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Abstract

An emerging field in geophysics is that of joint inversions, in which multiple tech-
nique data sets are analysed and inverted simultaneously. This helps to integrate
the complementary data sets and reduce model ambiguity, common in single tech-
nique inversions. In this thesis a new implementation of a magnetotelluric (MT) and
gravity 2D joint inversion scheme is developed based on a petrophysical approach.
In sedimentary rock environments, electrical conductivity (which underpins the MT
technique) can be approximated by Archie’s Law, whereas density (which underpins
the gravity technique) can be derived from the porosity-density relationship. Since
both expressions are themselves dependent on porosity, this petrophysical property
provides the crucial link exploited by the 2D joint inversion. The 2D joint inversion
approach devised here inverts directly for a porosity model, which is converted to
resistivity and density models through Archie’s Law and the porosity-density re-
lationship, then constrained (fitted) by the MT and gravity data. Thus, a single
porosity model is produced that satisfies both data sets.

By means of synthetic data inversions, it was established that the joint inversion
is more effective in reproducing the true subsurface model than can be achieved by
an MT or gravity inversion alone. Models produced by the joint inversion show
improved placement of subsurface features and a greater accuracy of reconstructing
the original subsurface (physical property) values. For optimal joint inversion re-
sults, broadband MT data should be used in favour of long period MT data, and
the number of gravity stations should be greater than or equal to the number of MT
stations. The joint inversion is particularly useful in extracting coherent information
from noisy MT data when combined with good quality gravity data. While evaluat-

ing the MT and gravity compatibility, a new method was developed for evaluating

vii



viii ABSTRACT

the information contained in the MT Jacobian (sensitivity) matrix.

The Renmark Trough in South Australia is an area of current geothermal interest
for which multi-technique data (seismic, gravity, MT) exists. These field data were
used to demonstrate and verify the effective use of the joint inversion in a practical
real-world example. The Renmark Trough is a half graben structure with the Hamley
Fault delineating the north-east boundary. At the Hamley Fault, the base of the
trough is 3.5 km deep and rises gradually in a south-west direction. The inversion
of the MT data alone produced a model inconsistent with seismic knowledge of the
basement depths and geometries. In contrast, the joint inversion yielded a more
geologically accurate image of the trough and faithfully reconstructed the basement
depths and geometries.

In the process of developing the joint inversion scheme, a 2D gravity inversion al-
gorithm, based on the Occam maximum smoothness approach, was produced. This
inversion algorithm demonstrated the inherent non-uniqueness of gravity interpre-
tation by only placing strong density contrasts at the surface. Attempts to improve
the gravity inversion results, such as the use of depth weighting functions and fixing
structure locations in parts of the model, were not as effective as the joint inversion

in producing an accurate representation of the subsurface.
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Chapter 1

Introduction

The aim of the research described in this thesis is to develop, test and apply a
magnetotelluric (MT) and gravity 2D joint inversion scheme. Joint inversions take
data sets from two complementary geophysical survey techniques, measured over the
same subsurface geology, and simultaneously invert them to produce an integrated
model [1] [2]. They provide an effective and efficient means of combining and jointly
analysing the different data sets such that there is an increased confidence in the final
interpretation [3]. Joint inversions also aid in reducing model non-uniqueness, which
plagues single technique inversions, without having to introduce external constraints
or geological prejudice [4] [5]. However, the difficulty with joint inversions is in
developing a suitable and pervasive link between the two techniques on which the

inversion is based.

The MT and gravity techniques were chosen for this study because they are rel-
atively cheap and popular techniques. There exist readily available large open-file
MT and gravity data sets, thus ensuring a demand for MT and gravity joint inver-
sions in the future. The theory of the MT and gravity techniques is relatively simple
when compared to the more complex seismic and controlled source electromagnetic
(CSEM) techniques [6]. This allows for a more simplistic environment in which to
develop a new joint inversion approach, before potentially adapting and extending
it to more complicated techniques. Further details on the theoretical benefits of

combining the MT and gravity techniques are provided in Chapter 5.

There are two previously reported attempts to combine the MT and gravity
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techniques in a simultaneous inversion [7] [8]. Both research groups based their
inversions on a structural approach, whereby it is assumed that each technique
should sense the same position and orientation of any subsurface geological structure.
Thus, the geology is the structural control on the distribution of the parameters.
As a result, boundaries in the model parameters are expected at the same locations
for each of the data sets [4]. Although boundaries or gradients of the parameter
values in the models are expected to be the same, absolute values for each of the

parameters are independent.

Santos et al. [7] and Jegen et al. [8] jointly inverted MT and gravity by using
a simple form of structural approach, that of a 2D layered Earth model which has
lateral changes in the thickness of the layers. The joint inversion produced resistiv-
ity and density models that were connected by having co-incident layer boundaries.
The resistivity and density values between the layer boundaries were assumed to be
constant and independent of each other. This style of joint inversion is restricted
to simple geological provinces and is very much dependent on the model parame-
terisation used (number of layers) as well as the actual starting model [9]. Layered

earth joint inversions have also been used by other researchers to combine various

geophysical data sets [10] [11] [12] [13] [14] [15] [16] [17].

Structural approaches have been the mainstay of joint inversions to date. More
sophisticated versions define the structure of a smooth 2D model in terms of the
gradients between adjacent cells. Once there is a measure of structure, a constraint
is placed on the joint inversion such that it fits the observed data sets and minimises
the structural variation between models corresponding to the different techniques
[1] [2]. The cross-gradient method developed by Gallardo and Meju [4] [5] is the
most popular structural joint inversion approach. Initially, the 2D cross-gradient
method was applied to seismic traveltimes and DC resistivity data for shallow inves-
tigations. Subsequently, the cross-gradient method has been adapted by numerous
other researchers and applied in a variety of geophysical techniques and investiga-
tions, although it has never been applied to MT and gravity [3] [18] [19] [20] [21]
[22] [23] [24].

An alternative way of performing a joint inversion is the petrophysical approach,



whereby the different parameters of the joint inversion (i.e. physical properties of
the subsurface to which each technique is individually responsive) are linked through
an a priori relationship. No analytical formulae exist that uniquely link the various
parameters measured by geophysical techniques, although there do exist several
well established empirical formulae. The petrophysical approach has shortcomings
in terms of the absence of a robust link between parameters that can be applied
to diverse geological situations. Thus, this approach has been mainly overlooked in

favour of a structural approach.

To date there have been no attempts at MT and gravity petrophysical joint
inversions cited. However, a petrophysical approach involving other geophysical
techniques has been undertaken by Tiberi et al. [25] and Lees and VanDecar [26].
In these studies Birch’s Law, which relates the P-wave velocity to density, was used
to combine seismic and gravity data. Hoversten et al. [27] sought to recover reser-
voir properties by using rock-property models and jointly inverting marine seismic
AVA data (amplitude variation with angle of incidence) and CSEM data. Tseng
and Lee [28] jointly inverted electromagnetic (EM) and seismic traveltime data by
inverting for porosity and fluid conductivity, which are related to conductivity and
P-wave velocity through Archie’s Law and Wyllie’s Law. However, it was found that
this type of joint inversion was ill-posed and would not produce reasonable models

without heavy user intervention.

In this thesis, the objective of the research was to gain greater insight into the
petrophysical approach by developing a new petrophysical joint inversion between
MT and gravity data. Current MT and gravity joint inversions are restricted to
layered (2D) Earth environments. Therefore, the petrophysical joint inversion de-
veloped here is intended to be applied to more structurally complicated areas, which
entail complex 2D structure. This research is not necessarily to be restricted to just
2D MT and gravity data. Rather a general methodology is sought which can be
extended to three dimensions for elucidating 3D structure, and to three or more
techniques (e.g. adding seismic data). Equally, such an approach could be adapted

for jointly inverting different techniques.

An outline of the thesis chapters, the key ideas and processes used to achieve



Description

CHAPTER 1. INTRODUCTION

Key Ideas

- Establishes MT and gravity
theory.

» Describes relationships that could
be used to link resistivity and
density in the joint inversion.

Establishes inversion theory.

Reviews state of the art MT
and gravity inversions.

MT is frequency dependent and
contains more information about
the subsurface than gravity.
Bouguer anomaly gravity data is
sensitive to the density contrast
of the subsurface.

The Occam 2D non-linear
scheme forms the basis of the
joint inversion.

There is a pre-existing MT but
not a gravity Occam inversion.

« Develops an Occam gravity .

inversion, which forms the gravity

component of the joint inversion. .

« Synthetic data is used to test the
new gravity inversion.

The gravity inversion only places
model structure at surface.

An MT specific inversion grid has
no adverse effect on the gravity
inversion.

from chapter 2 to be used in the

new petrophysical joint inversion.
» Discusses the benefits of

combining MT and gravity.

* Determines the best relationships .

Porosity though Archie’s Law
and the porosity-density
relationship form the basis of
linking MT and gravity in the
joint inversion.

methodology.
« Discusses the characteristics of
the new joint inversion.

Chapter 6 Chapter 5

« Presents the joint inversion .

The joint inversion inverts directly
for a single porosity model that is
constrained by both MT and
gravity data.

» Synthetic data is used to test the
joint inversion.

« Includes investigating the effect
of data errors, station
configurations and resolution
capabilities.

A sensitivity analysis evaluates
MT and gravity’s compatibility in
determining sub surface features.

Differential weighting of the MT
and gravity data sets is
attempted.

The joint inversion is effective at
reproducing the subsurface and
produces a more accurate
representation than the MT and
gravity inversion alone.

A joint inversion produces better
results using broadband rather
than long period MT data.
Differential weighting does not
significantly improve the joint
inversion results.

« The joint inversion is applied to
the Renmark Trough in
South Australia.

* Determines the validity of the new
joint inversion on real world data.

The joint inversion produces a
significantly better structural
representation of the Trough than
the MT or gravity inversion alone.

Figure 1.1: A description of, and the key ideas contained in, the chapters of this

thesis.



the objectives are shown in Figure 1.1. The early chapters concentrate on the
physical principles of MT and gravity and the background theory of modelling and
inversion (Chapters 2, 3 and 4). This is followed by a detailed examination of the
important petrophysical relationships (Chapter 5). The joint inversion methodology
is developed in Chapter 6 and it is applied to synthetic data in Chapter 7, including
a study into the effect of data errors and station placement. Chapter 8 continues
with synthetic data testing but is primarily concerned with model sensitivities and
related matters. Finally, the joint inversion is successfully applied to field data from

South Australia (Chapter 9).
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Chapter 2

Magnetotellurics and Gravity

Theory

Magnetotellurics and gravity are two fundamentally different techniques that will
be combined in a petrophysical joint inversion in Chapter 6. The gravity method
is based on Newton’s Law of Gravitation and can be mathematically described by
potential theory (the Laplace and Poisson equations), whereas MT is an electro-
magnetic induction technique that satisfies the diffusion equation. These techniques
have different characteristics and are sensitive to different properties of the Earth.
Gravity is sensitive to density variations whereas MT is sensitive to resistivity vari-
ations.

This chapter provides an overview of the basic theory of the MT and gravity
techniques. The equations for bulk conductivity and density in relation to other
properties of the Earth are also summarised. These equations will be discussed

further in Section 5.2 to determine the relationships used in the joint inversion.

2.1 Magnetotellurics

Magnetotellurics was first introduced by Cagniard [29] and Tikhonov [30] in the
1950’s. It is a passive electromagnetic technique which exploits natural variations in
the Earth’s magnetic field to determine the subsurface resistivity distribution [31].

The sources that are utilised by MT have frequency fluctuations between 10~ and

7
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10° Hz, which makes it ideal for investigating shallow (tens of metres) as well as deep
(hundreds of kilometres) structures of the Earth. In this section the basic theory
of the MT technique and the conductivity equations, which could be used by the

petrophysical joint inversion, are summarised.

2.1.1 Basic Magnetotelluric Theory
Source Field

Magneto-hydrodynamic processes occurring in the Earth’s outer core generate the
main component of the Earth’s magnetic field [32]. This is superimposed upon by
relatively low amplitude, natural time fluctuations called geomagnetic fluctuations.
Geomagnetic fluctuations occur at frequencies between 10~7 and 10° Hz and are
used as the MT source [33]. This source is assumed to be a time-invariant, uniform
magnetic plane wave with normal incidence at the Earth’s surface [31].

The causes of the geomagnetic fluctuations can be divided into several natu-
rally occurring phenomena; meteorological activity, diurnal (solar) variations, mag-
netospheric ring currents and pulsations [9]. Meteorological activity, in particular
lightning, is responsible for generating sources with frequencies higher than 1 Hz.
The EM signal discharged by lightning is known as sferics. Sferics travel radially
out from the lightning strike and propagate around the earth in the resistive zone
between the ground and the conductive ionosphere, which acts as a waveguide. The
majority of thunderstorms occur over land masses in the equatorial latitudes and
the sferics appear as plane waves by the time these reach higher latitudes.

Diurnal fields occur at frequencies between 107 — 10~* Hz and are caused by
the heating and cooling of the ionosphere due to sun exposure. This produces large-
scale circulating currents in each hemisphere. The eastward flowing currents at the
magnetic equator are referred to as the equatorial electrojets.

The interaction between the Earth’s magnetic field and charged particles in the
solar winds and magnetic storms create magnetospheric ring currents [9]. Magneto-
spheric ring currents flow in a westward direction with their strength measured by
the ‘Dst’ (disturbance storm index). Variations in the magnetospheric ring currents

range from minute-by-minute fluctuations during magnetic storms that can last for
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hours, to the 27 day rotation of the sun and the 11 year sun cycle. This results in
a diverse range of frequencies that can be utilised as an MT source.

Geomagnetic pulsations generate an MT source at frequencies lower than 1 Hz.
The constant exposure of the magnetosphere to solar winds causes the magneto-
sphere to be compressed on the sun’s side and tail off on the opposing side. Varia-
tions in the density, velocity and intensity of the solar wind cause the magnetosphere
to be further distorted. These distortions cause a sinusoidal oscillation of the mag-
netosphere through inductive and magneto-hydrodynamic processes [34].

Little signal occurs between frequencies of 0.5 and 5 Hz, with the minimum in
signal strength being at 1 Hz. This is because there are almost no natural processes

that generate frequencies in this band.

Maxwell’s Equations

The MT technique, being an EM phenomena, is based on Maxwell’s equations.
These equations define the behaviour of electromagnetic waves at all frequencies.
Maxwell’s equations in differential form for a polarisable and magnetisable material

containing no electric or magnetic sources can be written as [35]

V-D = qf (21&)
V:-B = 0 (2.1b)
0B
E = — 2.1
V X BT (2.1c)
VxH = JC+%—]? , (2.1d)

where D is the electric displacement in Cm™, ¢y is the free charge density in Cm™,
B is the magnetic induction in T, E is the electric field in Vm™, H is the magnetic
field in Am~! and J, is the electric current density in Am™2.

Gauss’ Law (Equation 2.1a) states that the source of displacement current is
time invariant free charge, which arises from bound charge or polarisation of a
medium. However, there is no point source for the generation of magnetic fields,

meaning there are no free magnetic poles (Equation 2.1b). The magnetic source
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Figure 2.1: A schematic of the relationship between electric and magnetic fields for
a) Faraday’s Law and b) Ampere’s Law.

is dipolar in nature and so the flux of B across any closed surface is zero. In
Faraday’s Law (Equation 2.1c), a time varying magnetic field generates an electric
field that curls around it (Figure 2.1a). Similarly, by Ampere’s Law (Equation 2.1d),
a time varying displacement current and/or an ohmic current density will produce

a magnetic intensity that forms closed loops around the current lines (Figure 2.1b).

Equation 2.1 does not define the electromagnetic fields but shows the inter-
relationship between them. In the given form, E and H are decoupled and consti-
tutive relations are required to establish the coupling. The following relationships

apply in a linear, isotropic medium

B = uH (2.2a)

= ¢E | (2.2b)

where ¢ is the dielectric permittivity in AsV-'m™ and p, is the magnetic permeability
in VsA~'m™. The dielectric permittivity can be expressed as € = gy, where ¢, is the
relative dielectric permittivity (or dielectric constant) and €y = 8.85x107'2 AsV-'m?
is the permittivity of free space. Magnetic permeability is given by p. = poptr,
where yi, is the relative magnetic permeability and py = 47 x 107 VsA'm™ is

the magnetic permeability of free space. These relationships describe a material’s
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ability to become electrically polarized or magnetically polarized (magnetized) in the
presence of an electric or magnetic field, respectively. Other non-linear relationships

apply for ferroelectric and ferromagnetic materials.

In addition to displacement current, conduction current also exists inside a ma-

terial. Conduction currents are related to the electric field through Ohm’s Law

J.=0E |, (2.3)

where o is conductivity in Sm™ and the relationship between conductivity and resis-
tivity, o, in Qm is o = % The quantities €, and p,. exhibit a small range of variations
in Earth materials when compared to conductivity o, which can span 12 orders of
magnitude [6].

The relationships given by Equations 2.2 and 2.3, when substituted into Maxwell’s
equations (Equation 2.1), yield

V.E = %f (2.4a)
V-B = 0 (2.4b)
0B
E = — 2.4
V x BT (2.4c)
E
VxB = ,u*aE—l—,u*eaa—t ) (2.4d)

This is the modified form of Maxwell’s equations in a conductive media and shows

the coupling between the electric and magnetic fields.

EM Theory of a Homogeneous Half Space

The modified Maxwell equations (Equation 2.4) are used to examine the EM be-
haviour in the subsurface. This is initially done for a homogeneous half space. First,

taking the curl of Ampere’s Law (Equation 2.4d) gives

Vx(VxB)=V x (M*UE + ,u*eaa—]?) : (2.5)

and using the vector identity V x (Vx )=V - (V- ) — V? it becomes
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oV x E

V- (V-B)—-V’B = 11,0 VXE + j1,e 5 (2.6)
Then substituting in Equation 2.4b and 2.4c it follows that
0B 0°B
B = (10— + e - 2.7
v T T e ot? (27)

This can be recognised as a damped wave equation. The first term on the right
hand side is the diffusion term, expressing the decay of B, whereas the second term
on the right hand side is the propagation term. Equation 2.7 is expressed in the
time domain and can be expressed as the vector Helmholtz equation in the frequency
domain. Assuming an e™! time dependency of the magnetic field, where i = /—1
is the imaginary number and w = 27f is angular frequency in rads? with f as

frequency in Hz, it follows that

(V2= )B=0 , (2.8)

where 72 is the complex propagation constant (wave number) and is given by

V2 = w0 — Wl e = k2 — K2 . (2.9)

The MT technique is based on a quasi-static approximation, which is where the
source field changes sufficiently slowly as to appear to be static [33]. This behaviour
occurs at low source frequencies (< 105 Hz). The quasi-static approximation means
the diffusion term dominates over the propagation term in Equation 2.7. In other
words, 0 > ew and thus the first term in Equation 2.9 is the most significant.

Neglecting k2, Equation 2.8 then becomes

(V2-E)B=0 . (2.10)

In the time domain, the quasi-static approximation is equivalent to neglecting the
time derivative term of Equation 2.4d (no displacement current). Therefore Equa-

tion 2.7 becomes
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0B
V?B = j.0— . 2.11
Sy (2.11)
A similar expression for the electric field can be derived following the same ap-

proach as used for the magnetic field. It then follows that the electric field equivalent
to Equation 2.6 is given by

oV x B
ot

V- (V-E)-V’E = — (2.12)

In regions away from current sources (¢r = 0), the current density is divergence free,

V-J. = % =0, which implies V- (cE) = cV-E+E-Vo =0. There is no free charge

in a homogeneous half space therefore Vo =0, hence V-J, =0V -E =V - E =0.
Substituting V- E =0 and Equation 2.4d (with the neglected time derivative due to

the quasi-static approximation) into Equation 2.12 yields

OE
2
V°E = u*a—at , (2.13)

and in the frequency domain

(V2—F)E=0 . (2.14)

Equations 2.11 and 2.13 show that the electric and magnetic fields obey the
diffusion equation for the frequency range used by MT.

In a very poor conductor (¢ = 0), the diffusion equation becomes the Laplace

equation

VE = 0 (2.15a)
VB = 0 , (2.15b)

and, at any moment in time, the diffusion equation becomes the Poisson equation
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OE
2 —
VE = u.0o ol (2.16a)
0B
VB = puo— 2.1
o, t (2.16b)

For both the Laplace and Poisson equations the magnetic and electric fields are

static (no time dependence).

In Cartesian coordinates, where z, vy, z, are north, east and vertically down, a

solution to Equation 2.7 can be expressed as

= (Bye ** 4 Byetikz)ewt (2.17a)
E = (Epe ™ + Ejet™)e ™t (2.17b)

where By, B, Ey and E; are the electromagnetic fields at the surface of the Earth.
The positive growth term et in Equation 2.17 is not required as B and E fields
have to vanish as z — oo. The quasi-static approximation also means the prop-
agation term in Equation 2.7 is insignificant. This means fields are established
instantaneously throughout the region of interest and the time dependent term in
Equation 2.17 can be neglected.

In Equation 2.17, k* = iwu.o and using the identity v/i = % yields

WO
2

k= (1+1) (2.18)

The skin depth, or the penetration depth (), is taken as the inverse real part of the

propagation constant k, that is

2
WO

5= (2.19)

This can be simplified since w = 27 f, and magnetic permeability does not vary
substantially through the Earth, allowing its free space value to be used. The
simplified skin depth is given by
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5~ 500\/? , (2.20)

where o is the resistivity of the homogeneous half space. The skin depth, in m, is the
depth at which the surface EM fields have been attenuated by %, or approximately
37% of the surface values. This shows that the depth of penetration of the MT

technique is only dependent on bulk resistivity and source frequency.

Apparent Resistivity and Phase

Expressions for apparent resistivity and phase for a homogeneous half space can be
obtained using the diffusion solution (Equation 2.17). Expanding the curl operator

in Faraday’s Law (Equation 2.4c) and assuming harmonic time dependence yields

0E, JE,

— = —wB 2.21
7 s iwB, (2.21a)
oE, 0K,
% or iwB, (2.21b)
0E, O0E, .
—_— — = —wh, . 2.21
Ox dy e (221¢)

Equation 2.21 shows the relationships between the different components of the elec-
tric and magnetic field.

The magnetic field source of MT is assumed to be a vertically travelling plane
wave only changing in the horizontal direction, therefore B, = 0. Equation 2.21c

. . OFE. .
implies —-* and 85; are zero or equal. The MT source is also assumed to have

normal incident at the surface and thus, the resulting induced electric field will have

no vertical component (E, = 0). Using these simplifications, Equation 2.21 becomes

OE,

aaE; = —iwB, . (2.22b)

Substituting into the diffusion solution (Equation 2.17) leads to
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/{;Eyoe*kz = —jwB,pe (2.23a)
kE e ™ = iwByge ™ . (2.23D)

Based on Equation 2.23, the complex magnetotelluric impedance Z can be written

as

E w wo
A - — =, /= 2.24
Y Bx() k Lok \/; ( a)
E.o iw wo
Ty = =—=./=Vi 2.24b
Yy ByO k L ( )

where Z,, and Z,, are equal but of opposite sign. The impedance is the ratio of
the orthogonal surface components of the electric and magnetic field. Rearranging

Equation 2.24, the apparent resistivity o, of a half space is given by

B\ 12
=z 2.25
0a = —|Z| (2.25)

Equation 2.25 shows that the Earth’s resistivity can be defined in terms of the
horizontal components of the magnetic and electric fields at different frequencies.

The associated phase ¢ is

p = arg Z = arg («/%\/Z) :arg(,/%ei%> =Z—y5 . (2.26)
Hos Hose 4

The phase is always 45° in homogenous half space, with the electric field leading the
magnetic field, regardless of resistivity.

The above approach used to investigate a homogeneous half space can be ex-
tended to an arbitrary 3D subsurface resistivity distribution. However, all the or-
thogonal components of the electric and magnetic field in a 3D Earth are related

and expressed using an impedance tensor, or MT transfer function Z, where

- . (2.27)
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Since the impedance tensor is complex, it can be expressed in terms of its real and

imaginary parts

Zm: ny Xxx Xxy . Y;:x }/:cy
= +i . (2.28)
Zyx Zyy Xym ny Yt@/x Y;Jy

The associated apparent resistivity is

wii = —— | Zii (W), 2.29
Oaij ,UOW‘ nel ( )
and the phase is
Re Z;;
;= tan™' - 2.
©;; = tan <Im Zij> , (2.30)

where the subscripts 7 and j are indexes for the rows and columns of the impedance
tensor.

The apparent resistivity or phase for different subsurface orientations can be
obtained from Equations 2.29 and 2.30 by using multiple combinations of elements
in the impedance tensor. The various frequencies of the MT source have different
depths of penetration. Therefore, evaluating the apparent resistivity and phase for

the various frequencies will give a range of depth information.

Model Dimensionality

The resistivity distribution can have different dimensionality depending on the geo-
logical scenario, and this is reflected in the impedance tensor (Equation 2.28). The
following discussion applies to an isotropic Earth. Anisotropy can be incorporated
into the impedance tensor, but is not considered in this thesis. For a 1D Earth
ZLyy = Ly, = 0 and Z,, = —Z,,. The frequency dependent phase behaviour for a
two layered Earth will be greater than 45° at high frequencies if the top layer is more
resistive than the bottom layer. Conversely, the phase will be less than 45° at high
frequencies if the top layer is less resistive than the bottom layer. For both two layer
configurations the phase will approach 45° at low frequencies. For a multilayered

Earth, the apparent resistivity at the high and low frequencies will asymptotically
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Figure 2.2: Example of a horizontal conductivity boundary, where oy < 09, illustrat-
ing the TE and TM mode configurations and the electric and magnetic boundary
conditions.

approach the resistivities of the top and bottom layers, respectively. The ability to
resolve any intermediate layer depends on their relative resistivity and thickness,

with conductive layers easier to resolve than resistive ones [36].

A simple model of a two dimensional Earth comprising a vertical boundary
separating two conductivity zones is depicted in Figure 2.2. The boundary extends
in the z-direction to a distance greater than the skin depth. For such a 2D Earth
where the coordinate system aligns with the resistive strike, the pattern in the
impedance tensor follows Z,, = Z,, = 0 and Z,, # Z,,. The orientation of field
MT measurements rarely coincides with the resistive strike. Thus, the diagonal
elements of the impedance tensor Z’ will not equal zero. The impedance tensor
can be rotated, by an angle 6, which rotates it into a coordinate frame parallel or

perpendicular to the strike. This is implemented by

Z' = RZy;pR" | (2.31)

where
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cosf sinf
R = . (2.32)
—sinf cosf
The governing principle for a 2D conductivity boundary such as the model in

Figure 2.2 is charge conservation. The current density across the discontinuity is

equal on both sides in the y-direction (perpendicular to strike)

chl = ch2 ) (233)

with chl = UlEyl and chg = 0'2Ey2, which giVGS

JlEyl == O'QEyQ . (234)

Equation 2.34 means there is an associated discontinuity in the perpendicular com-
ponent of the electric field when there is a conductivity boundary, o; # 5. This
discontinuity will cause a jump in the total E field value. The parallel components
of the E field are continuous in both the z and z-directions. All components of the
B field are continuous across the boundary due to the magnetic permeability being

assumed to be homogeneous and even if not, because the B field is non-divergent.

For an ideal 2D situation, the electric and magnetic fields are mutually orthogo-
nal. This allows for the source field to be decomposed into two differently polarised
modes, the TE and TM modes. The TE mode (transverse electric), also referred to
as E-polarisation, has magnetic fields perpendicular to the discontinuity plane which
induces an electric field parallel to strike (transverse to propagation direction). The
TE mode describes current flowing parallel to strike and can be expressed mathe-

matically as

0E,  0B.

o - o = iwDB, (2.35a)

0E, 0B,

%~ o iwB, (2.35Db)
0B: 9B, _ |, oE, | (2.35)

dy 0z
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The TM mode (transverse magnetic) also referred to as B-polarisation, has a
magnetic field parallel to strike and induces electric fields perpendicular and par-
allel (vertical) to the discontinuity plane. The TM mode describes current flowing

perpendicular to strike and can be expressed mathematically as

0B,

o = pook, (2.36a)
0B,
——* = ok, (2.36b)
OE, OE, :
—— = B . 2.
77 o iwB, (2.36¢)

The TM mode expression contains £, which is discontinuous across a conduc-
tivity boundary. From Equation 2.34, the magnitude of the E, discontinuity is Z—f
The associated discontinuity in the apparent resistivity is of magnitude (g—f)Q Con-
sequently, the TM mode tends to be better at resolving lateral boundaries than the
TE mode. However, near the boundary, the TM mode over-estimates the apparent
resistivity value in conductive zones and under-estimates it in resistive zones. The
TE mode provides a more reliable apparent resistivity value.

Resistivity values can vary in any direction in a 3D Earth. Therefore, the el-
ements of the impedance tensor are independent of each other, irrespective of the
coordinate system. All elements of the impedance tensor need to be considered to

determine the subsurface resistivity.

Distortion

The MT response often suffers from galvanic distortion, which includes static shift
[37]. Near-surface conductive heterogeneities at skin-depths shallower than that of
the shortest measured wavelength cannot be resolved inductively and contribute to
galvanic distortion of the impedance tensor. Charges accumulate along conductive
boundaries which cause a redistribution of the electric field [38]. This non-inductive
response is frequency independent and becomes superimposed on the frequency de-
pendent regional MT response [37]. A distorted MT response has a shift in the

apparent resistivity for all frequencies, but phase is unaffected. Such galvanic dis-
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tortion hampers the ability to reconstruct targeted large scale conductive features.
Methods for removing galvanic distortion include those by Bibby et al. [37], Groom
and Bailey [39], Ledo et al. [38].

2.1.2 Conductivity Equations

Conductivity is a measure of the ease with which a material can transmit current.
This can occur in any of three ways: electronic, electrolytic (ionic), and dielectric
conduction (displacement current). Current transmission is inherently non-linear
and complex in nature, therefore a universal equation does not exist that quantifies
conduction for all geological settings [51]. This section provides a brief overview
of the important conductivity relationships in multiphase media (summarised in
Table 2.1).

Maxwell [52] first used effective medium theory to derive the bulk conductiv-
ity of a mixed medium. He derived the conductivity of spheres dispersed in a
continuous medium. Wagner [53] developed the Maxwell-Wagner model that has
more complicated spherical distributions than Maxwell’s model, whereas Fricke [54]
used ellipsoids instead of spheres. Continued research into effective medium the-
ory has produced the Hashin-Shtrikman bounds [40][41][42] and the Waff model
[43]. Hashin-Shtrikman bounds describe the extreme upper and lower conductivity
bounds for the mixing of two conductive phases. The upper bound (HS™) cor-
responds to non-connected resistive inclusions in a conductive phase, whereas the
lower bound (HS™) corresponds to non-connected conductive inclusions in a resis-
tive phase. The shape of the inclusions are generally spheres, however they can be
thin disks or needles, which lead to tighter bounds [55]. The Waff model assumes
the medium is made up of an infinite number of varying sized composite connected
spheres. For each sphere the core is phase 2, which is completely encapsulated by
phase 1 forming the shell. This means phase 1 is highly connected and phase 2 is
completely disconnected.

Effective medium models can incorporate any number of conductive phases by
using weighted means. The parallel (longitudinal) and perpendicular (transverse)

models make up the Wiener bounds [44]. A parallel model is made of layers of
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Table 2.1: Summary of the main conductivity equations.
Name Equation

Hashin-Shtrikman Bounds

[40][41][42]

Wail Model
[43]

Parallel Model
[44]

Perpendicular Model
[44]

Brick-layer Model
[45] [46]

Random Model
[47] [48]

Archie’s Law
[49]

Arrhenius Relationship or
Semi-conductor Equation

[50]

+ _
O-buui' - 0-2 1 30’271/2(0’270'1

3vo(o2—01)
301+(1—v2)(o2—01) )

o, and o, .. are the upper and lower bound,
o1 and o9 are phase 1 and 2 conductivities & v,
is a volume fraction of phase 2

3(17112)(02701))
)

Oyt = 02 (1 +

_ oat(o1-02)(1-(21n/3))
Obulk = 21+(y2/3§(al/az—21)

o1 and oy are phase 1 and 2 conductivities & v,
is a volume fraction of phase 2

N
Obulk = Z Vi
i=1
o; and v; are the ith phase conductivity &

fractional volume, respectively

. N
— L4
Obulk Z_Zl i

o; and v; is the ith phase conductivities &
fractional volume, respectively

02(02(1/12/371)70'11/?/3)
01(1/171/5/3)702(1/?/371/171)
oiand o9 are phase 1 and 2 conductivities &
v is the volume fraction of phase 1

Obulk =

N .
opur = [ 07
i=1
o; and v; are the ith phase conductivity &

fractional volume respectively

1 — as—ns ¢—mcf 1
Obulk O fluid

0 fiuiq 1s fluid conductivity, ¢ is porosity, m.s is
cementation factor, S is fraction saturation, n,
is the saturation exponent & a is the tortuosity
factor

Obut = e/ FT

0, is the zero temperature conductivity, a. is
the activation energy, k. is the Boltzmann’s
constant & T is absolute temperature

Note: for all equations oy, is bulk conductivity.
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different conducting phases with an applied parallel electric field. The bulk con-
ductivity is then given by the arithmetic mean of each conductive phase, weighted
by their fractional volume. Conversely, a perpendicular (transverse) model is the
same except the electric field is applied perpendicular (transverse) to the layers and
a harmonic mean is used. The brick-layer model assumes the phase configuration
lies between the extreme parallel and perpendicular models and uses a combination
of the two models [45] [46]. Finally, there is the random model that assumes a
random distribution of phases with unknown connectivity [47] [48]. Here the bulk
conductivity is given by the geometric mean, weighted by the volume fractions of
each phase.

Conductivity relations have also been based on fitting experimental observations.
The main empirical relationships are Archie’s Law and the Arrhenius relationship,
also known as the semi-conductor equation. Archie’s Law is routinely used for
sedimentary rocks and assumes that the rock matrix is an insulator so that the
transmission of charge occurs only in the formation fluid. The bulk conductivity in
Archie’s Law is based on the fluid conductivity, porosity and a formation factor that
accounts for the shape of the void space [49].

The Arrhenius relationship is used for mantle materials and relates bulk con-
ductivity to temperature [50]. Constable et al. [56] used the Arrhenius relationship
to model laboratory conductivity values of olivine. This was later updated to the
SO3 model [57]. However, conductivity of mantle material depends on magnesium
content, oxygen fugacity, pressure, hydration and connection of conducting phases
as well as temperature [58]. The Arrhenius relationship can accommodate these fac-
tors. Hirsch et al. [59] incorporated iron content into an olivine model and Constable

[57] considered oxygen fugacity in conductivity measurements of olivine.

2.1.3 Magnetotelluric Summary

Magnetotellurics is a passive electromagnetic technique sensitive to resistivity. The
magnetic and electric fields behave diffusively in the subsurface for the source fre-
quencies used by MT. The depth of penetration of the magnetic and electric field in a
homogeneous half space is given by the skin depth equation (Equation 2.20). Surface
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measurements of the orthogonal components of the horizontal electric and magnetic
field at different frequencies are related to the subsurface resistivity through an
impedance tensor (Equation 2.28), from which the apparent resistivity and phase
values can be calculated (Equations 2.29 and 2.30). There is a non-linear relation-
ship between the subsurface resistivity and the MT response. For a 2D Earth, the
MT response can be split into two differently polarised modes, the TE and TM
modes.

Bulk conductivity can be quantified in terms of different constituent conductiv-
ities for Earth materials or empirical relationships (Table 2.1). This will be used in

Section 5.2 when determining the equation to use in the petrophysical joint inversion.

2.2  Gravity

Gravity is a popular and simple passive geophysical technique that yields informa-
tion on the subsurface density distribution [60] [61]. The first gravity survey was
conducted on Lake Balaton in 1901 [62]. It is now routinely used for crustal re-
search as well as being a key technique in both mineral and petroleum exploration.
For the latter, its use is mainly restricted to determining broad regional structure
and thickness of sedimentary basins. In this section the basic theory of the gravity
technique and the density equations that will be used by the petrophysical joint

inversion (Chapter 6) are summarised.

2.2.1 Basic Gravity Theory
Gravity Principles

Gravity is a fundamental force in nature. Its importance was first discovered in the
late 15th century by Sir Isaac Newton who developed the famous law of universal
gravitation, which states [63],

“Bvery particle in the universe attracts every other particle with a force that is
proportional to the product of their masses and inversely proportional to the square of
the distance between them. This force acts along the line joining the two particles.”

The gravitational force is expressed by
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F, = G, (M;i”?) v (2.37)
where F is the gravitational force in N, G, is the gravitational constant of 6.67 x
1071 Nm?kg2, M; and M, are the masses of the two particles in kg, r is the distance
between the two particles with units of m and T is the unit vector that points from
particle 1 to particle 2. The gravitational force is an attractive force which acts at a

distance. Linearity applies, such that if a mass has one or more gravity forces acting

on it then the net force is the sum of the individual forces [35].

Equation 2.37 can be applied to a mass at the Earth’s surface. Here, M1= M.,
the mass of the Earth, M, is the mass of the object at the Earth’s surface and r, is

the radius of the Earth. The gravitational force becomes

F,— G, <M) . (2.38)

r2
Gravitational acceleration due to the Earth can be derived from Equation 2.38.

Force equals mass multiplied by acceleration (F, = Ma), therefore the gravitation

acceleration vector (g) can be expressed as

F,

=i (2.39)

g

The SI unit of acceleration is ms2. In the CGS system gravitational acceleration
is given in cms?, and this unit is known as a Gal (named after Galileo). However,
gravity values are normally expressed as mGals which is 1073 cms? = 1075 ms™.
Substituting Equation 2.38 into Equation 2.39 it follows that g = ¢,z with

M.

2 Y
TE

9. = Ge (2.40)

where the direction of acceleration is directed vertically towards the Earth.

The gravitational force produces a conservative field. This means the work done
by a moving mass is only dependent on its starting and end point, it is indepen-
dent of the path taken between the points. As a result the gravitational force and

acceleration can be expressed in terms of a gravitational potential Uy,
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VUy(r) = ——— = —g(r) , (2.41)

or alternatively,

Uy(r) =— /7‘ g(r)dr . (2.42)

This scalar potential describes the ability for a mass to do work at a particular

location in a gravity field.

When determining the gravitational acceleration due to an arbitrary mass it
is often easier to determine the scalar potential and then relate this back to the
gravitational acceleration via Equation 2.41. To calculate either the scalar potential
or the acceleration of an arbitrary mass, the mass is divided into small elements
and the response of each is calculated. The total response is then the sum of the
individual element responses. An example of calculating the gravity response of an
arbitrary 3D body, as shown in Figure 2.3, starts by combining Equations 2.40 and
2.42, which gives

"M M
Ug(T) = —Gc/ ﬁd’lﬂ = Gc? . (243)

Therefore, the potential dU,, at P(0,0,0) from a small element of the 3D body at

point (z,y, z) with mass dM is

dU, = —ch—M = G.pdxdydz/r (2.44)
r

where p is the density of the element in kgm™ and r? = 22 + ¢% + 22 is the distance
from P to the element. The total potential of the 3D body is the sum or integral of

the potential of the individual elements and is given by

%:—Q///fM@m. (2.45)
xyz,r

Note that p is a function of x, y, 2, so the integral cannot be evaluated unless the

functional form of p(z,y,z) is given. The gravitational acceleration from Equa-
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dz

dy

Figure 2.3: The configuration for calculating the potential at point P of a 3D mass,
which involves dividing the mass into smaller elements.

tion 2.42 in the vertical (z) direction is

ay,

Substituting Equation 2.45 into Equation 2.46 and assuming constant p gives an

expression for the vertical gravitational acceleration,

_ o,
0z

g. = :ch// %dmdydz : (2.47)
zJyJz

Equation 2.47 shows gravity expressed in the form of the Fredholm integral equation
of the first order and shows the linear relationship between vertical gravitational

acceleration and the density of a body.

An alternate expression for the scalar potential can be derived using Gauss’

divergence theorem,

/V-gdz/:/gﬁdsf , (2.48)
14 Sf

where v is a volume, s; is a surface and 1 is the unit normal to the surface element

dss. Equation 2.48 states that the integral of the divergence of the gravity vector
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(V - g) over a volume, is equal to the surface integral of the component of the field
that is normal to the surface, provided the surface encloses the volume. If there is

no mass inside the volume, then V - g =0, which leads to

~-V.g=V-VU,=V*U,=0 . (2.49)

However if there is mass at the centre of a sphere with radius r then

/ gnds; = — (G%Q) (4r7r?) = —4n G.M . (2.50)
Sf r

This can be shown to be true regardless of the shape of the surface and the position
of the mass [6]. In Equation 2.48, if the volume is very small and enclosing only a

point mass the integral can be removed, giving

V.-g=—-4rG.p , (2.51)

where p is the density of the point mass. It then follows that

ViU, = 47G.p . (2.52)

Equations 2.49 and 2.52 are the Laplace and Poisson equations respectively. The
gravitational potential adheres to the Laplace equation in free space and the Poisson
equation in regions containing mass. There is no time dependency in the Laplace

or Poisson equations, which means the potential field is static.

Gravity is inherently non-unique as there are multiple density distributions that
can produce the same potential over a surface. There is no explicit depth resolution
as the potential, or acceleration, is only dependent on the distance from a mass,
irrespective of direction. The simplest density distribution from which to reconstruct
the potential or gravitational acceleration is an infinitely thin layer at the surface,

having lateral variations [64].
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Gravity of the Earth

Average gravitational acceleration values at the Earth’s surface is approximately
981 Gals. To measure absolute gravity value a pendulum or a free falling mass are
needed. Generally, relative gravity values are measured using gravity meters, such as
the LaCoste and Romberg gravity meters. Current instrumentation has an accuracy
of 0.03—0.06 mGals [6]. Whichever type of gravity meter is used, corrections need to
be made to account for instrument drift and the platform on which the measurement

was made (e.g. the E6tvos correction for surveys made on a moving platform).

The magnitude of the gravity reading depends on five factors: latitude, elevation,
surrounding topography, Earth-tides and variations in the subsurface density [6], of
which only the last factor is of significance for exploration and crustal research.
However, the response of the subsurface density variation is significantly smaller
than that of the other factors combined. Therefore, the other four factors need to
be corrected for, or removed, to be able to isolate the response of the subsurface
density distribution. The Bouguer gravity anomaly term is used to refer to data

which have undergone these corrections.

The latitude correction accounts for the variations in gravity values due to the
non-spherical shape of the Earth, resulting from centrifugal force caused by the
Earth’s rotation. The free-air correction reduces the gravity values to a common
reference elevation datum, which is typically mean sea level. However, the free air
correction does not account for the mass between these different elevations, which
is corrected for by the Bouguer correction. Terrain corrections allow for the changes
in mass due to topographical variations. Earth-tides corrections account for the
movement of the Moon and Sun. Correcting for the Earth-tide is generally combined
with correcting for instrument drift and requires returning to a base station to make
a measurement at regular intervals. Isostasy and the isostatic correction allow for

the isostasy variations in the crust, and are of secondary importance.

Bouguer gravity data become Bouguer anomaly gravity data if a gravity reference
model is subtracted from it [6]. There are two gravity reference models: the reference
spheroid and the geoid, which generate theoretical gravity values for the whole Earth.

The reference spheroid derives gravity values based on an oblate ellipsoid of mean
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Figure 2.4: The gravitational response of a horizontal sheet at different depths of
burial. The wavelength of the gravity response increases with increasing depth of
burial.

sea level and can be used to make the latitude correction. The geoid is the average
sea level surface for oceans and for the continents, assuming all mass above mean
sea level is removed. Bouguer anomaly gravity can be tied in to national networks
through the use of land calibration stations, such as the Australian Fundamental

Gravity Network [65].

The nature of Bouguer anomaly data mean they only contain information about
the density contrast of the subsurface relative to an unknown background density.
A reference density point, such as data collected in wells, can be used to determine
the background density and therefore the absolute density of the subsurface [66].
Bouguer anomaly data are only sensitive to lateral variations in density, since a 1D
density distribution does not produce a gravity anomaly. In a situation where there
are no lateral variations in density, Bouguer anomaly data of adjacent stations are

identical.

The spatial wavelengths in a Bouguer anomaly pattern can give an indication of
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the depth of burial of the anomalous mass (Figure 2.4), with deeper bodies yield-
ing longer wavelength anomalies. There are numerous methods for estimating the
depth of burial of causative bodies from the wavelength in potential field data, with
a popular method being Euler decomposition [67]. The spatial wavelengths in a
gravity response can be decomposed into a regional and residual component [68].
The regional response is usually the unwanted long wavelengths from large scale
deep structures. Short wavelength residual responses, due to shallow density vari-
ations, are superimposed on this. The scale of the survey dictates what are the

regional and what are the residual components.

2.2.2 Density Equations

Only a few equations have been used to quantify the behaviour of density, indepen-
dent of elastic and seismic parameters (Table 2.2). The porosity-density relationship
is an analytical expression for the bulk density of sedimentary rocks. It assumes rock
is composed of two phases, fluid and solid. The void space or porosity between the
rock matrix is assumed to be saturated with fluid. The bulk density is the sum of the
fluid density and matrix density, appropriately weighted by porosity. Lee [69] cal-
culated the bulk density of the mantle mineral peridotite. Lee [69] first determined
the mineral composition, then the density of each mineral was calculated based on
a function of the mineral compositional molar volumes. Finally, the mineral densi-
ties were weighted by their fractional volume and summed to give the bulk density.
The density of mantle minerals at high temperatures can be linked to temperature
through the High Temperature Model [70]. Through laboratory analysis of mantle
minerals Jordan [71] found a linear relationship between the bulk density and the
magnesium number (Mg#). The magnesium number is the ratio of magnesium and
the magnesium plus iron content (note the iron number, Fe#, is the ratio of iron

and iron plus magnesium content).

2.2.3 Gravity Summary

Gravity is sensitive to density variations in the subsurface and is an inherently non-

unique technique with limited depth resolution. The gravitational potential satisfies
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Table 2.2: Summary of the density equations.
Name Equation

Porosity-Density Relationship  puuir = ¢pfiwia + (1 — @) pmatria
where prux is the bulk density, ¢ is porosity,
Priuia is the pore fluid density & ppatriz is
the matrix density

Mg# Density Model pPoute = ciMg#H+co

[69][71] where ¢; and ¢y are constants of density
specific to mantle minerals & Mg# is the
magnesium number

High Temperature Model Poulk = poe*fTTo ae(T")dr

[70] where T, is the reference temperature, p,
its density & «. is the expansion coefficient

N
Summation Model Poutk = Y Pil;

i=1
[69] where p; and v; are the density and

fractional volume of the ¢th phase
Note: for all equations psur is bulk density.

the Laplace equation in free space and the Poisson equation in regions containing
mass. There is a linear relationship between the subsurface density and the gravity
response. The total response of a body can be calculated by dividing the body
into small elements and summing their responses. The gravity response is expressed
as Bouguer anomaly data, which only contain information about the variation in
subsurface density and not the absolute density values.

Bulk density can be quantified in terms of different constituent densities for
Earth properties. These will be used in Section 5.2 to determine the equations to

be used in the petrophysical joint inversion.

2.3 Conclusions

This chapter has provided the governing equations for the MT and gravity tech-
niques. Gravity satisfies the Laplace and Poisson equations which produce a static
field. However, the electric and magnetic fields in M'T satisfy the diffusion equation,

which is frequency dependent. The MT technique has depth resolving capabili-
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ties whereas gravity is inherently non-unique and only responds to lateral varia-
tions. There is a simple linear relationship between density and its gravity response,
whereas the relationship between the MT response and resistivity is highly non-

linear.
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Chapter 3

Magnetotelluric and Gravity

Inversions

Mathematically, an inversion is a type of non-linear optimisation scheme which seeks
to estimate the model parameters that provide the best fit between the computed
model response and the observed data. Inversions are routinely applied in geophysics
to measured field quantities in order to produce a model representation of the sub-
surface. Based on these idealised physical models, knowledge is gained about the
subsurface and geological inferences and interpretations can be made. Therefore,
the reliability and characteristics of an inversion are important in successfully delin-
eating the subsurface geology. This chapter outlines the theory behind the different
inversion schemes and reviews common approaches used for MT and gravity tech-
niques. The most appropriate optimisation scheme for the joint inversion is then

selected and described in some detail.

3.1 Inversions

Inversions are commonly applied to MT data but to a lesser extent on gravity
data. The reason for this is the higher degree of non-uniqueness when working
with potential field data [6]. The type of inversion scheme normally used is a local
minimisation search approach, in which an initial guess model is progressively refined

until a best fit is obtained. The global solvers, such as the Monte Carlo method,

35
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simulated annealing and genetic algorithms, which explore the entire model space,
can only cope with a limited number of model parameters and are computationally
very expensive, especially for 3D models. Therefore, in this section only the basic
theory of local minimisation approaches are covered; this is followed by a review of

the single MT and gravity inversion methods.

3.1.1 Inversion Theory

For continuous data, the geophysical response can be expressed as a Fredholm inte-

gral equation of the first kind [72],

d(z) = / Gz, y)ym(y)dy - (3.1)

Here G is the kernel that describes the physics of the process, d is the continuous data
and m are the model parameters. When discretised, the relationship for sampled

data can be expressed as a system of equations, or in matrix form as

Flm|=d , (3.2)

where d = (di,da, ...,d,) is the data vector consisting of ¢ observed data points,
m = (mq,ms,...,m,) is a model vector of n model parameters and F is the ¢ x n
forward model operator that predicts (computes) the geophysical data for a particu-
lar model. The forward model operator or kernel provides the link between the data
and the model spaces. Together the model parameters and the forward model op-
erator (F[m]) give the model response, which ideally equals the observed data. The
forward model operator for each geophysical technique is based on the governing or
defining physics of the problem. Depending on the technique under consideration,
the forward model operator can be expressed as either a linear (e.g., straight ray
tomography) or non-linear relationship (e.g. curvilinear tomography) between the
model parameters and the model response. Hereafter, these will be referred to as
linear or non-linear forward model operators.

An inversion seeks to determine the model parameters m, which are a solution

to Equation 3.2 and are representative of the true geological model, my;.,.. Concep-
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1

tually, the corresponding inverse operator F~ can be used to estimate the model

parameters m® from the observed data d°%,

mest — F—l(dobs) ) (33)

However, in most geophysical techniques there is not enough information in Equa-

tion 3.2 to uniquely define all model parameters.

By its very nature, geophysical data are discrete, incomplete and subject to error
(i.e. contain noise). Having discrete data, but more importantly noisy data, means
that there are multiple models that can equally replicate or match the data to a
given tolerance level [73]. Furthermore, these models may not resemble the true
nature of the Earth [72]. Data errors can be incorporated into the inversion process
through the maximum likelihood method and use of a weighting matrix. If the errors

are independent and normally distributed, Equation 3.2 becomes

where W, = diag (é, 0—1;, e (}) is the weighting matrix and the ¢* values de-

note the estimated standard deviations of each point [74]. If a standard deviation
(estimated error) is large, then the reliability of that measurement is low and it is
down-weighted in the inversion. Conversely, if the estimated error or uncertainty is
small, the reliability is high and those data points get greater emphasis or weighting

in the inversion.

Obtaining a solution to the geophysical inverse problem (Equation 3.4) depends
on the nature of the forward model operator, F. If matrix F is small, linear and
non-singular (well conditioned), then the model parameters can be obtained by
calculating the inverse of F, using an approach such as singular value decomposition
(SVD) [74]. If the condition number (i.e. ratio of largest to smallest eigenvalues) of
F is large, then the inverse F~! cannot be taken without first stabilising it through
the introduction of some damping or regularisation; this involves adding values to
the diagonal elements of F [74]. Alternative approaches that can be applied to

both linear and non-linear forward model operators are based on selecting the ‘best’
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model that minimises the fit between the observed data and the model response.
The measure of fit is determined by the norm. The most commonly used norms
are the [,-norms (e.g. p = 1,2,00). The l;-norm (sum of the absolute values) is
robust to outliers, however, it is not continuously differentiable and is complex to
minimise. The [,-norm or the Euclidean norm has more desirable characteristics and
is the most widely used in geophysics [75]. In this thesis only the ly-norm will be
considered. For the fit between the observed data and model response the ls-norm

is given by

Ua(m) = [[Wa(d — F[m])||* = Z Wi {d; — Flm];}? (3.5)

where Uy(m) is the data norm, F[m] is the model response and W, is a symmetric
data weighting matrix.

The W, matrix can have many forms. In Equation 3.4, Wy = C ! the inverse
covariance matrix, where the covariance matrix is a diagonal matrix of the data
uncertainty. If such a Wy matrix is used in Equation 3.5 then the problem is referred
to as generalised least squares. Alternatively, if W; = I (the identity matrix) the
problem is referred to as common least squares [76]. The least square solution to
Equation 3.5 can be expressed as m = (FITW,F) 'FTW,Fd if the forward model
operator is linear [74]. However, schemes such as the Marquardt method [77] or
creeping methods [78] [79] can be used to find a solution if F is non-linear. All
solutions of the data norm are characteristically very rough.

There exist multiple and potentially different models that fit the data norm
(Equation 3.5) equally well. A further complication is with the presence of noise, as
it may be noise as well as signal being fitted. To counteract these problems, and to
help stabilise the solution, optimisation algorithms can use a model regularisation
term or have certain constraints applied. This is where a solution is sought that
fits the data subject to a model criteria. The model criteria is expressed in the

regularisation term or model norm,

Un(m) = [[Win(m —my)[|* = Z W, (mi —moi)* (3.6)
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where U,,(m) is the model norm, W,, is the symmetric model weighting matrix,
my is the reference or starting model parameters and m is the model parameters
to be determined. The W, matrix encapsulates the type of model desired by the
inversion or incorporates a prior: information. Generally, a model closest to some
preferred model or a smooth or minimum roughness model is sought. To obtain
information on model roughness, a first or second order differential operator can be
used, such as W,, = 979 where 9 is a difference operator [80] or for a 2D model
W,, = wol + wyﬁgﬁy + wZQZTQZ where wy, w, and w, are constants and y and z

are spatial directions (an extra term can be added for a 3D model ) [81].

In general, the data and model norms are combined in the objective function
U(m), which is also known as the misfit or cost function. A model solution is then
sought that minimises this function. Adding these terms together, after appropriate
weighting, ensures that the “fit” of the model is evaluated in both the data space
and the model space. When the data and model spaces are linear, the units of the
data space are that of the measured data and the units of the model space are that
of the model parameters. Data and model spaces can also be transformed, such
as taking the logarithm of the model parameters. Transforms are used to better
accommodate characteristics of the data or model parameters, and to maintain a

relationship between the data and model parameters.

The addition of the model norm in the objective function introduces a bias into
the optimisation scheme, as it will only produce models of the type described in the
model norm. This means that unless the true model has the same model charac-
teristics as the model norm, the inversion will not be able to faithfully reconstruct
the true model. The bias also has an ill-effect on categorising the model parameter
confidence intervals, which is not attempted in this thesis and therefore will not be

discussed further.

The aim of an optimisation scheme is to find the model that minimises the
objective function. The minimising model must be a stationary (minimum) point
of the objective function. Stationary points occur when the objective function is

differentiated with respect to the model parameters and found to be equal to zero,
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oU(m)
om

—0 . (3.7)

Finding a model solution directly from Equation 3.7 can be difficult if F is non-linear,
because the derivative can only be evaluated for a single set of model parameters
[75]. As a result, iterative schemes are used to obtain a model solution.

Iterative schemes search the model space by updating the model parameters
based on the previous model and the Fréchet derivatives (Figure 3.1). The Fréchet
derivatives are important as they are used to determine by how much each model
parameter should be updated. The updated model should minimise the objective
function more than the previous model. Updating the model parameters continues
until the iterative scheme converges to a minimum or until no further improvement
occurs. The minimum is global if the model gives the absolute minimum of the
objective function. As shown in Figure 3.1, a local minimum can also occur, causing
the iterative scheme to converge to an undesirable solution that is not the absolute
minimum. A convex model space will guarantee there exists only one minimum
which is global [74].

The objective function can contain different combinations of the data and model
norms. Here two popular approaches will be discussed: the Tikhonov Regularisation

and the Occam inversion.

Tikhonov Regularisation

The objective function of the Tikhonov Regularisation is given by

Urin(m) = Ug(m) + \Up(m) (3.8)

where )\ is the regularisation parameter, also known as the trade off or damping
parameter [30]. The regularisation parameter controls the balance between fitting
the data and the model criteria. When A is large, Upy, is dominated by fitting the
model criteria. However when A is small, Ur;. is dominated by fitting the data.
The A value is fixed to an arbitrary value prior to the inversion. It does have an

optimal value which is unknown, since it depends on noise in the observed data and
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Figure 3.1: A schematic of an iterative search of the model space. The search on the
right converges to the global minimum, whereas the search on the left gets trapped
in a local minimum.

the bounds of the exact solution [82].

The Tikhonov Regularisation solution is found by taking the derivative of Upy
with respect to the model parameters and setting the resulting expression equal to
zero. From the definitions of the data and model norms (Equations 3.5 and 3.6,

respectively) this is possible and yields

AW, (m — my) = J'Wy(d — Fm) |, (3.9)

where J = ?Tm is the ¢ x n Jacobian or sensitivity matrix, which comprises the

Fréchet derivatives of the model response with respect to the model parameters.
The Jacobian contains information on the perturbation (i.e. likely change) of the

data for a given perturbation of each model parameter.

There are different iterative methods available to solve Equation 3.9. Of in-
terest are the general iterative scheme, the iteratively linearised scheme and the

conjugate gradient solvers [75]. The general iterative scheme is obtained by adding
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(8d )TWd (ﬂ) (m — my) to both sides of Equation 3.9 and, provided W,, is in-

om om

vertible, this yields [75]

(W' 3"W,Jo + M| (m — my)
= W, ' IIW,{(d—-Fmg) +J,(m —mg)} . (3.10)

Isolating m on the left hand side, the following iterative scheme is suggested,

1

my; = my+ (W ITWJ, + I
xW 1IJTWy(d — Fmg)+A(mg — my) . (3.11)

The iteratively linearised scheme is based on linearising the forward model op-
erator and then applying linear algebra to develop an iterative scheme [75] [80]. A
Taylor series expansion is one method used to linearise the forward model operator,

and is given to first order by

F[m| = F(my) + Jo(m —my) , (3.12)

where my is the model about which the model response is linearised. When the

Taylor series expansion is substituted into Equation 3.9, it follows that

[J"W,Jo + AW,,,| (m — mg) = JF Wy(d — Fmy) . (3.13)

Isolating m on the left hand side, the following iterative scheme is suggested,

myy = my+ (W Wy + A1)

xW, L JTW,(d — Fmy) : (3.14)

When identity weighting matrices are used, Wy = I and W,,, = 1, in the iteratively

linearised scheme, this becomes the Levenberg-Marquardt method [75].
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Both iterative schemes in Equation 3.11 and Equation 3.14 are dependent on
being able to obtain the inverse of a matrix [-|7'. Generally, the inverse will exist
provided an appropriately large and positive value of the damping parameter \ is

chosen [75].

The term A(mg —my) is the only difference between the general iterative scheme
(Equation 3.11) and the iteratively linearised scheme (Equation 3.14). However, this
results in each method searching the model space differently [75]. The iteratively
linearised scheme keeps variations between my; and my, as small as possible at each
iteration for a given A value. On the other hand, the general iterative formula keeps
the variations between my,; and mgy as small as possible at each iteration for a
given \ value. The general iterative scheme yields a sequence of models close to the
initial model my, and produces significantly smoother results than the iteratively

linearised scheme.

The general iterative scheme (Equation 3.11) and the iteratively linearised scheme
(Equation 3.14) are forms of the steepest descent method. The steepest descent

method updates the model according to

My =my — GO (3.15)

where 0y, is the vector of the direction of maximum decent and Zk: is the scale of the
step length [74] [75]. In the case of the general iterative scheme 0, = W, ' JTW ,(d—
Fmg)+A(mg — my) and Ge = (W, HITW T + Al ~!. The updated search direction
in the steepest descent method is orthogonal to the previous direction and results

in a zig zag search path to the minimum of the model space.

Conjugate gradient (CG) methods can be used to solve the Tikhonov Regular-
isation problem and have better convergence properties than the steepest decent
scheme [73]. Essentially, the CG methods are based on n — 1 conjugate search di-
rections and it takes a step length in each direction so that by the last step it will
line up exactly with the minimum in the model space [83]. The CG methods are
implemented in a similar fashion to the steepest descent method, updating a model
based on a search direction and an optimal step length. However, the updated search

direction is in a conjugate direction to the last.
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Occam or Smooth Model Inversion

The Occam or smooth model inversion seeks the smoothest model subject to fitting

the data to some specified tolerance level x [80],

min(U,,(m)) (3.16a)
Us(m) = xx (3.16b)

where U, describes smooth models through the W,, matrix. Smooth model in-
version only allows sufficient structure required to fit the data into the model.
Therefore, it avoids producing artifacts that can lead to misinterpretation. The
unconstrained Occam problem (Equation 3.16), can be turned into a constrained
optimisation problem using a Lagrange multiplier . The resulting objective func-

tion 1s

U(m) = Un(m) + p~* [Ua(m) = xi] - (3.17)

A solution to the constrained problem (Equation 3.17) must satisfy the stationary

conditions

ou
o =U;—x«=0 . (3.18Db)
This is equal to
W, (m — my) = J'Wy(d — Fm) (3.19a)
(d — Fm)"W,y(d — Fm) = y, : (3.19h)

From Equation 3.17, p can be likened to the Tikhonov Regularisation param-

eter \, because they both control the balance between minimising the data and



3.1. INVERSIONS 45

model norms. Unlike A, the quantity p must satisfy both Equation 3.19a and Equa-

tion 3.19b. The non-linear nature of F makes finding an exact form or value for p

difficult.

A two-part sequence is used to find the solution to the Occam inversion problem.
Firstly, it is noted that Equation 3.19a and the Tikhonov Regularisation (Equa-
tion 3.9) are the same for a fixed p value. Therefore, a scheme used to solve the
Tikhonov Regularisation, such as the iteratively linearised scheme, can be used to
update the model. Secondly, an optimal value of p is found that minimises the
data norm. The optimal p value depends on the data error level, model weighting,
parameterisation used and the true model variation. It can be determined using

methods such as the golden section search, L-curve or cross-validation [84].

Data space methods are becoming increasingly popular in determining a solution
to inverse problems. All solutions presented until now have involved calculating
JTW,J, which is the n x n ‘model space cross product’ or weighted pseudo-Hessian
matrix. However, the problem can be reformulated to find a solution based on the
data space. Parker [79] showed that an iterative solution to Equation 3.8 can be

expressed in terms of the rows of the Jacobian,

my —mg =W, I n1 (3.20)

where W,,J7 is the basis function and 7., are the expansion coefficients. An
expression for the coefficients can be obtained by substituting Equation 3.20 into

Equation 3.9,

M1 = AWy + I W, D) 'd,, (3.21)

where d = d — F[m] +J(m — m,).

The solution is now in terms of J,W,,JI the ¢ x ¢ ‘data space cross product’.
The solutions derived from the model space and data space approaches are theoret-
ically identical [85]. However, the number of equations solved to obtain a solution
can be significantly different depending on the size of the model and data vectors.

The dimensions of the ‘data space cross product’, ¢ X ¢, is usually much smaller in
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practice than the ‘model space cross product’, n x n, resulting in reduced computa-
tional cost. Data space methods can be applied to both the Tikhonov Regularisation
inversion and the Occam inversion, depending on whether the A value is fixed or
calculated at each iteration.

When implementing any inversion there are three important factors to consider:
solution existence, solution uniqueness and stability of the solution process [72]. In
reality there always exists a solution to the inverse problem - the geological sub-
surface that generated the data. However, the validity of the physical assumptions
made, the presence of noise and the mathematical model used may preclude gen-
erating a solution and this is generally reflected by a large misfit value [86]. Non-
uniqueness was discussed previously and observed to stem from data error and the
physics underlying the technique. Unstable inversions are referred to as ill-posed or
ill-conditioned and occur when small changes to the data result in large changes in
the model parameters. The resulting iterative scheme may exhibit wild oscillations
in the model space. Constraints can be used to stabilise an inversion, as well as to

reduce model non-uniqueness [72].

3.1.2 MT Inversion Review

The 1D MT inverse problem is one of the few geophysical problems where an analyt-
ical least squares solution exists. It is referred to as Parker’s Dt [86]. The inversion
produces a model with a finite number of infinitely thin layers of specific conduc-
tance at different depths. Although there is no geological interpretation to the D
models, they can be used as an estimation of the maximum depth of resolution of
a data set [9]. A geologically reasonable 1D model can be achieved by inverting
for a discrete layered Earth. This was done by Wu [87] and Jupp and Vozoff [8§]
using non-linear least squares. Layered Earth inversions are generally unstable and
to increase stability the number of layers needs to be restricted [9]. However, re-
stricting or using the wrong number of layers can lead to a mis-representation of the
subsurface structure. A more stable inversion that only produces structure required
by the data is the 1D Occam inversion introduced by Constable et al. [80]. This

1D inversion seeks a smooth model that has a minimum difference between adjacent
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layers. The 1D inversion approach of Smith and Booker [89] also sought a smooth

model based on a model depth weighting function.

Inversions that generate smooth models have been extended to 2D. The 2D Oc-
cam inversion was developed by deGroot-Hedlin and Constable [90] and is a stable
algorithm with good convergence properties. It was later reformulated by Siripun-
varaporn and Egbert [91] as a data space method known as REBOCC. Smith and
Booker [92] produced the rapid relaxation inversion (RRI) that uses a computa-
tionally economical approximation for the Jacobian matrix. Although it is fast, the
method often fails to converge without user intervention [91]. Rodi and Mackie [93]
developed an inversion scheme that produces a smooth model using a conjugate

gradient method to solve the Tikhonov Regularisation.

Attempts have been made to produce sharp boundary 2D MT inversions. These
types of inversions do not use a measure of roughness (smoothness constraint) in
the regularisation term or, if they do, they require a decoupling of the regularisation
term across any sharp boundary. A 2D MT sharp boundary inversion was first done
by Jupp and Vozoff [94] who extended their 1D layered Earth inversion. Smith
et al. [95] determined the boundary depths below individual stations and then
interpolated them laterally, whereas deGroot-Hedlin and Constable [96] produced a
variation of the Occam inversion to solve for sharp boundaries in a 2D cross section.
Most recently, Farquharson [97] modified a typical smooth inversion algorithm to

generate blocky, piecewise constant Earth models.

Increasing effort is being devoted to tackle the 3D MT inversion problem, primar-
ily still working with smooth models [85] [93] [98]. The difficulty with 3D algorithms
is the size of the model space and the computational time required to compute the
Jacobian matrix. The currently published 3D inversion schemes are the Newman
and Alumbaugh algorithm [98], which uses non-linear conjugant gradients, and the
Siripunvaraporn et al. algorithm [85], which is an extension of their 2D data space
inversion approach. There is also a commercially available 3D inversion software
package (WinGLink), which is an extension of the Rodi and Mackie [93] 2D algo-
rithm. For an extensive review of 3D inversion, the reader is referred to Avdeev

[99).
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Standard MT inversion, as practised today, is still predominately 2D, with the
most common being the Occam inversion [90] and the Rodi and Mackie inversion
[93], distributed in the commercial WinGLink package. Although 3D inversions are
becoming increasingly popular, particularly Siripunvaraporn et al. [85], the actual

algorithms are still being evaluated and verified by the EM community.

3.1.3 Gravity Inversion and Forward Modelling Review

The inversion of gravity data poses a problem because, being a potential field tech-
nique, it is inherently non-unique. There are an infinite number of density distri-
butions that can fit the data equally well. One such distribution is an infinitely
thin layer at the surface of laterally varying density [64], although such a solution
can be rejected on geological grounds as totally implausible. Therefore, all gravity
inversions must involve constraints or additional assumptions to reduce the number
of acceptable models and make them geologically meaningful.

There are two common approaches to gravity inversion. The first accounts for
a gravity anomaly by varying the geometry of the anomalous body and keeping
a fixed density contrast with the surrounds. This gives a non-linear relationship
between the gravity response and model parameters. Making assumptions about
the geometry (shape, size) reduces the number of acceptable models. However, if
the assumed geometry is wrong then the inversion can be misleading. Examples of
regular geometric shapes to approximate a buried geologic structure include prisms,
cylinders, spheres, and polygons, with the most common being the prism, from
which more complicated bodies can be constructed by superposition. Bott [100]
altered the depths to the base of a series of vertical prisms and through a trial and
error process was able to determine the depth profile of a sedimentary basin. Formal
inverse theory was applied by Oldenburg [101] to determine the thickness variations
of an uneven 2D layer. Various other studies have extended the depth function idea
[102] [103] [104]. As a slight variant on this approach, the unknown geometry of an
isolated 2D or 3D causative body can be obtained by inverting for the location of
polynomial vertices [105] [106].

The second approach to gravity inversion is to derive the subsurface density con-
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trasts for a structure of fixed geometry. Generally, this is in the form of prisms that
form a grid. Such a scheme yields a linear relationship between the gravity response
and the density contrast model parameters. Green [107] applied the Backus-Gilbert
approach and found models, that either minimised the departure from an initial
model or used a variable weighting function. The constraint used by Last and Ku-
bik [108] was to minimise compactness, and was the first weighting function to be
based on the model parameters themselves. Guillen and Menichetti [109] extended
this approach by also minimising the moments of inertia with respect to the centre
of the body. These inversions have very specific constraints placed on the model
and in many cases can only recover a single body. More complicated models can be

recovered from a smooth 3D gravity inversion with a depth weighting function, as

developed by Li and Oldenburg [64].

Since it is difficult to produce geologically meaningful results from an automatic
gravity inversion, a common alternative is to simply carry out interactive forward
modelling [6]. Such forward modelling entails a user defined model, which incorpo-
rates information from geology and other geophysical techniques, and then compares
the model response to the actual observed data. The model can be adjusted on a
trial and error basis to bring about a match between the computed and observed
data. Analytical solutions to the forward problem exist for simple bodies such as
spheres, cylinders and prisms. Such solutions can be readily incorporated into for-
ward modelling programs for rapid calculation of the model response [6]. Talwani et
al. [110] formulated the first computer-orientated gravity forward modelling equa-
tions that calculate the response of 2D bodies of polygonal cross sections. Initial
3D forward modelling by Talwani and Ewing [111] used thin irregular polygonal
layers to build 3D bodies. However, the right rectangular prism [112] is now used
to build complex 3D structures and is suited to finite difference grids. Finite ele-
ment methods that use tetrahedral cells to construct 3D bodies were described by
Barnett [113], whereas Okabe [114] used polygonal facets. Parker [115] offered an
alternative to the spatial-domain approach. He performed the first gravity forward
modelling using the Fourier transform, which was based on the convolution theorem

and Green’s functions.
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3.1.4 Discussion

Consideration will now be given to pre-existing MT and gravity inversion approaches
as reviewed above, with a view to determining the best scheme to be used in a joint
inversion of MT and gravity data sets. In general, MT inversions use a smoothness
constraint, which tends to smear boundaries and produce ‘fuzzy images’ of the sub-
surface. Yet, these smooth models can be justified since the MT technique is based
on EM diffusion phenomena that naturally smears boundaries, being sensitive to the
bulk resistivity and not so much to the actual discontinuities or boundaries in the
subsurface resistivity distribution. The gravity inversions require strict constraints
in the form of density contrasts, specific body geometries, minimising compactness
or minimising the moments of inertia, and can generally only recover a single body.
Constraints used for gravity inversions are specific to gravity and are not neces-
sary for MT. Therefore, it is more desirable to base the joint inversion on an MT
approach rather than a gravity approach. Further argument in support of an MT-
based inversion approach is that gravity has a linear forward model operator that
can exploit linear schemes. Such schemes can not be used for MT since its forward

model operator is non-linear.

The MT inversions use either the Occam or the Tikhonov Regularisation formula-
tions, such as the inversion approaches developed by deGroot-Hedlin and Constable
[90] or Rodi and Mackie [93]. The Occam inversion is preferred because it determines
the optimal trade off parameter (1) value. For the Tikhonov Regularisation, which
uses a fixed trade off (\) value, multiple inversions with different A values need to
be executed to be able to determine the best value. The 2D Occam inversion [90] is
favoured over the 1D Occam inversion [80] because a 1D model will not produce a

Bouguer gravitational anomaly (lateral changes in density are required).

To summarise, the non-linear MT 2D Occam inversion developed by deGroot-
Hedlin and Constable [90] will provide the basis for the joint inversion herein. This
inversion method is a stable and rapidly converging scheme that is well accepted by
the EM geophysical community. The specific details of the MT 2D Occam inversion

are provided in the following section.
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3.2 The Occam Inversion

The Occam inversion was first introduced by Constable et al. [80] to perform a
1D MT inversion. It was subsequently extended to 2D by deGroot-Hedlin and
Constable [90]. The name Occam comes from Occam’s Razor: “it is vain to do
with more what can be done with fewer” [116]. In terms of geophysics, of all of the
models capable of fitting the data, the simplest model, or model that requires the
least spurious features not required by the data should be accepted. The Occam
inversion achieves this by seeking a minimum structure or smooth model, subject
to fitting the data to an acceptable tolerance. Smooth models only have features
that depart from the simplest case (half space), as far as is necessary to fit the data.
Therefore, only structure absolutely required by the data will appear, and the model

cannot be over interpreted [80].

In this section the general aspects of the MT Occam scheme are discussed, fol-
lowed by a discussion on those aspects specific for MT. This discussion forms the
basis of the methodologies for the gravity and joint inversion schemes given in Chap-
ters 4 and 6. This section is strongly based on the paper by deGroot-Hedlin and
Constable and further details can be obtained from the original Occam papers [80]

[90).

3.2.1 General Aspects

In Section 3.1.1 the general Occam inversion scheme was discussed. For the MT

Occam inversion, the objective function is

2 _
Ulm] = [|8,m]|” + [|0,m[* + u~" {|[Wad = WiF[m]|* = x7} . (3.22)
An iteratively linearised scheme is used to find a solution to this objective function

and results in the model parameters being updated according to

-1

my 1 (1) = [M (070, +070.) + (WJi)" (WdJk)] (WaJ,)" (wdak) . (3.23)
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In this section the general aspects of the MT Occam inversion are discussed and
include the model parameterisation, data norm, model norm and searching for the

Lagrange multiplier.

Model Parameterisation

The Occam inversion uses an over-parameterised 2D model, which means there are
more model cells than degrees of freedom in the data (the number of independent
data measurements). Under-parameterising the model has less cells than the degrees
of freedom in the data and can cause structure to be suppressed, whereas over-
parameterising the model can allow superfluous structure to appear [79]. In a normal
least-squares sense, over-parameterisation of the model can result in an unstable
inversion. However, the introduction of a smoothness constraint acts to stabilise the
inversion, and the over-parameterisation then allows for smooth variation between
different model cells.

The 2D model used by the Occam inversion is parameterised in terms of two
grids, the regularisation grid and the finite element mesh, which remain fixed at
each iteration. The two grids depicted in Figure 3.2 are described in Cartesian
coordinates with the z-direction along strike, the y-direction across strike and the
z-direction being depth (positive downwards).

The forward modelling is conducted on the finite element mesh. The structured
finite element code used to calculate the MT response [117], requires the mesh to
have a fine regular array of rectangular nodes to maintain its accuracy. Node spacing
is also designed to aid the accuracy of the forward modelling code. The horizontal
spacing is intended to be one-third of the skin depth and, since the EM fields decrease
exponentially with depth, it has been found that a logarithmic depth scale is ideal
[89]. There must be a node at the location of every MT station.

The model parameters correspond to the regularisation grid, which is made up
of rectangular prisms of constant resistivity. The grid is terminated by an elongated
prism at the bottom, to mimic a half space, and uniform layers laterally that extend
to infinity. The regularisation cells are smaller than the data resolution length of

MT, so their boundary locations do not affect the final inverted model. The cell size
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Figure 3.2: Configuration of the 2D grid system used by the Occam inversion. The
regularisation grid is marked by the bold lines and the finite element mesh by the
regular lines. The triangularisation configuration is indicated.

can increase with depth to account for the loss of resolution with depth.

The regularisation grid must be a subset of the finite element mesh, so that there
is a node at every resistive regularisation cell boundary. The reason behind the two
grid system is to be able to accurately calculate the MT response, which needs many
nodes across a resistivity boundary, and still maintain computational efficiency by

having a reduced number of model parameters in the regularisation grid.

Data Norm

The data norm is given in Equation 3.5. In this inversion, the data weighting matrix,
W, is the diagonal matrix of the data errors. The Occam scheme assumes the data
errors are independent and have a zero mean Gaussian distribution. This confers

on the data norm, Uy, the well known chi-squared distribution x? with ¢ degrees
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of freedom. The expected value for the x? distribution is ¢, the number of data
1

points, and corresponds to an RMS (%) ® of 1. Although this seems like a bold

assumption about the data errors, they are generally poorly known and categorised.

More refined statistical analysis would most likely yield little extra information.

Model Norm

The model norm, also referred to as the roughness term or smoothness constraint,
is defined as

2
|

Uy, = ||8,m]* + [0,m]* |, (3.24)

where ||-||? is the lp-norm, 0, is the horizontal roughness matrix and 9, is the vertical
roughness matrix. The model roughness is defined as the first spatial derivative of
the model, such that smooth models have small derivatives. Essentially, the J, and
0, matrices take the horizontal and vertical differences between adjacent cells in
the grid. Minimising them results in a smooth model, which has minimal variation
between adjacent cells.

Consider a regularisation grid comprising n cells with w, elements in the y-
direction and w, elements in the z-direction [90]. Each cell has width ¢ and vertical
length v; where ¢+ = 1,2, ...,w,. Starting in the top left of the grid and numbering

the elements from left to right, the n x n vertical roughness matrix is given by

[ 1 0 0 1 0 ]
0 -1 0 0 1 0
0, = : (3.25)
1 1
L 0 .

where there are w, — 1 zeros between entries and 0 is a w, x n matrix of zeros.
The horizontal roughness matrix can be expressed in an equivalent manner to

the vertical roughness matrix through a series of 0 and +1. However, if the model

cells are elongated with depth, then it is equivalent to increasing the roughness

penalty with depth. To counteract this, a horizontal damping factor can be used
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to weight the horizontal roughness matrix, and penalise against different depth-to-
width ratios, so that the structure does not become elongated. The n x n horizontal

roughness is given by

=yl

9, = . , (3.26)

0 Oy

where 9,; is a w, X w, horizontal roughness matrix for layer i and is

—’Uz/ﬁ 01/19 0
—Uz/ﬁ Uz/ﬁ
9, = . (3.27)

=y1

Searching for the Lagrange Multiplier

The p value controls the balance between creating a smooth model and fitting the
data. Larger p values will result in a smooth model, however this happens at the
expense of fitting the data. Smaller p values result in an improved data fit but will
produce a rougher model. There is an unknown optimal u value that depends on
the data error level, the model weighting, the parameterisation used and the true
model variation.

Instead of using an arbitrary fixed value of p, the Occam inversion calculates
the optimal value. The p value is found at each iteration by minimising the true

non-linear data norm,

Ui (1) = [[Wad — WeF [mg ()] (3.28)

The true non-linear data norm is used instead of the data norm containing the
Taylor series expansion, since this linear approximation is inaccurate unless the

current model is close to the true solution.
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The 1D optimisation problem for determining the optimal p value is solved
using the ‘golden section search’ [118]. The ‘golden section search’ sweeps through
w values from 0 (least squares solution) to co (smoothest model) until the minimum
of Equation 3.28 is found. If two pu values produce the same minimum value of
Equation 3.28, then the larger one is chosen because it corresponds to the smoothest

model.

3.2.2 Specific MT Aspects

The features of the Occam inversion that make it specific to MT are the data
type, model parameters, the forward model operator and the Jacobian. The model
parameterisation described in Section 3.2.1 has also been specifically designed for
MT.

The data vector, d, used in the MT Occam inversion contains the 2D MT re-
sponse. Each element in the vector corresponds to a TE or TM mode apparent
resistivity or phase for a particular station and frequency. The model parameter
vector, m, used in an inversion can be any monotonic function of the physical prop-
erty in question. In the MT case, rather than using resistivity g directly in a linear
space, the transformation to logarithmic values log(p) is used. This forces the resis-
tivities to be positive and better accommodates the large range of possible resistivity
values of Earth materials, thus compressing the scale. Furthermore, the data space
is most often specified as the logarithm of the apparent resistivity values, thus giving
the same transformation (and units) to the data space and the model space. Each
element in the MT model parameter vector is the log(p) of a corresponding cell in
the regularisation grid.

The forward model operator, F, in the MT Occam inversion converts the log(p)
to a 2D MT response and is calculated using the code from Wannamaker et al.
[117]. The Jacobian matrix, J, has as its elements the Fréchet derivatives of the 2D
MT model response with respect to the model parameters in log(p) form. It was
initially calculated using a method outlined in Oristaglio and Worthington [119],
then updated to the method from de Lugao and Wannamaker [120].

Since the data type, model parameters, the forward model operator and the
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Jacobian make the inversion specific to MT, these are the features that need to be
changed when applying this inversion algorithm to data from another geophysical

technique.

3.2.3 The MT Occam Program

The 2D MT Occam program is freely available, courtesy of Professor Steven Con-
stable from the Scripps Institute of Oceanography, and can be downloaded from his
website (http : //marineemlab.ucsd.edu).

The program underwent a major rewrite in 2006, when it was updated to For-

tran 90 and allowed for dynamic memory allocation. This version is known as

OCCAM2DMT v3.0 and is the version used in this thesis.

Figure 3.3, taken from deGroot-Hedlin and Constable [90], is a flow chart of the
steps involved in the Occam inversion scheme. The scheme is normally well behaved
and converges to a solution that is independent of the starting model. The final
model will have the smallest roughness for a specified misfit level, and can be shown
to be a solution of the original non-linear optimisation problem. There are instances
when the updated model does not have a smaller misfit than the previous model, as
well as instances when the desired misfit has been reached and the updated model
is not smoother than the previous model. Such behaviour is due to a breakdown in
the linear assumption, or errors in calculating the model response and the Jacobian.
In such cases, the step length in the original search direction is changed to 1/2 (or

1/4, 1/8 etc.) of its earlier value in the following way

Frew(p) = (1 = c)my + cF(p) (3.29)

Here F,., (1) is a set of new models, my, is the current model, F(u) is the failed

model and c is successively halved until an improved model is found.

The OCCAM2DMT v3.0 program has special features that allow users to adapt
the inversion to their problem. The important features are model limits, topography
or bathymetry, fixed values, triangularisation, sharp boundaries, structure in the

starting model, a prejudiced model and static shift. These are explained below.
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NOTE:
Thisfigureisincluded on page 58 of the print copy of
the thesis held in the University of Adelaide Library.

Figure 3.3: Outline of the steps taken by the 2D MT Occam inversion (reproduced
from deGroot-Hedlin and Constable [90]).
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. Model limits, or hard bounds, can be placed on the resistivity values. They

are applied by re-assigning any updated model parameters that go outside the
acceptable limits by clamping them to the upper or lower bounds (whichever

is appropriate).

Surface topography or bathymetry of the sea floor can be applied by assigning
the appropriate near-surface cells, in the regularisation grid or finite element
mesh, respectively, to be air or water. The station location will then be placed

on the topography or bathymetric surface.

Fixed values can be assigned to certain parts of the model. If all finite element
cells, which are aggregated to form the regularisation cells, are not fixed, then
the inversion will only solve for the model parameter corresponding to the free

finite element cells.

Each cell in the finite element mesh can get subdivided into 4 triangles, referred
to as triangularisation. For the configuration of the 4 triangles see Figure 3.2.
Each triangle can be assigned a different resistivity to better mimic topography

or the boundary of fixed value structures.

. Sharp boundaries (or zonal decoupling) can be placed between cells in the

regularisation grid, breaking the smoothness constraint between the two cells

and allowing a discontinuity to exist.

The initial or start-up model of the inversion does not have to be a homoge-

neous half space and can contain structure.

A prejudiced or preferred model, containing suggested resistivity values, and

weighted for certain cells, can be used to influence an inversion.

The inversion can correct for static shift effects at individual stations.

3.3 Linear Occam

Unlike the MT techniques, the gravity technique has a linear forward model operator.

This means the objective function can be differentiated with respect to the model
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parameters and linear algebra can be used to ascertain the model parameters. The

linear equivalent of the non-linear Occam scheme has the objective function,

Ulm] = [|g,m|* + 2. + = {[Wod ~ WG]~ 3} . (3.30)

where G will be used to represent the linear forward model operator. When the

objective function is differentiated with respect to the model parameters it yields

(079, +970.) m+ p~H (W,G)" (WyG)m — it (W,G)" (Wud) =0 . (3.31)

It then follows that the model parameters are updated according to

() = [ (@19, +070.) + (WaQ)" (WuQ)]  (W.G) (Wad) . (332

The model parameters are dependent on the i value that can be found by a similar
method discussed in Section 3.2.1. Equation 3.32 does not outline an iterative
scheme, rather the model parameters are found in one step, which incorporates
searching for the optimal p value. For more details on deriving the linear Occam

inversion see Constable et al. [80].

3.4 Conclusions

In this chapter inversion theory is discussed and approaches used for MT and gravity
data are reviewed. It was determined that the 2D MT Occam inversion was the best
scheme for the joint inversion of disparate data sets. An account of the non-linear
2D MT Occam inversion was then given to provide the basic information needed
to understand the methodology for the gravity inversion and joint inversion that
is developed in Chapters 4 and 6. In the next chapter, the non-linear 2D Occam
approach will be applied to the gravity technique before using it in combination

with MT in a joint inversion.



Chapter 4

Occam Gravity Inversion

In this chapter an Occam-based gravity inversion approach is developed and forms
the basis of the gravity component of the joint inversion. As explained in Sec-
tion 3.1.4, the non-linear 2D Occam algorithm has been selected for the joint inver-
sion. Therefore, the gravity inversion should also take this form for consistency and
ease of integration and comparison with the single MT Occam inversion as well as

the combined approach.

In the past, gravity inversion has not been formulated in this equivalent MT
Occam fashion. However, there does exist the closely related 3D algorithm devised
by Li and Oldenburg [64]. The similarities between the two schemes are that they
both define ‘structural roughness’ in terms of the first order derivative of the model
parameters and both construct the objective function using Lagrange multipliers.
The difference between the two algorithms is the dimensionality (2D vs. 3D) and,
more importantly, the scheme used to solve the objective function. The Occam
inversion uses a non-linear iterative scheme whereas Li and Oldenburg [64] apply a

subspace method designed for linear inverse problems.

This chapter is structured as follows. First, applying the non-linear optimisation
technique to the linear gravity inversion technique is justified and reconciled. The
methodology of the Occam gravity inversion is then explained. Finally, the inversion

algorithm is tested using synthetic models.

61
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4.1 Linear vs. Non-Linear Schemes

A primary aim of developing the new gravity inversion scheme is to have an approach
that can be readily combined with MT in a joint inversion. The format of the joint
inversion will be the non-linear 2D Occam inversion. Therefore, even though gravity
is a linear technique and could be applied to the linear Occam approach, it will be
applied to the non-linear 2D Occam inversion. It was shown in Section 3.2 that, in

the non-linear scheme, the model parameters are updated according to the equation,

myq(p) = [“ (070, +8%0.) + (Wadi)" (Waly) h
(WdJk)T (de — F[mk] + kak) . (41)

A prominent feature of discrete, linear inversion techniques (proven in Section 4.2.1)
is that the linear forward model operator is equal to the Jacobian matrix (G = J).

Substituting this into Equation 4.1 gives

1

ma(n) = [1(@]0, +070.) + (WaGh)" (WaG)|
(Wde)T (de — kak + kak) N (42)

which simplifies to

-1

my1(p) = [M (050, +0%0,) + (W4Gy)" (Wde)] (WaGy)" (Wad) . (4.3)

In Section 4.2.1 the gravity forward model operator will be shown to be de-
pendent only on the grid configuration and is fixed at each iteration. Therefore,
the scheme is no longer iterative and Equation 4.3 no longer needs the £ iteration

subscript, becoming

-1

m() = |1 (8]0, +070.) + (W) (W.G)|  (WiG)" (Wad) . (44)
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This expression for obtaining the model parameters is the same as that obtained
from the linear Occam approach given in Section 3.3. Therefore, when applying the
non-linear Occam scheme to gravity data, it reduces to the linear Occam scheme.
The gravity inversion can be programmed in a format compatible with the MT
inversion and yet, as a stand alone inversion scheme, be executed as the linear

Occam approach.

4.2 Methodology

In this section the 2D Occam scheme outlined in Section 3.2 will be applied to
the gravity technique. This is done by redefining the relevant parameters, then

describing the implementation details.

4.2.1 Parameter Descriptions

The parameters of the MT inversion, as stated in Section 3.2, which make it spe-
cific to MT are the data type (apparent resistivity and phase), model parameters
(resistivity), the forward model operator, the Jacobian matrix and the model pa-
rameterisation. Therefore, these are the quantities that need to be redefined so as

to adapt the algorithm for gravity inversion.

Model Parameterisation

The model parameterisation used by the gravity inversion is the same as that used by
the MT inversion (Section 3.2.1) namely rectangular cells, each of constant physical
property (density in the case of gravity and resistivity in the case of MT). Having
the same model parameterisation maintains compatibility between the gravity and

MT inversion and means that they are in the same format for the joint inversion.

Data Type

The data type used by the Occam gravity inversion is the vertical component of the
gravity response, expressed as Bouguer anomaly values in units of mGals. The data

vector d is written as
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d = (d,ds,...,ds) (4.5)

where s is the number of data points and each datum corresponds to the Bouguer
anomaly values at various stations along the 2D survey line. Accompanying every
data point is an estimated error or uncertainty, expressed as a standard deviation

(0*) and used in the data weighting matrix W.

Model Value

Bouguer gravity anomaly data yield models in terms of subsurface density contrasts
relative to an unknown background density. The actual density values of the rocks
are the sum of the density contrast and the (unknown) background density (Sec-
tion 2.2.1). Therefore, in specifying the density contrast model, the relative density
values can be either positive or negative, depending on whether they are larger or

smaller than the background. The model parameter vector m is written as

m = (p1, 02, .-y Pn) (4.6)

where n is the number of model parameters and p; is the density of ith cell in the
regularisation grid, in units of kem~3. Note that actual discrete density values are
used as the model parameters rather than some monotonic function of density. This

is to maintain the linear relationship between density and the model response.

Forward Model Operator

The forward model operator takes model parameters and the grid configuration to
produce a theoretical model response. In Section 3.1.3 the various methods for
calculating the gravity response of different shaped bodies were discussed. In the
Occam inversion, the forward model operator acts on the finite element mesh, which
consists of a regular array of rectangular cells. Therefore, methods that utilise a
rectangular configuration are preferred. The 2D right angle prism configuration is

detailed by Telford et al. [6] and used here.

Figure 4.1 shows the configuration of a right-angled rectangular prism of width
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Figure 4.1: Configuration of a 2D right angled prism.

b, buried at a depth of z; and having a depth to its base of z5. For the 2D situation,
the model is assumed to extend infinitely in the z-direction. The profile (along the
y axis) is perpendicular to strike. The vertical gravity response (g,), in mGals, of

the 2D prism body at point P on the surface is given by [6]

g. = 2x10°G.p

b 5 —b
_10g Z2+(y
2 A+ y—b
2 2 2
+glo z3+y *z1+
2 Ay 23+

2 {tan_l (yz_z b) — tan~! Z%)}
+2 {tanl (y; b) — tan™! (Z%) H , (4.7)

where p is the density of the prism and G, is the universal gravitational constant,

6.67 x 1071* Nm?kg—2.

For a given station, the model response of each prism is calculated using Equa-
tion 4.7. The total model response at that station due to all prisms, is obtained
by superposition, namely, simply adding together the gravity responses of each ele-
mentary prism. Mathematically, the model response is expressed as F[m], with the

density term p in Equation 4.7 being representative of the m term and the remain-
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der of Equation 4.7 forming the basis of the F term. This means that the gravity

forward model operator, F, is only dependent on the configuration of the grid.

Boundary Conditions of the Forward Model Operator

To maintain accuracy of the forward model calculations, the boundary conditions at
the sides and bottom of the grid need to be addressed. The gravity inversion does
not have a bottom boundary condition. The gravity kernel decreases according to
distance squared. Therefore, provided the grid extends deep enough, the influence
of the deep grid cells is negligible and has minimal effect on the overall gravity
response. The depth termination of the grid will thus have minimal effect on the
response.

A similar approach to the bottom boundaries could be taken for the side bound-
aries. If the gravity data at the edges of a profile are zero, a model response that
is also zero is desired. This is achieved by the density values of the boundary cells
being set to zero. However, if the gravity data are not zero at the edges of the
profile, there is a need to extend the side boundary cells to infinity, which is done
here using a 2D horizontal sheet [6]. Figure 4.2 shows the configuration of the 2D
horizontal sheet used to terminate the rows at the right of the grid. It is a right
angled rectangle that extends to infinity in the strike (z-directions) and positive
y-direction. The vertical gravity response (g.rus), in mGals, of the horizontal sheet

at point P is given by [6]

2 2
™ Y Z Tty

» = 2x10°Gep | = (22 — 22) + 21
92RHS X 0{2(22 22) 20g{2% y2}

+2p tan ™ <£> — z;tan™! (gﬂ . (4.8)
<2 Z1

A similar formulation is used for the termination of the grid on the left hand side.

Jacobian

The Jacobian is an s X n matrix which determines how each model parameter affects

the model response. The elements of the Jacobian are



4.2. METHODOLOGY 67

—Le

Figure 4.2: Configuration of a horizontal sheet used to terminate rows on the right
hand side of the grid.

ad;

J amj ( )
where ¢ = 1,2, ..., s corresponds to the gravity data points and j = 1,2, ....,n corre-
sponds to the model parameters. This is equivalent to

OF [m]
J= : 4.10
Iy (4.10)

and since there is a linear relationship between F and m, taking the derivative in
Equation 4.10 will result in J = F. The Jacobian and the forward model operator
are equal. They are both independent of the model parameters and solely dependent
on the grid configuration.

For a 2D prism, using Equation 4.7 the Jacobian is given by
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For the model parameters at the edge of the grid, the response was calculated using

the horizontal sheet expression (Equation 4.8), the Jacobian is

™ 22 42
J = 2X105GC[5(22—22)+%10g{22+52}

+ 2 tan ™t (i) — 21 tan~! <£>
Z9 21

4.2.2 The Computer Program and its Implementation

] . (4.12)

The above definitions of data type, model values, forward model operator, boundary
conditions and Jacobian matrix were implemented to produce the Occam gravity
inversion program. Figure 4.3 shows the steps involved in the gravity inversion; it is
based on similar steps taken by the MT inversion. The changes in steps between the
two versions reflect the fact that, in the gravity case, the forward model operator
and Jacobian are equal, and so only one needs to be calculated. Also, the non-linear
gravity inversion in Section 4.1 was shown to be equivalent to the linear scheme.
Therefore it only requires one iteration to find the model parameters, followed by a

search for the optimal p value.

In the Occam gravity inversion program, the inverted model parameters (Equa-
tion 4.4) are only dependent on the data, the forward model operator and the u
value. However, it was shown that the forward model operator is only dependent
on the grid configuration, which means that it and the data are pre-determined
before the inversion is executed. As a result, finding a model that meets the desired

tolerance is solely dependent on the yu value.

A user manual for conducting the gravity inversion is given in Appendix A. The
program that performs the Occam gravity inversion has the same features as the MT
program that was discussed in Section 3.2.3. These include model limits, topography
or bathymetry, fixed values, sharp boundaries, structure in the start-up model and
a prejudice or preferred model. The triangularisation feature is available but the
response of each triangle is approximated as being one quarter the response of the

total cell.
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Figure 4.3: Flow chart of the steps taken by the Occam gravity inversion (adapted
from the flow chart produced by deGroot-Hedlin and Constable [90]).

4.2.3 Methodology Summary

The Occam gravity inversion program takes the input Bouguer anomaly data in units
of mGals and returns a density contrast model in units of kgm 3. The forward model
operator and the Jacobian are equal and only depend on the grid configuration. They
are calculated using the analytical expression for a 2D prism. A 2D horizontal sheet
is used as the side boundary condition, to effectively extend the sides of the grid to

infinity.

4.3 Behavioural Characteristics

Convergence and stability are two important features of an inversion program that
need to be considered in the context of the Occam gravity inversion development. It

is desirable that the inversion program produces the same final model, regardless of
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the starting model used. Unlike an iterative scheme, the gravity model parameters
(Equation 4.4) are independent of the starting model and, for a given grid and data
set, they are only dependent on the p value. However, changing the starting model
will result in the same p value, because the p value is found by minimising the
data norm, which is also independent of the starting model. The stability of the
inversion depends on being able to calculate the inverse matrix needed to obtain
the model parameter values (Equation 4.4). The success of the inverse calculation
requires that the u value be large and positive [75]. For the inversions discussed in
the next section, extremely small values of p cause the inverse matrix calculation
to fail. However, when the p values are close to the value of the final solution the

matrix inversion succeeds.

A key aspect of the inversion is the determination of the unknown optimal pu
value. This is done using a golden section search method [118]. During the u
search, values of 1 can be found that give an RMS value smaller than one, and in
many cases an RMS value approaching zero. The data fit should not be to a level
better than the expected uncertainty or error of the measurements. If so, then such
models are essentially over-fitting the data and correspond to rough models. The
i search normally continues until a value is found that corresponds to an RMS of
1, which is a data fit equal to the standard deviation of each measurement. These
models adhere to the Occam philosophy of producing the smoothest possible model

that only contains structure essential to explain the observations.

Every model discussed in the following section on synthetic testing has a different
optimal y value. Therefore, it would be inappropriate and unsatisfactory to run this
type of inversion with a fixed p value. A fixed u value is equivalent to a Tikhonov
Regularisation inversion (Section 3.1.1), which finds the appropriate p value through
a trial and error approach. Although the optimum g value is unpredictable, there
are some general trends which can be observed. When the misfit level increases, the
inversion generally needs to produce a rougher model to bring the calculated and
observed data closer together. As a result, the optimal y value decreases. Increasing
the density contrast will produce a larger roughness term in the regularisation and

so the p value will increase in an attempt to produce a smoother model. There is one
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situation where multiple inversions will produce the same p value, and this is when
the separate data sets are offset from each other by a fixed (constant) amount. This
demonstrates that the p value is sensitive to the relative variations in the response

(and subsequent model), rather than the absolute values.

4.4 Synthetic Testing

In this section a number of synthetic models are used to test the newly developed
Occam gravity inversion program. The objectives are to demonstrate that the in-

version works and to determine how well the synthetic models are reconstructed.

4.4.1 Synthetic Models and Data

Four 2D density contrast models were used for the synthetic testing of the gravity
Occam inversion. They are shown in Figure 4.4. These models are referred to as one
box, two box, horizontal sheet and horizon models. The one box model is a 3 X 3 km
square body with its top boundary located at a depth of 1 km. The two box model
has two 3 x 3 km square bodies separated by 4.3 km, with their top boundary also
at a depth of 1 km. The horizontal sheet model is a 1 km thick rectangle with its
top boundary at a depth of 0.5 km. The left boundary of the horizontal sheet is
located in the middle of the model and the right boundary extends to infinity. The
horizon model is a vertical step model, in which the horizon on the left steps down
from a depth of 3 km to a depth of 4 km for a distance of 4.5 km, before stepping
back up to 3 km depth for a distance of 4.3 km. This is followed by a second step up
to 1.5 km depth for a distance of 4 km. Eventually, the horizon returns to the 3 km
depth. Both left and right edges of the horizon, at the 3 km depth level, extend to
infinity.

The density contrast models have a background density of zero and seven differ-
ent densities were assigned to the anomalous bodies enclosed in the models: 10, 25,
50, 100, 250, 500 and 1000 kgm~3. The bodies in the horizontal sheet and horizon
models were only assigned positive density contrast values, whereas the body in the

one box model was assigned both a positive and a negative density contrast value.
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Figure 4.4: Synthetic models used to test the Occam gravity inversion. These are
refered to as a) one box, b) two box, ¢) horizontal sheet and d) horizon models.

The two box model assigned the left box a negative density value and the right box
a positive density value.

The data generated from these contrast models are already in Bouguer anomaly
values. Along the profile, synthetic gravity values were computed for each model at
20 discrete locations separated by 1 km as simulated stations (see Figure 4.4). A
combination of the analytical expressions for a 2D prism and a horizontal sheet as
discussed in Section 4.2.1 were used to generate the synthetic data. The body in the
horizon model does not have a defined lower limit. When calculating its response,
changing the lower depth limit will offset the synthetic data by a constant value.
Since the investigation with this model is only concerned with the contrast in the

response caused by the steps, the data generated for the horizontal sheet model
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Table 4.1: The synthetic response amplitudes and the error levels used to investigate
the effects of errors on the Occam gravity inversion.

one box two box  horizontal sheet  horizon

synthetic amplitude 2.15 4.11 1.96 2.16
percentage error level error level error level error level

of amplitude (mGal) (mGal) (mGal) (mGal)
1%A 0.02 0.04 0.02 0.02
3%A 0.06 0.12 0.06 0.06
5%A 0.11 0.21 0.10 0.11
8%A 0.17 0.33 0.16 0.17
10%A 0.22 0.41 0.20 0.22
15%A 0.32 0.62 0.29 0.32
25%A 0.54 1.03 0.49 0.54
50%A 1.08 2.06 0.98 1.08
75%A 1.61 3.08 1.47 1.61
100%A 2.15 4.11 1.96 2.16

are offset by a constant value in such a way that, at the mid point between the
maximum and minimum gravity values, the data point is set to zero.

Noise was added to every synthetic data point in the form of an absolute ran-
dom error having a zero mean Gaussian distribution. The maximum error levels
used were either 0.03 or 0.06 mGals, which correspond to the precision range of
current gravimeters [6]. The effect of the error level on the gravity inversion will be
investigated. The various model types and density contrasts produce significantly
different amplitudes in the synthetic data and applying the same fixed error level
to all of them would make evaluating the effect of the error level difficult. There-
fore a fixed error was still used, but the value is assigned to be a percentage of the
maximum synthetic data amplitude. An example of the fixed error allocation based
on the data amplitude is given in Table 4.1 for a density contrast of 50 kgm 3. Af-
ter the percentage value, used to calculate the fixed error, the symbol %A follows.
This symbol is used throughout this thesis to delineate this style of gravity error

allocation.

4.4.2 Inversion Grid

The same grid was used for each model and is shown in Figure 4.5. The top 5 km

has a row spacing of 100 m and a column spacing of 333 m. Between depths of 5
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Figure 4.5: The regularisation grid used by all Occam gravity inversions.

and 10 km, the row and column spacings are 250 and 666 m, respectively. Below
10 km depth and extending to the termination of the grid at 20 km, the row spacing
is 500 m and the column spacing is 1333 m. Further consideration is given to the

grid configuration in Section 4.5.1.

4.4.3 Inverted Model Results

All models produced by the Occam gravity inversion have an RMS of 1. Selected
results from the inversions of the one box, two box, horizontal sheet and horizon
models are shown in Figures 4.6, 4.7, 4.8 and 4.9, respectively. All the synthetic
data have an error of 0.03 mGal and respective density contrasts of 10, 100, 500
and 1000 kgm~3. Due to the large number of inversions undertaken, not all results
from the different contrasts and error levels are shown. However, all models have
the same general characteristics and are consistent with the findings reported.

The Occam gravity inversion program produces models which have a similar
appearance. Anomalous density values are placed at the surface because the gravity
method has limited depth resolution capability [64]. The smoothness constraint then

smears the surface anomalies vertically and laterally into the model. The lateral
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Figure 4.6: The results from the Occam gravity inversion for the one box synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgm ™3, b) 100 kgm 3, ¢)

500 kgm ™~ and d) 1000 kgm 3.
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Figure 4.7: The results from the Occam gravity inversion for the two box synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgem ™3, b) 100 kgm 3, ¢)

500 kgm ™~ and d) 1000 kgm 3.
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Figure 4.8: The results from the Occam gravity inversion for the horizontal sheet
synthetic model with an error of 0.03 mGals and a contrast of a) 10 kgm™3, b)
100 kgm—3, ¢) 500 kgm = and d) 1000 kgm 3.
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Figure 4.9: The results from the Occam gravity inversion for the horizon synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgem ™3, b) 100 kgm 3, ¢)
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positioning of the anomalous density values are controlled by the spatial gradients
in the synthetic data. For all models, the edges of the anomalous densities at the

surface coincide with the locations of the lateral boundaries in the synthetic models.

The lateral boundaries of the anomalous densities do not plunge vertically, but
are inclined. The inclination is for two reasons. Firstly, the smoothness constraint
endeavours to produce circular features, as they correspond to a small roughness
value (Figure 4.6). Secondly, if the model feature has a positive contrast with its
surrounds then the inclination is in the same direction as the decrease in the synthetic
data (Figure 4.6b), or if the model feature has a negative contrast the inclination is in
the opposite direction to the decrease in the synthetic data (Figure 4.6¢). Therefore,
the inclination of the boundary reflects the gradient of the synthetic data and it is

this gradient which is being fitted in the inversion.

The magnitudes of the contrasts obtained by inverting the gravity data are always
less than the true contrasts of the synthetic model. The total mass in the final
model (the volume sum of all absolute density values of each cell) is the same as the
synthetic model. The horizon model is excluded from this statement because the
synthetic data were artificially altered (as discussed earlier), which cause a variation
in the total mass of the final model. Since the total mass is the same for the other
models, the smoothness constraint not only smears the boundaries of the model
features but also redistributes the mass in the model. The redistribution of mass
causes the contrast to be incorrect. This is compensated by the overshooting of the
density values at the sides of the anomalous bodies to allow for a better fit of the
synthetic data. A clear example of this is the one box model in Figure 4.6b. It shows
a central positive feature but towards the model edges the density values overshoot,

producing negative side lobes.

Varying the magnitude of the density contrasts in the synthetic model changes
the actual density values and the resulting contrast of the model, but it does not
change the overall appearance, shape and location of the reconstructed anomalies.
An increased contrast causes the models to have larger roughness values because the
variation between each cell needs to be larger to accommodate the greater contrast.

In these synthetic experiments even a small contrast of 10 kgm 3 produces coherent
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and plausible models when the error is at its smallest value of 0.03 mGals. For larger
errors of measurement, such small contrast bodies would be difficult to detect and
delineate.

The recovered model features are best when the errors are small (Figure 4.10a).
As the error increases slightly, the model features are still evident but a smoother
model with a decrease in contrast is reconstructed, with its boundaries less pro-
nounced. The increased errors allow for a smoother model because the model re-
sponse under-estimates the ‘observed’ synthetic data over a positive density contrast
and over-estimates the synthetic data at the sides (Figure 4.10b). The RMS is a
global average measure of data fit which does not identify individual data point
agreements. As expected, when the errors are large, they hinder the inversion from
correctly locating the boundaries. They can lead to erratic structure, which is used
by the inversion program to fit the errors rather than the true signal (Figure 4.10c).
Finally, the errors can be so large that they result in a very smooth inverted model

which does not resemble the true (synthetic) model at all (Figure 4.10d).

4.4.4 Synthetic Testing Summary

The Occam gravity inversion has proven to be stable and always produces models
with an RMS of 1. It was found that all density contrast distributions recovered by
the inversion have a similar appearance. The main density anomalies are located
at the surface and smeared laterally and vertically into the model. The surface
boundary of the density anomalies corresponds to the lateral boundaries or edges of
the anomalous features in the synthetic models, demonstrating the sensitivity of the
gravity method to lateral changes in density. The recovered density contrast from
the inversion is always less than that of the true (synthetic) model and is due to
the smoothness constraint which redistributes the anomalous mass throughout the
model. Increasing the error slightly allows for a smoother model to be obtained.
However, large errors (> 25%A) produce models having erratic structure.

The synthetic testing has validated the Occam gravity inversion program, estab-
lished that it yields useful results, but due to the inherent non-uniqueness of the

gravity method it is unable to reproduce the true synthetic model. This highlights



4.4. SYNTHETIC TESTING 81

o

N

g, (nGals) &
\6\
g, (mGals) >~

%:

!

5 5
€ €
= <
= 10 =10
=1 =1
() (]
© ©
15 15
20 20
0 5 10 15 20 0 5 10 15 20
distance (km) distance (km)
C) : d)
~—~~ ) ; "U)\
€ 2] H;H’ T 2 U. # H + * J'
¢ 2 | b T
NN S R
o 04 ﬁ mxs o 01 i +
00/ 0000000000000 000000¢0¢ 0000000000000000000000¢
(.
5 5
€ €
= =3
= 10| =10
=1 =
() (]
© ©
15 15
20 20
0 5 10 15 20 0 5 10 15 20

distance (km) distance (km)

density (kgm'3)
-50 0 50

Figure 4.10: The results from the Occam gravity inversion for the one box and
horizontal sheet synthetic models with a contrast of 50 kgm ™3 and an error of a)
1 %A, b) 3 %A, ¢) 15 %A and d) 25 %A of the amplitude of their synthetic data.
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the need for external constraints to aid the inversion in reconstructing the subsur-
face structure. Next, ways of improving the depth resolution of gravity data are
investigated, as well as how to use additional geological information to constrain the

nversion.

4.5 Depth Resolution

The models produced by the Occam gravity inversion are dominated by features
located at or near the surface. In this section, two methods are examined which
can aid the inversion in correctly locating the model features with depth. The two

methods are altering the grid configuration and using a depth weighting function.

4.5.1 Grid Configuration

The EM fields decrease exponentially with depth in a homogeneous half space. In
an MT inversion using a logarithmically depth scale, which has a grid thickness that
increases in equal logarithmic intervals (exponentially), improves the structure loca-
tion and data fit [80] [89]. Here, a similar approach is applied to gravity inversion.
The gravity anomaly was expressed in Equation 2.47 as a Fredholm integral. The
kernel of the integral embodies the physics of the gravity technique and encapsulates
Newton’s Law of Gravitation. The kernel (or Green’s function) decreases inversely
with the distance squared. To counteract this decay of the kernel, a new grid can
be introduced which increases the row thickness in proportion to the depth squared.
Since gravity data will ultimately be combined with MT data in a joint inversion,
the effect of using an equal logarithmic grid spacing with depth (designed for MT)
is also investigated. The results from the gravity and MT designed grids are then
compared to the uniform grid discussed in Section 4.4.2.

The three grids, referred to as squared, logarithmic and uniform, have 90 layers
and are terminated at 20 km. The row thickness increases as the depth squared and
exponentially (equal logarithmic intervals) for the squared and logarithmic grids,
respectively. The uniform grid has an equal spacing with depth, and was described

in Section 4.4.2. The column thickness for all models is 333 m from the surface to
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Figure 4.11: The results from the Occam gravity inversion with no horizontal damp-
ing factor for the two box synthetic model with an error of 0.03 mGals and contrast
of 100 kgm™3. The grid configurations are a) uniform grid, b) squared grid and c)
logarithmic grid.

a depth of 5 km. Between 5 and 10 km depth, it is expanded to 666 m and below
10 km depth it is set at 1333 m. The different grid configurations were tested on the
two box model and the horizon model, each for a density contrast of 100 kgm =2 and
a measurement error of 0.03 mGals. The Occam inversion scheme normally uses a
horizontal damping factor applied to the horizontal roughness term to stop structure
becoming elongated with depth (Section 3.2.1). The Occam gravity inversion was

run with and without the damping factor applied.

Figure 4.11 shows the results of the different grid configurations for the two box

model. When the horizontal damping factor was not applied the models produced
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by the squared and logarithmic grids are very similar in the shallow section and
produce a better representation of the synthetic model than the equal grid. The
squared and logarithmic grids have caused the surface structure to be elongated
with depth and yield anomalous density values in the true box positions. However,
neither grid can map the top of the boxes, since the structure starts at the surface
and continues vertically downwards. Although smeared, the side boundaries of
the anomalous density values are consistent with the known box boundaries. The
bottom boundaries of the two boxes are better defined using the squared grid than
the logarithmic grid, as the large thickness of the logarithmic grid cells continues to

extend structure to the very base of the grid.

The results of the horizon model using the different grid configurations are given
in Figure 4.12. In similar fashion to the two box model, when the horizontal damping
factor was not applied, the squared and logarithmic grids produced features starting
at the surface that are elongated with depth. For both grids, the side boundaries
of the feature representing the ‘high’ in the horizon are hard to delineate but are
in general agreement with the true (synthetic) model. At the centre of this feature
there appears to be a slight anomalous density high, which coincides with the top of
the horizon high. For the squared and logarithmic grids, the feature that represents
the low in the horizon have become very smeared and the lateral boundaries are
almost indistinguishable. The use of grids has not been able to aid in correctly

locating this feature.

When the horizontal damping factor was applied (not shown here), the models
produced by the three grids are almost identical with the anomalous density values
placed at the surface. This is because the horizontal damping factor is designed
to counteract the increase in row thickness with depth and not allow features to
elongate with depth. The uniform grid has minimal variation in row thickness
and the two models produced with and without the horizontal damping factor are
similar, except the model produced with the horizontal damping factor has slight
elongation. The anomalous density region produced when the horizontal damping
factor is applied is concentrated at the surface. It therefore has a slightly higher

density value than the model produced with no horizontal damping factor applied,



4.5. DEPTH RESOLUTION 85

a) 0706006000000006_3_00060 b) 0 9040000000400 004000400900

L |-

depth (km)
|_\

o
depth (km)
=
o

=
()]
[EEN
()]

20 20
C) 0 $9000000000400000000¢

| -

depth (km)
'_\
o

(=Y
(3]

20

5 10 1 20
distance (km)

density (kgm'3)
[ aaaaaa— |
-100 -50 0 50 100

Figure 4.12: The results from the Occam gravity inversion with no horizontal damp-
ing factor for the horizon synthet