Terahertz Waveguides:

A Study of Microwires and Porous Fibres

by

Shaghik Atakaramians

Bachelor in Electrical Engineering (Outstanding Graduate), Iran University of Science and Technology (IUST), Iran, 2000, Masters in Electrical Engineering (major: Microwave Engineering), University of Tehran, Iran, 2002.

Thesis submitted for the degree of

Doctor of Philosophy

in

Physics, Faculty of Sciences and Electrical and Electronic Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide, Australia

January, 2011

Supervisors:

Prof Derek Abbott, School of Electrical & Electronic Engineering Dr Shahraam Afshar V., School of Chemistry & Physics Dr Bernd M. Fischer, School of Electrical & Electronic Engineering Prof Tanya M. Monro, School of Chemistry & Physics

© 2011 Shaghik Atakaramians All Rights Reserved

Contents

Conten	ts			iii
Abstra	ct			vii
Statem	ent of	Originality		ix
Acknov	vledgm	ents		xi
Conver	ntions			xv
Publica	itions		3	xvii
List of	Figures	3		xxi
List of	Tables		x	xvii
Chapte	r 1. In	troduction and Motivation		1
1.1	THz w	vaveguides		2
1.2	Thesis	overview		6
1.3	Summ	ary of original contribution		8
Chapte	er 2. Re	eview of THz generation, detection and waveguides		11
2.1	Introd	uction		12
	2.1.1	Objective and framework		15
2.2	Genera	ation and detection of THz pulses		15
	2.2.1	Terahertz sources		16
	2.2.2	Terahertz detectors		17
	2.2.3	THz radiation generation and detection based on photoconductive)	
		antennas		20
2.3	Terahe	ertz waveguides		23
	2.3.1	Metallic waveguides		25
	2.3.2	Dielectric Waveguides		35
2.4	Chapt	er Summary		55

Chapte	er 3. THz microwires	61
3.1	Introduction	62
	3.1.1 Objective and framework	62
3.2	Optical Nanowires	62
3.3	Dielectric properties of the bulk materials in THz \ldots	64
3.4	Microwires	72
	3.4.1 Electric and magnetic field distributions	74
	3.4.2 Power fraction and effective area	79
3.5	Signal degradation in THz microwire	83
	3.5.1 Loss mechanisms \ldots	84
	3.5.2 Dispersion mechanisms	95
3.6	Chapter Summary	102
Chapte	er 4. THz porous fibres: concept and modelling	105
4.1	Introduction	106
	4.1.1 Objective and framework	106
4.2	Sub-wavelength air-hole in a dielectric waveguide	107
4.3	Concept of THz porous fibre	109
4.4	THz characteristics of porous fibre	121
	4.4.1 Power fraction and effective area	121
	4.4.2 Loss and confinement	124
	4.4.3 Dispersion	130
4.5	Chapter Summary	135
Chapte	r 5. Porous fibres: design, fabrication and cleaving	139
5.1	Introduction	140
	5.1.1 Objective and framework \ldots	143
5.2	Porous fibre fabrication based on extrusion $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	144
5.3	Cleaving of extremely porous polymer fibres	150
	5.3.1 Semiconductor dicing (SD) saw $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	151
	5.3.2 Focused ion beam (FIB) milling	155
	5.3.3 UV 193 nm laser	156
5.4	Modelling of fabricated porous fibres	160
5.5	Chapter Summary	164

Chapte	r 6. TH	Hz characterization of porous fibres	167
6.1	Introd	uction	168
	6.1.1	Objective and framework	171
6.2	Charao	cterization of waveguides	171
6.3	Porous	fibre characterisation	172
	6.3.1	First characterisation technique	173
	6.3.2	Second characterisation technique: probing the evanescent field	181
6.4	Chapte	er Summary	197
Chapte	r 7. Co	onclusion and future work	203
7.1	Introd	uction	204
7.2	Thesis	summary and author's contribution	204
7.3	Potent	ial future directions	207
	7.3.1	Mode profile of THz microwire and porous fibre	207
	7.3.2	THz beam coupling into THz microwire and porous fibre	207
	7.3.3	Bending loss of the THz microwire and porous fibre	208
	7.3.4	THz microwire as a biosensor	208
	7.3.5	THz porous fibre as a biosensor	209
7.4	Chapte	er summary	209
Append	lix A. C	Derivation microwire equations	211
Append	lix B. C	Data processing algorithms	217
B.1	Conver	ntional THz-TDS analysis program	218
	B.1.1	Main mfile	218
	B.1.2	Functions	219
B.2	THz w	aveguide analysis program	224
	B.2.1	Main mfile	224
	B.2.2	Functions	227
B.3	Microv	vire	229
	B.3.1	Main mfile	229
	B.3.2	Functions	230
B.4	Porous	fibre	233
	B.4.1	Main mfile	234

Appendix C. Equipment for THz measurements	243
Bibliography	245
Glossary	259
Acronyms	261
Biography	263

Abstract

This Thesis reports the development of fibres to guide terahertz (THz) or T-ray radiation. It demonstrates the theoretical studies of THz microwires (air-clad solid core fibres) and a new form of waveguide: the *porous* fibre. Porous fibre has an arrangement of sub-wavelength featured air-holes in the cross-section, resulting in improved confinement of the propagating mode while retaining the low loss characteristic compared to air-clad sub-wavelength waveguide or microwires. Porous fibres also offer lower frequency dependent loss and dispersion compared to microwires. Furthermore, introducing asymmetrical discontinuity leads to high birefringence, which is comparable to recently achieved high birefringence in photonic crystal fibres.

Furthermore, this thesis involves the first successful fabrication of highly porous polymer fibres, with both symmetrical and asymmetrical discontinuities, via an extrusion process. In order to achieve rapid and reproducible waveguide cross-sections three different cleaving techniques—based on the use of a semiconductor dicing saw, focused ion beam milling, and a 193 nm ultraviolet laser—have been investigated for cleaving of polymer porous fibres.

Finally, two different techniques have been utilised for characterisation of porous fibres. The first approach leads to the first experimental verification of frequency dependence of effective refractive indices of polymer porous fibres and microwires. The second approach exploits a micromachined photoconductive probe-tip for sampling of the THz pulse along the waveguide, from which the frequency dependent absorption coefficient and refractive index are determined. Moreover, the evanescent field distribution of porous fibres as a function of frequency is measured for the first time.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Shaghik Atakaramians and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

> 12 January 2011 Date

Signed

Acknowledgments

I would like to express my deep gratitude to my supervisors, Prof Derek Abbott, Dr Shahraam Afshar V., Dr Bernd M. Fischer, and Prof Tanya M. Monro. Their encouraging attitude has been valuable through out my candidature, and helped me to grow as an engineer and scientist. I have learned many positive and life time skills from my supervisors, which cannot be summarised in a few lines. However, I would like to highlight the ones that have inspired me the most. There is nothing defined as impossible in Derek's world. Any result of the work is treated as a major discovery by Shahraam's enthusiasm and readiness for discussion. Shahraam's passion about research has driven me towards my limits and consequently better outcomes. Bernd's feedback on my research caused me to look at problems differently. Being a young female scientist, Tanya has been my inspiration for what I can also achieve.

My thesis has been an exceptionally rewarding and memorable journey. During this journey I have worked with many Engineers, Scientists, and Technicians, who have broaden my view and approach to tackle problems. Special thanks to Dr Heike Ebendorff-Heidepriem, deputy director of Centre of Expertise in Photonics (CoEP) from School of Chemistry and Physics at University of Adelaide, for her assistance and guidance on fibre fabrication process and proof reading of Chapters 3 and 5, and Dr Michael Nagel from Institute of Semiconductor Electronics (ISE) at RWTH Aachen University for his assistance with analysing and interpreting the waveguide experimental results.

I acknowledge informative discussions with A/Prof Chris Coleman, A/Prof Christophe Fumeaux, and Dr Brian H.-W. Ng from School of Electrical and Electronic Engineering at University of Adelaide, Prof John Canning from Interdisciplinary Photonics Laboratories (iPL) at University of Sydney, and Prof Barry Luther-Davies from the Australian National University (ANU).

I would like to thank Mr Ian R. Linke, Mr Alban P. O'Brien, Mr Brandon F. Pullen, and Mr Pavel Simcik from School of Electrical & Electronic Engineering (EEE), and Mr Herbert Foo, and Mr Kevin Kuan from School of Chemistry and Physics for their continuous technical support and interest in my work. Special thanks to Mr Roger Moore from CoEP for fibre drawing.

Acknowledgments

I gratefully acknowledge the assistance of Mr Leonard Green for focused ion beam milling from Australian Microscopy and Microanalysis Research Facility (AMMRF), the Micro-Engineering staff in the development of the fibre dicing procedure the Defence Science and Technology Organisation (DSTO) Edinburgh Adelaide, and Dr Kevin Cook for UV laser cleaving from iPL at University of Sydney.

Thanks go to my friends and colleagues from the University of Adelaide; at School of Electrical and Electronic Engineering: Dr Withawat Withayachumnankul, and Dr Gretel Png for their assistance with LATEX and applying for grant applications, Mr Henry Ho for T-ray laboratory hardware and experimental assistance, Dr Jegathisvaran Balakrishnan, Mr Benjamin S. Y. Ung, Mr Hungyen Lin for their company and encouragement in the T-ray laboratory; at School of Chemistry and Physics: Dr Kris Rowland, and Mr Wenqi Zhang for their assistance with FEMLAB codes, and other people in Adelaide T-ray group and CoEP, with whom I have had great moments.

Thanks go to my oversees colleagues from RWTH Aachen University, Germany, Mr Markus Wächter and Mr Mohammad Awad for assistance with THz hardware during my visit.

I am grateful for the discussion with external academics: Prof Daniel Grischkowsky, Prof James Harrington, Prof Daniel Mittleman, Prof Milica Popovic, and Prof Peter Siegel.

I gratefully acknowledge A/Prof Ole Bang from the Department of Photonics Engineering, Technical University of Denmark for supplying the COC billet, Naoki Sugimoto at Asahi Glass Japan for supplying the bismuth glass samples, and Prof David N. Jamieson at The University of Melbourne for supplying the diamond samples.

During my candidature, administrative work has been assisted by Ms Rose-Marie Descalzi, Ms Colleen Greenwood, Ms Philomena Jensen-Schmidt, Ms Ivana Rebellato, Mr Danny Di Giacomo, and Mr Stephen Guest at School of EEE and Ms Sara Boffa, and Ms Olivia Towers from School of Chemistry and Physics. Other supporting people include the IT support officers, David Bowler, and Mark J. Innes from EEE and Ramona Adorjan from School of Chemistry and Physics. People who helped augment my academic writing skills in the early days are Dr Christina Era and Dr Michelle Picard.

Major financial support has been provided by Australian Endeavour International Postgraduate Scholarship (EIPRS) and the University of Adelaide Scholarship for Postgraduate Research. Travel grants were from the School of EEE, and Research Abroad Scholarship at the University of Adelaide, Australian Research Council Nanotechnology Network (ARCNN) Overseas Travel Fellowship, and IEEE SA Section Travel Scholarship. The Adelaide T-ray program has been supported by the ARC, the Sir Ross and Sir Keith Smith Fund, DSTO, and NHEW P/L.

At last but not the least, I would like to sincerely thank my husband, Gevik, and my parents, Destrik and Soorik, for their endless and tremendous support, encouragement, and generous patience. I would like to welcome the addition of our little princess Biayna to our family.

Conventions

- Referencing The Harvard style is used for referencing and citation in this thesis.
- **Spelling** Australian English spelling is adopted, as defined by the Macquarie English Dictionary (Delbridge 2001).
- System of units The units comply with the international system of units recommended in an Australian Standard: AS ISO 1000—1998 (Standards Australia Committee ME/71, Quantities, Units and Conversions 1998).
- **Physical constants** The physical constants comply with a recommendation by the Committee on Data for Science and Technology: CODATA (Mohr and Taylor 2005).
- **Frequency band definition** It is preferable to refer to the spectral band from 0.1 to 10 THz as 'T-rays', according to an argument by Abbott and Zhang (2007). T-rays have frequencies that correspond to the so-called 'Terahertz-gap.' Thus in the field, when we refer to 'terahertz radiation' this is an alternative form for T-rays. In this context, the term 'terahertz radiation' is understood as meaning 'radiation in the terahertz-gap' or T-rays and the word 'terahertz' is not to be confused with the units of terahrtez that span three decades from 10^{12} Hz.

Publications

Journal Articles

- Atakaramians S., Afshar V. S., Nagel M., Rasmussen H. K., Bang O., Monro T. M., and Abbott D., "Direct probing of evanescent field for characterization of porous terahertz fibers," *Appl. Phys. Lett.*, vol. 98, 121104, 2011.
- Atakaramians S., Cook K., Ebendorff-Heidepriem H., Afshar V. S., Canning J., Abbott D., and Monro T. M., "Cleaving of extremely porous polymer fibers," *IEEE Photonics*, vol. 1 (6), pp. 286–292, 2009.
- Atakaramians S., Afshar V. S., Nagel M., Ebendorff-Heidepriem H., Fischer B. M., Abbott D., and Monro T. M., "THz porous fibers: design, fabrication and experimental characterization," *Optics Express*, vol. 17 (19), pp. 14053–14062, 2009.
- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Low loss, low dispersion and highly birefringent terahertz porous fibers," *Optics Communications*, vol. 282(1), pp. 36–38, 2009.
- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Porous fibers: a novel approach to low loss THz waveguides," *Optics Express*, vol. 16 (12), pp. 8845–8854, 2008.
- Withayachumnankul W., Png G., Yin X., Atakaramians S., Jones I., Lin H., Ung B. S. Y., Balakrishnan J., Ng B. W.-H., Ferguson B., Mickan S. P., Fischer B. M., and Abbott D., "T-ray sensing and imaging," *Proceedings of the IEEE, Special Issue on: T-ray Biosensing and Security*, vol. 95 (8), pp. 1528-1558, 2007.

Conference Articles

 Atakaramians S., Afshar V. S., Nagel M., Monro T. M., and Abbott D., "A new technique to measure loss, effective refractive index and electric field distribution of THz porous fibers," *CLEO/QELS*, Baltimore, Maryland, 2011, accepted.

- Atakaramians S., Franke H., Abbott D., Monro T. M., and Fumeaux C., "Application of full-wave electromagnetic solvers to micro/nano-structured fibres," ACOLS/ ACOFT, Adelaide, Australia, pp. 473-474, December 2009.
- Ebendorff-Heidepriem H., Afshar V. S., Warren-Smith S. C., Zhang W. Q., Ruan Y., Atakaramians S., and Monro T. M., "Fibres with subwavelength features: fabrication and novel guidance properties," *ACOLS/ACOFT*, Adelaide, Australia, pp. 28-29, December 2009.
- Atakaramians S., Afshar V. S., Nagel M., Ebendorff-Heidepriem H., Fischer B. M., Abbott D., and Monro T. M., "Experimental investigation of dispersion properties of THz porous fibers," *The 34th International IEEE Conference on Infrared, Millimeter, and Terahertz Waves*, Busan, Korea, September 2009, D.O.I.: 10.1109/ICIMW.2009.5324967.
- Atakaramians S., Afshar V. S., Nagel M., Ebendorff-Heidepriem H., Fischer B. M., Abbott D., and Monro T. M., "Experimental validation of low dispersion and high birefringence properties of THz polymer porous fibers," *The 18th International Conference on Plastic Optical Fibers*, Sydney, Australia, September 2009.
- Fumeaux C., Baumann D., Atakaramians S., and Li E. P., "Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations," 25th Annual Review of Progress in Applied Computational Electromagnetics, California, USA, pp. 401-406, March 2009.
- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Highly birefringent, low loss and low dispersion THz waveguides with sub-wavelength porous structure," *EOS Annual Meeting 2008*, Paris, France, September-October 2008.
- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Porous fibers: Low loss, low dispersion waveguides for terahertz transmission," *33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves*, Pasadena, California, USA, September 2008, D.O.I: 10.1109/ICIMW.2008.4665703.
- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Porous fiber: a novel THz waveguide, OECC/ACOFT, Sydney, Australia, art. no. ThE-3, July 2008.

- Atakaramians S., Afshar V. S., Fischer B. M., Abbott D., and Monro T. M., "Loss mechanisms for T-ray microwires," *Joint 32nd International IEEE Confer*ence on Infrared Millimeter Waves and 15th International Conference on Terahertz Electronics, Cardiff, UK, pp. 811–812, September 2007.
- Afshar Vahid S., Atakaramians S., Fischer B. M., Ebendorff-Heidepriem H., Monro T. M., and Abbott D., "Low loss, low dispersion T-ray transmission in microwires," *CLEO/QELS*, Baltimore, Maryland, art. no. JWA105, 2007.
- Atakaramians S., Afshar V. S., Fischer B. M., Ebendorff-Heidepriem H., Monro T. M., and Abbott D., "Low loss terahertz transmission,," *Proceedings SPIE Micro*and Nanotechnology: Smart Materials, Nano- and Micro-Smart Systems, vol. 6414, art. no. 64140I, Adelaide, Australia, December 2006.
- Atakaramians S., Afshar Vahid S., Fischer B. M., Ebendorff-Heidepriem H., Monro T. M., and Abbott D., "Terahertz waveguides and materials," *Joint 31st International IEEE Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics*, Shanghai, China, p. 281, September 2006, D.O.I.: 10.1109/ICIMW.2006.368489.

List of Figures

1.1	Terahertz band in the electromagnetic spectrum	3
1.2	Thesis outline and original contribution	7

2.1	Primary methods of generation, and detection of single-mode THz pulses .	14
2.2	THz generation in non-linear media	17
2.3	THz generation from accelerating electrons	18
2.4	THz generation from lasers	19
2.5	Coherent detection of THz radiation	20
2.6	Generation of THz radiation from a PC antenna	21
2.7	Schematic diagram of a dipole, strip-line and bow-tie PC switches $\ . \ . \ .$	22
2.8	Detection of THz radiation from a PC antenna	23
2.9	Circular and rectangular cross-section metallic waveguides	27
2.10	Parallel-plate waveguide and interconnect	28
2.11	Bare metal wire experimental setup	31
2.12	Sommerfeld wire experimental set-up I	32
2.13	Sommerfeld wire experimental set-up II	32
2.14	Metallic slit waveguide experimental set-up	34
2.15	Single dielectric ring (pipe) waveguide and the experimental set-up $\ \ldots$.	38
2.16	Hollow-core microstructured band-gap fibre	41
2.17	THz Bragg fibres	44
2.18	Bragg fibre experimental set-up	46
2.19	Hollow-core microstuctured Kagomé fibres	47
2.20	Sub-wavelength air-clad dielectric fibre experimental arrangement \ldots .	51
2.21	Solid-core microstructured fibre and the experimental arrangement I	53
2.22	Solid-core microstructured fibre and experimental arrangement II \ldots	54
2.23	Schematic of a dielectric slit rectangular and tube waveguides, and electric	
	field enhancement	54

3.1	Optical nanowires	63
3.2	Glass and polymer samples	65
3.3	T-Ray 2000 TM system $\ldots \ldots \ldots$	66
3.4	Experimental setup	67
3.5	Determination of the THz dielectric properties from reference and sample	
	pulses	71
3.6	Dielectric properties of the glass and polymer materials	72
3.7	Normalised electric fields of the fundamental mode	75
3.8	Normalised magnetic fields of the fundamental mode $\ldots \ldots \ldots \ldots \ldots$	76
3.9	Normalised Poynting vector distribution of the fundamental mode \ldots .	77
3.10	Normalised Poynting vector distribution of the fundamental mode $\ . \ . \ .$	78
3.11	Enhancement of the electric field in the lower refractive index medium	80
3.12	Power fraction and effective area of microwires	82
3.13	Scalar and vectorial effective area of a PMMA microwire	83
3.14	Dielectric waveguide	86
3.15	Effective loss of COC, PMMA, F2, SF6, SF57 and bismuth microwires $~$.	88
3.16	Contribution of transverse- and z-components of electric field on $\alpha_{\rm eff}$	89
3.17	Bend loss and critical bend radius of microwires	92
3.18	Correlation of the bend loss and effective area	93
3.19	Total loss: effective material and bend losses	95
3.20	Comparison of our results with Chen <i>et al.</i> (2006)	96
3.21	Material dispersion of the polymer and glass samples	98
3.22	Effective refractive indices, phase velocity and group velocity of PMMA	
	and bismuth microwires	00
3.23	Waveguide dispersion of PMMA and bismuth microwires $\ldots \ldots \ldots \ldots 1$	01

4.1	The electric field enhancement inside the central bore of a hollow core fibre a	108
4.2	Power profile distribution of a porous fibre with triangular lattice	112
4.3	Numerical simulation steps of the full geometry of a PMMA porous fibre .	114

4.4	Electric and magnetic field distributions of the fundamental mode $\ . \ . \ . \ . \ 116$
4.5	Numerical simulation steps of a quarter geometry of a PMMA porous fibre $\ 118$
4.6	Impact of the solution region dimension on the porous fibre parameters $$ 119
4.7	Impact of the finite-element dimensions on the porous fibre parameters $~$ 120
4.8	Effective refractive index of three porous fibres and a microwire as a func-
	tion of core diameter $\ldots \ldots \ldots$
4.9	Power fraction of three porous fibres and a microwire as a function of core
	diameter
4.10	Effective area of three porous fibres and a microwire as a function of core
	diameter
4.11	Effective material loss of three porous fibres and a microwire as a function
	of core diameter
4.12	Normalised effective area versus effective material loss of three porous fibres
	and a microwire
4.13	Sketch of a bent waveguide
4.14	Fraction of power radiated for a porous fibre and microwire as a function
	of effective material loss for two different bend radii
4.15	Signal degradation due to the frequency dependence of the host material
	loss for a porous fibre and microwire
4.16	Different shapes of sub-wavelength air-holes in porous fibres and their nor-
	malised power distribution
4.17	Effective material loss of porous fibres with symmetrical and asymmetrical
	shaped sub-wavelength air-holes
4.18	Normalised group velocity of four porous fibres (symmetrical and asym-
	metrical sub-wavelength air-noles) and a microwire
4.19	Modal biretringence of four porous fibres (symmetrical and asymmetrical
	sub-wavelength arr-noies) and a microwire
5.1	Cross-section of porous preforms and fibres fabricated employing stacking
	and structured molding approach $\ldots \ldots 142$

List of Figures

5.4	Photograph of the cross-sections of the extruded polymer porous preforms 148
5.5	Fibre drawing tower and porous fibre cross-sections
5.6	SEM images of cleaved end-face of PMMA porous fibres using a conven-
	tional blade and heating up the blade before hand
5.7	Images of SD saw machine
5.8	SEM images of SD saw cleaves
5.9	Images of FIB milling machine
5.10	SEM images of FIB milling cleaves
5.11	Schematic of the UV cleaving setup
5.12	SEM images of UV cleaves
5.13	Side-view images of UV cleaves
5.14	Progression of UV cleave
5.15	THz modelling of the <i>ideal</i> and <i>real</i> polymer porous fibres

6.1	Standard THz measurement systems employed for characterisation of THz
	waveguides
6.2	Schematic of the THz-TDS setup I for waveguide characterisation \ldots 174
6.3	Images of the waveguide holders
6.4	Measured THz signals and spectral amplitudes of PMMA porous fibres and
	a micorwire
6.5	Effective material loss and effective refractive index of PMMA porous fibres
	and a microwire
6.6	Measured THz signals and spectral amplitudes of PMMA rectangular porous $% \mathcal{A}^{(1)}$
	fibres
6.7	Absorption coefficients and effective refractive indices of a PMMA rectan-
	gular porous fibre
6.8	Output coupler for sampling THz pulses $\hdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 182$
6.9	The image of the probe-tip detector
6.10	Schematic of the THz-TDS setup for waveguide characterisation \ldots 185
6.11	Measured THz signal and spectrum
6.12	System parameters variation in time

6.13	Spectral amplitude variation in time
6.14	Image of a section of the experimental setup
6.15	Three methods employed for input coupling into the waveguides $\ldots \ldots \ldots 190$
6.16	Measured THz signal, spectrum amplitude, and THz properties of a $600 \ \mu m$ COC spider-web porous fibre
6.17	Monitoring the alignment of the probe-tip
6.18	Measured THz signal, spectrum amplitude, and THz properties of a 540 μ m diameter COC spider-web porous fibre $\dots \dots \dots$
6.19	Measured THz signal with and without waveguide in the system 200 $$
6.20	Frequency-dependent radial field distribution of a 600 μ m diameter COC spider-web porous fibre

List of Tables

2.1	Characteristics of ultrafast photoconductive materials	22
2.2	Summary of key parameters of THz metallic waveguides	57
2.3	Summary of key parameters of THz hollow-core dielectric waveguides	58
2.4	Summary of THz solid-core dielectric waveguides	59
3.1	Composition of heavy metal oxide glasses	65
C.1	List of equipment used at University of Adelaide A	244
C.2	List of equipment used at University of Adelaide B	244