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Abstract

An emerging field in geophysics is that of joint inversions, in which multiple tech-

nique data sets are analysed and inverted simultaneously. This helps to integrate

the complementary data sets and reduce model ambiguity, common in single tech-

nique inversions. In this thesis a new implementation of a magnetotelluric (MT) and

gravity 2D joint inversion scheme is developed based on a petrophysical approach.

In sedimentary rock environments, electrical conductivity (which underpins the MT

technique) can be approximated by Archie’s Law, whereas density (which underpins

the gravity technique) can be derived from the porosity-density relationship. Since

both expressions are themselves dependent on porosity, this petrophysical property

provides the crucial link exploited by the 2D joint inversion. The 2D joint inversion

approach devised here inverts directly for a porosity model, which is converted to

resistivity and density models through Archie’s Law and the porosity-density re-

lationship, then constrained (fitted) by the MT and gravity data. Thus, a single

porosity model is produced that satisfies both data sets.

By means of synthetic data inversions, it was established that the joint inversion

is more effective in reproducing the true subsurface model than can be achieved by

an MT or gravity inversion alone. Models produced by the joint inversion show

improved placement of subsurface features and a greater accuracy of reconstructing

the original subsurface (physical property) values. For optimal joint inversion re-

sults, broadband MT data should be used in favour of long period MT data, and

the number of gravity stations should be greater than or equal to the number of MT

stations. The joint inversion is particularly useful in extracting coherent information

from noisy MT data when combined with good quality gravity data. While evaluat-

ing the MT and gravity compatibility, a new method was developed for evaluating

vii



viii ABSTRACT

the information contained in the MT Jacobian (sensitivity) matrix.

The Renmark Trough in South Australia is an area of current geothermal interest

for which multi-technique data (seismic, gravity, MT) exists. These field data were

used to demonstrate and verify the effective use of the joint inversion in a practical

real-world example. The Renmark Trough is a half graben structure with the Hamley

Fault delineating the north-east boundary. At the Hamley Fault, the base of the

trough is 3.5 km deep and rises gradually in a south-west direction. The inversion

of the MT data alone produced a model inconsistent with seismic knowledge of the

basement depths and geometries. In contrast, the joint inversion yielded a more

geologically accurate image of the trough and faithfully reconstructed the basement

depths and geometries.

In the process of developing the joint inversion scheme, a 2D gravity inversion al-

gorithm, based on the Occam maximum smoothness approach, was produced. This

inversion algorithm demonstrated the inherent non-uniqueness of gravity interpre-

tation by only placing strong density contrasts at the surface. Attempts to improve

the gravity inversion results, such as the use of depth weighting functions and fixing

structure locations in parts of the model, were not as effective as the joint inversion

in producing an accurate representation of the subsurface.
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Chapter 1

Introduction

The aim of the research described in this thesis is to develop, test and apply a

magnetotelluric (MT) and gravity 2D joint inversion scheme. Joint inversions take

data sets from two complementary geophysical survey techniques, measured over the

same subsurface geology, and simultaneously invert them to produce an integrated

model [1] [2]. They provide an effective and efficient means of combining and jointly

analysing the different data sets such that there is an increased confidence in the final

interpretation [3]. Joint inversions also aid in reducing model non-uniqueness, which

plagues single technique inversions, without having to introduce external constraints

or geological prejudice [4] [5]. However, the difficulty with joint inversions is in

developing a suitable and pervasive link between the two techniques on which the

inversion is based.

The MT and gravity techniques were chosen for this study because they are rel-

atively cheap and popular techniques. There exist readily available large open-file

MT and gravity data sets, thus ensuring a demand for MT and gravity joint inver-

sions in the future. The theory of the MT and gravity techniques is relatively simple

when compared to the more complex seismic and controlled source electromagnetic

(CSEM) techniques [6]. This allows for a more simplistic environment in which to

develop a new joint inversion approach, before potentially adapting and extending

it to more complicated techniques. Further details on the theoretical benefits of

combining the MT and gravity techniques are provided in Chapter 5.

There are two previously reported attempts to combine the MT and gravity

1
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techniques in a simultaneous inversion [7] [8]. Both research groups based their

inversions on a structural approach, whereby it is assumed that each technique

should sense the same position and orientation of any subsurface geological structure.

Thus, the geology is the structural control on the distribution of the parameters.

As a result, boundaries in the model parameters are expected at the same locations

for each of the data sets [4]. Although boundaries or gradients of the parameter

values in the models are expected to be the same, absolute values for each of the

parameters are independent.

Santos et al. [7] and Jegen et al. [8] jointly inverted MT and gravity by using

a simple form of structural approach, that of a 2D layered Earth model which has

lateral changes in the thickness of the layers. The joint inversion produced resistiv-

ity and density models that were connected by having co-incident layer boundaries.

The resistivity and density values between the layer boundaries were assumed to be

constant and independent of each other. This style of joint inversion is restricted

to simple geological provinces and is very much dependent on the model parame-

terisation used (number of layers) as well as the actual starting model [9]. Layered

earth joint inversions have also been used by other researchers to combine various

geophysical data sets [10] [11] [12] [13] [14] [15] [16] [17].

Structural approaches have been the mainstay of joint inversions to date. More

sophisticated versions define the structure of a smooth 2D model in terms of the

gradients between adjacent cells. Once there is a measure of structure, a constraint

is placed on the joint inversion such that it fits the observed data sets and minimises

the structural variation between models corresponding to the different techniques

[1] [2]. The cross-gradient method developed by Gallardo and Meju [4] [5] is the

most popular structural joint inversion approach. Initially, the 2D cross-gradient

method was applied to seismic traveltimes and DC resistivity data for shallow inves-

tigations. Subsequently, the cross-gradient method has been adapted by numerous

other researchers and applied in a variety of geophysical techniques and investiga-

tions, although it has never been applied to MT and gravity [3] [18] [19] [20] [21]

[22] [23] [24].

An alternative way of performing a joint inversion is the petrophysical approach,
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whereby the different parameters of the joint inversion (i.e. physical properties of

the subsurface to which each technique is individually responsive) are linked through

an a priori relationship. No analytical formulae exist that uniquely link the various

parameters measured by geophysical techniques, although there do exist several

well established empirical formulae. The petrophysical approach has shortcomings

in terms of the absence of a robust link between parameters that can be applied

to diverse geological situations. Thus, this approach has been mainly overlooked in

favour of a structural approach.

To date there have been no attempts at MT and gravity petrophysical joint

inversions cited. However, a petrophysical approach involving other geophysical

techniques has been undertaken by Tiberi et al. [25] and Lees and VanDecar [26].

In these studies Birch’s Law, which relates the P-wave velocity to density, was used

to combine seismic and gravity data. Hoversten et al. [27] sought to recover reser-

voir properties by using rock-property models and jointly inverting marine seismic

AVA data (amplitude variation with angle of incidence) and CSEM data. Tseng

and Lee [28] jointly inverted electromagnetic (EM) and seismic traveltime data by

inverting for porosity and fluid conductivity, which are related to conductivity and

P-wave velocity through Archie’s Law and Wyllie’s Law. However, it was found that

this type of joint inversion was ill-posed and would not produce reasonable models

without heavy user intervention.

In this thesis, the objective of the research was to gain greater insight into the

petrophysical approach by developing a new petrophysical joint inversion between

MT and gravity data. Current MT and gravity joint inversions are restricted to

layered (2D) Earth environments. Therefore, the petrophysical joint inversion de-

veloped here is intended to be applied to more structurally complicated areas, which

entail complex 2D structure. This research is not necessarily to be restricted to just

2D MT and gravity data. Rather a general methodology is sought which can be

extended to three dimensions for elucidating 3D structure, and to three or more

techniques (e.g. adding seismic data). Equally, such an approach could be adapted

for jointly inverting different techniques.

An outline of the thesis chapters, the key ideas and processes used to achieve



4 CHAPTER 1. INTRODUCTION

Figure 1.1: A description of, and the key ideas contained in, the chapters of this
thesis.
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the objectives are shown in Figure 1.1. The early chapters concentrate on the

physical principles of MT and gravity and the background theory of modelling and

inversion (Chapters 2, 3 and 4). This is followed by a detailed examination of the

important petrophysical relationships (Chapter 5). The joint inversion methodology

is developed in Chapter 6 and it is applied to synthetic data in Chapter 7, including

a study into the effect of data errors and station placement. Chapter 8 continues

with synthetic data testing but is primarily concerned with model sensitivities and

related matters. Finally, the joint inversion is successfully applied to field data from

South Australia (Chapter 9).
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Chapter 2

Magnetotellurics and Gravity

Theory

Magnetotellurics and gravity are two fundamentally different techniques that will

be combined in a petrophysical joint inversion in Chapter 6. The gravity method

is based on Newton’s Law of Gravitation and can be mathematically described by

potential theory (the Laplace and Poisson equations), whereas MT is an electro-

magnetic induction technique that satisfies the diffusion equation. These techniques

have different characteristics and are sensitive to different properties of the Earth.

Gravity is sensitive to density variations whereas MT is sensitive to resistivity vari-

ations.

This chapter provides an overview of the basic theory of the MT and gravity

techniques. The equations for bulk conductivity and density in relation to other

properties of the Earth are also summarised. These equations will be discussed

further in Section 5.2 to determine the relationships used in the joint inversion.

2.1 Magnetotellurics

Magnetotellurics was first introduced by Cagniard [29] and Tikhonov [30] in the

1950’s. It is a passive electromagnetic technique which exploits natural variations in

the Earth’s magnetic field to determine the subsurface resistivity distribution [31].

The sources that are utilised by MT have frequency fluctuations between 10−7 and

7
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105 Hz, which makes it ideal for investigating shallow (tens of metres) as well as deep

(hundreds of kilometres) structures of the Earth. In this section the basic theory

of the MT technique and the conductivity equations, which could be used by the

petrophysical joint inversion, are summarised.

2.1.1 Basic Magnetotelluric Theory

Source Field

Magneto-hydrodynamic processes occurring in the Earth’s outer core generate the

main component of the Earth’s magnetic field [32]. This is superimposed upon by

relatively low amplitude, natural time fluctuations called geomagnetic fluctuations.

Geomagnetic fluctuations occur at frequencies between 10−7 and 105 Hz and are

used as the MT source [33]. This source is assumed to be a time-invariant, uniform

magnetic plane wave with normal incidence at the Earth’s surface [31].

The causes of the geomagnetic fluctuations can be divided into several natu-

rally occurring phenomena; meteorological activity, diurnal (solar) variations, mag-

netospheric ring currents and pulsations [9]. Meteorological activity, in particular

lightning, is responsible for generating sources with frequencies higher than 1 Hz.

The EM signal discharged by lightning is known as sferics. Sferics travel radially

out from the lightning strike and propagate around the earth in the resistive zone

between the ground and the conductive ionosphere, which acts as a waveguide. The

majority of thunderstorms occur over land masses in the equatorial latitudes and

the sferics appear as plane waves by the time these reach higher latitudes.

Diurnal fields occur at frequencies between 10−6 − 10−4 Hz and are caused by

the heating and cooling of the ionosphere due to sun exposure. This produces large-

scale circulating currents in each hemisphere. The eastward flowing currents at the

magnetic equator are referred to as the equatorial electrojets.

The interaction between the Earth’s magnetic field and charged particles in the

solar winds and magnetic storms create magnetospheric ring currents [9]. Magneto-

spheric ring currents flow in a westward direction with their strength measured by

the ‘Dst’ (disturbance storm index). Variations in the magnetospheric ring currents

range from minute-by-minute fluctuations during magnetic storms that can last for
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hours, to the 27 day rotation of the sun and the 11 year sun cycle. This results in

a diverse range of frequencies that can be utilised as an MT source.

Geomagnetic pulsations generate an MT source at frequencies lower than 1 Hz.

The constant exposure of the magnetosphere to solar winds causes the magneto-

sphere to be compressed on the sun’s side and tail off on the opposing side. Varia-

tions in the density, velocity and intensity of the solar wind cause the magnetosphere

to be further distorted. These distortions cause a sinusoidal oscillation of the mag-

netosphere through inductive and magneto-hydrodynamic processes [34].

Little signal occurs between frequencies of 0.5 and 5 Hz, with the minimum in

signal strength being at 1 Hz. This is because there are almost no natural processes

that generate frequencies in this band.

Maxwell’s Equations

The MT technique, being an EM phenomena, is based on Maxwell’s equations.

These equations define the behaviour of electromagnetic waves at all frequencies.

Maxwell’s equations in differential form for a polarisable and magnetisable material

containing no electric or magnetic sources can be written as [35]

∇ ·D = qf (2.1a)

∇ ·B = 0 (2.1b)

∇×E = −∂B
∂t

(2.1c)

∇×H = Jc +
∂D

∂t
, (2.1d)

where D is the electric displacement in Cm-2, qf is the free charge density in Cm
-3,

B is the magnetic induction in T, E is the electric field in Vm-1, H is the magnetic

field in Am−1 and Jc is the electric current density in Am
-2.

Gauss’ Law (Equation 2.1a) states that the source of displacement current is

time invariant free charge, which arises from bound charge or polarisation of a

medium. However, there is no point source for the generation of magnetic fields,

meaning there are no free magnetic poles (Equation 2.1b). The magnetic source
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Figure 2.1: A schematic of the relationship between electric and magnetic fields for
a) Faraday’s Law and b) Ampere’s Law.

is dipolar in nature and so the flux of B across any closed surface is zero. In

Faraday’s Law (Equation 2.1c), a time varying magnetic field generates an electric

field that curls around it (Figure 2.1a). Similarly, by Ampere’s Law (Equation 2.1d),

a time varying displacement current and/or an ohmic current density will produce

a magnetic intensity that forms closed loops around the current lines (Figure 2.1b).

Equation 2.1 does not define the electromagnetic fields but shows the inter-

relationship between them. In the given form, E and H are decoupled and consti-

tutive relations are required to establish the coupling. The following relationships

apply in a linear, isotropic medium

B = μ∗H (2.2a)

D = εE , (2.2b)

where ε is the dielectric permittivity in AsV-1m-1 and μ∗ is the magnetic permeability

in VsA-1m-1. The dielectric permittivity can be expressed as ε = ε0εr, where εr is the

relative dielectric permittivity (or dielectric constant) and ε0 = 8.85×10−12 AsV-1m-1

is the permittivity of free space. Magnetic permeability is given by μ∗ = μ0μr,

where μr is the relative magnetic permeability and μ0 = 4π × 10-7 VsA-1m-1 is

the magnetic permeability of free space. These relationships describe a material’s
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ability to become electrically polarized or magnetically polarized (magnetized) in the

presence of an electric or magnetic field, respectively. Other non-linear relationships

apply for ferroelectric and ferromagnetic materials.

In addition to displacement current, conduction current also exists inside a ma-

terial. Conduction currents are related to the electric field through Ohm’s Law

Jc = σE , (2.3)

where σ is conductivity in Sm-1 and the relationship between conductivity and resis-

tivity, (, in Ωm is ( = 1
σ
. The quantities εr and μr exhibit a small range of variations

in Earth materials when compared to conductivity σ, which can span 12 orders of

magnitude [6].

The relationships given by Equations 2.2 and 2.3, when substituted into Maxwell’s

equations (Equation 2.1), yield

∇ ·E =
qf
ε

(2.4a)

∇ ·B = 0 (2.4b)

∇×E = −∂B
∂t

(2.4c)

∇×B = μ∗σE+ μ∗ε
∂E

∂t
. (2.4d)

This is the modified form of Maxwell’s equations in a conductive media and shows

the coupling between the electric and magnetic fields.

EM Theory of a Homogeneous Half Space

The modified Maxwell equations (Equation 2.4) are used to examine the EM be-

haviour in the subsurface. This is initially done for a homogeneous half space. First,

taking the curl of Ampere’s Law (Equation 2.4d) gives

∇× (∇×B) = ∇×
µ
μ∗σE+ μ∗ε

∂E

∂t

¶
, (2.5)

and using the vector identity ∇× (∇× ) = ∇ · (∇· )−∇2 it becomes
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∇ · (∇ ·B)−∇2B = μ∗σ∇×E+ μ∗ε
∂∇×E

∂t
. (2.6)

Then substituting in Equation 2.4b and 2.4c it follows that

∇2B = μ∗σ
∂B

∂t
+ μ∗ε

∂2B

∂t2
. (2.7)

This can be recognised as a damped wave equation. The first term on the right

hand side is the diffusion term, expressing the decay of B, whereas the second term

on the right hand side is the propagation term. Equation 2.7 is expressed in the

time domain and can be expressed as the vector Helmholtz equation in the frequency

domain. Assuming an eiωt time dependency of the magnetic field, where i =
√
−1

is the imaginary number and ω = 2πf is angular frequency in rads-1 with f as

frequency in Hz, it follows that

(∇2 − γ2)B = 0 , (2.8)

where γ2 is the complex propagation constant (wave number) and is given by

γ2 = iωμ∗σ − ω2μ∗ε = k2 − κ2 . (2.9)

The MT technique is based on a quasi-static approximation, which is where the

source field changes sufficiently slowly as to appear to be static [33]. This behaviour

occurs at low source frequencies (< 105 Hz). The quasi-static approximation means

the diffusion term dominates over the propagation term in Equation 2.7. In other

words, σ À εω and thus the first term in Equation 2.9 is the most significant.

Neglecting κ2, Equation 2.8 then becomes

(∇2 − k2)B = 0 . (2.10)

In the time domain, the quasi-static approximation is equivalent to neglecting the

time derivative term of Equation 2.4d (no displacement current). Therefore Equa-

tion 2.7 becomes
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∇2B = μ∗σ
∂B

∂t
. (2.11)

A similar expression for the electric field can be derived following the same ap-

proach as used for the magnetic field. It then follows that the electric field equivalent

to Equation 2.6 is given by

∇ · (∇ ·E)−∇2E = −∂∇×B
∂t

. (2.12)

In regions away from current sources (qf = 0), the current density is divergence free,

∇·Jc = ∂qf
∂t
=0, which implies ∇·(σE) = σ∇·E+E·∇σ =0. There is no free charge

in a homogeneous half space therefore ∇σ = 0, hence ∇ · Jc = σ∇ ·E =∇ ·E =0.
Substituting ∇ ·E =0 and Equation 2.4d (with the neglected time derivative due to

the quasi-static approximation) into Equation 2.12 yields

∇2E = μ∗σ
∂E

∂t
, (2.13)

and in the frequency domain

(∇2 − k2)E = 0 . (2.14)

Equations 2.11 and 2.13 show that the electric and magnetic fields obey the

diffusion equation for the frequency range used by MT.

In a very poor conductor (σ = 0), the diffusion equation becomes the Laplace

equation

∇2E = 0 (2.15a)

∇2B = 0 , (2.15b)

and, at any moment in time, the diffusion equation becomes the Poisson equation
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∇2E = μ∗σ
∂E

∂t

¯̄̄̄
t

(2.16a)

∇2B = μ∗σ
∂B

∂t

¯̄̄̄
t

. (2.16b)

For both the Laplace and Poisson equations the magnetic and electric fields are

static (no time dependence).

In Cartesian coordinates, where x, y, z, are north, east and vertically down, a

solution to Equation 2.7 can be expressed as

B = (B0e
−ikz +B1e

+ikz)e−iwt (2.17a)

E = (E0e
−ikz +E1e

+ikz)e−iwt , (2.17b)

where B0, B1, E0 and E1 are the electromagnetic fields at the surface of the Earth.

The positive growth term e+ikz in Equation 2.17 is not required as B and E fields

have to vanish as z → ∞. The quasi-static approximation also means the prop-

agation term in Equation 2.7 is insignificant. This means fields are established

instantaneously throughout the region of interest and the time dependent term in

Equation 2.17 can be neglected.

In Equation 2.17, k2 = iωμ∗σ and using the identity
√
i = 1+i√

2
yields

k = (1 + i)

r
ωμ∗σ

2
. (2.18)

The skin depth, or the penetration depth (δ), is taken as the inverse real part of the

propagation constant k, that is

δ =

r
2

ωμ∗σ
. (2.19)

This can be simplified since ω = 2πf , and magnetic permeability does not vary

substantially through the Earth, allowing its free space value to be used. The

simplified skin depth is given by
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δ ≈ 500
r

(

f
, (2.20)

where ( is the resistivity of the homogeneous half space. The skin depth, in m, is the

depth at which the surface EM fields have been attenuated by 1
e
, or approximately

37% of the surface values. This shows that the depth of penetration of the MT

technique is only dependent on bulk resistivity and source frequency.

Apparent Resistivity and Phase

Expressions for apparent resistivity and phase for a homogeneous half space can be

obtained using the diffusion solution (Equation 2.17). Expanding the curl operator

in Faraday’s Law (Equation 2.4c) and assuming harmonic time dependence yields

∂Ez

∂y
− ∂Ey

∂z
= −iωBx (2.21a)

∂Ex

∂z
− ∂Ez

∂x
= −iωBy (2.21b)

∂Ey

∂x
− ∂Ex

∂y
= −iωBz . (2.21c)

Equation 2.21 shows the relationships between the different components of the elec-

tric and magnetic field.

The magnetic field source of MT is assumed to be a vertically travelling plane

wave only changing in the horizontal direction, therefore Bz = 0. Equation 2.21c

implies ∂Ey
∂x

and ∂Ex
∂y

are zero or equal. The MT source is also assumed to have

normal incident at the surface and thus, the resulting induced electric field will have

no vertical component (Ez = 0). Using these simplifications, Equation 2.21 becomes

∂Ey

∂z
= iωBx (2.22a)

∂Ex

∂z
= −iωBy . (2.22b)

Substituting into the diffusion solution (Equation 2.17) leads to
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kEy0e
−kz = −iωBx0e

−kz (2.23a)

kEx0e
−kz = iωBy0e

−kz . (2.23b)

Based on Equation 2.23, the complex magnetotelluric impedance Z can be written

as

Zyx =
Ey0

Bx0
= −iω

k
= −

r
ω(

μ∗

√
i (2.24a)

Zxy =
Ex0

By0
=

iω

k
=

r
ω(

μ∗

√
i , (2.24b)

where Zyx and Zxy are equal but of opposite sign. The impedance is the ratio of

the orthogonal surface components of the electric and magnetic field. Rearranging

Equation 2.24, the apparent resistivity (a of a half space is given by

(a =
μ∗
ω
|Z|2 . (2.25)

Equation 2.25 shows that the Earth’s resistivity can be defined in terms of the

horizontal components of the magnetic and electric fields at different frequencies.

The associated phase ϕ is

ϕ = argZ = arg

µr
ω(

μ∗

√
i

¶
= arg

µr
ω(

μ∗
ei

π
4

¶
=

π

4
= 45o . (2.26)

The phase is always 45o in homogenous half space, with the electric field leading the

magnetic field, regardless of resistivity.

The above approach used to investigate a homogeneous half space can be ex-

tended to an arbitrary 3D subsurface resistivity distribution. However, all the or-

thogonal components of the electric and magnetic field in a 3D Earth are related

and expressed using an impedance tensor, or MT transfer function Z, where

⎡⎣ Ex

Ey

⎤⎦ =
⎡⎣ Zxx Zxy

Zyx Zyy

⎤⎦⎡⎣ Bx

By

⎤⎦ . (2.27)
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Since the impedance tensor is complex, it can be expressed in terms of its real and

imaginary parts

⎡⎣ Zxx Zxy

Zyx Zyy

⎤⎦ =
⎡⎣ Xxx Xxy

Xyx Xyy

⎤⎦+ i

⎡⎣ Yxx Yxy

Yyx Yyy

⎤⎦ . (2.28)

The associated apparent resistivity is

(aij =
1

μ0ω
|Zij(ω)|2 , (2.29)

and the phase is

ϕij = tan
−1
µ
ReZij

ImZij

¶
, (2.30)

where the subscripts i and j are indexes for the rows and columns of the impedance

tensor.

The apparent resistivity or phase for different subsurface orientations can be

obtained from Equations 2.29 and 2.30 by using multiple combinations of elements

in the impedance tensor. The various frequencies of the MT source have different

depths of penetration. Therefore, evaluating the apparent resistivity and phase for

the various frequencies will give a range of depth information.

Model Dimensionality

The resistivity distribution can have different dimensionality depending on the geo-

logical scenario, and this is reflected in the impedance tensor (Equation 2.28). The

following discussion applies to an isotropic Earth. Anisotropy can be incorporated

into the impedance tensor, but is not considered in this thesis. For a 1D Earth

Zxx = Zyy = 0 and Zxy = −Zyx. The frequency dependent phase behaviour for a

two layered Earth will be greater than 45o at high frequencies if the top layer is more

resistive than the bottom layer. Conversely, the phase will be less than 45o at high

frequencies if the top layer is less resistive than the bottom layer. For both two layer

configurations the phase will approach 45o at low frequencies. For a multilayered

Earth, the apparent resistivity at the high and low frequencies will asymptotically
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Bx1Ex

Hz

Hy

Hx

Ez

Ey

TE mode TM mode
Bx2

By1 By2

Ex1 Ex2

Jcy1 Jcy2

y
z

x

boundary
conditions

σ1 σ2

Figure 2.2: Example of a horizontal conductivity boundary, where σ1 < σ2, illustrat-
ing the TE and TM mode configurations and the electric and magnetic boundary
conditions.

approach the resistivities of the top and bottom layers, respectively. The ability to

resolve any intermediate layer depends on their relative resistivity and thickness,

with conductive layers easier to resolve than resistive ones [36].

A simple model of a two dimensional Earth comprising a vertical boundary

separating two conductivity zones is depicted in Figure 2.2. The boundary extends

in the x-direction to a distance greater than the skin depth. For such a 2D Earth

where the coordinate system aligns with the resistive strike, the pattern in the

impedance tensor follows Zxx = Zyy = 0 and Zxy 6= Zyx. The orientation of field

MT measurements rarely coincides with the resistive strike. Thus, the diagonal

elements of the impedance tensor Z0 will not equal zero. The impedance tensor

can be rotated, by an angle θ, which rotates it into a coordinate frame parallel or

perpendicular to the strike. This is implemented by

Z0 = RZ2DR
T , (2.31)

where
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R =

⎡⎣ cos θ sin θ

− sin θ cos θ

⎤⎦ . (2.32)

The governing principle for a 2D conductivity boundary such as the model in

Figure 2.2 is charge conservation. The current density across the discontinuity is

equal on both sides in the y-direction (perpendicular to strike)

Jcy1 = Jcy2 , (2.33)

with Jcy1 = σ1Ey1 and Jcy2 = σ2Ey2, which gives

σ1Ey1 = σ2Ey2 . (2.34)

Equation 2.34 means there is an associated discontinuity in the perpendicular com-

ponent of the electric field when there is a conductivity boundary, σ1 6= σ2. This

discontinuity will cause a jump in the total E field value. The parallel components

of the E field are continuous in both the x and z-directions. All components of the

B field are continuous across the boundary due to the magnetic permeability being

assumed to be homogeneous and even if not, because the B field is non-divergent.

For an ideal 2D situation, the electric and magnetic fields are mutually orthogo-

nal. This allows for the source field to be decomposed into two differently polarised

modes, the TE and TM modes. The TE mode (transverse electric), also referred to

as E-polarisation, has magnetic fields perpendicular to the discontinuity plane which

induces an electric field parallel to strike (transverse to propagation direction). The

TE mode describes current flowing parallel to strike and can be expressed mathe-

matically as

∂Ex

∂y
=

∂Bz

∂t
= iωBz (2.35a)

∂Ex

∂z
=

∂By

∂t
= −iωBy (2.35b)

∂Bz

∂y
− ∂By

∂z
= μ0σEx . (2.35c)
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The TM mode (transverse magnetic) also referred to as B-polarisation, has a

magnetic field parallel to strike and induces electric fields perpendicular and par-

allel (vertical) to the discontinuity plane. The TM mode describes current flowing

perpendicular to strike and can be expressed mathematically as

∂Bx

∂y
= μ0σEz (2.36a)

−∂Bx

∂z
= μ0σEy (2.36b)

∂Ez

∂y
− ∂Ey

∂z
= iωBx . (2.36c)

The TM mode expression contains Ey, which is discontinuous across a conduc-

tivity boundary. From Equation 2.34, the magnitude of the Ey discontinuity is
σ2
σ1
.

The associated discontinuity in the apparent resistivity is of magnitude
³
σ2
σ1

´2
. Con-

sequently, the TM mode tends to be better at resolving lateral boundaries than the

TE mode. However, near the boundary, the TM mode over-estimates the apparent

resistivity value in conductive zones and under-estimates it in resistive zones. The

TE mode provides a more reliable apparent resistivity value.

Resistivity values can vary in any direction in a 3D Earth. Therefore, the el-

ements of the impedance tensor are independent of each other, irrespective of the

coordinate system. All elements of the impedance tensor need to be considered to

determine the subsurface resistivity.

Distortion

The MT response often suffers from galvanic distortion, which includes static shift

[37]. Near-surface conductive heterogeneities at skin-depths shallower than that of

the shortest measured wavelength cannot be resolved inductively and contribute to

galvanic distortion of the impedance tensor. Charges accumulate along conductive

boundaries which cause a redistribution of the electric field [38]. This non-inductive

response is frequency independent and becomes superimposed on the frequency de-

pendent regional MT response [37]. A distorted MT response has a shift in the

apparent resistivity for all frequencies, but phase is unaffected. Such galvanic dis-
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tortion hampers the ability to reconstruct targeted large scale conductive features.

Methods for removing galvanic distortion include those by Bibby et al. [37], Groom

and Bailey [39], Ledo et al. [38].

2.1.2 Conductivity Equations

Conductivity is a measure of the ease with which a material can transmit current.

This can occur in any of three ways: electronic, electrolytic (ionic), and dielectric

conduction (displacement current). Current transmission is inherently non-linear

and complex in nature, therefore a universal equation does not exist that quantifies

conduction for all geological settings [51]. This section provides a brief overview

of the important conductivity relationships in multiphase media (summarised in

Table 2.1).

Maxwell [52] first used effective medium theory to derive the bulk conductiv-

ity of a mixed medium. He derived the conductivity of spheres dispersed in a

continuous medium. Wagner [53] developed the Maxwell-Wagner model that has

more complicated spherical distributions than Maxwell’s model, whereas Fricke [54]

used ellipsoids instead of spheres. Continued research into effective medium the-

ory has produced the Hashin-Shtrikman bounds [40][41][42] and the Waff model

[43]. Hashin-Shtrikman bounds describe the extreme upper and lower conductivity

bounds for the mixing of two conductive phases. The upper bound (HS+) cor-

responds to non-connected resistive inclusions in a conductive phase, whereas the

lower bound (HS−) corresponds to non-connected conductive inclusions in a resis-

tive phase. The shape of the inclusions are generally spheres, however they can be

thin disks or needles, which lead to tighter bounds [55]. The Waff model assumes

the medium is made up of an infinite number of varying sized composite connected

spheres. For each sphere the core is phase 2, which is completely encapsulated by

phase 1 forming the shell. This means phase 1 is highly connected and phase 2 is

completely disconnected.

Effective medium models can incorporate any number of conductive phases by

using weighted means. The parallel (longitudinal) and perpendicular (transverse)

models make up the Wiener bounds [44]. A parallel model is made of layers of
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Table 2.1: Summary of the main conductivity equations.
Name Equation

Hashin-Shtrikman Bounds σ+bulk = σ2
³
1− 3(1−ν2)(σ2−σ1)

3σ2−ν2(σ2−σ1)

´
[40][41][42] σ−bulk = σ2

³
1 + 3ν2(σ2−σ1)

3σ1+(1−ν2)(σ2−σ1)

´
σ+bulk and σ−bulk are the upper and lower bound,
σ1 and σ2 are phase 1 and 2 conductivities & ν2
is a volume fraction of phase 2

Waff Model σbulk =
σ2+(σ1−σ2)(1−(2ν2/3))
1+(ν2/3)(σ1/σ2−1)

[43] σ1 and σ2 are phase 1 and 2 conductivities & ν2
is a volume fraction of phase 2

Parallel Model σbulk =
NP
i=1

νiσi

[44] σi and νi are the ith phase conductivity &
fractional volume, respectively

Perpendicular Model 1
σbulk

=
NP
i=1

νi
σi

[44] σi and νi is the ith phase conductivities &
fractional volume, respectively

Brick-layer Model σbulk =
σ2(σ2(ν

2/3
1 −1)−σ1ν2/31 )

σ1(ν1−ν2/31 )−σ2(ν2/31 −ν1−1)
[45] [46] σ1and σ2 are phase 1 and 2 conductivities &

ν1 is the volume fraction of phase 1

Random Model σbulk =
NQ
i=1

σνii

[47] [48] σi and νi are the ith phase conductivity &
fractional volume respectively

Archie’s Law 1
σbulk

= aS−nsφ−mcf 1
σfluid

[49] σfluid is fluid conductivity, φ is porosity, mcf is
cementation factor, S is fraction saturation, ns
is the saturation exponent & a is the tortuosity
factor

Arrhenius Relationship or σbulk = σoe
−ae/kcT

Semi-conductor Equation σo is the zero temperature conductivity, ae is
[50] the activation energy, kc is the Boltzmann’s

constant & T is absolute temperature
Note: for all equations σbulk is bulk conductivity.
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different conducting phases with an applied parallel electric field. The bulk con-

ductivity is then given by the arithmetic mean of each conductive phase, weighted

by their fractional volume. Conversely, a perpendicular (transverse) model is the

same except the electric field is applied perpendicular (transverse) to the layers and

a harmonic mean is used. The brick-layer model assumes the phase configuration

lies between the extreme parallel and perpendicular models and uses a combination

of the two models [45] [46]. Finally, there is the random model that assumes a

random distribution of phases with unknown connectivity [47] [48]. Here the bulk

conductivity is given by the geometric mean, weighted by the volume fractions of

each phase.

Conductivity relations have also been based on fitting experimental observations.

The main empirical relationships are Archie’s Law and the Arrhenius relationship,

also known as the semi-conductor equation. Archie’s Law is routinely used for

sedimentary rocks and assumes that the rock matrix is an insulator so that the

transmission of charge occurs only in the formation fluid. The bulk conductivity in

Archie’s Law is based on the fluid conductivity, porosity and a formation factor that

accounts for the shape of the void space [49].

The Arrhenius relationship is used for mantle materials and relates bulk con-

ductivity to temperature [50]. Constable et al. [56] used the Arrhenius relationship

to model laboratory conductivity values of olivine. This was later updated to the

SO3 model [57]. However, conductivity of mantle material depends on magnesium

content, oxygen fugacity, pressure, hydration and connection of conducting phases

as well as temperature [58]. The Arrhenius relationship can accommodate these fac-

tors. Hirsch et al. [59] incorporated iron content into an olivine model and Constable

[57] considered oxygen fugacity in conductivity measurements of olivine.

2.1.3 Magnetotelluric Summary

Magnetotellurics is a passive electromagnetic technique sensitive to resistivity. The

magnetic and electric fields behave diffusively in the subsurface for the source fre-

quencies used by MT. The depth of penetration of the magnetic and electric field in a

homogeneous half space is given by the skin depth equation (Equation 2.20). Surface
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measurements of the orthogonal components of the horizontal electric and magnetic

field at different frequencies are related to the subsurface resistivity through an

impedance tensor (Equation 2.28), from which the apparent resistivity and phase

values can be calculated (Equations 2.29 and 2.30). There is a non-linear relation-

ship between the subsurface resistivity and the MT response. For a 2D Earth, the

MT response can be split into two differently polarised modes, the TE and TM

modes.

Bulk conductivity can be quantified in terms of different constituent conductiv-

ities for Earth materials or empirical relationships (Table 2.1). This will be used in

Section 5.2 when determining the equation to use in the petrophysical joint inversion.

2.2 Gravity

Gravity is a popular and simple passive geophysical technique that yields informa-

tion on the subsurface density distribution [60] [61]. The first gravity survey was

conducted on Lake Balaton in 1901 [62]. It is now routinely used for crustal re-

search as well as being a key technique in both mineral and petroleum exploration.

For the latter, its use is mainly restricted to determining broad regional structure

and thickness of sedimentary basins. In this section the basic theory of the gravity

technique and the density equations that will be used by the petrophysical joint

inversion (Chapter 6) are summarised.

2.2.1 Basic Gravity Theory

Gravity Principles

Gravity is a fundamental force in nature. Its importance was first discovered in the

late 15th century by Sir Isaac Newton who developed the famous law of universal

gravitation, which states [63],

“Every particle in the universe attracts every other particle with a force that is

proportional to the product of their masses and inversely proportional to the square of

the distance between them. This force acts along the line joining the two particles.”

The gravitational force is expressed by
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Fg = Gc

µ
M1M2

r2

¶br , (2.37)

where Fg is the gravitational force in N, Gc is the gravitational constant of 6.67×

10−11 Nm2kg-2, M1 andM2 are the masses of the two particles in kg, r is the distance

between the two particles with units of m and br is the unit vector that points from
particle 1 to particle 2. The gravitational force is an attractive force which acts at a

distance. Linearity applies, such that if a mass has one or more gravity forces acting

on it then the net force is the sum of the individual forces [35].

Equation 2.37 can be applied to a mass at the Earth’s surface. Here, M1= M e ,

the mass of the Earth, M2 is the mass of the object at the Earth’s surface and re is

the radius of the Earth. The gravitational force becomes

Fg = Gc

µ
MeM2

r2e

¶br . (2.38)

Gravitational acceleration due to the Earth can be derived from Equation 2.38.

Force equals mass multiplied by acceleration (Fg = Ma), therefore the gravitation

acceleration vector (g) can be expressed as

g =
Fg
M2

. (2.39)

The SI unit of acceleration is ms-2. In the CGS system gravitational acceleration

is given in cms-2, and this unit is known as a Gal (named after Galileo). However,

gravity values are normally expressed as mGals which is 10−3 cms-2 = 10−5 ms-2.

Substituting Equation 2.38 into Equation 2.39 it follows that g = gzbz with
gz = Gc

Me

r2e
, (2.40)

where the direction of acceleration is directed vertically towards the Earth.

The gravitational force produces a conservative field. This means the work done

by a moving mass is only dependent on its starting and end point, it is indepen-

dent of the path taken between the points. As a result the gravitational force and

acceleration can be expressed in terms of a gravitational potential Ug,
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∇Ug(r) = −
Fg(r)

M2
= −g(r) , (2.41)

or alternatively,

Ug(r) = −
Z r

∞
g(r)dr . (2.42)

This scalar potential describes the ability for a mass to do work at a particular

location in a gravity field.

When determining the gravitational acceleration due to an arbitrary mass it

is often easier to determine the scalar potential and then relate this back to the

gravitational acceleration via Equation 2.41. To calculate either the scalar potential

or the acceleration of an arbitrary mass, the mass is divided into small elements

and the response of each is calculated. The total response is then the sum of the

individual element responses. An example of calculating the gravity response of an

arbitrary 3D body, as shown in Figure 2.3, starts by combining Equations 2.40 and

2.42, which gives

Ug(r) = −Gc

Z r

∞

M

r2
dr = Gc

M

r
. (2.43)

Therefore, the potential dUg, at P(0,0,0) from a small element of the 3D body at

point (x, y, z) with mass dM is

dUg = −Gc
dM

r
= Gcρdxdydz/r , (2.44)

where ρ is the density of the element in kgm-3 and r2 = x2 + y2 + z2 is the distance

from P to the element. The total potential of the 3D body is the sum or integral of

the potential of the individual elements and is given by

Ug = −Gc

Z
x

Z
y

Z
z

ρ

r
dxdydz . (2.45)

Note that ρ is a function of x, y, z, so the integral cannot be evaluated unless the

functional form of ρ(x, y, z) is given. The gravitational acceleration from Equa-
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Figure 2.3: The configuration for calculating the potential at point P of a 3D mass,
which involves dividing the mass into smaller elements.

tion 2.42 in the vertical (z) direction is

gz = −
∂Ug

∂z
. (2.46)

Substituting Equation 2.45 into Equation 2.46 and assuming constant ρ gives an

expression for the vertical gravitational acceleration,

gz = −
∂Ug

∂z
= Gcρ

Z
x

Z
y

Z
z

z

r3
dxdydz . (2.47)

Equation 2.47 shows gravity expressed in the form of the Fredholm integral equation

of the first order and shows the linear relationship between vertical gravitational

acceleration and the density of a body.

An alternate expression for the scalar potential can be derived using Gauss’

divergence theorem,

Z
ν

∇ · gdν =
Z
sf

gbnds f , (2.48)

where ν is a volume, sf is a surface and bn is the unit normal to the surface element
ds f . Equation 2.48 states that the integral of the divergence of the gravity vector
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(∇ · g) over a volume, is equal to the surface integral of the component of the field

that is normal to the surface, provided the surface encloses the volume. If there is

no mass inside the volume, then ∇ · g =0, which leads to

−∇ · g = ∇ ·∇Ug = ∇2Ug=0 . (2.49)

However if there is mass at the centre of a sphere with radius r then

Z
sf

gbnds f = −µGcM
r2

¶
(4πr2) = −4πGcM . (2.50)

This can be shown to be true regardless of the shape of the surface and the position

of the mass [6]. In Equation 2.48, if the volume is very small and enclosing only a

point mass the integral can be removed, giving

∇ · g = −4πGcρ , (2.51)

where ρ is the density of the point mass. It then follows that

∇2Ug = 4πGcρ . (2.52)

Equations 2.49 and 2.52 are the Laplace and Poisson equations respectively. The

gravitational potential adheres to the Laplace equation in free space and the Poisson

equation in regions containing mass. There is no time dependency in the Laplace

or Poisson equations, which means the potential field is static.

Gravity is inherently non-unique as there are multiple density distributions that

can produce the same potential over a surface. There is no explicit depth resolution

as the potential, or acceleration, is only dependent on the distance from a mass,

irrespective of direction. The simplest density distribution from which to reconstruct

the potential or gravitational acceleration is an infinitely thin layer at the surface,

having lateral variations [64].
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Gravity of the Earth

Average gravitational acceleration values at the Earth’s surface is approximately

981 Gals. To measure absolute gravity value a pendulum or a free falling mass are

needed. Generally, relative gravity values are measured using gravity meters, such as

the LaCoste and Romberg gravity meters. Current instrumentation has an accuracy

of 0.03−0.06 mGals [6]. Whichever type of gravity meter is used, corrections need to

be made to account for instrument drift and the platform on which the measurement

was made (e.g. the Eötvös correction for surveys made on a moving platform).

The magnitude of the gravity reading depends on five factors: latitude, elevation,

surrounding topography, Earth-tides and variations in the subsurface density [6], of

which only the last factor is of significance for exploration and crustal research.

However, the response of the subsurface density variation is significantly smaller

than that of the other factors combined. Therefore, the other four factors need to

be corrected for, or removed, to be able to isolate the response of the subsurface

density distribution. The Bouguer gravity anomaly term is used to refer to data

which have undergone these corrections.

The latitude correction accounts for the variations in gravity values due to the

non-spherical shape of the Earth, resulting from centrifugal force caused by the

Earth’s rotation. The free-air correction reduces the gravity values to a common

reference elevation datum, which is typically mean sea level. However, the free air

correction does not account for the mass between these different elevations, which

is corrected for by the Bouguer correction. Terrain corrections allow for the changes

in mass due to topographical variations. Earth-tides corrections account for the

movement of the Moon and Sun. Correcting for the Earth-tide is generally combined

with correcting for instrument drift and requires returning to a base station to make

a measurement at regular intervals. Isostasy and the isostatic correction allow for

the isostasy variations in the crust, and are of secondary importance.

Bouguer gravity data become Bouguer anomaly gravity data if a gravity reference

model is subtracted from it [6]. There are two gravity reference models: the reference

spheroid and the geoid, which generate theoretical gravity values for the whole Earth.

The reference spheroid derives gravity values based on an oblate ellipsoid of mean
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Figure 2.4: The gravitational response of a horizontal sheet at different depths of
burial. The wavelength of the gravity response increases with increasing depth of
burial.

sea level and can be used to make the latitude correction. The geoid is the average

sea level surface for oceans and for the continents, assuming all mass above mean

sea level is removed. Bouguer anomaly gravity can be tied in to national networks

through the use of land calibration stations, such as the Australian Fundamental

Gravity Network [65].

The nature of Bouguer anomaly data mean they only contain information about

the density contrast of the subsurface relative to an unknown background density.

A reference density point, such as data collected in wells, can be used to determine

the background density and therefore the absolute density of the subsurface [66].

Bouguer anomaly data are only sensitive to lateral variations in density, since a 1D

density distribution does not produce a gravity anomaly. In a situation where there

are no lateral variations in density, Bouguer anomaly data of adjacent stations are

identical.

The spatial wavelengths in a Bouguer anomaly pattern can give an indication of
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the depth of burial of the anomalous mass (Figure 2.4), with deeper bodies yield-

ing longer wavelength anomalies. There are numerous methods for estimating the

depth of burial of causative bodies from the wavelength in potential field data, with

a popular method being Euler decomposition [67]. The spatial wavelengths in a

gravity response can be decomposed into a regional and residual component [68].

The regional response is usually the unwanted long wavelengths from large scale

deep structures. Short wavelength residual responses, due to shallow density vari-

ations, are superimposed on this. The scale of the survey dictates what are the

regional and what are the residual components.

2.2.2 Density Equations

Only a few equations have been used to quantify the behaviour of density, indepen-

dent of elastic and seismic parameters (Table 2.2). The porosity-density relationship

is an analytical expression for the bulk density of sedimentary rocks. It assumes rock

is composed of two phases, fluid and solid. The void space or porosity between the

rock matrix is assumed to be saturated with fluid. The bulk density is the sum of the

fluid density and matrix density, appropriately weighted by porosity. Lee [69] cal-

culated the bulk density of the mantle mineral peridotite. Lee [69] first determined

the mineral composition, then the density of each mineral was calculated based on

a function of the mineral compositional molar volumes. Finally, the mineral densi-

ties were weighted by their fractional volume and summed to give the bulk density.

The density of mantle minerals at high temperatures can be linked to temperature

through the High Temperature Model [70]. Through laboratory analysis of mantle

minerals Jordan [71] found a linear relationship between the bulk density and the

magnesium number (Mg#). The magnesium number is the ratio of magnesium and

the magnesium plus iron content (note the iron number, Fe#, is the ratio of iron

and iron plus magnesium content).

2.2.3 Gravity Summary

Gravity is sensitive to density variations in the subsurface and is an inherently non-

unique technique with limited depth resolution. The gravitational potential satisfies
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Table 2.2: Summary of the density equations.
Name Equation

Porosity-Density Relationship ρbulk = φρfluid + (1− φ)ρmatrix

where ρbulk is the bulk density, φ is porosity,
ρfluid is the pore fluid density & ρmatrix is
the matrix density

Mg# Density Model ρbulk = c1Mg#+c2
[69][71] where c1 and c2 are constants of density

specific to mantle minerals & Mg# is the
magnesium number

High Temperature Model ρbulk = ρoe
−
R T
To

αe(T 0)dT 0

[70] where To is the reference temperature, ρo
its density & αe is the expansion coefficient

Summation Model ρbulk =
NP
i=1

ρiνi

[69] where ρi and νi are the density and
fractional volume of the ith phase

Note: for all equations ρbulk is bulk density.

the Laplace equation in free space and the Poisson equation in regions containing

mass. There is a linear relationship between the subsurface density and the gravity

response. The total response of a body can be calculated by dividing the body

into small elements and summing their responses. The gravity response is expressed

as Bouguer anomaly data, which only contain information about the variation in

subsurface density and not the absolute density values.

Bulk density can be quantified in terms of different constituent densities for

Earth properties. These will be used in Section 5.2 to determine the equations to

be used in the petrophysical joint inversion.

2.3 Conclusions

This chapter has provided the governing equations for the MT and gravity tech-

niques. Gravity satisfies the Laplace and Poisson equations which produce a static

field. However, the electric and magnetic fields in MT satisfy the diffusion equation,

which is frequency dependent. The MT technique has depth resolving capabili-
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ties whereas gravity is inherently non-unique and only responds to lateral varia-

tions. There is a simple linear relationship between density and its gravity response,

whereas the relationship between the MT response and resistivity is highly non-

linear.
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Chapter 3

Magnetotelluric and Gravity

Inversions

Mathematically, an inversion is a type of non-linear optimisation scheme which seeks

to estimate the model parameters that provide the best fit between the computed

model response and the observed data. Inversions are routinely applied in geophysics

to measured field quantities in order to produce a model representation of the sub-

surface. Based on these idealised physical models, knowledge is gained about the

subsurface and geological inferences and interpretations can be made. Therefore,

the reliability and characteristics of an inversion are important in successfully delin-

eating the subsurface geology. This chapter outlines the theory behind the different

inversion schemes and reviews common approaches used for MT and gravity tech-

niques. The most appropriate optimisation scheme for the joint inversion is then

selected and described in some detail.

3.1 Inversions

Inversions are commonly applied to MT data but to a lesser extent on gravity

data. The reason for this is the higher degree of non-uniqueness when working

with potential field data [6]. The type of inversion scheme normally used is a local

minimisation search approach, in which an initial guess model is progressively refined

until a best fit is obtained. The global solvers, such as the Monte Carlo method,

35
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simulated annealing and genetic algorithms, which explore the entire model space,

can only cope with a limited number of model parameters and are computationally

very expensive, especially for 3D models. Therefore, in this section only the basic

theory of local minimisation approaches are covered; this is followed by a review of

the single MT and gravity inversion methods.

3.1.1 Inversion Theory

For continuous data, the geophysical response can be expressed as a Fredholm inte-

gral equation of the first kind [72],

d(x) =

Z
I

G(x, y)m(y)dy . (3.1)

HereG is the kernel that describes the physics of the process, d is the continuous data

and m are the model parameters. When discretised, the relationship for sampled

data can be expressed as a system of equations, or in matrix form as

F[m] = d , (3.2)

where d = (d1, d2, ..., dq) is the data vector consisting of q observed data points,

m = (m1,m2, ...,mn) is a model vector of n model parameters and F is the q × n

forward model operator that predicts (computes) the geophysical data for a particu-

lar model. The forward model operator or kernel provides the link between the data

and the model spaces. Together the model parameters and the forward model op-

erator (F[m]) give the model response, which ideally equals the observed data. The

forward model operator for each geophysical technique is based on the governing or

defining physics of the problem. Depending on the technique under consideration,

the forward model operator can be expressed as either a linear (e.g., straight ray

tomography) or non-linear relationship (e.g. curvilinear tomography) between the

model parameters and the model response. Hereafter, these will be referred to as

linear or non-linear forward model operators.

An inversion seeks to determine the model parameters m, which are a solution

to Equation 3.2 and are representative of the true geological model, mtrue. Concep-
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tually, the corresponding inverse operator F−1 can be used to estimate the model

parameters mest from the observed data dobs,

mest = F−1(dobs) . (3.3)

However, in most geophysical techniques there is not enough information in Equa-

tion 3.2 to uniquely define all model parameters.

By its very nature, geophysical data are discrete, incomplete and subject to error

(i.e. contain noise). Having discrete data, but more importantly noisy data, means

that there are multiple models that can equally replicate or match the data to a

given tolerance level [73]. Furthermore, these models may not resemble the true

nature of the Earth [72]. Data errors can be incorporated into the inversion process

through the maximum likelihood method and use of a weighting matrix. If the errors

are independent and normally distributed, Equation 3.2 becomes

WdF[m] =Wdd , (3.4)

where Wd = diag
³
1
σ∗1
, 1
σ∗2
, . . . , 1

σ∗m

´
is the weighting matrix and the σ∗ values de-

note the estimated standard deviations of each point [74]. If a standard deviation

(estimated error) is large, then the reliability of that measurement is low and it is

down-weighted in the inversion. Conversely, if the estimated error or uncertainty is

small, the reliability is high and those data points get greater emphasis or weighting

in the inversion.

Obtaining a solution to the geophysical inverse problem (Equation 3.4) depends

on the nature of the forward model operator, F. If matrix F is small, linear and

non-singular (well conditioned), then the model parameters can be obtained by

calculating the inverse of F, using an approach such as singular value decomposition

(SVD) [74]. If the condition number (i.e. ratio of largest to smallest eigenvalues) of

F is large, then the inverse F−1 cannot be taken without first stabilising it through

the introduction of some damping or regularisation; this involves adding values to

the diagonal elements of F [74]. Alternative approaches that can be applied to

both linear and non-linear forward model operators are based on selecting the ‘best’
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model that minimises the fit between the observed data and the model response.

The measure of fit is determined by the norm. The most commonly used norms

are the lp-norms (e.g. p = 1, 2,∞). The l1-norm (sum of the absolute values) is

robust to outliers, however, it is not continuously differentiable and is complex to

minimise. The l2-norm or the Euclidean norm has more desirable characteristics and

is the most widely used in geophysics [75]. In this thesis only the l2-norm will be

considered. For the fit between the observed data and model response the l2-norm

is given by

Ud(m) = ||Wd(d− F[m])||2 =

vuut mX
i=1

Wdi{di − F[m]i}2 , (3.5)

where Ud(m) is the data norm, F[m] is the model response andWd is a symmetric

data weighting matrix.

TheWd matrix can have many forms. In Equation 3.4,Wd = C−1d , the inverse

covariance matrix, where the covariance matrix is a diagonal matrix of the data

uncertainty. If such aWd matrix is used in Equation 3.5 then the problem is referred

to as generalised least squares. Alternatively, if Wd = I (the identity matrix) the

problem is referred to as common least squares [76]. The least square solution to

Equation 3.5 can be expressed as m = (FTWdF)
−1FTWdFd if the forward model

operator is linear [74]. However, schemes such as the Marquardt method [77] or

creeping methods [78] [79] can be used to find a solution if F is non-linear. All

solutions of the data norm are characteristically very rough.

There exist multiple and potentially different models that fit the data norm

(Equation 3.5) equally well. A further complication is with the presence of noise, as

it may be noise as well as signal being fitted. To counteract these problems, and to

help stabilise the solution, optimisation algorithms can use a model regularisation

term or have certain constraints applied. This is where a solution is sought that

fits the data subject to a model criteria. The model criteria is expressed in the

regularisation term or model norm,

Um(m) = ||Wm(m−m0)||2 =

vuut nX
i=1

Wmi(mi −m0i)2 , (3.6)
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where Um(m) is the model norm, Wm is the symmetric model weighting matrix,

m0 is the reference or starting model parameters and m is the model parameters

to be determined. The Wm matrix encapsulates the type of model desired by the

inversion or incorporates a priori information. Generally, a model closest to some

preferred model or a smooth or minimum roughness model is sought. To obtain

information on model roughness, a first or second order differential operator can be

used, such as Wm = ∂T∂ where ∂ is a difference operator [80] or for a 2D model

Wm = '0I + 'y∂
T
y ∂y +'z∂

T
z ∂z where '0, 'y and 'z are constants and y and z

are spatial directions (an extra term can be added for a 3D model ) [81].

In general, the data and model norms are combined in the objective function

U(m), which is also known as the misfit or cost function. A model solution is then

sought that minimises this function. Adding these terms together, after appropriate

weighting, ensures that the “fit” of the model is evaluated in both the data space

and the model space. When the data and model spaces are linear, the units of the

data space are that of the measured data and the units of the model space are that

of the model parameters. Data and model spaces can also be transformed, such

as taking the logarithm of the model parameters. Transforms are used to better

accommodate characteristics of the data or model parameters, and to maintain a

relationship between the data and model parameters.

The addition of the model norm in the objective function introduces a bias into

the optimisation scheme, as it will only produce models of the type described in the

model norm. This means that unless the true model has the same model charac-

teristics as the model norm, the inversion will not be able to faithfully reconstruct

the true model. The bias also has an ill-effect on categorising the model parameter

confidence intervals, which is not attempted in this thesis and therefore will not be

discussed further.

The aim of an optimisation scheme is to find the model that minimises the

objective function. The minimising model must be a stationary (minimum) point

of the objective function. Stationary points occur when the objective function is

differentiated with respect to the model parameters and found to be equal to zero,
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∂U(m)

∂m
= 0 . (3.7)

Finding a model solution directly from Equation 3.7 can be difficult if F is non-linear,

because the derivative can only be evaluated for a single set of model parameters

[75]. As a result, iterative schemes are used to obtain a model solution.

Iterative schemes search the model space by updating the model parameters

based on the previous model and the Fréchet derivatives (Figure 3.1). The Fréchet

derivatives are important as they are used to determine by how much each model

parameter should be updated. The updated model should minimise the objective

function more than the previous model. Updating the model parameters continues

until the iterative scheme converges to a minimum or until no further improvement

occurs. The minimum is global if the model gives the absolute minimum of the

objective function. As shown in Figure 3.1, a local minimum can also occur, causing

the iterative scheme to converge to an undesirable solution that is not the absolute

minimum. A convex model space will guarantee there exists only one minimum

which is global [74].

The objective function can contain different combinations of the data and model

norms. Here two popular approaches will be discussed: the Tikhonov Regularisation

and the Occam inversion.

Tikhonov Regularisation

The objective function of the Tikhonov Regularisation is given by

UTik(m) = Ud(m) + λUm(m) , (3.8)

where λ is the regularisation parameter, also known as the trade off or damping

parameter [30]. The regularisation parameter controls the balance between fitting

the data and the model criteria. When λ is large, UTik is dominated by fitting the

model criteria. However when λ is small, UTik is dominated by fitting the data.

The λ value is fixed to an arbitrary value prior to the inversion. It does have an

optimal value which is unknown, since it depends on noise in the observed data and
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Figure 3.1: A schematic of an iterative search of the model space. The search on the
right converges to the global minimum, whereas the search on the left gets trapped
in a local minimum.

the bounds of the exact solution [82].

The Tikhonov Regularisation solution is found by taking the derivative of UTik

with respect to the model parameters and setting the resulting expression equal to

zero. From the definitions of the data and model norms (Equations 3.5 and 3.6,

respectively) this is possible and yields

λWm(m−m0) = J
TWd(d− Fm) , (3.9)

where J = ∂Fm
∂m

is the q × n Jacobian or sensitivity matrix, which comprises the

Fréchet derivatives of the model response with respect to the model parameters.

The Jacobian contains information on the perturbation (i.e. likely change) of the

data for a given perturbation of each model parameter.

There are different iterative methods available to solve Equation 3.9. Of in-

terest are the general iterative scheme, the iteratively linearised scheme and the

conjugate gradient solvers [75]. The general iterative scheme is obtained by adding
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¡
∂d
∂m

¢T
Wd

¡
∂d
∂m

¢
(m −m0) to both sides of Equation 3.9 and, provided Wm is in-

vertible, this yields [75]

£
W−1

m J
TWdJ0 + λI

¤
(m−m0)

= W−1
m J

T
0Wd {(d− Fm0) + J0(m−m0)} . (3.10)

Isolating m on the left hand side, the following iterative scheme is suggested,

mk+1 = mk +
£
W−1

m J
T
kWdJk + λI

¤−1
×W−1

m J
T
kWd(d− Fm0)+λ(m0 −mk) . (3.11)

The iteratively linearised scheme is based on linearising the forward model op-

erator and then applying linear algebra to develop an iterative scheme [75] [80]. A

Taylor series expansion is one method used to linearise the forward model operator,

and is given to first order by

F[m] = F(m0) + J0(m−m0) , (3.12)

where m0 is the model about which the model response is linearised. When the

Taylor series expansion is substituted into Equation 3.9, it follows that

£
JTWdJ0 + λWm

¤
(m−m0) = J

T
0Wd(d− Fm0) . (3.13)

Isolating m on the left hand side, the following iterative scheme is suggested,

mk+1 = mk +
£
W−1

m J
T
kWdJk + λI

¤−1
×W−1

m J
T
kWd(d− Fm0) . (3.14)

When identity weighting matrices are used,Wd = I andWm = I, in the iteratively

linearised scheme, this becomes the Levenberg-Marquardt method [75].
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Both iterative schemes in Equation 3.11 and Equation 3.14 are dependent on

being able to obtain the inverse of a matrix [·]−1. Generally, the inverse will exist

provided an appropriately large and positive value of the damping parameter λ is

chosen [75].

The term λ(m0−mk) is the only difference between the general iterative scheme

(Equation 3.11) and the iteratively linearised scheme (Equation 3.14). However, this

results in each method searching the model space differently [75]. The iteratively

linearised scheme keeps variations betweenmk+1 andmk as small as possible at each

iteration for a given λ value. On the other hand, the general iterative formula keeps

the variations between mk+1 and m0 as small as possible at each iteration for a

given λ value. The general iterative scheme yields a sequence of models close to the

initial model m0, and produces significantly smoother results than the iteratively

linearised scheme.

The general iterative scheme (Equation 3.11) and the iteratively linearised scheme

(Equation 3.14) are forms of the steepest descent method. The steepest descent

method updates the model according to

mk+1 =mk − bζk · bok , (3.15)

where bok is the vector of the direction of maximum decent and bζk is the scale of the
step length [74] [75]. In the case of the general iterative scheme bok =W−1

m J
TWd(d−

Fm0)+λ(m0 −mk) and bζk = £W−1
m J

TWdJ+ λI
¤−1
. The updated search direction

in the steepest descent method is orthogonal to the previous direction and results

in a zig zag search path to the minimum of the model space.

Conjugate gradient (CG) methods can be used to solve the Tikhonov Regular-

isation problem and have better convergence properties than the steepest decent

scheme [73]. Essentially, the CG methods are based on n − 1 conjugate search di-

rections and it takes a step length in each direction so that by the last step it will

line up exactly with the minimum in the model space [83]. The CG methods are

implemented in a similar fashion to the steepest descent method, updating a model

based on a search direction and an optimal step length. However, the updated search

direction is in a conjugate direction to the last.
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Occam or Smooth Model Inversion

The Occam or smooth model inversion seeks the smoothest model subject to fitting

the data to some specified tolerance level χ [80],

min(Um(m)) (3.16a)

Ud(m) = χ∗ , (3.16b)

where Um describes smooth models through the Wm matrix. Smooth model in-

version only allows sufficient structure required to fit the data into the model.

Therefore, it avoids producing artifacts that can lead to misinterpretation. The

unconstrained Occam problem (Equation 3.16), can be turned into a constrained

optimisation problem using a Lagrange multiplier μ. The resulting objective func-

tion is

U(m) = Um(m) + μ−1[Ud(m)− χ∗] . (3.17)

A solution to the constrained problem (Equation 3.17) must satisfy the stationary

conditions

∂U

∂m
=

∂Um

∂m
+ μ−1

∂Ud

∂m
= 0 (3.18a)

∂U

∂μ−1
= Ud − χ∗ = 0 . (3.18b)

This is equal to

μ−1Wm(m−m0) = J
TWd(d− Fm) (3.19a)

(d− Fm)TWd(d− Fm) = χ∗ . (3.19b)

From Equation 3.17, μ can be likened to the Tikhonov Regularisation param-

eter λ, because they both control the balance between minimising the data and
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model norms. Unlike λ, the quantity μ must satisfy both Equation 3.19a and Equa-

tion 3.19b. The non-linear nature of F makes finding an exact form or value for μ

difficult.

A two-part sequence is used to find the solution to the Occam inversion problem.

Firstly, it is noted that Equation 3.19a and the Tikhonov Regularisation (Equa-

tion 3.9) are the same for a fixed μ value. Therefore, a scheme used to solve the

Tikhonov Regularisation, such as the iteratively linearised scheme, can be used to

update the model. Secondly, an optimal value of μ is found that minimises the

data norm. The optimal μ value depends on the data error level, model weighting,

parameterisation used and the true model variation. It can be determined using

methods such as the golden section search, L-curve or cross-validation [84].

Data space methods are becoming increasingly popular in determining a solution

to inverse problems. All solutions presented until now have involved calculating

JTWdJ, which is the n×n ‘model space cross product’ or weighted pseudo-Hessian

matrix. However, the problem can be reformulated to find a solution based on the

data space. Parker [79] showed that an iterative solution to Equation 3.8 can be

expressed in terms of the rows of the Jacobian,

mk+1 −m0 =WmJ
T
k ηk+1 , (3.20)

where WmJ
T is the basis function and ηk+1 are the expansion coefficients. An

expression for the coefficients can be obtained by substituting Equation 3.20 into

Equation 3.9,

ηk+1 = (λWd + JkWmJ
T
k )
−1bdk , (3.21)

where bd = d− F[m] + J(m−m0).

The solution is now in terms of JkWmJ
T
k , the q × q ‘data space cross product’.

The solutions derived from the model space and data space approaches are theoret-

ically identical [85]. However, the number of equations solved to obtain a solution

can be significantly different depending on the size of the model and data vectors.

The dimensions of the ‘data space cross product’, q × q, is usually much smaller in
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practice than the ‘model space cross product’, n×n, resulting in reduced computa-

tional cost. Data space methods can be applied to both the Tikhonov Regularisation

inversion and the Occam inversion, depending on whether the λ value is fixed or

calculated at each iteration.

When implementing any inversion there are three important factors to consider:

solution existence, solution uniqueness and stability of the solution process [72]. In

reality there always exists a solution to the inverse problem - the geological sub-

surface that generated the data. However, the validity of the physical assumptions

made, the presence of noise and the mathematical model used may preclude gen-

erating a solution and this is generally reflected by a large misfit value [86]. Non-

uniqueness was discussed previously and observed to stem from data error and the

physics underlying the technique. Unstable inversions are referred to as ill-posed or

ill-conditioned and occur when small changes to the data result in large changes in

the model parameters. The resulting iterative scheme may exhibit wild oscillations

in the model space. Constraints can be used to stabilise an inversion, as well as to

reduce model non-uniqueness [72].

3.1.2 MT Inversion Review

The 1D MT inverse problem is one of the few geophysical problems where an analyt-

ical least squares solution exists. It is referred to as Parker’s D+ [86]. The inversion

produces a model with a finite number of infinitely thin layers of specific conduc-

tance at different depths. Although there is no geological interpretation to the D+

models, they can be used as an estimation of the maximum depth of resolution of

a data set [9]. A geologically reasonable 1D model can be achieved by inverting

for a discrete layered Earth. This was done by Wu [87] and Jupp and Vozoff [88]

using non-linear least squares. Layered Earth inversions are generally unstable and

to increase stability the number of layers needs to be restricted [9]. However, re-

stricting or using the wrong number of layers can lead to a mis-representation of the

subsurface structure. A more stable inversion that only produces structure required

by the data is the 1D Occam inversion introduced by Constable et al. [80]. This

1D inversion seeks a smooth model that has a minimum difference between adjacent
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layers. The 1D inversion approach of Smith and Booker [89] also sought a smooth

model based on a model depth weighting function.

Inversions that generate smooth models have been extended to 2D. The 2D Oc-

cam inversion was developed by deGroot-Hedlin and Constable [90] and is a stable

algorithm with good convergence properties. It was later reformulated by Siripun-

varaporn and Egbert [91] as a data space method known as REBOCC. Smith and

Booker [92] produced the rapid relaxation inversion (RRI) that uses a computa-

tionally economical approximation for the Jacobian matrix. Although it is fast, the

method often fails to converge without user intervention [91]. Rodi and Mackie [93]

developed an inversion scheme that produces a smooth model using a conjugate

gradient method to solve the Tikhonov Regularisation.

Attempts have been made to produce sharp boundary 2D MT inversions. These

types of inversions do not use a measure of roughness (smoothness constraint) in

the regularisation term or, if they do, they require a decoupling of the regularisation

term across any sharp boundary. A 2D MT sharp boundary inversion was first done

by Jupp and Vozoff [94] who extended their 1D layered Earth inversion. Smith

et al. [95] determined the boundary depths below individual stations and then

interpolated them laterally, whereas deGroot-Hedlin and Constable [96] produced a

variation of the Occam inversion to solve for sharp boundaries in a 2D cross section.

Most recently, Farquharson [97] modified a typical smooth inversion algorithm to

generate blocky, piecewise constant Earth models.

Increasing effort is being devoted to tackle the 3D MT inversion problem, primar-

ily still working with smooth models [85] [93] [98]. The difficulty with 3D algorithms

is the size of the model space and the computational time required to compute the

Jacobian matrix. The currently published 3D inversion schemes are the Newman

and Alumbaugh algorithm [98], which uses non-linear conjugant gradients, and the

Siripunvaraporn et al. algorithm [85], which is an extension of their 2D data space

inversion approach. There is also a commercially available 3D inversion software

package (WinGLink), which is an extension of the Rodi and Mackie [93] 2D algo-

rithm. For an extensive review of 3D inversion, the reader is referred to Avdeev

[99].
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Standard MT inversion, as practised today, is still predominately 2D, with the

most common being the Occam inversion [90] and the Rodi and Mackie inversion

[93], distributed in the commercial WinGLink package. Although 3D inversions are

becoming increasingly popular, particularly Siripunvaraporn et al. [85], the actual

algorithms are still being evaluated and verified by the EM community.

3.1.3 Gravity Inversion and Forward Modelling Review

The inversion of gravity data poses a problem because, being a potential field tech-

nique, it is inherently non-unique. There are an infinite number of density distri-

butions that can fit the data equally well. One such distribution is an infinitely

thin layer at the surface of laterally varying density [64], although such a solution

can be rejected on geological grounds as totally implausible. Therefore, all gravity

inversions must involve constraints or additional assumptions to reduce the number

of acceptable models and make them geologically meaningful.

There are two common approaches to gravity inversion. The first accounts for

a gravity anomaly by varying the geometry of the anomalous body and keeping

a fixed density contrast with the surrounds. This gives a non-linear relationship

between the gravity response and model parameters. Making assumptions about

the geometry (shape, size) reduces the number of acceptable models. However, if

the assumed geometry is wrong then the inversion can be misleading. Examples of

regular geometric shapes to approximate a buried geologic structure include prisms,

cylinders, spheres, and polygons, with the most common being the prism, from

which more complicated bodies can be constructed by superposition. Bott [100]

altered the depths to the base of a series of vertical prisms and through a trial and

error process was able to determine the depth profile of a sedimentary basin. Formal

inverse theory was applied by Oldenburg [101] to determine the thickness variations

of an uneven 2D layer. Various other studies have extended the depth function idea

[102] [103] [104]. As a slight variant on this approach, the unknown geometry of an

isolated 2D or 3D causative body can be obtained by inverting for the location of

polynomial vertices [105] [106].

The second approach to gravity inversion is to derive the subsurface density con-
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trasts for a structure of fixed geometry. Generally, this is in the form of prisms that

form a grid. Such a scheme yields a linear relationship between the gravity response

and the density contrast model parameters. Green [107] applied the Backus-Gilbert

approach and found models, that either minimised the departure from an initial

model or used a variable weighting function. The constraint used by Last and Ku-

bik [108] was to minimise compactness, and was the first weighting function to be

based on the model parameters themselves. Guillen and Menichetti [109] extended

this approach by also minimising the moments of inertia with respect to the centre

of the body. These inversions have very specific constraints placed on the model

and in many cases can only recover a single body. More complicated models can be

recovered from a smooth 3D gravity inversion with a depth weighting function, as

developed by Li and Oldenburg [64].

Since it is difficult to produce geologically meaningful results from an automatic

gravity inversion, a common alternative is to simply carry out interactive forward

modelling [6]. Such forward modelling entails a user defined model, which incorpo-

rates information from geology and other geophysical techniques, and then compares

the model response to the actual observed data. The model can be adjusted on a

trial and error basis to bring about a match between the computed and observed

data. Analytical solutions to the forward problem exist for simple bodies such as

spheres, cylinders and prisms. Such solutions can be readily incorporated into for-

ward modelling programs for rapid calculation of the model response [6]. Talwani et

al. [110] formulated the first computer-orientated gravity forward modelling equa-

tions that calculate the response of 2D bodies of polygonal cross sections. Initial

3D forward modelling by Talwani and Ewing [111] used thin irregular polygonal

layers to build 3D bodies. However, the right rectangular prism [112] is now used

to build complex 3D structures and is suited to finite difference grids. Finite ele-

ment methods that use tetrahedral cells to construct 3D bodies were described by

Barnett [113], whereas Okabe [114] used polygonal facets. Parker [115] offered an

alternative to the spatial-domain approach. He performed the first gravity forward

modelling using the Fourier transform, which was based on the convolution theorem

and Green’s functions.
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3.1.4 Discussion

Consideration will now be given to pre-existing MT and gravity inversion approaches

as reviewed above, with a view to determining the best scheme to be used in a joint

inversion of MT and gravity data sets. In general, MT inversions use a smoothness

constraint, which tends to smear boundaries and produce ‘fuzzy images’ of the sub-

surface. Yet, these smooth models can be justified since the MT technique is based

on EM diffusion phenomena that naturally smears boundaries, being sensitive to the

bulk resistivity and not so much to the actual discontinuities or boundaries in the

subsurface resistivity distribution. The gravity inversions require strict constraints

in the form of density contrasts, specific body geometries, minimising compactness

or minimising the moments of inertia, and can generally only recover a single body.

Constraints used for gravity inversions are specific to gravity and are not neces-

sary for MT. Therefore, it is more desirable to base the joint inversion on an MT

approach rather than a gravity approach. Further argument in support of an MT-

based inversion approach is that gravity has a linear forward model operator that

can exploit linear schemes. Such schemes can not be used for MT since its forward

model operator is non-linear.

The MT inversions use either the Occam or the Tikhonov Regularisation formula-

tions, such as the inversion approaches developed by deGroot-Hedlin and Constable

[90] or Rodi and Mackie [93]. The Occam inversion is preferred because it determines

the optimal trade off parameter (μ) value. For the Tikhonov Regularisation, which

uses a fixed trade off (λ) value, multiple inversions with different λ values need to

be executed to be able to determine the best value. The 2D Occam inversion [90] is

favoured over the 1D Occam inversion [80] because a 1D model will not produce a

Bouguer gravitational anomaly (lateral changes in density are required).

To summarise, the non-linear MT 2D Occam inversion developed by deGroot-

Hedlin and Constable [90] will provide the basis for the joint inversion herein. This

inversion method is a stable and rapidly converging scheme that is well accepted by

the EM geophysical community. The specific details of the MT 2D Occam inversion

are provided in the following section.
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3.2 The Occam Inversion

The Occam inversion was first introduced by Constable et al. [80] to perform a

1D MT inversion. It was subsequently extended to 2D by deGroot-Hedlin and

Constable [90]. The name Occam comes from Occam’s Razor: “it is vain to do

with more what can be done with fewer” [116]. In terms of geophysics, of all of the

models capable of fitting the data, the simplest model, or model that requires the

least spurious features not required by the data should be accepted. The Occam

inversion achieves this by seeking a minimum structure or smooth model, subject

to fitting the data to an acceptable tolerance. Smooth models only have features

that depart from the simplest case (half space), as far as is necessary to fit the data.

Therefore, only structure absolutely required by the data will appear, and the model

cannot be over interpreted [80].

In this section the general aspects of the MT Occam scheme are discussed, fol-

lowed by a discussion on those aspects specific for MT. This discussion forms the

basis of the methodologies for the gravity and joint inversion schemes given in Chap-

ters 4 and 6. This section is strongly based on the paper by deGroot-Hedlin and

Constable and further details can be obtained from the original Occam papers [80]

[90].

3.2.1 General Aspects

In Section 3.1.1 the general Occam inversion scheme was discussed. For the MT

Occam inversion, the objective function is

U [m] =
°°∂ym°°2 + k∂zmk2 + μ−1

©
kWdd−WdF[m]k2 − χ2∗

ª
. (3.22)

An iteratively linearised scheme is used to find a solution to this objective function

and results in the model parameters being updated according to

mk+1(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdJk)

T (WdJk)
i−1

(WdJk)
T
³
Wd

bdk´ . (3.23)
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In this section the general aspects of the MT Occam inversion are discussed and

include the model parameterisation, data norm, model norm and searching for the

Lagrange multiplier.

Model Parameterisation

The Occam inversion uses an over-parameterised 2D model, which means there are

more model cells than degrees of freedom in the data (the number of independent

data measurements). Under-parameterising the model has less cells than the degrees

of freedom in the data and can cause structure to be suppressed, whereas over-

parameterising the model can allow superfluous structure to appear [79]. In a normal

least-squares sense, over-parameterisation of the model can result in an unstable

inversion. However, the introduction of a smoothness constraint acts to stabilise the

inversion, and the over-parameterisation then allows for smooth variation between

different model cells.

The 2D model used by the Occam inversion is parameterised in terms of two

grids, the regularisation grid and the finite element mesh, which remain fixed at

each iteration. The two grids depicted in Figure 3.2 are described in Cartesian

coordinates with the x-direction along strike, the y-direction across strike and the

z-direction being depth (positive downwards).

The forward modelling is conducted on the finite element mesh. The structured

finite element code used to calculate the MT response [117], requires the mesh to

have a fine regular array of rectangular nodes to maintain its accuracy. Node spacing

is also designed to aid the accuracy of the forward modelling code. The horizontal

spacing is intended to be one-third of the skin depth and, since the EM fields decrease

exponentially with depth, it has been found that a logarithmic depth scale is ideal

[89]. There must be a node at the location of every MT station.

The model parameters correspond to the regularisation grid, which is made up

of rectangular prisms of constant resistivity. The grid is terminated by an elongated

prism at the bottom, to mimic a half space, and uniform layers laterally that extend

to infinity. The regularisation cells are smaller than the data resolution length of

MT, so their boundary locations do not affect the final inverted model. The cell size
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Figure 3.2: Configuration of the 2D grid system used by the Occam inversion. The
regularisation grid is marked by the bold lines and the finite element mesh by the
regular lines. The triangularisation configuration is indicated.

can increase with depth to account for the loss of resolution with depth.

The regularisation grid must be a subset of the finite element mesh, so that there

is a node at every resistive regularisation cell boundary. The reason behind the two

grid system is to be able to accurately calculate the MT response, which needs many

nodes across a resistivity boundary, and still maintain computational efficiency by

having a reduced number of model parameters in the regularisation grid.

Data Norm

The data norm is given in Equation 3.5. In this inversion, the data weighting matrix,

Wd, is the diagonal matrix of the data errors. The Occam scheme assumes the data

errors are independent and have a zero mean Gaussian distribution. This confers

on the data norm, Ud, the well known chi-squared distribution χ2 with q degrees
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of freedom. The expected value for the χ2 distribution is q, the number of data

points, and corresponds to an RMS
³
χ2

q

´ 1
2
of 1. Although this seems like a bold

assumption about the data errors, they are generally poorly known and categorised.

More refined statistical analysis would most likely yield little extra information.

Model Norm

The model norm, also referred to as the roughness term or smoothness constraint,

is defined as

Um =
°°∂ym°°2 + k∂zmk2 , (3.24)

where k·k2 is the l2-norm, ∂y is the horizontal roughness matrix and ∂z is the vertical

roughness matrix. The model roughness is defined as the first spatial derivative of

the model, such that smooth models have small derivatives. Essentially, the ∂y and

∂z matrices take the horizontal and vertical differences between adjacent cells in

the grid. Minimising them results in a smooth model, which has minimal variation

between adjacent cells.

Consider a regularisation grid comprising n cells with wy elements in the y-

direction and wz elements in the z-direction [90]. Each cell has width ϑ and vertical

length vi where i = 1, 2, ..., wz. Starting in the top left of the grid and numbering

the elements from left to right, the n× n vertical roughness matrix is given by

∂z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 1 0 · · ·

0 −1 0 · · · 0 1 0 · · ·
. . . . . .

−1 · · · 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.25)

where there are wy − 1 zeros between entries and 0 is a wy × n matrix of zeros.

The horizontal roughness matrix can be expressed in an equivalent manner to

the vertical roughness matrix through a series of 0 and ±1. However, if the model

cells are elongated with depth, then it is equivalent to increasing the roughness

penalty with depth. To counteract this, a horizontal damping factor can be used
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to weight the horizontal roughness matrix, and penalise against different depth-to-

width ratios, so that the structure does not become elongated. The n×n horizontal

roughness is given by

∂y =

⎡⎢⎢⎢⎢⎢⎢⎣
∂y1 0

∂y2
. . .

0 ∂yk

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.26)

where ∂yi is a wy × wy horizontal roughness matrix for layer i and is

∂yi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−vi/ϑ vi/ϑ 0

−vi/ϑ vi/ϑ
. . . . . .

0 −vi/ϑ −vi/ϑ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.27)

Searching for the Lagrange Multiplier

The μ value controls the balance between creating a smooth model and fitting the

data. Larger μ values will result in a smooth model, however this happens at the

expense of fitting the data. Smaller μ values result in an improved data fit but will

produce a rougher model. There is an unknown optimal μ value that depends on

the data error level, the model weighting, the parameterisation used and the true

model variation.

Instead of using an arbitrary fixed value of μ, the Occam inversion calculates

the optimal value. The μ value is found at each iteration by minimising the true

non-linear data norm,

Udk+1(μ) = kWdd−WdF[mk+1(μ)]k2 . (3.28)

The true non-linear data norm is used instead of the data norm containing the

Taylor series expansion, since this linear approximation is inaccurate unless the

current model is close to the true solution.
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The 1D optimisation problem for determining the optimal μ value is solved

using the ‘golden section search’ [118]. The ‘golden section search’ sweeps through

μ values from 0 (least squares solution) to∞ (smoothest model) until the minimum

of Equation 3.28 is found. If two μ values produce the same minimum value of

Equation 3.28, then the larger one is chosen because it corresponds to the smoothest

model.

3.2.2 Specific MT Aspects

The features of the Occam inversion that make it specific to MT are the data

type, model parameters, the forward model operator and the Jacobian. The model

parameterisation described in Section 3.2.1 has also been specifically designed for

MT.

The data vector, d, used in the MT Occam inversion contains the 2D MT re-

sponse. Each element in the vector corresponds to a TE or TM mode apparent

resistivity or phase for a particular station and frequency. The model parameter

vector, m, used in an inversion can be any monotonic function of the physical prop-

erty in question. In the MT case, rather than using resistivity ( directly in a linear

space, the transformation to logarithmic values log(() is used. This forces the resis-

tivities to be positive and better accommodates the large range of possible resistivity

values of Earth materials, thus compressing the scale. Furthermore, the data space

is most often specified as the logarithm of the apparent resistivity values, thus giving

the same transformation (and units) to the data space and the model space. Each

element in the MT model parameter vector is the log(() of a corresponding cell in

the regularisation grid.

The forward model operator, F, in the MT Occam inversion converts the log(()

to a 2D MT response and is calculated using the code from Wannamaker et al.

[117]. The Jacobian matrix, J, has as its elements the Fréchet derivatives of the 2D

MT model response with respect to the model parameters in log(() form. It was

initially calculated using a method outlined in Oristaglio and Worthington [119],

then updated to the method from de Lugao and Wannamaker [120].

Since the data type, model parameters, the forward model operator and the
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Jacobian make the inversion specific to MT, these are the features that need to be

changed when applying this inversion algorithm to data from another geophysical

technique.

3.2.3 The MT Occam Program

The 2D MT Occam program is freely available, courtesy of Professor Steven Con-

stable from the Scripps Institute of Oceanography, and can be downloaded from his

website (http : //marineemlab.ucsd .edu).

The program underwent a major rewrite in 2006, when it was updated to For-

tran 90 and allowed for dynamic memory allocation. This version is known as

OCCAM2DMT v3.0 and is the version used in this thesis.

Figure 3.3, taken from deGroot-Hedlin and Constable [90], is a flow chart of the

steps involved in the Occam inversion scheme. The scheme is normally well behaved

and converges to a solution that is independent of the starting model. The final

model will have the smallest roughness for a specified misfit level, and can be shown

to be a solution of the original non-linear optimisation problem. There are instances

when the updated model does not have a smaller misfit than the previous model, as

well as instances when the desired misfit has been reached and the updated model

is not smoother than the previous model. Such behaviour is due to a breakdown in

the linear assumption, or errors in calculating the model response and the Jacobian.

In such cases, the step length in the original search direction is changed to 1/2 (or

1/4, 1/8 etc.) of its earlier value in the following way

Fnew(μ) = (1− c)mk + cF(μ) . (3.29)

Here Fnew(μ) is a set of new models, mk is the current model, F(μ) is the failed

model and c is successively halved until an improved model is found.

The OCCAM2DMT v3.0 program has special features that allow users to adapt

the inversion to their problem. The important features are model limits, topography

or bathymetry, fixed values, triangularisation, sharp boundaries, structure in the

starting model, a prejudiced model and static shift. These are explained below.
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Figure 3.3: Outline of the steps taken by the 2D MT Occam inversion (reproduced
from deGroot-Hedlin and Constable [90]).

  
                                          NOTE:   
   This figure is included on page 58 of the print copy of  
     the thesis held in the University of Adelaide Library.
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i. Model limits, or hard bounds, can be placed on the resistivity values. They

are applied by re-assigning any updated model parameters that go outside the

acceptable limits by clamping them to the upper or lower bounds (whichever

is appropriate).

ii. Surface topography or bathymetry of the sea floor can be applied by assigning

the appropriate near-surface cells, in the regularisation grid or finite element

mesh, respectively, to be air or water. The station location will then be placed

on the topography or bathymetric surface.

iii. Fixed values can be assigned to certain parts of the model. If all finite element

cells, which are aggregated to form the regularisation cells, are not fixed, then

the inversion will only solve for the model parameter corresponding to the free

finite element cells.

iv. Each cell in the finite element mesh can get subdivided into 4 triangles, referred

to as triangularisation. For the configuration of the 4 triangles see Figure 3.2.

Each triangle can be assigned a different resistivity to better mimic topography

or the boundary of fixed value structures.

v. Sharp boundaries (or zonal decoupling) can be placed between cells in the

regularisation grid, breaking the smoothness constraint between the two cells

and allowing a discontinuity to exist.

vi. The initial or start-up model of the inversion does not have to be a homoge-

neous half space and can contain structure.

vii. A prejudiced or preferred model, containing suggested resistivity values, and

weighted for certain cells, can be used to influence an inversion.

viii. The inversion can correct for static shift effects at individual stations.

3.3 Linear Occam

Unlike the MT techniques, the gravity technique has a linear forward model operator.

This means the objective function can be differentiated with respect to the model
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parameters and linear algebra can be used to ascertain the model parameters. The

linear equivalent of the non-linear Occam scheme has the objective function,

U [m] =
°°∂ym°°2 + k∂zmk2 + μ−1

©
kWdd−WdG[m]k2 − χ2∗

ª
, (3.30)

where G will be used to represent the linear forward model operator. When the

objective function is differentiated with respect to the model parameters it yields

¡
∂Ty ∂y + ∂Tz ∂z

¢
m+ μ−1 (WdG)

T (WdG)m− μ−1 (WdG)
T (Wdd) = 0 . (3.31)

It then follows that the model parameters are updated according to

m(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdG)

T (WdG)
i−1

(WdG)
T (Wdd) . (3.32)

The model parameters are dependent on the μ value that can be found by a similar

method discussed in Section 3.2.1. Equation 3.32 does not outline an iterative

scheme, rather the model parameters are found in one step, which incorporates

searching for the optimal μ value. For more details on deriving the linear Occam

inversion see Constable et al. [80].

3.4 Conclusions

In this chapter inversion theory is discussed and approaches used for MT and gravity

data are reviewed. It was determined that the 2D MT Occam inversion was the best

scheme for the joint inversion of disparate data sets. An account of the non-linear

2D MT Occam inversion was then given to provide the basic information needed

to understand the methodology for the gravity inversion and joint inversion that

is developed in Chapters 4 and 6. In the next chapter, the non-linear 2D Occam

approach will be applied to the gravity technique before using it in combination

with MT in a joint inversion.



Chapter 4

Occam Gravity Inversion

In this chapter an Occam-based gravity inversion approach is developed and forms

the basis of the gravity component of the joint inversion. As explained in Sec-

tion 3.1.4, the non-linear 2D Occam algorithm has been selected for the joint inver-

sion. Therefore, the gravity inversion should also take this form for consistency and

ease of integration and comparison with the single MT Occam inversion as well as

the combined approach.

In the past, gravity inversion has not been formulated in this equivalent MT

Occam fashion. However, there does exist the closely related 3D algorithm devised

by Li and Oldenburg [64]. The similarities between the two schemes are that they

both define ‘structural roughness’ in terms of the first order derivative of the model

parameters and both construct the objective function using Lagrange multipliers.

The difference between the two algorithms is the dimensionality (2D vs. 3D) and,

more importantly, the scheme used to solve the objective function. The Occam

inversion uses a non-linear iterative scheme whereas Li and Oldenburg [64] apply a

subspace method designed for linear inverse problems.

This chapter is structured as follows. First, applying the non-linear optimisation

technique to the linear gravity inversion technique is justified and reconciled. The

methodology of the Occam gravity inversion is then explained. Finally, the inversion

algorithm is tested using synthetic models.

61
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4.1 Linear vs. Non-Linear Schemes

A primary aim of developing the new gravity inversion scheme is to have an approach

that can be readily combined with MT in a joint inversion. The format of the joint

inversion will be the non-linear 2D Occam inversion. Therefore, even though gravity

is a linear technique and could be applied to the linear Occam approach, it will be

applied to the non-linear 2D Occam inversion. It was shown in Section 3.2 that, in

the non-linear scheme, the model parameters are updated according to the equation,

mk+1(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdJk)

T (WdJk)
i−1

(WdJk)
T (Wdd− F[mk] + Jkmk) . (4.1)

A prominent feature of discrete, linear inversion techniques (proven in Section 4.2.1)

is that the linear forward model operator is equal to the Jacobian matrix (G = J).

Substituting this into Equation 4.1 gives

mk+1(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdGk)

T (WdGk)
i−1

(WdGk)
T (Wdd−Gkmk +Gkmk) , (4.2)

which simplifies to

mk+1(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdGk)

T (WdGk)
i−1

(WdGk)
T (Wdd) . (4.3)

In Section 4.2.1 the gravity forward model operator will be shown to be de-

pendent only on the grid configuration and is fixed at each iteration. Therefore,

the scheme is no longer iterative and Equation 4.3 no longer needs the k iteration

subscript, becoming

m(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdG)

T (WdG)
i−1

(WdG)
T (Wdd) . (4.4)
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This expression for obtaining the model parameters is the same as that obtained

from the linear Occam approach given in Section 3.3. Therefore, when applying the

non-linear Occam scheme to gravity data, it reduces to the linear Occam scheme.

The gravity inversion can be programmed in a format compatible with the MT

inversion and yet, as a stand alone inversion scheme, be executed as the linear

Occam approach.

4.2 Methodology

In this section the 2D Occam scheme outlined in Section 3.2 will be applied to

the gravity technique. This is done by redefining the relevant parameters, then

describing the implementation details.

4.2.1 Parameter Descriptions

The parameters of the MT inversion, as stated in Section 3.2, which make it spe-

cific to MT are the data type (apparent resistivity and phase), model parameters

(resistivity), the forward model operator, the Jacobian matrix and the model pa-

rameterisation. Therefore, these are the quantities that need to be redefined so as

to adapt the algorithm for gravity inversion.

Model Parameterisation

The model parameterisation used by the gravity inversion is the same as that used by

the MT inversion (Section 3.2.1) namely rectangular cells, each of constant physical

property (density in the case of gravity and resistivity in the case of MT). Having

the same model parameterisation maintains compatibility between the gravity and

MT inversion and means that they are in the same format for the joint inversion.

Data Type

The data type used by the Occam gravity inversion is the vertical component of the

gravity response, expressed as Bouguer anomaly values in units of mGals. The data

vector d is written as
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d = (d1, d2, ..., ds) , (4.5)

where s is the number of data points and each datum corresponds to the Bouguer

anomaly values at various stations along the 2D survey line. Accompanying every

data point is an estimated error or uncertainty, expressed as a standard deviation

(σ∗) and used in the data weighting matrixWd.

Model Value

Bouguer gravity anomaly data yield models in terms of subsurface density contrasts

relative to an unknown background density. The actual density values of the rocks

are the sum of the density contrast and the (unknown) background density (Sec-

tion 2.2.1). Therefore, in specifying the density contrast model, the relative density

values can be either positive or negative, depending on whether they are larger or

smaller than the background. The model parameter vector m is written as

m = (ρ1, ρ2, ..., ρn) , (4.6)

where n is the number of model parameters and ρi is the density of ith cell in the

regularisation grid, in units of kgm−3. Note that actual discrete density values are

used as the model parameters rather than some monotonic function of density. This

is to maintain the linear relationship between density and the model response.

Forward Model Operator

The forward model operator takes model parameters and the grid configuration to

produce a theoretical model response. In Section 3.1.3 the various methods for

calculating the gravity response of different shaped bodies were discussed. In the

Occam inversion, the forward model operator acts on the finite element mesh, which

consists of a regular array of rectangular cells. Therefore, methods that utilise a

rectangular configuration are preferred. The 2D right angle prism configuration is

detailed by Telford et al. [6] and used here.

Figure 4.1 shows the configuration of a right-angled rectangular prism of width
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Figure 4.1: Configuration of a 2D right angled prism.

b, buried at a depth of z1 and having a depth to its base of z2. For the 2D situation,

the model is assumed to extend infinitely in the x-direction. The profile (along the

y axis) is perpendicular to strike. The vertical gravity response (gz), in mGals, of

the 2D prism body at point P on the surface is given by [6]

gz = 2× 105Gcρ
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, (4.7)

where ρ is the density of the prism and Gc is the universal gravitational constant,

6.67× 10−11 Nm2kg−2.

For a given station, the model response of each prism is calculated using Equa-

tion 4.7. The total model response at that station due to all prisms, is obtained

by superposition, namely, simply adding together the gravity responses of each ele-

mentary prism. Mathematically, the model response is expressed as F[m], with the

density term ρ in Equation 4.7 being representative of the m term and the remain-
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der of Equation 4.7 forming the basis of the F term. This means that the gravity

forward model operator, F, is only dependent on the configuration of the grid.

Boundary Conditions of the Forward Model Operator

To maintain accuracy of the forward model calculations, the boundary conditions at

the sides and bottom of the grid need to be addressed. The gravity inversion does

not have a bottom boundary condition. The gravity kernel decreases according to

distance squared. Therefore, provided the grid extends deep enough, the influence

of the deep grid cells is negligible and has minimal effect on the overall gravity

response. The depth termination of the grid will thus have minimal effect on the

response.

A similar approach to the bottom boundaries could be taken for the side bound-

aries. If the gravity data at the edges of a profile are zero, a model response that

is also zero is desired. This is achieved by the density values of the boundary cells

being set to zero. However, if the gravity data are not zero at the edges of the

profile, there is a need to extend the side boundary cells to infinity, which is done

here using a 2D horizontal sheet [6]. Figure 4.2 shows the configuration of the 2D

horizontal sheet used to terminate the rows at the right of the grid. It is a right

angled rectangle that extends to infinity in the strike (x-directions) and positive

y-direction. The vertical gravity response (gzRHS), in mGals, of the horizontal sheet

at point P is given by [6]

gzRHS = 2× 105Gcρ

∙
π

2
(z2 − z2) +

y

2
log

½
z22 + y2

z21 + y2

¾
+z2 tan

−1
µ
y

z2

¶
− z1 tan

−1
µ
y

z1

¶¸
. (4.8)

A similar formulation is used for the termination of the grid on the left hand side.

Jacobian

The Jacobian is an s×n matrix which determines how each model parameter affects

the model response. The elements of the Jacobian are
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Figure 4.2: Configuration of a horizontal sheet used to terminate rows on the right
hand side of the grid.

Jij =
∂di
∂mj

, (4.9)

where i = 1, 2, ..., s corresponds to the gravity data points and j = 1, 2, ...., n corre-

sponds to the model parameters. This is equivalent to

J =
∂F [m]

∂m
, (4.10)

and since there is a linear relationship between F and m, taking the derivative in

Equation 4.10 will result in J = F. The Jacobian and the forward model operator

are equal. They are both independent of the model parameters and solely dependent

on the grid configuration.

For a 2D prism, using Equation 4.7 the Jacobian is given by

J = 2× 105Gc
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For the model parameters at the edge of the grid, the response was calculated using

the horizontal sheet expression (Equation 4.8), the Jacobian is

J = 2× 105Gc

∙
π

2
(z2 − z2) +

y

2
log

½
z22 + y2

z21 + y2

¾
+ z2 tan

−1
µ
y

z2

¶
− z1 tan

−1
µ
y

z1

¶¸
. (4.12)

4.2.2 The Computer Program and its Implementation

The above definitions of data type, model values, forward model operator, boundary

conditions and Jacobian matrix were implemented to produce the Occam gravity

inversion program. Figure 4.3 shows the steps involved in the gravity inversion; it is

based on similar steps taken by the MT inversion. The changes in steps between the

two versions reflect the fact that, in the gravity case, the forward model operator

and Jacobian are equal, and so only one needs to be calculated. Also, the non-linear

gravity inversion in Section 4.1 was shown to be equivalent to the linear scheme.

Therefore it only requires one iteration to find the model parameters, followed by a

search for the optimal μ value.

In the Occam gravity inversion program, the inverted model parameters (Equa-

tion 4.4) are only dependent on the data, the forward model operator and the μ

value. However, it was shown that the forward model operator is only dependent

on the grid configuration, which means that it and the data are pre-determined

before the inversion is executed. As a result, finding a model that meets the desired

tolerance is solely dependent on the μ value.

A user manual for conducting the gravity inversion is given in Appendix A. The

program that performs the Occam gravity inversion has the same features as the MT

program that was discussed in Section 3.2.3. These include model limits, topography

or bathymetry, fixed values, sharp boundaries, structure in the start-up model and

a prejudice or preferred model. The triangularisation feature is available but the

response of each triangle is approximated as being one quarter the response of the

total cell.
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Figure 4.3: Flow chart of the steps taken by the Occam gravity inversion (adapted
from the flow chart produced by deGroot-Hedlin and Constable [90]).

4.2.3 Methodology Summary

The Occam gravity inversion program takes the input Bouguer anomaly data in units

of mGals and returns a density contrast model in units of kgm−3. The forward model

operator and the Jacobian are equal and only depend on the grid configuration. They

are calculated using the analytical expression for a 2D prism. A 2D horizontal sheet

is used as the side boundary condition, to effectively extend the sides of the grid to

infinity.

4.3 Behavioural Characteristics

Convergence and stability are two important features of an inversion program that

need to be considered in the context of the Occam gravity inversion development. It

is desirable that the inversion program produces the same final model, regardless of

  
                                          NOTE:   
   This figure is included on page 69 of the print copy of  
     the thesis held in the University of Adelaide Library.
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the starting model used. Unlike an iterative scheme, the gravity model parameters

(Equation 4.4) are independent of the starting model and, for a given grid and data

set, they are only dependent on the μ value. However, changing the starting model

will result in the same μ value, because the μ value is found by minimising the

data norm, which is also independent of the starting model. The stability of the

inversion depends on being able to calculate the inverse matrix needed to obtain

the model parameter values (Equation 4.4). The success of the inverse calculation

requires that the μ value be large and positive [75]. For the inversions discussed in

the next section, extremely small values of μ cause the inverse matrix calculation

to fail. However, when the μ values are close to the value of the final solution the

matrix inversion succeeds.

A key aspect of the inversion is the determination of the unknown optimal μ

value. This is done using a golden section search method [118]. During the μ

search, values of μ can be found that give an RMS value smaller than one, and in

many cases an RMS value approaching zero. The data fit should not be to a level

better than the expected uncertainty or error of the measurements. If so, then such

models are essentially over-fitting the data and correspond to rough models. The

μ search normally continues until a value is found that corresponds to an RMS of

1, which is a data fit equal to the standard deviation of each measurement. These

models adhere to the Occam philosophy of producing the smoothest possible model

that only contains structure essential to explain the observations.

Every model discussed in the following section on synthetic testing has a different

optimal μ value. Therefore, it would be inappropriate and unsatisfactory to run this

type of inversion with a fixed μ value. A fixed μ value is equivalent to a Tikhonov

Regularisation inversion (Section 3.1.1), which finds the appropriate μ value through

a trial and error approach. Although the optimum μ value is unpredictable, there

are some general trends which can be observed. When the misfit level increases, the

inversion generally needs to produce a rougher model to bring the calculated and

observed data closer together. As a result, the optimal μ value decreases. Increasing

the density contrast will produce a larger roughness term in the regularisation and

so the μ value will increase in an attempt to produce a smoother model. There is one



4.4. SYNTHETIC TESTING 71

situation where multiple inversions will produce the same μ value, and this is when

the separate data sets are offset from each other by a fixed (constant) amount. This

demonstrates that the μ value is sensitive to the relative variations in the response

(and subsequent model), rather than the absolute values.

4.4 Synthetic Testing

In this section a number of synthetic models are used to test the newly developed

Occam gravity inversion program. The objectives are to demonstrate that the in-

version works and to determine how well the synthetic models are reconstructed.

4.4.1 Synthetic Models and Data

Four 2D density contrast models were used for the synthetic testing of the gravity

Occam inversion. They are shown in Figure 4.4. These models are referred to as one

box, two box, horizontal sheet and horizon models. The one box model is a 3×3 km

square body with its top boundary located at a depth of 1 km. The two box model

has two 3× 3 km square bodies separated by 4.3 km, with their top boundary also

at a depth of 1 km. The horizontal sheet model is a 1 km thick rectangle with its

top boundary at a depth of 0.5 km. The left boundary of the horizontal sheet is

located in the middle of the model and the right boundary extends to infinity. The

horizon model is a vertical step model, in which the horizon on the left steps down

from a depth of 3 km to a depth of 4 km for a distance of 4.5 km, before stepping

back up to 3 km depth for a distance of 4.3 km. This is followed by a second step up

to 1.5 km depth for a distance of 4 km. Eventually, the horizon returns to the 3 km

depth. Both left and right edges of the horizon, at the 3 km depth level, extend to

infinity.

The density contrast models have a background density of zero and seven differ-

ent densities were assigned to the anomalous bodies enclosed in the models: 10, 25,

50, 100, 250, 500 and 1000 kgm−3. The bodies in the horizontal sheet and horizon

models were only assigned positive density contrast values, whereas the body in the

one box model was assigned both a positive and a negative density contrast value.
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Figure 4.4: Synthetic models used to test the Occam gravity inversion. These are
refered to as a) one box, b) two box, c) horizontal sheet and d) horizon models.

The two box model assigned the left box a negative density value and the right box

a positive density value.

The data generated from these contrast models are already in Bouguer anomaly

values. Along the profile, synthetic gravity values were computed for each model at

20 discrete locations separated by 1 km as simulated stations (see Figure 4.4). A

combination of the analytical expressions for a 2D prism and a horizontal sheet as

discussed in Section 4.2.1 were used to generate the synthetic data. The body in the

horizon model does not have a defined lower limit. When calculating its response,

changing the lower depth limit will offset the synthetic data by a constant value.

Since the investigation with this model is only concerned with the contrast in the

response caused by the steps, the data generated for the horizontal sheet model
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Table 4.1: The synthetic response amplitudes and the error levels used to investigate
the effects of errors on the Occam gravity inversion.

one box two box horizontal sheet horizon
synthetic amplitude 2.15 4.11 1.96 2.16

percentage error level error level error level error level
of amplitude (mGal) (mGal) (mGal) (mGal)

1%A 0.02 0.04 0.02 0.02
3%A 0.06 0.12 0.06 0.06
5%A 0.11 0.21 0.10 0.11
8%A 0.17 0.33 0.16 0.17
10%A 0.22 0.41 0.20 0.22
15%A 0.32 0.62 0.29 0.32
25%A 0.54 1.03 0.49 0.54
50%A 1.08 2.06 0.98 1.08
75%A 1.61 3.08 1.47 1.61
100%A 2.15 4.11 1.96 2.16

are offset by a constant value in such a way that, at the mid point between the

maximum and minimum gravity values, the data point is set to zero.

Noise was added to every synthetic data point in the form of an absolute ran-

dom error having a zero mean Gaussian distribution. The maximum error levels

used were either 0.03 or 0.06 mGals, which correspond to the precision range of

current gravimeters [6]. The effect of the error level on the gravity inversion will be

investigated. The various model types and density contrasts produce significantly

different amplitudes in the synthetic data and applying the same fixed error level

to all of them would make evaluating the effect of the error level difficult. There-

fore a fixed error was still used, but the value is assigned to be a percentage of the

maximum synthetic data amplitude. An example of the fixed error allocation based

on the data amplitude is given in Table 4.1 for a density contrast of 50 kgm−3. Af-

ter the percentage value, used to calculate the fixed error, the symbol %A follows.

This symbol is used throughout this thesis to delineate this style of gravity error

allocation.

4.4.2 Inversion Grid

The same grid was used for each model and is shown in Figure 4.5. The top 5 km

has a row spacing of 100 m and a column spacing of 333 m. Between depths of 5
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Figure 4.5: The regularisation grid used by all Occam gravity inversions.

and 10 km, the row and column spacings are 250 and 666 m, respectively. Below

10 km depth and extending to the termination of the grid at 20 km, the row spacing

is 500 m and the column spacing is 1333 m. Further consideration is given to the

grid configuration in Section 4.5.1.

4.4.3 Inverted Model Results

All models produced by the Occam gravity inversion have an RMS of 1. Selected

results from the inversions of the one box, two box, horizontal sheet and horizon

models are shown in Figures 4.6, 4.7, 4.8 and 4.9, respectively. All the synthetic

data have an error of 0.03 mGal and respective density contrasts of 10, 100, 500

and 1000 kgm−3. Due to the large number of inversions undertaken, not all results

from the different contrasts and error levels are shown. However, all models have

the same general characteristics and are consistent with the findings reported.

The Occam gravity inversion program produces models which have a similar

appearance. Anomalous density values are placed at the surface because the gravity

method has limited depth resolution capability [64]. The smoothness constraint then

smears the surface anomalies vertically and laterally into the model. The lateral
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Figure 4.6: The results from the Occam gravity inversion for the one box synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgm−3, b) 100 kgm−3, c)
500 kgm−3 and d) 1000 kgm−3.
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Figure 4.7: The results from the Occam gravity inversion for the two box synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgm−3, b) 100 kgm−3, c)
500 kgm−3 and d) 1000 kgm−3.
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Figure 4.8: The results from the Occam gravity inversion for the horizontal sheet
synthetic model with an error of 0.03 mGals and a contrast of a) 10 kgm−3, b)
100 kgm−3, c) 500 kgm−3 and d) 1000 kgm−3.
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Figure 4.9: The results from the Occam gravity inversion for the horizon synthetic
model with an error of 0.03 mGals and a contrast of a) 10 kgm−3, b) 100 kgm−3, c)
500 kgm−3 and d) 1000 kgm−3.
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positioning of the anomalous density values are controlled by the spatial gradients

in the synthetic data. For all models, the edges of the anomalous densities at the

surface coincide with the locations of the lateral boundaries in the synthetic models.

The lateral boundaries of the anomalous densities do not plunge vertically, but

are inclined. The inclination is for two reasons. Firstly, the smoothness constraint

endeavours to produce circular features, as they correspond to a small roughness

value (Figure 4.6). Secondly, if the model feature has a positive contrast with its

surrounds then the inclination is in the same direction as the decrease in the synthetic

data (Figure 4.6b), or if the model feature has a negative contrast the inclination is in

the opposite direction to the decrease in the synthetic data (Figure 4.6c). Therefore,

the inclination of the boundary reflects the gradient of the synthetic data and it is

this gradient which is being fitted in the inversion.

The magnitudes of the contrasts obtained by inverting the gravity data are always

less than the true contrasts of the synthetic model. The total mass in the final

model (the volume sum of all absolute density values of each cell) is the same as the

synthetic model. The horizon model is excluded from this statement because the

synthetic data were artificially altered (as discussed earlier), which cause a variation

in the total mass of the final model. Since the total mass is the same for the other

models, the smoothness constraint not only smears the boundaries of the model

features but also redistributes the mass in the model. The redistribution of mass

causes the contrast to be incorrect. This is compensated by the overshooting of the

density values at the sides of the anomalous bodies to allow for a better fit of the

synthetic data. A clear example of this is the one box model in Figure 4.6b. It shows

a central positive feature but towards the model edges the density values overshoot,

producing negative side lobes.

Varying the magnitude of the density contrasts in the synthetic model changes

the actual density values and the resulting contrast of the model, but it does not

change the overall appearance, shape and location of the reconstructed anomalies.

An increased contrast causes the models to have larger roughness values because the

variation between each cell needs to be larger to accommodate the greater contrast.

In these synthetic experiments even a small contrast of 10 kgm−3 produces coherent
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and plausible models when the error is at its smallest value of 0.03 mGals. For larger

errors of measurement, such small contrast bodies would be difficult to detect and

delineate.

The recovered model features are best when the errors are small (Figure 4.10a).

As the error increases slightly, the model features are still evident but a smoother

model with a decrease in contrast is reconstructed, with its boundaries less pro-

nounced. The increased errors allow for a smoother model because the model re-

sponse under-estimates the ‘observed’ synthetic data over a positive density contrast

and over-estimates the synthetic data at the sides (Figure 4.10b). The RMS is a

global average measure of data fit which does not identify individual data point

agreements. As expected, when the errors are large, they hinder the inversion from

correctly locating the boundaries. They can lead to erratic structure, which is used

by the inversion program to fit the errors rather than the true signal (Figure 4.10c).

Finally, the errors can be so large that they result in a very smooth inverted model

which does not resemble the true (synthetic) model at all (Figure 4.10d).

4.4.4 Synthetic Testing Summary

The Occam gravity inversion has proven to be stable and always produces models

with an RMS of 1. It was found that all density contrast distributions recovered by

the inversion have a similar appearance. The main density anomalies are located

at the surface and smeared laterally and vertically into the model. The surface

boundary of the density anomalies corresponds to the lateral boundaries or edges of

the anomalous features in the synthetic models, demonstrating the sensitivity of the

gravity method to lateral changes in density. The recovered density contrast from

the inversion is always less than that of the true (synthetic) model and is due to

the smoothness constraint which redistributes the anomalous mass throughout the

model. Increasing the error slightly allows for a smoother model to be obtained.

However, large errors (> 25%A) produce models having erratic structure.

The synthetic testing has validated the Occam gravity inversion program, estab-

lished that it yields useful results, but due to the inherent non-uniqueness of the

gravity method it is unable to reproduce the true synthetic model. This highlights
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Figure 4.10: The results from the Occam gravity inversion for the one box and
horizontal sheet synthetic models with a contrast of 50 kgm−3 and an error of a)
1 %A, b) 3 %A, c) 15 %A and d) 25 %A of the amplitude of their synthetic data.
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the need for external constraints to aid the inversion in reconstructing the subsur-

face structure. Next, ways of improving the depth resolution of gravity data are

investigated, as well as how to use additional geological information to constrain the

inversion.

4.5 Depth Resolution

The models produced by the Occam gravity inversion are dominated by features

located at or near the surface. In this section, two methods are examined which

can aid the inversion in correctly locating the model features with depth. The two

methods are altering the grid configuration and using a depth weighting function.

4.5.1 Grid Configuration

The EM fields decrease exponentially with depth in a homogeneous half space. In

an MT inversion using a logarithmically depth scale, which has a grid thickness that

increases in equal logarithmic intervals (exponentially), improves the structure loca-

tion and data fit [80] [89]. Here, a similar approach is applied to gravity inversion.

The gravity anomaly was expressed in Equation 2.47 as a Fredholm integral. The

kernel of the integral embodies the physics of the gravity technique and encapsulates

Newton’s Law of Gravitation. The kernel (or Green’s function) decreases inversely

with the distance squared. To counteract this decay of the kernel, a new grid can

be introduced which increases the row thickness in proportion to the depth squared.

Since gravity data will ultimately be combined with MT data in a joint inversion,

the effect of using an equal logarithmic grid spacing with depth (designed for MT)

is also investigated. The results from the gravity and MT designed grids are then

compared to the uniform grid discussed in Section 4.4.2.

The three grids, referred to as squared, logarithmic and uniform, have 90 layers

and are terminated at 20 km. The row thickness increases as the depth squared and

exponentially (equal logarithmic intervals) for the squared and logarithmic grids,

respectively. The uniform grid has an equal spacing with depth, and was described

in Section 4.4.2. The column thickness for all models is 333 m from the surface to
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Figure 4.11: The results from the Occam gravity inversion with no horizontal damp-
ing factor for the two box synthetic model with an error of 0.03 mGals and contrast
of 100 kgm−3. The grid configurations are a) uniform grid, b) squared grid and c)
logarithmic grid.

a depth of 5 km. Between 5 and 10 km depth, it is expanded to 666 m and below

10 km depth it is set at 1333 m. The different grid configurations were tested on the

two box model and the horizon model, each for a density contrast of 100 kgm−3 and

a measurement error of 0.03 mGals. The Occam inversion scheme normally uses a

horizontal damping factor applied to the horizontal roughness term to stop structure

becoming elongated with depth (Section 3.2.1). The Occam gravity inversion was

run with and without the damping factor applied.

Figure 4.11 shows the results of the different grid configurations for the two box

model. When the horizontal damping factor was not applied the models produced
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by the squared and logarithmic grids are very similar in the shallow section and

produce a better representation of the synthetic model than the equal grid. The

squared and logarithmic grids have caused the surface structure to be elongated

with depth and yield anomalous density values in the true box positions. However,

neither grid can map the top of the boxes, since the structure starts at the surface

and continues vertically downwards. Although smeared, the side boundaries of

the anomalous density values are consistent with the known box boundaries. The

bottom boundaries of the two boxes are better defined using the squared grid than

the logarithmic grid, as the large thickness of the logarithmic grid cells continues to

extend structure to the very base of the grid.

The results of the horizon model using the different grid configurations are given

in Figure 4.12. In similar fashion to the two box model, when the horizontal damping

factor was not applied, the squared and logarithmic grids produced features starting

at the surface that are elongated with depth. For both grids, the side boundaries

of the feature representing the ‘high’ in the horizon are hard to delineate but are

in general agreement with the true (synthetic) model. At the centre of this feature

there appears to be a slight anomalous density high, which coincides with the top of

the horizon high. For the squared and logarithmic grids, the feature that represents

the low in the horizon have become very smeared and the lateral boundaries are

almost indistinguishable. The use of grids has not been able to aid in correctly

locating this feature.

When the horizontal damping factor was applied (not shown here), the models

produced by the three grids are almost identical with the anomalous density values

placed at the surface. This is because the horizontal damping factor is designed

to counteract the increase in row thickness with depth and not allow features to

elongate with depth. The uniform grid has minimal variation in row thickness

and the two models produced with and without the horizontal damping factor are

similar, except the model produced with the horizontal damping factor has slight

elongation. The anomalous density region produced when the horizontal damping

factor is applied is concentrated at the surface. It therefore has a slightly higher

density value than the model produced with no horizontal damping factor applied,
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Figure 4.12: The results from the Occam gravity inversion with no horizontal damp-
ing factor for the horizon synthetic model with an error of 0.03 mGals and contrast
of 100 kgm−3. The grid configurations are a) uniform grid, b) squared grid and c)
logarithmic grid.

which yields a larger volume (but lower density) anomalous region of equivalent

total mass.

4.5.2 Depth Weighting Function

The idea of a depth weighting function is to counteract the natural decay of the

gravity kernel with depth, which contributes to the lack of depth resolution. Its

inclusion gives every cell at different depths an equal probability to enter the model

solution with a non-zero value [64]. Li and Oldenburg [64] found that a function of

the form (z + z0)
−2 closely approximates the kernel’s natural depth decay beneath
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Table 4.2: The optimal weighting factor values used in Li and Oldenburg’s depth
weighting function for the synthetic models.

Model β∗ z0
one box (positive anomaly) 2 50

two box 2 50
horizontal sheet 1.5 50

horizon 2 100

a given station. The exponent 2 is appropriate, indicating the inverse square law,

as the gravity kernel decays at a rate of inverse distance squared. They developed

the following depth weighting function,

w (z) =
1

(z + z0)
β∗/2

, (4.13)

where z is depth, and β∗ and z0 are weighting factors, with β∗ varying between 1.5

and 2.0. The larger the β∗ and z0 values, the deeper the structure will be placed.

Li and Oldenburg’s depth function was incorporated into the gravity inversion by

weighting the roughness matrix, with each element having its weight determined by

the depth of the corresponding cell.

A depth weighted inversion was performed for each synthetic model, and used

a density contrast of 100 kgm−3 and an error of 0.03 mGals. Through a process of

trial and error, the best values of β∗ and z0 were determined for each model. These

values are given in Table 4.2. The inverted model results are shown in Figure 4.13.

Other combinations of the two weighting parameters produced similar results. As

expected, it was found that the correct placement of the structure was most sensitive

to β∗, whereas changing z0 had little effect.

The optimal β∗ and z0 values for all models (see Table 4.2) are consistent with

larger β∗ and z0 values being needed for deeper structures. The same β∗ and z0

values are used for the one box and two box synthetic models to correctly locate

the top of the box boundaries. The values are the same because the two models

have similar features at the same depth. For the horizontal sheet model, the depth

weighting function correctly locates its top boundary close to its lateral boundary in

the middle of the model. However, at positions away from the middle of the model,

the top boundary has a steep inclination and continues to depths far greater than



4.5. DEPTH RESOLUTION 87

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

a) 0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

b)

0 5 10 15 20

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

distance (km)

c)

0 5 10 15 20

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

 

 

de
pt

h 
(k

m
)

distance (km)

d)

density (kgm-3)

-100 -50 0 50 100

Figure 4.13: The results from the Occam gravity inversion with a depth weighting
function for the a) one box, b) two box, c) horizontal sheet and d) horizon synthetic
models with an error of 0.03 mGals and a contrast 100 kgm−3. The associated β∗
and z0 values are given in Table 4.2.

the actual depth of the top boundary. In the horizon model, which has two features

at different depths, the depth weighting function can only correctly locate the top

of the ‘high’ in the horizon and fails to locate the ‘low’.

Although the depth weighting function can be of benefit in correctly locating the

top of the model’s features, it occurs at the cost of losing all other boundaries. The

bottom boundaries are indeterminate, due to the elongation of the features. The

lateral boundaries are difficult to determine as they change with depth. The depth

weighting has also caused a fictitious widening of the features with depth. This

is particularly evident in the box models (Figures 4.13a and 4.13b). The inverted
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density contrast for the models produced using the depth weighting function is

larger than for the models without, and is a better representation of the true value.

However, the main anomalous density values occur at depths lower than the bodies

they actually represent.

4.5.3 Depth Resolution Summary

A depth weighting function or an appropriate grid configuration transformation

(e.g. squared or logarithmic grids) can marginally aid the Occam gravity inversion

to correctly locate structure with depth. The depth weighting function can find the

top boundary of the synthetic model’s features but this is at the expense of not

being able to determine the lateral and bottom boundaries.

The squared, logarithmic and uniform grids return similar results if a horizontal

damping factor is applied to the smoothing, but then the grid configuration is of sec-

ondary importance. Without a horizontal damping factor, grids where row thickness

increases in proportion to the depth squared or exponentially, will produce similar

models. The anomalous buried bodies have a surface expression and are elongated

with depth. Neither grid was able to reconstruct the top boundary of a feature,

but the lateral boundaries were consistent with the true models. A benefit of the

transformed non-linear grids is that each produced similar results. Therefore, for

joint inversion of MT and gravity data, the logarithmic grid (commonplace in MT)

can be used without any adverse effect on the gravity component of the inversion.

4.6 Constraining the Inversion

The Occam features discussed in Section 4.2.2 can be used to incorporate a priori

information into the inversion. A priori information can be in the form of geological

information such as the location of different formation units, faults, unconformities

or rock type boundaries. This information is introduced to the inversion by using

sharp boundaries, fixing density values and assigning a prejudice (preferred) model.

The two box model, having a density contrast of 100 kgm−3 and an error of

0.03 mGal, was used to demonstrate the Occam features. Inversions were carried
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out with sharp boundaries or regularisation decoupling at the side boundaries of the

boxes only, the top boundary only, and along all boundaries. Inversions were also

run with the density contrast of the boxes or the inner part of the boxes fixed at

the correct value and with a prejudice model, with a prejudice weighting of 50, 75

or 100%, that contained the correct density values at the location of the two boxes.

When a sharp boundary is placed at the top boundary of the boxes (Figure 4.14b)

there is no improvement in the inversion result (Figure 4.14a). The model features

are still placed at the surface and smoothed over the sharp boundary. The reason for

this is that gravity is sensitive to lateral changes and not horizontal features. Placing

sharp boundaries vertically at the box side boundaries results in the two boxes being

better defined and the main density anomaly located in the box areas (Figure 4.14c).

However, the smoothness constraint and the inversion inability to locate structure

with depth cause the density anomaly to be extended in the vertical direction.

Placing sharp boundaries at all box boundaries ensures that the inversion estimates

the location of the boxes accurately; the resulting density contrast inversion result

is almost identical to the original true model (Figure 4.14d).

When only the inner part of the boxes’ density was fixed, rather than placing the

required extra density within the boxes on each side, it was placed at the surface,

independent of the boxes (Figure 4.14e). Using a prejudice model with a low preju-

dice weighting enables the inversion to correctly locate the two boxes (Figure 4.14f).

However, it causes an overshooting of density values for the boxes and spurious fea-

tures around each box. These spurious features diminish as the weighting of the

prejudice model increases. At the point at which the prejudice weighting is 100%,

the inversion produces a model that is almost identical to the original.

4.7 Conclusions

The Occam gravity inversion program developed in this chapter is implemented as

a non-linear 2D scheme, in the same format as the MT inversion, for ease of incor-

poration into a joint inversion approach. However, the non-linear scheme reduces

to the linear Occam scheme when it is applied to a geophysical technique such as



90 CHAPTER 4. OCCAM GRAVITY INVERSION

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

a) 0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

b)

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

c) 0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
de

pt
h 

(k
m

)
d)

0 5 10 15 20

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

de
pt

h 
(k

m
)

e)

distance (km)
0 5 10 15 20

0

5

10

15

20

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

 

 

de
pt

h 
(k

m
)

f)

distance (km)
density (kgm-3)

-200 -100 0 100 200

Figure 4.14: The results from the Occam gravity inversion for the two box synthetic
model with an error of 0.03 mGals and a contrast of 100 kgm−3. The constraints im-
posed are a) no constraints, b) sharp boundaries along the top, c) sharp boundaries
along the sides, d) sharp boundaries at all boundaries, e) fixed density of 100 kgm−3

in the inner part of the boxes and f) prejudice model with the each box having a
density of 100 kgm−3 and a 50 % weighting.
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gravity, which has a linear forward model formulation. The Occam gravity inversion

is stable and always produces models with an RMS of 1. The inverted models have

anomalous density values placed primarily at the surface, but because of smoothing

get smeared vertically and laterally into the model.
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Chapter 5

Linking the Gravity and

Magnetotelluric Techniques

Gravity and MT are two fundamentally different techniques that will be combined

in a petrophysical joint inversion. The benefits of combining these two techniques

and establishing how density and conductivity should be linked in the joint inversion

form the subject matter of this chapter. Also, the equations used to link density

and conductivity are critically examined.

5.1 Why Gravity and Magnetotellurics?

Individual inversions of gravity data or MT data produce highly varied models that

can fit the data equally well. Gravity inversions are inherently non-unique and have

little intrinsic depth resolution, while MT inversions are vulnerable to distortions

(noise) in the MT data. MT inversions are also less sensitive to resistive (low

conductivity) structures. These facts suggest that the gravity and MT techniques

could benefit from some form of joint inversion. In this section the theoretical and

logistical benefits specific to combining these two techniques will be discussed.

Theoretically, gravity and MT are fundamentally different techniques. In Sec-

tion 2.2.1 it was shown that the gravity technique satisfies the Laplace and Poisson

equations, whereas in Section 2.1.1 it was shown that the MT technique satisfies

the diffusion equation. Having two techniques which satisfy different governing

93
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equations can be beneficial to a joint inversion because each technique can provide

different information about the subsurface. The MT technique can provide depth

resolution, for which the gravity technique is limited, although gravity data can help

constrain lateral variations in the subsurface. A diffusion-based technique, involving

a first order time derivative (quasi-static case) will contain more information about

the subsurface than a potential field method which has no time-dependency (static

case). Therefore, in the joint inversion, the MT technique is expected to play the

dominant role in the reconstruction of the subsurface, whereas the gravity technique

aids in refining these results.

In Section 2.1.1 it was shown when working with a poor conductor or for a specific

(fixed) instance in time, the diffusion equation which governs the MT technique

reduces to the Laplace equation (away from a source) or the Poisson equation (in

the presence of a source). This means that the MT field quantities satisfy the

potential field equations which govern gravity. Therefore, on a comparable scale

it would be expected that both techniques behave in a similar manner. Similar

behaviour of the two techniques when combined in a joint inversion is desirable, as

there is an increased likelihood that they will detect the same subsurface features

and exhibit similar variations in their responses over a given distance. The similar

spatial patterns of the gravity and MT responses have previously been observed

on a large scales [121] [122] [123]. In the Fowler domain in South Australia, the

structural boundaries in the Bouguer anomaly map align with the 2D MT responses

and these correspond to adjacent blocks having different chemical, temperature and

fluid properties [121].

Comparable spatial variations in the MT and gravity responses mean they have

similar acquisition trends. It is often beneficial for the two techniques in a joint

inversion to have similar station spacing as the number of stations and the station

spacing influences the size and shape of the inversion grid. If two techniques are

jointly inverted while having a significantly different number of stations or an irreg-

ular station density in relation to the other technique, then this can cause the joint

inversion to favour fitting one technique at the expense of the other (Section 7.3).

The gravity and MT techniques are well suited in terms of field acquisition.
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They are both relatively cheap techniques by which to acquire data, and this has

led to a large volume of freely accessible data. In Australia, there exists the Aus-

tralian National Gravity Database [65] which contains open-file information about

all gravity surveys conducted in Australia. Internationally, experiments such as the

Gravity Recovery and Climate Experiment (GRACE), have yielded open-file grav-

ity data for the globe [124]. There is also an increase in MT data acquisition being

achieved; one example is the AuScope program, an initiative of the Australian Fed-

eral Government [125]. Gravity and MT data sets are also starting to be acquired

during the same geological investigations, predominately for petroleum and geother-

mal exploration in sedimentary basins [126] [127] [128]. Joint acquisitions and easily

accessible data have created many opportunities for gravity and MT joint inversions

to be undertaken, contributing further to geophysical research.

Finally, as shown in Chapter 6, gravity and MT provide an opportunity to de-

velop a new implementation of a petrophysical joint inversion. However, the link

between conductivity and density (which will be used in the joint inversion) must

first be established and validated.

5.2 Choice of Defining Equations

The choice of suitable and applicable defining equations used to link the two tech-

niques in a petrophysical joint inversion is the key to its success. These defining

equations determine how robust the joint inversion will be and to what geological

environments it can be applied. In the case of gravity and MT, there is no analytical

equation that directly links density and conductivity, however, the individual be-

haviour of both conductivity and density were previously described in Sections 2.1.2

and 2.2.2. Based on these equations an indirect link between density and conduc-

tivity can be determined.

Effective medium conductivity models give the bulk conductivity of multiple

conducting phases with different shapes and geometries, such models include the

Hashin-Shtrikman Bounds, Waff model, parallel model, perpendicular model, brick-

layer model and the random model [40] [41] [42] [43] [44] [45] [46] [47] [48]. These
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conductivity models and the summation density model [69] are analogous; they

are all functions of the conductivity or density of each constituent phase and their

volume fractions. Using these models to developing a link between density and

conductivity is practically impossible as they are functions of their own properties.

The only similarity between the models is that they all involve fractional volumes.

Therefore, if there exists prior knowledge on the conductivity and density of each

phase then one can try to ascertain the fractional volumes of the different phases.

However, fractional volumes are simply a reflection of rock composition and do

not clearly describe a joint behaviour between conductivity and density. Another

drawback of using effective medium models as a link in a joint inversion is that

they are not representative of the true conductivity of the Earth, as they only apply

to simple geometric distributions of conductivity phases and give bounds between

which the true conductivity lies.

In the case of mantle minerals, the Arrhenius relationship [50] can be used to

describe conductivity values, while the High Temperature density model and Mg#

density model [69] [70] [71] can be used to describe density values. The Arrhenius

relationship and the High Temperature density models describe both conductivity

and density in terms of temperature. An increase in temperature will cause an in-

crease in conductivity, and a decrease in density. The Hirsch variation [59] of the

Arrhenius relationship and the Mg# density models describe mantle mineral density

and conductivity in terms of the magnesium number. Iron and magnesium are im-

portant, since iron can be chemically substituted for magnesium in the lattice [129],

giving rise to an increase in both conductivity and density. Using these equations

could result in temperature or the magnesium number providing a link between den-

sity and conductivity, with the final joint inversion having applications in mantle

investigations but hardly for sedimentary basin and upper crustal investigations.

One problem associated with using a density and conductivity link based on

mantle minerals is that mantle conductivity processes are not fully understood.

Temperature and Mg# dominate mantle mineral conductivity, but oxygen fugacity,

hydration, pressure and grain size also have an effect [58]. The lack of understand-

ing of mantle conductivity processes is highlighted by the mismatch in conductivity
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Figure 5.1: Schematic representation of a sedimentary rock showing a) the two dif-
ferent phases, matrix and pores, and b) their relative proportions based on porosity.

of mantle minerals obtained from laboratory estimations and values extracted from

field data. Also, the Arrhenius relationship and Hirsch model, which model labo-

ratory conductivity measurements, only allow for a single mantle mineral and this

makes applying these equations to the true Earth difficult.

For exploration purposes, the most relevant equations are the porosity-density

relationship for density, and Archie’s Law for conductivity. These are both well

established and accepted empirical equations that describe the bulk properties of

sedimentary rocks in term of porosity. Archie’s Law and the porosity-density rela-

tionship offer a link between density and conductivity through porosity and will thus

form the basis for the gravity and MT petrophysical joint inversion. The following

section discusses the validity of the porosity-density relation, Archie’s Law and the

joint behaviour of density, conductivity and porosity.

5.3 Porosity-Density Relationships

The porosity-density relationship describes the bulk density of sedimentary rock

[130]. As shown in Figure 5.1a, the two primary phases used to describe sedimentary

rocks are the rock matrix (or skeleton of mineral grains) and the pore fluid which

fills the voids. Porosity is a measure of void space, being the ratio of the volume of

voids to the total volume. Porosity values vary between zero, which corresponds to

only matrix with no void space, and a value of one, which has only void space with
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no matrix. Based on porosity, the two components can be redistributed as depicted

in Figure 5.1b and the porosity-density relationship can then be written as

ρbulk = φρfluid + (1− φ)ρmatrix , (5.1)

where ρbulk is the bulk density, φ is porosity, ρfluid is the pore fluid density and

ρmatrix is the matrix (grain) density. The density of the rock matrix is dependent

on the rock type and composition. The matrix density of sandstone, limestone and

dolomite are roughly fixed at 2650, 2710 and 2870 kgm-3, respectively, while shale

densities can vary on average over the range 2650 kgm-3 to 2700 kgm-3 [130].

The pore fluid is most often water or hydrocarbons, with the densities of gas and

oil being approximately 0.7 kgm-3 and 850 kgm-3, respectively [130]. The density

of the formation water is dependent on temperature, pressure and salinity. Water

salinity can vary considerably from fresh water, with salinity of < 10000 ppm,

to hyper-saline fluid with a salinity > 300000 ppm. The salinity of sea water is

∼ 35000 ppm and formation fluids are typically saline with the salinity generally

increasing with depth [131]. Attempts to quantify the relationship between fluid

density, temperature, pressure and salinity have been primarily based on laboratory

observations and are summarised by Adams and Bachu [132]. The best fluid density

model was developed by Batzle and Wang [133] as it can be used for a wide range of

salinities (≤ 320000 ppm), temperatures (20−350 oC) and pressures (5−100 MPa).

The Batzle and Wang model initially calculates the density of fresh water then

adjusts it to account for salinity, and can be stated as follows

ρw = 1 + 1× 10−6(−80T − 3.3T 2 + 0.00175T 3 + 489P (5.2a)

−2TP + 0.016T 2P − 1.3× 10−5T 3P

−0.333P 2 − 0.002TP 2)

ρfluid = ρw + Sal{0.668 + 0.44Sal + 1× 10−6[300P (5.2b)

−2400PSal + T (80 + 3T − 3300Sal

−13P + 47PSal)]} .
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Figure 5.2: An example of a fluid density vs. depth profile for different salinities
based on the Batzle and Wang model [133], using a pressure gradient of 9.9 MPakm-1

and a temperature gradient of 20 oCkm-1.

Here ρw is the density of fresh water, T is temperature in
oC, P is pressure in MPa

and Sal is the salinity represented by the sodium chloride (NaCl) mass fraction in

ppm10-6.

The Batzle and Wang model (Equation 5.2) is graphically depicted in Figure 5.2,

using a pressure gradient of 9.9 MPakm-1 and a temperature gradient of 20 oCkm-1.

These are typical gradients for sedimentary basins. The plot shows minimal variation

in the density values with depth for a given salinity, but the effect of increased salinity

causes an offset to higher densities. If the temperature gradient is increased it would

cause a decrease of density with depth, whereas a pressure increase would cause an

increase in density. Except for extreme temperature gradients, the fluid density

variation with depth remains relatively constant. Due to the lack of variation in

fluid density with depth, it is generally assumed to be constant for a given salinity.

The density of fresh water is ∼ 1000 kgm-3, that of sea water is ∼ 1030 kgm-3, while

hyper-saline fluid can achieve densities greater than 1200 kgm-3.

Figure 5.3 shows several plots of the porosity-bulk density relationship for changes
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Figure 5.3: An example of the porosity-density relationship for a) fixed fluid den-
sity of sea water (1030 kgm-3) and the matrix densities corresponding to sandstone
(2650 kgm-3), limestone (2710 kgm-3) and dolomite (2870 kgm-3) and b) fixed ma-
trix density of sandstone (2650 kgm-3) and the fluid densities corresponding to fresh
water (1000 kgm-3), sea water (1030 kgm-3) and hypersaline fluids (1200 kgm-3).

in the matrix and fluid densities. The upper bound on the bulk density is the ma-

trix density and the lower bound is the fluid density, which corresponds to porosity

values of zero and one, respectively. Between these two end point values, there is

a linear relationship between porosity and bulk density. Variation in the matrix

density has the greatest effect on the bulk property when the porosity approaches

zero. Conversely, the fluid density has the greatest effect on the bulk property when

porosity approaches one.

If assumptions are made about the matrix and fluid densities then porosity val-

ues can be directly obtained from the bulk density values using the porosity-density

relationship. This is common practice when interpreting wireline logs [105]. Using

the porosity-density relationship to determine the correct porosity value leads to

erroneous results when the assumed matrix and fluid densities are incorrect. Con-

fusing fresh water with sea water, or even oil, will only return a small error (∼ 1%)

in porosity, as their densities are closely related with typical values of 1000 kgm-3,
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Figure 5.4: Schematic representation of a partially-saturated sedimentary rock with
a) the different components — matrix, air and fluid and b) their dependence on the
porosity and saturation terms.

1030 kgm-3 and 850 kgm-3, respectively. However gas has a markedly different

density of ∼ 0.7 kgm-3 and if incorrectly identified will cause unrealistic porosity

values. Matrix density variations are due to impurities, where sandstones can con-

tain felspars (2520 − 2630 kgm-3), micas (2650 − 3100 kgm-3), lignite fragments

(500 − 1800 kgm-3) and even heavy minerals (2700 − 5000 kgm-3). Variations in

the shale matrix density are generally due to composition, with an increase in car-

bonate content causing an increase in the density. The presence of organic matter

(500− 1800 kgm-3) can also drastically decrease the shale density. Changes in grain

densities and consequently matrix densities are generally small, gradual and often

occur in a predictable way [130].

So far the bulk density as a function of two components, namely the matrix

and pore fluid, has been considered. However, the bulk density can be described as

the sum of any number of components, weighted by their fractional volumes. One

such variation is to allow fractional degrees of saturation, as shown in Figure 5.4.

This schematic diagram allows one to express the porosity-density relationship in

the following way

ρbulk = Sφρfluid + (1− S)φρair + (1− φ)ρmatrix , (5.3)

where ρair is the density of air, which normally has a value of zero, and S is the
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current flow
matrixpore fluid

Figure 5.5: Examples of the electric current flow paths in the pore fluid and its
dependence on the rock matrix.

degree of saturation (0 < S < 1). Allowing for saturation means that the overall

bulk density is lower than in the fully saturated case, where the lower bound is now

the fluid density weighted by the fractional saturation. The addition of saturation

terms allows the porosity-density relationship to have wider applicability and is more

closely connected with Archie’s Law.

5.4 Archie’s Law

Archie’s Law is a well known and well established empirical equation that describes

the bulk conductivity of sedimentary rocks [49]. In such rocks the dominant mode

of conduction is ionic, involving flow of current through the pore fluid. The min-

eral matrix itself acts as an electrical insulator and does not contribute to the bulk

conductivity. However, it does play an indirect role, with the texture of the rock

dictating the size, geometry (shape) and inter-connectedness of the pore space (tor-

tuosity). The texture of the rock and pore throat size is important in relation to the

type and radius of ions and controls the paths of the ions through the rock. Poor

connections and narrow openings inhibit current flow, whereas good connections

and large openings promote current flow, as shown in Figure 5.5. Archie’s law is

normally written in terms of resistivity
¡
1
σ

¢
but for consistency with Chapter 2 it

will be written in terms of conductivity and assumes the form
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Table 5.1: The tortuosity factor and cementation factor values for different litholo-
gies.

Description of rock a mcf

Weakly cemented detrital rocks, such as sand, sandstone 0.88 1.37
and some limestones, with a porosity range from 25 to 45%,
usually Tertiary in age

Moderately well cemented sedimentary rocks, including 0.62 1.72
sandstones and limestones, with a porosity range from
18 to 35%, usually Mesozoic in age

Well-cemented sedimentary rocks with a porosity range 0.62 1.95
from 5 to 25%, usually Paleozoic in age

Highly porous volcanic rocks, such as tuff, pahoehoe and 3.50 1.44
aa, with porosity in the range 20 to 80%

Rocks with less than 4% porosity, including dense igneous 1.40 1.58
rocks and metamorphosed sedimentary rocks

1

σbulk
= aS−nsφ−mcf

1

σfluid
, (5.4)

where σbulk is the bulk rock conductivity, σfluid is the pore fluid conductivity, φ is

porosity,mcf is the cementation factor (1.3 < mcf < 3), S is the degree of saturation,

ns is the saturation exponent (∼ 2) and a is the tortuosity factor (0.6 < a < 1.5)

[134].

The variables (a, mcf , S, ns) in Archie’s Law make it environmentally specific.

The terms a and mcf characterise the rock texture. The tortuosity factor a was

introduced by Winsauer et al. [135] to account for the tortuosity of current paths

due to pore geometry, while the mcf value accounts for the pore geometry and

connections. Typical values of a and mcf , taken from Keller [136], are given in

Table 5.1. Archie’s Law has been generalised to allow for partial saturation through

S and ns. However, their introduction has not been completely established [137]

and will be assumed to be 1, unless otherwise stated.

The fluid electrical conductivity of a rock controls the amount of current (charge

per unit time) that can be transmitted. The pore fluid can be either water or

hydrocarbons, the latter having high resistivity and being essentially an insulator
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Figure 5.6: Variations in resistivity due to temperature, pressure and KCl concen-
tration taken from Nesbitt [138]. There is an inverse relationship between resistivity
and conductivity.

[130]. The conductivity of water varies greatly and similar to fluid density, it is

dependent on temperature, pressure and salinity [138] [139]. Figure 5.6, taken from

Nesbitt [138], summarises these combined effects. Pressure has a minimal effect

on the fluid conductivity except at high temperatures (> 300 oC) where the low

pressures cause an uncharacteristic lowering of the conductivity. Temperatures <

300 oC cause a sharp increase in the fluid conductivity, which then stabilises between

200−300 oC, while temperatures > 300 oC show increased conductivity values. The

unusual behaviour exhibited by conductivity at temperatures > 300 oC is caused

by a change in viscosity and a decrease in fluid density, which causes an increase in

the extent of ion pairing, lowering the concentration of free ions and consequently

the conductivity [138] [139]. The dominant dissolved salt in subsurface fluids is

NaCl, and with increasing salinity, the conductivity increases. However, as the

concentration approaches saturation level, the electrical conductivity tends towards

the value for molten salt [140].

For shallow temperature distributions (< 300 oC) a linear relationship between

temperature and fluid conductivity of water has been assumed by many researchers

  
                                          NOTE:   
   This figure is included on page 104 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Figure 5.7: Archie’s Law in graphical form, wheremcf = 2, a = 1 and σfluid = 3 Sm
-1

unless otherwise indicated a) general behaviour, b) changes in the a-value, c) changes
in the mcf -value and d) changes in the fluid conductivities.

[122] [141]. In its most general form, it can be written as

σw(T ) = σwo +
T

10
, (5.5)

where σw is the conductivity of water, T is temperature in
oC and σwo is the conduc-

tivity of water at zero temperature and fixed salinity. For sea water, σwo is 3 Sm
-1

[142].

A general version of Archie’s Law is shown graphically in Figure 5.7a. When

porosity approaches zero the insulating rock matrix becomes dominant and the bulk

conductivity approaches zero. At a porosity of one, there is no rock matrix and the

bulk conductivity equals the fluid conductivity. Between these two end points there

is a power law relation between the bulk conductivity and the porosity, controlled by
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the exponent value mcf . As the mcf -value increases, the bulk conductivity decreases

(Figure 5.7c), which corresponds to the rock particles moving away from being

spherical and becoming more platy and jagged. Other textural elements, such as

particle size and spread, have minimal effect on the mcf -value when compared to

the shape [143]. The a term is a scaling factor which Keller and Frischknecht [144]

suggests has values of a < 1.0 for rocks with intergranular porosity and a > 1.0 for

those with fracture porosity [143]. As the a-value increases, the bulk conductivity

decreases, with the maximum variation in the bulk conductivity due to the a-value

occurring at large porosities (Figure 5.7b). The inclusion of the a-value means that

the bulk conductivity will no longer equal the fluid conductivity at 100% porosity.

This is undesirable because physically it makes no sense.

Figure 5.7d shows Archie’s Law in graphical form for varying fluid conductivity

values. The curves corresponding to values of 0.1, 1 and 3 Sm-1 are representative

of hydrocarbons, fresh water and sea water, respectively. The fluid conductivities of

10 Sm-1 and 20 Sm-1 are indicative of high salinity or high temperatures. Increasing

the fluid conductivity will increase the bulk conductivity. A considerable difference

in the bulk conductivity can result from variations in the fluid conductivity at large

porosities. For small porosities, when the rock matrix is dominant, the effect of the

fluid conductivity variations is reduced. Fluid conductivities of 0.1 Sm-1 give almost

no variation in the bulk conductivity with changing porosity. Duba et al. [145] have

questioned the validity of Archie’s Law, based on laboratory observations, when

fluid conductivity is < 1 Sm-1. Although fluid conductivities can cause significant

variations in the bulk conductivity, for most sedimentary geological situations the

fluid conductivity behaves in a predictable way according to Equation 5.5.

As is evident in Figure 5.7b-5.7d, for changes in either a, mcf or the fluid con-

ductivity, the resulting variations in bulk conductivity are not as significant as those

for porosity. Archie himself found porosity has the greatest control on the bulk

conductivity [49]. So when the rock type (represented by the a and mcf values)

and fluid conductivity are known, the bulk conductivity can be used to determine

porosity from Archie’s Law.

Archie’s Law is very useful at determining porosity when used in the right envi-
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ronment, but it breaks down when the assumed matrix insulator becomes a conduc-

tor. This occurs when there is either mineralisation or clays present. Mineralisation,

in particular graphite and sulphides, behave as electronic (ohmic) conductors and

will contribute to the bulk conductivity. As a result, Archie’s law will drastically

under-estimate the bulk conductivity of the rock, the magnitude dependent on the

amount and inter-connectedness of the mineralisation. A clay matrix will cause

additional conduction due to an electrical double layer that forms on the particle

surface in the presence of water. The electrical double layer effect, referred to as

surface conductivity, allows ions to move through the system with less resistance

than in the fluid phase [146]. The conductivity of clays depends on the clay species,

surface area and the nature of the pore fluid. In some situations the clay surface

conductivity can exceed that of the pore fluid and can cause oil-saturated shaly-

sands to have unexpectedly high conductivities. In such instances, modifications

can be made to Archie’s Law to allow for a matrix conductor [147] [148] [149].

Archie’s Law was developed for a porous medium with an emphasis on sedimen-

tary rocks. However, it can also be used in any environment where the dominant

conduction is a fluid phase and the matrix is an insulator that controls the fluid

distribution. Archie’s Law has been applied to partial melts where the melt takes

on the role of the pore fluid [150] as well as having been successfully applied to

oceanic [151] and continental basement rocks [152].

5.5 Joint Behaviour

Porosity is the main controlling factor of density and conductivity in sedimentary

rocks. There are two main types of porosity - primary and secondary. The primary

porosity is the porosity in a rock originating from its deposition and is connected

with the original rock fabric or texture. Secondary porosity is a subsequent porosity

generated in the rock due to fracturing (fracture porosity), jointing and chemical

leaching or dissolving of minerals (vuggy porosity). It often enhances the overall

porosity. Primary and secondary porosity can either coexist (dual porosity), or

secondary porosity can dominate and override the primary porosity. Archie’s Law
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was developed for primary porosity and this will be the main focus in this thesis.

Porosity is an important quantity in geoscience and particularly in sedimentary

basin analysis. It can be used to evaluate the volume of hydrocarbons or water and

can provide an indication of the flow rate, path and pressure of formation fluids.

Porosity is also used to determine basin history as it is dependent on depositional

environments and is affected by rate and depth of burial. Changes in porosity can

also be a diagnostic for changes in rock type, with the greatest change occurring at

the boundary between sedimentary rocks and the basement.

In sedimentary basins the porosity generally decreases with depth due to com-

paction. This causes an irreversible loss of porosity from the three dimensional strain

of burial (self-compression). Therefore, porosity values are related to the maximum

depth of burial and not the present day depth at which the rock is found. Giles et al.

[153] collated available porosity-depth trends and found that there is a broad range

of porosity trends and values, but there is always a smooth decrease in porosity

with depth. They found that sandstones having initial porosities between 35− 50%

steadily decrease to 2 − 10% at depths of 4 − 6 km. Carbonates have a similar

trend, however initial porosities are between 25 − 70%. Shales have initial surface

porosities of ∼ 70%, which decrease sharply over the top few kilometres before a

gradual decrease to final porosities values which are also between 2 − 10%. The

main exception to porosity decreasing with depth is in regions of overpressure [154].

In such regions, the fluid becomes trapped during compaction and starts to support

the load, which results in the preservation of the porosity. Porosity values can also

be lower than expected through constant burial in areas of uplift.

Compaction, which controls the porosity-depth trend and actual values, is de-

pendent on rock age, composition, initial porosity, geothermal gradient, tectonic

history and the general make-up of the sedimentary basin environment [155] [156]

[157] [158] [159]. In general, porosity will be preserved at depth in areas which

are young, have a low geothermal gradient and rapid rates of sedimentation [153].

Although porosity-depth trends due to compaction are varied, there have still been

attempts to create porosity-depth models. A linear model can be used to represent

the porosity-depth trend for sandstones over a small range; however at some point
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this will result in negative porosities. Baldwin and Butler [160] used a power law to

model the porosity-depth trend, whereas Falvey and Middleton [161] proposed an

inverse model based on changes in porosity being proportional to changes in load.

The most common porosity-depth model is an exponential relationship given by

Athy [162],

φ = φoe
−λcz , (5.6)

where φo is the surface porosity, λc is the compaction coefficient and z is the depth.

The porosity value obtained from each of these models can vary up to 20% for a

given depth, highlighting the need to calibrate any model with data from the area

in question [153].

A typical sandstone porosity-depth trend, shown in Figure 5.8a, was used in

the porosity-density relationship and Archie’s Law to generate the density and

conductivity-depth trend shown in Figure 5.8b and 5.8c. The porosity-depth trend

was generated using Athy’s model (Equation 5.6) with φo = 0.49 and λc = 270 m

[163]. The matrix density of sandstone (2650 kgm-3) and a fluid density of sea water

(1030 kgm-3) were used in the porosity-density relationship. The a- and mcf -values

in Archie’s law were set at 0.62 and 1.72, respectively, taken from Table 5.1. The

fluid conductivity of sea water used in Archie’s Law was given by Equation 5.5 with

a temperature gradient of 30 oC.

Figure 5.8b shows density increasing as the porosity decreases due to effects of

compaction. The primary loss of porosity is in the top 3 km and corresponds to the

greatest loss of density. Conductivity increases down to a depth of 1 km because the

temperature gradient in Equation 5.5 causes the fluid conductivity to increase at a

greater rate than the compaction of porosity. Below 1 km depth the compaction of

porosity becomes the dominant mechanism and the conductivity starts to decrease.

Below 6 km depth the low porosity values means that the density approaches the

matrix density and the conductivity approaches zero. Conductivity, across all rock

types, has a larger range than density. However, in the sedimentary environment

described in Figure 5.8, density varies between 1850 kgm-3 and 2595 kgm-3, whereas

conductivity varies between 0.15 Sm-1 and 1.8 Sm-1.
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Figure 5.8: Examples of the porosity-, density- and conductivity-depth trends for
sandstone. a) is the porosity-depth trend generated using Athy’s model with φo =
0.49 and λc = 270 m. b) is the density-depth trend generated using the porosity-
density relationship with the porosity values from Athy’s model and the matrix
and fluid densities fixed at 2650 kgm-3 and 1030 kgm-3, respectively. c) is the
conductivity-depth profile generated using Archie’s Law with the porosity values
from Athy’s model, a = 0.62 and mcf = 1.72.

An alternative method to examine the joint behaviour of conductivity and den-

sity is to use porosity to develop an expression that directly relates them. This is

achieved by rearranging Archie’s Law and the porosity-density relationship to ex-

press porosity in terms of the other variables. The modified expressions of Archie’s

Law and the porosity-density relationship are then set equal to each other to yield

ρbulk =

(µ
aσbulk

Snsσfluid

¶ 1
mcf

∗ (Sρfluid − ρmatrix)

)
+ ρmatrix (5.7a)

σbulk =

µ
ρbulk − ρmatrix

Sρfluid − ρmatrix

¶mcf

∗
µ
Sns

a
σfluid

¶
. (5.7b)

The explicit relationship between density and conductivity for sandstone is shown

in Figure 5.9. The general behaviour is that as conductivity increases, density
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Figure 5.9: An example of the explicit relationship between conductivity and density
for sandstone. In the equation ρmatrix = 2650 kgm

-3, ρfluid = 1030 kgm
-3, a = 0.62,

mcf = 1.72 and fluid conductivity varies.

decreases. In Figure 5.9, the largest conductivity value is that of the fluid and occurs

at the minimum density value, which is the fluid density (equivalent to φ = 1). The

maximum density value, which is the matrix density, corresponds to conductivity

approaching zero (equivalent to φ = 0). At high densities (small φ), a small change

in density will cause a large change in bulk conductivity, whereas at low densities

(large φ) a small change in density will result in a small change in conductivity.

The fluid and matrix densities constitute the upper and lower bounds on bulk

density, so changing these values will result in the shortening or elongation of the

relationship. The nature of the curve is relatively unaffected as the porosity-density

relationship is linear and only changes to the parameters in Archie’s Law will sig-

nificantly change the curve. The main effect on the shape of the curve is the value

of mcf , whereas the a-value and fluid conductivity values are scaling factors. Fluid

conductivity will have the greatest effect on the density-conductivity relationship

because it has a large range of values by which to scale the relationship.
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5.6 Conclusions

It is beneficial to combine gravity and MT data in an inversion as they have sim-

ilar spatial characteristics and are both widely accessible; this allows for multiple

applications of the joint inversion. By looking at the individual behaviour of both

conductivity and density, it was found that Archie’s Law and the porosity-density

relationship both describe conductivity or density in terms of porosity. It was thus

deemed that porosity is the strongest and most robust link on which to base the

joint inversion.

In sedimentary basins, as the porosity increases the system is dominated by the

fluid properties and the conductivity will increase, whereas density will decrease.

When porosity decreases the system is dominated by the rock matrix and the con-

ductivity decreases and the density increases. The other variables in Archie’s Law

describe the texture of the rock and are environmentally specific, while the other

variables in the porosity-density relationship reflect the composition of the rock and

are also environmentally specific.



Chapter 6

Joint Inversion Methodology

The new joint inversion scheme developed as part of this research is outlined in

this chapter. The joint inversion combines MT and gravity data in a petrophysical

approach using Archie’s Law and the porosity-density relationship, as was described

in Chapter 5. The general idea behind the joint inversion is introduced at the start

of this chapter, then the actual methodology is described and this is then followed by

the outline of some behavioural characteristics. The mathematical reasons why joint

inversions can be beneficial are enunciated. The discussions contained in Chapter 5

were mainly in terms of conductivity, and this is how the literature generally presents

petrophysical equations. However, when discussing MT inversion results, resistivity

models are normally used. Therefore this chapter will reflect this shift and is thus

written in terms of resistivity.

6.1 The Basic Idea

An MT and gravity petrophysical joint inversion requires a link between the two

techniques. In Chapter 5, porosity was established as the crucial link between

resistivity and density through Archie’s Law and the porosity-density relationship.

This dependency on porosity is exploited by the implementation of the petrophysical

joint inversion which inverts directly for a porosity model. This model is constrained

using both the MT and gravity data, in that the computed responses for the final

model must fit the observed data sets.

113
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Figure 6.1: A simplified flow chart of the general steps taken by the gravity and MT
joint inversion.

A flow chart for the joint inversion is shown in Figure 6.1. It illustrates how the

porosity model at each iteration is converted to a resistivity and density model using

Archie’s Law and the porosity-density relationship. The response of the resistivity

and density models is then computed and compared to the observed MT and gravity

data. Based on both techniques, through their sensitivities (Fréchet derivatives)

and the previous model, the porosity model is progressively updated. This process

is repeated until a porosity model is found that satisfies both data sets.

A difficulty arises in the joint inversion formulation due to an inherent limitation

of the gravity technique itself. The Bouguer anomaly data only contain informa-

tion about the density contrast (relative densities) of the subsurface, whereas the

porosity-density relationship yields absolute density values from the porosity val-

ues. If ignored, this will lead to an inconsistency in the joint inversion, causing it to

fail. Such an inconsistency may be reconciled by the introduction of a gravity offset

term. This is a constant value which must be added to all Bouguer anomaly data

points to make them correspond to an absolute density model. In most situations

the exact value of the gravity offset is unknown, and must be found as an additional

parameter in the inversion itself.
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6.2 Methodology

The aim of the joint inversion is to produce a single porosity model that satisfies

both the MT and gravity data. The optimisation scheme used by the joint inversion

is the 2D non-linear Occam scheme, which was outlined in Section 3.2. The main

differences between the single technique Occam scheme and the requirements for

the joint inversion are that the joint inversion involves two very different types of

data and the model response is not directly calculated from the model parameters.

At each iteration the joint inversion requires the current porosity model, which is

being optimised, to be converted to a resistivity and density model and then their

theoretical model responses are compared to the observed MT and gravity data sets.

In order to maintain the integrity of the Occam scheme, whilst still accommodat-

ing the extra requirements of the joint inversion, changes must be made to some of

the inversion parameter definitions. In the following section the inversion parameters

are redefined and their implementation discussed.

6.2.1 Parameter Description

Converting the single technique Occam scheme to a two technique joint inversion

scheme requires the different inversion parameters to be redefined. Here, changes to

the model parameterisation, data vector, model parameters, forward model operator,

boundary conditions, and the Jacobian matrix are discussed and the gravity offset

term defined.

Model Parameterisation

The original model parameterisation of the MT Occam inversion was designed to

maintain accuracy of the MT forward model operator. The horizontal spacing should

be one third of the skin depth of the highest frequency and the vertical spacing is at

equal logarithmic increments to counteract the natural decay of the MT kernel [90].

The gravity forward model operator is based on an analytical expression and places

no requirement on the computational mesh to maintain accuracy. It was shown in

Section 4.5.1 that a logarithmic grid does not limit the ability of the gravity inversion
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to reconstruct the subsurface density. Therefore, the model parameterisation is kept

the same as in the original MT inversion (Section 3.2.1).

Another consideration is that the MT and gravity stations do not have to co-

incide and so they can be at different locations along the profile. Since the MT

and gravity forward model operators are independent of each other, using different

station locations has no effect on the accuracy or computation of either model re-

sponse. The only requirement is that every station, regardless of type, must be at

the same location as one of the surface node points within the finite element mesh.

Data

The MT data vector of length p can be written as dMT = (dMT1, dMT2, ..., dMTp),

where each element corresponds to a TE or TM apparent resistivity or phase for

a particular station and frequency. The gravity data vector consists of a Bouguer

anomaly data point for each station and can be written as dGV = (dGV 1, dGV 2, ..., dGVs),

where s is the number of gravity data stations. For the joint inversion, both the

MT and gravity data are contained in the same data vector d, which has MT data

followed by the gravity data. It is given by

d = (dMT1, dMT2, ..., dMTp, dGVp+1, dGVp+2, ..., dGVp+s) , (6.1)

where q = p+ s is the total number of data points. The q× q data weighting matrix

Wd contains the standard deviations (σ
∗) for every data point. Due to the split in

the joint inversion data vector,Wd takes the form

Wd = diag

Ã
1

σ∗MT1
,
1

σ∗MT2
, ...,

1

σ∗MTp
,

1

σ∗GVp+1
,

1

σ∗GVp+2
, ...,

1

σ∗GVp+s

!
. (6.2)

The 2D MT response at each station contains data points from different modes

and frequencies, whereas gravity has only a single data point for each station. There-

fore, there will always be considerably more MT data than gravity data for a given

joint inversion (pÀ s).

The location or measurement datum for the MT and gravity stations does not
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have to be the same. The MT data always relate to measurements made on the

Earth’s surface and the joint inversion will place the stations on the topographic

surface. By contrast, gravity data are corrected to a single datum (elevation) and

the joint inversion will place the stations at the top of the grid, regardless of whether

there is variable topography or not.

Model Values

In the joint inversion the model parameter inverted for is porosity, therefore the

model parameter vector m is given by

m = (φ1, φ2, ..., φn) , (6.3)

where n is the number of model parameters. Each model parameter corresponds to

the porosity value of a specific cell (element) in the regularisation grid. The porosity

can only vary between 0 and 1, and anything outside this range is not physically

possible.

Gravity Offset Term

The Bouguer anomaly data used by the joint inversion will only produce a density

contrast model (Section 2.2.1). However, converting porosity to density using the

porosity-density relationship will yield absolute density values. Unless adjusted, the

joint inversion would encounter an inconsistency between the observed data and

model response.

Correcting the inconsistency between the Bouguer anomaly data and the model

response produced from the absolute density model can be achieved by taking ad-

vantage of the linear nature of the gravity technique. That is, the net gravitational

response is the algebraic sum of the responses of individual subsurface masses. The

absolute density model can be made into a density contrast model by subtracting

a constant background density value. This is equivalent to subtracting a constant

value from the model response of the absolute density model. By doing so makes

the response of the absolute density model compatible with the Bouguer anomaly

data. This can be expressed in the following way
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dGV = FGV (m) +∆g , (6.4)

where FGV is the gravity forward model operator, and ∆g is the unknown (negative)

constant value and is referred to as the gravity offset term.

Initially the correct value of the gravity offset term is unknown; however, the

inversion can be used to determine its value. By treating the gravity offset term as

an additional model parameter, the inversion can solve for the optimal value. This

means that the gravity offset term is included in the model parameter vector, which

becomes

m = (φ1, φ2, ..., φn ,∆g) , (6.5)

and now has a length of n+1. Unless explicitly stated otherwise, the model param-

eters denoted by mφ will hereafter only refer to the porosity component of the m

vector.

Forward Model Operator

In the joint inversion the porosity model is converted to a resistivity model and a

density model and then the theoretical MT and gravity model responses are calcu-

lated. The model responses are computed using the same forward model operators as

in the single MT (FMT ) and gravity (FGV ) inversions, described in earlier chapters.

The observed data vector in the joint inversion has the MT data followed by the

gravity data; the forward model operations are executed to produce an equivalent

model response.

The forward model operator of the joint inversion refers to the whole process

of producing MT and gravity responses from the porosity model. This includes

converting the porosity model to a resistivity and density model and the addition of

the gravity offset term to the gravity response. The joint inversion forward model

operator can be thought of as having two components, an MT component followed

by a gravity component,
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F[m] = {FMT [mφ] , FGV (mφ) +∆g} . (6.6)

Boundary Conditions

The forward model operator of the joint inversion is made up of the single MT

and single gravity forward model operators. As a result, the boundary conditions

of the individual MT and gravity forward model operators are the same as in the

original single method formulations. This involves having the MT bottom boundary

condition as the deepest row of cells in the regularisation grid, which are considerably

elongated in depth to mimic a half space. However, the gravity bottom boundary

condition requires the cells to be extended to such a depth that their response is

negligible (Section 4.2.1). The elongated cells required by the MT forward model

operator are not used in the gravity component of the inversion because the cells are

unrealistically large and can have a major unwanted effect on the gravity response.

Not including these cells in the gravity boundary condition means that they are

only constrained by the MT data. Since the elongated cells are still contained in

the smoothness constraint, the joint inversion cannot use these cells to improve the

MT data fit without affecting the gravity data fit.

Jacobian Matrix

The elements of the joint inversion Jacobian matrix are given by

Jij =
∂di
∂mj

, (6.7)

where j = 1, 2, ...., n, n+1 corresponds to the model parameters and i corresponds to

the number of data points of length q. For the joint inversion the data vector contains

the MT data followed by the gravity data and the model parameters are porosity

φ and the gravity offset ∆g. Therefore the joint inversion Jacobian comprises the

changes in MT or gravity data due to changes in porosity and the gravity offset and

is expressed by
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂dMT1

∂φ1

∂dMT1

∂φ2
· · · ∂dMT1

∂φn

∂dMT1

∂∆g

∂dMT2

∂φ1

∂dMT2

∂φ2
· · · ∂dMT2

∂φn

∂dMT2

∂∆g
...

...
...

...

∂dMTp

∂φ1

∂dMTp

∂φ2
· · · ∂dMTp

∂φn

∂dMTp

∂∆g

∂dGV 1
∂φ1

∂dGV 1
∂φ2

· · · ∂dGV 1
∂φn

∂dGV 1
∂∆g

∂dGV 2
∂φ1

∂dGV 2
∂φ2

· · · ∂dGV 2
∂φn

∂dGV 2
∂∆g

...
...

...
...

∂dGV s
∂φ1

∂dGV s
∂φ2

· · · ∂dGV s
∂φn

∂dGV s
∂∆g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.8)

The differential chain rule is used to ascertain the MT elements of the joint

inversion Jacobian from the Jacobian produced from the single MT inversion. The

chain rule can be stated as

JMTij =
∂dMTi

∂φj
=

∂dMTi

∂(log(()j)

∂(log(()j)

∂((j)

∂((j)

∂φj
, (6.9)

where ∂dMTi

∂(log(()j)
is derived from the single MT inversion, while

∂(log(()j)

∂((j)
= 1

(j
log(e)

and
∂((j)

∂φj
can be found by differentiating Archie’s Law with respect to porosity. It

is given as

∂((j)

∂φj
= −mcfaS

−nsφ−mcf−1(fluid . (6.10)

A similar approach is taken to derive the gravity elements of the joint inversion

Jacobian from the Jacobian produced from the single gravity inversion,

JGV ij =
∂dGV i
∂φj

=
∂dGV i
∂(ρj)

∂(ρj)

∂φj
, (6.11)

where ∂dGV i
∂(ρj)

is derived from the single gravity inversion and
∂((j)

∂φj
can be found by

differentiating the porosity-density relationship. The latter term is given by

∂(ρj)

∂φj
= Sρfluid + (1− S)ρair − ρmatrix . (6.12)

The final column in the Jacobian relates to the gravity offset term. Since there

is no relationship between the gravity offset term and the MT data, these partial
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derivatives can be set to zero,

∂dMTi

∂∆g
= 0 . (6.13)

For the gravity elements of the Jacobian Equation 6.4 is used. This gives the change

in gravity data due to the gravity offset term as

∂dGV
∂∆g

=
∂

∂∆g
(FGV (m) +∆g) = 1 . (6.14)

All the terms in Equation 6.12, Equation 6.14 and ∂dGV i
∂(ρj)

are constant, which means

the gravity elements of the joint inversion Jacobian remain constant at each iteration.

6.2.2 Implementation and Computer Program

The optimisation scheme used in the joint inversion is based on the 2D non-linear

Occam scheme outlined in Section 3.2. The objective function for this scheme can

be written as

U [m] =
°°∂ymφ

°°2 + k∂zmφk2 + μ-1
©
kWdd−WdF[m]k2 − χ2∗

ª
. (6.15)

The joint inversion objective function can remain the same as Equation 6.15 us-

ing the above inversion parameter definitions. The model norm component of the

objective function,
³°°∂ymφ

°°2 + k∂zmφk2
´
, is the smoothness constraint and only

acts on the porosity values in the model parameter vector and not the gravity off-

set term. Therefore, the definition of ∂y and ∂z given in Section 3.2, remains the

same. The redefined inversion parameters mean the matrix operations in the data

norm component of the objective function,
¡
kWdd−WdF[m]k2 − χ2∗

¢
, align the

MT and gravity components to give an overall misfit value. The overall RMS cal-

culation includes every data point and does not distinguish between MT or gravity

data points. All data errors are assumed to be independent and have a zero mean

Gaussian distribution. Therefore the data norm is still the chi-square distribution

with an expected value of q, the total number of MT and gravity data points, which
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corresponds to a relative RMS of 1.

There will always be more MT data points than gravity data points. This means

if a large number of MT data points are fitted well by the model, then the small

number of gravity points that are being fitted poorly can be obscured or overlooked.

Therefore, there is the potential for the joint inversion to be biased towards fitting

the MT data at the expense of fitting the gravity data. Such bias in the joint

inversion can be mitigated by weighting each data set differently, and this will be

investigated in Section 8.3.

The objective function of the joint inversion and the single technique Occam

scheme are essentially the same, which means that determining the Lagrange mul-

tiplier μ and the approach to updating the model parameters are the same as was

presented in Section 3.2. They are repeated below,

mk+1(μ) =
h
μ
¡
∂Ty ∂y + ∂Tz ∂z

¢
+ (WdJk)

T (WdJk)
i-1

(WdJk)
T
³
Wd

bdk´ (6.16a)

Udk+1(μ) = kWdd−WdF[mk+1(μ)]k2 . (6.16b)

The expressions for the single and joint inversion model updates are the same. How-

ever, in the joint inversion the data vector, model response and Jacobian matrix con-

tain information about both techniques. Therefore the porosity model parameters

are updated in accordance with both techniques.

Figure 6.2 is the joint inversion update of the steps taken by the single method

inversion in Figure 3.3. The steps taken in the joint inversion are essentially the

same as for the single method inversion except the joint inversion forward model

operator involves converting the porosity model to a resistivity and density model

and then computing their response. A user manual for conducting the joint inversion,

including the input and output file structures, is given in Appendix B.
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Figure 6.2: A flow chart reproduced from deGroot-Hedlin and Constable [90] of the
steps taken by the 2D MT Occam inversion, which has been altered to accommodate
the joint inversion steps.

  
                                          NOTE:   
   This figure is included on page 123 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Model Limits

A physical constraint can be placed on the joint inversion, since porosity can only

vary between 0 and 1. There are two classifications of bounds or constraints, ‘soft’

and ‘hard’ [164]. ‘Soft’ bounds are where the model weighting matrix (Wm) is used

to influence the probability distribution of the model parameter values [164]. ‘Hard’

bounds will only allow the model values to vary between fixed upper and lower

limits. Porosity model values can assume values in the range 0 ≤m ≤1, where 0 is

the lower limit and 1 is the upper limit. This makes the porosity constraint a ‘hard’

bound.

‘Hard’ bounds can be implemented in an inversion scheme using a method such

as a truncation operator [165], a bound value least squares algorithm for linear

problems [166] or the logarithmic barrier approach [167]. The joint inversion devel-

oped here applies the ‘hard’ bound using the pre-existing program feature model

limits, discussed in Section 3.2.3. Model limits re-assign any updated model param-

eter outside the model limits to the appropriate upper or lower bound. The model

limits feature was chosen for simplicity and more importantly it maintains the in-

tegrity of the Occam inversion because other implementations would mean altering

the scheme. However, applying model limits means the Occam inversion might get

trapped in a local minima that it might otherwise have been able to avoid [168].

Care needs to be taken when choosing the lower limit of the porosity value in the

joint inversion. Although physically the lower limit of porosity is 0, this corresponds

to an infinite resistivity (Section 5.4). Extremely high resistivities are not only

geologically implausible but they also cause the MT forward model operator to

fail. At what point the porosity values correspond to impractical resistivity values

depends on the parameters (mcf , S, ns and (fluid) in Archie’s Law. These variables

will change value from inversion to inversion. The lower porosity limit has been set

at 0.001 unless otherwise stated.

Occam Features

The program features of the MT Occam inversion were discussed in Section 3.2.3.

They include topography or bathymetry, fixed values, sharp boundaries, structure in
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the startup model, a prejudiced or preferred model and static shift removal. These

are also available in the joint inversion program.

6.2.3 Discussion

An MT and gravity joint inversion has not been executed in this manner before,

where the joint inversion inverts directly for a common linking factor. Similar petro-

physical joint inversions by Hoversten et al.[27] and Tseng and Lee [28] invert for

reservoir or hydrological parameters but produce multiple models. A benefit of the

new implementation is that only a single model is produced and it contains infor-

mation from both techniques. Also the model portrays the link between the two

parameters rather than having it distributed between multiple models.

Applications of the joint inversion are restricted to scenarios where both Archie’s

Law and the porosity-density relationship can be used. Archie’s Law can only be

applied to porous environments [49], thereby limiting the joint inversion to porous

rock environments. For this thesis the main focus is on sedimentary basins, although

Archie’s Law has been successfully applied to fractured hard rock environments as

well (Section 5.4). The parameters in Archie’s Law and the porosity-density rela-

tionship quantify the environmental setting of the porosity model. It is important

to use the correct values of the parameters in these equations and to be sure that

the parameters describe the same environment. For example, if the values of the

cementation factor and tortuosity factor quantify a sandstone environment, then the

matrix and fluid density should also reflect a sandstone environment. In Section 8.2

the ramifications on the joint inversion of using the incorrect parameter values in

Archie’s Law and the porosity-density relationship will be discussed.

6.2.4 Methodology Summary

The aim of the joint inversion is to produce a single porosity model that satisfies both

the MT and gravity data. It uses the 2D non-linear Occam optimisation scheme. In

order to use this scheme the model parameterisation, data vector, model parameters,

forward model operator, boundary conditions and Jacobian matrix were redefined

and the gravity offset term introduced. With such modifications, the steps taken in
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the single method 2D non-linear Occam optimisation scheme can be retained.

6.3 Behavioural Characteristics

The 2D non-linear Occam optimisation scheme is very stable and exhibits good

convergence [90]. These characteristics have also been observed in all the joint

inversions undertaken for this research. This section will examine the effects of

trying to fit two data sets and the convergence characteristics of the joint inversion.

6.3.1 Misfit Maps

The joint inversion must satisfy two data sets. The total RMS value quantity that

the joint inversion seeks to minimise involves all data points and does not differen-

tiate between the MT and gravity data. However, it is nevertheless instructive to

scrutinise the individual MT and gravity fit, referred to as the RMSMT and RMSGV ,

respectively.

The simple porosity model, shown in Figure 6.3a, was used to examine the RMS

values for different model parameter combinations. The true model consists of a

vertical fault separating material on the left side with φ1 = 0.1 from material on

the right side with porosity φ2 = 0.3. A horizontal interface at a depth of 5.3 km

separates these two units from basement material, which has a very low porosity

equal to 0.02. Model responses were calculated for various values of φ1 and φ2 in the

range 0.01 to 1, at an increment of 0.01. The model responses were then compared

to the true model response and subsequent RMS values calculated.

The total RMS, as well as the RMSMT and RMSGV values for different φ1 and

φ2 values are shown in Figures 6.3b, 6.3c and 6.3d, respectively. The range of

the RMSGV values is approximately 14 times larger than the RMSMT range. As

discussed in Section 6.2.2 the RMS used by the joint inversion has a bias towards

fitting the MT data and this can be seen in RMS maps.

The patterns of the RMSMT and RMSGV maps are different, as can be seen in

Figure 6.3, because the two techniques are sensitive to different physical parameters

and respond differently to the Earth model. The non-uniqueness of the gravity
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Figure 6.3: a) The simple porosity model with the true φ1 and φ2 values indicated.
b) The RMSJI values, c) the RMSMT values and d) the RMSGV values, for different
φ1 and φ2 combinations.
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technique is reflected in the RMSGV map, which has a broad local minimum equating

to a large uncertainty in the true solution. However, the local minimum in the

RMSMT map is smaller and contains greater certainty in the true solution. It is only

when the φ1 and φ2 values are close to their true porosity values that both techniques

exhibit their minimum misfit values. In a pictorial sense, Figure 6.3 shows why joint

inversions can be beneficial; the model parameters have to satisfy both data sets

and this will only occur around the true model parameter values. Therefore, if a

local minimum occurs in one technique, it is unlikely that a local minimum would

occur at the same model parameter location in the other technique, and the joint

inversion is less likely to get trapped in such local minima.

In Section 8.3, different weighting factors for the MT and gravity data sets are

introduced in an attempt to improve the joint inversion result. Depending on the

manner in which the weighting is applied, the RMSMT and RMSGV remain the

same but the way they are combined to give the total RMS of the joint inversion

is changed. Figure 6.3b would instead become a weighted sum of the individual

RMSMT and RMSGV plots.

6.3.2 Convergence

The joint inversion converges to the same porosity model and RMS value, regardless

of the starting model. This was tested by carrying out joint inversions on three

different models (block, fault and trough models see Section 7.1.1), with porosity

starting models of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 1.5. If the

starting porosity value lies outside the physical limits of 0 and 1 then the joint

inversion fails to converge to the correct model, and returns an incorrect result.

Also if the starting porosity value is 0 then the inversion fails for the reasons given

in Section 6.2.2.

There are four stopping criteria that are used to terminate the Occam inversion,

i. Normal convergence – the inversion produces the smoothest possible model

for the achieved target misfit.

ii. Maximum iterations – the number of user defined iterations has been reached.
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iii. RMS not reducing – the RMS of the previous model cannot be bettered.

iv. Smoothness consideration – the smoothness of the previous model cannot be

improved without increasing the RMS value.

A finding of the investigations reported in the next chapter is that the joint

inversion avoids fitting the noise contained in either data set and never fits the data

as well as the individual MT and gravity inversions. As a result, the joint inversion

rarely reaches the target RMS of 1, and therefore cannot reach the requirements for

normal convergence. In general, the joint inversion is terminated using either option

ii or iii. During the first iteration of the joint inversion, the approximate gravity

offset value is determined. Over the next 4 − 8 iterations, depending on the error

levels, model type and size, the RMS value is significantly reduced and is close to the

final RMS value. Then the joint inversion continues until the maximum specified

number of iterations is reached or until the RMS value cannot be improved. These

later iterations only provide marginal improvement to the RMS value.

The joint inversion of the simple porosity model in the previous section was run

with random Gaussian noise of 2% added to the MT data and 0.06 mGals added to

the gravity data. The joint inversion reached an RMS of 1.6 after 35 iterations and

had a conversion of type iii (RMS problems). The models produced by the joint

inversion are smooth and every model parameter can have a different porosity value,

whereas the RMS maps in Figure 6.3 only refer to the two porosity values either side

of the fault. An approximation of the φ1 and φ2 values were produced from each

iteration model of the joint inversion by averaging the porosity value either side of

the fault. Figure 6.3b shows that after 4 iterations the joint inversion is close to

the global minimum and the RMS has reduced from 38 to 2.4. Between iteration 5

and 9 the RMS is reduced by 0.4, but in the following 27 iteration the RMS is only

reduced by a further 0.4.

6.3.3 Behavioural Characteristic Summary

The MT and gravity techniques are sensitive to different physical parameters and

respond differently to the Earth. Therefore their RMS values differ, depending on
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the model parameters. It is only when the model is close to the true model that both

techniques have a low RMS values. The joint inversion is stable and converges to a

single model regardless of the starting model. The main reduction of the RMS value

occurs in the first 4− 8 iterations. Continued iterations will only provide marginal

improvement to the RMS value.

6.4 Mathematical Considerations

In this section the mathematical aspects to conducting a joint inversion for two

techniques which both have a linear forward model operator are considered. The

MT technique does not have a linear forward model operator, which means that

the following discussion cannot strictly apply to joint inversions involving the MT

technique. Nevertheless, this section is important because it shows in a preliminary

mathematical sense how the joint inversion can reduce the non-uniqueness of a

geophysical problem. The linear inverse problem can be stated as

Gm = d , (6.17)

where d = (d1, d2, ..., d q) is a vector consisting of q observed data points, m =

(m1,m2, ...,mn) is the vector of n model parameters and G is the q × n linear for-

ward model operator. Equation 6.17 is essentially a system of q equations each

containing information about the n model parameters. Contained in this system of

equations are h linearly independent equations. These equations all contain different

information about the model parameters. The remaining q − h equations are lin-

early dependent and contain no additional information about the model parameters

contained in the h linearly independent equations.

Figure 6.4 shows a schematic of the linear inversion problem. There exists a

model space of dimension n and a data space of dimension q. These two spaces

are related through the forward model operator which maps the model parameters

contained in the model space to data values contained in the data space. For each

specific inversion problem the model space contains a subspace, called the model

solution subspace, which includes all possible model parameter combinations that
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Figure 6.4: A schematic of the inverse problem, where the matrix G maps model
parameters in the model space to data values in the data space. The model space
contains a subspace called the model solution subspace which maps to the observed
data.

can be mapped to the observed data. The dimension of the model solution subspace

is n − h, the number of model parameters minus the number of linearly indepen-

dent equations. In the case where h = n there is a unique solution, where only one

set of model parameters will map the observed data. If the model solution sub-

space is empty there are no model parameters that satisfy the observed data. The

geophysical inverse problem normally lies in between these two extreme scenarios,

with the model solution space neither empty nor containing enough information to

uniquely define all model parameters. This leaves an infinite number of possible

model parameter combinations that can be mapped to the observed data.

If there exists extra information (e.g. prior constraints) about the model param-

eters then it can be incorporated into the inverse problem, Equation 6.17. The di-

mension of the model solution subspace is n−h, therefore every linearly independent

equation added to the inverse problem reduces the dimension of the model solution

subspace by 1. Reducing the dimensions of the model solution subspace reduces the

degrees of freedom of the model parameter, thus reducing the non-uniqueness of the

inverse problem.
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Different geophysical techniques are sensitive to different properties of the sub-

surface and are based on different physical phenomenon, therefore their information

about the model parameters is assumed to be independent. The premise of the joint

inversion presented in this thesis is that it uses two different geophysical techniques

to solve for one set of model parameters. This type of joint inversion will therefore

increase the number of linearly independent equations, while solving for the same

number of model parameters. The increase in the number of linear independent

equations will reduce the dimension of the model solution subspace compared to the

single technique inverse problem. This decrease in model solution subspace dimen-

sions corresponds to a reduction in the model non-uniqueness. There could exist

a situation such that between the two techniques the number of linearly indepen-

dent equations is equal to the number of model parameters and a unique solution is

achieved, although this is unlikely.

Other joint inversion approaches, such as the structural approach, solve for two

sets of model parameters which are linked in some way. Such approaches have a

model space of dimension 2n, which means the model solution subspace will be of

dimension 2n − h. Therefore, when the same two techniques are combined using

this type of joint inversion, a larger model solution subspace will always occur than

if the techniques were combined using a joint inversion which solves for only one set

of model parameters.

6.5 Conclusions

The joint inversion approach discussed in this chapter inverts directly for a porosity

model that is constrained by both gravity and MT data. In the joint inversion the

porosity model is then converted to a resistivity and density model using Archie’s

Law and the porosity-density relationship. The resistivity and density model re-

sponses, with the aid of a gravity offset term for the Bouguer anomaly data, are

compared to the observed data. Then, based on both techniques, the porosity

model will be updated until a model is found that fits both data sets. The benefit

of this method is that a single model is produced but it contains the information
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from two techniques.

In this chapter, two possible benefits of joint inversions were discussed. Firstly,

joint inversion reduces the likelihood of the inversion getting trapped in local minima,

since the local minima of the different techniques are unlikely to occur at the same

values of the model parameters. Secondly, the joint inversion implemented in this

way reduces the degrees of freedom of the model parameters, thus reducing the

non-uniqueness of the inverse problem.
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Chapter 7

Synthetic Data Inversion

Experiments

The objective of this chapter is to categorise and investigate the behaviour of the

joint inversion in different scenarios, using synthetic models. The chapter is divided

into four distinct sections, each looking at different aspects of the joint inversion.

The sections and their objectives are as follows:

1. Proof of Concept — investigates the effectiveness of the joint inversion in re-

constructing the subsurface and compares the results to those obtained by the

single method gravity and MT inversion.

2. Effects of Data Errors — evaluates the effect of having different magnitude

errors in the MT and gravity data on the joint inversion.

3. Station Configurations — examines how the different survey geometries (e.g.

number and spacing of stations) for MT and gravity influences the inversion

results.

4. Target Contrast and Resolution — looks at the minimum contrast and hori-

zontal and vertical resolution of the joint inversions and compares them to the

single MT inversions

135
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7.1 Proof of Concept

Synthetic models are used to evaluate the effectiveness of the joint inversion ap-

proach. In this section, the results from the joint inversion are compared to the

results of MT and gravity single inversions to determine if the joint inversion can

produce a more accurate representation of the subsurface than can be achieved from

single technique inversions alone.

7.1.1 Synthetic Models and Data

Three synthetic 2D porosity models were used to test the joint inversion. These

models are shown in Figure 7.1, and are referred to as the block, fault and trough

models. The block model (Figure 7.1a) has nine recording stations separated by

1 km, as shown by the diamond symbols. The top 500 m of the block model is an

unconsolidated zone which has a high porosity value of 0.6. Below the unconsoli-

dated zone the porosity-depth compaction trend is based on the lithostatic reduction

in porosity for sandstone [153]. The sandstone compaction trend is determined from

the Athy model (Equation 5.6), using a surface porosity of 0.49 and a compaction

coefficient of 270 m [163]. The sandstone compaction trend is terminated at a depth

of ∼ 7 km with a constant porosity of 0.03, which is representative of basement.

In the centre of the block model there is an anomalous zone of width 2 km and

thickness 3 km, located at a depth of 1 km below the surface. The anomalous zone

has a constant porosity value of 0.1.

The fault model (Figure 7.1b) has fifteen recording stations, each separated by

2 km. It consists of a sandstone compaction depth trend and a shale compaction

depth trend on the left and right of this figure, respectively. As is discussed in

Section 5.4, Archie’s Law should not be used for shales. However, a shale com-

paction trend is used in this fault model as it provides different porosity compaction

behaviour and is in strong contrast to the sandstone trend. The sandstone com-

paction trend was generated in the same manner as for the block model. The shale

compaction trend was determined from Athy’s model using a surface porosity of 0.63

and a compaction coefficient of 510 m [163]. Both porosity trends are terminated at
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Figure 7.1: The synthetic porosity models referred to as a) the block model, b) the
fault model and c) the trough model.

a depth of ∼ 4.8 km with a basement represented by a porosity value of 0.03.

Figure 7.1c shows the trough model, which includes sixteen recording stations,

each separated by 3 km. As observed in this figure, the trough model is a step model

where the basement starts on the left at a depth of 1 km before dropping to a depth

of ∼ 4.8 km for a horizontal distance of 17 km. The basement then rises to a depth

of ∼ 2.5 km for another horizontal distance of 17 km before rising again to a depth

of 0.5 km at the right side of the model. A typical sandstone compaction trend

was used to represent the sediments in the trough. It was generated from Athy’s

model using a surface porosity of 0.45 and a compaction coefficient of 450 m [153].

A porosity value of 0.02 was assigned to the basement.

The three synthetic models were designed to evaluate the ability of the joint
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Figure 7.2: The synthetic porosity models in Figure 7.1 converted to resistivity
models using Archie’s Law.

inversion to resolve different subsurface structures. The block model is intended

to examine the capability of the joint inversion to detect and delineate anomalous

porosity values. The fault model is used to determine if the joint inversion can

distinguish between variations in porosity-compaction trends. Finally, the trough

model tests how the joint inversion can reconstruct topography in the basement.

Both MT and gravity synthetic data were generated at each station for each

model. To generate synthetic MT data, the three porosity models were converted

to resistivity models, as shown in Figure 7.2. This was achieved using parameter

values of a = 1, mcf = 2, S = 1 and ns = 2 in Archie’s Law (Equation 5.4). The

fluid resistivity varied with depth and was calculated using Equation 5.5, with a

surface resistivity of 0.3 Ωm and a temperature gradient of 20 oCkm−1. The fluid
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resistivity was held constant below a depth of 4.8 km for both the fault and trough

models and below a depth of 7 km for the block model. This was done because

Equation 5.5 is only valid for temperatures below 300 oC.

The resistivity models corresponding to the porosity models are shown in Fig-

ure 7.2. These values correspond to a conductive sedimentary environment. The

resistivity trends exhibited in these models are variations of the trend described in

Section 5.5, except expressed in terms of resistivity and not its reciprocal, conduc-

tivity. In the block model the anomaly and consolidated zone have constant porosity

but due to the variation in fluid resistivity with depth, these features do not have a

constant resistivity value. A similar change in resistivity value due to the change in

fluid resistivity occurs in the basement of the trough model.

The MT synthetic data were generated for each resistivity model using the finite

element computer program of Wannamaker et al. [117]. The program uses the same

grid as will be used in the inversion. Data were generated at 16 frequencies, which

varied between 1000 Hz and 0.01 Hz, and is characteristic of broadband MT data.

The porosity models were also converted to a density model using the porosity-

density relationship (Equation 5.1). For each model, the matrix density was assigned

a value of 2650 kgm−3 and the fluid density was fixed with depth at 1030 kgm−3.

Figure 7.3 shows the density models which are given in terms of absolute density

values. The gravity synthetic data were generated for these models using the forward

model outlined in Section 4.2.1. Since the density models are absolute values, the

response does not correspond to data in a Bouguer anomaly format. In order to

mimic Bouguer anomaly data, a constant value was subtracted for each data point

such that the smallest gravity data value point was 1 mGal.

Noise was added to every synthetic MT and gravity data point in the form of a

random error with a zero mean Gaussian distribution. Initial testing of the joint in-

version was conducted using an MT error of 2%, which corresponds to good quality

field data [31]. Telford et al. [6] quotes the accuracy of a typical commercial explo-

ration gravimeter as 0.03− 0.06 mGals. The upper limit of this range, 0.06 mGals,

is used as the gravity error in the synthetic data inversion experiments. Low error

levels were chosen as these will produce the best possible models from the single
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Figure 7.3: The synthetic porosity models in Figure 7.1 converted to density models
using the porosity-density relationship.

technique MT or gravity inversions. Therefore, it can be readily established if the

joint inversion produces a model that is better than the best possible MT and gravity

models.

7.1.2 Single Technique Inversion Results

Magnetotellurics

The results of the 2D MT Occam inversions for the block, fault and trough models

are shown in Figures 7.4, 7.5 and 7.6, respectively. The resistivity models from the

MT inversion have been converted to a porosity model using Archie’s Law. This

allows for an easy comparison between the MT and the joint inversion results.
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Figure 7.4: The models produced from an MT inversion of the block model synthetic
data with an error of 2% and a target RMS of a) 1.2, b) 1.4, c) 2.0 and d) 1.4 with
a horizontal smoothness weighting of 3. These models have been converted to a
porosity model using Archie’s Law.
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Figure 7.5: The models produced from an MT inversion of the fault model synthetic
data with an error of 2% and a target RMS of a) 1.0, b) 1.2, c) 1.8 and d) 1.2 with
a horizontal smoothness weighting of 3. These models have been converted to a
porosity model using Archie’s Law.
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Figure 7.6: The models produced from an MT inversion of the trough model syn-
thetic data with an error of 2% and a target RMS of a) 1.0, b) 1.2, c) 1.5 and d) 1.2
with a horizontal smoothness weighting of 2. These models have been converted to
a porosity model using Archie’s Law.
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Figures 7.7, 7.8 and 7.9 show the misfit plots between every synthetic data point

and the corresponding model response. These misfit plots were generated by sub-

tracting the model response from the synthetic data and then normalising it by the

estimated error of each data point.

Figures 7.4a, 7.5a and 7.6a show the results from an MT inversion with a target

RMS of 1. A model with an RMS of 1 (or the smallest possible value) corresponds

to the roughest possible model. These rough models result from more and more

structure being needed to fit the subtle variations in the MT data. Since the MT data

contain noise, fitting the data to a small RMS value mean ‘structure’ in the inverted

model can arise by fitting the noise, as if it were signal. This type of behaviour is

presented in Figures 7.4a, 7.5a and 7.6a which contain artifacts, especially in the

shallower part of the section (depth < 4 km). These artifacts (false features in

the image) could be mistaken for real structure and they make determination of

the porosity-depth compaction trend difficult. However, a benefit of the models in

Figures 7.4a, 7.5a and 7.6a is that the fits between the synthetic MT data and the

model responses are random across all data points (Figures 7.7a, 7.8a and 7.9a).

This random fit of data points means that there is neither a systematic fitting nor

misfitting of the different frequencies for the different modes and stations.

A relaxation can be applied to an inversion to reduce artifacts caused by fitting

noise. A relaxation involves re-executing the MT inversion with an increased target

misfit; normally an increase of 20% of the smallest achieved RMS is used. A 20%

relaxation was applied to the block, fault and trough models with the results shown

in Figures 7.4b, 7.5b and 7.6b. These models are smoother and show less artifacts.

In general, their porosity values are a good representation of the original compaction

trends. However, this 20% relaxation has not removed the larger artifacts, such as

in the fault model at a depth of 2 km and at a distance of 12 km. In order to

remove the larger artifacts, the RMS needs to be relaxed to 1.8 for the fault model

and 2.0 for the body model, with results shown in Figure 7.4c and Figure 7.5c,

respectively. Increasing the target RMS of the inversion allows for a systematic

misfitting of the MT response. In Figures 7.7c and 7.8c, and to a lesser extent in

Figure 7.7b and 7.8b, at high frequencies the TE mode is under estimated and the
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Figure 7.7: The MT misfit map from models produced in Figure 7.4, which are from
an MT inversion of the block model synthetic data with a target RMS of a) 1.2,
b) 1.4, c) 2.0 and d) 1.4, with a horizontal smoothness weighting of 3. For each
data point the MT misfit map takes the difference between the data and the model
response, normalised by the data error. Each data point is then plotted as station
location vs. frequency.
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Figure 7.8: The MT misfit map from models produced in Figure 7.5, which are from
an MT inversion of the fault synthetic data with a target RMS of a) 1.0, b) 1.2, c)
1.8 and d) 1.2, with a horizontal smoothness weighting of 3. For each data point
the MT misfit map shows the difference between the data and the model response,
normalised by the data error. Each data point is then plotted as station location
vs. frequency.
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Figure 7.9: The MT misfit map from models produced in Figure 7.6, which are from
an MT inversion of the trough model synthetic data with a target RMS of a) 1.0,
b) 1.2, c) 1.5 and d) 1.2, with a horizontal smoothness weighting of 2. For each
data point the MT misfit map takes the difference between the data and the model
response, normalised by the data error. Each data point is then plotted as station
location vs. frequency.
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TM mode is overestimated. The larger the relaxation of the RMS value, the larger

the systematic misfitting.

An alternate way to produce a smoother model without having to considerably

increase the RMS is to use a higher weighting on the horizontal or vertical smooth-

ing. A horizontal weighting was used in favour of a vertical weighting because the

models are intrinsically more coherent horizontally. The results of using a horizontal

smoothing weight of 3 and a 20% relaxation are shown in Figures 7.4d and 7.5d for

the block and fault models, respectively. The trough model result, shown in Figure

7.6d, has a horizontal smoothing of 2 and a 20% relaxation. The models produced

using a horizontal smoothing weighting are smoother than models without it. How-

ever, it does not remove the artifacts and they just become smeared into the model.

This is particularly evident for the artifact in the trough model at a depth of 1.5 km

and at a distance of 40 km. Horizontal weighting does reduce the systematic misfit

of the MT response at low/high frequency; this can be seen in Figures 7.7d, 7.8d

and 7.9d.

Once the artifacts are reduced, the MT models are adequate representations of

the synthetic models. The fault model has two distinct compaction trends, although

the boundary between them is blurred due to the smoothness contrast. The shallow

flat basement boundaries in the trough model are well constrained, as are the vertical

boundaries which have a large porosity contrast in the upper part of the section.

However, when the contrast across the vertical boundaries becomes smaller they are

more difficult to determine. In the block model, the unconsolidated region and the

top of the embedded block anomaly are well defined. However, the side boundaries

on the block are unclear and the bottom boundary, which has a small contrast across

it, is indeterminate. The flat basement boundaries in the block and fault models,

as well as the deep flat boundaries in the trough model, are not well defined.

Gravity

The 2D Occam gravity inversion developed in Chapter 4 was used to invert the

synthetic Bouguer anomaly data for all three models. The inversions did not use a

depth weighting function and were performed using the same grid as the MT and
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Figure 7.10: The Occam gravity inversion for the synthetic data, with a 0.06 mGal
error, for the a) block, b) fault and c) trough models.

joint inversions, which increases at equal logarithmic depth increments. Figure 7.3

shows the original density models which are in absolute density values and Fig-

ure 7.10 shows the inversion results which are a density contrast model. In order to

compare the different types of models, comparisons are made between the shape of

structure and the variation in density between different structures.

In common with the observations and statements made in Chapter 4, the gravity

inversions for all three models placed the structures at the surface and then smeared

them with depth. The lateral changes in the density values at the surface are in gen-

eral agreement with the vertical boundaries present in the block and trough models.

The location of the fault in the fault model is hard to determine due to artifacts

caused by noise in the data. Any horizontal boundary across the whole model, such
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as the unconsolidated zone or the flat basement in the block and fault models, are

not present in the gravity inversion images. These features have a constant gravity

response for every station and therefore this signal would be removed when forming

the Bouguer anomaly data.

As discussed in Section 4.4.3, the Occam gravity inversion will under- and over-

shoot the true density values in order to produce a tight fit of the synthetic data.

This behaviour can be seen in these models as they have negative density contrast

values, even though all synthetic data points are positive. The density variations

in the inversion models are smaller than the original synthetic models. This has

been attributed to the mass in the model being redistributed vertically due to the

smoothness constraint and now occupying a greater area. Therefore, to produce the

same gravity response the density values are reduced.

7.1.3 Joint Inversion Results

The joint inversions of the block, fault and trough models were conducted with the

correct parameter values used in Archie’s Law and the porosity-density relationship.

The joint inversion results will be discussed in terms of three misfit values, RMSJI ,

RMSMT and RMSGV . The total misfit, or RMSJI , is the RMS value that is min-

imised in the joint inversion and does not distinguish between the MT and gravity

data points. RMSMT is the RMS of only the MT data points and RMSGV is the

RMS of the gravity data points alone. The RMSMT and RMSGV values have no

influence on the joint inversion and were introduced in order to evaluate the fits of

the MT and gravity data. The sum or average of RMSMT and RMSGV does not

equal RMSJI .

Figure 7.11 shows the final results of the block, fault and trough joint inversions.

The fault model has a total RMSJI of 1.2, RMSMT of 1.2 and RMSGV of 0.9. For

the trough model, RMSJI is 1.6, the RMSMT is 1.5 and the RMSGV is 5.0. The

block model has a RMSJI of 1.4, the RMSMT is 1.4 and RMSGV is 1.7. As discussed

in Section 6.2.2, there is a bias in the joint inversion towards fitting the MT data

and this is evident in the three RMS values. The total RMSJI is very similar to the

RMSMT value, regardless of the RMSGV value. Even though there is a preferential
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Figure 7.11: The joint inversion results for synthetic data with an MT error of 2%
and a gravity error of 0.06 mGals, for the a) block, b) fault and c) trough models.

bias towards fitting the MT data, the block and fault models are both characterised

by a good fit of the MT and gravity data, shown in Figure 7.12. The MT fits,

shown in Figures 7.13a and 7.13b, have no systematic misfitting of the data at any

frequency. The trough model has a larger gravity misfit than the block and fault

models. Figure 7.13c shows how the inability to fit the gravity data allows a slight

over- and under- estimation of the TE and TM modes in the MT data.

A prominent feature of all the joint inversion models is that they do not contain

artifacts, enabling a clear porosity-compaction trend to be established. The sand-

stone and shale porosity-compaction trends in the fault model are almost identical

to the synthetic model, however the boundary between them has been inevitably

smeared. In the block model, the unconsolidated zone and the top of the embedded
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Figure 7.12: The gravity data (blue dots) and model responses (red lines) for the
joint inversions of the synthetic data, with an MT error of 2% and a gravity error
of 0.06 mGals, for the a) block, b) fault and c) trough models.

block are well mapped, however the exact location of the sides and bottom bound-

ary of the block are hard to determine. The porosity-compaction trend away from

the anomalous body is a true representation of the original, but the porosity value

of the anomaly itself is slightly high. The trough model has a high gravity misfit

which is investigated in greater detail in Section 8.1.3, while different weightings for

the two data sets to reduce RMSGV are tested in Section 8.3. Regardless of the

high RMSGV value, the shallow horizontal and vertical basement boundaries of the

trough are well defined and again the porosity-compaction trend is also identical to

the original.
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Figure 7.13: The MT misfit map from models produced in Figure 7.11, which are
from the joint inversion of the a) block, b) fault and c) trough models. For each MT
data point the MT misfit map takes the difference between the data and the model
response, normalised by the data error. Each data point is then plotted as station
location vs. frequency.
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7.1.4 Discussion

From the findings reported in Chapter 4 and from Figure 7.10, it is clear that

the joint inversion produces a more accurate representation of the subsurface than

an individual gravity inversion. Therefore, for the remainder of this chapter the

emphasis is placed on determining if the joint inversion can produce more accurate

images of the subsurface than the single data set MT inversion.

The single MT data inversion will always produce a smaller RMS value than

the RMSJI and RMSMT values for the joint inversion. The reason for this is that

the MT inversion can fit all the subtle variations, including noise, contained in the

data, whereas the joint inversion cannot as it also has to satisfy the gravity data.

A similar situation arises for the gravity inversion. The RMS values of the MT and

gravity inversions produce lower limits on the RMSMT and RMSGV values than can

be achieved through joint inversion.

Similarities between the MT and joint inversion results are that they both strug-

gle to reproduce the horizontal basement in the block and fault models, as well

as the deep basement features of the tough model. In general, if structure does

not appear in the MT model then there is no basis for such structure in the MT

data. Therefore, the question arises as to whether or not the joint inversion can be

expected to reconstruct structure to which the MT technique is insensitive.

A major difference between the MT and joint inversion models is that the MT

models obtained with a target RMS of 1 contain artifacts. These artifacts do not

appear in the joint inversion models, although they have higher values of misfit. For

the fault and block models, the equivalent joint inversion RMSMT value is achieved

by an MT inversion with a 20% relaxation. However, the 20% relaxation MT mod-

els still contain artifacts, whereas the joint inversion gives a clearer image of the

subsurface. Also the 20% relaxation in the MT inversion allows for a systematic

misfit of the MT data, as revealed in Figures 7.7b and 7.8b. Such behaviour is not

present in the joint inversion result of Figure 7.13.

The points at which all the artifacts are removed from the MT inversions occur

at an RMS value of 2.0 and 1.8 for the block and the fault models, respectively.

Although these models are comparable to the joint inversion in terms of clarity of



7.2. EFFECTS OF DATA ERRORS 155

the compaction trend and the boundary locations, they have a larger RMS value

than the joint inversion RMSMT . Again, these MT models exhibit a systematic

misfitting of the MT response, whereas the joint inversion does not.

The joint inversion is therefore favoured over single MT inversion as a way to

reconstruct the subsurface structure. The joint inversion models do not contain the

artifacts present in the MT inversions that have a target RMS of 1 and the joint

inversion models have RMSMT values smaller than any single MT inversion that

attempts to remove the artifacts.

7.1.5 Proof of Concept Summary

The joint inversion produces coherent models and provides an effective means of

reconstructing the subsurface. It was shown that the joint inversion can resolve

density anomalies, differences in porosity-compaction trends and basement topog-

raphy. The joint inversion was shown to produce a better representation of the

subsurface than either the MT or gravity inversion alone.

7.2 Effects of Data Errors

All data points have an associated error or uncertainty, which must be estimated.

In an inversion scheme, the error level defines the tolerance to which each data point

is replicated. It makes no sense trying to fit the observed data with predicted data

(for a given model) to a level better than the data errors. For the joint inversion, the

MT and gravity data sets have their own error values, which give the tolerance to

which each data set is to be matched. In this section the effect on the joint inversion

of the magnitude of the MT and gravity errors is investigated and has been broken

into two parts: the effect of increasing the gravity error, and the effect of increasing

the MT error.

7.2.1 Gravity Data Errors

To investigate the effects of the gravity errors on the joint inversion, the inversion

was executed with the MT errors held constant, and the gravity errors varied. In
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keeping with the discussion of Section 4.4.1, the gravity error level was assigned a

fixed value based on the amplitude of the synthetic data. The symbol %A is again

used and differentiates this style of gravity error allocation. Figure 7.14 shows the

joint inversion results for the block model with an MT error of 6% and gravity errors

of 2, 15 and 50%A . The fault model inversion results, shown in Figure 7.15, have

an MT error of 4% and the gravity errors are progressively set at 2, 15 and 50%A.

Figure 7.16 shows the results for the trough model with an MT error of 10% and

gravity errors of 2, 10 and 25%A.

The block and fault models (Figures 7.14 and 7.15), show the general trend which

occurs as the gravity error is increased. When the gravity error is small, the joint

inversion produces a good representation of the true synthetic model (Figures 7.14a

and 7.15a). Here, the boundaries are well defined, the porosity-depth compaction

trend is clear and the true porosity values are well recovered. As the gravity er-

ror increases (Figures 7.14b, 7.14c, 7.15b and 7.15c), the inverted models develop

artifacts, blurred boundaries and incorrect porosity values. In general, the models

produced by the joint inversions start to approach the model produced from a single

MT inversion with a target RMS of 1 (Figures 7.14d and 7.15d).

Even when the gravity error is close to 100%A, and the data contain no reliable

information about the subsurface, the joint inversion does not produce the same

model as the MT inversion. A model is produced which has similar features but

is smoother, and this is indicative of the RMSMT value of the joint inversion never

reaching the RMS of the single MT inversion. This is an extension of the behaviour

seen in Section 4.4.3 where a single gravity Occam inversion with high gravity errors

produced a very smooth or almost homogenous model.

The inclusion of gravity data with a small error mean that a slight variation

away from the gravity data value will produce a large RMSGV , and subsequently a

large RMSJI value. Therefore, a small gravity error encourages the joint inversion

to fit the gravity data and produces a reliable image. However, as the gravity error

is increased the preference of the joint inversion to fit the gravity data decreases.

The joint inversion is then dominated by the MT data, thus producing models that

resemble the single MT inversion results.
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Figure 7.14: Joint inversion results using the block model synthetic data with an
MT error of 6% and a gravity error of a) 2%A, b) 15%A and c) 50%A. d) MT
inversion of the block model synthetic data with an error of 6% and converted to a
porosity model using Archie’s Law.
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Figure 7.15: Joint inversion results using the fault model synthetic data with an MT
error of 4% and gravity error of a) 2%A, b) 15%A and c) 50%A. d) MT inversion
of the fault synthetic data with an error of 4% and converted to a porosity model
using Archie’s Law.
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Figure 7.16: Joint inversion results using the trough model synthetic data with
an MT error of 10% and gravity error of a) 2%A, b) 10%A and c) 25%A. d) MT
inversion of the trough model synthetic data with an error of 10% and converted to
a porosity model using Archie’s Law.
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The trough model results, shown in Figure 7.16, exhibit a slightly different trend

to that of the previous block and fault examples. As with the fault and block exam-

ples, increasing the gravity error leads to artifacts developing in the joint inversion

models (Figure 7.16b). However, if both the MT and gravity errors are significantly

large, then the joint inversion can produce a smooth coherent model with no arti-

facts, as depicted in Figure 7.16c. The image in this figure has an MT error of 10%

and a gravity error of 25%A. It is an adequate representation of the synthetic trough

model, although it is smoother and a slight over-estimation of the porosity values.

When data errors are high, the Occam inversion produces a smoother model and

this is the joint inversion equivalent of such behaviour. However, the joint inversion

must satisfy both the MT and gravity data sets, which do not contain coherent

noise information, thus reducing the risk of artifacts and resulting in a model which

resembles the original.

7.2.2 MT Data Errors

To investigate the effects of MT data errors on the joint inversion, the inversion was

executed with the gravity error held constant and the MT error allowed to vary.

Figure 7.17 shows the joint inversion results for the block model with a gravity error

of 2%A and MT errors of 2, 4, 10 and 20%. The fault model results, shown in

Figure 7.18, have a gravity error of 5%A and MT errors of 2, 5, 7 and 15%. For the

trough model, shown in Figure 7.19, the gravity error is 0.06 mGals and the MT

errors are 3, 7, 15 and 25%.

The trough model illustrates the changes in the joint inversion results when the

gravity error is small and the MT error is increased (see Figure 7.19). There is a

slight change in the basement boundary and the porosity value, but in general all

models are smooth, contain no artifacts and are good representations of the synthetic

trough model. The consistency in these models, regardless of MT error, is attributed

to the gravity and MT data not having correlated noise information. Therefore, the

gravity data do not support model artifacts, which arise when inverting the MT data

alone. For the specific trough example given, the RMSGV seems uncharacteristically

high, although all RMSGV errors are smaller than the RMSGV values in Section 7.1.3.
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Figure 7.17: Joint inversion results using the block model synthetic data with a
gravity error of 2%A of the data amplitude and an MT error of a) 2%, b) 4%, c)
10% and d) 20%.
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Figure 7.18: Joint inversion results using the fault model synthetic data with a
gravity error of 5%A of the data amplitude and an MT error of a) 2%, b) 5%, c)
7% and d) 15%.
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Figure 7.19: Joint inversion results using the trough model synthetic data with a
gravity error of 0.06 mGals and an MT error of a) 3%, b) 7%, c) 15% and d) 25%.
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Figure 7.17 shows the joint inversion results for the block model with a slightly

higher gravity error than the previous trough example. This relaxes the ability of

the gravity data to constrain the MT data in the joint inversion, and as a result

there is no longer a consistency of models across the full range of MT errors. In

Figure 7.17a, for which the MT error is low, the joint inversion still produces a good

representation of the true synthetic model. However, at higher MT errors, as shown

in Figure 7.17c, the joint inversion reconstructed models become smoother and the

block anomaly feature is harder to recover.

The fault model results shown in Figure 7.18 have the highest gravity error of

5%A. As previously discussed, when the gravity errors are high and the MT errors are

low, the joint inversion produces a model which resembles the single MT inversion.

This is illustrated in Figure 7.18a. However, when both the MT and gravity errors

are high, a smooth model is produced, as is evident in Figure 7.18d. This is similar

to observations made for the trough example in Section 7.2.1. Figures 7.18b and

7.18c show the transition between these two extremes.

7.2.3 Data Error Summary

Low MT and gravity errors are highly desirable because low noise data produce the

best possible representation of the subsurface. As the gravity error increases, the

joint inversion model develops more artifacts and begins to resemble the model from

a single MT inversion with a target RMS of 1. However, if both the MT and gravity

errors are high, then a smooth model can still be produced. When a high MT error is

combined with a low gravity error, the low error gravity data can constrain the noisy

MT data. This will produce a model that is artifact free and a good representation

of the original model. An implication of these findings is that coherent information

can be obtained from noisy MT data by combining it with high quality (low noise)

gravity data.
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7.3 Station Configurations

There are several reasons why the gravity and MT station configurations may not

coincide. This could be the result of surveys being conducted at different times or

because of different survey requirements. Gravity data can be acquired at a higher

speed than the MT technique, which requires careful station preparation and long

recording times. Therefore the gravity and MT stations will generally not occupy the

same locations, and so the joint inversion must allow for arbitrary locations in each

case. This section investigates how different station configurations (and numbers of

stations) affect the joint inversion results. It should be appreciated that changing

the MT and gravity station configurations change the ratio of gravity to MT data

points. This could potentially produce a bias against the MT data, because of the

large difference between the number of stations in each case (gravity data are easier

to collect and are therefore a potentially denser acquisition). However, this is offset

to some extent by the increased data in MT (multiple frequencies for each station)

and so the bias is most likely to be slight and deemed not to be an issue.

The first part of this section considers having more gravity than MT stations,

whereas in the second part the reverse is true, with more MT than gravity stations.

Having different numbers of MT and gravity stations means that the techniques

could contain information about different potentially conflicting subsurface features.

However, in this section, the gravity and MT data used are compatible and contain

the signal from the same subsurface features.

7.3.1 Additional Gravity Stations

The aim is to determine if having extra gravity stations helps to ‘fill in’ information

between the MT stations and aid resolving lateral boundaries. The MT station

spacing of the block, fault and trough models were doubled to allow for the extra

gravity stations. The new MT station spacings are 2, 4 and 6 km for the block,

fault and trough models, respectively. Three gravity station configurations, shown

in Figure 7.20, were used in conjunction with the new MT spacings; (1) a gravity

station at every MT station, as a control, (2) one gravity station in between every
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Figure 7.20: The residual porosity models for the joint inversion of the fault model
synthetic data with an MT error of 2% and a gravity error of 0.06 mGals. Models
a), b) and c) have different MT and gravity station configurations. A black diamond
is a station where both MT and gravity data are recorded, whereas a white triangle
is a station where just gravity data are recorded. The porosity residual models are
generated by subtracting the synthetic (true) model from the joint inversion model.

other station which has both MT and gravity and (3) three gravity stations evenly

spaced between every primary stations which has both MT and gravity stations.

The joint inversions were performed using a gravity error of 0.06 mGals, since a

small gravity error encourages the joint inversion to fit the gravity data (Section 7.2).

The MT errors were varied for each run, and included values of 2, 4, 6, 8 and

10%. Figure 7.20 shows the reconstructed porosity deviations for the fault model

from a joint inversion using the different station configurations. The MT data

error is 2% for this plot. The images in this figure are residual models which are

obtained by subtracting the porosity values of the true synthetic model from the joint
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inversion model. Therefore, positive residual values are where the joint inversion

model over-estimates the true values and the negative residual values are where the

joint inversion under- estimates the true values. Residual models are used in the

display because they best exploit the available dynamic range and show the subtle

variations between the models where the different station configurations are used.

The results depicted in Figure 7.20 show that there is only a very minor improve-

ment in the ability of the joint inversion to reconstruct the original fault model as

the number of gravity stations increases relative to the number of MT stations. At

a distance of ∼ 16 km and depth of ∼ 1 km an artifact appears in the image as

the number of gravity stations increases. In general, the addition of extra gravity

stations provided minimal or no improvement to the ability of the joint inversion

to reconstruct the synthetic models for all three models and error levels tested. By

its nature, the gravity response is smooth and so sampling it at a higher density

does not change the basic characteristics of the response curve. Therefore, there is

minimal information gained by having additional gravity stations, when compared

to the station configuration which has the gravity and MT stations at the same

location.

7.3.2 Additional MT Stations

In this section the effect on the joint inversion results, when there are more MT than

gravity stations, is investigated. For this investigation the block, fault and trough

synthetic models were again used, with their original recording station spacing of

1, 2 and 3 km, respectively. Four gravity station configurations were used and are

shown in Figure 7.21; (1) a gravity station at every MT station, as a control, (2) the

removal of a gravity station at every second MT station location, (3) the removal

of gravity stations to set up a sequence entailing both MT and gravity stations co-

incident, followed by two sites involving only MT stations and (4) only three gravity

stations, one at each end site and one at the middle site. The joint inversions were

run, using a gravity error of 0.06 mGals, and sequential MT errors of 2, 4, 6, 8 and

10%.

Figure 7.21 shows the residual models for the fault model, with an MT error of
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Figure 7.21: The residual porosity models for the joint inversion of the fault model
synthetic data with an MT error of 2% and a gravity error of 0.06 mGals. Models
a), b) and c) have different MT and gravity station configurations. A black diamond
is a station where both MT and gravity data are recorded, whereas a white inverted
triangle is a station where just MT data are recorded. The porosity residual models
are generated by subtracting the synthetic (true) model from the joint inversion
model.
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2%. The different diagrams correspond to the four different station configurations.

The fewer gravity stations there are, the less information the gravity response con-

tains about the subsurface. Therefore, the capacity of the gravity data to constrain

the MT data in the joint inversion is reduced. As a result, progressively more im-

age artifacts appear in the joint inversion models as the number of gravity stations

decrease. The models approach a similar appearance to an MT inversion with a

target RMS of 1. However, even when there are only three gravity stations the joint

inversion still produces a model with less artifacts than the single MT inversion.

These findings are consistent for all synthetic model types and error levels tested,

although only the results for the fault model and one MT data error (2%) are shown.

7.3.3 Station Configurations Summary

Additional gravity stations, except at every MT station along the profile, provide

only minimal or no improvement in the ability of the joint inversion to reconstruct

the subsurface. However, these extra gravity stations do not harm the results and

should therefore be used in a joint inversion if available. More MT than gravity

stations leads to artifacts in the joint inversion result, although using only three

gravity stations still provides an improvement over an individual MT inversion.

7.4 Target Contrast and Resolution Observations

The aim of this section is to determine how the joint inversion reacts to different

porosity contrasts and to study the resolving capacity of the joint inversion, and

compare it to the MT inversion alone.

7.4.1 Target Contrast

In this section the effects of different porosity contrasts on the joint inversion is

investigated and compares these results to the MT inversion. The synthetic model

used in this numerical experiment is shown in Figure 7.22a. It comprises an 8 km

by 4 km embedded box within a uniform background, having its top surface at a

depth of 1 km below the surface. Since the MT technique has a greater sensitivity
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Figure 7.22: a) Synthetic box model. b) Synthetic layered model with different
middle layer thicknesses, as indicated. c) Two box model with different separa-
tion distances, as indicated. d) Basement model with different trough depths, as
indicated.

to resistivity structures than conductive structures [31] both positive and negative

contrasts between the background and the box porosity values need to be investi-

gated. Table 7.1 lists the porosity values assigned to the box and the background.

The parameter values used in Archie’s Law and the porosity-density relationship

were a = 1, mcf = 2, S = 1, ns = 2, (fluid = 0.33 Ωm, ρmatrix = 2650 kgm−3

and ρfluid = 1030 kgm−3. These parameters are fixed with depth to allow for a

constant resistivity and density contrast across the whole model. Using the above

listed parameters of Archie’s Law and the porosity-density relationship, the corre-

sponding resistivity and density values of the background and the inclusion (box)

are calculated and shown in Table 7.1.

For each of the porosity contrasts given in Table 7.1, the MT and gravity data
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Table 7.1: The density, resistivity and porosity values used the inversion of the one
box model for the negative and positive porosity contrasts.
negative background box background box background box
contrast φ φ ( (Ωm) ( (Ωm) ρ (kgm−3) ρ (kgm−3)
1% 0.11 0.10 12.4 15.0 2471.8 2488.0
2% 0.12 0.10 10.4 15.0 2455.6 2488.0
3% 0.13 0.10 8.9 15.0 2439.4 2488.0
4% 0.14 0.10 7.7 15.0 2423.2 2488.0
5% 0.15 0.10 6.7 15.0 2407.0 2488.0
6% 0.16 0.10 5.9 15.0 2390.8 2488.0
7% 0.17 0.10 5.2 15.0 2374.6 2488.0
8% 0.18 0.10 4.6 15.0 2358.4 2488.0
10% 0.20 0.10 3.7 15.0 2326.0 2488.0
15% 0.25 0.10 2.4 15.0 2245.0 2488.0
20% 0.30 0.10 1.7 15.0 2164.0 2488.0

positive background box background box background box
contrast φ φ ( (Ωm) ( (Ωm) ρ (kgm−3) ρ (kgm−3)
1% 0.10 0.11 15.0 12.4 2488.0 2471.8
2% 0.10 0.12 15.0 10.4 2488.0 2455.6
3% 0.10 0.13 15.0 8.9 2488.0 2439.4
4% 0.10 0.14 15.0 7.7 2488.0 2423.2
5% 0.10 0.15 15.0 6.7 2488.0 2407.0
6% 0.10 0.16 15.0 5.9 2488.0 2390.8
7% 0.10 0.17 15.0 5.2 2488.0 2374.6
8% 0.10 0.18 15.0 4.6 2488.0 2358.4
10% 0.10 0.20 15.0 3.7 2488.0 2326.0
15% 0.10 0.25 15.0 2.4 2488.0 2245.0
20% 0.10 0.30 15.0 1.7 2488.0 2164.0
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Figure 7.23: Joint inversion results for the box model synthetic data with a) a 1%
negative porosity contrast and b) a 1% positive porosity contrast . The joint inver-
sion used an MT error of 2% and a gravity error of 0.06 mGals. Also indicated are
the gravity data (blue dots) and the model responses (red line). The MT synthetic
data for station 8, indicated on Figure 7.22, for a) a 1% negative porosity contrast
and b) a 1% positive porosity contrast.
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were calculated at fifteen stations, with a station spacing of 2 km. It was demon-

strated in Section 7.3 that there is only marginal, to no benefit, in employing more

gravity stations than MT stations. Therefore, the MT and gravity data were cal-

culated at the same station locations. It was shown in Section 7.2 that the joint

inversion produces the most accurate representation of the subsurface when the

gravity and MT errors are small. Therefore a gravity error of 0.06 mGals and an

MT error of 2% were used.

Figures 7.23a and 7.23b show the gravity data for boxes having 1% positive and

negative contrasts, respectively. The maximum amplitude of the gravity anomaly

is 1.4 mGal in both cases. The MT data for station 8, which is indicated on Fig-

ure 7.22a as being directly above the top of the box, are shown in Figures 7.23c

and 7.23d. The MT data show very little variation away from the half space re-

sponse, which has a constant apparent resistivity of 10 Ωm and a phase of 45o for

all frequencies. When MT data are inverted alone, a practically smooth model is

produced with an RMS of 1.

Unlike the MT inversion, the joint inversion of the MT and gravity data for the

positive and negative 1% contrasts, yields models containing structure, as shown in

Figure 7.23. For both contrast models the total RMS is 1.0, with an RMSMT value

of 0.9. However, the gravity RMSGV is large at 2.9 for both contrasts. The gravity

data contain a strong signal of the box structure and the joint inversion struggles to

fit this signal, as it is not supported by an equivalent anomaly in the MT data. For

this scenario it is questionable whether it can be concluded that the joint inversion

produces a better representation of the subsurface than the MT inversion or if the

joint inversion is producing structure that is only compatible with one of the data

sets.

A positive or negative porosity contrast of 2% produces a similar inversion re-

sponse to the 1% contrast situation. Contrasts above 2%, although small, have a

clear indication (anomaly) of the box in the MT as well as the gravity data. Fig-

ures 7.24 and 7.25 show the recovered residual porosity models from the MT and

joint inversions for positive and negative contrasts of 3% and 6%, respectively. All

the residual models show an over- and under-estimation of the porosity values across
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Figure 7.24: The porosity residual models for a joint inversion, with an MT error
of 2% and gravity error of 0.06 mGals, for the one box model synthetic data with
a) a 3% negative contrast and c) a 3% positive contrast. b) The porosity residual
models of an MT inversion, with an error of 2%, for the one box model synthetic
data with b) a 3% negative contrast and d) a 3% positive contrast. The porosity
residual models are generated by subtracting the synthetic model from the joint
inversion model or the MT model converted to a porosity model using Archie’s Law.

the box boundary. This is expected and is due to the smoothness constraint not

allowing a sharp boundary to occur. A 3% positive or negative contrast has little

variation between the MT and joint inversion models, as shown in Figure 7.24. At a

6% contrast, the joint inversion provides a more accurate representation of the box

porosity values than does the MT inversion, as evident in Figure 7.25. However, the

joint inversion over- and under-shoots the background porosity values more than

the MT inversion.

This over- and under-shooting of the background porosity is even more evident

at higher porosity contrasts, for example a 15% contrast is shown in Figure 7.26. For
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Figure 7.25: The porosity residual models for a joint inversion, with an MT error
of 2% and gravity error of 0.06 mGals, for the one box model synthetic data with
a) a 6% negative contrast and c) a 6% positive contrast. b) The porosity residual
models of an MT inversion, with an error of 2%, for the box synthetic data with b)
a 6% negative contrast and d) a 6% positive contrast. The porosity residual models
are generated by subtracting the synthetic model from the joint inversion model or
the MT model converted to a porosity model using Archie’s Law.

a 15% negative contrast the joint inversion model under-estimates the box porosity

value and overshoots the background porosity (Figure 7.26e). The corresponding

MT inversion, (Figure 7.26a), has an RMS of 1.1 and it too under-estimates the

box porosity value, but has significant artifacts. A 20% relaxation can be applied,

(Figure 7.26b) and yields a smoother model with fewer artifacts. It does however

slightly over-estimate the box porosity value and the box boundaries are not as well

defined.

A positive contrast of 15% corresponds to a conductive body, to which the MT

technique is more sensitive. Unlike the negative contrast case, the MT inversion
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Figure 7.26: The porosity residual models for the one box model synthetic data
with an MT error of 2% and gravity error of 0.06 mGals. a) MT inversion of a 15%
negative contrast anomaly with a target RMS of 1. b) 20% relaxation of the model
in a). c) MT inversion of a 15% positive contrast anomaly with a target RMS of 1.
d) is a 20% relaxation of the model in c). e) is the joint inversion of a 15% negative
contrast anomaly and f) is the joint inversion of a 15% negative contrast anomaly.
The porosity residual models are generated by subtracting the synthetic model from
the joint inversion model or the MT model converted to a porosity model using
Archie’s Law.
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Table 7.2: The density, resistivity and porosity values used in the inversion of the
layered model for different porosity distributions.

porosity configuration: decreasing increasing negative positive
anomaly anomaly

top layer φ 0.30 0.10 0.30 0.10
middle layer φ 0.15 0.15 0.10 0.30
bottom layer φ 0.10 0.30 0.30 0.10
top layer ( (Ωm) 3.7 33.0 3.7 33.0
middle layer ( (Ωm) 14.7 14.7 33.0 3.7
bottom layer ( (Ωm) 33.0 3.7 3.7 33.0
top layer ρ (kgm−3) 2164.0 2488.0 2164.0 2488.0
middle layer ρ (kgm−3) 2407.0 2407.0 2488.0 2164.0
bottom layer ρ (kgm−3) 2488.0 2164.0 2164.0 2488.0

reaches an RMS of 1 and in so doing enables the inversion to seek the smoothest

possible model with this RMS. Thus, the MT model does not contain significant

artifacts (Figure 7.26c). However, it does over-estimate the box porosity value by a

greater amount than does the joint inversion (Figure 7.26f).

The inversions were repeated using MT errors of 4, 6 and 8%. At higher MT

errors, a stronger porosity contrast is required for the MT inversion to produce a

model containing structure. Conversely, the joint inversion produces models con-

taining structure at a smaller contrast than the MT inversion. These results also tie

in with the findings of Section 7.2, where it was observed that a small gravity error

aids a large MT error in reconstructing the synthetic model.

7.4.2 Resolution Observations

Vertical Resolution

A three layered model, shown in Figure 7.22b, is used to test and compare the

vertical resolution of the joint inversion and MT models. The top of the middle

layer is fixed at a depth of 1 km. The thickness was allowed to vary and fixed

values of 1.5, 2.0, 2.5 and 3.0 km were assigned with separate inversions run for each

thickness. The porosity values assigned to the three layers are given in Table 7.2.

Four porosity distributions are considered and referred to as increasing, decreasing,

positive anomaly and negative anomaly. The parameter values in Archie’s Law and

the porosity-density relationship were fixed with depth and are a = 1, mcf = 2,
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S = 1, ns = 2, (fluid = 0.33 Ωm, ρmatrix = 2650 kgm
−3 and ρfluid = 1030 kgm

−3.

Using these values, the corresponding resistivity and density values for the three

layers are computed and also listed in Table 7.2.

For each porosity distribution, the MT and gravity synthetic data were calculated

at fifteen stations along the surface of the model, at a station spacing of 2 km (see

Figure 7.22b). As for the target contrast investigation (Section 7.4.1), the MT and

gravity data were generated at the same station locations and the gravity error was

set at 0.06 mGals, while the MT error was 2%. The gravity technique is sensitive to

lateral changes, however the layered model has none. Therefore, the gravity response

for all stations will be the same (no anomaly).

The increasing and positive anomaly porosity distributions have conductive fea-

tures, to which the MT technique is more sensitive (than the resistive features)

[31]. As a result, the MT inversions of these porosity configurations all reached an

RMS of 1, which allows the MT inversion to seek the smoothest possible model with

this RMS. Therefore these models do not contain artifacts and do not require a

20% relaxation (see Figures 7.27b and 7.27d). Conversely, the MT inversions of the

decreasing and negative anomaly configurations, which contain resistive features,

never have an RMS less than 1.1. These models are peppered with artifacts and

require a 20% relaxation in the target RMS to produce a smooth artifact free model

(Figures 7.28b and 7.28d).

Similar to the MT inversions, the joint inversions of the increasing and positive

anomaly distributions always have an RMS of approximately 1. The joint inversions

of the decreasing and negative anomaly distributions never reach an RMSJI less

than 1.2. All joint inversions, regardless of the porosity distribution or middle layer

thickness, produced an RMSGV value never greater than 0.7. This is an over fit of

the gravity data and occurs as the joint inversion does not distinguish between data

types, thus making it unaware that it is systematically over or under fitting one of

the data sets.

Figure 7.28 shows an example of the decreasing and negative porosity anomaly

distributions for middle layer thicknesses of 2.0 km and 3.0 km. The joint inversion

results contain minimal artifacts, whereas the MT inversions alone exhibit significant
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Figure 7.27: The porosity residual models for the layered model synthetic data with
an MT error of 2% and gravity error of 0.06 mGals. a) joint inversion of an increasing
porosity distribution and a middle layer thickness of 2.5 km. b) MT inversion of
an increasing porosity distribution and a middle layer thickness of 2.5 km. c) joint
inversion of a positive anomaly porosity distribution and a middle layer thickness of
2.0 km. d) MT inversion of a positive anomaly porosity distribution and a middle
layer thickness of 2.0 km. The porosity residual models are generated by subtracting
the synthetic model from the joint inversion model or the MT model converted to a
porosity model using Archie’s Law.
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Figure 7.28: The porosity residual models of the layered model synthetic data with
an MT error of 2% and gravity error of 0.06 mGals. a) joint inversion of a decreasing
porosity distribution and a middle layer thickness of 2.0 km. b) MT inversion of
a decreasing porosity distribution and a middle layer thickness of 2.0 km. c) joint
inversion of a negative anomaly porosity distribution and a middle layer thickness of
3.0 km. d) MT inversion of a negative anomaly porosity distribution and a middle
layer thickness of 3.0 km. The porosity residual models are generated by subtracting
the synthetic model from the joint inversion model or the MT model converted to a
porosity model using Archie’s Law.
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artifacts. The MT images have lateral boundaries, but the gravity response does

not contain any information supporting any such lateral features. Therefore the

presence of the gravity data in the joint inversion discourage against finding lateral

boundaries.

Figure 7.27 shows inversion results for the increasing and positive anomaly poros-

ity distributions for middle layer thicknesses of 2.5 km and 2.0 km. This figure shows

that the models produced by the MT and joint inversions are smooth, artifact free

and almost identical while having similar RMS values. The similarities are due to

the gravity data discriminating against the artifacts in the joint inversion and the

MT inversion reaching an RMS of 1, thus being able to produce the smoothest

possible model with this RMS.

Since the MT and joint inversions produce very similar models, it can be con-

cluded that the joint inversion does not aid in improving vertical resolution. The

vertical resolving capacity of the MT and joint inversions is dependent on the signal

contained in the MT data. A benefit of the joint inversion in a layered environment

is that the gravity data discriminate against lateral features and aid in delineating

resistivity structures.

Horizontal Resolution

Amodel comprising of two isolated boxes in a uniform background (see Figure 7.22c)

was used to test and compare the horizontal resolution of the MT and joint inver-

sions. The two boxes are of dimensions 4 km by 4 km, with their top boundary

located at a depth of 1 km. A series of eight models were constructed by varying

the horizontal separation between the two boxes. The first model has the two boxes

situated next to each other (touching), the next one has them 0.7 km apart. Subse-

quent models increase the separation by increasing increments of 1.35 km until they

are separated by 8.7 km.

Table 7.3 lists the porosity values used for the two boxes and the background

and are based on a porosity contrast of 6% and 20%. There were three porosity

distributions tested, referred to as positive anomaly, negative anomaly and opposite

anomaly. Once again, the parameters in Archie’s Law and the porosity-density
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Table 7.3: The density, resistivity and porosity values used in the inversion of the
two box model for different porosity distributions.
6% porosity configuration: negative positive opposite anomaly

anomaly anomaly negative box positive box
background φ 0.16 0.10 0.16
box φ 0.10 0.16 0.10 0.22
background ( (Ωm) 12.9 33.0 12.9
box ( (Ωm) 33.0 12.9 33.0 6.8
background ρ (kgm−3) 2390.8 2488.0 2390.8
box ρ (kgm−3) 2488.0 2390.8 2488.0 2293.6

20% porosity configuration: negative positive opposite anomaly
anomaly anomaly negative box positive box

background φ 0.30 0.10 0.15
box φ 0.10 0.30 0.10 0.30
background ( (Ωm) 3.7 33.0 14.7
box ( (Ωm) 33.0 3.7 33.0 3.7
background ρ (kgm−3) 2164.0 2488.0 2407.0
box ρ (kgm−3) 2488.0 2164.0 2488.0 2164.0

relationship were fixed with depth and were a = 1, mcf = 2, S = 1, ns = 2,

(fluid = 0.33 Ωm, ρmatrix = 2650 kgm−3 and ρfluid = 1030 kgm−3. Using these

values, the corresponding resistivity and density values for the two box models were

calculated and are given in Table 7.3. For each porosity distribution, the MT and

gravity data were calculated at fifteen stations with a station spacing of 2 km. As

with the target contrast investigation (Section 7.4.1), the MT and gravity data were

generated at the same stations, with the gravity error set at 0.06 mGals and the

MT error 2%.

All the MT inversions which were based on a contrast of 6% had an RMS of

1, which allows the inversion to produce the smoothest possible model free of arti-

facts. The joint inversion models are also free of artifacts and have an RMSJI of

1. Figure 7.29 shows the joint inversion and MT residual models for a contrast of

6%, where the two boxes are 6.0 km apart. The recovered joint inversion and MT

models are similar.

The MT and joint inversions for the models with a 20% contrast and having

opposite and positive anomaly distributions all reach an RMS of 1. The negative

anomaly porosity distribution contains resistive features to which the MT technique

is less sensitive. The MT and joint inversions for these models never reach an RMS
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Figure 7.29: The porosity residual models for a joint inversion, with an MT error
of 2% and gravity error of 0.06 mGals, for the two box model synthetic data with
a) a 6% negative contrast, c) a 6% positive contrast and e) an opposite porosity
distribution and a contrast of 6%. The porosity residual models of an MT inversion,
with an error of 2%, for the two box model synthetic data with b) a 6% negative
contrast, d) a 6% positive contrast and f) an opposite porosity distribution and a
contrast of 6%. All models have the separation distance between the two boxes at
6.0 km. The porosity residual models are generated by subtracting the synthetic
model from the joint inversion model or MT model converted to a porosity model
using Archie’s Law.
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Figure 7.30: The porosity residual models for a joint inversion, with an MT error
of 2% and gravity error of 0.06 mGals, for the two box model synthetic data with
a) a 20% negative contrast, c) a 20% positive contrast and e) an opposite porosity
distribution and a contrast of 20%. The porosity residual models of an MT inversion,
with an error of 2%, for the two box model synthetic data with b) a 20% negative
contrast, d) a 20% positive contrast and f) an opposite porosity distribution and a
contrast of 20%. All models have the separation distance between the two boxes
at 7.3 km. The porosity residual models are generated by subtracting the synthetic
model from the joint inversion model or the MT model converted to a porosity model
using Archie’s Law.
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less than 1.3. Figure 7.30 shows the MT and joint inversion results for the three

porosity distributions when the two boxes are separated by 7.3 km.

The MT and joint inversion models for the opposite porosity distribution (Fig-

ures 7.30e and 7.30f) are very similar, except the MT model over-estimates the

positive contrast box. The MT model of the positive configuration (Figure 7.30d)

has tighter lateral boundaries than the joint inversion model (Figure 7.30c). How-

ever, the MT model over-estimates the box porosity values more than the joint

inversion, but the joint inversion undershoots the background porosity values. For

the negative porosity distribution, the MT inversion result (Figure 7.30b) is contam-

inated with artifacts, whereas the joint inversion image (Figure 7.30a) is smoother.

The MT inversion results can be improved by performing a 20% relaxation but this

will result in a model that has an RMS higher than the joint inversion.

In general the joint inversion and the MT inversion, with or without a 20%

relaxation (depending on the model), produce similar results for the series of 8

synthetic models for a given contrast and porosity distribution. This is a similar

result to the vertical resolution investigations and reinforces that joint inversions

are dependent on the signal contained in the MT data and therefore have similar

resolution characteristics to a single MT inversion.

7.4.3 Target Contrast and Resolution Summary

The joint inversion cannot recover a smaller contrast anomaly than the MT inversion,

nor does it have better horizontal or vertical resolution. For optimum results, the

joint inversion requires that there is a signal recognisable anomaly of the subsurface

features in both the MT and gravity data sets. Therefore, if the anomaly is in the

MT response, then the MT inversion will be able to represent the feature. However,

where the joint inversion can be beneficial is in reducing artifacts, imaging resistive

structures and improving the clarity of the subsurface features.
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7.5 Conclusions

The joint inversion scheme is effective in reconstructing a reasonable image of the

subsurface structure. It produces a more accurate image than an MT inversion alone

with a target RMS of 1 and has a lower RMS than an MT inversion which tries to

improve the image through relaxing the RMS value. However, the joint inversion

cannot produce structure that is not reflected as signal (anomaly) in the MT or

gravity data sets. Therefore, the minimum contrast and the resulting vertical and

horizontal resolution that the joint inversion can achieve is very similar to that of

the single technique MT inversion. For the best joint inversion results the MT and

gravity errors should be small; however small gravity errors can aid in producing

coherent models from very noisy MT data.



Chapter 8

Sensitivity and Related Issues

This chapter continues the investigation and discussion of synthetic data inversions

but concentrates attention on the primary question of sensitivity. The aim is to

examine the sensitivity functions for gravity and MT and determine how they differ

in the subsurface. A critical issue to examine is the compatibility between the two

techniques in a joint inversion. Also investigated are different weighting approaches

to combining the two data sets and to understand the consequences on the joint

inversion of using incorrect parameters in the petrophysical relationships that unite

the two techniques. In this chapter the following issues are examined:

1. Compatibility and Sensitivity — determines when the MT and gravity tech-

niques are compatible and what areas of the subsurface they are sensitive to;

in doing so a new method for evaluating MT sensitivities is developed.

2. Validity of Petrophysical Relationships — looks at the ramifications of having

incorrect parameters in Archie’s Law and the porosity-density relationship.

3. Differential Weighting — evaluates two different weighting approaches and de-

termines if they can improve the balance between fitting the MT and gravity

data sets.

187
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8.1 Compatibility and Sensitivity

The compatibilities and sensitivities of the MT and gravity techniques are inves-

tigated in this section. Firstly, the sensitivity analysis and evaluation of the com-

patibility between broadband MT and gravity data are explained. Secondly, the

difference between using long period and broadband MT data in the joint inversion

is examined. An investigation into the cause of the high RMSGV value obtained for

the trough model in Section 7.1 is then performed. Finally, incompatibilities between

the MT and gravity data due to different subsurface structures are investigated.

8.1.1 Jacobian Matrix Analysis

The Jacobian or sensitivity matrix J is a q × n matrix, where q is the number of

data points and n is the number of model parameters. The matrix elements are the

Fréchet derivatives of the model response with respect to the model parameters. The

Jacobian matrix was introduced through a Taylor series expansion of the differenti-

ated objective function in Section 3.1.1 and is used to update the model parameters

with each iteration. An alternate and complementary use for the Jacobian matrix

is in a formal sensitivity analysis. The sensitivity analysis aims to determine what

model features the data is most sensitive to and what is the depth of investigation.

In this section the Jacobian is used in a sensitivity analysis to compare the MT and

gravity sensitivities of the joint inversion.

The Jacobian matrix in a joint inversion contains information about both the MT

and gravity techniques. It depends not only on the assumed (or current) subsurface

model, but also on the station distribution and form of recorded data. The first p

rows of the Jacobian correspond to the MT technique and the last s rows correspond

to the gravity technique, where p is the number of MT data points and s is the

number of gravity data points. In the joint inversion the Jacobian matrix is expressed

in terms of porosity and not explicitly resistivity or density. In Section 6.2.1 the

corrections that needed to be made to the original MT and gravity Jacobian matrices

in order to produce a combined Jacobian in terms of porosity were outlined. These

corrections involved multiplying the elements of the gravity Jacobian by a constant
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value, whereas the MT correction was dependent on the corresponding porosity

model. The corrections outlined in Section 6.2.1 were undone in order to remove

the dependence of the Jacobian on the porosity model and the Jacobian matrices

are once again expressed in their original form. For this analysis the MT Jacobian

refers to the first p rows of the joint inversion Jacobian that have been uncorrected

to give a change in the model response due to resistivity. The gravity Jacobian refers

to the last s rows of the joint inversion Jacobian that have been uncorrected to the

change in model response due to absolute density.

The MT Jacobian is a very large matrix which can make interpretation difficult.

To help with interpretation, there are currently two methods used by the MT com-

munity for viewing the MT Jacobian. The first method uses the WinGLink program

and computes the pseudo Hessian matrix JTW−1
d J, whereWd is the data weighting

matrix that contains the estimated individual data point standard deviations [169].

The second method, presented by Schwalenberg et al. [170], is a cumulative type of

sensitivity for all measurements and is given by

SAj =
1

Aj

qX
i

°°°° 1σ∗i Jij
°°°° , (8.1)

where SAj is the sensitivity of the jth model parameter, Aj is the cross-sectional area

of the cell corresponding to the jth parameter, σ∗i is the standard deviation of the ith

data point and Jij is the Fréchet derivative between the ith model response point

and jth model parameter expressed as resistivity. The resulting vector contains

the sensitivity information for each model parameter and can then be viewed on

the same grid as the model. The Schwalenberg et al. method was chosen for this

Jacobian analysis because it is computationally simple and accounts for the size of

the model cells.

The individual elements of the MT Jacobian can be positive or negative, cor-

responding to positive or negative sensitivity. A negative sensitivity implies that a

positive perturbation (small increase) in the model parameter leads to a decrease in

the observed or measured value, or a small decrease in the model parameter causes

an increase in the recorded quantity. Conversely, a positive sensitivity implies that

a positive perturbation in the model parameter causes an increase in the measured
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Figure 8.1: The MT sensitivity distribution broken into its components of a) TE
apparent resistivity, b) TM apparent resistivity, c) TE phase and d) TM phase, for
the joint inversion of the fault model synthetic data with an MT error of 2% and a
gravity error of 0.06 mGals.

quantity, or a negative perturbation (small decrease) in the model parameter causes

a decrease in the measured quantity. In the analysis given here, only the absolute

values of each element in the Jacobian will be used, as changes in the model response,

regardless of direction, are of concern. Secondly, the MT technique has a non-linear

forward model operator. As a result, the first order Taylor series expansion is used

to linearise the forward model operator about a particular model (Section 3.1.1).

This a way of introducing and defining the Jacobian matrix and means that the MT

Jacobian analysis only holds true for models in and around the model that has been

used in the linearisation process. Even so, the Jacobian analysis can still provide

valuable information, although its shortcomings should be kept in mind.

When evaluating Equation 8.1, different elements of the Jacobian matrix can

be used and the sensitivity plot can be obtained for different frequencies, stations

and the different MT modes. Figure 8.1 shows the sensitivity plots for the apparent

resistivity and phase of the TE and TM modes, using the fault model of Figure 7.1.
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Figure 8.2: The MT sensitivity distribution for the a) block model, b) fault model
and c) trough model, with data change isoclines drawn, where blue = 1 Ωm, cyan =
5 Ωm, green = 10 Ωm, yellow = 25 Ωm, magenta = 50 Ωm and red = 100 Ωm. All
models are from a joint inversion of broadband MT data with an error of 2% and
gravity error of 0.06 mGals.

The amplitude of the apparent resistivity sensitivity is approximately an order of

magnitude larger than the phase sensitivity. Also, the TM mode has a greater

sensitivity to the boundaries whereas the TE mode has a greater sensitivity to the

resistivity value [171]. All the different components of the sensitivity contribute to

the total sensitivity of the MT method, but due to differences in their magnitudes

this might not be evident in the total sensitivity model [170]. Therefore, each of the

components is normalised by its maximum value so that the values range between

0 and 1. The normalised components are then summed to give the total sensitivity

model, as shown in Figure 8.2b. In this figure, parts a) and c) also display the
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sensitivities for the block and trough models of Chapter 7.

It is difficult to place the sensitivity values into a context that is easily under-

stood. There has been much conjecture as to what sensitivity value delineates the

model parameter threshold for which the data are no longer sensitive. This problem

is then compounded by the normalisation of the MT component. Schwalenberg et

al. [170] used the 10−4 isoclines as the depth of investigation threshold. However,

in this thesis a new method is presented based on the Taylor series expansion, to

place the sensitivity values into a more readily digestible form. Formally, one can

write out the Taylor series to the first order,

F[m1 +∆m] = F[m1] + J1∆m , (8.2)

to obtain the expected data for a perturbation in the model space ∆m. Here F is

the MT forward model operator, m1 is the model about which the forward model

operator is linearised (for this analysis it is the final joint inversion porosity model

which has been converted to a resistivity model), and J1 =
¡
∂F
∂m

¢
m1
is the MT

Jacobian that corresponds to m1. Equation 8.2 can then be rearranged to give

J1∆m = F[m1 +∆m]− F[m1] . (8.3)

Equation 8.3 shows that the Jacobian multiplied by a small perturbation in the

model space equals the change in the model response due to this small perturbation.

The method presented here changes one of the model parameters by a small

amount, δm, which corresponds to a ∆m vector of all zeros except for the element

which was changed by δm. The Jacobian and ∆m are then multiplied to give the

change in model response due to the small change in the model. The number of

data points is then counted for which the change in the model response is greater

than the data error. This is repeated for a change in each model parameter and

a picture such as Figure 8.3 can be obtained. Figures 8.3a and 8.3d are actual

counts for each parameter (model cell) of how many data points will change by an

amount greater than their estimated error (uncertainty), if the parameter is changed

by 10 Ωm and 100 Ωm, respectively. Strictly speaking the size of the perturbation
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Figure 8.3: Data count distributions for the joint inversion of the fault model syn-
thetic data with an MT error of 2% and gravity error of 0.06 mGals. Each subsurface
cell is coloured according to the count, which represents the number of MT data
points that would be increased above their error level if the model space parameter
at this location is changed by a) 10 Ωm and b) 100 Ωm.

should be infinitesimally small, however an approximation is sought using larger

values to obtain a greater understanding of the behaviour of the sensitivities.

Once a plot such as Figure 8.3 is produced, the isoclines for one data point change

can be transferred to the sensitivity plot. The isoclines for a different number of

data point changes can also be used. The process described above can be repeated

for different small perturbation values. Here, the small perturbation values of 1, 5,

10, 25, 50 and 100 Ωm were used and are shown in Figure 8.2b for the fault model.

By placing these isoclines on the sensitivity model it gives an indication of what

level of change is required in the model to affect the data. Like the Jacobian, the

isoclines of the data change can be generated for different frequencies, stations and

MT modes by isolating the corresponding part of the Jacobian.

Figure 8.2 shows the block, fault and trough model MT sensitivity plots for the

joint inversion with an MT error of 2% and gravity error of 0.06 mGals. From

these figures it can be seen that the MT sensitivity plot is highly dependent on the
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Figure 8.4: The gravity sensitivity distribution for the block model from a joint in-
version of broadband MT data with an error of 2% and a gravity error of 0.06 mGals.

corresponding final joint inversion model. High sensitivity values occur in conductive

zones (high porosity), such as the shallow features of the models. These areas also

require less change in the resistivity value to cause a change in the data. The

sensitivity values are low in zones of high resistivity (low porosity), such as the

basement and the embedded block anomaly. They also require a far greater change

in the resistivity value to produce a change in the data. The block, fault and

trough models have a station spacing of 1, 2 and 3 km, respectively. Comparing the

sensitivity plots, it can be observed that sensitivity between stations decreases as the

station spacing increases. This should be considered when planning field surveys.

The gravity forward model operator is linear, which means that the Jacobian

multiplied by density gives the model response. As explained in Section 4.2.1, the

gravity Jacobian remains fixed for each iteration of the inversion. Figure 8.4 shows

the gravity sensitivity plot for the block model. Like the MT sensitivity plots, it too

was produced using the Schwalenberg et al. method [170]. Each gravity station has

a sensitivity that reduces at a rate inversely proportional to the distance squared

in all directions away from the station. Therefore, when all station sensitivity re-

sponses are summed, the result is Figure 8.4, which shows a central region of higher

sensitivity due to the overlap of sensitivity from each station.

Since the values in the gravity sensitivity plot have been corrected for cell size,

Figure 8.5 shows the reduction in sensitivity with depth for different sized cells or

blocks. Figure 8.5a is a plot of the gravity sensitivity versus depth for rectangular



8.1. COMPATIBILITY AND SENSITIVITY 195

0 0.01 0.02

0

1

2

3

4

5  

 

de
pt

h 
(k

m
)

Jacobian

a)

100
250
500
1000

0 1000

0

1

2

3

4

5  

 

de
pt

h 
(k

m
)

density (kgm-3)

b)

100
250
500
1000

Figure 8.5: a) The gravity Jacobian values for 100× 100, 250× 250, 500× 500 and
1000× 1000 m rectangular blocks (sensitivity cells) as the top of the block increases
with depth. b) The density contrast needed by the block at that depth in order to
produce a change in the gravity data greater than 0.06 mGals. Note that the block
extends infinitely in the strike direction.

blocks of dimension 100×100, 250×250, 500×500 and 1000×1000 m (note that for

2D models, the block extends to infinity in the strike direction). The Jacobian value

is clearly dependent on the size of the block, where the larger the block the higher

the sensitivity value. However, the behaviour of the sensitivity is similar for all

sized blocks and reduces rapidly in the shallower part of the section (< 2 km) before

starting to approach zero. Figure 8.5b shows the density perturbation (contrast)

required in each block size as a function of depth to produce a model response

greater than 0.06 mGals. For a block of size 100×100 m, the density values required

at depth are unrealistically high. For the larger sized blocks, the change in density

ranges from < 45 kgm−3 at 0.5 km to < 370 kgm−3 at 5 km.

The MT and gravity Jacobians, and the subsequent sensitivity plots, show a sig-

nificantly different range of values. The gravity sensitivity values are approximately

2 orders of magnitude smaller than the MT sensitivity values. This is a reflection of
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the differences in the actual physical quantities (resistivity versus density) and the

type and range of the measured quantity (gravity varies by mGals whereas apparent

resistivity can vary by an order of magnitude). A bias towards the MT technique

can result from it having larger sensitivity values [172]. As discussed in Section 7.1,

such a bias towards the MT technique has been observed. Until now, the bias to-

wards fitting the MT data has been attributed to the greater number of MT rather

than gravity data points, although the variations in Jacobian values would also be

a contributor.

Aside from differing magnitudes for the MT and gravity sensitivity values, the

MT and gravity sensitivity distributions appear to be compatible, and the main

zones of enhanced sensitivity coincide. For the present investigation, the MT data

correspond to a broadband frequency range. In the next section the effects of using

only long period MT data in the joint inversion are examined.

8.1.2 Broadband vs. Long Period MT Data

Until now, all MT data have occupied the frequency range 1000 to 0.01 Hz. Instead

of using broadband data, the long period data in the range 0.1 to 0.001 Hz is inverted

in this section. Synthetic data are then generated in this range for all three models-

block, fault and trough. Joint and MT inversions are then executed with the long

period data. The joint inversion used the same gravity data as in the broadband

joint inversions. The error levels used were various combinations of an MT error of

either 2, 4 or 6% and a gravity error of 0.03, 0.06, 0.1, 0.3 or 0.5 mGals.

Figure 8.6 shows the results of the MT inversion with long period data having

an error of 2% and using a 20% relaxation. These three diagrams correspond to

the three different models and are comparable to the broadband inverted models

in Figures 7.4b, 7.5b and 7.6b. The long period models have slightly higher RMS

values than their broadband counterparts, but have fewer artifacts. The long period

inverted block model does not delineate the unconsolidated zone and the porosity-

compaction trend appears lower than the original. The top boundary of the block

anomaly is indistinct and rather subjective, even though there is a fuzzy gradation,

while the bottom boundary of the embedded block is indistinguishable from the
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Figure 8.6: The models produced from an MT inversion of long period MT data
with an error of 2% for synthetic data produced from the a) block, b) fault and
c) trough models. These models have been converted to a porosity model using
Archie’s Law.

basement. The side boundaries of the block are hard to determine and appear to

widen with increasing depth.

The long period fault inverted model shows an incorrect porosity-compaction

trend. Instead of porosity values only increasing with depth, the porosity values

are too low in the top 3 km of the model. However, the sharpness of the bound-

ary between the two compaction trends is similar to the broadband inverted model.

The long period inverted trough model is a very poor representation of the origi-

nal synthetic model. The porosity-compaction trend is too low and the basement

boundaries are difficult to delineate.
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Figure 8.7: The models produced from a joint inversion of long period MT data
with an error of 2% and the gravity data with an error of 0.06 mGals for synthetic
data produced from the a) block, b) fault and c) trough models.

Combining the long period MT data with the gravity data in a joint inversion

improves some of the drawbacks discussed above for the block and fault models.

Figure 8.7 shows the joint inversion results for the block, fault and trough models in

which the assumed MT data error is 2% and the gravity data error is 0.06 mGals.

The unconsolidated zone in the block model is still not well defined but the porosity-

compaction trend is clear below 2 km. The clarity of the top and side boundaries of

the embedded block anomaly have improved, although the bottom boundary remains

indistinct. The compaction trends in the inverted fault model now only increase

with depth, although the upper 2 km shows incorrect porosity values. There is no

improvement in the inverted trough model, which can be attributed to the model
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Figure 8.8: The MT sensitivity distribution for the a) block model, b) fault model
and c) trough model, showing data change isoclines, where blue = 1 Ωm, cyan =
5 Ωm, green = 10 Ωm, yellow = 25 Ωm, magenta = 50 Ωm and red = 100 Ωm. All
models are from a joint inversion of long period MT data with an error of 2% and
gravity data with an error of 0.06 mGals.

only reaching an RMSJI of 9.4. In general, the long period data inversions struggle

to reproduce the correct porosity values and cannot reconstruct the upper 2 km.

Figure 8.8 shows the MT sensitivity plots for the long period joint inversions.

The sensitivity plots were produced in an equivalent manner to the broadband plots,

however the maximum value used to normalise each component has been taken

from the broadband analysis. This was done so that the sensitivity magnitudes

in each case are comparable. Before comparing the broadband and long period

sensitivity plots, it is important to remember that the MT Jacobian is dependent

on the final joint inversion model. As a result, the block model which does not define
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the embedded anomaly, yields a sensitivity which is not insignificant in this region.

Also, the trough model which is inaccurately reconstructed produces a sensitivity

plot which reflects this.

There are two main conclusions to draw in comparing the joint inversion MT

sensitivity plots of the different MT data types (Figures 8.2 and 8.8). Firstly, as

expected the long period data are sensitive to greater depths. Secondly, the long

period data produce models that are incorrect in the top 2 km. The long period

sensitivity plot shows high sensitivity in this zone, thus demonstrating that the

simplified Jacobian analysis only shows what the data are sensitive to, and not

what can be resolved. This means that the Jacobian analysis cannot be used to

determine what each technique is resolving.

Long period MT data are sensitive to greater depths and have an inability to

resolve features in the shallower part of the section. However, gravity data contain

a strong signal of shallow features. When the long period MT and gravity data are

combined in a joint inversion it results in an improved reconstruction of the shallow

features. This suggests a potential benefit of joint inversion is that one technique

could compensate where the other technique is poor. Although in this case, gravity

is inherently non-unique and struggles to fully delineate the shallow features without

the assistance of the MT data. Therefore, for optimal MT and gravity joint inversion

results, broadband MT data are preferred over long period MT data.

8.1.3 Basement Imaging

In Section 7.1.3 it was found that the joint inversion for the trough model had a

high misfit of the gravity data. This section investigates the potential cause of this

problem and if it is related to a mismatch in the sensitivities of the MT and gravity

techniques. For this investigation the trough model was simplified to no longer

contain a step in its bottom boundary and the horizontal shallow side boundaries

are at a depth of 0.5 km (see Figure 7.22d). Joint inversions were sequentially run

with the bottom boundary of the trough at varying depths of 1.0, 2.1, 3.2, 3.9, 4.8,

5.9, 7.3 and 9.0 km, as indicated in Figure 7.22d. An MT error of 2% and gravity

error of 0.06 mGals were used on each inversion.
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Table 8.1: The density, resistivity and porosity values used in the inversion of the
basement model for different porosity contrasts.

sediment basement sediment basement sediment basement
contrast φ φ ( (Ωm) ( (Ωm) ρ (kgm−3) ρ (kgm−3)
5% 0.07 0.02 67.3 825.0 2536.6 2617.6
10% 0.12 0.02 22.9 825.0 2455.6 2617.6
20% 0.22 0.02 6.8 825.0 2293.6 2617.6
30% 0.32 0.02 3.2 825.0 2131.6 2617.6

A fixed porosity contrast with depth was used rather than a porosity-compaction

trend. This was done to maintain the same porosity contrast between the sediments

and the basement for all trough depths. Four porosity contrasts (5, 10, 20 and 30%)

between the basement and sediments were tested and are listed in Table 8.1. The

parameters used in Archie’s Law and the porosity-density relationship were also

fixed with depth and were set to a = 1, mcf = 2, S = 1, ns = 2, (fluid = 0.33 Ωm,

ρmatrix = 2650 kgm
−3 and ρfluid = 1030 kgm

−3. This gives rise to the resistivity and

density values for the sediments and the basement listed in Table 8.1.

A wide range of RMSGV values were found for the different porosity contrasts

and trough depths investigated. For each contrast, the smallest RMSGV always

occurs at a trough depth of 1.0 km. The largest RMSGV value occurs at different

depths, depending on the porosity contrast, with the largest RMSGV value of 17

occurring at a trough depth of 3.9 km for a 30% contrast. The MT data fit had a

much smaller range. For porosity contrasts of 5, 10 and 20%, the RMSMT value was

generally less than 2.0, but for the 30% contrast the RMSMT values ranged from 1.6

to 4.1. The equivalent single MT inversions all had an RMS of 1, with the exception

of the 30% contrast which had an RMSMT value between 1.3 and 1.6.

It was established in Section 8.1.1 that the gravity component of the joint inver-

sion is sensitive to changes at shallow depth, or large changes of density with depth.

Figures 8.9 and 8.10 show the sensitivity distributions for the MT component of

the joint inversion for contrasts of 10% and 20%, respectively, with the four plots in

each figure corresponding to trough depths of 1, 2, 4 and 7.5 km. These two figures

show the progression of increased sensitivity with depth as the bottom of the trough

becomes deeper. The reason is that the bottom boundary provides a discontinuity

between the conductive sediments to which the MT technique is more sensitive, and
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Figure 8.9: The MT sensitivity distribution for the basement model with a contrast
of 5% and trough depths of a) 1.0 km, b) 2.1 km, c) 3.9 km and d) 7.3 km. Data
change isoclines are indicated, where blue = 1 Ωm, cyan = 5 Ωm, green = 10 Ωm,
yellow = 25 Ωm, magenta = 50 Ωm and red = 100 Ωm. All models are from a joint
inversion of broadband MT data with an error of 2% and gravity data with an error
of 0.06 mGals.

the resistive basement for which the MT technique is less sensitive. There is a point

at which increasing the depth of the trough no longer corresponds to an increase in

sensitivity with depth. This is indicative of EM attenuation, which is characterised

by the skin depth.

There is no correlation between the trough depth and subsequent sensitivities and

a large gravity misfit. Incompatibilities between the MT and gravity sensitivities,

or their ability to detect and resolve the bottom boundary, are not the cause of

the large RMSGV values. The only correlation that exists in the RMS values of the

joint inversions undertaken is the higher the contrast, the higher the gravity misfit.
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Figure 8.10: The MT sensitivity distribution for the basement model with a contrast
of 20% and trough depths of a) 1.0 km, b) 2.1 km, c) 3.9 km and d) 7.3 km. Data
change isoclines are indicated, where blue = 1 Ωm, cyan = 5 Ωm, green = 10 Ωm,
yellow = 25 Ωm, magenta = 50 Ωm and red = 100 Ωm. All models are from a joint
inversion of broadband MT data with an error of 2% and gravity data with an error
of 0.06 mGals.

Figure 8.11 shows the computed gravity data for a model with a trough depth of

3 km and porosity contrasts of 5, 10, 20 and 30%. The higher the porosity contrast

the larger the amplitude of the gravity response. The joint inversion seems to

have difficulties in rectifying the higher amplitudes, which generally involves under-

estimating the values situated over the trough. The behaviour could be caused by

the smoothness constraint, which means the sharp side boundaries of the trough

are not faithfully reconstructed and the smoothing of these boundaries results in an

over-estimation of the porosity values.

The trough model in Section 7.1.3 has a gravity response with amplitude of
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Figure 8.11: The gravity data (blue dots) and model responses (red line) for the
basement model having a trough depth of 3.2 km and porosity contrasts of a) 5%, b)
10%, c) 20% and d) 30%. The model response is from a joint inversion of broadband
MT data with an error of 2% and gravity data with an error of 0.06 mGals.

34 mGals. This amplitude is similar to a simplified trough model with a depth of

3 km and a contrast of 20%, as shown in Figure 8.11c. It is concluded that the

cause of the large gravity misfit in the trough model is due to the inability of the

joint inversion to reconstruct the large amplitude of the gravity data. Section 8.3

investigates the effectiveness of weighting the MT and gravity data sets to reduce

the gravity data misfit.

8.1.4 Effects of Data Incompatibility

Joint inversions are based on the premise that the two techniques are sensing the

same subsurface features. Therefore there is an intrinsic compatibility of signal

between the MT and gravity data and the joint inversion only needs to seek one

porosity model to satisfy both data sets. In this section the effect of an incompat-
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Table 8.2: The MT and gravity synthetic data combinations for the surface, base-
ment and composite models used in a joint inversion.

MT data gravity data
composite composite
basement basement
surface surface
basement composite
composite basement
surface composite
composite surface
surface basement
basement surface

ible signal in the MT and gravity data sets on the joint inversion is investigated.

Although this is unlikely, unless the data sets were acquired in different locations,

it is important to understand the complete behaviour of the joint inversion.

To investigate the effects of incompatible data on the joint inversion, MT and

gravity data were generated for the three models shown in Figure 8.12. All models

have sixteen recording stations with a station spacing of 5 km. They have a porosity-

compaction trend appropriate for sandstone, which was determined using Athy’s

model with a surface porosity of 0.49 and a compaction coefficient of 270 m [163].

Figure 8.12a is referred to as the surface model and incorporates two anomalous

blocks having their top located at the surface and a porosity value of 0.25. The

right block is 10 km wide and has a bottom boundary at 1 km. The left block also

has its bottom boundary at 1 km, but its left side boundary extends to infinity. The

basement has no topography and is at a depth of 8.1 km. It has a porosity value

of 0.03. Figure 8.12b is referred to as the basement model and has a 3.8 km step

in the basement. The top horizon is located at a depth of 4.3 km and the bottom

horizon is located at a depth of 8.1 km. Finally, Figure 8.12c is a combination of

the surface and basement models and is referred to as the composite model.

Joint inversions were run for a series of data combinations generated from the

different models. The data combinations used are listed in Table 8.2. For each of the

data combinations, broadband MT data with a 2% error were combined with gravity

data, which had an error of 0.06 mGals. The inherent bias in the joint inversion

towards fitting the MT data means the models produced from the incompatible MT
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Figure 8.12: Synthetic porosity models referred to as the a) surface model, b) base-
ment model and c) composite model.

and gravity data sets resemble the model from which the MT data are derived. An

example of this behaviour is shown in Figure 8.13 for a joint inversion where the MT

data corresponded to the surface model and the gravity data corresponded to the

composite model. The bias towards fitting the MT data results in a large RMSGV

value and the RMSGV value for the joint inversion of the different data combinations

varied between 4.5 and 29.4, whereas the RMSMT value only varied between 1.3 and

3.5. Incompatible data joint inversions have RMS values that are always higher than

the equivalent compatible data joint inversion. Therefore high RMS values could be

indicative of incompatible MT and gravity data sets.

Figure 8.14 shows the joint inversion model for the gravity data corresponding

to the composite model and the MT data corresponding to the basement model.

There appears to be a zone of slightly higher porosity values at depths (> 8 km)
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Figure 8.13: The models produced from a joint inversion, where the MT synthetic
data were generated from the surface model and the gravity data were generated
from the composite model. The gravity error was 0.06 mGals and the MT error was
of 2%.
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Figure 8.14: The models produced from a joint inversion, where the MT synthetic
data were generated from the basement model and the gravity data were generated
from the composite model. The gravity error was 0.06 mGals and the MT error was
of 2%.

beneath the surface block locations. This is interpreted as the joint inversion trying

to reconcile the mismatch between the MT and gravity data. It takes advantage of

gravity’s inherent non-uniqueness and tries to put the extra mass, needed by the

gravity response, in a location that does not interfere with fitting the MT data. This

redistribution of mass was observed to varying degrees in models where the gravity

data corresponded to surface features and the MT data did not.

8.1.5 Compatibility and Sensitivity Summary

In order to evaluate the sensitivities of the MT and gravity techniques, a new ap-

proach was developed to determine effective sensitivity distribution and depth of

investigation. A Taylor series expansion was used to determine isoclines of the mag-
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nitude of change needed in the model parameters to generate a change in the model

response greater than the associated data error. The sensitivity analysis along with

MT and joint inversions of broadband and long period MT data, showed that the

gravity data aid the long period MT data in reconstructing the subsurface. How-

ever, combining broadband MT data with gravity data produces the optimal joint

inversion results. It was also established that the joint inversion has a bias towards

fitting the MT data, not only due to having more MT than gravity data points,

but because the magnitude of the MT partial derivatives in the Jacobian matrix are

larger than their gravity counterparts.

The joint inversion preferential bias towards fitting the MT data means that

when incompatible MT and gravity data are combined in a joint inversion, the

inversion will favour a model in line with the MT data. However, the joint inversion

may also try to take advantage of the inherent non-uniqueness of gravity data by

redistributing the mass required by the gravity data to such depths that the MT

technique is less sensitive.

8.2 Validity of the Petrophysical Relationships

The porosity-density relationship expresses the bulk density of the Earth in terms of

fluid density, matrix density and porosity, whereas Archie’s Law describes the bulk

resistivity of the Earth in terms of the tortuosity factor, cementation constant and

porosity. For a given survey area these ‘empirical constants’ in Archie’s Law and

the porosity-density relationship might be unknown or difficult to determine. There-

fore, this section investigates the ramifications of using the incorrect petrophysical

parameters in the joint inversion. There are three parts to this section. Firstly, how

an incorrect value distorts the porosity estimate is investigated. Secondly, multiple

inversions are performed with incorrect parameters to assess degradation of image

quality, and finally the Jacobian matrix is studied to ascertain the invariance of the

joint inversion to changes in the petrophysical parameters. The saturation quantity

(S) and its exponent (ns) were not specifically investigated because in Section 5.4,

the saturation parameter was assumed to always be 1.
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Figure 8.15: The porosity-density relationship for various values of a) matrix density,
and b) fluid density.

8.2.1 Parameter Behaviour

Figure 8.15 depicts the linear relationships between bulk density and various matrix

and fluid density values, as given by the porosity-density relationship. The fluid

densities used in the plot are 0.7, 850, 1030 and 1200 kgm−3 and correspond to gas,

oil, sea water and hyper-saline fluid, respectively. When the porosity value is high

the system is dominated by the fluid and variations in the fluid density have the

greatest influence on the bulk density. The maximum porosity that exists in the

block, fault and trough models studied to date is 0.6. For such a porosity value

one would expect a 210 kgm−3 variation in bulk density due to variations in the

fluid, but this does not include the case of gas. Consequently, low porosity values

mean the system is dominated by the matrix, therefore the variations in the matrix

density have the greatest influence on the bulk density. The minimum porosity used

in the three synthetic models is 0.02, which represents the basement in the trough

model. At this porosity value of 0.02 there is a 588 kgm−3 variation in bulk density

due to possible variations in the matrix density.
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Figure 8.16: Archie’s Law showing bulk resistivity vs. porosity for various values of
a) the tortuosity a-value, b) the cementation mcf -value and d) the fluid resistivity.
c) Shows the fluid resistivity vs. depth using Equation 8.4, for various values of
temperature gradients.

Figure 8.16 is a graphical display of Archie’s Law, showing how bulk resistivity

varies with porosity for various values of the tortuosity factor, the cementation

constant and the fluid resistivity. This figure is very similar to Figure 5.7, except it

is expressed in terms of resistivity, not conductivity. In sedimentary environments

the tortuosity or a-value varies between 0.6 and 1.5 and the cementation constant

or the mcf -value ranges between 1.3 and 3.0 [134]. The bulk resistivity values lie

between the two extremes of the fluid resistivity (at a porosity of 1) and infinity

(perfect insulator) at a porosity of 0. The mcf -value changes the shape and position

of the curve between these two end points (see Figure 8.16b), with the largest

variations in the bulk resistivity due to the mcf -value occurring in the middle ranges

of porosity. The largest variations in the resistivity-porosity relationship due to the
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a-value occur when the porosity is 1. As discussed in Section 5.4, at a porosity of 1

the bulk resistivity should equal the fluid resistivity. However, the inclusion of the

a-value in Archie’s Law means the previous statement is not strictly correct unless

the a-value is 1.

In sedimentary environments it has been shown that fluid resistivity is dependent

on temperature (see Section 5.4). The fluid resistivity used for the three synthetic

models in this chapter and Chapter 7 is based on the relationship,

(w(T ) = (wo +
10

T
, (8.4)

where (w is the resistivity of water, (wo is the resistivity of water at zero temperature

and fixed salinity and T is temperature. Figure 8.16c shows in graphical form the

variation of fluid resistivity with depth according to Equation 8.4, using a surface

resistivity of 0.33 Ωm and various temperature gradients of 10, 20, 30 and 50 oCkm−1.

As the temperature gradient increases, the fluid resistivity decreases. Figure 8.16d

shows the change in bulk resistivity due to changes in the fluid resistivity values.

Porosity fluctuations due to changes in the above parameters can be quantified

for a joint inversion model. Using the porosity-density relationship, the change in

porosity due to an incorrect fluid density value is given by

∆φ =
ρbulk − ρmatrix

[Sρfluid inc + (1− S)ρair − ρmatrix]
− ρbulk − ρmatrix

[Sρfluid + (1− S)ρair − ρmatrix]
, (8.5)

where ∆φ is the change in porosity, ρfluid inc is the incorrect fluid resistivity and

ρbulk−ρmatrix

[Sρfluid+(1−S)ρair−ρmatrix]
is the final porosity given by the joint inversion. Similarly,

the changes in porosity due to an incorrect matrix density can be calculated using

Equation 8.5, except the correct fluid density value and the incorrect matrix density

would be used. The change in porosity due to an incorrect a-value is given by

∆φ =

µ
aincS

−ns(fluid
(bulk

¶ 1
mcf

−
µ
aS−ns(fluid

(bulk

¶ 1
mcf

, (8.6)

where ainc is the incorrect a-value and
³
aS−ns(fluid

(bulk

´ 1
mcf is the final porosity given
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Figure 8.17: The change in porosity for a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using incorrect fluid
densities of a) 0.7, b) 850, c) 900, d) 1000, e) 1100 and f) 1200 kgm−3, instead of
the correct value of 1030 kgm−3.

by the joint inversion. A similar approach can be taken to determine the deduced

porosity for an incorrect mcf -value and an incorrect temperature gradient, with the

aid of Equation 8.6.

The changes in the porosity due to incorrect fluid densities, matrix densities,

a-values, mcf -values and temperature gradients were calculated for the block, fault

and trough joint inversion models with an MT error of 2% and gravity error of

0.06 mGals. The incorrect fluid densities used in the study were 0.7, 850, 900, 1000,

1100 and 1200 kgm−3 instead of the correct value of 1030 kgm−3. Figure 8.17 shows

the resulting relative changes in porosity for the fault model, where a positive resid-

ual value means the incorrect fluid density has caused the porosity to increase, and

a negative residual value means the incorrect fluid density has caused the porosity

to decrease. When the fluid density value is less than the correct value, the porosity

values are under-estimated. However, if the fluid density is greater than the true

value, the porosity values are over-estimated. Since there is only a small range to
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Figure 8.18: The change in porosity for a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using incorrect
matrix densities of a) 2400, b) 2500, c) 2600, d) 2700, e) 2800, f) 2900 and g)
3000 kgm−3, instead of the correct value of 2650 kgm−3.

the fluid density, the resulting change (error) in porosity is quite small, except when

the fluid is gas (density of 0.7 kgm−3).

The incorrect matrix densities used were 2400, 2500, 2600, 2700, 2800, 2900 and

3000 kgm−3 instead of the correct value of 2650 kgm−3. Similar to an erroneous fluid

density, low matrix density causes porosity to be under-estimated (see Figure 8.18).

There is a slight increase in the porosity variation with depth for a given incorrect

matrix density. This type of change would result in an offset in the gravity response

by a constant amount, which implies that this type of behaviour could be hidden in

the gravity offset term.

Figures 8.19 and 8.20 show the changes in porosity due to erroneous a- and mcf -

values, respectively, for the fault model. The correct a-value is 1 but the incorrect

a-values used were 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4 and 1.5. The correct mcf -value
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Figure 8.19: The change in porosity for a joint inversion of the synthetic fault model
data with an MT error of 2% and gravity error of 0.06 mGals, using incorrect a-
values in Archie’s law of a) 0.6, b) 0.7, c) 0.8, d) 0.9, e) 1.1, f) 1.2, g) 1.3, h) 1.4
and i) 1.5, instead of the correct value of 1.

is 2, but the incorrect mcf -values used were 1.3, 1.5, 1.7, 1.9, 2.2, 2.4, 2.6, 2.8 and

3.0. When the a-value is smaller than the correct value, the porosity values are

lower than expected. Conversely, when the a-value is larger than the true value, the

porosity is higher than expected. The greatest change in the porosity values due to

the wrong a-value is in the shallow part of the model, where the system is dominated

by the fluid properties. The changes in porosity due to an incorrect mcf -value are

similar to that of an incorrect a-value, except the change in the porosity value is

greater and occurs to a greater depth.

The correct temperature gradient is 20 oCkm−1, but the incorrect temperature
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Figure 8.20: The change in porosity for a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using incorrect mcf -
value in Archie’s law of a) 1.3, b) 1.5, c) 1.7, d) 1.9, e) 2.2, f) 2.4, g) 2.6, h) 2.8 and
i) 3.0, instead of the correct value of 2.

gradients tested were 5, 10, 30, 40, 50 and 60 oCkm−1. When the temperature

gradient is less than the true gradient, the computed porosity values are too high

(see Figure 8.21). Conversely, when the temperature gradient is greater than the

true value, the deduced porosity values are too low. This is the only parameter

in Archie’s Law and the porosity-density relationship that exhibits such behaviour.

The other parameters underestimate the porosity when the incorrect value is less

than the correct value and overestimate the porosity when the incorrect value is

greater than the correct value.
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Figure 8.21: The change in porosity for a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using incorrect
temperature gradients of a) 5, b) 10, c) 30, d) 40, e) 50 and f) 60 oCkm−1, instead
of the correct value of 20 oCkm−1.

8.2.2 Computational Testing

The effect on the joint inversion of using the incorrect constants (parameters) in

Archie’s Law and the porosity-density relationship is evaluated in this section by

performing multiple joint inversions with different incorrect parameter values. Each

parameter is examined in turn, and finally how errors in the observed geophysical

data affect the results are examined.

To test the effect of using the incorrect parameters, the block, fault and trough

synthetic models were used. For each model type the joint inversions use the same

MT and gravity data with an MT error of 2% and a gravity error of 0.06 mGals.

In these inversions, except for the stated parameter under examination, all other

constants appearing in Archie’s Law and the porosity-density relationship were taken

to be correct. When evaluating the joint inversion with incorrect parameters, the

results are compared to the joint inversion result with the correct value and not

the true synthetic model. This enables a more meaningful comparison to be made
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against the ‘best’ possible result, given the restricted survey configuration and data

available.

Effect of Incorrect Fluid Density

Joint inversions were re-run with fluid densities of 0.7, 850, 900, 1000, 1100 and

1200 kgm−3, instead of the correct value of 1030 kgm−3. All inversions, regardless of

model type, which had a fluid density of 0.7 kgm−3 produced a significantly higher

total RMSJI than if the correct fluid density was used. The high RMSJI value was

largely due to a large misfit of the gravity data, with RMSGV values of 4.6, 2.8

and 31.7 being obtained for the block, fault and trough models, respectively. On

the other hand, the RMSMT values were smaller at 2.3, 1.7 and 4.7 for the three

respective models, although they are not as small as if the correct fluid density was

used. The RMSMT and RMSGV values are in line with the bias of the joint inversion

towards fitting the MT data. In this case the bias is beneficial, because the MT

component of the joint inversion uses the correct values. Therefore, by fitting this

data, the joint inversion yields a model similar to the correct joint inversion.

The joint inversions for all the tested incorrect fluid density values of 850, 900,

1000, 1100 and 1200 kgm−3, produced RMS values close to the RMS values of the

joint inversions with the correct fluid density value. From Section 8.2.1, these density

values cause little change in the porosity value from that with the correct value. The

resulting models look very similar to the correct fluid density model. The smallest

RMSJI value for each model type did not occur at the correct fluid density values,

but there was no obvious pattern at which fluid density, higher or lower than the

correct value, occurred. These results show that the joint inversion is robust against

incorrect fluid density values, provided there is no significant gas present.

Effect of Incorrect Matrix Density

Matrix densities of 2400, 2500, 2600, 2700, 2800, 2900 and 3000 kgm−3 were used

in the joint inversions, instead of the correct value of 2650 kgm−3. There was little

variation between the RMS values for the different matrix density values. The re-

sulting inverted models all look very similar to each other, and to the model with the
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correct matrix density. The stability in the RMSJI value across the matrix density

values is a reflection of the joint inversion bias towards fitting the MT data, which

has the correct Archie’s Law values. The smallest RMSGV values occur between a

matrix density of 2500 and 2800 kgm−3. Outside this range of values it was hard

for the joint inversion to find a model that satisfied the gravity data as well as the

MT data.

Effect of Errors in the Tortuosity Factor

The correct tortuosity a-value was 1, but the joint inversions were re-run with incor-

rect a-values of 0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4 and 1.5. As shown in Figure 8.22,

the inverted models transition from under-estimating the porosity values to over-

estimating the porosity values as the a-value increases. The structural boundaries

in the models remain the same. This behaviour is consistent with that found in

Section 8.2.1. The resistivity values remain the same in order to fit the MT data,

but the incorrect a-value precludes the resistivity values from being converted to the

correct porosity values.

Inversions with an a-value of 0.6 and 1.5 produced very large RMSGV values

and consequently, large total RMSJI values. In between these two a-values the

total RMSJI does not vary significantly. The inversions which under-estimate the

porosity values correspond to an a-value < 0.8 and have a raised RMSGV value. The

inversions which over-estimate the porosity values occur at a-values > 1.3. These

models do not have a significant difference in the RMS values when compared to the

correct a-value inversion, which makes distinguishing them from the correct a-value

model based on the RMS value difficult.

Effect of Errors in the Cementation Constant

Joint inversions were re-executed with cementation mcf -values of 1.3, 1.5, 1.7, 1.9,

2.2, 2.4, 2.6, 2.8 and 3.0, instead of the correct value of 2. The mcf -value results

produce a similar pattern to the tortuosity a-value result. As themcf -values increase

from 1.3 to 3.0, there is a transition from inverted models that under-estimate

the porosity values, to inverted models that over-estimate the porosity values (see
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Figure 8.22: The models produced from a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, and various a-values
in Archie’s law of a) 0.6, b) 0.8, c) 1.2 and d) 1.4.
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Figure 8.23: The models produced from a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using mcf -values
in Archie’s law of a) 1.5, b) 1.7, c) 2.4 and d) 2.8.
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Figure 8.23) and this behaviour is consistent with the discussion in Section 8.2.1.

The structural boundaries are always in the correct locations. For inverted models

with an mcf -value < 1.9, which have porosity values too low, the RMSJI values are

significantly greater than the RMSJI values of the correct mcf -value model. For the

mcf -values of 1.9 and 2.2 the models are similar to the correct value model. Inverted

models which have mcf -values above 2.2 over-estimate the porosity values, but do

not show a corresponding increase in the RMSJI , RMSMT or RMSGV values. This

makes it difficult to determine these models from the correct mcf -value model based

on the RMS values.

Effect of Errors in the Temperature Gradient

The correct temperature gradient used in Equation 8.4 by the joint inversion is

20 oCkm−1. The joint inversion was re-run with incorrect temperature gradients

of 5, 10, 30, 40, 50 and 60 oCkm−1, to establish the effect of such errors. For

all three models the correct temperature gradient value had the smallest RMSJI ,

RMSMT and RMSGV values The inversions with too low temperature gradient values

over-estimate the porosity values whereas those with too high temperature gradient

values under-estimate the porosity values. Even the temperature gradients of 10 and

30 oCkm−1, which bracket the true value, produce models which have significantly

erroneous porosity values (see Figure 8.24). Although the porosity values were

incorrect, the structural boundaries in the models were still correctly located.

The temperature, and consequently the fluid resistivity, has the greatest effect

on the bulk resistivity. The above results show that having the correct temperature

gradient and the correct fluid resistivity are critical in producing the correct model in

a joint inversion. However, they also show that the RMS values are a clear indicator

of whether the temperature gradient is correct or not.

8.2.3 Jacobian Matrix Analysis

In this section the Jacobian of the joint inversion is used to test the joint inversion’s

invariance to changes in the parameters which characterise Archie’s Law and the

porosity-density relationship.
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Figure 8.24: The models produced from a joint inversion of the synthetic fault model
data with an MT error of 2% and a gravity error of 0.06 mGals, using temperature
gradients of a) 10 oCkm−1 and b) 30 oCkm−1.

Porosity-Density Relationship

In Section 6.2.1, the Fréchet derivative (sensitivity) with respect to porosity was

ascertained from the single gravity Jacobian and the porosity-density relationship

using the differential chain rule. Rather than differentiating the porosity-density

relationship directly with respect to porosity, it can be differentiated with respect

to the fluid and matrix density values. Doing so obtains

∂dGV
∂ρfluid

=
∂dGV
∂(ρ)

∗ ∂(ρ)

∂ρfluid
=

∂dGV
∂(ρ)

∗ Sφ (8.7a)

∂dGV
∂ρmatrix

=
∂dGV
∂(ρ)

∗ ∂(ρ)

∂ρmatrix
=

∂dGV
∂(ρ)

∗ (1− φ) . (8.7b)

Equation 8.7 gives the change in the gravity model response due to changes in the

fluid and matrix densities. A sensitivity model can be viewed once the new Jacobian

sub-matrices have been calculated. Section 8.1.1 outlined how to calculate the sen-

sitivity distribution, but here there is no normalisation. From these new Jacobian
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Figure 8.25: The gravity sensitivity distribution produced from a joint inversion
of the synthetic fault model data with an MT error of 2% and a gravity error of
0.06 mGals. The sensitivity models are with respect to the a) fluid density, b) matrix
density and c) porosity.

matrices, a sensitivity plot can be computed and compared to the sensitivity plot

of the original Jacobian with respect to porosity.

The matrix density, fluid density and porosity sensitivity for the fault model

joint inversion with an MT error of 2% and gravity error of 0.06 mGals are shown

in Figure 8.25. The sensitivity of all plots decreases with depth, however there is

a significant difference in the orders of magnitude between the matrix density, the

fluid density and the porosity sensitivity values. A change in the model response is

significantly more sensitive to a change in porosity than it is to a change in fluid or

matrix density. This demonstrates the dependence of density, and hence gravity, on



224 CHAPTER 8. SENSITIVITY AND RELATED ISSUES

porosity and their relative invariance to the fluid and matrix densities.

Archie’s Law

A similar approach to the above can be applied to the petrophysical parameters in

the Archie’s Law. The Archie’s Law equivalent to Equation 8.7 (with the aid of

Equation 8.4) is given by

∂dMT

∂a
=

∂dMT

∂(log(())
∗ ∂(log(())

∂(()
∗ ∂(()

∂a

=
∂dMT

∂(log(())
∗ 1
(j
log(e) ∗ φ−mcfS−ns(fluid (8.8a)

∂dMT

∂mcf
=

∂dMT

∂(log(())
∗ ∂(log(())

∂(()
∗ ∂(()

∂mcf

=
∂dMT

∂(log(())
∗ 1
(j
log(e) ∗ −aS−ns(fluidφ−mcf ln(φ) (8.8b)

∂dMT

∂T
=

∂dMT

∂(log(())
∗ ∂(log(())

∂(()
∗ ∂(()

∂T

=
∂dMT

∂(log(())
∗ 1
(j
log(e) ∗ −aφ−mcfS−ns(fluid10T

−2 . (8.8c)

These equations give the changes in the MT model response due to changes in the

a-value, the mcf -value and the temperature (not temperature gradient).

Figure 8.26 shows the sensitivity distributions in the subsurface (models), with

respect to the a-value, the mcf -value and the temperature, for the fault model

joint inversion with an MT error of 2% and gravity error of 0.06 mGals. These

sensitivity plots can be compared to the sensitivity plot of the original Jacobian with

respect to porosity. The temperature sensitivity plot shows that only changes in the

temperature in the shallower part of the section will affect the model response. The

a- and mcf -values have greater sensitivities at depth, but when all four sensitivity

plots are compared, the model response is most sensitive to changes in porosity. This

validates the joint inversion approach of using porosity, because it is the parameter

to which the MT response is most sensitive. The block and trough sensitivity plots

(not shown) are consistent with the fault sensitivity findings.
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Figure 8.26: The MT sensitivity distribution produced from a joint inversion of
the synthetic fault model data with an MT error of 2% and a gravity error of
0.06 mGals. The sensitivity models are with respect to a) the a-value, b) the mcf -
value, c) temperature and d) porosity.
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8.2.4 Validity of Relationships Summary

The extended Jacobian matrix analysis shows that porosity has the greatest influ-

ence on the MT and gravity model responses compared to the other parameters in

Archie’s Law and the porosity-density relationship. The Jacobian analysis indicates

invariance towards a change in the temperature, except at shallower depths. How-

ever, the computational investigation, whereby inversions were performed for incor-

rect values of the petrophysical parameters, shows large variations in the resulting

models due to incorrect temperature gradients. The correct temperature gradient

produced the smallest joint inversion RMS values, indicating that the RMS values

are an indicator of the correct value.

The change in MT data is more sensitive to the variations in the a- and mcf -

values than to the temperature gradient. The inversion results showed that if the a-

andmcf -values are too small then the joint inversion will under-estimate the porosity

and produce a higher RMS than the correct model value. If the a- and mcf -values

are too large then the joint inversion will over-estimate the porosity values. However,

there are no associated increases in the RMS values.

The joint inversion is quite robust to incorrect values in the porosity-density

relationship parameters of fluid density and matrix density. This was both demon-

strated computationally and through sensitivity plots. Therefore, if one is unsure of

the correct constants to use in Archie’s Law and the porosity-density relationship,

it is better to encourage the joint inversion to fit the gravity data than the MT

data. As the MT and gravity errors increase, the effect of an incorrect parameter in

Archie’s Law and the porosity-density relationship is less critical.

8.3 Effects of Differential Weighting

In a joint inversion there are essentially two different places where the MT and

gravity data sets can be differentially weighted in order to influence the outcome

of the joint inversion. The first is the data error (data weighting matrix), which

defines the confidence (reliability) of each individual data value. This was discussed

in Section 7.2. The second is an overall weighting of each technique (data set) in
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formulating the objective function. The reasons for wanting to do this may be to

reduce the data fit for one technique or having greater confidence in one technique

over the other. To date, the joint inversion was not set up to allow for this type

of weighting. In this section the joint inversion scheme is extended to allow for

such a differential weighting scheme, and then evaluates the effectiveness of both

percentage and Jacobian-based weighting approaches.

8.3.1 Implementing the Weighting

Currently, the joint inversion scheme calculates the RMS according to the formula,

RMS =

⎧⎪⎨⎪⎩
Pq

i=1

³
di−F [m]i

σ∗i

´2
q

⎫⎪⎬⎪⎭
1
2

. (8.9)

This expression does not distinguish between the gravity and MT data. However, it

would be desirable to be able to weight the MT and gravity data differently by the

relationship,

αRMSMT + βRMSGV = RMStotal , (8.10)

where RMStotal is the RMS that the joint inversion seeks to minimise, RMSMT and

RMSGV are the MT and gravity RMS terms respectively, and α and β are the MT

and gravity weighting factors, respectively. The α and β weights can influence the

RMS calculation in the following way [172],

αRMS =

⎧⎪⎨⎪⎩
Pq

i=1

³
α
di−F [m]i

σ∗i

´2
q

⎫⎪⎬⎪⎭
1
2

. (8.11)

This is equivalent to calculating the RMS value with an MT data weighting matrix,

WMT , redefined as

WMT = diag

½
α

σ∗1
,
α

σ∗2
, . . . ,

α

σ∗q

¾
, (8.12)

and similarly for βRMS using a gravity data weighting matrix WGV and β. This

redefinition of the data weighting matrix replaces the old definition for all steps in
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a weighted joint inversion.

The α and β values can vary between 0 and infinity. The larger the α and β

values, the higher the contribution from the corresponding technique. However, if

they are both equal to 1 then there is no additional contribution. When the β

value equals 0, the joint inversion is equivalent to executing a single MT inversion.

Similarly, when α equals zero it is equivalent to executing a single gravity inversion.

To be able to weight the MT and gravity data differently, the objective function

of the joint inversion needs to be redefined and a distinction made between the MT

and gravity data. The new objective function is

U(m) =
°°∂ym°°2 + k∂zmk2 + μ−1

½°°°WMT
bdMT −WMTJMTm]

°°°2
+
°°°WGV

bdGV −WGVJGVm]
°°°2 − χ2∗

¾
, (8.13)

where JMT is the Jacobian corresponding to the MT data points and JGV is the

Jacobian which corresponds to the gravity data points.

Altering the objective function may alter how the model parameters are updated.

To determine the effects of the new objective function on the model updates, a

similar process to that described in Section 3.1.1 is followed. Equation 8.13 is

differentiated and then set equal to zero to give

¡
∂Ty ∂y + ∂Tz ∂z

¢
mk+1 + μ

−1
n
(WMTJMTk)

T (WMTJMTk)mk+1

− (WMTJMTk)
T
³
WMT

bdMTk´+ (WGVJGVk)
T (WGVJGVk)mk+1

− (WGVJGVk)
T
³
WGV

bdGVk´o = 0 . (8.14)

This is the equivalent expression to the original expression of

¡
∂Ty ∂y + ∂Tz ∂z

¢
mk+1 + μ−1

n
(WdJk)

T (WdJk)mk+1

−μ−1 (WdJk)
T
³
Wd

bdk´o = 0 . (8.15)
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However in Equation 8.14,

(WMTJMTk)
T (WMTJMTk)mk+1 + (WGVJGVk)

T (WGVJGVk)mk+1

= (WdJk)
T (WdJk)mk+1 (8.16a)

− (WMTJMTk)
T
³
WMT

bdMTk´− (WGVJGVk)
T
³
WGV

bdGVk´
= (WdJk)

T
³
Wd

bdk´ . (8.16b)

Therefore, Equations 8.14 and 8.15 are equivalent and the model updates for the

weighted joint inversion and the original joint inversion are the same.

8.3.2 Percentage Weighting

Percentage weighing assigns the α and β values to sum to 1. This controls the

percentage by which each of the MT and gravity RMS values contribute to the

RMStotal value. To test the percentage weighting, joint inversions were executed

with MT weightings of 0.7, 0.6, 0.5, 0.4 and 0.3 with the corresponding gravity

weightings of 0.3, 0.4, 0.5, 0.6 and 0.7. The block, fault and trough models were

used. The inversions were run with various combinations of MT errors of 2, 4 or 6%

and corresponding gravity errors of 0.03, 0.06, 0.1, 0.3 or 0.5 mGals.

The RMSMT and RMSGV values were tabulated for all weighting factors, model

types and error levels. No strong patterns appeared in the RMS values. There was

a weak trend observed whereby if the gravity weighting was high then the RMSGV

would decrease. Similarly, if the MT weighting was high then the RMSMT value

would decrease. When the MT and gravity weights were 0.5 and 0.5, respectively,

it did not result in similar RMSMT and RMSGV values. For most inversions, the

RMSGV value increased when compared to the corresponding original joint inversion

RMSGV value in which no weighting was used. The trough model was of special

interest because the original joint inversion (see Chapter 7) produced models with a

high gravity misfit. The percentage weighting did not significantly aid in resolving

this problem and the RMSGV values were always greater than the RMSMT values.

The percentage weighting scheme removes the original joint inversion bias toward
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fitting the MT data due to the greater number of MT data points compared to

gravity data points. However, it does not address the bias in the original joint

inversion due to the magnitude of the Jacobian values discussed in Section 8.1.1.

The next section looks at assigning the α and β values based on the properties of

the Jacobian matrix.

8.3.3 Jacobian Weighting

Weighting the RMS values of the joint inversion based on their Jacobian values is an

idea suggested by Athanasiou et al. [172]. In that paper, the authors simultaneously

inverted different arrays of electrical resistivity data. However, the authors found

that when they tried to combine different electrode array data without differential

weighting, one array type would become dominant and overshadow the contribution

of the other array types. This dominant array type had higher Jacobian values.

Athanasiou et al. found that a Jacobian-based weighting scheme produced a better

inverted model than that containing information from all electrode configuration

types.

The difference between the inversion of the electrical resistivity data described

above, and the joint inversion presented here is that the joint inversion involves two

fundamentally different parameters of the Earth (resistivity and density) and dif-

ferent measurements (MT and gravity). Resistivity operates entirely in the model

and data space of resistivity (and apparent resistivity), in which all quantities have

the same units. Also, the electrical resistivity inversion had suppression of structure

from different array types. However the joint inversion does not have this problem.

Rather it needs the MT technique to dominate because it contains the vitally impor-

tant depth information that gravity data does not contain. This section determines

whether applying a Jacobian-based weighting is beneficial.

There are two different Jacobian weights which can be used to condition the

data. The first is
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JMTj =

Pp
i=1 |JMTij |

p
(8.17a)

JGVj =

Ps
i=1 |JGVij |

s
(8.17b)

β =
Xn

j=1

JMTj
JGVj

, (8.17c)

where JMT is the MT component of the Jacobian, JGV is the gravity component of

the Jacobian, p is the number of MT data points, s is the number of gravity data

points and n is the number of model parameters. The Jacobian format used here is

with respect to porosity, not resistivity and density as in Section 8.1.1. The second

Jacobian weight is

JMTj =

qPp
i=1 |JMTij |

2

p
(8.18a)

JGVj =

qPs
i=1 |JGVij |

2

s
(8.18b)

β =
Xn

j=1

JMTj
JGVj

. (8.18c)

These weighting factors, Equations 8.17 and 8.18, are equivalent to the l1 and l2

column norms of the Jacobian matrix for the two different techniques. To implement

the Jacobian weighting value in the weighting scheme outlined in Section 8.3.1, α is

set equal to 1 and β equals the value shown in Equations 8.17 and 8.18. Since the

MT component of the Jacobian changes at each iteration, so too does the β value.

To test the Jacobian weightings both the l1 and l2 based weights were applied

to the block, fault and trough models. Joint inversions were performed with all

combinations of a gravity error of 0.06, 0.1, 0.3 or 0.5 mGals and an MT error of 2,

4 or 6%. Approximately one third of the l1-weighted joint inversions failed in the

first three iterations. Of the remaining joint inversions, the weighting value β varied

between 155 and 11300, depending on the model type, error level and number of

iterations. In general, the successful block and fault models had RMSGV values of

less than 0.6, but the RMSMT values ranged between 12 and 45. The trough model
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produced varied RMS values.

The results of the l2-weighting scheme are similar to those of the l1-weighting

scheme, however the l2-weighting seemed to give more stable results, with only

∼ 20% of inversions failing in the first three iterations. Also, the variation of the

weighting value obtained for a given model type is less across all error levels, as is

the RMS value. The block and fault models had RMSGV values of less than 0.3 and

the RMSMT values were higher than 6.0. The trough model had RMSGV values of

between 0.1 and 5.5, whereas the RMSMT values were between 14 and 61. For all

model types the RMSGV value was smaller than the RMSMT value.

Comparing the l2-weighting results to the original joint inversion results showed

that the weighted RMSGV values are always smaller than the original. Conversely,

the weighted RMSMT values are always larger than the original. Therefore this

improved gravity data fit is occurring at the expense of the MT data fit. The

original block and fault models gave good gravity data fits, so it is no surprise that

significant weighting towards the gravity data in the l2-weighting schemes means

these values are reduced below the desired RMS of 1. The original trough model in

Section 7.1.3 had an RMSGV of 5.0 and an RMSMT of 1.5. The l2-weighting scheme

reduced the RMSGV value to 2.3, however the RMSMT value was increased to 56.

The resulting inverted model bears no resemblance to the true synthetic model. In

fact, all the inverted models produced by the l1- and l2-weighting schemes are a very

poor representation of the true models due to the large MT misfits.

Variation

In an attempt to improve the Jacobian weighting results, a column sum of WdJ

rather than just J was taken in Equations 8.17 and 8.18. Normalising the Jacobian

by the data error makes it dimensionless, and so it was hoped that a comparison

between the MT and gravity Jacobian components would produce a better weighting

value. However, this was not observed and the results were no different to those

discussed above.
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8.3.4 Differential Weighting Summary

Weighting the MT and gravity data based on a simple percentage bias has very little

effect on influencing the fit of the MT and gravity data. The l1 and l2 Jacobian

weightings were found to produce similar results to each other. The RMSGV value

is smaller than the original joint inversion (with no weighting), but the RMSMT

values are significantly higher. Neither the percentage weighting nor the Jacobian-

based weighting significantly improved the results over the original unweighted joint

inversion.

8.4 Conclusions

Results produced by the joint inversion are robust to incorrect fluid and matrix

density values used in the porosity-density relationship. The joint inversion is more

susceptible to incorrect petrophysical parameters namely the a-value, the mcf -value

and fluid resistivity in Archie’s Law. In general, high RMS values are indicative of

an incorrect variable being used.

In terms of sensitivity to the same subsurface areas, the gravity data are compat-

ible with the broadband MT data, but less so with the long period MT data. If the

MT and gravity data containing information about different subsurface structures,

the joint inversion, to reconcile the data mismatch, may take advantage of gravity’s

inherent non-uniqueness and try to redistribute porosity (density) with depth. It

places the porosity needed to produce a better gravity fit at locations that do not

interfere with fitting the MT data. Another aspect of incompatible MT and gravity

data is that the joint inversion will produce models which favour the MT data. This

is due to the bias in the joint inversion towards fitting the MT data.

Weighting the gravity and MT data sets differently was implemented in an at-

tempt to remove the bias towards fitting the MT data and improve the balance

between fitting both data sets. Weighting values were assigned using two meth-

ods, percentage weighting and Jacobian-based weighting. Disappointingly, neither

method improved upon the original joint inversion results.
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Chapter 9

Renmark Trough Case Study

The case study selected for the newly developed joint inversion scheme is the Ren-

mark Trough area, shown in Figure 9.1. This area is of particular interest because

of its geothermal potential. It is located within the South Australian Heat Flow

Anomaly (SAHFA), which has anomalously high heat flow values [173] [174]. Pe-

tratherm Pty. Ltd. previously held a geothermal tenement over this study area.

The aim of this case study is to demonstrate the application of the joint inversion

approach to real world data. The Renmark Trough area provides a good example

because pre-existing geophysical data sets are available, and the geology of the site

from a structural point of view is relatively simple. Sandstone is the dominant

lithology, which allows Archie’s Law to be used. This chapter first provides an

overview of the geology and the pre-existing geophysical data sets, then the single

gravity and MT inversions are applied to the individual data sets. Finally, the joint

inversion scheme is undertaken and the various results discussed.

9.1 Geological Overview

The Renmark Trough area encompasses the Early Permian Nadda Basin and the

Early Cretaceous Berri Basin, which both underlie the Tertiary Murray Basin [175].

The sediments filling these basins have been preserved in structures such as the

Renmark Trough and the nearby Canegrass Lobe and the Paringa Embayment (see

Figure 9.1). A cross-sectional view showing the sequence of sediments in the Ren-

235
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Figure 9.1: Location map of the Renmark Trough survey area, showing major geol-
ogy and structural features (adapted from [178])

mark Trough is given in Figure 9.2.

The Renmark Trough itself is a north-easterly trending feature that is 24 km

wide and extends for over 100 km. It has a depth of approximately 3500 m in the

north, decreasing to 2700 m in the south [176]. The southern part of the Trough

is poorly documented but is thought to be a half graben with the Hamley Fault

delineating the north-western side [177]. The fault has a throw up to 1500 m and

extends into the Early Cretaceous sediments. The northern part of the Trough is a

graben with its south-eastern side delineated by the Chowilla Fault [177].

The upper few hundred metres of the sequence contained in the Renmark Trough

  
                                          NOTE:   
   This figure is included on page 236 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Figure 9.2: Geological cross section of the Renmark Trough area, adapted from
Rogers [178].

are from the Murray Basin. The succession of freshwater, marine, coastal and

continental sediments in the Murray Basin covers an area of 300000 km2 in south-

eastern South Australia, south-western New South Wales and north-eastern Victoria

[175]. Underlying the Murray Basin sediments are the Berri Basin sediments, which

are thought to be a former extension of the Eromanga Basin [178]. The Berri Basin is

made up of the Monash Formation. It consists of coarse and fine grained sandstone,

siltstone and claystone. However, in the North Renmark 1 drill hole (which is close

to the survey area and indicated on Figure 9.3), the unit is dominated by siltstone

and sandstone, with only minor claystone interbeds.

The Nadda basin sediments underlie the Berri basin sediments and include the

Urana Formation. This formation contains shale, siltstone diamictite and occasional

conglomeratic and carbonaceous intervals [177]. There are also variable thicknesses

of the Urana Formation across the Renmark Trough area. Drill holes suggest a

thickness of 395 m, although seismics suggest this might extend to 900 m in the

Renmark Trough [176].

The basement is thought to be the Cambrian Kanmantoo Group and could con-

tain Adelaidean strata. In between the basement and the overlying Urana Formation

there is evidence of a clastics layer believed to be Devonian in age [176]. Although

no drill hole has intercepted this layer, seismic information suggests it could have a

thickness of > 1500 m in the north, decreasing to ∼ 600 m in the south.

  
                                          NOTE:   
   This figure is included on page 237 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Geologically the Renmark Trough provides a good testing ground for the joint

inversion scheme because it is structurally simple and the sediments are predom-

inantly sandstone and siltstone. There are also minor thin clay based layers, for

which Archie’s Law will break down. However, these are considered comparatively

minor compared to the overall scale of the investigation.

9.2 Geophysical Data Sets

There are currently four different geophysical data sets which exist over the Ren-

mark Trough area. These are reflection seismics, gravity, magnetics and MT. There

are also eight drill holes, as shown in Figure 9.3, which range in depth between

200 m and 1380 m. Numerous seismic reflection surveys have been conducted in

the Renmark Trough area to evaluate its petroleum potential. The locations of all

seismic survey lines are marked on Figure 9.3. After an initial reconnaissance sur-

vey, the main seismic survey was conducted in 1965 by Tasman Oil [179]. In the

late 1960’s other surveys were conducted by Beach Petroleum [180] and Associated

Australian Oilfields [181]. In the 1980’s there was renewed interest in the area by

the International Mining Corp, which surveyed extensively [182].

The latest (2007) total magnetic intensity (TMI) and Bouguer anomaly gravity

grids are shown in Figure 9.3 and 9.4, respectively. The grids are at an interval of

100 m and were obtained from Primary Industry and Resources South Australia.

The data values and locations of the gravity stations that form the basis of the

gravity map were obtained as input for the inversions described in this chapter.

Gravity station locations are plotted in Figure 9.4.

The most recent geophysical survey conducted in the area was in 2009 by The

University of Adelaide [183]. This was an MT survey which entailed 25 stations along

two roughly parallel profiles, as shown in Figure 9.4. The profiles were orientated

perpendicular to the north-east trending Renmark Trough. The southern profile

coincided with an old seismic line OC 1965-R1. Long period instruments, which

measured the Ex, Ey, Bx, By, Bz components of the electric and magnetic fields,

were deployed at a station spacing of 4−5 km along the northern profile. Broadband



9.2. GEOPHYSICAL DATA SETS 239

50 nT

-350 nT

TMI

Legend

drill holes

seismics

MT site

RB 3

OVERLAND CORNER 1

BERRI NORTH 1MONASH 1

M56

NORTH 
RENMARK 1

COOLTONG 1

MC 61

1965-R1

OC85-22

67MU-2

Figure 9.3: Total field magnetic intensity map of the Renmark Trough area, with
MT stations, drill holes and seismic lines superimposed.



240 CHAPTER 9. RENMARK TROUGH CASE STUDY

Legend

gravity station

drill holes

MT site
0 mGals

-50 mGals

Bouguer
anomaly

RB 3

NORTH 
RENMARK 1

COOLTONG 1

MC 61

BERRI NORTH 1MONASH 1

M56

OVERLAND CORNER 1

G1’

JI’

G2

JI

G2’

G1

Figure 9.4: The Bouguer gravity anomaly map of the Renmark Trough area. Also
shown are the locations of MT stations, gravity stations, drill holes and profile lines
for the joint inversion and gravity forward modelling.
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instruments which measured the Ex, Ey, Bx, By components of the electric and

magnetic fields were deployed at a station spacing of 2 − 3 km along the southern

profile. The raw time series were remote referenced and processed using the Bound

Influence Remote Reference Processing code (BIRRIP) of Chave and Thomson [184].

Apparent resistivity and phase data were produced over frequency bands of 0.1 −

10−4 Hz for the long period stations and 100− 10−2 Hz for the broadband stations.

For further details on the MT acquisition and processing, see Craven [183].

The combination of the gravity station data and the broadband MT data form

the basis of the Renmark Trough case study. The long period MT data set was not

used because it was of poor quality. The JI profile, on which the gravity, MT and

joint inversions are conducted, is shown in Figure 9.4. Station RM0119 is excluded

from the discussion below since there is no co-incident gravity station data (preferred

over the gridded data) to constrain it in the joint inversion.

9.3 Gravity

The Bouguer anomaly gravity map of the Renmark Trough area is shown in Fig-

ure 9.4. The north-east trending Renmark Trough is clearly visible as a gravity low.

Its western boundary is a major feature on the gravity map as a sharp transition

between high and low gravity values (approximately ∼ 35 mGals). This strong gra-

dient delineates the Hamley fault. Away from the Hamley fault there is a gradual

increase in the gravity values to the south-east. There is a central gravity low, al-

though its extent is not well constrained due to the sparse gravity station network.

The location of the Chowilla fault, which forms the south-east side of the trough,

is not clear. North-west of the Hamley fault there is a high in the gravity values

that corresponds to the Canegrass Lobe. The magnetic map of the equivalent area

(See Figure 9.3) shows a magnetic high along the Hamley fault close to the Over-

land Corner 1 drill hole. South-east of the Hamley fault there is a large magnetic

high, which is thought to be caused by deep regional features. This high masks the

magnetic signature of the nearer surface trough, making complementary information

unattainable from magnetics.
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Figure 9.5: The seismically-constrained gravity forward modelling along profile G1,
as shown on Figure 9.4. Adapted from Craven [183].

A recent investigation by Craven [183] used seismic and drill hole data to con-

strain density models along profiles G1 and G2, as indicated on Figure 9.4. The

seismic cross sections (locations given in Figure 9.3) were characterised by very

strong reflectors correlating to an unconformity in the Early Cretaceous and the top

of the basement. Profile G1 corresponds to the seismic line 1965-R1, which coin-

cides with the last ∼ 23 km of the eastern end of the JI profile. The 1965-R1 seismic

data were of poor quality and so the interpretation was aided by using seismic line

OC85-22 [179] [182]. Profile G2 corresponds to seismic line 67MU-2 [181].

Figures 9.5 and 9.6 show the subsurface density models for profiles G1 and G2.

Relatively low density values were used, which were indicated by the drill hole

logging. The G1 profile model only contains the seismically-determined boundaries.

The base of the trough is at a depth of ∼ 3.6 km and is located adjacent to the

southerly dipping Hamley fault. From this point there is a sharp depth increase

in the basement of the Trough over a horizontal distance range of between 6 km

and 8 km, before a gentle rise for the remainder of the profile. The boundary

between the Permian and the upper sediments plunges in depth over the Hamley

fault, before gradually decreasing in depth for the remainder of the profile. The

  
                                          NOTE:   
   This figure is included on page 242 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Figure 9.6: The seismically-constrained gravity forward modelling along profile G2,
as shown on Figure 9.4. Adapted from Craven [183].

gravity data along this profile are incomplete. However, from the available data the

model reproduces the observed data over the Hamley fault, but the model response

slightly over-estimates the observed data at the southern end of the profile.

In the G2 profile model (Figure 9.6) the seismically defined sediment layers are

divided into finer geological units. The M56 and North Renmark 1 drill holes were

used to constrain their depths. This model also shows a south-dipping Hamley

fault and a relatively flat basement. The model reproduces the general trend of the

observed gravity data but does not fit the subtle variations.

For the gravity stations along the JI profile, indicated in Figure 9.4, there is

approximately a 20 km gap in coverage in the middle portion of the profile. There

is also a much larger gap at the eastern end of the line. The 20 km gap in station

coverage is over a significant portion of the Trough, starting just south of the Hamley

fault and extending to the east end of the profile. The interpolated gridded gravity

values were not used to fill this gap because their values are not well constrained

due to the lack of stations in this area. Owing to the continuity of the trough along

the strike direction, the gravity stations from the ∼ 10 km north-east G2 profile

  
                                          NOTE:   
   This figure is included on page 243 of the print copy of  
     the thesis held in the University of Adelaide Library.
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Figure 9.7: Density contrast model produced from an Occam gravity inversion along
the JI profile, as shown in Figure 9.4. The observed data is shown by the blue dots
and the computed model response is shown by the red line.

were used to fill this gap and to give consistent gravity coverage along the profile.

The gravity stations along the JI profile are assigned an error of 0.2 mGals and the

gravity stations from the G2 profile are assigned a larger error of 0.4 mGals to allow

for any variations in subsurface structure due to the altered locations.

Figure 9.7 shows the results of the Occam gravity inversion along the JI profile.

Consistent with this type of inversion, all the structure has been placed at the

surface. Between a horizontal distance of 0 km and ∼ 5 km, there is an increase

in density. At a horizontal distance of ∼ 15 km there is a distinct drop in the

density contrast of 100 kgm−3, corresponding to the location of the Hamley fault.

Proceeding further along the profile at a horizontal distance of ∼ 25 km, the density

values begin to increase again. Small density variations are used at the top of the

model to fit subtle variations in the data.
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9.4 Magnetotellurics

9.4.1 Phase Tensor Analysis

Before performing an MT inversion along the JI profile, a phase tensor analysis was

conducted on the MT broadband stations [37]. The phase tensor is a second-rank

tensor that contains the phase relationships of the MT impedance tensor [37]. An

ellipse can be used to graphically represent the phase tensor, with the long axis of

the ellipse indicating the direction of maximum current flow. The plot of the phase

tensors given in Figure 9.8 is such that the ellipse can be thought of as a compass

needle with north fixed at the top (vertical direction) of each figure. When the

ellipse appears to be circular there is no direction of preferential current flow and

the Earth is electrically homogeneous or 1D.

At small periods (high frequencies) all stations appear to be 1D Figure 9.8a,

which is indicative of sedimentary environments. As the period increases the phase

tensor decreases in size because there is a transition into a more resistive environ-

ment i.e., the basement. The transition into a more resistive environment occurs

at successively longer periods as the horizontal distance increases, which means the

depth of the overlying sediments is increasing. The phase tensors over the horst

(horizontal distance between 0 km and 12 km) at long periods align in a north-east

direction, suggesting the current flow is related to the north-east trending Trough.

Stations at a horizontal distance of 18 km to 32 km also align but in a more northerly

direction. This direction does not correspond with a known structure.

Station RM0111, at a horizontal distance of 17 km, has dissimilar phase tensor

characteristics compared to the surrounding stations. The phase tensors align in an

easterly direction at long periods. At very long periods adjacent stations sense the

same subsurface structure and would be expected to have a similar response. The

longest period in this survey is 85 s, which is not long enough to expect a similar

response in adjacent stations. Therefore, the unusual behaviour of station RM0111

cannot be disproved and may be due to localised current flow. Both MT and joint

inversions were executed with and without station RM0111 and produced similar

results. For reasons of completeness, this station has been included in the discussion.
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() o

Figure 9.8: Phase tensor plot of the broadband MT data. In a) the phase tensor
ellipses are coloured according to their ellipticity values. In b), the phase tensors
have been normalised by their maximum axis values and coloured according to their
skew angle values.



9.4. MAGNETOTELLURICS 247

The phase tensors plotted in Figure 9.8a are coloured in accordance with their

ellipticity values. The ellipticity value is a measure of the relationship between the

maximum and minimum phase [37] [185]. When the ellipticity value is less than 0.1,

it indicates data points that correspond to 1D electrical structure. In Figure 9.8a,

when the phase tensors no longer appear circular, their ellipticity value becomes

greater than 0.1. This joint phase tensor and ellipticity behaviour clearly defines

the presence of the basement in the data. It is unknown if the increase in ellipticity

value is due to 2D or 3D structure.

A skew angle is a measure of the tensor’s asymmetry. When the skew angle is be-

tween ±5o the data correspond to 2D subsurface structures, outside of these bounds

the data correspond to 3D structure [185]. Figure 9.8b shows the phase tensors

coloured in accordance with their skew values. The ellipses have been normalised

by their maximum axis value, allowing the skew colour to be visible. The colour

scale is such that any black phase tensor relates to a data point that exhibits 3D

behaviour. The main region of 3D data points is at long periods and a horizontal

distance greater than 10 km. This area corresponds to the phase tensors aligning

with an unknown structural feature. The cause of the 3D structure is unknown as

the trough itself is primarily a 2D feature. There is insufficient station coverage to

conduct a 3D inversion and the removal of the 3D points would significantly reduce

the data set. Therefore, as the trough is predominantly 2D, the case study will

proceed with a 2D inversion.

9.4.2 MT Model

The results of the MT inversion with a 5% data error, along the JI profile are shown

in Figure 9.9. Diagram (a) does not fit the data to within the expected noise level

but still has a relatively small RMS of 2.2, as can be seen graphically in Figure 9.10.

The model response reproduced the trends and values of the observed data and

there was no systematic misfit of the data. The MT model consists of a conductive

(< 3 Ωm) zone down to a depth of 1 km, that appears patchy and could contain

artifacts. The basement geometry appears to contain two vertical faults, with the

west being the Hamley fault. The faults separate two resistive basement blocks
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Figure 9.9: The resistivity models obtained from the MT inversions along the JI
profile, with a) having a target RMS of 1 and b) a target misfit that is a 20%
increase in the RMS of a). The black lines show the boundaries in the seismically-
constrained gravity forward modelling from Figure 9.5.

(100 Ωm) from the slightly less resistive (∼ 10 Ωm) trough, with the basement

topography seen to be relativity flat. The western block has a depth to basement

of ∼ 1.9 km and the eastern block has a depth to basement of ∼ 0.8 km, which falls

away to ∼ 1 km at the far east end of the profile. The base of the trough cannot be

resolved.

A 20% relaxation of the RMS value in Figure 9.9a was conducted to produce

Figure 9.9b. The Hamley fault has now been correctly orientated but all features

are heavily smoothed and their exact locations are hard to determine. Without

prior knowledge of the area, it would be challenging to interpret the 20% relaxation

model and reconcile the severe changes in the geometries of the features from the

original MT model.



9.4. MAGNETOTELLURICS 249

TM
TE

JI TM
JI TE

MT TM
MT TE

100

101
ap

p.
 re

si
tiv

ity
 ( Ω

.m
)

0

45

90

ph
as

e 
( o  )

RM0118

TM
TE

JI TM
JI TE

MT TM
MT TE

RM0117

TM
TE

JI TM
JI TE

MT TM
MT TE

RM0116

TM
TE

JI TM
JI TE

MT TM
MT TE

100

101

ap
p.

 re
si

tiv
ity

 ( Ω
.m

)

0

45

90

ph
as

e 
( o  )

RM0115

TM
TE

JI TM
JI TE

MT TM
MT TE

RM0114

TM
TE

JI TM
JI TE

MT TM
MT TE

RM0113

TM
TE

JI TM
JI TE

MT TM
MT TE

100

101

ap
p.

 re
si

tiv
ity

 ( Ω
.m

)

10-1 100 101

period (s)

0

45

90

ph
as

e 
( o  )

RM0112

TM
TE

JI TM
JI TE

MT TM
MT TE

10-1 100 101

period (s)

RM0111

TM
TE

JI TM
JI TE

MT TM
MT TE

10-1 100 101

period (s)

RM0110

Figure 9.10: The observed MT data for stations along the JI profile, as shown in
Figure 9.4. The model responses (amplitude and phase for both TE and TM modes)
from the MT inversion are shown in black and the MT model responses from the
joint inversion are shown in red.
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Figure 9.10 continued.

9.5 Joint Inversion

The joint inversion was executed with an MT error of 5%. A differential weighting

scheme was applied towards fitting the gravity data to ensure that the MT data

were well constrained. Rather than applying the weighting methods described in

Section 8.3, which produced indifferent results, the weighting used here simply en-

tailed the reduction of the estimated error level of the gravity data to 0.06 mGals,

thus demanding a tighter fit.

In order to carry out the joint inversion, certain assumptions need to be made
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about the parameters (constants) that appear in Archie’s Law and the porosity-

density relationship. Matrix density and fluid density, which appear in the porosity-

density relationship, are assigned fixed values of 2400 kgm−3 and 1030 kgm−3 re-

spectively. The lower matrix density is a reflection of the low density values used

in Figure 9.5. The variables which need to be defined in Archie’s Law are a, mcf

and fluid resistivity, with fractional saturation (S) assumed to be 1. The geological

environment described in Section 9.1 indicates using a a- andmcf -value combination

from Table 5.1 of a = 0.62 and mcf = 1.72 (for Mesozoic sediments) or a = 0.62 and

mcf = 1.95 (for Paleozoic sediments). Both sets of value combinations were tried

but the joint inversion returned the best results with the more common values of

a = 1 and mcf = 2.

Fluid resistivity measured from the MC56 and Cooltong drill holes, shown in

Figure 9.3, were ∼ 30 Ωm [186]. These measurements were made in the 1980’s.

Since that time the Murray River and its surrounds (see Figure 9.1) have undergone

significant salinity and water level changes. In 2003 the formation fluid in the Ren-

mark Trough area was listed as very saline, although current salinity or resistivity

values are not given [186]. Irrespective of a specific value, these types of values only

categorise the near-surface fluid resistivity environment. For the joint inversions,

fluid resistivity values to a depth of at least 5 km need to be considered. There-

fore, Equation 5.5 is used to define the fluid resistivity with depth. This equation

requires a temperature gradient and the resistivity of water ((wo) to be defined. No

temperature information could be obtained for the Renmark Trough area. Given

that it is located in SAHFA, high temperature gradients are expected. Through a

process of trial and error it was found that the best joint inversion results, having

the smallest RMS values, occurred between temperature gradients of 90 oCkm−1

and 100 oCkm−1 and a (wo value between 0.1 and 0.2. It was found that the op-

timal parameter values, giving the lowest RMS overall, were selected values with a

temperature gradient of 90 oCkm−1 and (wo value of 1.6 Ωm.

Figure 9.11 shows the porosity model obtained from the joint inversion. The joint

inversion model is smooth and artifact free. In order to compare the result with the

single gravity and MT inversions, the porosity model is converted to resistivity and



252 CHAPTER 9. RENMARK TROUGH CASE STUDY

0 5 10 15 20 25 30

0

1

2

3

4

5

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦Δ Δ Δ∇∇∇ ∇∇ ∇ ∇∇ ∇∇ ∇∇ ∇∇ ∇ ∇ ∇ ∇∇ ∇∇∇ ∇∇∇∇∇

 

 

porosity

de
pt

h 
(k

m
)

distance (km)

RMSJI=3.8 RMSMT=3.8 RMSGV=5.6
0

0.1

0.2

0.3

0.4

Figure 9.11: The porosity model obtained from a joint inversion along the JI profile.
Black diamonds represent co-incident gravity and MT stations, triangles represent
just MT stations and upside down triangles represent just gravity stations.

density models using the above discussed parameter values in Archie’s Law and

the porosity-density relationship. The joint inversion resistivity model is shown in

Figure 9.12. Similar to the MT model, the joint inversion model has a conductive

zone in the upper 1−2 km depth range, although the joint inversion model is slightly

more resistive. However, the basement structure between the MT and joint inversion

resistivity models is significantly different.

In the joint inversion, the Hamley fault appears to have the correct inclination,

compared to the vertical orientation in the MT model. The depth to the eastern

basement block is also slightly lower in the joint inversion model and becomes less

resistive at the far east of the model. This decrease in resistivity (porosity) could be

a boundary effect, or more likely the result of lower observed gravity values over this

area. The second fault that appears in the MT model is not prominent in the joint

inversion model. Rather, the western block is situated at a greater depth. Neither

the MT nor the joint inversion models can resolve the base of the trough. The joint

inversion does however show higher conductivity values to a greater depth in this

zone, indicating the presence of sediments to a greater depth.

In Section 7.1, when considering synthetic data examples, it was shown that

the joint inversion is far superior to the Occam gravity inversion in reconstructing

the subsurface structure. This is also the case here. However, the joint inversion
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Figure 9.12: The resistivity model obtained from the joint inversion along the JI
profile. It was produced by converting the porosity model to resistivity values using
Archie’s Law. Black diamonds represent co-incident gravity and MT stations, tri-
angles represent just MT stations and upside down triangles represent just gravity
stations. The black lines show the boundaries in the seismically-constrained gravity
forward modelling in Figure 9.5.

density model, given in Figure 9.13, agrees with the seismically-constrained density

model of Figure 9.5. The upper portion of the section has similar orientations and

density values. The density values of the Devonian/Permian sediments are hard

to compare because the joint inversion has smoothed this layer, while reproducing

the basement. The basement geometries are broadly similar, although their actual

values are different. The joint inversion cannot reproduce a basement density value

of 2800 kgm−3, since the maximum density corresponding to the matrix density is

only 2400 kgm−3 when the porosity is zero.

The joint inversion model fits the gravity data well, as is evident from Fig-

ure 9.14. The computed model response does slightly underestimate the observed

data between horizontal distances of 6 km and 15 km, which corresponds to the

western basement block. A reason for this could be that a matrix density value of

2400 kgm−3 in the porosity-density relationship is adequate for the sediment com-

ponent of the model, but is too low for the basement, and the porosity-density

relationship may not even be applicable to the basement. If the basement topogra-

phy was flat, it would have a constant gravity response and the gravity offset term

would accommodate incorrect density values. At this distance, there is a > 3 km
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Figure 9.14: The observed gravity data are shown by blue dots and the joint inversion
model response is shown by the red line.
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topographic relief that cannot be accounted for by the gravity offset term.

The data fit for the single MT data inversion, as well as that of the joint inversion

are shown in Figure 9.10. In general, the computed MT data for the joint inversion

model reproduce the trends and values of the observed data of all stations rather

well. However in the phase response there are two areas where they do not fit.

At short periods, the model response underestimates the observed phase, and as

the phases become greater than 45o, the observed data indicate a more conductive

environment than is found for the joint inversion. At MT stations on the eastern end

on the profile (stations RM0111 — RM0105), the model response overestimates the

observed TM phase at long periods. This will be discussed further in Section 9.6.

Sensitivity Analysis

In Section 8.2.3 a method of evaluating the effect of the adjustable parameters in

Archie’s Law and the porosity-density relationship was outlined. This takes ad-

vantage of the implicit differentiation through the chain rule that is applied to the

sensitivities (Jacobian matrix). Figure 9.15 shows the gravity sensitivity distribu-

tions with respect to the various parameters from the porosity-density relationship,

viz., fluid density, matrix density and porosity. There are 3 and 10 orders of magni-

tude difference between the joint inversion sensitivity to porosity and the fluid and

matrix densities, respectively. This demonstrates the joint inversion model is more

robust to the fluid and matrix values than the porosity values.

The MT sensitivity distributions with respect to the parameters in Archie’s Law,

a,mcf and temperature, are shown in Figure 9.16. The joint inversion model appears

to have the greatest sensitivity to the porosity value. In the upper part of the section

(< 1 km) the model has an increased sensitivity to the a- andmcf -values. This could

be a contributing factor to the misfit in the phase at short periods, as discussed

earlier. The geology in the upper 1− 2 km is Tertiary in age, which normally has a-

and mcf -values of 0.88 and 1.37, respectively (Table 5.1). If these values were used

in the Tertiary part of the section it would result in an increase in conductivity for

the same porosity values. A joint inversion could be executed that has one set of

a- and mcf -values above 1 km and another set of a- and mcf -values below 1 km.
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Figure 9.15: The gravity sensitivity distribution produced from a joint inversion of
the Renmark Trough data. The sensitivity models are with respect to a) the fluid
density, b) the matrix density and c) the porosity. Black diamonds represent co-
incident gravity and MT stations, triangles represent just MT stations and upside
down triangles represent just gravity stations.
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Figure 9.16: The MT sensitivity distribution produced from a joint inversion of the
Renmark Trough data. The sensitivity models are with respect to a) the a-value,
b) the mcf -value, c) temperature and d) porosity, implicit in Archie’s Law. Black
diamonds represent co-incident gravity and MT stations, triangles represent just
MT stations and upside down triangles represent just gravity stations.
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Figure 9.17: The MT sensitivity distribution model for the Renmark Trough joint
inversion, with data change isoclines drawn, where blue = 1 Ωm, cyan = 5 Ωm,
green = 10 Ωm, yellow = 25 Ωm, magenta = 50 Ωm and red = 100 Ωm.

Future work is to develop the joint inversion to be able to have different parameters

in Archie’s Law, and the porosity-density relationship, across different parts of the

model.

Figure 9.17 was produced in accordance with the method outlined in Section 8.1.1,

and shows the Schwalenberg et al. [170] style of sensitivity plot for the MT compo-

nent of the joint inversion Jacobian. It is important to remember that the sensitivity

plot is dependent on the final model. This figure shows that the MT data are sen-

sitive to shallow features that are conductive and insensitive to resistive features,

which is consistent with the results in Section 8.1.1. What this sensitivity plot sug-

gests is that the MT data are insensitive to the variations in the resistivity of the

Trough sediments and that they do not contain enough (long period) information

to resolve the base of the Trough.

9.6 Discussion

Overlain on the MT and joint inversion resistivity models of Figures 9.9a and 9.12

respectively, are the seismically constrained boundaries of the gravity model from

Figure 9.5. The upper conductive layer in both the MT and joint inversion models

is consistent with the topmost 1km of sediments in the gravity model. The base-

ment geometries of the joint inversion model and the gravity model are consistent.



9.7. CONCLUSIONS 259

However, the MT single inversion basement geometry is distinctly different, most

notably the location and orientation of the Hamley fault and the geometry of the

eastern basement block.

The curve of the observed gravity data is indicative of a normal fault. Therefore,

constraining the MT data with the gravity data in the joint inversion produces the

correct orientation of the Hamley fault. There is no information in the seismic

reflection data or the gravity models which extends further south-west than the JI

profile, to support a secondary large fault that is present in the MT model.

At the location of the suggested second fault and the eastern basement block

in the MT inverted model, two observations correspond: (1) the skew values indi-

cate the presence of 3D structure at long periods, and (2) the joint inversion at long

periods does not fit the phase of the TM mode, which is sensitive to resistive bound-

aries. The presence of 3D structure, as indicated by the skew values, is manifest as

a distinct fault and raised basement block in the 2D MT model. The joint inversion

forces consistency between the MT and gravity data sets, thereby not fitting the

long period TM mode phases as this subsequent structure is not supported by the

gravity data. Therefore, the joint inversion does not put a resistive boundary into

the model and thus does not estimate the basement depth correctly.

Through the joint inversion process some assumptions are made about the pa-

rameters in Archie’s Law and porosity-density relationship. Only when these pa-

rameter values are correctly chosen as being close to the true subsurface values will

an adequate data fit be achieved. This additional information helps to categorise

the study area. The Renmark Trough area is being investigated for its geothermal

potential and the additional temperature gradient and porosity values are of impor-

tance. Extracting this type of information from the individual MT or gravity data

sets, without the constraint of a joint inversion, would be extremely difficult.

9.7 Conclusions

The Renmark Tough is a north-east trending half graben structure that was used

to test the newly-developed MT and gravity joint inversion scheme. The broadband
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MT inversion was hindered by the presence of data points that corresponded to

3D structure, as indicated by a phase tensor analysis. This resulted in a model

with a basement geology which was inconsistent with seismically-constrained gravity

forward modelling. In the joint inversion, the gravity data aided the MT data in

correctly locating the basement features and producing a model that was consistent

with all available geophysical data sets.



Chapter 10

Conclusions

The successful development, testing and application of a petrophysical MT and

gravity joint inversion scheme has been described in this thesis. This joint inversion

approach is based on a common parameter to which both techniques are sensitive,

thus providing the effective means for integrating the information contained in both

data sets. The MT and gravity joint inversion uses Archie’s Law and the porosity-

density relationship to express resistivity and density in terms of the common pa-

rameter ‘porosity’. The 2D MT and gravity joint inversion scheme then produces a

single unified porosity model that satisfies both data sets. Detailed synthetic data

testing as well as application to field data through the Renmark Trough case study

shows that the joint inversion is more effective in reconstructing the subsurface

model than the MT and gravity inversions alone.

There is a diverse range of applications for the MT and gravity joint inversion,

and these include:

• Determination of sedimentary basin structure, particularly in frontier basins

where it offers a cheap alternative to seismics.

• Porosity-based pore pressure predictions, so as to categorise anomalous high

porosity values to determine zones of overpressure [154].

• Exploration in sedimentary basins to determine the broad architecture of hy-

drocarbon and mineralisation systems.
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• Application for geothermal exploration, as described through the case study

in Chapter 9.

• Extension to applications other than sedimentary environments, since Archie’s

Law has been previously used to successfully predict the bulk conductivity

values of oceanic and continental crust [141] [150] [151] [152].

10.1 Results Summary

A new gravity Occam inversion scheme was developed to form the gravity component

of the joint inversion, and was discussed in Chapter 4. The single gravity inversion

only places structure at the surface, which is then smeared into the model due to

the smoothness constraint. The use of different grid configurations and a depth

weighting function only marginally improved the result, highlighting the need for

joint inversions in analysis of gravity data.

The benefits of combining MT and gravity techniques in a joint inversion were

investigated in Chapter 5. The introduction of porosity, through Archie’s Law and

the porosity-density relationship, as the link between the MT and gravity data

sets was established. This was then followed by a review of Archie’s Law and the

porosity-density relationship, and an examination of the joint porosity, conductivity

and density behaviour.

The new MT and gravity joint inversion that inverts directly for a porosity model

was outlined in Chapter 6. The conversion of this porosity model to a resistivity and

density model uses Archie’s Law and the porosity-density relationship. Responses of

the conductivity and density models were calculated and compared to the observed

MT and gravity data sets. Then, based on both techniques, the porosity model was

updated. These steps were repeated in an iterative fashion until a porosity model

was reached that satisfied the data from both techniques.

To test the newly developed joint inversion algorithm, several synthetic models

(block, fault and trough models) were used (Chapter 7). It was shown that the joint

inversion produced a smooth, artifact free model and yielded a better representation

of the subsurface than was possible with single technique (MT or gravity) inversions.
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The joint inversion was shown to be particularly useful in extracting coherent in-

formation from noisy MT data when the gravity error was small. It was found, by

means of numerical experiments, that there is no optimal MT and gravity station

configuration, although having an equal or greater number of gravity stations than

MT stations produces better results. Better results were also obtained with denser

station coverage. The joint inversion has similar resolving characteristics to the MT

inversion, since the joint inversion only produced structure that was required by the

MT data. However, the joint inversion was beneficial in reducing artifacts, imaging

resistivity structures and improving the clarity of the subsurface features.

A new method for viewing the information contained in the Jacobian matrix

was developed and used in a sensitivity analysis (Chapter 8). The column sum of

absolute values of the Jacobian not only provided a cumulative subsurface sensitivity

distribution model but also produced a crude measure of resolution for the MT and

gravity techniques. The sensitivity analysis and subsequent joint inversions, using

broadband and long period MT data, showed that broadband MT data were more

compatible with the gravity data than long period MT data.

The perceived disadvantage of the petrophysical approach (as opposed to the

structural approach) of not being able to deal with distinctly different and diverse

subsurface environments was also investigated in Chapter 8. Although the new MT

and gravity joint inversion algorithm was mainly restricted to sedimentary basin

environments, computational testing and Jacobian matrix analysis showed that the

joint inversion was robust to inaccuracies in the parameter values in Archie’s Law

and the porosity-density relationship. In general, the correct parameter values were

indicated by the lowest RMS values. Once the appropriate parameters in Archie’s

Law and the porosity-density relationship had been established, they were able to

provide greater understanding of the study area. To obtain this complementary in-

formation from the individual MT and gravity data sets (outside of a joint inversion)

would be extremely difficult.

The Renmark Trough in South Australia is an area of current geothermal energy

interest and provided a case study for the joint inversion which was given in Chap-

ter 9. The single MT inversion produced a model that had basement geometries
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conflicting with other geophysical data (seismic, gravity) and geological information

in the area. However, the joint inversion produced a model that was consistent with

all other geophysical data sets and known geology.

In this thesis, the development and characterisation of a new MT and grav-

ity joint inversion has been achieved, and the petrophysical approach validated.

Synthetic testing demonstrated the ability of the joint inversion to provide better

reconstructions of the subsurface image than is possible using the single MT and

gravity techniques. More importantly, the joint inversion was successfully applied to

real world data and provided a greater understanding of this area than was achieved

using the single techniques alone.

10.2 Outlook

Joint inversion of geophysical data sets is a topic of current major interest, both

in academia as well as industry, for more effectively reconstructing the subsurface

geology. The next few years are likely to see increased interest in this field. However

until now, the focus of joint inversion research has been on the structural approach,

whereby penalty terms are introduced into the objective function to favour models

which yield similar structure from the inversion of each data set. In this thesis, it

has been shown by means of synthetic and real data inversions that the petrophys-

ical approach is a dynamic and viable joint inversion alternative, which certainly

warrants continued research.

The MT and gravity joint inversion scheme could be extended by applying a

dynamic weighting scheme, such as that detailed in Doetsch et al. [3]. Attempts to

individually weight the MT and gravity data sets in the joint inversion (Section 8.3)

produced indifferent results. However, dynamic weighting would involve changing

the weighting values at each iteration to encourage both the MT and gravity RMS

to have a value of 1. Alternatively, a Lagrange multiplier could be used to determine

the right balance between the MT and gravity data sets. The inclusion of gravity

data in the joint inversion aids in producing a smoother model than is achievable

from an MT inversion alone Therefore, the smoothness constraint could be removed
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and the Lagrange multiplier used instead to find the optimal balance between the

MT and gravity data sets. The removal of the smoothness constraint would require

careful consideration in order to prevent destabilising the inversion.

The sensitivity analysis presented in Section 8.1 could be extended to incorporate

a resolution analysis by using variants of the singular value decomposition (SVD)

method [74] [187] [188]. This resolution analysis could then determine the subsurface

features that each technique is resolving, rather than the subsurface area to which

each technique is sensitive.

An aim of this research was to develop a general methodology that is not only

restricted to MT and gravity techniques. Thus the general methodology developed

can be extended to 3D, or even expanded to include three or more techniques.

Seismic data could be incorporated into the joint inversion through the Wyllie time-

average law or the Gassmann quasi-static poroelastic equation, both of which relate

seismic wave speed to porosity. This would enable these three techniques to be

combined in a petrophysical joint inversion, which has not been attempted before.

The addition of a seismic constraint could also allow the joint inversion to not

only solve for porosity but also the fluid resistivity parameter in Archie’s Law, thus

providing an improved characterisation of the study area, with obvious applications

to hydrocarbon exploration and development

Combining two different techniques that are sensitive to the same subsurface

petrophysical quantity is not only restricted to MT and gravity data through poros-

ity. Any geophysical data sets that have a common petrophysical link can be inverted

in this way. One example is combining electrical resistivity tomography (ERT) and

ground penetrating radar (GPR), through moisture content, which affects both the

resistivity (for ERT) and the dielectric constant (for GPR wave speed and attenu-

ation). Another alternative is to combine long period MT and seismics in a joint

inversion. Here both the seismic wave speed and electrical resistivity have a com-

mon anisotropy strike direction in the mantle, due to the alignment of the [100]-axis

of the olivine molecules. The research in this thesis lays a critical foundation for

developing petrophysical joint inversions in a wide range of areas and applications.



266 CHAPTER 10. CONCLUSIONS



Appendix A

Occam 2D Gravity Inversion User

Manual

This manual outlines the file structure and steps involved in executing the 2D

Occam gravity inversion from Chapter 4. The Occam gravity inversion reads in

Bouguer anomaly data and outputs a density contrast model. The gravity inver-

sion is based on the Occam 2D inversion code for MT data. Professor Steven

Constable from the Scripps Institute of Oceanography (SIO) has made the Oc-

cam2DMT program is freely available and it can be downloaded from his website

(http://marineemlab.ucsd.edu). The general Occam procedure is discussed in Con-

stable et al. [80] and developed into 2D by deGroot-Hedlin and Constable [90].

A.1 Gravity Inversion Files

A summary of the required and optional INPUT and OUTPUT files are as follows:

Requited INPUT files: Gravity data file, STARTUP, INMODEL

and MESH

Gravity data Houses the gravity data information, including station locations

and Bouguer anomaly gravity values and errors.

STARTUP The inversion parameters and the initial model parameter

values are defined here. Contains the name of the

INMODEL, Gravity data file and Relate files.
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INMODEL Describes the regularisation grid and contains the name of

the MESH file.

MESH Describes the finite element mesh.

Optional INPUT files: Depth Weighting file and Prejudice file

Depth Weighting Contains the depth weighting values

Prejudice Allows the model parameters to be weighted towards

a specific model.

OUTPUT files: LogFile.logfile ITERxx.iter, RESPxx.resp

LogFile.logfile Is a detailed summary of the inversion parameter and steps

taken during the inversion process.

ITERxx.iter Outputted at every iteration it contains the inversion and

model parameters for the iteration number given by the xx.

RESPxx.resp Outputted at every iteration it gives the model response for

the iteration number given by the xx.

A.2 File Structure

In developing the Occam gravity inversion minimal changes to the file structure

are made in order to allow for easy transition between the MT, gravity and joint

inversions. The file structure of the Gravity data file, INMODEL, MESH, Prejudice

file, LogFile.logfile ITERxx.iter, RESPxx.resp are the same as the joint inversion,

therefore see Appendix B.2 for these file templates. The only difference is in the

STARTUP file from Appendix B.2, are the model parameters listed are density value,

which make up the density contrast model, and the MT DATA FILE, RELATE FILE

and GRAVITY OFFSET items are not required. The gravity inversion only requires one

iteration therefore in the startup file the item ITERATIONS TO RUN: should always

be one.

There is a separate gravity inversion which executes the depth weight discussed

in Section 4.5.2. The depth weighting constants are containing in a file that has to

be called ‘IRUF5values.dat’ and has the format below.

BETA: 1.5 β∗ value

Z zero: 20 z0 value
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A.3 Programs Required

The programs needed in the gravity inversion procedure are listed below. They are

used to set up the input files and view the output files.

Makemodel2D.exe Fortran90 Creates the STARTUP, INMODEL and

MESH files from the input gravity data

files. Modified from the SIO program for

Occam2DMT.

Occam2DGrav.exe Fortran90 Main program and executes the MT and

gravity joint inversion.

plot2DmodelGrav MatLab Plots the density contrast model for a

specified iter file, requires iter, INMODEL,

MESH, Gravity data files. Modified from

the SIO program for Occam2DMT.

plotGVRESP MatLab Plots the model response and original data

for a specified resp file, requires resp,

gravity data files. Modified from the

SIO program for Occam2DMT.

A.4 Procedure

Start by creating the gravity data files and ensure the offsets values are accurate.

To create the model files the makemodel2D.exe can be used. It requires the gravity

data file as input and will output the STARTUP, INMODEL and MESH files. Use

the plot2DmodelGrav MatLab program to view the model and to make sure the

model parameterisation has the desired characteristics.

To execute the gravity inversion, ensure STARTUP, INMODEL, MESH and

gravity data files are in the same folder as the Occam2DGrav.exe executable. Open

the executable and in the words of Occam ‘sit back and relax’. As Occam runs it

will print to the screen information for every μ value and model parameter that has

been tested.

The model response compared to the observed data can be viewed using the plot-

GVRESP. To view the porosity model use the plot2DmodelGrav MatLab program.
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Appendix B

Occam 2D Joint Inversion User

Manual

This manual outlines the file structure and steps involved in executing a magnetotel-

luric (MT) and gravity joint inversion. MT is sensitive to the subsurface resistivity

distribution, where as gravity is sensitivity to the subsurface distribution of den-

sity. Resistivity and density can be related to porosity through Archie’s Law and

the porosity-density relationship. This joint inversion inverts directly for a porosity

model which is constrained by both the MT and gravity data using these equations.

The joint inversion is based on the Occam 2D inversion code for MT data. The

Occam2DMT program is freely available, courtesy of Professor Steven Constable

from the Scripps Institute of Oceanography (SIO), and it can be downloaded from

his website (http://marineemlab.ucsd.edu). The 1D Occam procedure is outlined in

Constable et al. [80] and developed into 2D by deGroot-Hedlin and Constable [90].

B.1 Joint Inversion Files

A summary of the required and optional INPUT and OUTPUT files are as follows:

Requited INPUT files: MT data file, Gravity data file, STARTUP,

MESH, INMODEL and Relate file

MT data Houses the MT data information, including station locations,
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frequencies, TE and TM apparent resistivity and phase

values and errors.

Gravity data Houses the gravity data information, including station locations

and Bouguer anomaly gravity values and errors.

STARTUP The inversion parameters and the initial model parameter

values are defined here. Contains the name of the INMODEL

MT data file, Gravity data file and Relate files.

INMODEL Describes the regularisation grid and contains the name of the

MESH file.

MESH Describes the finite element mesh.

Relate Contains the values of the variables used in Archie’s Law

and the porosity-density relationship. Weighting of the MT

and gravity data sets is defined here.

Optional INPUT files: Statics file and Prejudice file

Statics Allows for static shift parameters in the MT data to be solved for.

Prejudice Allows the model parameters to be weighted towards a specific

model.

OUTPUT files: LogPlot.logplot, LogFile.logfile ITERxx.iter, RESPxx.resp

LogPlot.logplot Has a summary of the total RMS, RMSMT , RMSGV , μ value

and roughness value for each iteration.

LogFile.logfile Is a detailed summary of the inversion parameter and steps

taken during the inversion process.

ITERxx.iter Output at every iteration, it contains the inversion and

model parameters for the iteration number given by the xx.

RESPxx.resp Output at every iteration, it gives the model response for

the iteration number given by the xx.
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B.2 File Structure

In expanding the Occam2DMT inversion to a joint MT and gravity inversion, min-

imal changes to the file structure are make in order to allow for easy transition

between the MT, gravity and joint inversions. Due to the similarity with the origi-

nal Occam2DMT inversion the majority of the below information is taken directly

from the Occam2DMT release notes [168]. Most files are very meticulous about

spacing and order of items listed. Unless otherwise stated the order of items must

appear as in the template and after any colon Occam assumes that the values begin

at or after the 18th character.

B.2.1 Data Files

MT Data File

FORMAT: OCCAM2MTDATA 1.0

TITLE: Whatever you like

SITE: 4 Number of stations being used.

mt01 List of station names in location order, the number

mt02 of listed names needs to equal the value in SITE.

mt03

mt04

OFFSETS: List of station locations along the 2D line in meters

-1000 and ascending order. The spacing between stations

0 needs to be accurate not their physical location.

1000 The 1 st offset corresponds to the 1 st listed station.

2000

FREQUENCIES: 3 Number of frequencies to be used in the inversion.

1.000 List of frequencies in decreasing order. All of the

0.100 frequencies need to be used in the the next section

0.010
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DATA BLOCKS: 36 Number of data points in the next section.

SITE FREQ TYPE DATUM ERROR See below.

1 1 1 2.03 0.43

1 1 2 46.7 2.90

1 1 5 1.97 0.43

1 1 6 45.2 2.90

etc.

The columns containing the data information are:

SITE The station of the data point, 1 relates to the

1st station listed, 2 will relate to the 2nd station

listed, etc. . .

FREQ The frequency of the data point, 1 relates to

the 1st frequency listed, etc. . .

TYPE The type of the data point being described,

1 = TE apparent resistivity (log10), 2 = TE

phase, 5 = TM apparent resistivity (log10),

6 = TM phase. Other TYPE options are

available in the Occam2DMT but have not

been tested in the joint inversion.

DATUM Data value.

ERROR Error of the data value.

Gravity Data File

FORMAT: OCCAM2GVDATA 1.0

TITLE: Whatever you like

SITE: 4 Number of stations being used.

gv01 List of station names is location order, the number

gv02 of listed names needs to equal the value in SITE.

gv03

gv04



B.2. FILE STRUCTURE 275

OFFSETS: List of station locations along the 2D line in meters

-500 and ascending order. The spacing between stations

0 needs to be accurate not their physical location.

500 The 1 st offset corresponds to the 1 st listed station.

1000

DATA BLOCKS: 36 Number of data points in the next section.

SITE TYPE DATUM ERROR See below.

1 51 10.4 0.06

2 51 11.7 0.06

3 51 11.9 0.06

4 51 13.1 0.06

etc.

The data information in the gravity data file is the same as the MT data file,

except there is no frequency information and the TYPE value corresponds to the

vertical location of a station. If the TYPE value is 51 the station will get located

at the top of the grid. If the TYPE value is 52 the station will get located on a

user defined topographic or bathymetric surface. Due to the processing required to

produce Bouguer anomaly data this option would rarely, if ever get used.

B.2.2 Model Files

STARTUP File

FORMAT: OCCAMITER FLEX

DESCRIPTION: Whatever you like

MODEL FILE: INMODEL Name of INMODEL file.

MT DATA FILE: MTfile.dat Name of MT data file.

GRAV DATA FILE: GVfile.dat Name of gravity data file.

RELATE FILE: relate.dat Name of relate file.

DATE/TIME: Dec10

ITERATIONS TO RUN: 25 Number of iterations to run.
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TARGET MISFIT: 1

ROUGHNESS TYPE: 1 1 - No horizontal aspect weighting

2 - No horizontal aspect weighting

DEBUG LEVEL: 0 Set to 0 minimizes the amount of

“chatter” displayed while running, 1

(default), displays progress, 2 displays

diagnostic info and instead of using a

“golden section search” to find the

minimum RMS during an iteration it

uses a brute-force scan which is time

consuming, but useful if the inversion

is in an area containing local minima.

ITERATION: 0 Lets Occam know the iteration number

the model parameters correspond to.

GRAVITY OFFSET: 0 The optimal gravity offset value

LAGRANGE VALUE: 5.000

ROUGHNESS VALUE: 0.100E+11

MISFIT VALUE: 1000.000

MISFIT REACHED: 0 A flag indicating if the target misfit

has been reached, 0 is no and 1 is yes.

PARAM COUNT: 4048 The number of parameter corresponding

0.1 to free blocks in the regularisation grid,

0.1 followed by a list of initial porosity values.

etc.

The order of the items in the startup file is unimportant, except that the last item

must be PARAM COUNT, Occam assumes that the model parameter values immediately

follow this line. Optional variables that can appear in the STARTUP file are given

below. If an option appears in the startup file but not required it can be commented

out by placing a ! at the start of the line.
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MODEL LIMITS: min,max Limits on the values that the model

parameters may take.

MODEL VALUE STEPS: step Discretises model parameter space into

steps “stepsize” large (e.g. for step=0.1,

values allowed will be 0.1, 0.2, 0.3, etc,

subject to whatever MODEL LIMITS

you have imposed).

STEPSIZE CUT COUNT: 8 Limits the number of times Occam cuts

the step size in a search for a better

fitting model. If this count is exceeded,

Occam will end the iteration prematurely

on the grounds that the best fitting model

may have already been found, even though

the TARGET MISFIT has not been reached.

DIAGONAL PENALTIES: 0 Normally, Occam only calculates

roughness penalties horizontally and

vertically. If set to 1 diagonal penalties

are added to the horizontal and vertical.

INMODEL File

FORMAT: OCCAM2MTMOD 1.0

MODEL NAME: Whatever you like

DESCRIPTION: Descriptive text

MESH FILE: MESH Name of MESH file.

MESH TYPE: PW2D

STATICS FILE: none Name of static file, no file indicated by none.

PREJUDICE FILE: none Name of prejudice file, no file indicated by none.

BINDING OFFSET: -876.9 The location along the 2D profile of the right-

hand side of the left-most regularisation

not MESH model block.
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NUM LAYERS: 43 Number of model blocks layers defined here.

The following describes how the mesh cell are grouped together to make the

regularisation grid and must directly follow NUM LAYERS.

2 64

Above is the first in the pair of lines that describes a layer of regularisation

model blocks. The first number is the number of mesh layers that are

aggregated in this model layer. The second number is the number of

horizontal model blocks in this layer — as described by the next line.

7 2 2 2 2 2 2 2 ... 2 2 2 2 2 7

Above is the second in the pair of lines that describes a layer of

regularisation model blocks. Each number here describes the number

of mesh blocks that are aggregated in each model block. The sum of this

line must equal the sum of columns in the mesh. This sequence of two

lines is repeated NUM LAYERS of times and should account for all

cells in the mesh file.

1 33

7 4 4 4 4 4 4 4 ... 4 4 4 4 4 7

...

1 12

7 10 10 10 10 ... 10 10 10 10 7

...

4 4

7 62 62 7

Number Exceptions: -45

288 289 0

298 299 0

It is usual in MT to make the model bricks larger as the layers go deeper in the

model. The model should narrow down to a half-space or nearly one at the bottom.

However, the Occam code requires that the model block boundaries line up with the

boundaries of the blocks above. If this is not the case, the program will still run,

but roughness penalties will not be calculated properly for the lower blocks.
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Discontinuities or changes in the roughness penalty calculations can be specified

using the Number Exceptions in this file (default 0). This allows you to specify

blocks between which there should be either no penalty or modified penalty. There

are two ways to do this, the easiest of which is shown here. If you specify a negative

number of exceptions, then Occam expects the line to be followed by three columns

of numbers: block #1, block #2, weight on the exception between them. Use the

MatLab routine plot2DModelPoro to show the block numbers in your model. By

specifying a zero weight, you remove the penalty between the blocks. Weight less

than 1 decreases the penalty between blocks, while weight greater than 1 increases

the penalty. Also, you can create new relationships between two blocks (for example,

the left and right edges of the model) by specifying block numbers and a weight of

1.0.

MESH

0 153 83 0 0 2 Mesh specification, see below.

15000 11000 7000 1000 500 Column widths in meters.

250 250 250 250 250

250 250 250 250 ...

12 12 25 25 50 50 Layer heights in meters.

100 100 150 150 200 200

250 250 300 300 350 ...

0 Always a zero.

???????????????????????????? Parameter specification, see below.

????????????????????????????

????????????????????????????

????????????????????????????

The mesh specification are as follows:

1st value Always zero

2nd value Number of horizontal “nodes” (columns +1)
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3rd value Number of vertical “nodes” ( layers +1)

4th value Number of fixed porosities in the mesh, can have up to

34 which does not including seawater. Value usually zero

but if not the next line is a list of the fixed porosity values.

5th value Always zero

6th value Always two

Parameter specification is tedious. There must be four lines of ‘?’ for each

layer in the mesh. The four lines contain symbols which represent the value of four

triangles in each mesh cell. Imagine that each mesh cell is cut by two diagonal lines,

making four triangles. These four lines stand for the top, left, bottom, and right-

hand triangles of each call in a layer. The character indicates what porosity value is

to be assigned to the triangle. ‘?’ means that the triangle is a free parameter to be

calculated. ‘Z’ means that the triangle contains seawater and ‘0’ (zero) means that

it contains air. Numbers ‘1’ through to ‘9’ and other letters ‘A’ through ‘Y’ indicate

fixed porosity values as specified above.

Fixing mesh cell values and subsequent regularisation blocks means there is a

reduction in the number of free model parameters. This means the number of

parameters in the STARTUP file will also be reduced. Fixing structure required a

dance between the MESH, INMODEL and STARTUP file to maintain consistence.

B.2.3 Relate File

There are two file formats depending on if fluid properties are fixed with depth,

OCCAM2DPAJI FIXED or changing with depth, OCCAM2DPAJI DEPTH.

FORMAT: OCCAM2DPAJI DEPTH

DESCRIPTION: Whatever you like

MT misfit weight: 1 Used for weighting data sets, see below.

MT jac weight: 1 Used for weighting data sets, see below.

GV misfit weight: 1 Used for weighting data sets, see below.

GV jac weight: 1 Used for weighting data sets, see below.



B.2. FILE STRUCTURE 281

base switch: 0 Always zero.

termination: semi Fluid property depth termination options,

see below.

matrix density: 2650 Matrix density in kgm−3.

air density: 0 Air density in kgm−3.

temp gradient: 20 Temperature gradient, in oCkm−1, used to

calculate fluid resistivity.

surface temp: 20 Surface temperature, in oC, used to

calculate fluid resistivity.

press gradient: 9.9 Pressure gradient, in MPakm−1, used to

calculated fluid density.

surface press: 1 Surface pressure, in MPa, used to calculate

fluid density.

salinity: 35 Salinity, in gl−1, used to calculate fluid density

archies s: 1 Fractional saturation.

archies a: 1 Tortuosity factor.

archies m: 2 Cementation factor.

archies n: 2 Saturation exponent and has to be last item.

FORMAT: OCCAM2DPAJI FIXED

DESCRIPTION: Whatever you like

MT misfit weight: 1 Used for weighting data sets, see below.

MT jac weight: 1 Used for weighting data sets, see below.

GV misfit weight: 1 Used for weighting data sets, see below.

GV jac weight: 1 Used for weighting data sets, see below.

base switch: 0 Always zero.

matrix density: 2650 Matrix density in kgm−3.

air density: 0 Air density in kgm−3.

fluid density: 1030 Fluid density in kgm−3.

fluid resis: 0.1 Fluid resistivity, in Ωm.
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archies s: 1 Fractional saturation.

archies a: 1 Tortuosity factor.

archies m: 2 Cementation factor.

archies n: 2 Saturation exponent and has to be last item.

The order of items is unimportant except archies n must always be the last

item listed.

There are currently two joint inversion programs that are identical, except one

incorporates the weighting factors of the MT and gravity data sets as outlined in

Chapter 8. For the program which does not execute the weighting, the weights

should be 1. When weighting the joint inversion a positive MT misfit weight

value weights the MT data points according to this value, similarly with the GV

misfit weight value and the gravity data points. A -98 or -99 value for both MT

and gravity weighting will execute the l2 and l1 Jacobian weighting, respectively.

Jacobian weighting is discussed in Chapter 8. The MT jac weight and GV jac

weight can be used to weight their respective components of the Jacobian. This

alters how the model space is searched without weighting the data and subsequent

RMS values. A direct Jacobian weighting value of 1 would normally be used.

The joint inversion calculates fluid resistivity and density using values of the

pressure and temperature items above. The fluid resistivity with depth is calculated

using Equation 8.4. This equation only holds true when temperature is < 300 oC.

The fluid density with depth can be calculated with an Equation 5.2, similarly

it holds true with temperatures between 20 oC and 350 oC and pressures between

5 MPa and 100 MPa. The termination item gives four options on how to terminate

the fluid property calculation with depth in order to keep with in the temperature

and pressure bounds. The fluid resistivity and density values on termination are the

value used for the remainder of the depths. The options are as follows.

none The calculation for the fluid properties is not terminated, which

means the temperature and pressure values will exceed their bounds.
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depth Terminates the fluid properties calculations at a specified depth

and requires the term depth item, in m, to be in relate file.

value Terminates the fluid properties calculations at a specified

temperature and pressure value and requires the max temp

item, in oC, and max press item, in MPa, to be in the relate file.

semi The fluid density is fixed and requires the const flu den

item, in kgm−3, to be in the relate file. The fluid resistivity

calculations are terminated at a specified depth and requires the

term depth item, in m, to be in the relate file.

B.2.4 Optional Input Files

The statics and prejudice files are optional files which are called in the INMODEL

file.

Statics File

FORMAT: OCCAM2MTSHIFT 1.0

DESCRIPTION: Whatever you like

DATA FILE: Data.dat Not used.

CONSTRAINT TYPE: 0 Type of summing constraint available in static

processing, 0 = no summing constraint, 1 = add

a constraint involving the TE+TM sum, 2 = add

separate constraints for TE+TM sum.

CONSTRAINT ERROR: 0.1 Error value used for the sums if the CONSTRAINT

TYPE is 1 or 2

NO. SHIFT BLOCKS: 12 Number of rows of data below.

SITE TYPE SHIFT INVERT/NOT Shift data see below.

1 1 0.0 1

1 5 0.0 1

2 1 0.0 1

etc.

The shift data identifies the shift data. The SITE and TYPE are the same as the

MT data file. The INVERT/NOT flag indicates whether to invert for this parameter
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(flag = 1) or to accept the value in the SHIFT column (flag = 0). Static shift data

are output in the iteration files following the spatial model parameters.

Prejudice File

FORMAT: OCCAM2MTPREJ 2.0 Specifies this file format

NO. PARMS: 27 Number of rows below.

32 0.70 1.0 See below.

33 0.70 1.0

34 0.65 0.8

etc.

The three columns of listed numbers correspond to the parameter number, prej-

udice value, and prejudice weight. The parameter number is the 1-based number

of the model parameter or static shift parameters. Static shift parameter numbers

begin after the model parameter numbers.

B.2.5 Output Files

The iteration file has the same file format as the startup file such that it could

be used as the startup file in subsequent inversions. The LogFile and LogPlot are

self-explanatory when opened. The resp file contains the models response for all

given MT and gravity data points. In the resp file, the rows correspond to MT data

points, which is followed by the gravity data points. There are seven columns in the

resp file and, using heading form the data files, are as follows.

SITE FREQ TYPE zeros DATUM model response DATUM−model response
ERROR

The SITE value is the value used in the MT or gravity data file. That means

station 1 for MT data is not the same as station 1 for the gravity data. Use the TYPE

value to know if MT or gravity data are being described. The gravity data contain

no frequency information, therefore the FREQ column will be zero for a gravity data

point.
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B.3 Programs Required

The programs needed in the joint inversion procedure are listed below. They are

used to set up the input files and view the output files.

Makemodel2D.exe Fortran90 Creates the STARTUP, INMODEL and

MESH files from the inputted MT and gravity

data files. Modified from the SIO program

for Occam2DMT.

Occam2DJI.exe Fortran90 Main program and executes the MT and

gravity joint inversion.

plot2DmodelPoro MatLab Plots the porosity model for a specified

iter file, requires iter, INMODEL, MESH

MT and gravity data files. Modified from

the SIO program for Occam2DMT.

plotJIRESP MatLab Plots the model response and original data

for a specified resp file, requires resp, MT

and gravity data files. Modified from the

SIO program for Occam2DMT.

B.4 Procedure

Setup Input Files

Start by creating the MT and gravity data files. Ensure the MT data have been

rotated to the direction of the survey line. The magnetic and electric fields of the TE

and TM mode should be either parallel or perpendicular to the survey line. Take

care in ensuring the MT and gravity offsets values are accurate and are in relation

to the same 2D survey line and reference point. The number of MT and gravity

stations and their location does not have to be the same.

To create the model files the makemodel2D.exe can be used. It requires the

MT and gravity data files as input and will output the STARTUP, INMODEL and

MESH files. Use the plot2DmodelPoro MatLab program to view the model and

to make sure the model parameterisation has the desired characteristics. Using



286 APPENDIX B. OCCAM 2D JOINT INVERSION USER MANUAL

makemodel2D.exe will ensure there is a node (or MESH block boundary) at every

MT and gravity station location.

Execute Joint Inversion

To execute the joint inversion, ensure STARTUP, INMODEL, MESH, relate, MT

and gravity data files are in the same folder as the Occam2DJI.exe executable. Open

the executable and in the words of Occam ‘sit back and relax’. As Occam runs it

will print to the screen information for every μ value and model parameter that has

been tested. This information including the frequency number from calculating the

MT forward model, the maximum and minimum porosity values, the gravity offset

value, the μ value, and the total, MT and gravity RMS values. For each iteration

Occam will also output the associated ITERxx.iter and RESPxx.resp files in the

same folder as the executable. These files can be viewed while the inversion is still

running to monitor its progress.

View Results

The model response compared to the observed data can be viewed using the plotJIRESP.

To view the porosity model use the plot2DmodelPoro MatLab program. It has four

options as follows.

Porosity Plots the porosity values in the iter file.

Porosity Residual Subtracts a specified model from the porosity values in

the iter file and plots this.

Resistivity Uses the relate file to convert the porosity value in the

iter file to a resistivity value and plots this.

Density Uses the relate file to convert the porosity value in the

iter file to a density value and plots this.

Optimising Results

Below is a list of things to try to optimise the results of the joint inversion.

• Check how that model is fitting the data, and if there are any bad data points

or stations that need to be removed.
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• If the maximum number of iterations is reached, the inversion can be restarted

from one of the iter files (easiest way is to just change the iter file name to

STARTUP and away you go).

• Change the initial model parameters in the STARTUP file to ensure that the

different initial models all converge to the same final model.

• Once you think the minimum misfit has been reached change the MISFIT

REACHED value to 1 in corresponding ITERxx.iter file. Then use this as the

startup file for another Occam inversion. This will give you the smoothest

model at this misfit.

• Try an inversion with a 20% increase in the smallest RMS reached to (generally

not required)

• Play around with the item values in the relate file (the temperature values

used to calculate fluid conductive has the most effect)
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