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Abstract

The abundance of lysozyme on mucosal surfaces suggests that successful colonizers must be able to evade its antimicrobial
effects. Lysozyme has a muramidase activity that hydrolyzes bacterial peptidoglycan and a non-muramidase activity
attributable to its function as a cationic antimicrobial peptide. Two enzymes (PgdA, a N-acetylglucosamine deacetylase, and
Adr, an O-acetyl transferase) that modify different sites on the peptidoglycan of Streptococcus pneumoniae have been
implicated in its resistance to lysozyme in vitro. Here we show that the antimicrobial effect of human lysozyme is due to its
muramidase activity and that both peptidoglycan modifications are required for full resistance by pneumococci. To examine
the contribution of lysozyme and peptidoglycan modifications during colonization of the upper respiratory tract,
competition experiments were performed with wild-type and pgdAadr mutant pneumococci in lysozyme M-sufficient
(LysM+/+) and -deficient (LysM2/2) mice. The wild-type strain out-competed the double mutant in LysM+/+, but not LysM2/2

mice, indicating the importance of resistance to the muramidase activity of lysozyme during mucosal colonization. In
contrast, strains containing single mutations in either pgdA or adr prevailed over the wild-type strain in both LysM+/+ and
LysM2/2 mice. Our findings demonstrate that individual peptidoglycan modifications diminish fitness during colonization.
The competitive advantage of wild-type pneumococci in LysM+/+ but not LysM2/2 mice suggests that the combination of
peptidoglycan modifications reduces overall fitness, but that this is outweighed by the benefits of resistance to the
peptidoglycan degrading activity of lysozyme.
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Introduction

For many pathogens, colonization of mucosal surfaces is a

prerequisite for events leading to disease. At these sites the host

elaborates numerous antimicrobial factors that may reduce the

burden of colonizing organisms. Lysozyme, a prominent member

of these antimicrobials, is found in high concentrations (.500 mg/

ml) in mucosal surface fluids such as those lining the upper

respiratory tract [1]. Lysozyme is expressed by the epithelia and is

also a major component of the granules of neutrophils, which may

be recruited when the mucosa is acutely inflamed [2,3,4].

Lysozyme has two distinct antibacterial activities [5,6]. Its

enzymatic muramidase activity hydrolyzes the conserved ß-1,4

glycosidic bond between N-acetyl glucosamine (GlcNAc) and N-

acetyl muramic acid (MurNAc), the disaccharide residues of the

peptidoglycan backbone. Hydrolysis of the glycan strands leads to

degradation of the cell wall and bacterial lysis. In addition, an

antibacterial activity is observed with catalytically inactive

lysozyme [6]. This non-muramidase activity has been attributed

to the disruption of bacterial membrane function by an inherent

nine amino acid cationic antimicrobial peptide (CAMP) [5,7].

The contribution of lysozyme to innate host defense has been

analyzed in genetically- modified mice. Over-expression of rat

lysozyme in the lungs of transgenic mice was associated with

enhanced killing of group B streptococci and Pseudomonas aeruginosa

[8]. Mice have two different lysozyme genes, LysM, expressed by

myeloid and epithelial cells and LysP, expressed by Paneth cells in the

gut. LysM2/2 mice show defective clearance of P. aeruginosa [9] and

Klebsiella pneumoniae from their lower airways [3]. While these studies

demonstrate a protective role of lysozyme for opportunistic pathogens

in normally sterile sites, its impact on the mucosal flora is unknown.

Another consideration is that bacteria modify the glycan backbone

of their peptidoglycan, and these modifications may affect their

sensitivity to lysozyme [10,11,12,13,14,15,16,17,18,19]. In Staphylo-

coccus aureus, for example, O-acetylation at position C-6 on MurNAc

and D-alanine esters on its cell wall-linked teichoic acid have an

additive effect on resistance to muramidase and non-muramidase

activities of lysozyme in vitro [13]. Organisms that reside on mucosal

surfaces where lysozyme is particularly abundant must have the

ability to evade its antibacterial effects. However, the contribution of

cell wall modifications, which affect lysozyme resistance, to bacterial

survival on mucosal surfaces has not been examined.

Streptococcus pneumoniae (the pneumococcus) is a leading extracel-

lular Gram-positive pathogen that commonly colonizes the human

nasopharynx. Although colonization is generally asymptomatic,

infection induces an acute inflammatory response characterized by a

PLoS Pathogens | www.plospathogens.org 1 December 2008 | Volume 4 | Issue 12 | e1000241



brisk influx of neutrophils. Because the organism is coated by

capsular polysaccharide (CPS) covalently attached to its cell wall

[20], it is capable of evading phagocytic clearance and causing

invasive disease. Two enzymes have been associated with lysozyme

resistance in S. pneumoniae: peptidoglycan N-acetylglucosamine

deacetylase (PgdA) [10] and attenuator of drug resistance (Adr),

which is an O-acetyltransferase [21]. These proteins modify a portion

of the glycan residues; PgdA deacetylates GlcNAc (40–80% of

GlcNAc residues, ,10% of MurNAc residues) and Adr acetylates

MurNAc [10,21,22]. Previous studies have shown that mutations in

either of these genes are sufficient to increase sensitivity to chicken

egg lysozyme in vitro [10,21,22]. Systemic infection of mice with a

pgdA strain was associated with decreased virulence, although the

role of lysozyme resistance in this effect was not established [22].

In this study, we determine the contribution of lysozyme to

bacterial colonization using a murine model of carriage by S.

pneumoniae. Our findings demonstrate the critical role of lysozyme,

and peptidoglycan modifications that affect resistance to its

muramidase activity, in dictating the composition of the microflora

of the mucosal surface of the upper airway.

Results

Peptidoglycan modifications affect sensitivity to human
lysozyme

To test the effects of peptidoglycan modifications, defined

mutations were made in pgdA and adr in the pneumococcal strain

TIGR4 based on the genomic information available for this isolate as

described in the Methods. Figure 1 depicts the locations of O-

acetylation (Adr) and N-deacetylation (PgdA) relative to the

glycosidic linkage of MurNAc and GlcNAc that is hydrolyzed by

lysozyme. The wild-type (WT), pgdA, adr, and pgdAadr strains showed

equivalent growth characteristics in broth culture during log phase.

Addition of chicken egg lysozyme (100 mg/ml) to mid-log phase

cultures led to arrested growth for the pgdA mutant strains (pgdA and

pgdAadr), but not the WT or adr strains (Fig. 2A). Growth arrest

occurred more promptly for the pgdAadr than pgdA mutant suggesting

a synergistic effect of the two genes on sensitivity to lysozyme. The

results with the pgdA mutant were consistent with previous studies

[10,22], however the adr mutant of strain TIGR4 generated in this

study did not have increased sensitivity to lysozyme as has been

previously reported for a strain derived from R6 [21]. A similar

pattern of sensitivity was observed using recombinant human

lysozyme (100 mg/ml), although with the human enzyme bacterial

lysis was more apparent (Fig. 2B). Purified insoluble peptidoglycan

from each strain was tested to determine whether the effect of

lysozyme on cultures correlated with its hydrolytic activity. For both

chicken egg (Fig. 3A) and human lysozyme (Fig. 3B) only

peptidoglycan from the mutants lacking pgdA were hydrolyzed. As

with whole bacteria, peptidoglycan from the pgdAadr mutant showed

greater sensitivity to lysozyme than the pgdA strain.

Pneumococcal growth is characterized by spontaneous autolysis in

stationary phase because of the endogenous expression of its major

amidase, LytA (Fig. 1). Since colonies of pgdA mutants generated in

this study appeared more autolytic based on colony morphology, the

in vitro effects of lysozyme were tested in a lytA background (Fig. 4).

To determine the effect of lysozyme on pneumococcal survival,

viable counts were measured five hours after addition of chicken egg

(Fig. 4A) or human lysozyme (Fig. 4B) to mid-log phase cultures. The

WT strain and adr mutant showed no loss of viability. Survival of

both pgdA mutants was significantly reduced by treatment with

chicken egg lysozyme, with a more significant effect on the pgdAadr

mutant. Only the pgdAadr mutant showed a significant decrease in

survival following treatment with human lysozyme. The estimated

MBC50 (mean concentration required for 50% killing) for human

lysozyme exceeded 180 mg/ml for the WT and adr mutant (Table 1).

In contrast, the MBC50 was only 50 to 100 mg/ml for the pgdA

mutant and 12.5 to 25 mg/ml for the pgdAadr mutant. It was

concluded that there is a combined effect of peptidoglycan

modifications by PgdA and Adr on resistance to human lysozyme.

Author Summary

For many successful pathogens, their surfaces must be
able to adapt to different host environments, or to avoid
host immune components, to establish infection. Bacterial
pathogens, for example, are known to modify their cell
walls, which are comprised largely of peptidoglycan. Our
study focuses on peptidoglycan modifications by Strepto-
coccus pneumoniae, which initiates interaction with its host
by colonizing the mucosal surface of the upper respiratory
tract. Two proteins (PgdA and Adr) that modify the cell
wall of S. pneumoniae have each been associated with
resistance to lysozyme, which cleaves peptidoglycan and is
one of the most abundant antimicrobial factors in the
human respiratory tract. Using defined bacterial mutants
together with mice that express or lack lysozyme, we show
that the full resistance to lysozyme requires modifications
by both proteins. These cell wall modifications each come
at a significant fitness cost to the bacterium. This fitness
cost, however, is outweighed by the benefits of lysozyme
resistance in vivo. Our study, therefore, demonstrates the
relationship between a bacterial pathogen and a host
defense mechanism that imparts a substantial selective
pressure on organisms that colonize the mucosal surface.

Figure 1. Predicted peptidoglycan structure. PgdA, an N-acetyl
glucosamine, and Adr, an O-acetyltransferase, modify the MurNAc-
GlcNAc disaccharide structure at the indicated sites. The major
pneumococcal autolysin, LytA, cleaves the stem peptide attached to
MurNAc. Lysozyme hydrolyzes the glycosidic bond between MurNAc
and GlcNAc as shown.
doi:10.1371/journal.ppat.1000241.g001

Lysozyme Resistance in Pneumococcal Colonization
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Peptidoglycan modifications affect resistance to the
muramidase activity of lysozyme

To test whether these effects were due to the muramidase

activity of lysozyme, the enzyme was inactivated by treatment at

100uC for 60 min, which are conditions that allow lysozyme to

retain its non-muramidase activity [5,13]. Hydrolysis assays with

purified peptidoglycan were used to confirm the loss of

muramidase activity. The human, but not chicken egg enzyme,

showed complete inactivation under these conditions (data not

shown). Therefore, inactivated human lysozyme was tested for its

effects on bacterial viability (Fig. 4B). The denatured enzyme

lacked anti-pneumococcal activity against all of the strains tested.

There was also no effect on survival when the LP9 peptide, which

has been shown to confer the non-muramidase CAMP activity of

lysozyme, was substituted for the intact enzyme in these viability

assays at concentrations up to 200 mg/ml (data not shown). It was

concluded that the combined effect of modifications by PgdA and

Adr on resistance to human lysozyme is due to its muramidase,

rather than its non-muramidase activity.

Peptidoglycan modifications are required for lysozyme
resistance in vivo

The lytA+ strains characterized in vitro were used to test the

hypothesis that lysozyme limits colonization of mucosal surfaces.

Both lysozyme sensitive (pgdAadr) and resistant (WT) pneumococci

were able to colonize the upper respiratory tract of the mouse

(data not shown). To examine more subtle differences in bacterial

fitness, competition experiments were used to assess the relative

ability of these strains to colonize the nasopharynx. Three days

after intranasal inoculation with equivalent numbers of the WT

strain and the pgdAadr mutant, the density of colonization of each

strain was measured in nasal lavages to determine the competitive

index. Prior to in vivo experiments we confirmed there was no effect

of one strain on another during in vitro co-cultivation experiments

(data not shown). As expected, the lysozyme-resistant WT strain

out-competed the lysozyme-sensitive pgdAadr mutant in lysozyme-

expressing mice (Fig. 5A). To confirm that the effect on

colonization was due specifically to the mutations introduced into

pgdA and adr, we generated corrected strains by transformation

with WT genomic DNA followed by selection in the presence of

lysozyme. Like the WT strain, the pgdA+adr+ revertant was able to

out-compete the pgdAadr mutant in lysozyme-expressing hosts

(Fig. 5B). Together these results demonstrated that pneumococci

Figure 2. Effect of peptidoglycan modifying enzymes PgdA and Adr on growth of pneumococci in the presence or absence of
lysozyme. Growth characteristics of the wild-type (WT) strain or defined mutants were compared by following the optical density (OD 620 nm).
Once the broth culture reached mid-log phase, lysozyme (100 mg/ml) was added where indicated by an arrow. A) chicken egg lysozyme (+L) or B)
recombinant human lysozyme (+Hu L). Graphs are representative of six independent experiments.
doi:10.1371/journal.ppat.1000241.g002

Table 1. Sensitivity to recombinant human lysozyme.

Strain MBC50 (mg/ml)

WT .180

adr2 .180

pgdA2 50–100

pgdA2 adr2 12.5–25

Sensitivity is shown by the estimated MBC50 (mean bactericidal concentration)
of the wild-type (WT) strain and defined mutants. Strains tested were in a lytA
background to eliminate effects of autolysis. Ranges were based on three
independent determinations.
doi:10.1371/journal.ppat.1000241.t001

Lysozyme Resistance in Pneumococcal Colonization
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with peptidoglycan modified by both PgdA and Adr are better

able to persist during colonization.

To define the contribution of lysozyme during colonization,

competition experiments were carried out in congenic LysM2/2

mice. In lysozyme-deficient hosts, unlike the lysozyme-sufficient

hosts, the pgdAadr mutant prevailed over the WT or pgdA+adr+
revertant (Fig. 5A and B). This observation demonstrated that the

survival advantage conferred by these two peptidoglycan modifi-

cations requires lysozyme expression by the host. Moreover,

without the expression of lysozyme, pneumococci that do not

modify their peptidoglycan show a survival advantage during

colonization. This suggests that the combined modifications by

PgdA and Adr result in an in vivo fitness cost, but that this fitness

cost is outweighed by their contribution to lysozyme resistance.

In contrast to the results with the pgdAadr mutant, single mutants

in pgdA or adr out- competed the WT strain in both LysM+/+ and

LysM2/2 mice (Fig. 5C and D). This suggests that individual

modifications by either PgdA or Adr confer a fitness cost on the

organism regardless of the presence of lysozyme. A further

implication is that the combined effects of both modifications are

required to confer a survival benefit – an advantage to the

organism seen in lysozyme-sufficient, but not -deficient, hosts

corresponding to the increased resistance of the WT strain to the

muramidase activity of lysozyme.

Epithelium is the source of upper airway lysozyme
To ascertain the source of upper airway lysozyme that effects

colonization, we considered the contributions of the epithelia or

the influx of neutrophils in response to pneumococci.

To evaluate the role of neutrophil-derived lysozyme, neutrophil-

enriched peritoneal exudates were isolated from LysM+/+ and

LysM2/2 mice and used in ex vivo killing assays. The WT strain

and pgdA, adr, and pgdAadr mutants were equally resistant to killing

by these cells whether derived from LysM+/+ or LysM2/2 mice

(data not shown). Because strain TIGR4 is relatively resistant to

neutrophils obtained from mice, human neutrophils were also used

in killing assays (Fig. 6A). In comparison to the WT strain, mutants

in pgdA (pgdA and pgdAadr) were significantly more resistant to

neutrophil-mediated killing. Correction of the mutation in pgdA

(pgdA+adr2 and pgdA+adr+) eliminated increased resistance to

killing by human neutrophils. Thus, the pgdAadr mutant was less

resistant to lysozyme but more resistant to killing by human

neutrophils, making it unlikely that the anti-pneumococcal activity

of neutrophils was mediated by lysozyme. This also indicated that

peptidoglycan modification by PgdA has lysozyme-independent

effects on neutrophil-mediated pneumococcal killing. Additional

evidence that neutrophil activity was not contributing to lysozyme-

dependent differences among strains came from competition

experiments in which mice were depleted of neutrophils.

Administration of the monoclonal antibody RB6-8C5, which

targets Ly6G-expressing cells (or rat IgG control), to LysM+/+ mice

prior to bacterial challenge had no effect on the ability of the

lysozyme-resistant WT strain to out-compete the lysozyme-

sensitive pgdAadr mutant (Fig. 6B).

The source of lysozyme in nasal lavages was also examined

using an antibody to the mouse enzyme. Lysozyme M was

detected in Western blots on lavage samples from LysM+/+ but not

LysM2/2 colonized mice (Fig. 7A). Consistent with prior

Figure 3. Effect of peptidoglycan modifying enzymes PgdA and Adr on hydrolysis of pneumococcal cell walls in the presence of
lysozyme. Hydrolysis of peptidoglycan (50 mg/ml), purified from the wild-type (WT) strain or the defined mutants indicated with lysozyme (100 mg/
ml) from A) chicken egg (+L) or B) human (+Hu L). Representative experiment showing percentage of hydrolysis based on the optical density (OD
600 nm) of each reaction at time 0 min.
doi:10.1371/journal.ppat.1000241.g003

Lysozyme Resistance in Pneumococcal Colonization
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observations, lysozyme P was not detected in these blots of upper

respiratory tract samples [6,23]. There was no significant effect of

neutrophil depletion on the presence of lysozyme in lavage

samples from colonized mice. Using immunohistochemistry on

tissue sections through the nasal passages, lysozyme was detected

along the epithelial surface and mucoid material in the nasal

lumen of LysM+/+, but not LysM2/2, colonized mice (Fig. 7B). It

was concluded that the epitheilia rather than neutrophils was the

major source of upper airway lysozyme that impacts pneumococ-

cal colonization.

Other effects of cell wall modifications
Our observations showed that individual peptidoglycan modi-

fications have lysozyme-independent effects on both bacterial

fitness during colonization, and on resistance to neutrophil-

mediated killing. This may be due to the effects of peptidoglycan

modifications on other molecules that are attached to or associated

with the pneumococcal cell wall. Specifically, an alteration in

amounts of CPS, which is covalently attached to peptidoglycan

[20], may have dramatic effects on fitness during colonization and

resistance to neutrophil-mediated killing [24,25]. Therefore, we

assessed whether mutations in pgdA and adr change surface

expression of the pneumococcal capsule. A sensitive capture

ELISA was used to quantify amounts of cell-associated CPS

(Fig. 8). In comparison to the WT strain or corrected mutant

(pgdA+adr+), pgdA mutants showed significantly elevated levels of

type 4 CPS. This ,8-fold increase in immunoreactive CPS/mg

total cellular protein could account for PgdA-mediated, lysozyme-

independent effects on killing by neutrophils and enhanced

survival during colonization by the pgdA mutant [26]. These

findings demonstrate that, in addition to their effect on resistance

to lysozyme, peptidoglycan modifications may impact major cell

surface structures linked to the cell wall.

Discussion

Our study demonstrates that host expression of lysozyme effects

bacterial colonization. Specifically, we show that lysozyme is an

important antibacterial factor on heavily colonized mucosal

surfaces such as those lining the upper airway. These findings

extend descriptions of the role of lysozyme in protecting the

normally sterile lower airway [3,8,9]. The in vivo effects of the

enzyme were attributed to lysozyme M, since lysozyme P was not

detected in the upper respiratory tract secretions or tissue staining.

As expected, the ability of bacteria to resist lysozymes’ antibac-

terial properties dictates success at these sites. For the pneumo-

coccus, resistance to human lysozyme in vitro and mouse lysozyme

in vivo is dictated by the synergistic effects of two distinct

modifications to the glycan strands of its cell wall. Even though

Figure 4. Effect of peptidoglycan modifying enzymes PgdA and Adr on viability of pneumococci in the presence of lysozyme. Once
the broth culture of the wild-type (WT) strain or the defined mutants indicated reached mid-log phase, lysozyme (100 mg/ml) was added and viable
counts (CFU/ml) were measured 5 hrs later. Strains tested were in a lytA background to eliminate effects of autolysis. Conditions included A) chicken
egg lysozyme (+L) and B) recombinant human lysozyme (+Hu L) or heat inactivated recombinant human lysozyme (+Hu IL). Graphs are based on four
independent determinations 6S.D. (* p,0.05).
doi:10.1371/journal.ppat.1000241.g004

Lysozyme Resistance in Pneumococcal Colonization
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each of these modifications alone, or in combination, diminishes

bacterial fitness for colonization in the absence of lysozyme,

together they provide a significant survival advantage when

lysosyme is abundant.

Although two different antibacterial properties have been

ascribed to lysozyme, only its enzymatic muramidase activity

appeared to be relevant to pneumococcal survival. Inactivation of

its muramidase activity by denaturing human lysozyme was

sufficient to completely eliminate its ability to kill S. pneumoniae.

Moreover, the cationic antimicrobial peptide (CAMP) activity of

the human-derived peptide LP9 was ineffective against the

pneumococcus. It remains possible that, as is the case for S.

aureus, other cell wall features of the pneumococcus account for its

resistance to the non-muramidase activity of lysozyme [13,19].

Specifically, D-alanylation of S. pneumoniae cell wall-associated

teichoic acids has been shown to contribute to resistance to

antimicrobials, such as nicin and gallidermin [27]. This would be

consistent with results in S. aureus where D-alanylation contributed

to resistance to several antimicrobials, including lysozyme, and the

peptide LP9 [13]. On the other hand, the pneumococcal strains

generated in this study differed from S. aureus in that acetylation by

Adr (OatA in S. aureus) by itself does not confer sufficient resistance

to the lytic effects of lysozyme [18]. Our study confirmed that Adr

contributes to lysozyme resistance, as had been shown previously

by Crisóstomo et al [21], although we were only able to show an

effect of the O-acetyltransferase Adr in conjunction with the N-

deacetylase PgdA. This may have been due in part to differences

between pneumococcal strains; Crisóstomo et al used an

unencapsulated laboratory strain, while our studies were conduct-

ed using a clinical isolate. The extent to which these strains

acetylate peptidoglycan residues could be different, and might

account for the limited role of Adr in lysozyme resistance observed

in this study.

Our results are also based on testing of mammalian rather than

chicken egg enzyme, which may have more potent muramidase

activity. This may be due in part to slightly different amino acid

residues present in the catalytic cleft of each enzyme [28,29,30].

The amino acid sequences of chicken egg and human lysozyme

are 57% identical and 76% similar by sequence comparison

(blastp), whereas lysozyme M and human lysozyme are 76%

identical and 86% similar. Although these differences in sequence

do not lead to alterations in protein structure [28], they could

affect affinity for substrates, which could lead to the observed

difference in enzymatic activity.

Although many species modify their peptidoglycan by either O-

acetylation or N-deacetylation, few organisms have thus far been

Figure 5. Effect of peptidoglycan modifying enzymes PgdA and Adr on relative fitness during murine colonization in the presence
and absence of lysozyme M. LysM+/+ and LysM2/2 mice were challenged with equal inocula of the wild-type (WT) strain or revertant and the
defined mutant indicated, and the density of each strain was determined in upper respiratory tract lavages 3 days post-inoculation. Each symbol
represents the competitive index value for an individual animal. The competitive index was calculated based on the ratio of mutant to WT bacteria in
nasal lavages compared to the ratio of mutant to WT bacteria in the inoculum. The dotted line is at a value of one; a value greater than one indicates
the mutant out-competes the WT, a value less than or equal to one indicates the WT out-competes the mutant. A) pgdAadr vs. WT (*** p = 0.001). B)
pgdAadr vs. the revertant (pgdA+ adr+) (** p = 0.004). C) pgdA vs. WT. D) adr vs. WT.
doi:10.1371/journal.ppat.1000241.g005

Lysozyme Resistance in Pneumococcal Colonization
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described as having both modifications [31]. Aside from S.

pneumoniae, these include Bacillus cereus and Lactobacillus fermentum

[32,33,34,35]; both O-acetylation and N-deacetylation have also

been associated with lysozyme resistance, however the combined

effects of both modifications in these organisms has not been

determined. Our results for S. pneumoniae suggest that both

modifications may be needed for full resistance to lysozyme. The

aggregate effects of bacterial surface modifications that affect

lysozyme resistance other than O-acetylation and N-deacetylation

have also not been explored.

An additional observation was that peptidoglycan modifications

affect characteristics of the bacterial cell apart from its resistance to

lysozyme. In particular, we show that mutation of pgdA is sufficient

to alter growth characteristic dictated by its endogenous amidase

(LytA) and to markedly increase levels of cell-associated CPS.

PgdA cleaves an amide bond leaving a charged amino group on

glucosamine residues of the glycan backbone [10]. Mutation of

Figure 6. The contribution of lysozyme from neutrophils to
survival and colonization of mutants lacking peptidoglycan
modifications. A) Neutrophils isolated from human blood were
incubated with serum opsonized bacteria and survival was assessed
following a 45 min incubation. Percent survival was calculated based on
viable counts (CFU/ml) relative to no neutrophil controls. (*** p,0.001).
B) Neutrophils were depleted with anti-Ly6G antibody RB6-8C5 prior to
challenge with an equal inoculum of pgdAadr and wild-type (WT)
strains. Controls received rat IgG. Two days post-inoculation nasal
lavages were obtained to quantify the competitive index. (** p,0.01).
doi:10.1371/journal.ppat.1000241.g006

Figure 8. Effect of peptidoglycan modifying enzymes PgdA
and Adr on expression of capsular polysaccharide (CPS).
Sonicates of the bacterial strain indicated were used in a capture ELISA
to measure the amount of cell-associated type 4 CPS produced relative
to the total amount of protein. Values are relative to a standard with
purified type 4 CPS and based on four independent determinations
6S.D. (* p,0.05, ** p,0.01).
doi:10.1371/journal.ppat.1000241.g008

Figure 7. Expression of lysozyme M in the mouse nasopharyx. A) Western blot of nasal lavages from mice colonized with the wild-type strain
for two days incubated with antisera to lysozyme M. Lane 1: LysM+/+, rat IgG control. Lane 2: LysM+/+, neutrophil depletion with mAb RB6-8C5. Lane 3:
LysM2/2. Size markers are in kilodaltons. B) Immunohistochemistry on paraffin-embedded tissue sections through the nasal tissue 24 hrs post-
inoculation with the wild-type strain. Staining with i) anti-lysozyme M (LysM+/+), ii) no primary antibody control (LysM+/+), and iii) anti-lysozyme M
(LysM2/2). Sections were counterstained with hematoxylin. Magnification 4006.
doi:10.1371/journal.ppat.1000241.g007
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pgdA, therefore, will result in a less positively charged cell wall,

which could impact molecules attached to and associating with

peptidoglycan. The efficiency of attachment of anionic type 4

CPS, which is covalently bound to the surface [20], could be

affected by this difference in charge. Similarly, it would be

interesting to determine if peptidoglycan modifications affect other

cell surface structures such as wall teichoic acid (C-polysaccharide),

which is also covalently attached to peptidoglycan, albeit at a

different position [20]. An increase in cell-associated CPS, or other

effects on the cell surface, could inhibit phagocytosis and explain

the decreased killing of the pgdA mutants by human neutrophils.

Altered cell surface characteristics of pgdA and adr mutants could

also account for their increased fitness during colonization in the

absence of lysozyme. Vollmer et al. previously reported that a pgdA

mutant was less virulent in a pneumococcal model of bloodstream

infection – a result that would seem to be at odds with their

decreased killing by neutrophils and increased fitness on the

mucosal surface [22]. Mutants in pgdA generated in our study,

however, showed attenuated growth in human serum compared to

the WT strain (data not shown). This demonstrates the potentially

pleomorphic and complex effects of peptidoglycan modification on

bacterial growth and survival in different environments. It would

be interesting to determine whether the expression of peptidogly-

can modifying enzymes is differentially regulated under conditions

where the requirement for lysozyme resistance may vary.

Mucosal lysozyme may have direct effects on colonization

through its ability to lyse pneumococci that do not express PgdA

and Adr. Alternatively, degradation of peptidoglycan could release

bacterial products recognized by the host which enhance

inflammation, and indirectly stimulate bacterial clearance. These

inflammatory mediators may include muramyl dipeptide (MDP),

which signals through the nucleotide-binding oligomerization

domain protein 2 (Nod2) cytoplasmic pathway [36,37]. Adr could

affect both sensitivity to lysozyme and signaling triggered by MDP

since its MurNAc component would be modified by acetylation. In

this regard, peptidoglycan modifications have been shown to effect

signaling through Nod1, which recognizes the meso-diaminopime-

lic acid (meso-DAP) fragment of the cell wall [38,39], in response to

Listeria monocytogenes [16]. The relative contributions to pneumo-

coccal clearance of the lytic versus inflammatory effects of

lysozyme, and the effects of peptidoglycan modifications on the

latter, have not yet been explored.

In summary, the host uses lysozyme to target a conserved

feature of peptidoglycan, the glycosidic bond between MurNAc

and GlcNAc. To counter this host defense mechanism, the

pneumococcus modifies both of these residues to decrease

hydrolysis of the bond that links them, despite a significant fitness

cost associated with altering the glycan backbone of its cell wall.

Our findings demonstrate that the peptidoglycan degrading

activity of lysozyme exerts a substantial selective pressure on

residents of mucosal surfaces.

Materials and Methods

Bacterial strains and growth conditions
All strains were created in a type 4 background; using a clinical

isolate and genome-sequenced strain TIGR4 [40]. Pneumococci

were grown in semisynthetic casein plus yeast extract (C+Y) broth,

pH 6.8, at 37uC without agitation or on tryptic soy agar (TSA)

plates supplemented with catalase (5,000 U/plate; Worthington,

Lakewood, NJ) at 37uC in 5% CO2. TSA was supplemented with

neomycin (5 mg/ml), spectinomycin (100 mg/ml), or kanamycin

(200 mg/ml) where indicated. Strains were also co-cultivated

under these conditions to ensure there were no effects of one strain

on growth of the other in vitro. For genetic transformations,

bacteria were grown from a low inoculum in C+Y at 37uC to an

OD 620 nm of 0.15. Fifty-ml aliquots were added to 950 ml C+Y

pH 8 with 10 ng/ml of synthetic competence-stimulating peptides

1 and 2, 10 ml of 100 mM CaCl2, and approximately 100 pg/ml

of DNA. Reactions were incubated at 30uC for 40 minutes and

then transferred to 37uC for an additional 90 minutes before being

plated on selective medium.

Generation of mutant and revertant strains
pgdA mutant strains. The 59 end of pgdA was amplified using

primers 1 and 2 (primer 1: 59-TGTAGTCTGAGAAGACTTGG-

TAGG-39, primer 2: 59-ATTATTTCCTTCCTCTATTTATA-

TCAT-39), the 39 end of pgdA was amplified using primers 3 and 4

(primer 3: 59-GATGAATTGTTTTAGGCAAGAAAAAA-39,

primer 4: 59-ATAAATGATAAGAATCTAAGACCGC-39). A

kanamycin resistance cassette was obtained from the Janus cassette

[41] using primers 5 and 6 (primer 5: 59-AGAGGAAGGAAA-

TAATAAATGGCTAA-39, primer 6: 59-CTAAAACAATTCAT-

CCAGTAAAATATA-39). Primers 2 and 3 were designed with

sequences complementary to primers 5 and 6 respectively, to allow

for correct orientation of the kanamycin resistance cassette in

between the flanking regions of pgdA. PCR products generated with

these primers were purified using the QIAquick PCR purification kit

(Qiagen Sciences, Germantown, MD) and incubated together in an

overlap extension PCR. The reaction conditions were as follows:

denaturation at 94uC for 2 min, 2 cycles of denaturation at 92uC for

30 sec, annealing at 40uC for 1 min, and extension at 68uC for

7 min, 33 cycles of denaturation at 92uC for 30 sec, annealing at

55uC for 1 min, extension at 68uC for 7 min, and a final extension at

68uC for 8 min. PCR products were then used in a transformation as

described above with selection for kanamycin resistance. Mutant

pgdA strains were confirmed by PCR with primers 1 and 4 followed

by sequencing of the product.

adr mutant strains. The 59 end of adr was amplified using

primers 7 and 8 (primer 7: 59-CAGATTCACCAATCAAATAT-

CGTTTG-39, primer 8: 59-GAACGAAAATCGAATCAAGGA-

AAACCATTTAATGCGC-39), the 39 end of adr was amplified

using primers 9 and 10 (primer 9: 59-CCCTTGCATATTGCA-

GACAGCTCCAGACAAGCC-39, primer 10: 59-TTCGTGGC-

CAAGAATGGTACCAC-39), and a spectinomycin resistance

cassette from plasmid pJL74 [42] was amplified using primers

11 and 12 (primer 11: 59-TTTTCCTTGATTCGATTTTCGT-

TCGTGAATAC-39, primer 12: 59-AGCTGTCTGCAATA-

TGCAAGGGTTTATTGTTTTC-39). Primers 8 and 9 were

designed with sequences complementary to primers 11 and 12

respectively, to allow for correct orientation of the spectinomycin

resistance cassette in between the flanking regions of adr. Overlap

extension and transformations were performed as described above,

with adr colonies selected by resistance to spectinomycin resistance.

Mutant adr strains were confirmed by PCR with primers 7 and 10

followed by sequencing of the product.

Additional mutant strains. To generate the pgdAadr mutant,

lysate from the pgdA strain was transformed into the adr

background, and mutations were confirmed as described above.

lytA mutants were created using lysates from pgdA, adr, and pgdAadr

strains and transformed into a non-autolytic TIGR4 mutant with a

spontaneous deletion within lytA [43]. lytA mutant strains were

confirmed with primers 13 and 14 (primer 13: 59-

GCGCGGATCCCTTTTTAGTCTGGGGTG-39, primer 14:

59-GCGCCTGCAGATGACAAAACAAGGAA-39).

Revertant strains. Revertant strains were created by

transforming the pgdAadr mutant with WT lysate, followed by

serial passage in chicken egg lysozyme (100 mg/ml) to select for
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resistant transformants. The pgdA+adr2 strain has a parental pgdA

and a mutant adr gene, while the pgdA+adr+ strain is parental in

both the pgdA and adr genes. Colonies were patched onto plates

containing kanamycin or spectinomycin and the genotype of those

that had lost resistance was confirmed by PCR as described above.

In vitro lysozyme sensitivity
Bacterial growth of broth cultures was measured by optical density

at an absorbance of 620 nm. Chicken egg white (Sigma, St. Louis,

MO) or recombinant human lysozyme (Ventria Bioscience, Fort

Collins, CO) was added to PBS at a stock concentration of 10 mg/

ml. Broth cultures at mid-log phase (OD 620 nm = 0.3) were divided

and received either lysozyme (100 mg/ml) or vehicle control. Where

specified, lysozyme from the stock solution was inactivated by

treatment at 100uC for 60 min. LP9, a synthetic human lysozyme-

derived peptide (107R-A-W-V-A-W-R-N-R115) (GenScript Corpo-

ration, Piscataway, NJ), was used at a concentration of 200 mg/ml.

Following addition of lysozyme, growth was monitored for 5 hrs. For

viable counts an aliquot was removed and serial dilutions plated.

Mean bactericidal concentrations (MBC50) were estimated by

treating mid-log phase lytA mutant strains with recombinant human

lysozyme. 102 bacterial cells were resuspended in Hank’s buffer with

Ca2+ and Mg2+ (Gibco, San Diego, CA), and 0.1% gelatin (+++
solution), and were incubated with varying concentrations of human

lysozyme: 180 mg/ml, 100 mg/ml, 50 mg/ml, 25 mg/ml, or

12.5 mg/ml. Reactions were incubated for 60 min at room

temperature, and then plated to determine viable counts. MBC50

values were determined based on viability relative to reactions at

time 0 min, and relative to no treatment controls.

To purify cell walls of pneumococci, cultures were first grown to

exponential phase as described above. Cell walls were then purified

as previously described [18]. Two-mg of crude cell walls were

resuspended in 1 ml of solution (100 mM Tris Buffer pH 7.5,

10 mM CaCl2, and 100 mg trypsin) and incubated overnight at

37uC with agitation. Trypsin was inactivated by incubation at 65uC
in 1% sodium dodecyl sulfate (SDS). Cell walls were then washed

three times in distilled water to eliminate SDS and resuspended in

dH2O to an OD 600 nm = 0.6. Hydrolysis was measured by the

decline in absorbance (OD 600 nm) over 120 min in the presence of

lysozyme (100 mg/ml). Percentage of hydrolysis was expressed

relative to the absorbance of each sample at time 0 min.

Murine model of bacterial competition
Six to 8-week-old female FVB/NJ mice were obtained from

Jackson Laboratories, Bar Harbor, ME. Lysozyme deficient mice

(LysM2/2) were generated in the FVB/NJ background (by T.

Graf) by insertion of the Enhanced Green Fluorescent Protein into

exon 1/intron 1 of the lysozyme locus. LysM2/2 mice were

backcrossed through ten generations into the FVB/NJ background

[3,44]. Animals were housed in accordance with Institutional

Animal Care and Use Committee protocols. All strains were

animal passaged prior to use in experiments and stored at 280uC
in 20% glycerol. Inocula consisted of a total of 107 mid-log phase

PBS-washed bacteria in 10 ml PBS (56106 WT or revertant cells

plus 56106 mutant cells). Inocula were plated onto the appropriate

selective media to confirm the concentration of each strain. Three

days after intranasal inoculation, mice were sacrificed, the trachea

cannulated, and 200 ml of PBS was instilled. Lavage fluid was

collected from the nares and serially diluted in PBS. Total

pneumococci were enumerated by plating onto media supple-

mented with neomycin to prevent the growth of contaminants.

Selective media was used to quantify the proportion of WT or

revertant vs. mutant bacteria in lavages. The lower limit of

detection was 20 CFU/ml of lavage fluid.

Phagocytic killing assays
Neutrophils were isolated from human blood by density

centrifugation on a Ficoll gradient using Mono-Poly Resolving

Medium according to the manufacturer’s instructions (MP

Biomedicals, Irvine, CA). The neutrophil-enriched fraction was

collected and washed with Hank’s buffer without Ca2+ or Mg2+

(Invitrogen, Carlsbad, CA) with 0.1% gelatin. Cells were counted

using trypan blue staining and adjusted to a density of 76106

cells/ml in Hank’s buffer with Ca2+ and Mg2+ (Gibco, San Diego,

CA), and 0.1% gelatin (+++ solution). Bacterial strains were grown

to mid-log phase, PBS-washed, and resuspended in +++ solution.

102 bacterial cells (in 10 ml) were pre-opsonized with infant rabbit

serum (40 ml) (Pel-Freez, Rogers, AR) for 30 mins at 37uC with

rotation. Neutrophils were then added to reactions (105 cells per

reaction in 40 ml) with +++ solution (110 ml) and incubated 45 min

at 37uC with rotation. Reactions were stopped by incubation at

4uC, neutrophils were lysed with dH2O, and viable counts of

bacteria were determined. Percent survival was determined

relative to control reactions lacking neutrophils.

Neutrophil depletion
Monoclonal antibody (mAb) RB6-8C5, a rat anti-mouse IgG2b

directed against Ly-6G on the surface of murine myeloid (and

limited subpopulations of lymphoid) lineage cells, was purified

from ascites of nude mice given the RB6-8C5 hybridoma [45,46].

To deplete neutrophils, 145 mg of mAb/animal was given by

intraperitoneal (i.p.) injection 24 hours prior to intranasal

challenge with bacteria. This dose was previously shown to result

in peripheral blood neutropenia (,50 granulocytes/ml) for a

period of at least 48 hours [47]. Controls were given the

equivalent i.p. dose of total rat IgG (Sigma, St. Louis, MO).

Western blot analysis
Mice were colonized 48 hrs with WT S. pneumoniae, sacrificed, and

nasal lavages obtained as described above. Nasal lavage fluid was

separated by SDS-polyacrylamide gel electrophoresis on a 15% Tris-

HCl gel (Bio-Rad, Hercules, CA), and proteins were transferred to a

polyvinylidene difluoride transfer membrane (Thermo Scientific,

Rockford, IL). Murine lysozyme was detected using a rabbit anti-

mouse polyclonal IgG antibody to recombinant lysozyme M [6] and

detected with enhanced chemiluminescent (ECL) anti-rabbit IgG

horseradish peroxidase-conjugated secondary antibody from donkey

(GE Healthcare, Little Chalfont, Buckinghamshire, UK). Secondary

binding was detected with ECL Western Blotting Substrate (Pierce

Biotechnology, Rockford, IL).

Immunohistochemistry
Mice were colonized 24 hrs with WT S. pneumoniae, a time point

prior to neutrophil influx into the nasopharynx. Mice were then

sacrificed, decapitated, and heads were fixed in 4% paraformal-

dehyde in PBS for 48 hrs. Heads were then decalcified for 24 hrs

in Cal-EX decalcifying solution (Fisher Scientific, Fair Lawn, NJ).

Paraffin-embedded tissue was sectioned and rehydrated through a

series of xylene and ethanol washes with decreasing concentrations

of ethanol. Sections were post-fixed in 1:1 methanol-acetone at

220uC for 10 min followed by washing in distilled water (dH20).

Endogenous peroxidases were blocked with 30% hydrogen

peroxide in dH20 for 15 min. Sections were also blocked with

avidin and biotin, each for 15 mins, followed by a 10 min

incubation in protein blocking reagent (Coulter/Immunotech,

Miami, FL). Murine lysozyme was detected using a rabbit anti-

mouse polyclonal IgG antibody to recombinant lysozyme M [6] at

a 1:500 dilution in PBT (16 PBS, 0.1% bovine serum albumin,
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0.2% Triton X-100), or PBT alone for no primary antibody

controls, and incubated 60 min at 37uC. Primary antibody was

detected using a biotinylated goat anti-rabbit antibody (Vector

Laboratories, Burlingame, CA) with a 1:200 dilution in PBT and

incubated 30 min at 37uC, followed by 30 min incubation at 37uC
with horseradish peroxidase-conjugated ABC reagent (Vector

Laboratories). Sections were washed with PBS between all steps.

The signal was developed using a diaminobenzidine tetrahy-

drochloride (DAB) kit (Vector Laboratories) and developing was

stopped with dH20. Sections were then counterstained with

hematoxylin, dehydrated in ethanol, cleared in xylene, and

mounted in Cytoseal (Richard-Allen Scientific, Kalamazoo, MI).

ELISA for capsular polysaccharide (CPS)
Cultures of strains of the same colony opacity were grown to

stationary phase in 10 ml of C+Y, pelleted, and resuspended in

10 ml of PBS. Cells were adjusted to equal optical density,

resuspended in 1 ml of PBS, and lysed by sonication. Capture

ELISAs were then used to quantify capsule as previously described

[24]. Type 4 typing sera (Statens Seruminstitut, Copenhagen, DK)

was fixed to a 96-well polystyrene microtiter plate by incubating

16 hours at room temperature (RT) using a 1:5000 dilution in

0.05 M sodium carbonate. Plates were washed five times with

wash buffer (16 PBS with 0.05% Brij). Sonicate samples were

added at a 1:500 dilution and plates were incubated 2 hrs at RT

with agitation, followed by five washes. A mAb to type 4 CPS was

added at 1:400 dilution in wash buffer. Goat anti–mouse IgG

alkaline phosphatase conjugate was used as the secondary

antibody at a dilution of 1:10,000. Both antibodies were incubated

in plates for 2 hrs at RT with agitation followed by five washes.

Plates were developed using alkaline phosphatase substrate

(Sigma, St. Louis, MO) in diethanolamine buffer, and were read

at an absorbance of 415 nm. Total protein in each sonicate was

measured using a Micro-BCA protein assay kit (Pierce Biotech-

nology, Rockford, IL), following the manufacturer’s protocol.

Purified type 4 CPS (American Type Culture Collection,

Manassas, VA) was used as a standard.

Statistical analysis
Statistical comparisons of lysozyme sensitivity, phagocytic killing

assays, and amounts of CPS were calculated using a 1-way

ANOVA (Kruskall-Wallis test, non-parametric) with Dunn’s post-

test (Prism 4, GraphPad Software, San Diego, CA). Statistical

comparisions between colonization groups were computed using

the Mann-Whitney test (non-parametric, two-tailed test) (Prism 4,

GraphPad Software, San Diego, CA).
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