LEFT) Spectra of PSR 0329+54. (a) Centre frequency is 408MHz. (b) Cen-
tre frequency is 340MHz. (RIGHT) Spectra of PSR 1642-03. (a) Centre frequency is
408MHz. (b) Centre frequency is 340MHz. The solid line indicates a = ¥ = 3.6 power
law appropriate to three-dimensional k-space. [1]

1.3.3 Inter-cluster magnetic field

Intergalactic magnetic fields have been studied by observing diffuse radio and X-ray emis-

sion coming from clusters of galaxies. Schlickeiser et al. [23] observed the diffuse halo from
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the Coma cluster at a wavelength A = 11 cm. Together from these two observations of
the diffuse radio and hard X-ray emission from the Coma cluster of galaxies, the aver-
age strength of the magnetic field of intergalactic matter has been found to be between
4 x 107'2T and 12 x 10710T,

Vogt and Ensslin [25] measured Faraday Rotation of 3 clusters (Abell 400, Abell 2634,
Hydra A) and plotted the power spectrum of magnetic field shown in Figure 1.5. The
spectral indices « of the power-law spectrum k=% lie in the range from 1.6 to 2.0. The
Kolmogorov spectrum index is 5/3 =~ 1.67, so the Kolmogorov spectrum slope is within
this range. Therefore, magnetic fields outside of the Galaxy may also have a Kolmogorov

turbulence character.
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Figure 1.5: The power spectra of magnetic fields w(k) of three clusters (Abell 2634, Abell

400 and Hydra A). The solid curves are calculated from p-spaced response functions, where
p is scale of magnetic irregularity. [25]

It can be concluded that the magnetic fields in space are probably Kolmogorov-type

turbulent magnetic fields.
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1.4 Cosmic ray diffusion in turbulent magnetic fields

How cosmic rays behave in the space is one of the big issues in astrophysics. Cosmic
rays created by astronomical sources interact with the interstellar or inter-cluster medium
while traveling in space. It is already known that magnetic fields exist in space, and
that charged cosmic rays diffuse in those magnetic fields. Equation 1.4.1 is the well
established diffusion equation in three-dimensions, and describes how the cosmic ray diffuse

in turbulent magnetic fields.

o KV2n(7,t) = Q(7, ). (1.4.1)

In Equation 1.4.1, n represents the number density of particles. The second term of
the equation is expressed as the flux caused by diffusion and K represents the diffusion
coefficient which dominates diffusion of the particles. The right hand side of the equation
Q(7,t) is source term.

When N, particles are injected at (z,y,z) = (0,0,0) and at ¢ = 0 (initial condition),
and are free to diffuse in an infinite medium (boundary condition). The solution of the
diffusion equation is

o ——1 ex ——T2—
n(r,t)—\/m p( 4Kt>' (1.4.2)

If cosmic ray diffusion is occurs in a medium moving at velocity ¥, such as in the solar

wind, the diffusion equation can be expressed as this,

%Q + @ Vn(7,t) — KV2n(7,t) = Q(F,1). (1.4.3)

In the case of anisotropic diffusion the diffusion equation becomes

m(Ft) < o o ..
ot _Z, axiKijgx—jn(T,t)—Q(r,t) (1.4.4)

i=1 j=1
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where K;; is the ditfusion tensor.
Jokipii [12] proposed that the diffusion tensor for the regular component of By in the

z-direction, is

Kmm Kmy K:cz KJ_ —KT 0
Kij=| Kyo Ky Kyo |=| K+ K. 0
K. K, K. 0 0 K

where K| is tensor component perpendicular to regular magnetic field. K is tensor
component parallel to regular magnetic field. K+ is the component which causes a net
flux in the z-direction if there is a gradient in the y-direction, or vice versa. The diffusion

tensor is calculated from following relations.
(2%) = 2K, (1.4.5)

(z® + %) = 4K t, (1.4.6)

These equations come from the solution for diffusion equation 1.4.2.

Cosmic ray diffusion in turbulent magnetic fields depends on the scale of irregularity
in the magnetic fields compared to the gyroradius as well as the momentum and charge. If
the gyroradius is much smaller than the irregularity, the particle will follow the magnetic
field line and will not be scattered by the magnetic field. If the gyroradius is much larger
than irregularity, the magnetic field does not affect particle motion much, so little diffusion
results. However, if the gyroradius is close to irregularity, the particle will be scattered
by the magnetic field. Therefore, determining the effective range of the irregularities is an
important issue in cosmic ray diffusion. The next section will discuss numerical simulations

of cosmic ray diffusion
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Chapter 2

Cosmic ray diffusion simulation

This chapter discusses the numerical simulation of cosmic ray diffusion. Section 2.1 dis-
cusses the limitations of numerical simulation. Section 2.2 discusses three different meth-
ods of simulation of cosmic ray diffusion using the Monte Carlo method, which have been

used previously.

2.1 Numerical error and computational time

Numerical simulations are often used in astrophysics to model astrophysical phenomena,
or to check observational data. However, in implementing a numerical simulation, it is

important to consider the limitations of numerical method.

While computers are now a universal computational tool with a wide range of applica-
tions, there are several factors that need to be considered when used in situations involving
extensive and complex calculations of the type used in this research. The main two factors
to be considered are numerical error and computational efficiency.

13
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2.1.1 Numerical error

Generally speaking, there are two kinds of essential errors in numerical calculation; Trun-

cation Error and Round-Off Error.

1. Truncation Error:

The truncation error may occur when an iterative method is implemented in the
computer. The concept of infinity is common in mathematics but cannot be imple-

mented in a computer. Consider, for example, the Fourier Transform given by

f(k) = / " F(x) exp (—i2mkz)dz. (2.1.1)

—0o0
However the Fourier transform is more often evaluated using the discrete Fourier

transform, namely

iy —i2rkz
=0

The Fourier transform, Equation 2.1.1 involves integration from —oo to 400 but a

computer can only evaluate the function between two finite limits and therefore any

result must be less accurate. In addition, a computer uses discrete mathematics and

the above function must be implemented by the summation over a number of finite

rather than an infinite number of intervals. As a result the evaluation of the Fourier

transform in Equation 2.1.1 by using that of Equation 2.1.2 is improved by having

very large limits of integration function and having a very large number of intervals.

2. Round-Off Error:

Numbers, other than integer, presented by any computing devices have some im-
precision. Computers usually use floating-point numbers of fixed storage length, so
they can not precisely represent any irrational numbers and some rational numbers.

This error is called round-off error.



2.1. NUMERICAL ERROR AND COMPUTATIONAL TIME 15

3. Statistical errors associated with Monte Carlo methods:

Statistical errors associated with Monte Carlo methods should be taken into account.
Occurrence of statistical errors is inevitable in Monte Carlo simulation because an
infinite number of samples can not be obtained in the simulation. This type of error

can be reduced by increasing the number of the samples.

2.1.2 Computational Efficiency

Computational efficiency is also a main issue in numerical simulation. Computational time
depends on the number of equations in the algorithm and the nature of the statements and
the implementation of in-built functions. Computational efficiency sometimes conflicts
with precision of numbers. For example, if double precision is used rather than single
precision, then a more accurate calculations result. However using double precision is
more time consuming than using single precision and so the time taken for the simulation

increases. In order to avoid numerical errors and excessive simulation times, the simulation

should

1. use as simple a routine as possible.

2. reduce the number of time consuming calculations.

The study will attempt to simplify algorithms to reduce computational time. If the
simpler algorithm gives results as accurate as for a more complicated algorithm, then the

study will adopt the simpler algorithm in the simulation.
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2.2 Three cosmic ray diffusion simulations

Cosmic ray diffusion in turbulent magnetic fields have been studied both analytically and
numerically. Among the studies of cosmic ray diffusion, three different diffusion simulations

have been selected for investigation into cosmic ray propagation in space.
1. The simulation proposed by Honda (1987, [11]).
2. The simulation proposed by Giacalone and Jokipii (1999 [9]).
3. The simulation proposed by Casse, Lemoine and Pelletier (2001, [5]).

These researchers applied a Monte Carlo method to the calculation of the diffusion tensor.
Monte Carlo simulation is a useful stochastic method, which randomly generates values
for uncertain variables many times to estimate the behaviour of the model.

Figure 2.1 indicates the flow chart of the cosmic ray diffusion simulations. In general,
the cosmic ray diffusion simulations follow this flow chart. The three simulations are

similar to each other except for the procedure of creating magnetic fields.

1. The first step is creating turbulent magnetic fields. The observational data indicate
that magnetic fields in space are Kolmogorov-type magnetic fields. So the turbulent

magnetic fields used in the diffusion simulation should show a Kolmogorov spectrum.

2. The next step is the injection of relativistic charged particles into the magnetic fields.
The typical relativistic cosmic ray is proton. The number of particles injected should
be sufficiently large to obtain a reliable statistical outcome. The initial velocity vector

of the cosmic ray should be isotropic.

3. The third step is to calculate the positions of the particles at various times. A small

number of cosmic ray trajectories are plotted for checking purposes, e.g. the size
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BASIC FLOW CHART OF
PARTICLE DIFFUSION
SIMULATION

Create Kolmogorov—type
magnetic fields

roject chargéd particle into
the magnetic fields

Falculate trajectories OK]
the particles

Calculate diffusion tenso]

Figure 2.1: Basic flow chart of simulation of cosmic ray diffusion in turbulent magnetic
field. The diffusion simulation can be divided into 4 steps.
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of time step used in the simulation which is a compromise between accuracy and

simulation time.

4. The last step is to calculate the diffusion tensor by using Equations 1.4.5 and 1.4.6.

In the three simulations, the total magnetic field consists of a regular part and an
irregular part. The regular magnetic field lines are straight lines directed toward one
direction, for example the z-direction. The irregular magnetic fields has isotropy and are

generated using the Monte Carlo method, namely
Byotar = Boé, + §B. (2.2.1)

The three simulations do not consider electric fields because the interstellar plasma has
high conductivity, and so static electric fields hardly exist in space. The simulations
assumed that the turbulent magnetic fields are static. Therefore, cosmic rays change its
direction but do not change energy.

Using a mesh or grid space to simulate turbulent phenomena is common in fluid dy-
namics. The simulations by Honda [11] and Casse et al. [5] used a grid space to express
the turbulent magnetic fields, whereas Giacalone and Jokipii [9] used a different way to
create the turbulent magnetic fields. Section 2.2.1 to 2.2.3 will review the three different

simulations of cosmic ray diffusion.

2.2.1 Simulation by Honda (1987)

Honda [11] simulated cosmic ray propagation in the turbulent galactic magnetic fields, and
calculated diffusion tensors. The cosmic rays he simulated were relativistic particles, so
the energy range was 10%¢V< E < 10'8eV. The corresponding gyroradius for a 3 x 10-10T

magnetic field is from 3 to 300pc. Honda assumed that the total magnetic fields Etotal in
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a galaxy consists of two parts, a regular part By and an irregular part 6B , such that
Biotay = Bo + 0B. (2.2.2)

The direction of the regular magnetic field By was the z-direction and the irregular mag-
netic field § B was isotropic. He assumed that the regular magnetic field strength was about
3 x 10717 (= 3uG) and the irregular magnetic field strength was about 1.5 x 107'°T(=
1.5uG). Since he assumed the magnetic fields in his simulation to be static, there was no
effect of convection and Fermi type of acceleration. He also neglected any electric fields.
In order to duplicate the galactic magnetic field, Honda developed three-dimensional
lattices. Magnetic fields on each grid point were calculated by using vector potentials.
Honda calculated random vector potentials from Monte Carlo simulations, and these po-
tentials obeyed an exponential distribution. The vector potential was sampled at each

grid points of the lattice. Calculating the curl of vector potential,
§B=V x6A (2.2.3)

produced the magnetic fields at each grid point.

Honda made several lattices with a different grid spacings to create a Kolmogorov-type
turbulent magnetic field. The magnetic field placed on each grid point had a magnitude
dependent upon the grid spacing. Honda proposed the magnetic fields for different grid

spacing with the lattice constant L;, was
L; = 107"2L,, (i1=1,2,3,--) (2.2.4)

where Ly is the largest scale of irregularities and corresponds to the maximum grid space
length. After the contributions to the magnetic fields, magnitudes corresponding to dif-
ferent grid scales are placed on the grid points, the magnetic fields at the grid points are

vectorially added to create the irregular part of the magnetic field. For a Kolmogorov
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spectrum, the weight of the field energy density of the superimposed magnetic fields is

5/3

i .

proportional to L

Honda injected a number of charged particles into the lattice. The charged particles
were propagated in the magnetic fields according to the equation of motion for charged

particle in the magnetic fields.

—~ =¢(# x B) (2.2.5)

Each component of momentum § after a time increment At is

P = py cos (wAL) — prsin (wAt), (2.2.6)
Pt = pusin (WAL) + pr cos (wAt), (2.2.7)
| = | (2.2.8)

where p, and p are components perpendicular and parallel to the mean magnetic field
Etotal, respectively. The component prt is perpendicular to both p, and pj. w is the

gyrofrequency and is defined as

eB c
W= = R, (Hz rad) (2.2.9)

where e (coulomb) and E (eV) are the charge and the energy of the cosmic ray, respectively.
R, (m) is the gyroradius. Since the computer needed to be operated efficiently and avoid

numerical errors, Honda had to choose an appropriate time increment for the simulation, a

. . . R
compromise between computational time and error. He found At = ﬁ = & was best as

the time increment. Positions of the particle for each time can be obtained from Equation

2.2.5.

Since Honda supposed that the regular magnetic fields lines are parallel to the z-
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direction, the elements of the diffusion tensor become,

K:l::l: Kwy sz KJ_ —KT 0
Kij=| Kyo Ky Kjo |=| Kt K. 0
K. K, K. 0 0 K

K| is a diffusion tensor component parallel to Eo, K| is perpendicular to EO. K+ is
the component which causes a net flux in the z-direction if there is a gradient in the
y-direction, or vice versa. In order to calculate the diffusion tensor Kjj, he carried out a
number of simulations and took averages of distances for each time, t; = At, t; = 2 At,
and so on. After calculating the average distance for each time increment, the plots of

squared average distance versus time could be created by using the following relations,

(@® +y%) = 4K,
(2.2.10)
<z2> = 2K, 12
Each component of the diffusion tensor will be the slope in the average squared distance
versus time plot is illustrated in Figure 2.2.

Honda calculated the diffusion tensor perpendicular to z-direction K, and parallel
to z-direction K| for different energies ranging from 10'°V to 10'®eV. Figure 2.3 shows
diffusion tensors K /cLg versus gyroradius Ry/Lg (Lo: turbulence scale) for various values
of the ratio,

(6B) 2"

= — =0,1,2,3). 2.2.11
5= (=012 (2211)

The ratio % expresses the degree of turbulence. If % < 1, the regular magnetic field
dominates the total magnetic field and the magnetic fluctuations are very small. On the
other hand if % > 1, the irregular magnetic field dominates the total magnetic field
and the magnetic fields become more isotropic. Figure 2.3 (LEFT) shows the parallel

diffusion tensor Kj/cLy versus gyroradius R, /Lo and (RIGHT) shows the perpendicular
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Figure 2.2: Schematic diagram of squared average distance (z? + y?) or (22) vs. time T.
The slope of line becomes diffusion tensor component.
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Q.% =1 and “x” for % = 2. [17]

diffusion tensor K /cLq versus gyroradius R,/Lg obtained by Honda. Honda noted that
the behavior of the diffusion tensors changed suddenly at % = 1. This implies that this
feature of the diffusion tensors is dependent on the ratio %)"— and two regime, which are
(%‘i— < 1) regime and (%‘)L > 1) regime, exist. Honda introduced the fitting function for the

perpendicular and parallel diffusion tensors.

() -G (E) (& —

where i represents || and L. He pointed out that the value of the index o in Equation

2.2.12 is different for the (%ﬁ < 1) regime and the (%% > 1) regime.
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2.2.2 Simulation by Giacalone and Jokipii (1999)

Giacalone and Jokipii [9] simulated the collisionless scattering motion of cosmic rays in
turbulent magnetic fields. The procedures are also explained in their earlier papers [7]

and [8]. This section summarizes how they implemented this simulation.

Cosmic rays which Giacalone and Jokipii were interested in had an energy range from
10%eV to 10%¢V and the range of the corresponding gyroradii for By = 5nT was 4.46 x
107AU< r, < 4.46x 10™*AU. The turbulent magnetic fields were interplanetary magnetic
fields produced by the sun. The total magnetic field B;y, consisted of a mean magnetic
field By and irregular magnetic field §B. The mean magnetic field B, was parallel to
the z-direction and has the magnitude of 5.0nT. Giacalone and Jokipii proposed that
the irregular part dg(x, y,2) be a superposition of isotropic plane waves with random

polarisations and phases. They defined the irregular part 6B (z,y, 2) of the total magnetic

field as
N
8B(z,y,2) = Z A(kn)(cos €, +isin aé,) exp (iknz, +i0,) (2.2.13)
n=1
where
x cos B, cos¢, cosb,sing, —sinb, T
y | = — sin ¢, COS ¢, 0 Yy
2 sin 6, cos ¢, siné,sin¢, cosl, z

In Equation 2.2.12, o, and (3, are the n-th random polarisation and phase, respectively,
and o, makes 6B isotropic. The matrix is the combination of the rotations along the z-
axis and the y-axis. Due to this matrix, Equation 2.2.13 automatically satisfies V-B=o.
N,, is the upper limit of the summation. If N,, becomes large, then 6B will be isotropic.

Giacalone and Jokipii sampled irregular magnetic fields by collecting four different values
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of cosb,, ¢, a, and B, randomly from each range,

&

—-l1<cosb, <l (n=1,2,--+)

O0<dp<2r (n=1,2,--+)
4 (2.2.14)

O<a,<2mr (n=1,2,--)

k0<ﬁn<27r (n=1,2,--+)

A(ky) in Equation 2.2.13 is expressed as the amplitude of the n-th wave mode with wave
number k,, and A(k,) determines the power spectrum of magnetic fields. As a Kolmogorov

envelope to the power spectrum,

A%(ky) = 0°G(kn) [% G(kn)] ; (2.2.15)

where

AV,

G(kn) = 1+ (knLo)"

(2.2.16)

In Equations 2.2.15 and 2.2.16, o2 and L. are the wave variance and the correlation
length, respectively. The correlation length corresponds to the maximum scale of magnetic
irregularity. AV, is a normalization factor. For a three-dimensional turbulence, AV, =
4mklAk,. Giacalone and Jokipii noted that the index < also depends on the dimension
of the turbulence. The index 7y is % for a three-dimensional Kolmogorov spectrum. This
irregular magnetic field B is classified as an “isotropic” turbulent magnetic field.
Giacalone and Jokipii introduced another irregular magnetic field, which was called
“composite” turbulent magnetic field to represent the interplanetary magnetic field. The
composite magnetic field was a superposition of a slab component representing Alfven wave

propagation. The composite turbulence consists of one-dimensional component 6B, p(2)
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6§1D(Z) 6§2D(I,y)

Equation 2.2.14 | §, =0 Op=%and a, =1

Equation 2.2.16 | AV, = Ak, and v = 2 | AV, = 2rk,Ak, and v = §

Table 2.1: Conditions to obtain one-dimensional component 5§1 p(z) and two-dimensional
component 6 Byp(z, y).

and two-dimensional component 6 Byp (z,y) and is given by
8B(7) = 6B1p(2) + 6Bap(, v). (2.2.17)

Table 2.1 shows the conditions to obtain §B;p(z) and 6Byp(z,y). In table 2.1, Equa-
tion 2.2.14 expresses the phases and polarisations of plane waves and Equation 2.2.16 is
associated with the amplitudes of the plane waves.

Giacalone and Jokipii applied two kinds of magnetic fields, isotropic and composite
magnetic field, to the propagation of cosmic rays. The motion of the charged particles

along the total magnetic field is described by equation of motion,

ap _
dt

g(7 x B), (2.2.18)
where ¢ is the charge of the particle. Giacalone and Jokipii calculated the magnetic fields
from Equation 2.2.13 for the particle’s current position at each time step as it changes its
position, and so this method does not need magnetic field interpolation, whereas Honda
[11] sets magnetic fields at each lattice point initially, before following the trajectory of a
particle, and therefore in Honda’s method magnetic field interpolation was necessary.
Figure 2.4 shows the trajectories of two protons with different energy (1MeV=108¢V
and 100MeV=10%¢V) in turbulent magnetic fields. The magnetic fields are isotropic tur-

bulence in Figure 2.4. If the particle energy is higher, then the gyroradius will become

larger and the particles are more scattered compared to lower energy protons.
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Figure 2.4: Trajectories of two protons (1MeV=10%V and 100MeV=10%V) in turbulent
magnetic fields [9]. The dotted lines are magnetic field lines.

Giacalone and Jokipii were interested in how the diffusion tensors change with respect
to various parameters. Figure 2.5 shows the behaviors of the diffusion tensor with respect
to particle energy from 1MeV< E < 100MeV. Figure 2.5 (UP) shows perpendicular com-
ponent x, versus particle energy F and Figure 2.5 (DOWN) shows the ratio %IIL versus
particle energy E. They applied the simulation data to the least square method and ob-
tained k, o< E%%8. Figure 2.5 also indicates that the ratio Z+ does not change much with

particle energy E.

Figure 2.6 shows the behaviors of the diffusion tensor with respect to the correlation
length L.. The correlation length L. corresponds to 0.01 X Apqs (Amag: Maximum wave-
length) and 100 X Apim (Amin: minimum wavelength). In Figure 2.6, the correlation length
is

Lo=100"92  n=1,23,4 (2.2.19)

Figure 2.6 (UP) shows k, versus and correlation length L. and Figure 2.6 (DOWN) shows
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the ratio %‘I- versus correlation length L.. Giacalone and Jokipii used the least square
method and obtained x; oc L%, They also noted that the ratio is slightly dependent

upon the scale of the correlation length.

12 (]
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Figure 2.5: (UP) Perpendicular diffusion component «, vs. particle energy E. (DOWN)
The ratio %ﬁ vs. E. “o” represents isotropic magnetic field and “e” represents composite

magnetic field. [9].

2.2.3 Simulation by Casse, Lemoine and Pelletier (2001)

Casse, Lemoine and Pelletier [5] simulated cosmic rays diffusion in turbulent magnetic
fields. This section summarizes how they simulated the propagation of charged particles.

They set the three-dimensional grid space and placed magnetic fields on each grid point.
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The total magnetic fields B() consisted of a mean homogeneous field B, toward z-direction

and an irregular part 5§(F), as in the simulations by Honda [11], and Giacalone and
Jokipii [7] [8] [9],

B(7) = By + 6 B(7). (2.2.20)

The method of Casse et al. to create the irregular magnetic fields is similar to that of

Giacalone and Jokipii [9] except that they used a three-dimensional lattice. The irregular

part 5§(1") of the magnetic field was a superposition of isotropic plane waves, and was

defined as,

(2.2.21)

§B(F) = &k Z (k) A(E) exp [2i7Tk : 77] .
k

L mar

In Equation 2.2.21, k is a three-dimensional wavevector, & is a normalization factor, and
é(E) is a unit vector perpendicular to k. This ensures that 65 (7) is perpendicular to the
wavevector k, so V - 6B = 0 is automatically satisfied. A(E) is the amplitude of the field
component and is related to the spectrum of turbulence. For a three-dimensional Kol-
mogorov spectrum, (A2(k)) is proportional to k=113, so that the spectrum of turbulence
follows a Kolmogorov power law. The simulation of Casse et al. used periodic boundary
conditions, and set the period as L,,,,. The length between any two closest grid points is
Lyin = %IV:M, where N, expresses the number of wavenumber modes along one direction.
The typical N, for their simulation was 256.

Casse et al. defined the turbulence level given by

nN=-—g = (2.2.22)

Thus, when < 1 and §B(7) < By, By dominates the total magnetic field B(7) and
the turbulence was weak. On the other hand, when n > 1, § B(¥) dominated the total
magnetic field B(7), so B(7) became more isotropic. They calculated the diffusion tensors

for various turbulence levels.
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Casse et al. applied a Fast Fourier Transform (FFT) algorithm to Equation 2.2.21 to
reduce the number of calculations and to save computational time. FFT is more efficient
than Discrete Fourier Transform (DFT) algorithms, the difference between FFT and DFT
being the number of multiplications. If the number of data values in DFT is NV, the
number of multiplications is N2, whereas with the FFT, the number of multiplications
is reduced to Nlog, N. For example, the number of data is 2!° = 1024, the number of
multiplications in DFT is ~ 1.05 x 10°, whereas in FFT, it is reduced to ~ 1.02 X 10%.
However, the number of data values in FFT must be a power of 2.

The irregular part 6B of the magnetic fields for both the FFT method (Equation
2.2.21) and the method of Giacalone and Jokipii (Equation 2.2.13) [9] look very similar.
However, there are several differences. The method does not calculate the magnetic field
on a discrete grid beforehand; rather, the magnetic fields are calculated during particle
propagation from the sum of plane waves, as mentioned in Section 4.2.2

The spatial diffusion coefficient parallel to the mean magnetic field By is

= ol (2.2.23)

where 7, is the scattering time. The transverse diffusion coefficient perpendicular to the

mean magnetic field is

_ (Ax?) 1
Di=57%1 =3

2 Ts
1 + (wL'rs)2

(2.2.24)

where wy, is the Larmor frequency. Casse et al. plotted both parallel and perpendicular
components of the diffusion tensor versus a dimensionless rigidity p (Figures 2.7 and 2.8),

written in terms of gyroradius r, and the largest scale of irregularity Lmqq,

- zm‘g
max

. (2.2.25)

They also plotted the ratio of two diffusion components D, /D versus rigidity p (Figure

2.9 ). In Figures 2.7 and 2.8, they noticed that the FFT method and the method proposed
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by Giacalone and Jokipii are in agreement for the rigidity range pmin < p < Pmac, Where

Emin

Prmin = 22 and ppe = 2m. They noticed that the ratio D / D) is independent of p for
p < 1, which is consistent with the simulation by Giacalone and Jokipii [9] (Figure 2.9).
Casse et al. applied this cosmic ray diffusion simulation to various astrophysical phe-
nomena, such as supernovas, superbubbles and jets from active galactic nuclei. They
firstly applied the simulation to supernova remnant (SNR) shocks. Kirk and Dendy [14]
reviewed cosmic ray production in supernova remnants, and according to their review,

Galactic supernovas produce cosmic rays with an energy range up to about 104eV to

10'7eV. Casse et al. found that the maximum cnergy for acceleration is

1.8 x 102 B \'(_t (B eV (2.2.26)
CEPR A 9\102) \Booyr) \1uG/) """ -

where (3, is the shock velocity over the speed of light. In Equation 2.2.26, g is a scattering

. t . 0 . ) . .
function defined as =, where ¢, is Larmor time or gyro-time and 7, is scattering time.

Superbubbles are huge cavities produced by about 100xSNR shock waves created
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around massive star (OB stars) associations in the interstellar medium. Parizot and

Drury [20] estimated the typical superbubble radius as

1
. L 5 o 5 2
Rgp(t) = 66pc ( T S_l) (1cm—3) . (2.2.27)

The maximum energy for acceleration in superbubbles is

B 32
esp =~ 4 x 1012 Zg (W) tiz eV (2.2.28)

In this equation, 5z, is the superbubble life time in mega year units and g is the scattering
function, i.e. %, where 71, is Larmor time and 7, is scattering time.

Extra-galactic jets from quasars are thought to be the a possible source of ultra-high
energy cosmic rays, which have energy above 10'®eV. Casse et al. applied their simulation
to Cygnus A and Centaurus A. In the Cygnus A case, inside the jet radius R; = 1pc, the

strength of the magnetic field B is about 107°T. The maximum energy for acceleration is

€maz = 10213 ZT (%) (%) eV. (2.2.29)

In this equation, I' is the jet’s Lorentz factor, and in this case I' ~ 10 is needed for a

cosmic ray energy larger than 102%eV.

2.3 Summary and Conclusion

Section 2.2.1 to 2.2.3 review three simulations of cosmic ray diffusion in turbulent magnetic

fields. The following is a summary of three simulations.
1. Simulation proposed by Honda (1987)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

Etotal = Eo + 8B.
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/1

b) Three-dimensional grid space is used in the simulation, so the interpolation

between the grid points is necessary.

(c) V x A is applied to create irregular magnetic fields SB(7).
2. Simulation proposed by Giacalone and Jokipii (1999)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

gtotal . EO + Jé

(b) The simulation does not use three-dimensional grid space. Instead they calcu-

lated magnetic fields for every step.

(c) The superposition of plane waves is used to create irregular magnetic fields

SB(F).
3. Simulation proposed by Casse, Lemoine and Pelletier (2001)

(a) The total magnetic field consists of regular and irregular magnetic fields, namely

gtotal = EO + 6-§

(b) Three-dimensional grid in k-space (k: wavenumber) is used in the simulation,
generated by FFT methods, so the interpolation between the grid points is

necessary.

(c) The superposition of plane waves is used to create irregular magnetic fields

§B(F).

The method Honda used to create irregular magnetic field is diflerent from the two
other simulations as he used V x A to create §B. The simulation by Giacalone and Jokipii
and the simulation by Casse et al are very similar to each other because both simulations

applied the superposition of isotropic plane waves to create irregular magnetic ficlds 6 B (7).
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However, Giacalone and Jokipii did not use three-dimensional lattice, whereas Casse et
al. used the k-space lattice (k: wavenumber). Therefore, even though Casse et al. used a
Fast Fourier Transform algorithm to reduce computational time, the Giacalone and Jokipii
simulation may be faster than the Casse et al. simulation. For this reason, this research
selected two simulations, namely the simulation proposed by Honda and the simulation
proposed by Giacalone and Jokipii. These two simulations were repeated and results

analysed.



Chapter 3

Honda’s Simulation

3.1 Summary of Honda’s simulation

This section summarizes Honda’s simulation [11] of cosmic ray propagation in turbulent
galactic magnetic fields. He calculated diffusion tensors based on the positions of the
cosmic rays in the turbulent galactic magnetic fields.

The turbulent magnetic field gtotal (7) is composed of the mean magnetic field B,€, and
the irregular magnetic field 6B (7). To create an irregular magnetic field, Honda used a
three-dimensional lattice and placed random vector potentials A‘(F) at each lattice point.
The vector potentials are sampled from Monte Carlo simulation. The vector potentials
are isotropic and the potentials obey exponential distribution. Then he took the curl of

the vector potentials to create the irregular part of the magnetic fields, namely
§B(F) =V x A(7). (3.1.1)

The curl of the vector potential ensures vV.B equals to 0.
To create Kolmogorov-like magnetic fields, Honda set the lattice space to have grid
spacings. The magnetic fields placed on each grid point had a magnitude which depended

37
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upon the grid spacing, the smaller magnitude for a smaller grid spacing, and the larger
magnitude for the larger grid spacing. The magnetic field on the i-th smaller grid spacing
was proportional to L; = 107%2 Ly, where Ly is the scale of turbulence and corresponds to
the maximum grid spacing. Then the next smallest grid spacings were Lo/10Y/2, L /101
and so on. After the magnetic fields with corresponding magnitudes on different grid
scales were placed on the grid points, the magnectic fields at each grid point was vectorially
added to create the irregular part of the magnetic field. For a Kolmogorov spectrum, the
weighting of the field energy density of the superimposed magnetic fields is proportional
to Lf/ g

Honda calculated the positions of particles according to the equation of motion. To
draw smooth trajectories in the simulation, setting an appropriate time step At was
important. He found that At = %’; was best for the time step, where R, is the gyroradius

of the particle and c is the speed of light.

In order to calculate the diffusion tensor K;; (i = z, y, z and j = z, y, 2), Honda
projected a number of particles into the magnetic fields and took the averages of distances
for each time step. Then the diffusion tensor components were calculated from the plots

of squared average distance versus time.

(Zz> = 2K|t, (3.1.2)

(@® +y%) = 4Kt (3.1.3)

where K is the diffusion tensor component parallel to the z-direction and K is the diffu-
sion tensor component perpendicular to the z-direction. Each component of the diffusion

tensor was the slope in the average squared distance versus time plot.
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3.2 Repeating Honda’s Method (The case of single
grid space)

Section 3.2 describes how Honda’s simulation was reproduced for the case of a single grid

spacing for the magnetic field, and discusses the results of the simulation.

3.2.1 Producing and Sampling Magnetic Fields

Z A

Ty

N\

/ (122 (2,2,2)/

(1,1,2) 212 /

/

1.2 2.21)

—.
a1 (VAR X

Figure 3.1: Single grid spacing three-dimensional lattice space. Magnetic fields B'total(vf)
are placed on each lattice point. In order to create Kolmogorov-type magnetic fields,
lattice spaces which have different scale of grid spacing are used.

This section describes how the magnetic fields on the grid points are set. Firstly, the
three-dimensional lattice was set to place magnetic fields (Figure 3.1). Periodic boundary
conditions were used to repeat the lattice. Honda sampled the vector potentials randomly
to calculate irregular magnetic field §B. Honda sampled from an cxponential distribution.
However, since the directions of magnetic field lines are isotropic, it would be better to

sample both positive and negative vector potentials. Hence the normal distribution was

used in this study to allow for both positive and negative values of vector potentials. After
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sampling the vector potentials /—1‘,

§B=V x 4, (3.2.1)

was calculated. The algorithm of Equation 3.2.1 is as follows. Firstly the vector potentials
AU k= (Au k> A” o A% ) were sampled from the Monte Carlo simulation. The index number
i, j, k represents the grid point where the vector potential is located. According to the

definition of V x A = (BZ,, B B%y), -, y- and z-components are

ijks “ijks

. (dAka dAka)

L dy dz
dA% dA?,
(— z]k: 1]k
- (e o2
. _ (dA%k dAngc)
igk dx dy

The root mean square (r.m.s.) value of B was set to be 1.0 x 10720 T(=1.04G) and of
A was set to be 1.0 x 1071%T-pc. The intervals Az, Ay, Az, which correspond to grid
spacing, were 1.0 pc. The infinitesimal vector potential A[fijk(f') along the ¥ = (z, vy, 2)

direction was calculated as

@
DAY Aiyx — Aijk

Axr (1.0 pc)
AV L _ Ak — Aji (3.2.3)
Ay (1.0 pc) -
DAZ, _ Aijit1 — Aiji
Nz (1.0 pc)

The periodic boundary condition was applied in the simulation so that the index number

repeated after the end of grid points, and so the calculation of Eijk(ﬂ = (B, Bg’jk, Biy)

was
T _ AAz]k A‘Agjk _ Afj+1k: - Afjk _ Agi!jk+1 A
ik = T Ay Az (1.0 pc) (1.0 pc)
BY _ AAY, AAfjk _ Al — Aljk B Afviie — Afr (3.2.4)
ik = TN, Az (1.0 pc) (1.0 pc) o
z AA’Lka AA;cjk _ Al-’rl]k A A%+1k - Aif]k

ik = TAz Ay (1.0 pc) (1.0 pc)
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The following two cases were compared.

(a) DISTRIBUTION OF Byjyecus (b) DISTRIBUTION OF B,
LO[" ot samples= s2vee L0 of samples= agve8 ' |
Lena=1.0[pc} 1 - Lgaa=1.0[pe]
Bueoxare= 6.42E-03[1G) Byaversge= 2.52E~18[1C)
Bareorarme= 1.00E+00[1G] 1 B, = 2.01E+00[uG]
S 06 E 3 o5l .
& &

0.0 ~ P I , st 0.0 : i e
-4 -2 0 2 4 -4 -2 0
1I=Bmu [}‘c] y=Bl [“'c]

Figure 3.2: Distributions of z-component of magnetic fields. (a) Distribution of Bgjrect -
Blireet are sampled directly from Monte Carlo simulation. (b) Distribution of B,. Vector

Rotentials are initially sampled from Monte Carlo simulation and B is caleulated from
V x A. The solid curves were calculated from Equation 3.2.5

1. The magnetic fields are sampled directly (CASE 1).

2. Vector potentials are sampled, and the magnetic fields are calculated from VxA

(CASE 2).

The calculation of CASE 1 simulation is faster than that of CASE 2 simulation. Therefore
if the magnetic fields sampled directly from the Monte Carlo simulation CASE 1 agree
with the magnetic fields from CASE 2 simulation, it would be better to choose CASE 1
for simulation, to reduce computational time. Figure 3.2 shows the distribution of the z-
component of the irregular magnetic fields by using a Monte Carlo simulation. The smooth

solid curves in Figure 3.2 were calculated from normal distribution function defined as

f(B) = —expP( = )2] (3.2.5)
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Figure 3.2 (a) shows the distribution of Bgirectr sampled directly from the Monte
Carlo simulation (CASE 1), and Figure 3.2 (b) shows the distribution of B, which was
calculated by V x A (CASE 2). Figure 3.2 (a) shows that the distribution of Bgirec s
is consistent with the normal distribution curve (Equation 3.2.5) with B, ,ms = 1.0uG,
whereas in Figure 3.2 (b), the B, distribution from CASE 2 simulation has a different
distribution pattern. The B, distribution spreads morc widely than Bgipect» distribution
and B, distribution agrees to the normal distribution curve (Equation 3.2.5) with the r.m.s.
value, Bgirect,zrms = 2.01G. The calculation of VxA may affect the B, distribution and
By rms. Therefore, the normalisation of By by By .ms = 2.0uG was implemented and the
B, histogram which agreed to the normal distribution curve with B, rms = 1.0uG was

obtained.

3.2.2 Verifying the magnetic fields

It is important to check whether the sampled magnetic fields are valid before they are used
as the irregular magnetic fields §B. This section examines the magnetic fields sampled in
the Monte Carlo simulation. Two tests were implemented. The first one is to test whether
the calculation of V x A produces an appropriate magnetic field B. Generally speaking,
any magnetic field B must satisfy the relationships explained in the following paragraphs.
Suppose an initial field line is directed in the z-direction in a cylindrical coordinate
system,
B; = |B|é,. (3.2.6)
One representation of the vector potential from the initial magnetic field is

| Bi|
2

A=—

Péy, (3.2.7)

where (p, ¢, 2) are cylindrical coordinates. The magnetic field finally created from this
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vector potential is

B; =V x A (3.2.8)

(1,21,1) (11,21,1) (21,21,1)

1,11,1) (11,11,1) @L1LD

C\@

(1,1,1) (11,1,1) (21,1,1)

(a)

Figure 3.3: (a) two-dimensional schematic diagram of vector potential lines in each cube.
(b) Testing magnetic fields inside the cube to avoid “edge problem”.

If the magnetic field is electro-magnetically correct, the initial magnetic field must
be consistent with the final magnetic field, ie, |B:| = |§f| To test the magnetic fields
produced by V x fT, the edge of the lattice must be considered. Since the simulation uses
periodic boundary condition for the lattice, the vector potential lines at the boundary do
not fit to those of the next lattice cube. Figure 3.3 (a) is a two-dimensional schematic
picture of this problem involving the implementation of the first magnetic field test. The
box in Figure 3.3 (b) represents part of the lattice of 10 x 10 x 10 grid points. Figure 3.3 (a)
shows that the vector potential lines in a box are inconsistent with those of neighbouring

boxes. Therefore, the test was implemented only inside the initial cube to avoid this
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DISTRIBUTION OF By,

20[ 4 of samples=32768 @ s
| Le=1.00E+00[pc] ]
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Figure 3.4: Distribution of By. Input value B; = 1.0uG

“edge problem”, as shown in Figure 3.3 (b). Figure 3.4 shows that the distribution of final
magnetic flelds By in the first magnetic field test. Input value was 1.0 x 1071 T(= 1.0uG),
and the total grid points were 32 x 32 x 32 = 32768 points. The distribution of the By
was consistent with the initial value |B;-|, namely 1.04G. Therefore, the first test concludes
that the procedure of producing magnetic fields by V x A is valid.

The second test comes from Maxwell’s equations (Faraday’s law). According to the
Maxwell’s equations and because magnetic fields have no point source to flow from, all

magnetic fields must satisfy this condition,
V.-B=o. (3.2.9)

Testing the magnetic fields produced by the Monte Carlo simulation for the condition 3.2.9

was implemented. Numerical calculation of V.-Bis explained as follows. By definition,
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A B is
o o OBZ, 0BY. 0B%
. Bi = ijk ijk )
V- Bigk 5z T Oy 0z

(3.2.10)

The intervals Az, Ay, Az were set to be 1.0pc in this test. The infinitesimal magnetic
field ABf;, along the 7= (z, y, z) direction is calculated as

x T T
ABijk o Bi+1jk — By,

Az (1.0 pc)

B85 _ By~ By (3.2.11)
Ay (1.0 pc)

ABj _ Bl — Bl
Az (1.0 pc)

Finally the numerical result of the V-Bis obtained,

B. ik ik | DB
kT A Ay AV
ik — Bk | Bliswe — Bl | Bl — Bl
(1.0 pc) (1.0 pe) (1.0 pc)

The test made a comparison among following three simulation cases:

— — ABLB ABy
V. By = +

(3.2.12)

1. The magnetic fields are sampled directly (CASE 1).

2. Vector potentials are sampled, and the magnetic fields are calculated from V x A

(CASE 2).

3. Vector potentials are sampled, and the magnetic fields are calculated from V x f—f,

and then all magnetic fields are normalized by the root mean square (r.m.s.) value

of B (CASE 3).

The r.m.s. value of the magnetic fields was set to be 1.0 x 1071°T (= 1.0pG) for this test.
The number of the magnetic fields was n = 32 x 32 x 32 = 32768 and the mean values of
the V - B were calculated for each case. If the mean value of the V - B was close to 0, the

set of the magnetic fields will be realistic for the simulation.
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(CASE 1) (CASE 2) (CASE 3)

V - Byireot V-B=V. (€7 X /_l') V-B=V. (6 X ff)(normalized)

mean | —1.738 x 1072 T/m | —1.942 x 107%3 T/m | —5.259 x 10~ T/m

o 7.799 x 1077 T/m | 1.344 x 102 T/m | 6.694 x 102" T/m

o/y/m | 4.308 x 1072 T/m | 7.425 x 1072 T/m | 3.698 x 10~2 T/m

Table 3.1: Mean, standard deviation and standard error of V- B for 3 cases. ¢ is standard
deviation and o/+/n is standard error.

Table 3.1 shows the mean value, the standard deviation and standard error of V.Bin
three cases. Compared to the mean value, standard deviation and standard error of CASE
1V xB , those values of V x B calculated from CASE 2 and CASE 3 simulations are small.
CASE 2 and CASE 3 have (V- B) < o, i.e. (V- B) is close to 0. Even though sampling
the magnetic fields directly from the Monte Carlo simulation can reduce the number
of calculations and save computational time, the magnetic fields from the B=VxA4

calculation are more valid than CASE 1 magnetic fields from the the electromagnetic

point of view.

3.2.3 Trajectories of charged particles in the magnetic fields

After testing the magnetic fields, the position of a charged particle in the turbulent mag-
netic field was calculated by using the equation of motion. When the particle moves inside
the cube, the magnetic field at the position of the particle was interpolated. When the
motion of the charged particle is considered, it is important to set the time increment for
the numerical integration in the simulation.

A charged particle entering a uniform magnetic fields moves helically along the mag-

netic field lines as shown in Figure 3.5 (a). The gyroradius of a charged particle whose
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A z—direction

l

= B: Magnetic
field line

7
D
D
=

Rg: Gyroradius

(a) (b)

Figure 3.5: (a) Schematic diagram of the motion of a charged particle along uniform
magnetic field directing z-direction. (b) Two-dimensional view of the motion from z-
direction.

mass is m is given by,

__ ymusinf

ﬁ 3.2.13
B (3.2.13)

g

where 7 is Lorenz factor and v is a speed of the particle. |§ | is the magnitude of the
magnetic field and 4 is the pitch angle. The position of the particle after time ' =t + At

is given by

7t + At) = 7(t) + AT
(3.2.14)
= 7(t) + U(t) At
To describe the particle trajectory, two things must be considered, the first is setting the
step size At for the simulation and the second is to physically correct for the artificial
increase of radial velocity when the trajectory is calculated. Supposing that a particle

moves in & circular orbit with the radius R,, shown in Figure 3.5 (b). |A7] is given by

AGR,, then the step size At is given by

(3.2.15)
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V+dV:

dVv:
Change
in

= velocity

V: Current velocity

\//

Figure 3.6: Unphysical increase of radial velocity in circular motion. A charged particle
does not circulate but it deviates from the circular orbit and moves spirally.

In order to save computational time and to draw a smooth trajectory, it is necessary to set
an appropriate Af. Honda found that Af should be as small as 7/1800 = 1.745 x 1073
rad or 0.1°.

The second thing to be considered is the physical problem that the trajectory of a
particle deviates from a circular orbit when it moves. Figure 3.6 shows how the direction
of velocity vector changes and the particle deviates from circular orbit. The static magnetic
fields should change only cosmic ray direction and but not its speed. However as shown
in Equation 3.2.16, the change in particle velocity A7 is added to current velocity Ueyrr,

the magnitude of the new velocity increase.
Unew = Veurr + A’U, I'Unew| b |6curr| (3216)

This causes a change in the speed of the cosmic ray and its deviation from a circular
orbit, as shown in Figure 3.6. To avoid this problem, the following treatment should be
implemented. Supposing the initial velocity is #;, and the Lorentz force produces the
change in velocity A7, the new velocity ¥, will be produced by adding A to ;. After the

new velocity ¥, is created, ¥, is normalised such that its magnitude, ||, is equal to that
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of the old velocity || since in this simulation we are only interested in ultra relativistic

particles (|7] = ¢). This normalisation of new velocities is repeated every time step, namely

4

7 :  Initial velocity
Uy = U1 + AU, Ty = (Tac)/|Ts]

< Uy = Uy + AT, 75 = (T5¢)/|Ts) (3.2.17)
Uy = U3 + AV, Uy = (Usc)/|T4]

After these two treatments were done, the simulation was carried out to draw the
trajectory of a charged particle in the turbulent magnetic field. In the simulation, each
particle starts from the origin (0, 0, 0), but the direction of particle’s velocity is arbitrary.

Table 3.2 shows the initial values of the cosmic ray energy and the magnetic field in the
simulation. In Table 3.2, a proton is chosen as the particle injected into the magnetic field
lattice. The range of the proton energy E is 101%¢V< E < 10'7eV and the corresponding
gyroradius range for By = 1071°T is 0.01pc< R, < 100pc. The root mean square (r.m.s.)
value of the irregular magnetic field, |6 B,ms|, adopted in these simulations is 107° T. The

Lorentz factor v for E = 10 €V is calculated as

E = ym,c? (3.2.18)

E 1015 eV
= = = 1.066 x 10° 3.2.19
7= T T 938 MeV 5 S

From Equations 3.2.13 and 3.2.19, the gyroradius R, for E = 10'%eV is

ympv sin 6

= 3.339 x 10'¢
eB X m

Rg
(3.2.20)

= 1.082 pc

The angle 6§ = 90° was chosen so that R, is the maximum gyroradius for this energy.
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Particle proton (m, = 938 MeV/c?)
Energy, E 108eV< E < 10'7eV

|6 B s 10710 T

R, 0.01pc< Ry < 100pc

Grid space, Lyin 1.0pc

Step size, A\t 1,9 x 10%sec< At < 1.9 x 107sec
Number of grid points | 32 x 32 x 32 = 32768

Table 3.2: Some important values of the cosmic ray and the magnetic fields in the simu-
lation

The step size At is calculated by Equation 3.2.15 and the corresponding range of step
size for the energy range is 1.9 x 103sec< At < 1.9 x 107sec. The number of steps in the
simulation is 5 x 10° and trajectory of cosmic ray is displayed at every 100 steps. The
number of grid points is 32 x 32 x 32 and the periodic boundary condition is used, so that
the magnetic fields repeat every 32-grid.

I consider four possibilities:

1. Vector potentials A are sampled at grid points, and magnetic fields B are calculated

from V x A, and interpolated between grid points (CASE 1).

2. Magnetic fields are sampled directly at grid points, and interpolated between grid

points (CASE 2).

3. Vector potentials A are sampled at grid points, and magnetic fields B are calculated

from V x A, but are not interpolated between grid points (CASE 3).

4. Magnetic fields are sampled directly at grid points, but are not interpolated between

grid points (CASE 4).
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x A Interpolation

v
CASE1| O 0O

CASE 2 | x O

CASE 3| O x

CASE 4 | % X

Table 3.3: The four cases of the simulation. () represents the calculation is implemented.
x represents the calculation is not implemented.

Table 3.3 shows which of the four cases have been interpolated. In CASE 1 the magnetic
field is potentially the most realistic turbulent magnetic field among the four cases, but
CASE 1 takes much more computational time. In CASE 2 the simulation may not produce
a realistic magnetic field because field 6B is directly sampled, and so the magnetic fields
do not exactly satisfy the condition, V- B = 0. In CASE 3 and CASE 4, the turbulent
magnetic fields are uniform inside each cube because the magnetic field inside a cube is
not interpolated but is set to that at the nearest grid point. However calculations using
CASE 3 or CASE 4 for simulation are much faster than CASE 1 or CASE 2 because no
interpolation subroutines are included. In practice, if any of the results from CASE 2,
CASE 3 and CASE 4 are similar to those at CASE 1, any one of the three methods could

be used to simulate cosmic ray diffusion in turbulent magnetic fields.

Figures 3.7 to 3.12 show the examples of trajectories. In the simulation, the total
magnetic field By consists of mean and irregular magnetic field, and the mean part By

is 10719T and the r.m.s. value of the irregular part |5§T,,Ls| is 0.5 x 1071°T.

Figure 3.7 (a) shows an example of the trajectory of a low energy proton (E = 1013eV)
in CASE 1 and Figure 3.7 (b) shows a trajectory of a low energy proton in CASE 2. In

Figure 3.7 (a) and (b), the proton moves helically along the magnetic field lines due to
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(a) (CASE 1) Bm,,—B,,-l-dB E= 10‘3ev {b) (CASE 2) me—B.,-i-dB E=10"%V
1.0[

F'oedt=1.89E-0B(pc) © cedt=1.89E-05(pc)]
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Figure 3.7: (a) (CASE 1) Trajectory of 10*3eV proton. (b) (CASE 2) Trajectory of 1013eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 1071°T. The
grid spacing (=turbulence scale) L4 is 1.0pc.

the small gyroradius (Ry ~ 0.01Lgpq).

Figure 3.8 (a) shows the trajectory of a low energy proton (E = 10'%¢V) in CASE 3
magnetic field and Figure 3.8 (b) shows the trajectory of a low energy proton in CASE
4 magnetic field. In CASE 3 and CASE 4, the magnetic fields inside the cell are not
interpolated, so the magnetic fields inside the cell are uniform. In Figure 3.8, the low
energy protons follow the magnetic field with ~ 0.01Lg.q of gyroradius. However, the
trajectories are not smooth in Figure 3.8, because of the magnetic fields inside the cell not

being interpolated.

Figures 3.9 and 3.10 show examples of trajectories of higher energy protons (F =
10%eV). The gyroradius of 10'eV proton for By = 1071°T is ~ 1.0pc, and is comparable

to grid spacing Lgyq.

Figures 3.11 and 3.12 show examples of trajectories of higher energy protons (E =

10'eV). In Figures 3.11 and 3.12, the proton energy is sufficiently high that it is less
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(a) (CASE 3) BL,,,,—BD+6B E= 104V (b) (CASE 4) me—B°+6B E=10"%V
ST " cedt=1.8DE~06(po)] 1 " ovat=1.8DE-05(pe);
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Figure 3.8: (a) (CASE 3) Trajectory of 10'%V proton. (b) (CASE 4) Trajectory of 1013eV
proton. The mean magnetic field By is 107'°T and the r.m.s. value of 6B is 10719T. The
grid spacing (=turbulence scale) L4 is 1.0pc.
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Figure 3.9: (a) (CASE 1) Trajectory of 10*%eV proton. (b) (CASE 2) Trajectory of 10%%eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 1071°T. The
grid spacing (=turbulence scale) Lg.q is 1.0pc.
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Figure 3.10: (a) (CASE 3) Trajectory of 10*eV proton. (b) (CASE 4) Trajectory of 10%eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 85 is 10~1°T. The
grid spacing (=turbulence scale) Lg.q is 1.0pc.
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Figure 3.11: (a) (CASE 1) Trajectory of 10'7eV proton. (b) (CASE 2) Trajectory of 1017eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 10~1°T. The
grid spacing (=turbulence scale) L4 is 1.0pc.
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Figure 3.12: (a) (CASE 3) Trajectory of 107V proton. (b) (CASE 4) Trajectory of 10'7eV
proton. The mean magnetic field By is 107°T and the r.m.s. value of B is 10 '°T. The
grid spacing (=turbulence scale) L4 is 1.0pc.

influenced by structure on small scales magnetic field, whereas in the low energy cases

the protons tended to follow the magnetic field lines. Moreover, there seems to be no

apparent difference among four cases in Figures 3.11 and 3.12 due to the smaller influence

from the magnetic fields (note different scales of z- and z-axis), whereas in the low energy

case shown in Figures 3.7 and 3.8, the appearance of the trajectory depends on how the
magnetic field is sampled.

3.2.4 Calculation of diffusion tensor (Etot = 5§)

Section 1.4 explains that the propagation of cosmic rays in turbulent magnetic fields can
be described by Equations 1.4.1 and 1.4.3. Kj;; in Equation 1.4.1 and 1.4.3 is the diffusion
tensor, which describes the particle motion in a turbulent flow. Diffusion tensors for
cosmic ray proton propagation in turbulent magnetic fields were investigated. First for

magnetic fields which consisted only of an irregular magnetic field. The diffusion tensor

55
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Figure 3.13: Schematic diagram of trajectories and displacements of the particle in the
first three steps.

was calculated from the positions of protons at various times. The method of calculation
of the diffusion tensors is explained as follows. Figure 3.13 is a schematic diagram of
particle trajectories and displacement for the first three time steps. The first particle’s

displacements for each pre-determined time interval At erval are

1 1 1 1 1
Ty, Ty, T3, T4y 'y Ty intervalsy (3221)

where the superscript refers to the particle number and the subscript refers to step number.
Then the average squared displacement for each time interval was calculated. The example

of the average displacement for each time interval is

@@= @ @ @ me) 3:222)

where N is the number of the particles injected, and N was set to be 1000 in the simulation.
The number of steps in the trajectory of each particle was 5 x 10%, and the calculation of
the average squared displacement was implemented after every Atipierval = 2 X 10* time
steps. Therefore n-intervals in Equations 3.2.21 and 3.2.22 is g—:}—%ﬁ = 250.

When the simulation was implemented, the four different cases were compared. The
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summary of the four cases is shown in Table 3.3.

(a) E=10"%V \ (b) E=10""eV
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Figure 3.14: (z?) as a function of time. (a) E = 10'%eV. (b) E = 10'eV. The four cases
corresponding to the lines are explained in Table 3.3.

Figure 3.14 shows the z-component of average squared distance (z?) as a function of
time. Figure 3.14 (a) is for 10'3eV protons and Figure 3.14 (b) is for 10'7eV protons.
In Figure 3.14 CASE 1 and CASE 2 plots are steeper than CASE 3 and CASE 4 plots.
The difference between CASE 1, 2 and CASE 3, 4 is in the interpolation. In CASE 1
and CASE 2, the magnetic fields inside the cell are interpolated, whereas in CASE 3 and
CASE 4, the magnetic fields are not interpolated and the magnetic fields inside the cell are
uniform. The difference in the results between interpolation and non-interpolation cases
in Figures 3.14 (a) are clearly caused by differences in the interpolation method. At low
energies, in the non-interpolation case particles quickly travel across a cell having uniform
field, while for non-uniform B il takes longer to cross a cell.

Figure 3.15 is the schematic diagram of the magnetic field distribution in z-direction
for an extreme case. The dots in the upper diagrams of Figure 3.15 indicate the magnetic

field in the z-direction at grid points and the solid lines in the upper diagrams of Figure
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3.15 show the magnetic field that would be used in a simulation. The lower diagrams of
Figure 3.15 show |6§2|. If magnetic field interpolation is not implemented inside the cell,
the value of the magnetic field is the same everywhere inside the cell as shown in the upper
diagrams of Figure 3.15 (a). As a result, in this extreme example the mean square value
of the magnetic field (§B2) becomes 1 as shown in lower diagram of Figure 3.15 (a). On
the other hand, if magnetic field interpolation is implemented inside the cell, as shown in
the upper diagram of Figure 3.15 (b), the mean square value of the magnetic field (§52)
becomes 1/3. Even though the fields were sampled such that they should have the same
(6B?), in practice, differences in (6B2%) between the interpolation and non-interpolation
cases arise. This r.m.s. value difference may cause the difference between CASE 1, 2
and CASE 3, 4 in Figure 3.14. Therefore, it might make sense for the magnetic fields in
CASE 1 and CASE 2 to be normalized by the root mean square value of the magnetic
fields |5§Tms|, so that the average values of the magnetic fields will become 1, and then
hopefully the plots in CASE 1 and CASE 2 could become consistent with those of CASE

3 and CASE 4.

Figure 3.16 is the plots of (z?) as a function of time where CASE 1 and CASE 2
magnetic fields in Figure 3.16 are normalised by the r.m.s. value |6§,ms|. The normalized
CASE 1 and CASE 2 curves in Figure 3.16 become lower than the CASE 1 and CASE 2
curves in Figure 3.14. As a result, the normalized CASE 1 and CASE 2 curves in Figure
3.16 (a) become lower than CASE 3 and CASE 4. On the other hand, the CASE 1 and
CASE 2 curves in Figure 3.16 (b) become close to the CASE 3 and CASE 4 curves, but the
CASE 1 and CASE 2 curves are still not consistent with the CASE 3 and CASE 4 curves.

Therefore, normalization after implementing interpolation was not used in the simulation.
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Figure 3.15: The schematic diagram of the magnetic field distribution (upper diagrams)
and the squared magnetic field distribution (lower diagrams). (a) No interpolation case.
(b) Interpolation case.
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Figure 3.16: (z2) as a function of time. (a)E = 10"%eV. (b) E = 10'"eV. The magnetic
fields in CASE 1 and CASE 2 are normalised by the r.m.s. value |§Bpns|-
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The diffusion coefficient K, was calculated from Equation 3.2.23,

@ (3.2.23)

K, = .

N | =

The least squares fitting method was applied to the calculation of %ﬁ in the simulation.
The values of the diffusion coefficients can be estimated from the appearance of the proton’s
trajectory using Random Walk Theory. For higher energy, the gyroradius becomes larger
than the grid spacing (R, > L).

Figure 3.17 shows the schematic diagram of the trajectory of a proton with a high

energy inside the cell. In Figure 3.17 (a), the change in angle §6 is approximately

L
80 ~ o (3.2.24)

where R, is proton’s gyroradius and L is the minimum grid spacing of the lattice. After

the proton propagates through N cells, the final scattering angle in Figure 3.17 (b) is
0% ~ N(36)? (3.2.25)

For one scattering mean free path, the final angle needs to be 6y ~ 7. From Equations

3.2.24 and 3.2.25,

N~ 772(&)2 (3.2.26)

Therefore, the proton’s mean free path A becomes approximately,

(7TR9)2

scatt = NL =
Ascatt T

. (3.2.27)

Using Equation 3.2.27 and Quasi-linear approximation K =~ %)\smttv, the diffusion coeffi-

cient for higher energy protons Kj;g, becomes

1 R?
Khigh ~ g/\scattv ~ (‘—g)’U- (3.2.28)
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Figure 3.17: Schematic diagram of trajectory of a high energy proton. (a) Trajectory in

one cell. 66 is a change in angle per one cell scattering.

(b) Trajectory in N cells. 8, is

the final angle with respect to the initial proton direction after N-cell scattering.

We shall next consider the case of low energies where the gyroradius becomes smaller

than the grid spacing (R, < L). Figure 3.18 shows the

schematic diagram of trajectory

of a proton with low energy inside the cell. The mean squared distance of proton after it

propagates through N cells is

(2%) ~ NL?

- /(2% ~ VNL

From Equation 3.1.2,

The time for crossing N cells t is

(3.2.29)

(3.2.30)

(3.2.31)

(3.2.32)
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i |

L: grid spacing

Figure 3.18: Schematic diagram of trajectory of a low energy proton. The gyroradius for
a low energy proton is smaller than a grid spacing.

From Equations 3.2.29, 3.2.31 and 3.2.32, the diffusion coefficient for low energy protons

K, approximately becomes

vtL1?

(A~ NL? ~ ~ vtL

v Kigw =~ Lo (3.2.33)

In the simulation, the grid spacing is 13% ~ 0.03pc and v ~ ¢ = 10~8pc/s. For protons
with E = 10'7eV, the gyroradius is ~ 100pc, and using Equation 3.2.28, the diffusion

coefficient would be

R 2
Khigh ~ (—g)’l) = ﬂ X 10_8
L 0.03 (3.2.34)

~ 1072 pc?/s.

For a proton with E = 1013V, the gyroradius is ~ 0.01pc, and using Equation 3.2.33, the
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diffusion coefficient would be

Kiow =~ Lv = 0.03 x 1078
(3.2.35)

~ 10710 pc?/s.

E=108eV | E =107V

K, [pc?/sec] | K, [pc?/sec]

(CASE 1) | 1.11 x 1010 | 4.51 x 10~

(CASE 2) | 7.64 x 10711 [ 9.72 x 1075

(CASE 3) | 9.71 x 1071 | 1.78 x 107

(CASE 4) | 8.49 x 101 | 6.78 x 107%

Table 3.4: The diffusion tensor components for four cases of the simulation. K, represents
z-component of diffusion tensor. The total magnetic field is By = 0B and is isotropic.
Table 3.4 describes the values of 10'%eV and 10'7eV diffusion coefficient in four cases.
The diffusion tensors of 10*3eV protons are approximately 1071° pc?/s, which is reasonably
close to the approximation expressed by Equation 3.2.35. However the diffusion coefficients
of 1017eV protons are smaller than the approximation 3.2.34. The diffusion coefficient value
of CASE 1 is the closest value of the four cases. Therefore the CASE 1 simulation will be

better to use to obtain precise values of diffusion coefficient.

3.2.5 Calculation of diffusion tensor (Etot = Byé, + 5§)

In Honda’s simulation, the turbulent magnetic fields were composed of irregular plus
uniform magnetic fields. In this section the diffusion tensors in the magnetic field composed
of the two kinds of magnetic fields are investigated. Figures 3.19 to 3.21 are the plots of

2?) and (2% + y?) as a function of time. Honda introduced the turbulence level fE ., to
turd
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Figure 3.19: (a) (2*) as a function of time. (b) (z? + y?) as a function of time. The
turbulence level is fH, = 0.5 and the proton’s energy is E = 10'%eV. The four cases
corresponding to the lines are explained in Table 3.3.

explain how the diffusion tensor depends on the magnetic turbulence. The turbulence

level fH, is

|0 Byms|

H
f turb — BO

(3.2.36)

Equation 3.2.36 describes how much the irregular magnetic field 6B is related to the total
magnetic field Etotal- If ftf{rb <1, 6B dominates the total magnetic field Etota, and Etotal

becomes more isotropic.

In Figure 3.19 the turbulence level is fX | = 0.5 and the proton’s energy is E = 1013eV.
In Figure 3.20 ], = 0.5 and E = 10'%V, and in Figure 3.21 f¥ . = 0.5 and E = 10'7eV.

The four cases corresponding to the lines are explained in Table 3.3.

Figure 3.19 suggests that two regimes exit in 10'%¢V proton diffusion; the linear regime
and the diffusive regime. Figure 3.19 (a) shows the slopes of plots changes at about
ct = 20pc and the slopes at ct < 20pc are steeper than those at ¢t > 20pc. This may

imply that the low energy protons (F = 10'%eV) tend to propagate linearly in the turbulent
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Figure 3.20: (a) (22) as a function of time. (b) (z* + y®) as a function of time. The
turbulence level is fE, = 0.5 and the proton’s energy is E = 10'%eV. The four cases
corresponding to the lines are explained in Table 3.3.

magnetic fields, but do not have enough energy to overcome the influence of the magnetic
fields at ct > 20pc. Figure 3.19 (b) shows that the slope changes at about ct = 5pc, and
that the slopes at ct < 5pc are steeper than those at ct > 5pc. The plots are very close
to the straight lines at ct < 5pc, whereas the plots are wobbling at ¢t > 5pc, possibly be
due to circular motion in the zy-plane. Therefore, it may be concluded that the turbulent
magnetic field has less effect on the propagation of low energy protons in the linear regime,
but that the influence of the turbulent magnetic fields become larger and so the magnetic

fields dominate the propagation in the diffusion regime.

On the other hand, two distinctive regimes, such as the linear regime and the diffusion
regime in Figure 3.19 (10'®eV), are not observed in the curves in Figures 3.20 and 3.21.
The gyroradius of a 10*eV proton for By = 10719T is ~ 1.0pc, and is comparable to
Lgria- The gyroradius of a 10'7eV proton for By = 107197 is ~ 100pc. In Figure 3.21 (a),

for diffusion parallel to BO all four curves are close each other, whereas the four curves in
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Figure 3.21: (a) (2?) as a function of time. (b) (z? + y?) as a function of time. The
turbulence level is fZ, = 0.5 and the proton’s energy is E = 10'7eV. The four cases
corresponding to the lines are explained in Table 3.3.

Figure 3.21 (b) for diffusion perpendicular to By are not consonant with each other.

The parallel and perpendicular diffusion coefficients were calculated from the plots of
average displacements (22) and (z? + y?) as a function of time shown in Figures 3.19 and
3.21. To calculate the slope for (z?) vs. time and (22 + 4?) vs. time curves, the least
squares method was used. Then using Equations 3.1.2 and 3.1.3, the parallel component
of the diffusion tensor K| and the perpendicular component of the diffusion tensor K
were calculated. Note that these are the relations for the case where the mean magnetic
fields exist in z-direction, and so K| and K, are referred to the diffusion parallel and

perpendicular to z-direction, respectively.

Table 3.5 shows the values of K| and K| for four different methods of creating magnetic
fields. The values of K| is larger than K| because ff, is 0.5, which means the mean
magnetic field By dominates the total magnetic field Byyq. Therefore the values of K | is

close to the approximation expressed in Equations 3.2.34 and 3.2.35.
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E =10%eV E =10V

K| [pc?/sec] | K1 [pc?®/sec] | K| [pc?/sec] | K1 [pc?/sec]

(CASE 1) | 1.30 x 10™° | 1.18 x 107! | 1.72 x 107 | 543 x 1071

(CASE 2) | 7.26 x 107 | 1.22 x 1071 [ 2.09%x 107 |6.33 x 10710

(CASE 3) | 6.25 x 1071 | 6.97 x 10712 | 2.36 x 10™* | 1.67 x 1071°

(CASE 4) | 5.53 x 1071 | 9.70 x 1072 | 2.15 x 107* | 7.97 x 10710

Table 3.5: The diffusion tensor components for four cases of the simulation. K represents
diffusion coefficient parallel to the mean magnetic field. K represents diffusion coefficient
perpendicular to the mean magnetic field.

The analysis and discussion of diffusion tensors were carried out for Kolmogorov-type

turbulent magnetic field.

3.3 Repeating Honda’s method with a Kolmogorov

spectrum

Section 3.2 describes how to calculate the trajectories of protons and the diffusion tensors
in a single grid space magnetic field model. In this section I explain how to produce a

Kolmogorov-type turbulent magnetic field, and discusses cosmic ray diffusion simulation

in this field.

3.3.1 Repeating Kolmogorov magnetic fields

This section presents the method to create a Kolmogorov-like magnetic field. Firstly, the

lattice space is set with different grid spacing. The largest is Lyn,,, and the next largest is
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Figure 3.22: Two-dimensional diagram showing two different lattice spacings. The filled
circles in the diagram are calculated magnetic fields. (a) The smallest grid spacing. (b) The
next larger grid spacing. The open circles indicate where no magnetic fields are initially
calculated. but will be interpolated from the magnetic fields at surrounding points.

Linag/2. This routine is repeated n times until grid space becomes Lypn, i€,

O Lo Lo Lo
Lmaw= 20 ' To1 ' "oz 93 ey on =me (331)

Figure 3.22 shows the two-dimensional diagram for just two different lattice spaces. The
magnetic fields are placed at each grid point for each of the different lattice spacings.
Figure 3.22 also shows how the magnetic fields among the grid points are interpolated.
The root mean square (r.m.s.) value of magnetic fields for larger grid spacing should be
larger than that of the smaller grid spacing. Honda [11] introduced a Lattice Constant
to determine the r.m.s. value of magnetic fields for different grid spacings. The magnetic
fields for different grid spacings were then added vectorially to create a Kolmogorov type
turbulent magnetic field. According to Honda’s simulation [11], the lattice constant which

governs the magnitude of the irregular magnetic field for different grid spacings is

5 Lo \5/3 ,
Li/3 B (lﬂi/2> ’ (6=1,2,3,--) (3.3.2)
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Figure 3.23: (a) Strength of irregular magnetic fields along the 2-direction. (b) Average
energy density of irregular magnetic fields on logarithmic scale. The solid line is —5/3
line. The results were obtained when Equation 3.3.3 was applied.

where Lo is the maximum grid spacing, and corresponds to the scale of irregularity. How-
ever, since the grid spacing is reduced by the factor of 2 in the simulation, the lattice

constant becomes,

Lo \*/3
L3 = (5;’—2) , (i=1,2,3, ) (3.3.3)

Figure 3.23 (a) shows that the magnitude of the magnetic field and Figure 3.23 (b) shows
the average energy density of the magnetic field | B,(k;)|? along the z-direction, when the
lattice constant 3.3.3 is applied. The plots of spectrum |B,(k;)|* were created by using
the Discrete Fourier Transform (DFT) algorithm. The simulation was run 100 times using
different random numbers and average and standard errors (error bars) were calculated.
For Kolmogorov turbulence, the spectrum of the magnetic fields must follow the —5/3
line. However, the slope of the spectrum is steeper than the —5 /3 line (solid line) shown
in Figure 3.23 (b).

Stanev et al. [24] discussed the spectrum of turbulent magnetic fields and proposed a
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Figure 3.24: The schematic diagram of the energy density I(k) in k-space (k: wavenum-
ber).

new lattice constant. By definition, a Kolmogorov spectrum is

u )_5/3, (3.3.4)

I(k) = I(,(k—o

where k is wavenumber, and I(k) is the energy density of the magnetic field per unit
wavenumber k. kj is the smallest wavenumber and corresponds to the largest turbulence
scale or irregularity. Because they were considering a limited range of energies, to simplify
the problem, they used just three wavenumbers from kg to ks, ie k; = 2ko, (i = 0,1,2).
Figure 3.24 shows the schematic diagram of the energy density for wavenumbers from kg
to ky. The space between two adjoining wavenumbers is 1 in log, k scale. Therefore, the

energy density for ¢-th wavenumber is

ki+Nk/2 I(k)dk
Ui=/ I(k)dk &~ ———A(log, k). 3.3.5
ki K2 ( ) d(10g2 k) ( 25} ) ( )
Since
d(logak) 1 (3.3.6)

dt  kIn2
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Figure 3.25: (a) Strength of irregular magnetic fields along the z-direction. (b) Average
energy density of irregular magnetic fields on logarithmic scale. The solid line is —~5/3
line. The results were obtained when Equation 3.3.9 was applied.

Equation 3.3.5 becomes

I(k)dk k\—5/3
IE)E_ A (10g, k) = 10(—> kIn2
d(log, k) ko (3.3.7)
k\—2/3
— Iykoln2 (EE)
Therefore, the lattice constant is proportional to k=3, ie,
Lattice Constant oc k=3 oc L3 (3.3.8)
where L is grid spacing. Finally, the lattice constant chosen was
Ly \2/3 .
b (2—;)2) ‘ (i=1,2,3,) (3.3.9)

Figure 3.25 (a) shows the strength of the magnetic fields along z-direction and Figure
3.25 (b) shows their spectrum when the final lattice constant was applied. The solid line in
Figure 3.25 (b) is the —5/3 line. Figure 3.25 (b) shows that the energy density spectrum
|B(k,)|? is consistent with —5/3 line. This concludes that the Kolmogorov magnetic field

can be created if the r.m.s. value of the magnetic field §B is proportional to Equation

3.3.9.
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Figure 3.26: (a) (CASE 1) Trajectory of 10'3eV proton. (b) (CASE 2) Trajectory of 1013eV
proton. The mean magnetic field By is 1071%T and the r.m.s. value of §B is 0.5 x 10~ 10T,
The maximum grid spacing (=turbulence scale) L, is 1.0pc.

In the next section I will discuss proton trajectories when Kolmogorov-type magnetic

fields are applied in the simulation.

3.3.2 Trajectories of charged particles (Kolmogorov magnetic

fields)

After producing Kolmogorov-like magnetic fields, the simulation injects 1000 protons into
the magnetic fields to calculate the positions of the protons at various times. This section
discuss the proton trajectories.

The initial values of the particles and magnetic fields are the same as Table 3.2, so
that the results can be compared with the trajectories in the single grid spacing case. The
calculation of the protons’ positions is described in Section 3.2.3. When the simulation
was implemented, the four different cases were compared. The summary of the four cases

was shown in Table 3.3 in Section 3.2.3.
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Figure 3.27: (a) (CASE 3) Trajectory of 10'%eV proton. (b) (CASE 4) Trajectory of 1083eV
proton. The mean magnetic field By is 107'°T and the r.m.s. value of 6B is 0.5 x 1071°T.
The maximum grid spacing (=turbulence scale) Ly, is 1.0pc.
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Figure 3.28: (a) (CASE 1) Trajectory of 10"¢V proton. (b) (CASE 2) Trajectory of 105V

proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 0.5 x 107107,
The maximum grid spacing (=turbulence scale) L4, is 1.0pc.
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Figure 3.29: (a) (CASE 3) Trajectory of 10'°¢V proton. (b) (CASE 4) Trajectory of 101%¢V
proton. The mean magnetic field By is 1071°T and the r.m.s. value of §B is 0.5 x 10~10T.
The maximum grid spacing (=turbulence scale) L, is 1.0pc.
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Figure 3.30: (a) (CASE 1) Trajectory of 10'7eV proton. (b) (CASE 2) Trajectory of 10'7eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 0.5 x 10~ 1°T.
The maximum grid spacing (=turbulence scale) L, is 1.0pc.
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Figure 3.31: (a) (CASE 3) Trajectory of 10'"eV proton. (b) (CASE 4) Trajectory of 10'7eV
proton. The mean magnetic field By is 1071°T and the r.m.s. value of 6B is 0.5 x 107'°T.
The maximum grid spacing (=turbulence scale) Lyq, is 1.0pc.

Figures 3.26 to 3.31 show the examples of proton trajectories in the Kolmogorov-type
magnetic field background. The total magnetic field in the simulation consists of the mean
magnetic field By and the irregular magnetic field 6B, and By is 1071°T and the r.m.s.
value |6 B,ms| is 0.5 x 1071°T. The maximum grid spacing Limez is 1.0pc and minimum grid

spacing Ly, i ng—c = 0.031pc, where 32 is the number of grid points in one direction.

Figures 3.26 and 3.27 show the trajectories of low energy protons (E = 10'eV). The
trajectories of the four cases have similar appearance to each other, whereas in the 101%eV
proton trajectories for the single grid spacing shown in Figures 3.7 and 3.8, the appearances
of CASE 1 and CASE 2 trajectories are different from CASE 3 and CASE 4 trajectories
due to three-dimensional magnetic field interpolation. The trajectories shown in Figures
3.26 to 3.27 are different from those of the single grid spacing magnetic fields shown in
Figures 3.7 and 3.8. This may be because the structure of turbulent magnetic field is

different between the single grid spacing magnetic field and Kolmogorov-like magnetic
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field, the introduction of smaller scales making the results less sensitive to whether or not

interpolation is used.

Figures 3.28 and 3.29 show the trajectories of low energy protons (E = 10'5%V). The
gyroradius of 10'°eV for By = 107'°T is ~ 1.0pc and is comparable to the maximum grid
spacing Ly,qz.

Figures 3.30 and 3.31 show the trajectories of higher energy protons (E = 10'7eV).
The trajectories of the four cases are also similar in appearance to each other. However,
the 10'7eV proton trajectories in the Kolmogorov-like magnetic field shown in Figures
3.26 and 3.27 are different from those in the single grid spacing magnetic fields shown in
Figures 3.11 and 3.12. The trajectories of 10'eV protons in single grid spacing magnetic
fields shown in Figures 3.11 and 3.12 have more fluctuations than those in Kolmogorov-like
magnetic fields shown in Figures 3.26 and 3.27. This also may be due to the structural

difference between the single grid spacing magnetic field and the Kolmogorov-like magnetic

field.

In the next section I will discuss the proton diffusion in Kolmogorov-like magnetic fields

adopting CASE 1 magnetic field.

3.3.3 Calculation of diffusion tensor (Kolmogorov magnetic fields)

Diffusion tensors for propagation of cosmic ray protons in Kolmogorov-type turbulent
magnetic fields were obtained from the positions of the protons at various time by using
Equation 3.1.2 and 3.1.3. The procedure was explained in Section 3.2.4. The CASE 1 was
adopted for cosmic ray diffusion simulations because CASE 1, CASE 2 and CASE 3 could
not replace CASE 1 simulation even though they saved calculation time, because CASE

1 magnetic field is the most realistic among four cases.
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Figure 3.32: (a) (22) as a function of time. (b) (z+y?) as a function of time. A turbulence
level is fiI, = 0.5 and the proton’s energy is E = 10'3¢V. The irregular magnetic field
has a Kolmogorov spectrum of turbulence.

Figure 3.32 shows the plots of (%) and (z2+y?) as a function of time for 10*3eV protons

in Kolmogorov-type magnetic fields. The turbulence level parameter, frury in Figure 3.32,

was introduced by Honda and is defined as

681'“
i, = 11Bomd (3:.10)
0

The maximum grid spacing in this simulation is 1.0pc and is about 100 times larger than
the gyroradius for a 10'*¢V proton.

Figure 3.33 shows plots of (22) and (2? + y2) as a function of time for 10'°eV protons
in Kolmogorov-type magnetic fields. The gyroradius of 10'°V proton for By = 10710T
is ~ 1.0pc and is comparable to Lyq,. In Figure 3.33 the curves in region ¢t < 4kpc
seem to be parabolic curves and the curves in region ct > 4kpc are close to straight lines.
This implies that two regimes may exist in 10'%eV proton diffusion, namely linear regime
(¢t < 4kpe) and diffusive regime (ct > 4kpc).

Figure 3.34 shows plots of (z%) and (22 +y?) as a function of time for 10'7eV protons in
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Figure 3.33: (a) (2?) as a function of time. (b) (z%+%?) as a function of time. A turbulence
level is ff, = 0.5 and the proton’s energy is E = 10'%¢V. The irregular magnetic field
has a Kolmogorov spectrum of turbulence.
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Figure 3.34: (a) (2?) as a function of time. (b) (% + y?) as a function of time. The
turbulence level is fH, = 0.5 and the proton’s energy is E = 10'7eV. The irregular
magnetic field is Kolmogorov turbulence.
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Figure 3.35: (a) Diffusion coefficients parallel to the mean magnetic field Boé, as a function
of Ry/Lmag- (b) Diffusion coefficients perpendicular to the mean magnetic field Byé, as a
function of Ry/Lyaes. Solid lines are fits to Honda’s results.

Kolmogorov-type magnetic fields. The slopes in Figure 3.34 decrease at time ct ~ 400kpc,
which is of the order of the gyroradius in the regular field. The magnetic fields may prevent

10'7eV protons from diffusing in the ¢t > 400pc region.

E = 108eV E =10V

K| [pc?/sec] | Ki [pc?/sec] | K [pc?/sec] | K1 [pc?/sec]

(CASE 1) | 426 x 10719 | 8.32 x 10712 | 1.19 x 107* | 6.91 x 1077

Table 3.6: The diffusion tensor components for the 10'3eV and 10'7eV protons in Kol-
mogorov magnetic fields. K represents diffusion tensor component parallel to the mean
magnetic field. K represents diffusion tensor component perpendicular to the mean mag-
netic field.

The diffusion tensors K| and K were calculated from the slopes of (2?) vs. time plots
and (z2 + y?) vs. time plots respectively. Table 3.6 shows the values of the diffusion

coefficients for the 10'3eV and 10'7eV protons in Kolmogorov magnetic fields.

Honda analysed the % dependence of the diffusion components. The parallel (K )



80 CHAPTER 3. HONDA'’S SIMULATION

and perpendicular (K ) diffusion components were calculated by using CASE 1 simulation

and compared with Honda’s results. Figure 3.35 shows the plots of CK" and £

Lmas Climawn

as a function of L_fi:' The maximum grid spacing is 10pc. The energy range of the
protons is 10™eV< E < 10'%eV and the corresponding gyroradius for this energy range is
0.1pc< R, < 1000pc for By = 1071°T. The solid lines in Figure 3.35 are fits to simulations
by Honda [11] who found that the slope of K vs. R, changed at log,, [%‘{’l—m] = 0. However,
the simulation results do not agree with Honda’s result. In Figure 3.35 (a) the data in
the region log,, [K}:'ZZ] > 0 have the same slope as the solid lines, whereas the data in the
region log;, [%} < 0 are not consistent with the solid lines. In Figure 3.35 (b) the present
results in the region log,, [KIZ-";] ~ 0 are of the same order of magnitude as the solid lines,
but elsewhere the present data deviate from the solid lines. There are several possible
explanations for this difference. This simulation uses a periodic boundary condition for
producing turbulent magnetic fields, which Honda did not mention in his study. In Honda’s
study, the vector potentials A follow an exponential distribution. However, in the present
Honda simulation, the normal distribution was used instead to allow for negative values
of the Cartesian components of §A. This may also cause the difference in the results.
The different index « in the turbulence energy density on different scales, [L;]* (L;: the
i-th grid spacing), may be one of the causes for the different results shown in Figure 3.35.
Honda’s original work used a = %, whereas here a = % was used as we found that the
magnetic fields with o = % showed a Kolmogorov spectrum as indicated in Figure 3.25.

Another possibility is that the number of time steps were not large enough for protons to

reach the diffusion state.

Figure 3.36 shows the plots of K| and K, as a function of energy E. In Figure 3.36

the energy dependence of K| and K change at E = 10"GeV (= 10'eV). The maximum
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Figure 3.36: (a) The plots of diffusion tensor parallel to the mean magnetic field Boé; as a
function of E(GeV). (b) The plots of diffusion tensor perpendicular to the mean magnetic
field Byé, as a function of E(GeV).

grid spacing Lmgs is 10pc and the gyroradius R, of 10'%eV protons for By = 107107 is
about 11pc. Appearances in Figure 3.36 are consistent with those in Figure 3.35 since R,

is proportional to E.

Figure 3.37 shows the time offset ctogser from ct = 0 as a function of E(GeV). When
the least squares fitting method was used to calculate the slopes Lz:—) and @—:ﬂ in the
simulation, the the lines of best fit did not exactly start at ¢t = 0. The time offset is the
difference between ct = 0 and the starting point of the line of best fit. The time offsets
are close to 0 in the region E < 10°GeV. However, they start increasing at 10”GeV and
increase rapidly at 108GeV. This suggests that in the lower energy region (E < 107GeV)
the plots of (%) and (2% + y%) vs. ct are close to straight lines starting from ct = 0,

whereas in the higher energy region the large offset may imply a combination of diffusive

and linear propagation.
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Figure 3.37: (a) The plots of time offset from ct = 0 as a function of E(GeV) when the
diffusion tensor is parallel to the mean magnetic field Byé, . (b) The plots of time offset
from ct = 0 as a function of E(GeV) when the diffusion tensor perpendicular to the mean
magnetic field Bgyé, .

3.4 Summary and conclusion

Honda studied cosmic ray diffusion in Kolmogorov-type turbulent magnetic fields. He used
a three-dimensional grid space and calculated V x 84 at each grid point to produce an
irregular magnetic field 8B. The vector potentials in his original simulation were sampled
from a Monte Carlo simulation and followed an exponential distribution.

In repeating Honda’s simulation, two types of turbulent magnetic fields were exam-
ined; single grid spacing magnetic fields and Kolmogorov-type magnetic fields. To create
turbulent magnetic fields, Monte Carlo simulation was used for sampling vector potential
components from a normal distribution. The simulation applied periodic boundary con-
ditions to the turbulent magnetic fields to save calculation time. The turbulent magnetic
fields on the grid points were calculated from V x 84 and interpolation was implemented
inside a cube between grid points. This simulation was named CASE 1 and was compared

to other three cases:
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1. V x 04 calculation, and interpolation: (CASE 1).

2. No V x 84 calculation, and interpolation: (CASE 2).

3. V x 6 A calculation, and no interpolation: (CASE 3).

4. No V x 8A calculation, and no interpolation: (CASE 4).

These three cases (No.2 ~ No.4) had less calculation time than CASE 1,and the CASE 3
and CASE 4 simulations were much faster than the CASE 1 simulation because interpola-
tion at each proton position were not implemented. However, proton trajectories of these
three simulation cases had different features from the CASE 1 simulation, and the values
of diffusion tensor components from these three simulations were not consistent with the
diffusion tensor components from the CASE 1 simulation. The quasi-linear theory approx-
imation agreed with the diffusion tensors calculated from CASE 1 simulation to an order
of magnitude. Therefore, CASE 1 simulation method was used for the simulation of high
energy proton diffusion in a turbulent magnetic field.

Kolmogorov-type magnetic fields were created by using grid spaces with different grid
sizes L; = 27"/2L,, where L is the maximum grid spacing. The magnitude of the magnetic
field for each grid spacing was [L;]*. Honda proposed that it is [L;]%/® for a Kolmogorov-
type magnetic field. Stanev et al. [24] calculated the energy density of the Kolmogorov

—_

magnetic field B(k). They showed that
B(k) x k™% L?/3, (3.4.1)

where k is the wavevector. The energy density B(k,) was calculated by using discrete
Fourier transform method, and the two forms (a = % by Honda or o = % by Stanev et

al.) were compared. It seemed that the energy density by applying o = % was close to
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Kolmogorov spectral line as shown in Figure 3.25. Therefore [L;]%® was chosen for creating
a Kolmogorov-type turbulent magnetic field.

Diffusion tensors calculated from the present version of Honda’s simulation were com-
pared to the results from Honda’s original work. The plots of parallel diffusion com-
ponent K| in Figure 4.6 do not agree with Honda’s results in the low energy region
(logyg [L—ft] < 0), and the plots of the perpendicular diffusion coefficient K, in Figure
4.6 do not agree with Honda’s results in the high energy region (log,, [fﬁ-";] > 0). These

differences could be explained by four possibilities:

1. The present simulation used the normal distribution instead of exponential distribu-

tion to sample vector potentials 5A.

2. The present simulation used periodic boundary conditions, so the magnetic fields

repeated every 32 grid points.
3. The present simulation used @ = £ instead of or = 2 for lattice constant [L;]®.

4. The number of time steps was not large enough to accurately calculate diffusion

tensors.

Cosmic ray diffusion simulations proposed by Giacalone and Jokipii will be discussed,

and compared with present results using Honda’s simulation method, in the next section.



Chapter 4

Simulation by Giacalone and Jokipii

(1999)

4.1 Summary of Giacalone and Jokipii simulation

The simulation method used by Giacalone and Jokipii [9] is summarised in the follow-
ing paragraphs. Giacalone and Jokipii used the superposition of plane waves to create
a Kolmogorov-like magnetic field for the irregular part of the magnetic field. They pro-
posed that the irregular part 6B (z, v, 2) be the superposition of plane waves with isotropic

directions, and with random polarisations and phases. The irregular part 6B (z,y,2) is

Nr
6B(z,y,2) = Z Alkn)(cos anél, + isin ané,, ) exp (iky,z, + i) (4.1.1)
n=1
where
x' cos 0, cos ¢, cosl,sin¢g, —sinb, x
y | = — sin ¢y, coS ¢y, 0 Y
Z sin @, cos ¢, sinb,sin¢, cosb, z

This matrix is the combination of rotation along the z-axis and the y-axis. This ensures
§B is perpendicular to the wavevector En and V - B = 0 is automatically satisfied.In

85
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Equation 4.1.1, o, and f3, are the n-th polarisation and phase respectively, and «,, makes
4 B isotropic.

On, ¢n, an and (3, are sampled randomly from each range,

(
-1<cosl, <1 (n=12,-.+)

O0<¢,<2r (n=12,--+)
3 (4.1.2)

O<aop<2r (n=12--)

L0<ﬂn<27r (n=1,2,--)

A(ky) expresses the amplitude of the n-th wave mode with wave number k, as a

Kolmogorov envelope to the power spectrum, and is proportional to k; /°. A%(k,,) is given

by
A%(ky) = 0*G(ky) [ZG ] , (4.1.3)
where
G(k,) = 1+?TVRL) (4.1.4)

In Equations 4.1.3 and 4.1.4, 0? and L, are the wave variance and the correlation length,
respectively. AV, is a normalization factor. For three-dimensional turbulence, AV,, =
4rk2Ak,. Giacalone and Jokipii noted that the index ~ also depended on the dimension
of the turbulence. The index -~ is 13—1 for three-dimensional Kolmogorov spectrum.

The trajectories of the charged particles were calculated by the equation of motion.
They calculated new magnetic fields from the constants oy, £,, --- etc., each time a
particle changed its position, whereas Honda [11] set magnetic fields at each lattice point
initially and interpolated. Interpolation was not necessary in the Giacalone and Jokipii

simulation. The method of calculation of diffusion tensors is the same as that used by
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Honda.

4.2 Repeating Giacalone and Jokipii simulation

4.2.1 Creating Kolmogorov magnetic fields

Giacalone and Jokipii [9] simulated Kolmogorov turbulent magnetic fields by using the
superposition of plane waves. The superimposed plane waves which Giacalone and Jokipii
proposed is defined as Equation 4.1.1. However, Equations 4.1.1, 4.1.3 and 4.1.4 seem
unnecessarily complicated, and therefore, a simpler but equivalent plane wave method
was applied to generate an irregular magnetic field. Equation 4.2.1 is a revised definition

of irregular magnetic fields.

Nm
§B(7) = Alkn)icos (knén - 7 — ¥n), (4.2.1)

n=1
where k,, is n-th wavenumber and é.n is n-th unit vector, giving the direction of the wave,

2m
Lg?

so the n-th wavevector is En = knén. The minimum wavenumber is defined as k,in =
where Lg is the scale of the turbulent magnetic fields and is assumed to be 1pc (parsec)
— 3%x10%m. The maximum wavenumber is kpoe = 103k, Wavenumber k&, was obtained

from following method. In logarithmic scale the minimum and maximum wavenumber are

In ki = In [QL—”] , In Kpmaz = 10 [10%Kmin]. (4.2.2)
0

Using Equation 4.2.2, n-th wavenumber is

In k,, = exp [In kmin + 7(10 Kingz — In kmin)]
(4.2.3)

= exp [In kmin + 710 10°)

where 7 is randomly selected from 0 <75 < 1.
1, is the phase, sampled randomly from 0 < ¢, < 27. The number of plane waves N,

is set to be 100, so that 6B becomes isotropic. The vector 7 is the n-th unit vector giving
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the direction of the field and is sampled uniformly in azimuth in a plane perpendicular to
€n, 50 71 - £, becomes 0 and therefore V - (§B) = 0 is ensured.

The amplitude A(k,) is also simplified instead of using Equations 4.1.3 and 4.1.4 di-

rectly. If the index v = 3 is applied to G(k,), because AV, = 4rk2 Ak, o k2, G(ky) will

become
AV, AV,
G(kn) = 1+ (k,Lc)1/3 ~ (knLc)11/3
¥ (4.2.4)
x W =K% for k,L,> 1.

Akk" = cons't.
n

where Ak, is space between k

s
In Equation 4.1.3, [Y-"™ G(k,)]™! is a normalization factor and is a constant. o2 is also

a constant. Therefore the amplitude A(k,) becomes

-1

A2 (k) = 0°G(kn) [ZG(k ] oc k%13
A(ky) o k713 (4.2.5)

Finally the simpler version of irregular magnetic field 6B is

N,
3 1 Q™ -1/3, 2
dB(F) = c nE=1 k31 cos (knfp - 7 — n), (4.2.6)

where C' is a normalization constant. Due to A(k,) « kn 3 in Equation 4.2.6, the energy
density |6B(k)|? will show the Kolmogorov spectrum.

In Equation 4.2.6, unit vectors # and £, must be normal to each other to satisfy
V.B = 0. In order to make 7 and B orthogonal, the following algorithm is used.
Firstly arbitrary wavevector En(= knéy) is selected. The vector product of the unit vector

2=1(0,0,1) and k, is calculated as (a) of Figure 4.1 shows

St
[l
=1
X
™

(4.2.7)
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Az AZ

P, P,
(a) (b)

Figure 4.1: 4Schema,tic diagram of unit vectors p; and p, which are p_qrpendicular to
wavevector k,. (a) Calculation of k x 2 gives 7. (b) Calculation of py X k gives .

Calculating the vector product of k and §; produces s, so that E, Py and Py are orthogonal

to each other shown in Figure 4.1 (b).
ﬁz = ﬁl X E (428)

The vectors py and P are then divided by their magnitude to obtain unit vectors p; and

~

Da.
N . Do
pl — — {1 p2 = — (4.2-9)
| 1| lpzl

Arbitrary angles ¢ are chosen from the angle range 0 < ¢ < 27 for isotropy to create unit

vector perpendicular to En namely,

pl,m pZ,m
g

n = ( cos¢ sin ¢ ) =cos¢ | p o | T sin ¢ Doy
P2

D1,z D3

As a result, components of the irregular magnetic fields 6B become perpendicular to the

wavenumber vectors k,, and assures V - 6B = 0.
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4.2.2 'Trajectories of charged particles

Table 4.1 shows the values of the important parameters in the simulation. A proton is

selected as a charged cosmic ray.

Particle proton (m, = 938 MeV/c?)
Energy, E 1013eV< F < 10%%eV
B, 1071°T (= 1uG)
|6§rms'/BO i’ %, la 2
Tgyro 0.01pc< rgyro < 10pc
2
Wavenumber, k ﬁ; <k< % x 1000
Step size, cAt | 0.01 X Tgyro

Table 4.1: Some important values of the cosmic ray and the magnetic fields in the simu-
lation.

In the study of Giacalone and Jokipii [7] [8] [9], they applied their simulation to the
interplanetary magnetic fields. The range of the particle energy they assumed was 10%eV<
E < 10°%V and they set the mean homogeneous magnetic field being 50 x 10~1T(= 504G).
However, this research focuses on the propagation of relativistic cosmic rays (E > 10%%eV),
and so the energy range was changed to 1013eV< E < 10%%eV. The Galactic magnetic fields
were considered in this study, and so the strength of the mean magnetic field was set to

By =1 x 1071T(= 1uG). The ratios of the irregular and mean magnetic fields are

5-§rms 2"
| % l_ o (n=0, 1, 2, 3). (4.2.10)
0

The ratios are the same as those of Honda’s simulation [11], so the outcome of the simula-
tion can be compared to Honda’s result. The gyroradius 7y, has the range from 0.01pc

to 10pc. This range correlates to the proton’s energy range. The gyroradius is calculated
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from Equation 4.2.11,

ol = (22) (@Ti%(_rﬂ) pe, (4.2.11)

where 7, is the Lorentz factor of the proton and the range is
yp = 10672, (n=0,1, ---, 6). (4.2.12)

The minimum wavenumber is defined as kpin = %’é, where L, is the turbulence scale and
is set to 1pc(= 3 x 10'm). The maximum wavenumber Ky, is set to be 1000 times larger

than the minimum wavenumber k., following Giacalone and Jokipii.

The time step size is set as follows. The product of the speed of light ¢ and the time

increment /At represents the step length and must be much smaller than the gyroradius,
At K Tgyro. (4.2.13)

The typically, the step size needs to be 100 times smaller than the gyroradius to maintain

a circular orbit, namely

cAt = 0.01 X 7gyro. (4.2.14)

Tn order to draw the trajectories of cosmic rays in the turbulent magnetic fields, the

following method was applied. Firstly the velocity unit vector ,

1
|#(7)]

B(7) = ([Blz 1Ly 16]:) = (v, vy, V2) (4.2.15)

is defined. This expresses the direction of the particle. The proton starts at the origin
and the initial direction (ﬁw, By, ﬁz) of the particle is randomly selected. Then the change

in relativistic three-momentum in the units of mec is calculated by using the Lorentz force
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F = q(@ x B),

Pzn+1l = Pan + Ap.‘l: = Pz,n + OO]-’YP([B]@;[B]Z - [B]Z[B]y)

\ Pyint1 = Py + By = pyp + 0.017,([6].[Bs — [8l2]B).) (4.2.16)

| Pantt = Pan + B2 = pan + 0.017([Ble (Bl — (8], [Bl.)

where ([Bl,, [Bly, [B].) is the unit magnetic field vector and is defined as

B(7) = ([Bl,, [Bly, B],) = |B’m|( B,,B,, B,). (4.2.17)

From Equation 4.2.15 to 4.2.17, the new direction of the particle ﬁnew(f') is calculated as

A A A A 1
ﬂnew(ﬂ = ([ﬂ]xa [ﬂ]ya [ﬂ]z) = W(pmpyapz)- (4'2'18)

Finally, the particle’s (n + 1)-th position, 7,41 = (Tnt1, Ynt1, Zns1) is calculated from

’

Tpi1 =Ty + Bx,n[CAtn]

 Ynt1 = Yn + Bynlcity). (4.2.19)

\Zn+1 =2y + Bz,n[CAtn]

where (Bm,n, ,(Ai‘y,n, an) is the n-th velocity unit vector and [cAt,] is the n-th step size.
In the simulation, the maximum time scale [ct]mq, is introduced. The time span should

be large enough for the particle to reach the diffusion regime. The results from Honda’s

simulation [11] are used for setting the maximum time scale [ct],nqz. The maximum time

scales for T2 < 1 are

Lo
[ct]mas,) = 100 X L0< )((SBrms)a“(Tgyro)ﬂ”
5§fms ~1.465 /| 0.332 (4.2.20)
_100><L00981(B0) (gLy0>
I G-I oG

=100 x Lo(0.0765)(5BTT0W’) ~ (7‘2_1}(:(,)0.470
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. . T
The maximum time scales for JLoﬂ > 1 are

. 6 Brms\ ~ 1465 17 gyr0\ 1907
[ct]maw,”_100><L0(0.981)( = ) (L_o> (4.2.22)
B 8 Brms\ 1505 /T gy 0:088
(cthmas,1. = 100 x Lo(0.0765) = ) (L—O) (4.2.23)

Figures 4.2 and 4.3 show examples of trajectories of protons with smaller energy (E =
108eV), and Figures 4.4 and 4.5 show examples of trajectories of protons with larger

energy (E = 10'%eV). The turbulence parameter, fy, is defined as

|5Brms‘

urb = . 4.2.24
Jeurb B, ( )

Equation 4.2.24 represents the ratio of the magnetic fluctuation |0 Byns| to the mean
magnetic field By.

Figure 4.2 shows E = 103V proton trajectories for fuum = 3 (a) and fur = 3 (b).
Figure 4.3 shows E = 10'%eV proton trajectories for fu, = 1 (a) and frur = 2 (b). The
gyroradius in the regular field By = 107°T for energy E = 10'%¢V is 0.01pc according to
Equation 4.2.11, and is smaller than the turbulent scale, Lo = 1pc. Therefore, the low
energy protons tend to follow the magnetic field lines. Moreover, if the fiu is smaller, this
means the magnetic fluctuations are very small, and the effect of the mean magnetic field,
B, becomes significant. Hence, the magnetic field lines with the small f;,, are close to
straight lines toward z-direction. As a result, the cosmic rays in small fy,-, magnetic field
environment have tendency to move along z-direction, whereas in the large fi,» magnetic
field environment, the cosmic rays have more chance to move in the z-direction and the
y-direction.

Figure 4.4 shows E = 10'°V proton trajectories for fm = 1 (a) and frure = 3 (b).
Figure 4.5 shows E = 10%%eV proton trajectories for fy,s =1 (a) and furp = 2 (b). The

gyroradius for the energy E = 10'%eV is 10pc according to the Equation 4.2.11 and is
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Figure 4.2: Trajectories of 10'%eV proton. (a) fiurs = 3. (b) frurs = 1.
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Figure 4.3: Trajectories of 101%eV proton. (a) fiurs = 1. (b) frurs = 2.
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Figure 4.4: Trajectories of 101%V proton. (a) frurs = 3. (b) feurs = 3-
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Figure 4.5: Trajectories of 10'%eV proton. (&) furs = 1. (b) frurs = 2.
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larger than the turbulence scale, Ly = 1pc. This implies that higher energy proton will be
affected by the magnetic fields but it is unlikely to follow single magnetic field lines. Figure
4.5 also shows that the high energy proton has an inclination to propagate in z-direction

and y-direction if the large f,, magnetic fields exist.

4.2.3 Calculation of diffusion tensor

Diffusion tensor calculations were implemented in the energy range 10%3%e¢V< E < 106eV.
The diffusion coeflicients perpendicular and parallel to the regular magnetic fields, By are

the average of squared distance divided by time, which are,

(#%)

2 2
K, = ﬁ% (4.2.26)

In Equations 4.2.25 and 4.2.26, the average of positions (z, y, z) is calculated over 2000
protons (N, = 2000).

Figure 4.6 shows the behavior of the cKTIL (a) and % (b) with respect to - ona
logarithmic scale. In Figure 4.6, L, represents turbulence scale and corresponds to kfnﬁ’
and c represents the speed of light. The ry(= 74,,) is the gyroradius and is proportional
to proton energy. The fJ , represents the turbulence parameter in Honda’s simulation
and is defined as

(0Brms)

fH. = B (4.2.27)

If £, > 1, the irregular magnetic field 6B dominates the total magnetic field Etotal and
the total magnetic field fluctuates significantly. On the other hand, if fZ, < 1, the mean
magnetic field Byé, dominates the total magnetic field.

The dashed lines in Figure 4.6 indicate the diffusion tensors calculated from Honda’s

result. As Honda noted, the behavior of the diffusion tensor is different for log,, (%"5) <1
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Figure 4.6: Diftusion tensor plot in logarithmic scale. Dotted curves from Honda for some

fH  values. (a) L" versus 72 plot. (b) —L-L versus 7% plot.

and log,q (%) > 1. It seems that difference between L" and —4~ increases as —9- becomes
smaller.

The diffusion tensors K| and K at high energy (log ({%) > 1) are consistent with
Honda’s result. However, in the low energy regime (log (%%) < 1), the present result
deviates from the dashed lines.

Casse et al. [5] have also performed propagation calculations using a method qualita-
tively similar to the method of Giacalone and Jokipii and applied it to relativistic particles.
I shall compare my results with theirs. In the Casse et al. simulations [5], however, there
is interpolation of the turbulent magnetic fields and so V - B =0 is not exact.

Figure 4.7 shows the behavior of and L with respect to —”ﬁi in logarithmic scale.

The turbulence parameter in Casse et al. term ftirb is

ftu’rb = B2 <6Bz . (4.2.28)

rms)

Distributions of the final distance of protons were compared for various fH , and proton

energies. The distributions of the proton’s final positions for different injection angles were
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Figure 4.7: Diffusion tensor plot in logarithmic scale. Dotted curves from Casse et al. for

c K) 27r K 2nr
some f,. , values. (a) moc versus =72 plot. (b) ros versus =72

also investigated. The range of angles is defined schematically in Figure 4.8. The upper
angle range shown in Figure 4.8 (b) is (6, < 6, < 6,), and the lower angle range shown in
Figure 4.8 (c) is (0> 6, > 6y, 6, <6, < ).

Figures 4.9, 4.10, 4.11 and 4.12 show the distributions of the final proton distance
normalized by v/2ct, where ¢ is the final time: (a) is 2-component and (b) is z-component.
The solid curves in Figures 4.9, 4.10, 4.11 and 4.12 represents the Gaussian distribution
based on the position of the particles. For example of z-component, the Gaussian curve

f(z) is given by
1 z?

(4.2.29)

where K is z-component of diffusion tensor calculated by Equations 4.2.25 and 4.2.26.
The dotted histogram represents the distribution of the particles starting with upper
injection angle. The mean magnetic field By lies in 2-direction. Thus the dotted histograms
in Figures 4.9, 4.10, 4.11 and 4.12 correspond to the angular range of protons at injection

as in Figure 4.8 (b).
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Figure 4.8: Schematic diagram of the range of angle with respect to z-direction when
protons were injected at the origin: The mean magnetic field By lies in the z-direction.
(a) Angles 6; and 8, with respect to z-direction. (b) Upper injection angle range 6,. (c)
Lower injection angle range 6, .
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Figure 4.9: Distributions of the proton position from the origin: (a) z-component. (b) z-
component. frp = 0.25 and B = 10'%eV. The solid lined histogram shows the distribution
for all injection angle range and the dotted histogram shows the distribution for upper
injection angle range.
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Figure 4.10: Distributions of the proton position from the origin: (a) z-component. (b)
z-component. fi- = 2 and E = 10*eV. The solid lined histogram shows the distribution
for all injection angle range and the dotted histogram shows the distribution for upper
injection angle range.

Figures 4.9 and 4.10 show the distribution for E = 10'%eV. In Figure 4.9 the turbulence
parameter fi,.p is 0.25, so the effect of the irregular magnetic field 6B is small, whereas in
Figure 4.10, which is for fi,,» = 2, the effect at § Bis large and the total magnetic field Etoml
appears to be a more random. The distribution for high energy protons obeys the Gaussian
distribution, which is defined by Equation 4.2.29. This is expected because the solution of
the diffusion equation 1.4.1 is a Gaussian. It is also noticed that the z-component of the
proton’s position is concentrated near the origin in the case of fH . =0.25. On the other
hand, if f, is 2, z-component of the proton position distribution spreads out due to the

highly disordered magnetic field.

However, in the low energy regime, the position distribution of protons is different
from the distribution in the high energy case. Figures 4.11 and 4.12 show the position
distribution for £ = 10'%V. Figure 4.11 shows the position distribution of 10'3%V protons

for the fiurp = 0.25 case. Figure 4.11 shows the position distribution of 1013¢V protons
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Figure 4.11: Distributions of the proton position from the origin: (a) z-component. (b)
z-component. fum = 2 and E = 10'3eV. The solid lined histogram shows the distribution
for all injection angle range and the dotted histogram shows the distribution for upper
injection angle range.
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Figure 4.12: Distributions of the proton position from the origin: (a) z-component. (b)
z-component. fy,» =2 and B = 10'3eV. The solid lined histogram shows the distribution
for all injection angle range and the dotted histogram shows the distribution for upper
injection angle range.
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for the fiurp = 2 case. In Figures 4.11 and 4.12, there exists a high peak near the origin,
in particular the z-component of the position distribution shown in Figure 4.11 (a) has
an acute peak. The dotted histograms in Figures 4.11 and 4.12 also show acute peaks
at the origin. This implies that protons with low energy have tendency to remain close
to the same position and to diffuse more slowly in turbulent magnetic fields. Figure 4.13
shows a schematic diagram of a 1013eV proton’s trajectory along the turbulent magnetic
fields. If the pitch angle of the proton is high due to the high incident angle shown in
Figure 4.8 (b) and insufficient energy to escape from the magnetic fields, the proton tends
to be trapped by the magnetic fields and to move circularly. Furthermore, if the turbulent
parameter fi,,p is small and the magnetic turbulence is weak, the proton also tends to
move circularly at the origin. For these reason, the dotted histogram in Figure 4.11 (a)
shows a high peak at the origin. On the other hand, if the turbulence parameter Sturs 18
large and the magnetic fields become more random, the chance to escape from the origin
will increase. Therefore in Figure 4.12 (a), the distribution has slightly smaller peak than

the distribution in Figure 4.11 (a).

y

Figure 4.13: Schematic diagram of the trajectory of proton with low energy (E > 1083
eV) along the turbulent magnetic fields in the case of high pitch angle.
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4.3 Summary and Conclusion

The simulation proposed by Giacalone and Jokipii [9] is described in this chapter. They
used the superposition of plane waves to create the irregular magnetic field 5§(F) How-

ever, the simpler, but equivalent, version of superposition of plane waves, shown in Equa-

tion 4.2.6 was used for 6B(F).

The trajectories of the cosmic rays are presented in Section 4.2.2. The Figures 4.2 and
4.3 show examples of low energy cosmic ray (E = 10'%eV) trajectories. The Figures 4.4
and 4.5 show examples of high energy cosmic ray (E = 10'%eV) trajectories. According to
the Figures from 4.2 to 4.5, it seems that the cosmic ray diffusion is dependent upon the

particle energy. It also depends on the turbulence level defined by Equation 4.2.24.

In Section 4.2.3, the calculation of diffusion tensors was presented. The results using
the Giacalone and Jokipii method are compared with those of the Honda’s simulation
and the Casse et al. simulation. Figures 4.6 and 4.7 show the results are in reasonable
agreement at high energy with the results of Honda and the Casse et al. simulation.
However, the diffusion tensors are different in the low energy regime. This is perhaps
due to different methods. The big difference between Giacalone and Jokipii method and
the method of Honda and Casse et al. is the method of creating the turbulent magnetic
fields. Honda and Casse et al. used a three-dimensional grid space, whereas Giacalone and
Jokipii did not use any grid space. In the Honda and Casse et al simulations, magnetic
field interpolation was implemented. This could be a cause of the difference at low energy.
The sensitivity to Lumin, the minimum grid spacing, and the size of time step could also be
the reason for the difference between the results of using Giacalone and Jokipii method,

and the other two methods.

In conclusion, the modified Giacalone and Jokipii method used here is adequate in the
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high energy regime, and therefore this method will be used to investigate shock acceleration

phenomena.



Chapter 5

Application to shock acceleration

In Chapters 3 and 4 I discuss two different simulation methods for cosmic ray diffusion
in turbulent magnetic fields. In these two simulations by Honda [11], and by Giacalone
and Jokipii [7] [8] [9], the turbulent magnetic fields are assumed to be static, and this
approximation is fine for propagation of cosmic rays exert in regions where cosmic ray
acceleration takes place. The magnetic fields in supernova shock phenomenon are an
example of non-static magnetic fields, and so the supernova phenomenon is a possible
acceleration source of Galactic cosmic rays.

In this chapter I use the simulation method proposed by Giacalone and Jokipii [7] [8] [9]
and applied it to shock acceleration, and so Chapter 5 describes an application of diffusion

simulation methods used for static magnetic fields to a real astronomical phenomena.

5.1 Mechanisms of cosmic ray acceleration

The cosmic ray acceleration process has been studied since Fermi first proposed the original
theory of acceleration in 1949 [6]. This section is mainly based on Chapter 21 of “High
Energy Astrophysics” by M.S. Longair [19].

105
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Section 5.1.1 is a brief introduction of particle acceleration. This section describes
how the electromagnetic fields are associated with the cosmic ray acceleration mechanism.
Section 5.1.2 outlines Fermi’s original theory of particle acceleration known as Second
Order Fermi Acceleration. Section 5.1.3 presents the problems in Second Order Fermi
Acceleration that require a new theory to be developed to solve these problems and to
adequately explain cosmic ray acceleration. In Section 5.1.4, the modified Fermi theory
of particle acceleration, known as First Order Fermi Acceleration or diffusive shock accel-
eration, is explained. The modifications of Fermi’s original theory were made in the late
1970’s. Section 5.1.4 also presents the theory as described by Bell in 1978 [3]. In Section
5.1.5 I discuss how the cosmic ray power-law spectrum arises in the First Order Fermi

Acceleration.

5.1.1 Particle acceleration

Equation 5.1.1 describes the motion of a charged particle in electric and magnetic fields.
d — — o —
a(fymv) =e(E+ ¥ x B) (5.1.1)

The right hand side of Equation 5.1.1 is called the Lorentz force. In static magnetic fields,
the fields may change the direction of the particle but no work is done on the particle.
Magnetic fields only change the direction of the particle. However, if the magnetic fields
are time dependent, induced electric fields are produced according to Maxwell’s equation

(Faraday’s law),

o8

VxE=—8t

(5.1.2)

In most astrophysical environments, static electric fields cannot be maintained because

ionised gases have very high electrical conductivity. Therefore, astrophysical acceleration
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mechanisms can only be associated either with dynamic electric fields, or with time-varying

magnetic fields.

5.1.2 Second Order Fermi Acceleration

This section considers Fermi’s original theory of particle acceleration. In 1949 Fermi
[6] proposed a particle acceleration process in which acceleration resulted from particles
colliding with clouds in the interstellar medium.

To make calculation simple, this theory assumed the cloud to be a mirror, so a collision
between a particle and a mirror is elastic. The 6 was defined as a angle that a particle’s
initial direction with respect to the normal to the cloud’s surface, as shown in Figure
5.1. Supposing the cloud is infinitely massive so that its velocity V' is not affected by the

collision, then the particle energy in cloud frame is
E'=~,(E+Vpcosf) (5.1.3)

where «, is the gamma factor in cloud frame, E and p are the particle energy and mo-
mentum in the frame outside of the cloud, and 3, is the cloud velocity over the speed of

light, hence

1 |4
W= =y and, B, ==

Ve

The 2-component of the relativistic three momentum in the centre of momentum frame is

p= z+ﬂVcE) (5.1.4)

In the collision, the particle’s energy is conserved, and its momentum in the z-direction is

reversed. Therefore, the particle’s energy in the observer’s frame is

E" =, (E' + V1) (5.1.5)
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(a) Head—On type collision (b) Following type collision

Figure 5.1: The schematic diagram of the collision between relativistic particle and inter-
stellar cloud. (a) Head-on type collision. (b) Following type collision. v and m are the
velocity and mass of the relativistic particle. V' and M are the velocity and mass of the
cloud.

Using p,/E = vcosf/c?, Equations 5.1.3 and 5.1.4 become

Ecos
B =7, (B +Vp,) =, (B + L2280 (5.1.6)

/

P, =Y (P +

E Ecosd B.E
ﬁVc ) = V(U cosb | By ) (5.1.7)

c? c

Substituting Equations 5.1.6 and 5.1.7 into Equation 5.1.5, Equation 5.1.5 becomes

E"(8,) = 'Yv[ v(E n vﬂvlicose) +Vy, (vEcosﬁ " ﬂvE)]

Bt c? c (5.1.8)
Y v@, cos g
- ’YVE(l + c = ﬂ")
Therefore, the energy change AFE becomes
2 0
E'-E=AE= —ﬂ“’cﬂ + 82 (5.1.9)

Figure 5.1 shows the collision path between a relativistic particle and the interstellar
cloud. In Figure 5.1 v and m are the velocity and mass of the relativistic particle. V'
and M are the velocity and mass of the cloud. The probability of a collision at angle §

is proportional to v + V cos 6 in the case of the head-on type collision ((a) of Figure 5.1),
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whereas in a following type collision, the probability is proportional to v — V cos 8 ((b) of
Figure 5.1). Since the particle is relativistic and v ~ ¢, the probability of the collision at
angle @ range from 0 to 7 and is proportional to v, (1 + 8, cos ). The probability of the
pitch angle is proportional to sin §d6(= —d(cos 6)). Therefore the average of the first term

in Equation 5.1.9 in the relativistic limit (v — c) is

f_ll cos 01 + 8, cosb]d(cosb)

20y cos ) = 26, ﬁ1[1 + B, cos ]d(cos 6)

(5.1.10)
2 Jéi 2
2
=255 = 5%
The average energy gain per collision in the relativistic limit is,
(AE) 25 g _ 5
e .?:gv + 02 = gﬂv (6.1.11)

The increase of energy is a factor of ,8‘2/. This is the Fermi’s original theory of particle

acceleration and called the “Second Order Fermi Acceleration”.

5.1.3 Problems in Second Order Fermi Acceleration

There are several difficulties in Fermi’s original theory as a mechanism for accelerating the

Galactic cosmic rays:

1. The random velocities of interstellar clouds in the Galaxy are very small in compar-

ison with the velocity of light, namely 3, < 107

2. The original theory estimates the mean free path of the cosmic rays in the interstellar
medium to be the order of 1pc. This suggests that the number of collisions would

be roughly one per year, resulting in very slow gain of energy by the particle.

3. The original calculation does not consider the effect of energy loss upon the accel-

eration process. Ionisation losses in particular prevent the acceleration of particles
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from low energy. If the acceleration mechanism is to be effective, the particles must
either be injected into the acceleration region with energies greater than that cor-
responding to the maximum energy loss rate, or else the initial acceleration process

must be sufficiently rapid to overcome the energy loss.

4. The theory does not explain why the exponent of the energy spectrum should be

roughly 2.5 everywhere.

In particular, Fermi’s original theory is inadequate to explain the acceleration of particles

to a high energy.

5.1.4 First Order Fermi Acceleration (Diffusive Shock Acceler-
ation)

Many researchers in the late 1970’s attempted to describe a more efficient particle accel-
eration process. The following model proposed by Bell in 1978 [3] has been found to be
useful in addressing the limitations outlined in Section 5.1 3.

According to Bell [3], Figure 5.2 illustrates the vicinity near a shock front for a strong

shock case as in the case of a supernova explosion.

L. In the shock frame, the shock front is stationary, and the ratio of the upstream V,,
to the downstream velocity V; for a strong shock is

Vi ~v+1
—_——— 5.1.12
77— ( )
where 7 is the ratio of specific heat of gas. For a monatomic and fully ionised plasma
in the case of supernova, v = 5/3 and then the downstream velocity is one fourth of

the upstream velocity.

Vi= V.. (5.1.13)
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Figure 5.2: The schematic diagram of shock phenomenon. (a) Shock front frame. (b)
Upstream frame. (c¢) Downstream frame.
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2. In the upstream (unshocked region) frame namely Figure 5.2 (b), the downstream
gas moves at %U (U : shock front velocity) compared to the upstream gas velocity.
When a high energy particle crosses the shock front and enters the downstream
region, it gains energy of the order of ~ % as a result of collisionless scattering.
Once the particles enter the downstream region, they are then scattered by turbulent

magnetic fields, so the velocity distributions of the particles become isotropic.

3. In the downstream (shocked region) frame of Figure 5.2, the gas in upstream region
moves toward the shock front at velocity, %U . Once the particles in the downstream
frame enter the upstream region, they feel the upstream gas moving against them
with the same velocity, %U . As a result, when the particle crosses the shock front,

it also obtains the same amount of energy increase &2 ~

U
E c’

According to the model proposed by Bell [3], the high energy particles gain energy when-
ever it crosses the shock front. In this model there are mainly head-on type collisions, and
so the particles gain energy of the order ~ %, whereas in Fermi’s original theory there are
both head-on type and following type collisions with almost equal frequency.

The following is the derivation of the average energy increase when the particle crosses
from the upstream to the downstream region. If the gas in the downstream region moves
toward the particle at velocity V(= Vioun) = 32U, then the particle’s energy when it passes

into the downstream region is

E' =~,(E—-p,V) (5.1.14)

where the z-coordinate is perpendicular to the shock front. It is assumed that the shock

is non-relativistic, namely

V<c¢ and «,=1 (5.1.15)
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However the particles are relativistic, so

E
E=pc and p,= - cosf (5.1.16)

Therefore, the energy change AFE is

AFE
AE =pVcosf - = B, cos 6 (5.1.17)
The probability of a particle crossing the shock front with angle 6 can be derived. The
number of particles within the angles of 6 to § + d6 is proportional to sin #df. The rate
at which the particles approach the shock front is proportional to ccosf. From the above

result, the probability of a particle crossing the shock front is proportional to sin 6 cos 6d6.

Therefore, the probability distribution function over the angle range from 0 to 5 becomes
p(f) = 2sin 6 cos 6d6 (6.1.18)

Finally the average gain in energy on crossing the shock front is

/2
0 [ 008

E E
w/2
=0, / 2 cos? 0 sin §df (5.1.19)
0
2
= gﬂv

The particle gains energy when it crosses the shock front, so the average energy increase

for the return trip is

(5.1.20)

The average increase in energy of the particle is proportional to 3,. This is called the
First Order Fermi Acceleration and is a more efficient acceleration model than the Second

Order Fermi Acceleration.
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5.1.5 Power-law Spectrum

The power-law spectrum can be explained by the result from the First Order Fermi Ac-
celeration, and the derivation of the cosmic ray energy spectrum follows.

The average energy of the particle after k-th crossing of the shock front is expressed as
E =d*E, (5.1.21)

where « is small fractional change in particle energy, and Ej is the initial particle energy.

The number of the particles with energies E = afE, after k collisions is
N = NPk, (5.1.22)

where P, is the probability of the particle returning to the upstream region after one
shock crossing (probability of returning). Taking natural logarithms of both Equations

5.1.21 and 5.1.22, and eliminating k.

N E \InPrt/Ina
—_ == 1.2
%~ (&) (5:1.23)
From equation 5.1.23, the power-law spectrum is derived,
N(E)dE = cons’t x E~1*+(nFret/Inc) g pn (5.1.24)

The next step is to calculate the index (In Pt/ In a) from the first order Fermi acceleration
result. Starting from the average of the fractional energy increase,

<_AE£> N %gv (5.1.25)

and using E — Ey = (AE), o becomes

E 4

The probability of returning P can be derived as follows. For an isotropic distribution,

the flux of particles crossing the shock front is %N ¢, where N is the number density of
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particles. Once the particles enter the shocked (downstream) region, the particles are
removed from that region. The rate at which the particles are transported from the
shocked region is NV = %N U, where U is shock front velocity. Therefore, the fraction of

the particles lost downstream per shock crossing (escape probability: Pescape)

INU U
Pesca e = 4 = 5.1.27
P %N c c ( )
Finally, the probability of returning to the shock P, becomes
U
Pt =1— Pescape =1- -C_ (5128)

Then, taking logarithm of both P, and «, and using the approximation, Inz ~ 1 + z,

In P, = In (1 - %) ~ __Z.
Ina=1In (1—}—%[3‘/) ,@% (3'%:%@/)

Therefore, the (In P,/ In o) becomes

InPe (~U/c) _1

= 5.1.29
Inao (U/e) ( )

Finally, the differential energy spectrum of the particle is obtained,
N(E)dE «< E-**V{dE = E7%dE (5.1.30)

The observed energy spectrum is in the range approximately from -3.2 to -2.5, which
is different from the spectrum above because of energy-dependent cosmic ray diffusive
transport in our Galaxy (e.g. Leaky Box Model).

The theory of First Order Fermi Acceleration succeeded in explaining cosmic ray accel-
eration of supernova explosion and other shock phenomena. It also can explain the cosmic
ray energy spectrum, and so the theory has been widely accepted in the field of astro-
physics. In the next section I will describe the numerical simulation of cosmic ray diffusive
shock acceleration by using the simulation method of Giacalone and Jokipii [7] [8] [9] for

the diffusion.
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5.2 Simulating Shock Acceleration Process

This section presents the application of the simulation method of Giacalone and Jokipii

to cosmic ray shock acceleration and discusses the result from the simulation.

5.2.1 Creating shock environment

This section describes how to simulate the shock phenomenon. In Chapters 3 and 4
I discussed high energy cosmic ray (proton) diffusion in turbulent magnetic fields. In
previous simulations by Honda [11], Giacalone and Jokipii [7] [8] [9], the magnetic fields
are “static’. However, in the shock phenomena, the magnetic fields are time varying and
due to this phenomena, relativistic particles may gain energy.

In the simulation of shock acceleration, it is assumed that there are two regions, a
downstream region which contains shocked plasma and an upstream region which contains
unshocked plasma. The shock front separates them. Each region has its own frame of
reference. Therefore, once a cosmic rays crosses the shock front, Lorentz transformation
to the other frame must be considered. Returning to the original frame after scattering
causes an energy increase in the cosmic rays.

Figure 5.3 shows a schematic diagram of the shock at ¢ = 0 sec in the shock simulation.
The shock front starts at the origin for convenience of calculation. Then it moves toward
the +2-direction with constant speed, U = 0.03 x ¢ = 9.0 x 10° m/s, where c is the speed of
light; this is typical supernova shock speed. At the same time, a relativistic proton starts
moving and crosses the shock front, Figure 5.4 shows the range of the injection angle. The

proton injection angles are randomly sampled from
~1<cosf <0, 0< ¢ <27, (5.2.1)

where 6 is the direction angle with respect to z-axis as shown in Figure 5.4 (a), and ¢ is
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Figure 5.3: The beginning of the shock simulation. The shock front starts at z = 0 and
moves toward +z-direction. The shock front speed is U = 0.03 x c¢. Protons start at origin
with injection angle range defined by Equation 5.2.1.

(a) z—x plane (b) y—x plane

Figure 5.4: Injection angle. (a) z-x plane. The range of 6 is —1 < cosf < 0. (b) y-z
plane. The range of ¢ is 0 < ¢ < 2.

the direction angle with respect to y-axis as shown in Figure 5.4 (b). If the direction of
the shock front is the same as the direction of the mean magnetic field B, of the total
turbulent magnetic field, this shock is called a ’Parallel Shock’. If the direction of the

shock front is perpendicular to the direction of EO, this shock is called a ’Perpendicular

Shock’.

In the downstream region, because it is a shocked region, the plasma gas and the

magnetic fields are compressed. Therefore, a special treatment is necessary for simulating
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Figure 5.5: The schematic diagram of the proton position in downstream region. (a)
Proton position 2; in the compressed scale and proton position 2, in the uncompressed
scale. (b) Proton position in the simulation space. The position z; — 4(z, — z;) was named
"Effective Position’, where z, is the shock front position.

the downstream region of the shock. In the shock frame of reference, the plasma speed
in upstream region is the shock speed U, which is four times faster than downstream
plasma gas. This leads to the downstream region plasma being compressed into % of its
scale in the z-direction. Figure 5.5 shows a schematic diagram of the proton position in
the downstream region. Figure 5.5 (a) describes the proton position in the compressed
downstream space. The dashed lined scale in Figure 5.5 (a) is the scale of uncompressed
space and the solid lined scale is the scale of compressed space. Supposing that the proton
entering the downstream region moves to the position z;, the position z; would correspond
to position 22 in the uncompressed space as shown in Figure 5.5. This means that the
magnetic field at position 2; should be B (22) compressed in the 2-direction.

Figure 5.5 (b) shows how to express positions z; and 2, in the simulation space. As-
suming z; is a position of proton in Figure 5.5 (b), 2, in Figure 5.5 (a) can be expressed

as Zshock — 4(Zshock — 21) shown in Figure 5.5 (b), where 2o is the position of the shock
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front. This was named the 'Field Position’, feq and the components of the field position

in the downstream region are

{

Tfield = T

Yfield = Y (5:2.2)

Zfield = <shock — 4=(zshock - Z)
\

The magnetic field at position 7 = (z, y, 2) Bu (Thela) is appropriately compressed,
where B U(Fﬁeld) is the magnetic field that would have been present at 7e1q before the shock
arrived. The strength of the magnetic field that the proton perceives also changes due to
the compression of the plasma in the downstream region. The scale in the downstream
region is compressed into % of its original scale in the z-direction. Thus the distance in
the z-direction between two magnetic field lines is four times smaller if the plasma were
not compressed in the z-direction. This leads to the z- and y-component of the magnetic
field becoming four times larger than the original magnitude. Equivalent expression of
the compressed magnetic field at position 7 = (z, y, 2) in the simulation space can be
done by expanding z- and y-components of the magnetic field by factor of four as shown
in Figure 5.6. Therefore when the proton enters the downstream region and reaches the

position 7= (z, v, z), the magnetic field that affects the proton at position T is

g('f“) = 4Bg (T_"ﬁe1d)§3 + 435 (Fﬁeld)g + Bg (Fﬁeld)é (5'2'3)

The following sections will explain how to draw the trajectory of relativistic proton in

the shock environment and discusses the characteristics of the proton trajectories.
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Figure 5.6: The schematic diagram of the downstream magnetic field in the simulation
space. The z- and y-components of the magnetic field B(74eq) are expanded to four times
of the original z- and y-components.

5.2.2 Drawing the trajectories of relativistic protons

The method of Giacalone and Jokipii for simulation of turbulent magnetic field was applied
to shock acceleration simulations. In the simulation, the initial data for the particle and
the magnetic fields were the same as those in the Giacalone and Jokipii simulation. A rel-
ativistic proton in the energy range 10'3%eV< E < 10'%eV was injected. The corresponding
gyroradius range for this energy range is 0.01pc< 74y, < 10pc for a mean magnetic field
By = 10719T. Step size cAt is as usual (0.01 X 4y,,). The turbulent magnetic field consists
of a mean magnetic field By and an irregular magnetic field § B. The mean magnetic field
strength is assumed to be 1.0 x 10'°T and the irregular magnetic field is a Kolmogorov

type magnetic field. The turbulence parameter fZ , in this simulation is

|6Byms| _ 2"

fam="pF =7 (=0,123) (5.2.4)

and this is the ratios of the r.m.s. value of the irregular magnetic field 6B,,,, to mean

magnetic field By.
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Figure 5.7: The schematic diagram of a relativistic particle’s trajectory at ¢t = t;. When the
relativistic particle enters the downstream region from upstream region, a Lorentz trans-
formation to downstream frame is applied to the particle [(7, E, 7, ct) — (7, E',, ct')].
When it returns to upstream region, a Lorenz transformation to upstream frame is applied
to the particle [(7', E', 7, ct') — (7", E", 7, ct")]

A relativistic proton is injected at the origin as the shock front passes z = 0 with
velocity U = (0.03 x c). Figure 5.7 shows the schematic diagram of a relativistic particle’s
trajectory after t = t;. Once the relativistic particle crosses the shock front into the
downstream region, a Lorentz transformation to the downstream frame will be applied to
the particle [(7, E, 7, ct) — (7, E', 7, ct’)]. If the particle returns from the downstream to
the upstream region, a Lorenz transformation of the upstream frame will be applied to

the particle [(#, E',,ct') — (p", E",7,ct")]. This was repeated until the particle was

considered to have escaped downstream.

Table 5.1 (a) shows the Lorentz transformation when the particle enter the downstream
region. In Table 5.1 (a), 74 is the Lorentz factor in downstream frame and is (1 — g2,
where §; = Yc‘i V, represents the velocity of downstream plasma with respect to the

upstream plasma, and is U (U: shock front velocity). Table 5.1 (b) shows the Lorentz

transformation when the particle returns to the upstream region. V,, represents the velocity
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(a) | Upstream | == | Downstream (b) | Downstream | = | Upstream
(p,E,7ct) | = | (7, E',7,ct) (@, E'\ 7 ct') | = | (7", E", 7, ct")
s = | 7, = 7a(p: - 22) 7, — | o= (1, + 22
E = | E' = v(E — Bacp;) E = | E" = yu(E' + Bucp))
z = | 2/ = ya(z — Byct) 2 = | 2" = (' + Buct’)
ct = | ct’' = yq(ct — B42) ct/ = | ct”" =y, (ct’ + B,2)

Table 5.1: Lorentz transformation. (a) From upstream to downstream frame. ~; =
1— 32742 and B; = ¥, where V; = 3U. Subscript “d” represents downstream frame.
d c 4
b) From downstream to upstream frame. v, = (1—32)"%2 and 8, = %, where V,, = 3U.
U c 4
Subscript “u” represents upstream frame.

of upstream plasma with respect to the downstream plasma, which is also %U .

The energy gain by particle acceleration at shock, depends on how many times the
particle crosses the shock front, according to the study by Bell [3]. In other words, if
the particle proceeds far away from the shock front and remains in the same region, it
will not gain any more energy. For the computer simulation it is necessary to stop the
simulation when a proton is never likely to return to the shock, and so it is necessary to
set a maximum distance downstream from the shock front before the simulation for that
proton is stopped. The simulation then considers the trajectory of the next particle. The
following is the idea of how to settle this maximum distance from the shock front. Firstly,
the convection distance dgon, is defined as the distance between the shock front and the
particle if the particle is stationary with respect to the downstream plasma,

1

The diffusion transport root mean square distance represents how far the particle will
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diffuse according to quasi-linear theory and is defined as

dairs = /2Kat, (5.2.6)

where K, is diffusion coefficient and a =|| for the parallel diffusion coefficient and a =1
for the perpendicular diffusion tensor. The values of K, were calculated from Honda’s

fitting function [11]. The diffusion tensor components for %)1 <1 are

K B R\ 0.332
I = (0081 (#) % (F2) (5:2.7)
K, _ H 1505 ( Fg 0470
CL() - (00765)(fturb) (LO) i (528)

where R, is proton’s gyroradius and Lo is the turbulence scale. The diffusion tensor

R
components for 72 > 1 are

K B R 1.907
= 0981 (1) () (5:29)
Ky _ #1505 (Fg\00%8
= = 0TB) (£ () (5.2.10)

From Equations 5.2.5 and 5.2.6, the maximum distance will be calculated,

K,
dma:v . n'TJ_ (5211)

In Equation 5.2.11, 7 is the constant and in the simulation 7 was chosen between 2 < n < 3.
If the relativistic proton is farther than the maximum distance downstream, dpmaq, the
particle is regarded as trapped in the downstream region, and then the simulation is

terminated.

5.2.3 Propagation of relativistic protons near parallel shocks

The propagation of protons in a parallel shock environment was investigated. In a parallel
shock, the shock normal is parallel to the direction of the mean magnetic field éo. In the

simulation, the z-direction is the direction of the mean magnetic field vector.
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Figure 5.8: Trajectories of 10'%eV protons in the parallel shock. (a) Trajectory in f =
0.25 magnetic field. (b) Trajectory in ff, = 0.5 magnetic field. The mean magnetic field
and the shock front is in z-direction.

Figures 5.8 and 5.9 show examples of proton trajectories near a parallel shock. Ty
and 2z, in Figures 5.8 and 5.9 indicate z- and z-components of proton’s upstream-frame
position. The initial energy of the proton is 10'%eV. Figure 5.8 (a) and (b) show the
trajectories of the protons in f7, = 0.25 magnetic field and fZ, = 0.5 magnetic field
respectively. Figure 5.9 (a) and (b) show trajectories of protons in a f¥ , = 1.0 magnetic
field and a fI, = 2.0 magnetic field respectively. f¥ . is the turbulence level parameter
and is defined in Equation 5.2.4. If the turbulence level [, is smaller than 1.0, the
mean magnetic field dominates the total magnetic field. If fH . is larger than 1.0, the
irregular magnetic field dominates the total magnetic field and the magnetic field become
more isotropic. The simulation for low ff, took longer time for a proton to reach the
maximum distance d,,q, in downstream because d,,4, for low ftffrb is larger than that for
high fZ , according to Equation 5.2.7. The protons in Figure 5.8 tend to diffuse more in
the z-direction than the protons in Figure 5.9 due to the low fi .

Figures 5.10 (a) shows an example of the z-component of a 10!%eV proton’s upstream-
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(a) S\up=1.00, E=10'"%eV) (b) fu=2.00, E=10""(eV)
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Figure 5.9: Trajectories of 101V protons in the parallel shock. (a) Trajectory in fi, =
1.0 magnetic field. (b) Trajectory in fi, = 2.0 magnetic field. The mean magnetic field
and shock front is in z-direction.

frame position vs. upstream-frame time ct, in a ff, = 0.25 magnetic field. The solid
line in Figure 5.10 (a) indicates the position of shock front, and the dotted line indicates
the distance of protons from the shock front at which they are considered to have es-
caped downstream. If a proton reaches the maximum distance, the simulation will stop.
Figures 5.10 (b) shows the proton’s energy vs. upstream-frame time ct,. The energy of
proton in Figure 5.10 goes up every acceleration cycle. Figure 5.10 (b) shows that the up-
stream energy is constant while the proton propagates in the upstream region, whereas the
upstream energy oscillates gyro-motion while the proton propagates in the downstream
region. Figures 5.11 (a) shows an example of the z-component of the 10'%eV proton’s
position with time ct, in fZ, = 2.0 magnetic field. Figures 5.11 (a) shows the proton’s
energy vs. time ct,,.

Figures 5.12 shows that the distribution of Nieturn- Vreturn 18 the number of times a
proton returns to the upstream region before escaping the downstream. Figures 5.12 (a) is

the case of 10'%eV protons in fH , = 0.25 magnetic fields and Figures 5.12 (b) is the case
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Figure 5.10: (a) z-component of proton’s position as a function of time ct, in shock
environment. Solid line indicates the position of shock front and dotted line indicates
the maximum distance from the shock front. Initial energy of proton is 10%¢V= 106GeV
and the turbulence level is fJ, = 0.25. (b) Transition of proton’s energy in the shock
environment.
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Figure 5.11: (a) z-component of proton’s position as a function of time ct, in shock
environment. Solid line indicates the position of shock front and dotted line indicates
the maximum distance from the shock front. Initial energy of proton is 10%eV= 105GeV
and the turbulence level is f, = 2.0. (b) Transition of proton’s energy in the shock
environment.
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of 10'%¢V protons in f, = 0.5 magnetic field. The number of sample trajectories is 100.
The dashed lines in Figure 5.12 indicate the mean value of Nietyrn. The solid curves in
Figures 5.12 and 5.13 indicate the n-th probabilities of returning to the shock (Preturn)” for
various values of Pretyrn from the range 0.9 < Preyurn < 1.0. The Preturn could be estimated

as follows. The probability of returning more than n times is

Pr%gxm e (Preturn)n (5212)

Using Equation 5.2.12, the probability of returning n times is

P, rT(Leturn . r%glrn — i r%t?:r}
(5.2.13)
= (ljreturn)n —-— (Preturn)n+1
Pescape = U/c = 0.03, and so the probability of returning at least once is
Preturn =1 — Pescape = 0.97 (5214)
Therefore Equation 5.2.13 becomes
P = (0.97)" — (0.97)"" (5.2.15)

Figures 5.13 shows that the distribution of Nietyrm. Figures 5.13 (a) is the case of 10%%eV
protons in fH, = 1.0 magnetic field and Figures 5.13 (b) is the case of 10'°eV protons
in fI, = 2.0 magnetic field. When the protons propagate in high fH . magnetic field
(fE , > 1.0), the distribution of Nreturn tends to spread and the chance of never returning
to the shock becomes small. Especially in fi, = 2.0 case as shown in Figure 5.13 (b), the
distribution is more extensive and the mean value and its uncertainty is 16.314+1.60. This
may also be due to the isotropic pattern of the turbulent magnetic field and therefore the

proton propagation will not be confined in z-direction.
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Figure 5.12: Distribution of the number of 10'°¢V protons’ returning to the upstream
region, Neeturn- (a) In ff, = 0.25 magnetic field. (b) In fZ, = 0.5 magnetic field. The
dashed lines indicate the mean of Nyetym and the solid curves indicate Equation 5.2.13 for
Pe. =0.01,0.02...0.10, i.e. Preturn = 0.99,0.98...0.90.
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Figure 5.13: Distribution of the number of 10'%eV protons returning to the upstream
region, Neeturn. (8) In fZ, = 1.0 magnetic field. (b) In fHE . = 2.0 magnetic field. The
dashed lines indicate the mean on Nepyen and the solid curves indicate Equation 5.2.13 for
P =0.01,0.02...0.10, i.e. Peurn = 0.99,0.98...0.90.
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Table 5.2 shows average energy change MEE;) and escape probability Pescape for protons
with initial energies 10*eV, 10V and 10V in various turbulence level magnetic field.
The number of proton trajectory samples is 100. According to First Order Fermi Accel-
eration Theory, discussed in Section 5.1.4, given the average energy increase for return
trip,

-

= 5.2.16
Ei C ¥ ( )

where 0E is energy change for return trip and E; is an initial energy of protons. In the
simulation the shock front velocity U was assumed to be 0.03 x ¢, therefore Equation 5.2.16
becomes

(0E)

-—— = 0.03. 5.2.1
i (5:2.17)

Average energy changes % for various initial energy are relatively similar to the expected
value in Equation 5.2.17.

Escape probability was discussed in Section 5.1.5 and is Pescape = % = (.03. In Table
5.2, values of the escape probability Pescape Were estimated from the solid curves (Pescape
fitting lines) in Figures 5.12 and 5.13. Uncertainties of Pescape in the Monte Carlo sim-
ulation were calculated from the simulation data. Uncertainties are very high because
of small number of proton trajectory samples which is 100. Pegcape for various ftﬁ{rb in
E = 10"eV protons are close to 0.03. On the other hand, Pescape in higher energy tend
to increase. This suggests that higher energy protons have a tendency to escape from the

shock front after entering the downstream region.

5.3 Summary and conclusion

Shock acceleration was investigated by applying the cosmic ray diffusion simulation method

proposed by Giacalone and Jokipii (7] [8] [9].
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104eV 1015eV 1016eVv
@E_Eiz P, escape %z P, escape @E_E} P, escape

Sy =0.25 | 0.024 | 0.0340.03 | 0.012 | 0.1040.01 | 0.009 | 0.0540.02

fH, =05 |0.026 | 0.03£0.04 | 0.016 | 0.09£0.01 | 0.011 | 0.082-0.02

fis =10 |0.026 | 0.0440.06 | 0.016 | 0.08+0.01 | 0.014 | 0.1240.02

fie =20 |0.026 | 0.05£0.07 | 0.019 | 0.04+0.02 | 0.015 | 0.07+0.02

Table 5.2: Average energy change (‘%l and escape probability Pecape for protons with
initial energies 10'*eV, 10'%V and 10'%¢V. The number of sample trajectories is 100.

Section 5.1 I explained the development of shock acceleration theory. Second Order
Fermi [6] Acceleration was proposed in 1949 and it concluded that the average energy
increase was the order of ( %)2, where U is the cloud velocity. A more efficient cosmic ray
diffusive shock acceleration theory was developed in the late 1970’s, and Bell [3] showed
that the average energy increase was proportional to % In this First Order Fermi Acceler-
ation, the differential form of cosmic ray spectrum is N(E)dE « E~2dE on acceleration.

In Section 5.2 I described on acceleration methods for the shock acceleration simulation.
In this study, the simulation of Giacalone and Jokipii was applied to simulating the shock
acceleration. The study investigated the Parallel Shock Case, in which the direction of the
mean magnetic field is parallel to the shock front direction, which in the present simulation
was the 2-direction. To investigate the parallel shock acceleration of protons, four routines

were included in the shock simulation:
1. Shock front moves toward z-direction with the speed U = 0.03 x c.

2. Compressed magnetic field was created in downstream region. The magnetic field

was compressed by factor of 4 in z-direction.



5.3. SUMMARY AND CONCLUSION 131

3. Lorentz transformation between downstream and upstream frame.

4. The maximum distance of protons downstream position from the shock front was

set, so that the simulation stops before a proton is stuck in the downstream region.

The shock simulation was implemented for various proton energies and various turbulence

level fH .

In conclusion, the values of %—b:l and Pegeape are close to the expected values from the

First Order Fermi Acceleration.
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Chapter 6

Summary and further work

6.1 Cosmic ray diffusion simulation

In this research, the diffusion of high energy cosmic rays (protons) in turbulent magnetic
fields was investigated by using a Monte Carlo technique. Propagation of cosmic rays in
turbulent magnetic fields can be described by three-dimensional diffusion Equations 14.1

and 1.4.3. Cosmic ray diffusion in turbulent magnetic fields was discussed in Section 1.4.

In the research I selected two cosmic ray diffusion simulation techniques which used
Monte Carlo methods to investigate the propagation of cosmic rays in turbulent magnetic

fields. The two simulations were:
1. The simulation method proposed by Honda [11]
2. The simulation method proposed by Giacalone and Jokipii 7] [8] [9]

In the two simulations, the magnetic field was assumed to be static, and the total magnetic
field was divided into two components: the regular part By and the irregular part 53,

133
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namely,

étotal(f) = By + 5§(7")
(6.1.1)
= Boé, + 6B(F).

The regular part of the total magnetic field in Equation 6.1.1 is directed toward the z-
direction, and the irregular part was a Kolmogorov-like turbulent magnetic field in both
simulations. A Kolmogorov-like magnetic field is typical of the turbulent magnetic field
which exist in the interstellar medium. The power spectrum of the Kolmogorov-type
magnetic field follows a power law |§2(E)| o k, where a = —5/3. The detailed discussion
of the Kolmogorov magnetic field was given in Section 1.3. The method used to generate
a Kolmogorov-like magnetic field differs between Honda’s simulation and the Giacalone
and Jokipii simulation.

In the cosmic ray diffusion simulations, relativistic charged cosmic rays (protons) were
injected into the turbulent magnetic field Etoml and the positions of the protons were
calculated at time £. In the simulations a number of cosmic rays were injected into the
Kolmogorov turbulent magnetic fields, and the average squared distances, namely (z?)

and (z? +y?), for each time ¢ were calculated. Then the diffusion tensor components were

calculated from Equation 6.1.2,
() = 2Kyt, (2 +y®) = 4Kit, (6.1.2)

where K| represents diffusion tensor components parallel to the regular magnetic field By,
which is in z-direction and K, represents the components perpendicular to the regular
magnetic field.

In this study, Honda’s simulation, and the simulation studied by Giacalone and Jokipii,
were repeated, and the results were investigated and compared with the original results.

Then one of these two simulation method was selected to investigate the propagation of
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high energy protons in the shock environment and the proton acceleration by the shock.

6.2 Honda’s simulation

In the present research I first investigated the cosmic ray diffusion simulation method that
Honda had proposed. Honda used a three-dimensional lattice and placed random vector
potentials at each lattice point [11]. The vector potentials were sampled from the Monte
Carlo simulation and following an exponential distribution. Then he created irregular

magnetic fields by using Equation 6.2.1
§B =V x §A. (6.2.1)

The curl of vector potential ensures V-6B =0.

I decided to compare Honda’s method with a simpler method in which the magnetic
field on grid points is sampled directly. Also, I decided to investigate whether or not it
is necessary to interpolate the magnetic field for positions between the grid points. Thus

there were four cases considered:

— - =

1. A at grid points sampled, B =V x A, B interpolated.

9. B at grid points sampled, B interpolated.

— —

3. A at grid points sampled, B=Vx A, no interpolation.
4. B at grid points sampled, no interpolation.

While, the no-interpolation cases saved considerable computing time, the results were not
consistent with the cases where interpolation was done. In particular, the parallel and
perpendicular diffusion coefficients were calculated from the simulation results in each

case and compared to the low and high energy limits which can be obtained theoretically
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from random walk theory. This comparison was made in Table 3.4 of Chapter 3. It was
found that only CASE 1 was consistent with the theoretical result, and hence I adopted

Honda’s method with interpolation of B between grid points.

Secondly, the proton diffusion in the Kolmogorov-like magnetic field was investigated.
The same calculations and analyses of the proton diffusion were carried out in Kolmogorov-
type magnetic field environment. In the Kolmogorov-type magnetic field a lattice space
with a different length of grid spacing was used. The magnetic fields placed on each grid
point have an r.m.s. value dependent upon the grid spacing. Then the magnetic fields at
the grid points were vectorially added to create the irregular part of the magnetic field.
The energy-dependent diffusion tensors of high energy protons in Kolmogorov magnetic
fields were discussed in Section 3.3.3. In Section 3.3.3, the results using Honda’s method

were compared to Honda’s original results.

cLlfn"w do not agree to Honda’s results in log;, [%";] <0

In Figure 4.6 the plots of
region and the plots of —f<— do not agree to Honda’s results log 4] > 0 region.
cLmax 10 Lmax g

These differences can be explained by four reasons:

1. The simulation used a normal distribution to sample vector potentials 5/1‘, whereas

an exponential distribution was used in the Honda’s original simulation .

2. The simulation used the periodic boundary condition which was not mentioned in

Honda’s study.
3. The simulation used a = 2, whereas Honda used o = £ for [L;]*.

4. The number of time steps might not have been large enough to calculate diffusion

tensors.
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6.3 Giacalone and Jokipii simulation

The next simulation to be repeated and investigated was developed by Giacalone and
Jokipii. Giacalone and Jokipii used the superposition of plane waves to create the Kolmogorov-
like magnetic fields for the irregular part of the magnetic field [7] (8] [9]. They proposed
that the irregular part 6B (z,y, z) be a superposition of plane waves with isotropic propa-

gation directions and with random polarisations and phases.

The trajectories of the charged particles were calculated from the equation of motion.
Giacalone and Jokipii created new magnetic fields at each time step as a particle changed
its position, whereas Honda set magnetic fields at each lattice point initially. So a magnetic
field interpolation is not necessary in Giacalone and Jokipii simulation. The diffusion
tensors were calculated by using Equation 6.1.2 and the results were compared to Honda's
result, and the result from the Casse et al. simulation. The diffusion tensors for high
energy protons (log (%‘3) >> 1) were consistent with the results from Honda and Casse et
al. However the diffusion tensors with low energy protons (log (%%) <« 1) were inconsistent

with the Honda and Casse et al. results.

For the above reason, distributions of the proton’s final position were investigated.
The distribution of the final position was expected to be a Gaussian distribution, but the
low energy protons (E = 10'3eV) showed a high peak at the origin. This implied that
the 1013eV protons were strongly influenced by the magnetic field and were likely to be

trapped by the magnetic field.

The peak shape in the distribution of the position of the low energy protons might
depend upon the pitch angle of the protons. The simulation selected the final positions of
the protons with larger initial pitch angles and the their distribution was analysed. The

protons with larger initial pitch angles showed a much higher peak than those with smaller
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initial pitch angle. The 10'%eV protons with large initial pitch angles were likely to stay in
the vicinity of the origin, and they seemed to be trapped by the magnetic field, whereas
the 10*3eV protons with small initial pitch angles had more opportunity to travel further
from the origin.

In comparing the Honda simulation with the Giacalone and Jokipii simulation, the
latter does not need magnetic field interpolation. Moreover a periodic boundary conditions
was applied in Honda’s simulation method, and so the turbulent magnetic field repeated
every 1.0 pc. The sensitivity to the minimum grid spacing L,,;, and size of time step can
also cause Honda’s result to differ from the results of the Giacalone and Jokipii simulation.
For these reasons, the modified Giacalone and Jokipii simulation was used to investigate

the shock acceleration phenomenon.

6.4 Shock acceleration

The study used the simulation method proposed by Giacalone and Jokipii [7] [8] [9] for
the application of shock acceleration at a shock parallel to the mean magnetic field EO
(Parallel Shock).

The shock simulation was implemented for various proton energies and various turbu-

lence level fH,. Values of (J—E}fl and Pegcape Were found to be close to the expected values

of the i‘;—}fl and Pegcape.

6.5 Further work

There is further work to extend the study of cosmic ray shock acceleration.

In the study, the cosmic ray acceleration in the Parallel Shock was investigated. The
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same study could be done on Perpendicular Shock. In a Perpendicular Shock, the direction
of the shock front is perpendicular to the mean magnetic field vector of the turbulent
magnetic field. Figure 6.1 shows a schematic diagram of a Perpendicular Shock. The

direction of the mean magnetic field can be either the z- or y-direction.

U

Bm:a lines

: v >
Downstream / / Upstream / z—direction
region region

Shock front

Figure 6.1: The schematic diagram of the Perpendicular Shock. The direction of the shock
front is perpendicular to the mean magnetic field.

In a Perpendicular Shock simulation, Lorentz transformation of the electromagnetic
field should be considered. Figure 6.2 shows the schematic diagram of two different frames
of references. In Figure 6.2, frame K is stationary and frame K " is moving with velocity v in
s-direction. When a relativistic particle moves from one frame of reference to other frame,
the Lorentz transformations should be applied to the position-time four-vector and the
four-momentum of relativistic protons. In the shock simulation, a subroutine to calculate
the Lorentz transformation of four-vector and four-momentum was included. Lorentz
transformation of a perpendicular magnetic field, an electric field appears in the new
frame. Equations 6.5.1 and 6.5.2 give the Lorentz transformations of the electromagnetic

field from frame K to frame K’, the frame K remaining stationary and frame K’ moving
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Figure 6.2: The schematic diagram of two frames of reference. The frame K is fixed frame
and the frame K’ is moving toward z-direction.

toward z-direction with speed v.

4

El(ct', 7) = y[By(ct, 7) — 5B,(ct, )]
\ Ei(ct', 7) =[E,(ct, 7) + 7By(ct, )] (6.5.1)

Bl(ct!, ) = E,(ct, 7)

s

Bl(ct', ™) = ~[By(ct, 7¥) + gEy(ct, ]

\ By(ct', ) =~[By(ct, 7) — LE,(ct, 7)] (6.5.2)

kB;(ct’, 7) = B,(ct, 7)

Performing a Perpendicular Shock simulation, and comparing with a Parallel Shock
acceleration, will give us more useful information about shock acceleration of protons,
and including the Lorentz transformation of electromagnetic field will refine the shock

simulation. These could be done to extend this study.
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