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Abstract

This thesis focuses on the computation of optical flow, i.e., the motion perceived from

a sequence of gradually changing images, as an estimate for the 2D velocity of the

scene. Due to the large variety and high complexity of the motion types existing in

practice, motion recovery requires the estimation process to be highly adaptive. This

thesis investigates how to select and combine the reasoning rules, namely the optical

flow constraints, according to the type of motion information detected. Moreover, the

thesis extends optical flow computation to fast rotation, an important, frequent and

challenging motion type, which has not been addressed much in the literature.

The thesis starts by proposing various measures, based on theory as well as heuris-

tics, for motion inconsistency detection. This facilitates selecting only the optical flow

constraints that are valid for each pixel. While this selection benefits pixels affected

by inconsistent motion, the combination of different constraints also enhances flow

recovery for pixels that have consistent motion.

Two frameworks are designed for the combination of flow constraints. One utilizes

motion segmentation; and the other is close in spirit to Expectation-Maximization.

Within these frameworks, new constraints are formulated and tested. Furthermore, the

adaptive reasoning is generalized from translational motion to motion that includes

fast rotation. The key concept that enables this generalization is the use of intrinsic

directions in differential geometry.

Experimental results on a variety of benchmark sequences have demonstrated the abil-

ity of the proposed methods to improve the performance of existing techniques in sev-

eral situations, including strong motion discontinuities and fast rotational motion.
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Chapter 1

Introduction

It is only with the heart that one can see rightly; what is essential is invisible to the

eye.

Antoine de Saint-Exupry, The Little Prince

1.1 Problem Overview

1.1.1 Problem Statement

Consider a 3D scene that is viewed by a camera, where some or all of the scene is

moving relative to the camera, as in Figure 1.1. The problem addressed in this thesis

is to infer the 2D projection of that motion from a sequence of images by analysing

variations in the intensity of pixels in each image.

Clearly, this is an ill-posed problem, as intensity changes between images may be due

not only to motion but also lighting and other factors. In this thesis we assume that

all perceived intensity changes are due to motion, and our aim is to find the motion

field that best explains these changes. Such a motion field is called apparent motion or

optical flow.

Even assuming motion is the only cause for brightness pattern change, recovering the

cause from the observation is an inverse problem. The typical difficulty associated with

an inverse problem is the ill-posedness (Hadamard 1902)1: the solution is often not

unique. In terms of optical flow recovery, the intensity variation of a point is insuffi-

cient to indicate its motion uniquely. In fact, the core problem of optical flow recovery

is to find out what constraint(s) can be integrated additionally and how to integrate,

1The term ill-posedness has different meanings in different context, such as the instability of the solu-

tion, the sensitivity to noise and the difficulty to find the optimal solution. Throughout this dissertation,

we follow its original definition by (Hadamard 1902).
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1.1 Problem Overview

Figure 1.1. An illustration of the real motion of a scene point P at time t and t + 1, in the world

and in the image plane.

such that (i) the problem is solvable; (ii) the solution is unique; (iii) the solution esti-

mates the 2D motion as accurately as possible.

1.1.2 Why Would We Want To Do This?

Although optical flow is not necessarily equivalent to the 2D projection of the 3D mo-

tion, it is a crucial, and most of the time, a reasonably satisfactory approximation of the

actual 2D motion.

In many biological vision systems, recovering apparent motion seems to be adequate

to accomplish low level tasks. For example, the behavioural research conducted on

honeybees (Srinivasan 1992) shows that bees compute the apparent speed of the retinal

images, i.e., optical flow, to gauge distance and guide steering. Similar insect optical

flow computation has been simulated in robot navigation to estimate ego-motion and

avoid obstacles, by computing the apparent shape change of objects. Optical flow is

also an important part of the human visual system, as evidenced by our tendency to

perceive motion when watching a sequence of static images; for example on television

or using a “flipbook”.

Moreover, if the recovered optical flow is an accurate estimation of the true 2D motion,

more in-depth understanding of the scene is possible. For example, the reconstruc-

tion of the motion and structure can be obtained from the estimated 2D motion across

frames. In the framework of video surveillance, the target object can be segmented and

tracked based on the 2D motion estimated. In the field of medical image processing,
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medical photos taken at different time instances can be reliably registered. Optical flow

has also been widely applied to many other areas, such as video coding (mpeg4), face

recognition and human action detection.

1.1.3 Why Is This A Difficult Problem?

It might be a common life experience that even if we are only given two frames of a

scene with moving objects, we can easily extract salient features from both frames and

quickly tell which feature in one frame moves to where in the other frame, if the fea-

tures maintain their appearance in both frames. Next we can reason effortlessly about

how other parts of the scene have to move to make physical sense. The “reasoning

rules” and the “sense” come from our prior experience accumulated in life.

The process seems straightforward; however, it is difficult to have a machine vision

algorithm accomplish a similar task. Firstly, it is difficult to precisely and quantita-

tively describe the “reasoning rules” and “sense” applied in a human brain. Secondly,

the reasoning in a human brain is sophisticated, each particular occasion has its own

rules of reasoning. The human brain adapts to different occasions easily, whereas it

is hard for a machine vision algorithm to tell what events are happening in the scene

and which set of rules should be selected accordingly. Typical difficult examples for

optical flow computation are shadows, reflection, transparency, occlusion and motion

boundaries, the occurrence of which can be immediately deduced by the human brain

but confounds computer vision systems. Furthermore, it is hard to enunciate all mo-

tion types by numerical models, due to the variety and complexity of real motions in

practice.

The difficulty also lies in the fact that the flow computation is limited by the video

quality. Although human vision system can reconstruct motion from a blurry or noisy

video sequence, these factors can be catastrophic for a computer vision algorithm.

More importantly, to enable a machine to perceive motion, it entails that the tempo-

ral variation is “slower” than the spatial variation. In other words, the displacement

of a point should be small enough to be reflected from the intensity values sampled at

integer points. Today, large displacement recovery is still one of the most challenging

problems in computer vision.

Even if a computer vision system can emulate human motion perception completely,

it may still fail to estimate the true motion accurately. One well-known example is the
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barber-pole illusion, where the true motion is horizontal but the perceived motion is

vertical. However, given only the video sequence, the best motion information that

one can expect is the apparent motion. The ambiguity of the apparent motion adds to

the difficulty.

1.2 Thesis Overview

1.2.1 Contributions of This Thesis

The main contributions of this thesis are presented in Chapter 3 - 7. These chapters

describe novel techniques for optical flow computation in the presence of discontinu-

ous motion and fast rotation. The novelty of this work over previous methods is in the

following aspects.

• It proposes new measures to detect the presence of multiple motions; and designs

more adaptive mathematical reasoning models to inhibit the distortion from the

inconsistent motions.

• It explores the complementary effects of different reasoning rules, as well as the

combination of them, to overcome ambiguity and preserve motion boundaries

simultaneously.

• It generalizes the traditional mathematical formulation, which favors transla-

tional motion with minimal apparent shape change, to rotation. The general-

ization provides a solution to flow computation with fast rotation, which causes

large displacement that challenges existing flow computation methods.

1.2.2 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 overviews the literature of optical flow techniques, some challenging prob-

lems and potential solutions.

Chapter 3 proposes measures to detect the presence of inconsistency in a local area and

predict the reliability of the recovered flow as an estimation of the real 2D motion.
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Chapter 4 proceeds to detecting, removing or inhibiting the outliers that cause the

inconsistency of a local computation system. In this chapter, various functions are

investigated to detect and reject the outliers based on the inconsistency exhibited in

spatial position, intensity, intensity variation and motion itself.

Chapter 5 describes a new strategy that integrates global computation with local com-

putation to overcome the possible ambiguity inherited from the local computation. The

complementary effects of local and global computation are explored. By linking the

two computation techniques with motion segmentation, motion boundaries are well

preserved by local computation and oversmoothing is avoided in global regulariza-

tion. In each segmented region, local flow and global regularization are connected by

the global subspace constraint, which effectively corrects the ambiguous flow vectors

obtained in local computation and improves the robustness of global regularization.

Chapter 6 starts investigating the important yet difficult problem of recovering fast ro-

tation, which has not been addressed much in the literature. This chapter presents a

solution by a global computation technique. Different from previous global compu-

tation, the proposed method formulates the computation functional on an adaptive

coordinate system, which is always locally oriented to the intrinsic directions of the

underlying image structure. This chapter also discusses computing the intrinsic di-

rections and directional derivatives in ways that are different from the conventions

to achieve better performance. Numerical schemes to obtain the optimal solution are

derived in the locally oriented coordinate system.

Chapter 7 goes one step further on fast rotation recovery by designing a new com-

binational scheme of local and global computation. Unlike the combination strategy

designed for multiple motions in Chapter 5, segmentation of the motion field that con-

tains rotation is difficult. Alternatively, in this chapter, the local and global computa-

tion is combined in a similar spirit to the Expectation-Maximization optimization. The

customizing of both steps to preserve motion boundaries and recover fast rotation is

demonstrated.

Chapter 8 summarizes the main points of the thesis, and discusses about future re-

search.
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Chapter 2

Differential Optical Flow
Techniques for Motion

Estimation

This chapter reviews the literature of optical flow computation, especially

by differential techniques. Following the conventional taxonomy of local

and global computation, this chapter reviews the representative methods

in each category, and the research effort on combining them.

Along with the review, research difficulty is explained and used to motivate

this thesis.
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2.1 Problem Statement

Optical flow, as an important measure to approximate image motion, has been in-

tensively investigated for many applications including image registration, video cod-

ing, structure and motion reconstruction, object tracking. During 3 decade’s inten-

sive investigation, techniques such as overdetermined linear systems (e.g., (Lucas and

Kanade 1981), (Campani and Verri 1990)), partial differential equations (e.g., (Horn and

Schunck 1981), (Brox et al. 2004)), robust statistics (e.g.,(Simoncelli 1993a), (Roth and

Black 2007), (Black and Anandan 1996)) and machine learning (e.g., (Sun et al. 2008), (Li

and Huttenlocher 2008)), to name but a few, have been applied to accomplish the task.

Several comparison studies have been conducted on the most influential contemporary

techniques (e.g., (Barron et al. 1994), (Stiller and Konrad 1999), (McCane et al. 2001),

(Baker et al. 2007)). In an early seminal survey (Barron et al. 1994), local differen-

tial methods (Lucas and Kanade 1981), (Uras et al. 1988) and phase-based method

(Fleet and Jepson 1990) were shown to achieve lower average errors than the region-

matching methods (Anandan 1989) and the energy-based method (Heeger 1988) on a

variety of synthesized sequences simulating object translation, 3D camera motion and

multiple moving objects. On top of that, they also demonstrate better visual results on

real data sequences that depict 3D camera motion, object rotation and multiple inde-

pendent motion. Moreover, within the class of differential techniques, local computa-

tion methods by Lucas-Kanade and Uras et al. have higher accuracy than the global

computation of (Horn and Schunck 1981) and (Nagel 1983a) on some test sequences.

According to the most recent survey (Baker et al. 2009), which compares the state-of-

the-art methods comprehensively, today’s most successful methods still belong to the

class of differential techniques. However, global methods have been substantially im-

proved from Horn-Schunck’s original formulation, and now play a dominant role in

flow computation (Baker et al. 2009).

This dissertation employs differential techniques, both local and global, for optical flow

computation in the challenging cases of fast rotation and discontinuous motion. In

this chapter, the research context and related works in the literature are reviewed. The

research difficulty is explained and used to motivate the work presented in this thesis.

2.1 Problem Statement

Let P = [X, Y, Z]T be a moving point in the 3D world coordinate frame, and p =

[x, y, t]T be its projection to the image plane in the image coordinate frame at time in-

stance t. Recovering the 2D motion of p, i.e., �v = [ ∂x
∂t , ∂y

∂t ] from the brightness pattern
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E(x, y, t), is crucial to understand the motion and structure in the scene. The link be-

tween image intensity and the 2D motion is the total temporal derivative of the image

intensity dE
dt and the chain rule,

dE
dt

= Exxt + Eyyt + Et. (2.1)

Here and throughout the thesis, subscript x,y and t denote the corresponding spatial

or temporal partial derivatives. Under circumstances that

• surface reflectance is Lambertian;

• pointwise light source is far away;

• photometric distortion is ignorable,

it is reasonable to assume that the projected intensity of P at different time instances

remains constant (Trucco and Verri 2006), thus

dE
dt

= Exxt + Eyyt + Et = 0. (2.2)

Eq.2.2 is the so-called Brightness Constancy Equation (BCE). The 2D vector [u, v]T that

satisfies the BCE, i.e.,

Exu + Eyv + Et = 0,

is the motion that can be perceived (or recovered) when E remains constant. This vector

is the optical flow (p.195, (Trucco and Verri 2006)). It is shown in (Trucco and Verri 2006)

that optical flow and 2D motion are not equivalent except in special cases that,

• the motion is translational, or,

• the illumination direction is parallel to the angular velocity.

Nevertheless, the two terms tend to be used interchangeably in modern literature

(Baker et al. 2009), (Weickert et al. 2006). For example, the newly generated Middlebury

datasets use the 2D motion ground truth as the flow ground truth. In this context, op-

tical flow can also be interpreted as finding p’s true correspondence at time instance

t + 1, by only knowing that the correspondence has the same intensity as p. Unfortu-

nately, this intensity constraint is generally insufficient, as there may be multiple points

with the same intensity, whereas the true correspondence is unique. This is typically
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2.2 Local Computation

an ill-posed inverse problem. To overcome the ambiguity, other prior knowledge or

assumptions have to be integrated into the framework. Differential techniques, which

formulate the prior constraints by a set of partial differential equations, have shown

promising effectiveness. Following the traditional taxonomy of local and global com-

putation, this section reviews how the two category of methods postulate the prior

assumptions/constraints and recover the flow vectors.

2.2 Local Computation

The first local flow computation method is proposed by Lucas-Kanade (Lucas and

Kanade 1981), who assumed that neighbouring pixels in a local patch have the same

velocity. This assumption suggests that a true pair of correspondence have the same

neighbourhood. Thus the BCE at each pixel contributes one constraint to the patch’s

flow vector. Let E(k)
x , E(k)

y and E(k)
t denote the spatial and temporal partial derivatives

of the kth pixel (k = 1, · · · , N)) in the local area. The collection of the BCE at all pixels

constructs a linear system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(1)
x E(1)

y
...

...

E(k)
x E(k)

y
...

...

E(N)
x E(N)

y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

u

v

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E(1)
t

...

−E(k)
t

...

−E(N)
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3)

The flow computation is thus converted to a classical problem of solving A�X = �b. If

A has full rank, the intensity information in the local neighbourhood is sufficient to

identify a unique correspondence for p in the next frame. The flow of p can be easily

obtained by the least squares error solution, which minimizes the penalty function∥∥∥A�X −�b
∥∥∥

2
. Subsequent local computation approaches improve Lucas-Kanade’s by

modifying the BCE or the motion model, as described in the following sections.

2.2.1 Extension of the Invariant Features

Research has been conducted to relax the assumption of constant brightness to other

features. For example, (Uras et al. 1988) assumes that pixel p’s correspondence should

have the same gradient ∇E. Mathematically, by applying the chain rule to d∇E/dt =
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0, one obtains [
Exx Exy

Exy Eyy

] [
u

v

]
= −

[
Ext

Eyt

]
(2.4)

If the system has full rank, the flow vector can be solved directly from the equation. In

(Tistarelli 1996), the combination of brightness and gradient constancy is discussed.

Compared to brightness constancy assumption, the gradient constancy is more ro-

bust to additive lighting changes. However, as gradient is always computed as the

horizontal-vertical intensity variation based on the image grid, the gradient does not

remain constant when the horizontal and vertical neighbourhood is changed during

the motion. A typical instance that fails the assumption is fast rotation. In (Laskov and

Kambhamettu 2003), the authors derived the change of p’s Gaussian curvatures from

K to K′ before and after motion. Basically, the change can be expressed by

K′ = K · F

(
div

(
u

v

)
,∇

(
u

v

)
,�n

)
,

where F() is a function of the flow divergence, flow gradient and surface unit normal

�n (see the original work for details). Intuitively, the idea is to find p’s correspondence

in the next frame by knowing its Gaussian curvature K′. The relaxation of constancy

assumption offers more flexibility for non-rigid motion. However, as the Gaussian

curvature is based on the second order derivatives, it is more sensitive to noise than

gradient. Thus the first order derivatives in the intrinsic directions (e.g., isophote and

normal directions) are preferable, as they are more robust to noise, additional illumi-

nation change and rotation. Surprisingly, although such features have been widely

applied to stereo matching and demonstrated effectiveness, they have not been con-

sidered for optical flow. To combat the difficulty caused by fast rotation, Section 7.2

describes a rotational invariant feature, which consists of first-order derivatives in in-

trinsic directions. Experiments conducted on real sequences of human motion with

fast rotation show promising results.

2.2.2 Affine or Higher-Order Prior Assumption

Lucas-Kanade’s constant flow assumption is rather restrictive, therefore research effort

has been put into the assumption of locally affine model (Campani and Verri 1990) (Shi

and Tomasi 1994). This assumption relates the kth pixel’s velocity [u(k), v(k)]T to the
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velocity [u, v]T of the patch center by[
u(k)

v(k)

]
=

[
u

v

]
+

[
ux uy

vx vy

] [
x(k) − x

y(k) − y

]
, (2.5)

By substituting Eq.2.5 to each BCE associated with the k th pixel, i.e.,

E(k)
x u(k) + E(k)

y v(k) + E(k)
t = 0,

an additional linear constraint of [u, v]T is obtained. They constitute a linear system in

the form of A�X =�b, i.e.,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(1)
x E(1)

y E(1)
x Δx(1) E(1)

x Δy(1) E(1)
y Δx(1) E(1)

y Δy(1)
...

...
...

...
...

...

E(k)
x E(k)

y E(k)
x Δx(k) E(k)

x Δy(k) E(k)
y Δx(k) E(k)

y Δy(k)
...

...
...

...
...

...

E(N)
x E(N)

y E(N)
x Δx(N) E(N)

x Δy(N) E(N)
y Δx(N) E(N)

y Δy(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

v

ux

uy

vx

vy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(1)
t
...

E(k)
t
...

E(N)
t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.6)

where �X is the vector of the 6 motion parameters. In (Shi and Tomasi 1994), it is further

concluded that affine model is preferable to estimate the large displacement accumu-

lated across frames, although it is not necessarily better than the constant flow model

to recover the small displacement between two consecutive frames. Therefore, it is

suggested that affine model should be applied to monitor the tracking loss of a fea-

ture point, whereas the local flow computation should be based on the constant flow

model. In this work, to respect motion with large deformation and high acceleration,

most local computation systems are based on the affine flow model.

Eq.2.5 can also be interpreted as the first order Taylor expansion of [u(k), v(k)]. Higher

order Taylor expansions of [u(k), v(k)] and E(k) in flow computation have been dis-

cussed in (Otte and Nagel 1995). However, due to the sensitivity to noise of the dif-

ferencing operator, partial derivatives with an order higher than 2 should generally be

avoided in practice.

As above, using either brightness constancy or gradient constancy, either piecewise

constant flow or affine flow, local computation integrates these assumptions into a

linear system A�X =�b, where A and�b contain the spatial and temporal variation of in-

tensity respectively. It is possible that the linear system has no solution or the solution

is not unique. In the scope of optical flow, these correspond to the motion boundary
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problem and the aperture problem. Numerous attempts have been made to find so-

lutions. The following subsections briefly review the research effort dedicated to each

problem.

2.2.3 Handling the Aperture Problem of A�X =�b

Initially, research concern about local computation focused on the case that A�X =�b has

multiple solutions, when A is rank deficient. This happens when the spatial variation

in A does not provide enough information to find the pixel’s correspondence uniquely

in the next frame. The situation is worsened if A is contaminated by noise and shows

full rank, which is unfortunately almost inevitable in practice. In this case, a unique

solution can be obtained by the pseudo-inverse of A, but it is generally erroneous.

To predict the occurrence of such errors, confidence measures have been proposed to

evaluate the possibility that a system may suffer from the aperture problem. Lucas-

Kanade use the least significant eigenvalue of the structure tensor (Lucas and Kanade

1981). Uras et al. use the condition number of the 2D Hessian matrix (Uras et al. 1988);

Bertero et al. and Barron et al. use the determinant (Bertero et al. 1988) (Barron et al.

1994); and Simoncelli use the trace (Simoncelli 1993b). Except for the condition num-

ber measure, the ambiguity caused by the system’s scale is generally neglected by these

measures. More specifically, systems A�X = �b and αA�X = α�b(α �= 0) have the same

solution manifolds and are always solved by the same pseudo-solution. Hence the

confidence measure of a solution should be independent of the scaling factor α. How-

ever, the smallest eigenvalue measure, the trace measure and the determinant measure

are all affected by α, which consequently leads to ambiguity.

The common aim of these measures is to detect the deficiency of spatial variation in

the local patch. If detected, one approach to obtain a unique solution is to integrate

other constraints, such as regularized variation of the flow field, with the system, e.g.,

(Bertero et al. 1988). This approach falls in the category of joint local and global com-

putation, which is to be introduced in Section 2.4.

2.2.4 Handling the Inconsistency of A�X =�b

As discussed in the previous section, to obtain dense flow recovery by local computa-

tion, the patch has to be large enough to include salient intensity variation. However,
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it is thus more likely to include pixels that have inconsistent motions into the system.

In this case, A may have full rank, but A�X =�b does not necessarily have a meaningful

solution. As a consequence, flow estimation by the LSE is of low fidelity. Therefore,

such systems should also be identified and replaced before it is applied to flow recov-

ery. However, the only attempt to measure the system inconsistency is Haussecker et

al.’s coherency measure and corner measure (Haussecker et al. 1998), which are specific

to 3D structure tensors. A general inconsistency measure of A�X = �b is proposed in

Chapter 3, based on the rank increase from the coefficient matrix A to the augmented

matrix [A|�b] without computing the ranks of both matrices explicitly. A related line of

work on rank increase measure is (Shechtman and Irani 2007), which is invented in the

framework of human-behavior recognition. The difference between the two measures

will be articulated in Section 3.3.

If A�X = �b is detected as not consistent, the constraints from outliers should be in-

hibited. This can be done by weighting down the corresponding constraints. To save

computational cost, these constraints may be weighted by zeros, as suggested in (Baker

and Matthews 2004). Research on the weighting functions applied to local flow com-

putation is quite limited. In (Baker and Matthews 2004), the pixels are weighted by the

inverse of noise variance in case of spatially varying white Gaussian noise; and by the

gradient magnitude if the noise is uniform. This weighting strategy requires the prior

knowledge of the noise model. Furthermore, compared to outliers, noise is the sec-

ondary cause of the errors in the LSE estimation. A pairwise affinity-based weighting

function is studied in (Ren 2008), based on the intensity contrast accumulated along the

path linking the two pixels. This weighting function neglects the temporal variation,

which is the direct cue for motion inconsistency. In Chapter 4, different possibilities of

weighting functions, based on occlusion index, motion boundary, and intensity con-

trast, are discussed and tested intensively on benchmark sequences.

2.3 Global Computation

Unlike local computation, by which one linear system only recovers one pixel’s flow,

global computation recovers all pixels flow vectors by minimizing one energy func-

tion. Most global computation techniques assume that the flow field is smooth to

some degree (e.g., (Horn and Schunck 1981), (Brox et al. 2004), (Ju et al. 1996)). Such

techniques are conventionally referred to as variational flow computation, because cal-

culus of variation is commonly used in such formulation to find the global optimal
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solution. There are also some global methods that assume the scene is rigid and the

camera is moving (e.g., the fundamental matrix constraint (Wedel et al. 2008), sub-

space constraint (Irani 2002)). Such prior assumptions are referred to as rigidity priors

in (Baker et al. 2009). In this dissertation, both spatial smoothness constraint and sub-

space constraint are investigated for discontinuous motion estimation.

2.3.1 Variational Flow Techniques

Horn-Schunck’s global smoothness assumption lays down the foundations of varia-

tional flow computation. The prior assumption of this method states that the flow field

should vary slowly, such that the flow variation at point (x, y) measured by |∇u|2 +
|∇v|2 is close to 0. Therefore, the deviation from this prior assumption summed over

the whole region Ω (usually the image) leads to an error term

Eprior =
∫ ∫

Ω

(
u2

x + u2
y + v2

x + v2
y

)
dxdy, (2.7)

which should be minimized. On the other hand, the deviation from the BCE aggre-

gated over Ω leads to another error term

Edata =
∫ ∫

Ω

(
Exu + Eyv + Et

)2 dxdy, (2.8)

to be minimized. Horn-Schunck formulated the dense flow recovery as minimizing

the combination of the two error terms, balanced by a constant λ,

E = Edata + λEprior. (2.9)

By calculus of variation, the optimal flow field satisfies the associated Euler-Lagrange

equation pair,

E2
xu + ExEyv = λΔu − ExEt

ExEyu + E2
yv = λΔv − EyEt, (2.10)

where Δ is the Laplacian. Horn-Schunck discretized the Laplacian by the difference

between the flow vector and the average of adjacent pixels’ flow vectors, i.e.,

Δu = ū − u, Δv = v̄ − v, (2.11)

where ū and v̄ mean the average of adjacent pixels’ flow components. Following the

discretization, standard numerical schemes can be applied straightforwardly to find
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the solution. In (Horn and Schunck 1981), the authors used Gauss-Seidel iteration. At

iteration step τ + 1, the flow vector is updated by

uτ+1 = ūτ + Ex
(
Exūτ + Eyv̄τ + Et

)
/
(

λ + E2
x + E2

y

)
vτ+1 = v̄τ + Ey

(
Exūτ + Eyv̄τ + Et

)
/
(

λ + E2
x + E2

y

)
(2.12)

until convergence. The Euler-Lagrange equation 2.10 can be viewed as the steady state

of a pair of diffusion equations; and the numerical iteration Eq.2.12 can be intuitively

viewed as a diffusion process, by which the flow is “diffused” from the neighbouring

pixels to the current pixel. Horn-Schunck’s seminal method sketches an outline for

variational flow computation. Subsequent research effort has been dedicated to rem-

edy the data term’s sensitivity to light changes and the smoothness term’s capability of

handling motion discontinuity; also to penalty functions that are more robust to mo-

tion outliers and motion models that are more flexible, as described in the following

subsections.

Data Term

Similar to local computation, gradient constancy has been applied as a data term that

is robust to additive illumination changes. The new data term can be given in either

the form of (Brox et al. 2004)

E1 =
∫ ∫

Ω
(∇E(x, y, t)−∇E(x + u, y + v, t + 1))2 dxdy; (2.13)

or its linearized form in (Weickert et al. 2006)

E2 =
∫ ∫

Ω

[(
Exxu + Exyv + Ext

)2
+
(
Exyu + Eyyv + Eyt

)2
]

dxdy. (2.14)

Because gradient is not rotational invariant, (Weickert et al. 2006) suggests using the

gradient magnitude |∇E| =
√

E2
x + E2

y, which is rotational invariant. The correspond-

ing data term becomes

E3 =
∫ ∫

Ω

(
∂ |∇E|

∂x
u +

∂ |∇E|
∂y

v +
∂ |∇E|

∂t

)2

dxdy. (2.15)

However, as the gradient magnitude discards one dimension of information, it is less

effective if rotation is not involved. The SIFT (Lowe 2004) feature, which is rota-

tional and scale invariant, has been used as the data term posed for scene matching in

(Liu et al. 2008). However, since SIFT is based on histogram accumulated over image
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region and not differentiable, this data term is not suitable for precise flow computa-

tion. Invariance of higher-order derivatives, such as Laplacian or the determinant of

Hessian, has been discussed in (Weickert et al. 2006). Clearly such features are more

sensitive to noise compared to gradient. Chapter 6 of this dissertation presents a so-

lution based on the gradient in an oriented coordinate frame, the axes of which are

always locally aligned with the local isophote and normal directions. The correspond-

ing data term can be shown invariant to additive illumination change and rotation.

Discontinuity-Preserving Regularization

By penalizing the flow variation equally in horizontal and vertical directions, Horn-

Schunck’s method does not take motion boundary into consideration. This can also be

seen from the diffusion process, in which a pixel’s flow depends equally on its neigh-

bours’. To respect motion discontinuity, the flow should only be diffused from neigh-

bours that have consistent motion. The adaptive diffusion is generally implemented

by weighting the flow’s dependency on its neighbours. Many approaches define the

weighting functions by the intensity similarity (e.g., (Nagel 1983a), (Wedel et al. 2009)),

such that the diffusion along local edge direction is smooth, whereas diffusion in the

normal direction is impeded. For example, the smoothness term used in (Wedel et al.

2009) has the form of

E3 =
∫ ∫

Ω
exp

(
−α |∇E|β

)
(|∇u|+ |∇v|) dxdy.

where α and β are pre-defined parameters controlling the dependency of the flow

smoothness on the image smoothness. Compared to Horn-Schunck’s uniform penal-

izing, this weighted penalty function enforces the diffusion to the direction in which

intensity varies smoothly. The corresponding regularization process is image-driven, as

the diffusion is steered by the underlying image structure. As image boundaries are

not necessarily motion boundaries, (Weickert and Schnörr 2001) argues that overseg-

mentation may result, and hence the diffusion should be steered by the flow recov-

ered from previous iteration steps. The steering is generally implemented by defin-

ing the weights as a monotonically decreasing function of the flow gradient. Such

regularization is called flow-driven. The drawback with flow-driven regularization is

that the recovery errors are easily propagated and enlarged in further iterations, es-

pecially around motion boundaries. Recently, joint image- and flow-driven regulariza-

tion has also been investigated to avoid artifacts of oversegmentation and oversmooth-

ing (Sun et al. 2008), (Zimmer et al. 2009). In (Sun et al. 2008), the flow is projected to the
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2.3 Global Computation

intrinsic directions of the local patch, and the dependency between neighbouring pix-

els is controlled by the flow smoothness. Briefly, in this scheme, the diffusion direction

is image-driven, whereas the diffusion speed is flow-driven. The anisotropic diffusion

of (Zimmer et al. 2009) employs a similar idea, but the diffusion directions conform

with the structure of the data terms rather than the local patch. The smoothness term

presented in Chapter 6 is also driven by image and flow jointly, but in a different way

from previous works. By orienting the coordinate frame to the isophote-normal di-

rections, the diffusion coincides with the image structure, whereas the diffusion speed

hinges on the flow affinity in both directions.

Beside image-driven and flow-driven approaches, multiple cue-driven diffusion have

been proposed in (Xiao et al. 2006). The authors show that the updating procedure, for

a simple example Eq.2.12, can be divided into two sub-procedures. One is from �vτ to

�vτ′
subject to the data term; and the other is from �vτ′

to �vτ+1 subject to the smoothness

term. The latter updating procedure, which estimates �vτ+1 by the weighted average

of �vτ′
of neighbouring pixels, can also be viewed as bilateral filtering or anisotropic

convolution. Based on this observation, the authors of (Xiao et al. 2006) extend the

flow- and image-driven convolution to multiple cue-driven, with the convolution ker-

nels given by spatial proximity, intensity similarity, flow affinity and explicit occlusion

labeling. A similar two-stage updating procedure is adopted in Chapter 7 of this dis-

sertation, with the weighting options discussed for both sub-procedures.

Robust Penalty Functions

As shown in Eq. 2.7 and Eq. 2.8, Horn-Schunck formulate each energy term by the L2

norm of the residual error function. The solution that minimizes the energy functional

is optimal in the sense of least squares error. From the statistics point of view, although

least squares fits are robust to noise, they are notoriously sensitive to outliers (i.e.,

pixels that have a different type of motion). To alleviate the effect of outliers, (Black

and Anandan 1996) suggests using robust norms to replace the L2 norm in the energy

functional, for example the Lorentzian

E(r, σ) =
∫ ∫

Ω
log(1 +

1
2

(
r(x, y)

σ

)2

)dxdy,

where r(x, y) is the residual error function at position (x, y), σ is the scale parameter.

Energy functionals defined by the L1 norm of the error function are also known to be

more robust to outliers than the L2 norm. Replacing the L2 norm by the L1 norm, the
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Chapter 2 Differential Optical Flow Techniques for Motion Estimation

energy functional becomes

E(r, σ) =
∫ ∫

Ω
|r(x, y)| dxdy.

The optimal solution of the energy functional has least absolute error. However, unlike

L2-minimization, L1-minimization does not have a close form solution. One main cat-

egory of solutions use an auxiliary variable to link the data term and the smoothness

term, and minimizing each term by a sub-optimization procedure (e.g., (Trobin et al.

2008), (Wedel et al. 2008)). Another widely used category of solutions approximate the

L1-norm by the square root of the L2 norm (e.g., (Sand and Teller 2006),(Zimmer et al.

2009),(Brox et al. 2004)) i.e.,

E(r, ε) =
∫ ∫

Ω
|r(x, y)| dxdy ≈

∫ ∫
Ω

(√
r2(x, y) + ε

)
dxdy, (2.16)

where ε is a small positive value. This solves the non-differentiability but also induces

non-linearity to the Euler-Lagrange equations. The nonlinearity is generally removed

by an inner iteration, in a similar fashion to iteratively re-weighted L2 minimization,

which is explained with details in Section 6.4.3.

Although the L1 norm is robust to outliers, (Werlberger et al. 2009) argues that it in-

duces the “staircase” artifacts to the recovered flow. The authors therefore suggest

using the Huber norm (Huber 1973), which was first applied for flow regularization

by Shulman-Herve in (Shulman and Herve 1989), and is defined as a mix of the L1 and

the L2 norm,

E(r, ε) =

{ ∫ ∫
Ω

r2(x,y)
2ε dxdy |r(x, y)| ≤ ε∫ ∫

Ω

(|r(x, y)| − ε
2

)
dxdy else,

where ε is a predefined threshold. Superior flow computation accuracy of the Huber

norm to the L1 norm is reported in (Werlberger et al. 2009).

Chapter 4, 5 and 7 of this dissertation employ the L2-norm of the deviation errors to

define the energy functional, because outliers are detected and repressed explicitly in

these chapters; whereas Chapter 6 adopts the approximated L1-norm (Eq.2.16), since

the flow computation is unified in one global formulation, and lacks a particular step

to handle outliers.

Prior Assumption of Affine Flow

Horn-Schunck’s smoothness constraint states that |∇u|2 + |∇v|2 should be as small as

possible. In the extreme case, ux,uy,vx,vy are all zeros, which correspond to the situ-

ation of constant flow. In other words, Horn-Schunck’s smoothness constraint favors
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2.3 Global Computation

constant flow. However, in many applications, the motion field has large divergence,

curl or deformation (Cipolla and Blake 1997), and hence large first order derivatives

of flow should be allowed. To adapt flow computation to this more general scenario,

regularization based on affine motion model has been applied (e.g., (Ju et al. 1996),

(Nir et al. 2008), (Trobin et al. 2008)). A direct extension to affine prior is to assume that

the 6 motion parameters of a patch s should vary smoothly. Following the notation in

(Ju et al. 1996), this parameter vector is denoted by

�a(s) = [a1, · · · , a6]
T.

The affine prior of (Ju et al. 1996) states that

∑
t∈G(s)

Ψ (‖�a(s)−�a∗(t)‖) (2.17)

should be as small as possible, where G(s) means the neighbouring patches, �a∗(t) is

the motion parameter of patch t but aligned w.r.t the center of s.

Alternatively, (Nir et al. 2008) proposes minimizing the spatial-temporal variation of�a

directly, i.e.,

Esmooth =
∫ ∫

Ω
Ψ

(
6

∑
i=1

∥∥∥∇̃ai

∥∥∥2
)

dxdy, (2.18)

where ∇̃ is the spatial-temporal gradient, and Ψ presents the image region.

(Trobin et al. 2008) argues that the second order derivative operators are not orthogo-

nal and possibly induces bias. Instead, the authors used a decorrelated second order

derivatives operator ‖�u‖ and ‖�v‖, which should be zero for affine flow. In particular,

‖�u‖ is defined by

‖�u‖ =

√
1
3

√(
uxx + uyy

)2
+ 2

(
uxx − uyy

)2
+ 8

(
uxy

)2, (2.19)

and ‖�v‖ is defined similarly. With ‖�u‖ + ‖�v‖ measuring the flow deviation from

being affine, the smoothness term is expressed as

Esmooth =
∫ ∫

Ω
(‖�u‖+ ‖�v‖)dxdy. (2.20)

The disadvantage of this operator is its non-differentiability. To tackle the problem,

the optimization in (Trobin et al. 2008) resorts to solving a dual variable, which entails

another iteration process and incurs computational cost. In this dissertation, the global

computation in Section 6.3.3 employs affine motion prior for fast rotation recovery, and

the regularization is in a similar spirit to (Nir et al. 2008). Satisfactory performance of

this regularization scheme has been obtained in our empirical study.
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2.3.2 Rigid Motion Constraints

Motion rigidity constraint is another important global constraint in the literature of

flow computation. More particularly, if the relative motion between the camera and

the scene is rigid, then optical flow computation is equivalent to stereo disparity es-

timation. Moreover, all pixels’ displacement vectors are subject to the Epipolar Con-

straint (p152, (Trucco and Verri 2006)), which is embodied by the fundamental ma-

trix. Integrating the epipolar constraint or the fundamental matrix prior to the flow

computation has been investigated in (Valgaerts et al. 2008) and (Wedel et al. 2008).

While (Valgaerts et al. 2008) estimates the fundamental matrix and the flow jointly,

(Wedel et al. 2008) requires the fundamental matrix to be either known or estimated

online. Improved quantitative performance is reported on sequences with rigid scenes.

However, according to (Baker et al. 2009), the method of (Wedel et al. 2008) “does poorly

on the non-rigid scenes”. Recently, (Wedel et al. 2009) proposes adapting the rigidity

constraint to more general scenarios by using a weight term to toggle the fundamen-

tal matrix prior, based on the likelihood that the motion is rigid. The success of this

approach has been confirmed by the evaluation conducted in (Baker et al. 2009).

Under the same assumption of rigid scene viewed by a moving camera, (Irani 2002)

points out that the trajectories of all pixels across multiple frames reside in a very low

rank (≤ 9) subspace. This constraint thus unifies the trajectories of all pixels by a small

number (≤ 9) of basis vectors. The author also demonstrated that the displacement

recovered under this subspace constraint is robust to the aperture problem. Based

on this theory, Chapter 5 derives a new subspace constraint for the flow matrix, and

proposes a new strategy to regularize the local flow computation in problematic areas.

2.4 Local and Global Computation in Tandem

As shown in previous sections, the local and global computations are fundamentally

different from several perspectives.

• First, they are different in the way that neighbouring pixels interact through the

constraints. Local methods constrain a pixel’s flow by the surrounding pixels’

intensity values; whereas global methods constrain a pixel’s flow directly by the

neighbouring pixels’ flow vectors.
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2.4 Local and Global Computation in Tandem

• Moreover, the two categories formulate the computation differently. Local meth-

ods integrate the flow constraints of one pixel into a linear system, and solve each

pixel’s system independently. In other words, the flow recovery accuracy at one

pixel is not affected by the flow vectors recovered at other pixels; whereas global

methods aggregate the constraint residuals over the whole field, and seek for an

overall optimal solution. Hence the flow recovery at one pixel relies on the flow

recovery at other pixels.

• While a linear system can be solved by standard numerical schemes for Least

Squares Error (LSE) or Least Absolute Error (LAE) solutions for the local system,

diffusion or diffusion-reaction processes are needed to find the optimal solution

for global computation.

Both methods thus have strength and weakness in different aspects.

• Local computation suffers the aperture problem. In contrast to this situation, global

methods have high accuracy in smooth ares, as the flow can be smoothly diffused

from neighbouring pixels.

• Local computation is more robust to noise, as been observed by (Galvin et al.

1998) and (Barron et al. 1994) from experiments conducted on sequences with

noise added. Moreover, the recovery error at one pixel does not interact with the

flow recovery of other pixels; whereas the diffusion process of global methods

may propagate one pixel’s error to other pixels.

The complementary effects of the two methods have been studied. In (Uras et al. 1988),

the flow obtained by local computation is post-processed by a regularization proce-

dure. Briefly, this approach partitions the image into 8 × 8 blocks. In each block, the

most reliable flow vector is used as the flow for all pixels. Although this subsampling

regularization is not global, its effectiveness illustrates the necessity to exploit motion

consistency for performance improvement.

In fact, regularizing ill-posed local computation by global regularization is a typical so-

lution to overcome the ill-posedness. The integration of local computation and global

regularization has been discussed in (Bertero et al. 1988), in a general context of solv-

ing inverse problems in early vision. It is further applied to optical flow computation

in (Bruhn et al. 2005), which substitutes the data term in Horn-Schunck functional by
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Lucas-Kanade’s local system. In the simplest settings, the Horn-Schunck functional is

modified to

E =
∫ ∫

Ω

⎡⎣∥∥∥∥∥A

[
u

v

]
−�b

∥∥∥∥∥
2

2

⎤⎦+ λ
[
(‖∇u‖2 + ‖∇v‖2)

]
dxdy, (2.21)

where A are�b are defined in Eq.2.3, and λ is the constant balancing the two terms. In

this new energy functional, the data term improves the functional’s robustness, and the

smoothness term diffuses the flow into the area where local flow system fails. The work

also extends the formulation to anisotropic diffusion and spatio-temporal regulariza-

tion. However, as this combination scheme is still formulated as a global computation,

the error propagation effect still exists in the diffusion process.

In (Ohta 1991), a separate global regularization is designed to stabilize the local flow

results. In this method, a local computation recovers the flow field [u0, v0]; For each re-

covered vector, the reliability indices�r1 and�r2, expressed by the most and least reliable

directions scaled by the level of reliability, are quantitatively evaluated from the image

intensity. A global optimization functional

E(u, v) =
∫ ∫

Ω

⎡⎣(�r1 ·
[

u − u0

v − v0

])2

+

(
�r2 ·

[
u − u0

v − v0

])2⎤⎦+ α
[
‖∇u‖2 + ‖∇v‖2

]
dxdy

(2.22)

is minimized to accomplish the stabilization. As pointed out by the author, the stabi-

lization is more effective in textured regions than in smooth regions. Presumably this is

because local flow computation in smooth regions is error-prone, and the global stabi-

lization diffuses the errors to other pixels. This suggests that correcting the unreliable

flow before the spatial regularization is desirable.

The subspace constraint offers a good solution to this problem. On one hand, in

(Irani 2002), the application of subspace projection has demonstrated its capability to

correct the erroneous flow vectors arising from the aperture problem. On the other

hand, it provides a denoised input for the global regularization. However, the aggres-

sive assumption of a unique and rigid motion between the scene and camera limits its

application. In Chapter 5 of this dissertation, the problem is addressed by segmenting

the image into regions with consistent motion, which allows the global constraints to

be applied without ambiguity.
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2.5 Summary

In recent years, much effort has been dedicated to improving both local and global flow

computation techniques. However, several fundamental problems remain. Although

local computation suffers the aperture problem, it is robust to noise, as one pixel’s flow

recovery does not affect other flow vectors. If outliers can be effectively detected and

rejected from the linear system, the local patch can be safely enlarged to overcome

the aperture problem. However, not much work has been done in this area. This is

addressed in Chapter 3 and Chapter 4 of the thesis.

The complementary effects of local and global computation, although it has been no-

ticed and discussed in the literature, has only attracted limited research attention. As

a global constraint, the subspace constraint can effectively correct the erroneous flow

result from the local computation and facilitates the spatial regularization. However,

it has not been widely applied, due to the restrictive assumption of the rigid motion

pattern. If local computation, subspace projection and spatial regularization should

be combined without ambiguity, the motion discontinuity will be preserved at mo-

tion boundaries, while the motion consistency will be maintained in the interior of an

object. Such a combination scheme, is yet to be investigated. A possible solution is

proposed in Chapter 5 of this thesis.

Most top-performing flow computation methods favor translational or constant flow,

by assuming constant gradient or minimal flow variation. These methods are not suit-

able to recover fast rotation. This thesis presents two methods to respect fast rotation

in Chapter 6 and Chapter 7.
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Chapter 3

Measuring Local Motion
Inconsistency

Optical flow registers pixels that are projected from the same world point

onto consecutive frames by assuming that the point’s projected intensity

remains constant. However, this assumption in isolation is almost always

insufficient to pinpoint a pixel’s true correspondence in the next frame. This

insufficiency has to be solved by some supplementary “prior” assumptions.

Commonly, prior assumptions assume the flow field is smooth to some de-

gree, and therefore neighbouring pixels’ intensity or velocity can be utilized

to infer the flow vector uniquely. Such assumptions are applicable in most

image areas apart from the motion boundaries. As a result, flow computa-

tion in the presence of motion discontinuity remains a challenging problem.

Aiming at motion discontinuity preserving flow computation, this chapter

discusses how to detect motion inconsistency using evidence from the lo-

cal intensity variation pattern. Based on the theoretical analysis of solution

existence of a linear system, new measures are proposed to detect motion

inconsistency from one pixel, between two pixels and among a group of

pixels.
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3.1 Motion Inconsistency of One Pixel

The previous chapter has shown that motion boundaries are the primary challenge for

current optical flow techniques. This is because the computation has to postulate mo-

tion consistency to recover an optical flow vector meaningfully and uniquely for each

pixel. As a consequence, flow recovery is always problematic around motion bound-

aries, where spatially adjacent pixels may move independently without any consis-

tency. To overcome the difficulty, numerous techniques have been proposed. They

generally involve one or a combination of several following procedures:

• detect motion boundaries (e.g., (Xu et al. 2008), (Lei and Yang 2009), (Xiao et al.

2006));

• measure or predict the reliability of the assumed flow computation model, i.e.,

flow confidence (e.g., (Ohta 1991), (Uras et al. 1988),(Bruhn and Weickert 2006));

• relate a pixel’s velocity only to those pixels that have consistent motion patterns

(e.g., (Sun et al. 2008), (Zimmer et al. 2009)).

This chapter investigates the connection between flow consistency, motion boundary,

computation fidelity and the intensity variation, in order to handle these tasks effi-

ciently. Motion inconsistency detected from one pixel, between two pixels and among

a group of pixels are proposed. These detection measures will be applied in the flow

computation techniques presented in subsequent Chapters.

3.1 Motion Inconsistency of One Pixel

In this work, we limit the discussion to the scope that motion is the only cause for the

image intensity change in the temporal dimension. If the motion of a scene point is

coherent, the temporal variation of its image intensity is closely related to the spatial

variation. For example, the basic optical flow constraint states that Et is a linear com-

bination of Ex and Ey. Conversely, if the intensity temporal variation is independent of

the spatial variation, the independence can be attributed to unexpected motion such as

occlusion or discontinuity. Pixels affected by inconsistent motion are generally outliers

in a local system. In this section, we show that the inconsistency may be detected from

one pixel’s second order partial derivatives. The detection strategy is suitable for the

following motion models.
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1. The projected point’s intensity remains invariant in the sequence, and the spatial-

temporal variation of the flow vector vanishes;

2. The projected point’s spatio-temporal gradient remains invariant in the sequence.

In the first model, the brightness constancy assumption provides the baseline con-

straint of the flow vector at a pixel. This can be written as,

dE(x, y, t)
dt

= Exu + Eyv + Et = 0. (3.1)

By taking partial derivatives at both sides of Eq.3.1 with respect to x, y, and t, an under-

determined linear system for 8 unknowns is obtained,⎡⎢⎢⎣
Exx Exy Ex Ey 0 0 0 0

Exy Eyy 0 0 Ex Ey 0 0

Ext Eyt 0 0 0 0 Ex Ey

⎤⎥⎥⎦ �X = −

⎡⎢⎢⎣
Ext

Eyt

Ett

⎤⎥⎥⎦ . (3.2)

where �X =
[
u, v, ux, vx, uy, vy, ut, vt

]T. As the optical flow components are as-

sumed to have vanished spatio-temporal variation, Eq. 3.2 degenerates to⎡⎢⎢⎣
Exx Exy

Exy Eyy

Ext Eyt

⎤⎥⎥⎦
[

u

v

]
= −

⎡⎢⎢⎣
Ext

Eyt

Ett

⎤⎥⎥⎦ . (3.3)

It can be straightforwardly verified that the second model also leads to Eq. 3.3, which

can also be regarded as an extension of (Uras et al. 1988) from the spatial domain to the

spatio-temporal domain (see Section 2.2).

If Eq. 3.3 has at least one solution, there exists a flow vector that conforms with the mo-

tion assumptions. Furthermore, [Ext Eyt Ett]T is a linear combination of [Exx Exy Ext]T

and [Exy Eyy Eyt]T. Thus by elementary matrix operations, the 3D Hessian matrix H3D

can be transformed to

H3D =

⎡⎢⎢⎣
Exx Exy Ext

Exy Eyy Eyt

Ext Eyt Ett

⎤⎥⎥⎦ →

⎡⎢⎢⎣
Exx Exy 0

Exy Eyy 0

0 0 0

⎤⎥⎥⎦ =

[
H2D 0

O 0

]
.

Therefore, H3D and H2D have the same rank. Conversely, if the rank of H3D is higher

than H2D, the motion model has no solution. In other words, there does not exist a flow

vector that meets the motion assumptions. That is, the rank increase from a pixel’s H2D

to H3D indicates the presence of inconsistent motion. To the best of our knowledge at

the time of writing, this connection between the Hessian matrices rank increase and

motion inconsistency has not been discussed in the literature.
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3.2 Motion Inconsistency Between Two Pixels

The previous section shows that motion inconsistency may be reflected in a pixel’s

intensity variation pattern. In many applications, it is also important to detect whether

this pixel has flow that is consistent with another pixel in its neighbourhood. If the

pair of pixels have consistent motion, both pixels’ intensity information can be utilized

to improve the accuracy of the computed optical flow. Otherwise, the estimation can

become severely skewed. A related line of work is the pairwise affinity term proposed

in (Ren 2008). This is based on intensity contrast and is used to group pixels that are

likely to have consistent motion. This method, although it exploits spatial variation,

neglects the temporal variation information of the pixels, which is the direct cue for

motion. This section proposes estimating pairwise motion affinity by the 3D Hessian

matrices of the two pixels, which contains both spatial and temporal variation. The

detection strategy is suitable for motion that can be locally modeled by

H3D�V = �f ,

where �f is a vector of small magnitude. For instance, the two motion models discussed

in the previous section fit in the discussion of this section.

Let p and c be two pixels which satisfy the brightness constancy equation. Thus

each pixel is associated with a linear system, specifically H3D (p) �V (p) = �f (p) and

H3D (c) �V (c) = �f (c). If the two pixels have similar flow, i.e., �V(p) ≈ �V(c), this indi-

cates that the two linear systems have common solutions. Mathematically, a necessary

and sufficient condition for the two systems to have common solutions is that the two

solution manifolds Ω (c) and Ω (p) have non-trivial intersection (i.e. not only zero),

where

Ω (c) =
{

H+
3D(c)�f (c) + N(H3D(c))

}
Ω (p) =

{
H+

3D(p)�f (p) + N(H3D(p))
}

.2

Note that if the flow varies slowly,
∥∥∥�f (c)∥∥∥ and

∥∥∥�f (p)
∥∥∥ should vanish, and hence the in-

tersection of the solution manifolds is dominated by the intersection of N(H3D(c)) and

N(H3D(p)). Therefore, a lack of non-trivial intersection of N(H3D(c)) and N(H3D(p))

generally indicates flow inconsistency at p and c.

In the following discussion, we assume that the eigenvectors of H3D(p) are�ep
1 ,�ep

2 and

�ep
3 ; and their corresponding eigenvalues are sorted such that

∣∣λp
1

∣∣ ≥ ∣∣λp
2

∣∣ ≥ ∣∣λp
3

∣∣. The

2N (•) is the null space of the matrix, and + means the pseudo-inverse of the matrix.
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same notation is used for H3D(c), with the superscript replaced by c. The intersection

of the two solution manifolds thus falls into one of the following four cases:

Case 1: Rank(H3D (p)) = 1 and Rank(H3D (c)) = 1.

In this case,

N(H3D (c)) = Span {�ec
2,�ec

3} , N(H3D (p)) = Span
{
�ep

2 ,�ep
3
}

.

Since the vector space in our problem is R3, the intersection of the two planes is non-

trivial.

Case 2: Rank(H3D (p)) = 1 and Rank(H3D (c)) = 2.

In this case

N(H3D (c)) = Span {�ec
3} , N(H3D (p)) = Span

{
�ep

2 ,�ep
3
}

.

The two null spaces have trivial intersection if

N(H3D (c)) = Col(H3D (p)) ⊥ N(H3D (p)). (3.4)

where Col(H3D (p)) is the column space of (H3D (p)), and is spanned by �ep
1 . Thus

Eq.(3.4) reads

Span {�ec
3} = Span

{
�ep

1

}
.

Therefore, if �ec
3 is parallel to �ep

1 , the two solution manifolds have trivial intersection

only.3

Case 3: Rank(H3D (p)) = 2

In this case

N(H3D (p)) = Span
{
�ep

3
}

.

Either Rank(H3D (c)) = 1 or Rank(H3D (c)) = 2, so we have

Span {�ec
1} ⊂ Col(H3D (c)) ⊥ N(H3D (c)), Span

{
�ep

3
}
= N(H3D (p)).

Therefore, if �ec
1 is parallel to �ep

3 , Null(H3D (p)) ⊥ Null(H3D (c)), which indicates that

the two solution manifolds have trivial intersection.

Case 4: Rank(H3D (p)) = 3. In this case, N(H3D(p)) must have only trivial intersection

with N(H3D(c)).

3Eigenvectors whose inner product is greater than 0.95 are considered parallel.
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As analyzed above, the lack of non-trivial intersection of Ω(c) and Ω(p) provides evi-

dence for inconsistent motion. Therefore in practice, if this is detected from the eigen-

vectors of H3D(c) and H3D(p), the influence of pixels p and c on each other’s flow

computation should be inhibited. Note that the discussion for the 4 cases still holds if

p and c are swapped.

3.3 Motion Consistency among a Group of Pixels

Detecting motion inconsistency between a pair of pixels is important, yet the spectral

decomposition of all pixels is expensive. As consistency is more likely to happen in

most image regions, it is thus more efficient to detect motion inconsistency among a

group of pixels, and use the pixel-wise or pairwise inconsistency detection to reject

outliers only in the groups that exhibit inconsistency. For this purpose, this section

proposes a continuous quantity that measures the inconsistency of a generic linear

system. When this measure is applied to a local flow computation system, it is able to

identify the motion inconsistency in the local patch. Furthermore, it also predicts the

fidelity of the flow recovered by the system.

3.3.1 An Inconsistency Measure for Linear Systems

Let A�X = �b, where A ∈ R
m×n, �b ∈ R

m×1 denote a generic linear system. This is

a crucial model in a number of computer vision problems including optical flow, as

shown in Chapter 2. In many cases, the linear system is ill-posed in the sense that:

1. The solution of the system is not unique. This happens when the system is defi-

cient in independent constraints. Generally the deficiency can be detected by A’s

rank-deficiency or its infinite condition number. In practice, the existence of noise

ensures that matrix A generally has full rank. Therefore real applications do not

tend to have rank deficiency, but rather are “well-posed but ill-conditioned”, as

their condition numbers are large but finite.

2. The solution of the system does not exist. This occurs where the system has “ex-

tra” constraints that are mutually contradictory. In this case, the pseudo-solution

is severely distorted, as the system contains at least one constraint that is incon-

sistent with the true vector �X. It is thus important to detect the inconsistency
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before the pseudo-solution is applied. Therefore if the inconsistency is detected,

the linear system is not an appropriate model for the problem.

Mathematically, a necessary and sufficient condition for the system to be consistent is

that the coefficient matrix A and the augmented matrix [A|�b] have the same rank. Thus

it seems plausible to detect inconsistency by counting the number of the non-trivial

singular values of each matrix and taking the difference. However, in real applications,

due to the existence of noise, A and [A|�b] are always of full rank. Furthermore, if

m > n, both matrices have rank equal to the number of their columns. Hence there is

always rank increase from A to [A|�b]. To reduce the expected effect of noise on the rank

estimation, a threshold has to be defined to model the noise level. As pointed out by

Shechtman-Irani in (Shechtman and Irani 2007), a wrong threshold may lead to wrong

rank detection. Furthermore, rank comparison leads to a binary decision of consistency

or inconsistency, which is inflexible. Shechtman-Irani suggested indexing the rank

comparison by one continuous quantity, which is further thresholded to make the rank

increase decision. This idea is novel in the sense that it unifies the rank comparison to

one quantity rather than comparing two individual rank numbers. Also, thresholding

a continuous rank-increase measure is more sensible and direct than thresholding the

eigenvalues. However Shechtman-Irani’s rank increase measure is limited to 3D and

2D structure tensors.

This section proposed a different sufficient and necessary condition for a general sys-

tem A�X =�b to be consistent.

Theorem 1 Define�s = AT�b, G = AT A, and let real numbers λ1 ≥ · · · ≥ λn be the sorted

eigenvalues of G and�e1, · · · ,�en be the corresponding eigenvectors. Let θ defined by

θ =

⎧⎨⎩ 0 if all eigenvalues are zero

∑r
i=1

(�sT ·�ei)
2

λi
if G has r nonzero eigenvalues

(3.5)

System A�X =�b is consistent if and only if
∥∥∥�b∥∥∥2

2
= θ.

Proof If all the eigenvalues of G are zero, both G and A have rank zero. In this case,

system A�X =�b is consistent if and only if�b is a zero vector, i.e.,

rank(A) = rank([A|�b]) = 0 ⇔
∥∥∥�b∥∥∥2

2
= 0. (3.6)
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3.3 Motion Consistency among a Group of Pixels

If G has r ≥ 1 eigenvalues, both G and A have rank r. Let A = USVT be the singular

value decomposition of A, where U and V are orthogonal matrices and the diagonal

matrix S contains the non-zero singular values of A, i.e.,
√

λ1,
√

λ2, · · · ,
√

λr.

Denote the ith column of U by �ui. rank(A) = rank([A|�b]) if and only if �b is in the

column space of A, which is spanned by the first r columns of U. That is,

rank(A) = rank([A|�b])
�∥∥∥�b∥∥∥2

2
=

r

∑
i=1

(�bT�ui)
2; (3.7)

Note that G = AT A = VS2VT, and hence matrix V contains the eigenvectors of G, i.e.,

V = [�e1 �e2 · · · �en] . (3.8)

It can then be verified that

A�ei = USVT�ei =
√

λi�ui. (3.9)

By the definition of �p, Eq.3.9 leads to

�sT�ei =�bT A�ei =
√

λi�bT�ui. (3.10)

Combining with Eq. 3.7, one can obtain

r

∑
i=1

(
�sT�ei

)2

λi
=

r

∑
i=1

(�bT�ui)
2 =

∥∥∥�b∥∥∥2

2
⇔ rank(A) = rank([A|�b]) (3.11)

Together Eq.3.6 and Eq.3.11 prove that

rank(A) = rank([A|�b]) ⇔
∥∥∥�b∥∥∥2

2
= θ.

This proves Theorem 1.

The theorem has a direct corollary as stated below.

Corollary 2 For any vector�b and θ defined as in Theorem 1,
∥∥∥�b∥∥∥2

2
≥ θ.

Proof Here we use the same notations as in the proof of Theorem 1. With the columns

of U forming an orthogonal basis of Rm×m, any vector�b ∈ R
m×1 satisfies∥∥∥�b∥∥∥2

2
=

m

∑
i=1

(�bT�ui)
2 ≥

r

∑
i=1

(�bT�ui)
2. (3.12)
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Substituting Eq.3.11 into the R.H.S. of the inequality 3.12, the following inequality can

be easily verified. ∥∥∥�b∥∥∥2

2
≥ θ. (3.13)

Theorem 1 states that
∥∥∥�b∥∥∥2

2
can not take any arbitrary value if the system is expected to

have solution(s). In other words, for the system to be solvable,
∥∥∥�b∥∥∥2

2
must equal an ideal

value θ. Theoretically, if the constraints in A�X =�b are strictly consistent, then
∥∥∥�b∥∥∥2

2
− θ

is exactly zero, and vice versa. However, due to the existence of noise, each constraint

is a noisy observation of the true underlying data. Therefore, it is more practical to

allow
∥∥∥�b∥∥∥2

2
− θ = nε, where nε is a noise signal of small magnitude. Otherwise, a

large magnitude of
∥∥∥�b∥∥∥2

2
− θ is evidence for rank increase from the coefficient matrix to

the augmented matrix, and hence the inconsistency of the constraints can be inferred.

Therefore our COnstraint INconsistency (COIN) measure is defined by

m =
∥∥∥�b∥∥∥2

2
− θ. (3.14)

The COIN measure depends continuously on the underlying data, which is important

to indicate the degree of inconsistency of a linear system faithfully. It also has low

computational cost compared to direct rank comparison, as it uses the eigendecompo-

sition AT A only; whereas the rank comparison of A and [A|�b] requires the SVD of both

matrices. It is worth noting that θ, which is the projection of�b to the column space of

A, coincides with the least squares solution of the system A�X = �b. In practice, it can

therefore also be obtained as AA+�b, where A+ is the Penrose-Moore pseudoinverse,

or by other methods for calculating a least squares solution and residual.

3.3.2 An Example of the Lucas-Kanade System

Recall the Lucas-Kanade linear system introduced in Chapter 2. In this linear system,

AT A and [A|�b]T[A|�b] are 2D and 3D structure tensors, i.e.,

AT A =

[
∑ ExEx ∑ ExEy

∑ ExEy ∑ EyEy

]
;

[
A|�b

]T [
A|�b

]
=

⎡⎢⎢⎣
∑ ExEx ∑ ExEy ∑ ExEt

∑ ExEy ∑ EyEy ∑ EyEt

∑ ExEt ∑ EyEt ∑ EtEt

⎤⎥⎥⎦ , (3.15)
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3.3 Motion Consistency among a Group of Pixels

where the summation is taken over the local area. Let λ1 ≥ λ2 be the eigenvalues of the

2D structure tensor, and�e1,�e2 be the corresponding eigenvectors. The COIN measure

in this example is given by

m =

⎧⎨⎩ ∑ E2
t if rank(A) = 0;

∑ E2
t − ∑r

i=1
(�p·�ei)

2

λi
if rank(A) = r;

(3.16)

where �p =
[
∑ ExEt ∑ EyEt

]
.

By applying Theorem 1 to this example and noting that

rank(AT A) = rank(A), rank([A|�b]T[A|�b]) = rank([A|�b]),

it can be concluded that the Lucas-Kanade system is consistent if and only if the 2D and 3D

structure tensors have same rank.

It has been noted that if the 3D structure tensor has full rank, then the local spatial-

temporal patch has no coherent motion (e.g., (Haussecker et al. 1998)). In (Shechtman

and Irani 2007), Shechtman and Irani generalized this observation by pointing out that,

if the 3D structure tensor has higher rank than the 2D structure tensor, then there is no

coherent motion in the patch. The rationale of the generalization, however, is based on

a case by case study of all possible ranks which the structure tensors may have (Section

4, (Shechtman and Irani 2007)). This example sheds a different light on Shechtman and

Irani’s theory. That is, the 3D structure tensor’s rank increase, which implies lack of

coherent motion, is just another expression of the inconsistency among the optical flow

constraints in Lucas-Kanade’s system.

3.3.3 Measuring flow confidence and motion boundary by COIN

Since the advent of Lucas-Kanade flow computation, many sophisticated local flow

models have been proposed (e.g., (Uras et al. 1988), (Shi and Tomasi 1994)). Commonly,

they are modeled as solving a linear system A�X =�b, where A and�b contain the spatial

and temporal derivatives of E at several positions, and �X is the unknown vector of

motion parameters (see Chapter 2 for details). The discussion on the general constraint

inconsistency thus is applicable to these local optical flow computation systems. In the

following, we discuss two applications of the COIN measure in the context of optical

flow computation. These are motion boundary detection and flow confidence measure.
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Motion Boundary Detection

Where the prior assumption for a local patch is valid for the underlying data, the op-

tical flow constraints are consistent. Conversely, if the linear system of these optical

flow constraints show clear inconsistency, it generally marks the violation of the prior

assumption. One primary reason for the violation is the presence of motion boundary,

as spatially adjacent pixels may move with completely unrelated velocities. Thus the

COIN measure can be applied as a simple motion boundary detector, with the large

COIN value signaling a high probability of a motion boundary’s presence.

In the literature, Shechtman-Irani proposed detecting motion inconsistency by their

rank-increase measure from 2D- to 3D structure tensor, in the framework of human be-

havior recognition. As explained in Section 3.3.2, measuring rank increase from 2D- to

3D structure tensor is equivalent to measuring the constraint consistency of the Lucas-

Kanade optical flow computation system.

The COIN and the rank-increase measure are related in the sense that, if the linear

system A�X = �b degenerates to Lucas-Kanade’s optical flow computation (Lucas and

Kanade 1981), both measures detect motion inconsistency by comparing the continu-

ous rank difference between the 2D structure tensor and 3D structure tensor. However,

the two measures are fundamentally different in the following aspects. First, the pro-

posed measure is not limited to Lucas-Kanade’s system. The arrays A and�b can be gen-

erated by one or several prior models that best suit the underlying data. whereas the

rank-increase measure is limited to 2D and 3D structure tensor. Second, the two mea-

sures have different definitions rooted from different mathematical theories. The rank-

increase measure is based on the interlacing property of symmetric matrices (pp.396,

(Golub and Van Loan 1996)), and is defined as

Δr =
det(T3D)

det(T2D)λl
,

where T2D and T3D denote the Lucas-Kanade 2D and 3D structure tensor (Lucas and

Kanade 1981), and λl is the largest eigenvalue of T3D. This definition does not take

“divided by zero” into consideration; whereas the proposed measure is based on the

projection of�b to the column space of A, and avoids zeros in the denominator. Third,

the rank increase measure works well if the camera motion is negligible relative to

the object motion, but results in false positive detection if the camera undergoes fast
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3.3 Motion Consistency among a Group of Pixels

motion and the background lacks spatial texture. In this case, both λl and det(T3D)
det(T2D)

cor-

respond to the temporal eigenvalue (Lindeberg et al. 2004). As a consequence, the mea-

sure value is near to 1, which indicates motion inconsistency even if the background

undergoes uniform motion. In contrast, the proposed measure is robust to fast camera

motion.

Flow Confidence Measurement

If a local patch contains motion boundaries, the system is prone to collect constraints

that are valid for some neighbouring pixels but invalid for the center pixel, as they are

from different motion segments. Consequently the estimated solution is unreliable. In

general, the more inconsistent the two motion patterns, the more distorted the estima-

tion. As explained in Section 2.2.4, a practical approach is to predict the unreliability,

and replace the invalid system by an appropriate model.

In this work, we propose measuring the flow confidence based on the COIN measure.

As discussed in Chapter 2, a proper confidence measure should be free of the scaling

ambiguity. Therefore, �b is normalized to unit norm and A is scaled accordingly, if∥∥∥�b∥∥∥
2
�= 0 (if

∥∥∥�b∥∥∥
2
= 0, A and [A|�b] must have the same rank). Therefore our confidence

measure is defined as

κ =

⎧⎪⎨⎪⎩
1, if

∥∥∥�b∥∥∥
2
= 0.

1 − m

‖�b‖2
2

, otherwise.
(3.17)

where m is the COIN measure. By Corollary 2, it can be verified that κ ∈ [0, 1], where

a small κ → 0 indicates the low confidence of the computed flow.

Different from the confidence measures reviewed in Section 2.2.3, κ measures the flow

confidence by the non-existence of the system solution. The coherency measure and cor-

ner measure (Haussecker et al. 1998) serve the same purpose, however, they are specific

to 3D structure tensors.

Research has also been carried out on measuring the certainty of a flow vector after flow

computation. In (Ohta 1990) and (Bruhn and Weickert 2006), such certainty measures

are defined as the inverse of specially designed energy terms associated with particular

optical flow techniques. In (Kondermann et al. 2007) and (Kondermann et al. 2008),

the fidelity of a computed flow vector is measured by its conformity to neighbouring

flow vectors, according to a linear subspace or a statistical model. These measures,

although they can be applied to the flow obtained by any method, require training
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data to learn the parameters of the models. Moreover, they can only be applied to

dense flow field computation. The normalized COIN measure predicts the reliability

of a flow vector before it is recovered, which is important for the algorithm to discard

inappropriate constraints before flow computation. Furthermore, it does not require

dense precomputation of flow vectors in the neighbourhood.

3.4 Experimental Results

3.4.1 Measuring Flow Confidence

The normalized COIN measure is compared to other classical confidence measures

on benchmark sequences4: RubberWhale, Hydrangea, Grove2, Grove3 (Baker et al.

2007), Short Street (McCane et al. 2001) and Yosemite. The measures are least signif-

icant eigenvalue (Lucas and Kanade 1981), determinant (Barron et al. 1994), inverse

condition number (Uras et al. 1988) and the corner measure (Haussecker et al. 1998),

with large value indicating high confidence.

To have a fair comparison with the corner measure, which is specific to the 3D structure

tensor, Lucas-Kanade’s flow technique is employed to recover the flow field. The quan-

titative evaluation follows the routine of “sparsification” used in (Bruhn and Weickert

2006) and (Kondermann et al. 2008). That is, given the confidence scores over the whole

image, the n% (n = 0, · · · , 99) pixels that have the lowest scores are removed, and the

average flow error of the remaining pixels are computed.5 The end-point error e at

a pixel (i, j) is given by the Euclidean distance between the true flow �g(i, j) and the

computed flow �v(i, j), i.e.,

e(i, j) = ‖�g(i, j)−�v(i, j)‖2 .

If the scoring scheme works well, the removal is expected to decrease the average error

of the remaining flow vectors. In the ideal case, pixels that have the smallest confidence

scores are exactly the pixels that have the largest errors. This ideal case provides an

optimal score Copt(i, j) = 1− e(i, j)/ max(i,j)(e(i, j)) as a benchmark (Kondermann et al.

2008).

4Properties of each test sequence used in this thesis are described with details in Appendix A
5On RubberWhale and Hydrangea, some pixels’ ground truth flows are unknown, which are coded

as the black color. These pixels are excluded from the reported error statistics.
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As some measures (the least significant eigenvalue, determinant and inverse condition

number) depend on the ill-condition of the system (the aperture problem), whereas

others (the corner measure and the normalized COIN) depend on the inconsistency

of the system (the motion boundary problem), it seems that different choices of the

local patch size may favor different measures – a small patch is more likely to suffer

the aperture problem than the motion boundary problem, whereas a large patch is in

the opposite situation. To test this factor, the algorithm is implemented by varying the

patch size from 7× 7 to 19× 19 gradually. The experiments show that on all sequences

except RubberWhale, the ranking of different measures is not affected by the patch

size selection. On RubberWhale sequence, the comparison between the corner mea-

sure and the normalized COIN measure is slightly affected by the size of the patch,

when n > 70%. Fig. 3.1 plots the average errors during the sparsification course on

RubberWhale, Hydrangea and Yosemite, where flow is computed on 7 × 7, 13 × 13

and 19 × 19 patches. As the patch size does not affect the comparison on most se-

quences, Fig. 3.2 presents the results on Grove2, Grove3 and Street for patch size 7× 7

only.

These experimental results show that the normalized COIN measure outperforms the

other measures uniformly on Hydrangea, Grove2, Grove3 and Street. On Rubber-

Whale, the normalized COIN measure is only inferior to the corner measure over a por-

tion (< 30%) of the whole range when the local patch size is 7 × 7. With the patch size

increased, this portion is reduced, and the performance difference gets smaller. When

the patch size reaches to 19 × 19, the normalized COIN measure performs better. On

Yosemite, most measures (except the inverse condition number) perform comparably.

Most likely this is because Yosemite does not contain as much motion inconsistency as

other sequences. Experiments are also conducted on Urban2 and Urban3. However,

the motion of these two sequences are too large to be recovered by the Lucas-Kanade

method with reasonable accuracy, so the confidence measure on the computed flow

does not make much sense.

3.4.2 Motion Boundary Detection

To quantitatively evaluate the performance of the COIN measure on motion boundary

detection, it is necessary to compare the detected motion boundary to the ground truth.

Instead of manually labeling the frames, in this work the ground truth is generated

from the optical flow of benchmark sequences. Specifically, at each pixel (i, j), the
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Figure 3.1. Comparison of various measures on RubberWhale, Hydrangea and Yosemite. The

lower curve indicates better performance, where the lowest one corresponds to the

theoretically ideal performance. All plots have the same legends.
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Grove2 Grove 3 Short Street
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Figure 3.2. Comparison of various confidence measures on Grove2, Grove3 and Short Street. The

lowest curve indicates the theoretically ideal performance. The COIN measure achieves

best performance on all three sequences.

spatial variation of the ground truth flow (u(i, j), v(i, j)) is computed by

γ(i, j) = |ux(i, j)|+ ∣∣uy(i, j)
∣∣+ |vx(i, j)|+ ∣∣vy(i, j)

∣∣ . (3.18)

Next, γ(i, j) is thresholded over the whole image, with the partial derivatives in Eq.3.18

are approximated by central differencing (forward or backward differencing at image

boundaries). Fig 3.3 shows the ground truth flow and the motion boundary obtained

from widely used benchmark sequences.

The COIN measure is compared to the rank-increase measure by Shechtman-Irani. Par-

ticularly, at each pixel, the 2D and 3D structure tensors are computed from the intensity.

The COIN measure (Eq. 3.16) and the rank-increase measure are calculated from the

tensors’ eigen-systems. In both cases, a large value indicates a high level of motion

inconsistency. The thresholds are varied for both measures, and the pixels that pass

the thresholding are labeled as detected motion boundary pixels. The recall-precision

rates (P.138, (Olson 2008)) are computed for both detection scores, as demonstrated in

Fig 3.3. Experiments are conducted on RubberWhale, Hydrangea, Grove2, Grove3,

Urban2, Urban3 and Short Street.
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Figure 3.3. Motion boundary detection results on Hydrangea, Grove3 and Short Street. First

row: the color-coded flow ground truth; Second row: the motion boundaries obtained

from the ground truth flow; Third and forth row: image maps of the normalized COIN

measure and the rank increase measure; the intensity has been scaled for better illus-

tration. Fifth row: The recall-precision curves of the motion boundary detection by the

normalized COIN measure and the rank increase measure; the higher curve indicates

better performance.
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3.5 Summary

On all sequences except Short Street, the COIN measure achieves superior perfor-

mance. Note that on sequence Hydrangea, the rank increase measure’s detection is

rather unsatisfactory. The reason is as analyzed in Section 3.3.3. The background in the

sequence undergoes a motion at about 4 pixels/frame, but lacks texture compared to

the moving hydrangea. This problem is avoided on sequence Short Street, as the back-

ground’s velocity (≈ 1 pixel/frame) is slower than the foreground (≈ 2 pixels/frame),

but it has richer spatial textures. Unlike the rank-increase measure, the COIN measure

performs stably even when the camera undergoes fast motion.

3.5 Summary

This chapter has investigated how to find evidence of motion inconsistency from the

intensity variation pattern of one, two or multiple pixels. The first part of the chapter

has shown that, the presence of occlusion or motion boundaries may be signaled by

the rank increase from a pixel’s spatial Hessian matrix to its spatio-temporal Hessian

matrix. The second part of the chapter has examined the pairwise motion inconsistency

reflected in the eigen-systems of their spatio-temporal Hessian matrices. Finally, the

third part of this chapter has proposed a continuous measure for inconsistency in linear

system of equations. This measure, when applied to a system of linear optical flow

constraints, can be used to predict the confidence with which flow can be recovered

at each pixel. Analysis suggests and experimental results confirm that it outperforms

other measures that have been previously used for this task, and that it can be used as

a simple and effective motion boundary detector. The motion inconsistency detection

methods proposed in this chapter can be used in later chapters to preserve motion

boundaries in the framework of local optical flow computation.
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Chapter 4

Discontinuity-Preserving
Local Flow Computation

In the previous chapter, an inconsistency measure has been proposed to sig-

nal the presence of motion outliers in a local flow system. This chapter in-

vestigates how to inhibit or remove these outliers from a detected system.

To this end, a variety of weighting functions are studied to down-weight

pixels that have inconsistent patterns such as spatial position, intensity, in-

tensity variation and motion. As these weighting functions are not limited

to a particular local computation model, analysis on them assists the re-

search conducted in further chapters.
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4.1 The Linear System Model

As has been seen in the previous chapters, the common dilemma that local computa-

tion methods face is the generalized aperture problem (Jepson and Black 1993). There-

fore, to achieve dense flow computation with motion discontinuity preserved by local

methods, the local region has to be large enough to contain adequate intensity varia-

tion. Thus operations such as motion boundary detection, outliers removal and robust

estimation are necessary. In the previous chapter, the COIN measure is introduced to

detect systems that suffer motion outliers. This chapter goes one step further by de-

tecting the outliers and inhibiting their influence. Section 3.2 proposes a pixel-wise

and a pairwise motion inconsistency detection methods, which can be developed to

reject outliers in a local model (as will be verified experimentally in Chapter 5). How-

ever, as they require the eigen-decomposition of the spatio-temporal Hessian matrices,

it is computationally expensive if the algorithm is implemented pyramidally (as ex-

plained later). Therefore in this chapter, several low cost weighting functions suitable

for pyramidal implementation are studied. In particular, the optical flow constraints

are weighted dynamically in the process of multi-level multi-stage warping. In each

warping stage, various weighting functions are applied to weight down outliers in-

dicated by inconsistent patterns such as spatial position, intensity, intensity variation

or motion. These weight functions adapt the local computation model A�X = �b to

WA�X = W�b, where the diagonal matrix W collects the weights for each pixel. The

least squares solution of the weighted system estimates the flow vector.

To facilitate the explanation and description, the discussion of the weighting functions

is carried out on an example local computation model that assumes gradient constancy

and the local affine motion. Nevertheless, these weighting functions are not limited to

any particular local computation model. Moreover, they can be (and some of them

have been) applied to global computation.

4.1 The Linear System Model

In this chapter, the local computation model assumes that within a local patch: 1)

the 3D gradient of a pixel, i.e., [ Ex Ey Et ]T is preserved between two consecutive

frames; 2) the flow field is locally affine.

Let k index the kth pixel of the patch (in scan order) at coordinate position [x(k), y(k)],

∇3E(k) be the 3D gradient vector, and [u(k), v(k)] be the flow vector of the pixel. The
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first assumption means

d∇3E(k)

dt
=

∂∇3E(k)

∂x
u(k) +

∂∇3E(k)

∂y
v(k) +

∂∇3E(k)

∂t
= 0; (4.1)

while the second assumption gives

u(k) = α1x(k) + α2y(k) + α3

v(k) = α4x(k) + α5y(k) + α6, (4.2)

where αi’s are the affine motion parameters.

Denote the flow of the patch center by (u(c), v(c)), and the coordinate position by

[x(c), y(c)]. Similar to the kth pixel, (u(c), v(c)) can be expressed by

u(c) = α1x(c) + α2y(c) + α3

v(c) = α4x(c) + α5y(c) + α6, (4.3)

Eq.4.2 and Eq.4.3 lead to

u(k) = u(c) + α1Δx(k) + α2Δy(k)

v(k) = v(c) + α4Δx(k) + α5Δy(k), (4.4)

where Δx(k) = x(k) − x(c) and Δy(k) = y(k) − y(c). By substituting Eq.4.4 to Eq.4.1, a

system of 3 equations for the patch center’s motion �X =
[

u v α1 α2 α4 α5

]
is

obtained at the kth pixel,[
∂∇3E(k)

∂x
∂∇3E(k)

∂y
∂∇3E(k)

∂x Δx(k) ∂∇3E(k)

∂x Δy(k) ∂∇3E(k)

∂y Δx(k) ∂∇3E(k)

∂y Δy(k)
]
�X

= −∂∇3E(k)

∂t
. (4.5)

Or in an extended form⎡⎢⎢⎣
E(k)

xx E(k)
xy E(k)

xx Δx(k) E(k)
xx Δy(k) E(k)

xy Δx(k) E(k)
xy Δy(k)

E(k)
xy E(k)

yy E(k)
xy Δx(k) E(k)

xy Δy(k) E(k)
yy Δx(k) E(k)

yy Δy(k)

E(k)
xt E(k)

yt E(k)
xt Δx(k) E(k)

xt Δy(k) E(k)
yt Δx(k) E(k)

yt Δy(k)

⎤⎥⎥⎦ �X = −

⎡⎢⎢⎣
E(k)

xt

E(k)
yt

E(k)
tt

⎤⎥⎥⎦ . (4.6)

Briefly, Eq.4.5 can be written as A(k)�X = �b(k), and the collection of all the linear con-

straints for �X at all pixels form a linear system in the form of A�X =�b.
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4.2 Weighting Functions for the Local Model

Given that the patch size is large enough to generate an overdetermined system, if

all pixels have the same motion parameter �X (with a small amount of noise allowed),

the standard Least Squares Error (LSE) or Least Absolute Error (LAE) solutions of the

system generally estimates �X robustly. However, if the motion of some pixels is signif-

icantly different from �X, the system is invalid and results in severely skewed estima-

tion. Unfortunately, such distortion happens frequently around motion boundaries. To

improve the computation accuracy in such areas, the linear system should inhibit the

constraints by pixels that have a motion pattern inconsistent with �X. One approach

to the inhibition is to weight the pixels differently, by finding evidence for motion in-

consistency from the intensity variation. Preferably, the kth pixel should be weighted

heavily if its motion is consistent with the patch center; and be weighted lightly oth-

erwise. The simplest weighting function is based on the kth pixel’s distance from the

patch center (e.g., (Tomasi and Kanade 1991)). More sophisticated schemes base the

weighting functions on the intensity affinity (e.g., (Ren 2008)), motion affinity (e.g.,

(Niu et al. 2008)), occlusion and motion boundary indexing (e.g., (Niu et al. 2007),(Sand

and Teller 2006)). In this work, we are going to look at 6 different possibilities for

applying weighting functions to the individual system A(k)�X =�b(k).

4.2.1 Spatial Proximity Term

It has been a common practice to weight a pixel by its spatial distance from the patch

center (p.197, (Trucco and Verri 2006)). Following this convention, the first weight-

ing function studied in this chapter is based on the normal distribution of the spatial

proximity. In particular, the weight for the kth pixel is given by

ω
(k)
distance = exp

(
− (Δx(k))2 + (Δy(k))2

2σ2
s

)
, (4.7)

where σs = 4 in this work.

4.2.2 Pairwise Intensity Affinity Term

Significant intensity contrast between neighbouring pixels is an important cue for ob-

ject boundary. Therefore it has been used widely in previous works for the weight-

ing/segmenting purpose. In (Niu et al. 2007), the kth pixel is weighted by a hard
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thresholding function

ω(k) =

⎧⎨⎩ 1 if
∣∣∣I(k) − I(c)

∣∣∣ < T

0 otherwise.
(4.8)

where I(k) and I(c) are the intensity values of the kth pixel and the patch center, and

T is 1/8 of the total intensity levels summed over the color channels. In (Sand and

Teller 2006), in the context of bilateral filtering, a continuous weight function in the

form of normalized distribution is given by

ω(k) =
1√

2πσ2
exp

⎛⎜⎝−
(

I(k) − I(c)
)2

2σ2

⎞⎟⎠ (4.9)

where the standard deviation σ is defined to be 20. In (Ren 2008), a soft affinity term

is defined as an exponential function of the boundary energy along the path link-

ing the two pixels. This affinity term, as it requires probability-of-boundary detection

(Martin et al. 2004) to find the boundary, is computationally more expensive than the

direct comparison of intensity values. In this work, combining (Niu et al. 2007) and

(Sand and Teller 2006), the pairwise intensity affinity term is defined by

ω
(k)
intensity =

⎧⎪⎨⎪⎩ exp
(
−|I(k)−I(c)|

σ

)
if
∣∣∣I(k) − I(c)

∣∣∣ < 2σ

0 otherwise.
(4.10)

This weighting term is basically a continuous function with hard thresholding. The σ

is defined to be 1/16 of the the total intensity levels summed over the color channels.

For example, σ = 16 for 8-bit gray-scale sequences.

4.2.3 Dynamic Occlusion and Boundary Detection

In order to handle large displacement, contemporary optical flow techniques gener-

ally implement the computation algorithm in the manner of pyramidal coarse-to-fine

iterative refinement. Particularly, the Gaussian pyramid pair are built by subsampling

the original consecutive frames. Initialized by zeros, the flow computation starts from

the coarsest level and is propagated to the finer levels. Furthermore, in each level,

the flow is refined by multiple stages. In each stage τ, the local patch (in the second

subsampled image) centered at a pixel (x, y) is warped according to the current flow

(uτ(x, y), vτ(x, y)). A refined temporal difference δEτ
t is obtained between the patch
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in the first image and the warped patch, which is input to the computation system

and yields the flow refinement (δuτ(x, y), δvτ(x, y)). The flow at stage τ + 1 is then

updated by

uτ+1(x, y) = uτ(x, y) + δuτ(x, y), , vτ+1(x, y) = vτ(x, y) + δvτ(x, y).

Flow recovered in stage τ thus can be utilized to interpret the occurrence of occlu-

sion or motion boundaries and helps reject outliers in stage τ + 1, as described in the

following sub sections.

Occlusion Detection

Significant temporal intensity variation is generally assumed to be a consequence of

occlusion, and therefore |Et| has been widely used to detect occlusion (e.g.,(Xiao et al.

2006),(Sand and Teller 2006)). However, this heuristic is not always true, as significant

|Ex| or
∣∣Ey

∣∣ may also lead to large |Et|, even when the object is under a simple constant

translation against a static background. (Niu et al. 2008) proposes using the normal-

ized term |Et| /
(|Ex|+

∣∣Ey
∣∣), which is bounded by max(|u| , |v|), given the brightness

constancy assumption is valid. The occlusion likelihood weighting term is defined by:

ω
(k,τ)
occlusion =

⎧⎨⎩ 0 if
∣∣∣δE(k,τ)

t

∣∣∣ /
(∣∣∣E(k)

x

∣∣∣+ ∣∣∣E(k)
y

∣∣∣) > Tτ

1 otherwise,
(4.11)

The threshold Tτ can be given if prior knowledge of the maximum image velocity

is available. In this work, as the flow computation algorithm is implemented in the

manner of pyramidal coarse-to-fine refinement, where the increase of the flow should

be smaller than 1 pixel, Tτ is defined to be 1.

In the framework of variational flow computation, occlusion detection based on inter-

mediate flow has been discussed in (Sand and Teller 2006), which proposes using the

positiveness of the flow divergence, i.e.,

div(u, v) = ux + vy, (4.12)

to label pixels affected by occlusion. This detector is studied in this work in the context

for local flow computation. Following (Sand and Teller 2006), the divergence function

is defined by

dτ(x, y) =

{
div(uτ, vτ) if div(uτ, vτ) < 0

0 otherwise,
(4.13)
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The weighting function is defined by the Gaussian distribution function

ω
(k,τ)
divergence = exp

⎛⎜⎝−
(

dτ(x(k), y(k))
)2

2σ2
d

⎞⎟⎠ (4.14)

where σd = 0.3, as defined in (Sand and Teller 2006). It is worth noting that the di-

vergence of 2D velocity is a measure of the shape expansion (Cipolla and Blake 1997),

therefore it is only suitable to detect the occlusion caused by scale change. The experi-

mental results presented in Section 4.3 also illustrate this limitation.

Motion Boundary Detection

In (Niu et al. 2007), large temporal variation of the flow, i.e., |u|t + |v|t, is proposed as

a low cost indicator of the motion boundary; and the residual error |Exu + Eyv + Et|
at each pixel is used to signal motion discontinuity during the dynamic selection of

temporal neighbours. In this work, hard-thresholding weighting functions based on

the detectors in (Niu et al. 2007) is studied.

ω
(k,τ)
residual =

⎧⎨⎩ 0 if
∣∣∣E(k)

x u(k,τ) + E(k)
y v(k,τ) + E(k)

t

∣∣∣ > Tτ

1 otherwise,
(4.15)

where Tτ is determined by the standard deviation of the residual errors over the whole

image.

The difference between the flow recovered at the kth pixel and the patch center c reveals

the motion inconsistency directly. This idea has been widely explored in many varia-

tional flow computation algorithms for flow-driven regularization (see Section 2.3.1);

however, it has not been discussed for local computation. In this work, the weighting

function based on this motion inconsistency indicator is studied, which is defined as

below,

ω
(k,τ)
consistency = exp

(
− (u(k,τ) − u(c,τ))2 + (v(k,τ) − v(c,τ))2

2σ2
m

)
. (4.16)

Here σm is predefined to be 1, following (Sand and Teller 2006).

4.3 Performance Evaluation

In order to examine their numerical performance, the 6 weighting functions are tested

on a variety of benchmark sequences RubberWhale, Hydrangea, Dimetrodon, Grove2,
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Venus and Long Street. The weighted local computation is implemented in the pyra-

midal fashion as explained in Section 4.2.3.

Table 4.1 lists the quantitative flow computation results measured by AAE, with the

bold numbers indicating improvement of the corresponding weighting function on

a particular sequence. The comparison of before-and-after applying each weighting

function shows ωconsistency improves the flow computation accuracy on all the sequences.

ωresidual works well on most sequences, except for Dimetrodon. The other dynamic

weighting function ωdivergence, which is based on the divergence of the recovered flow,

only show slight improvement on sequence Grove2. Although not significant, im-

provement has been obtained by ωocclusion on 4 out of 6 test sequences. ωintensity re-

markably reduces the error on RubberWhale, although a case-by-case tuned threshold

may possibly achieve better accuracy on other sequences. It is interesting to note that,

although weighting functions based on spatial proximity has been widely applied, the

comparison conducted here shows that ωproximity does not necessarily lead to better

performance on all the sequences.

By comparing the responses of the sequences to the weighting functions, it can be seen

that Grove2 and RubberWhale, which contain the most substantial motion disconti-

nuities among the test sequences, respond well to almost all the weighting functions.

Sequence Long Street and Hydrangea only slightly respond to ωresidual, ωocclusion and

ωconsistency. Presumably, this is because in both sequences the large area of background

undergoes smooth translation, and does not contain as much motion discontinuities

as Grove2 and RubberWhale. Venus responds significantly to ωresidual and ωconsistency.

The non-rigid motion sequence Dimetrodon responds to almost none of these weight-

ing functions. Fig. 4.1 and Fig. 4.2 demonstrate the simulation results on benchmark

sequences RubberWhale and Grove2. The quantitative performance evaluated by the

average angular error (AAE) shows considerable improvement by the weighting func-

tion on RubberWhale sequence. The gray-scale coded angular error maps also confirm

that the motion discontinuity is better preserved by the weighting function.

Due to the uniform good performance of ωresidual and ωconsistency and their robust-

ness to the parameter selection, these two weighting functions are suggested for local

flow computation. Although compared to these two functions, the improvement by

ωocclusion is to a less extent, it is also proposed as an option. Furthermore, the substan-

tial improvement by ωintensity on RubberWhale and Grove2 suggests that this weight-

ing function may significantly reduce distortion effects, if the parameter in Eq. 4.15
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RubberWhale ground truth flow

ω(k) = 1, AAE = 6.52 ω(k) = ω
(k)
intensity, AAE = 5.47

ω(k) = ω
(k)
residual, AAE = 6.26 ω(k) = ω

(k)
consistency, AAE = 5.92

ω(k) = ω
(k)
intensity · ω

(k)
residual · ω

(k)
consistency,AAE = 5.01

Figure 4.1. The performance of the weighting functions on RubberWhale. Motion boundaries are

better preserved. Darker colour indicates higher average angular error (AAE) value.
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Grove2 ground truth flow

ω(k) = 1, AAE = 3.97 ω(k) = ω
(k)
intensity, AAE = 3.57

ω(k) = ω
(k)
residual, AAE = 3.79 ω(k) = ω

(k)
consistency, AAE = 3.63

ω(k) = ω
(k)
intensity · ω

(k)
residual · ω

(k)
consistency,AAE = 3.30

Figure 4.2. The performance of the weighting functions on Grove2. Darker colour indicates higher

average angular error (AAE) value.
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Venus Dimetrodon Street RubberWhale Hydrangea Grove2

ω = 1 9.42 2.59 3.57 6.52 4.22 3.97

ωproximity 9.58 2.96 4.36 5.49 4.47 3.44

ωintensity 9.26 2.66 3.85 5.47 4.41 3.57

ωocclusion 9.45 2.74 3.53 6.36 4.13 3.85

ωresidual 8.01 2.67 3.41 6.26 4.17 3.79

ωdivergence 9.71 2.60 3.57 6.56 4.25 3.90

ωconsistency 8.19 2.57 3.53 5.92 4.19 3.63

combined 7.86 2.80 3.57 5.01 4.56 3.30

Table 4.1. An overview of the performance of different weighting functions on a variety of benchmark

sequences, measured by the AAE achieved by using each weighting function. The bold

numbers indicate that improvement is achieved by the corresponding weight function on

the particular sequence. The last row shows the results obtained by combining ωintensity,

ωresidual and ωconsistency.

is properly defined, which is possible if the statistics of the image can be obtained.

Based on the analysis, the final weighting function in this section is defined by the

combination (multiplication) of ωintensity, ωresidual and ωconsistency. Table 4.1 shows the

performance on benchmark sequences. The individual constraint system provided by

the kth pixel is thus adapted to ω(k)A(k)�X = ω(k)�b(k); and the overall weighted linear

system WA�X = W�b, where matrix W is diagonal and collects the weights, recovers the

flow field by the standard LSE if the system is overdetermined. However, it should be

noted that the weighted system can be rank-deficient, as pixels with distinguishable

intensity pattern might be under-weighted. In this case, the window size is enlarged

in the subsequent flow refinement steps. This is in a similar spirit to the adaptive win-

dow used in (Kanade and Okutomi 1991), which adjusts the local window size in each

refinement step. In our empirical study, such a strategy is found to be sufficient to

overcome the aperture problem and obtain a dense flow field.
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4.4 Summary

Following the discussion in the previous chapter on how to detect inconsistent local

systems, this chapter has investigated how to construct a consistent local computation

system by selecting the neighbouring consistent pixels. 6 different possible selection

(weighting) functions are empirically studied, focusing on (but not limited to) a local

computation model that assumes gradient constancy and local affine motion. The se-

lection functions based on the intensity similarity, dynamic residual error and motion

consistency are found to be effective. The combined use of these weighting functions

is suggested for further research on local flow computation.
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Chapter 5

Complementary
Combination of Local and

Global Constraints

The previous chapter proposed a motion discontinuity preserving local

flow computation method. In this chapter, we show that the local compu-

tation can be further regularized by global constraints to achieve enhanced

performance. In particular, the local flow estimation is used to segment the

image into regions of smooth motion. Within each region, global constraints

are applied to reduce noise in local flow estimates while preserving motion

boundaries. The main contributions in this framework are: (1) combining

the local and global computation by motion segmentation; (2) the comple-

mentary use of global subspace and spatial smoothness constraints. Results

on standard test sequences demonstrate improved accuracy in flow estima-

tion, and analyse the role that each contribution plays in this improvement.
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The flow computation method described in the previous chapter belongs to the cate-

gory of local computation, which recovers each pixel’s flow by an independent local

linear system, and hence neighbouring pixels’ flow vectors do not interact in the com-

putation.6 To some extent, this motion recovery model does not conform to principles

in real practice, where neighbouring pixels generally move consistently. Recovering

optical flow by exploiting this spatial consistency is the category of global computa-

tion. In this chapter, the local flow constraints are combined with the global constraints,

which achieves enhanced performance by exploring the complementary effects of local

and global computation.

In particular, an initial recovery of each pixel’s flow is obtained by a local system based

on the brightness invariance assumption. The resulting flow field is typically recovered

accurately enough to enable consistent segmentation of independently moving objects.

On each segmented object, two global motion constraints, the subspace constraint and

spatial smoothness constraint, are integrated to further regularize the flow field. As the

global constraints are only applied to the interior of a moving object, error propagation

from the motion boundaries is effectively avoided.

The chapter is divided into 3 sections, with each section introducing one of the three

steps, namely local computation, motion segmentation and global regularization. In

each section, focusing on the particular topic, research concerns and difficulties are

explained, and possible solutions are presented. The computation methods proposed

in each section can be applied singly or in combination. The role that each step plays

is analyzed based on the experimental results.

5.1 Motion Outlier Inhibited Local Flow Computation

The pipeline starts from local computation, which is based on the brightness constancy

assumption,

dE(k)(x, y, t)
dt

= E(k)
x u(k) + E(k)

y v(k) + E(k)
t = 0, (5.1)

where k indexes the kth pixel in the neighbourhood. By taking partial derivatives at

both sides of Eq.(5.1) with respect to x, y, and t, an under-determined linear system for

6In local flow computation, a pixel’s flow recovery is constrained by neighbouring pixels’ intensity

variation, but not the flow vectors.
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Test frame recovery error a zoomed in view

Figure 5.1. The results of the local computation weighted by ω
(k)
intensity · ω

(k)
occlusion · ω

(k)
residual ·

ω
(k)
consistency. The motion boundary between the blue car and the background is over-

smoothed. Darker intensity indicates larger errors.

8 unknowns is yielded,

⎡⎢⎢⎣
E(k)

xx E(k)
xy E(k)

x E(k)
y 0 0 0 0

E(k)
xy E(k)

yy 0 0 E(k)
x E(k)

y 0 0

E(k)
xt E(k)

yt 0 0 0 0 E(k)
x E(k)

y

⎤⎥⎥⎦ �X(k) = −

⎡⎢⎢⎣
E(k)

xt

E(k)
yt

E(k)
tt

⎤⎥⎥⎦ . (5.2)

where �X(k) =
[
u(k), v(k), u(k)

x , v(k)x , u(k)
y , v(k)y , u(k)

t , v(k)t

]T
.

The local computation model also assumes that pixels in the local patch have similar

flow vectors and flow gradient. This enables an over-determined system for the patch

center’s motion A�X = �b, which gathers Eq.(5.2) for all neighbouring pixels, with �X

containing the flow and flow gradient of the patch center c.

As discussed in previous chapters, the system is likely to contain motion outliers at the

presence of motion boundaries. This entails motion outlier detection and removal. The

combination (multiplication) of the weighting functions ωintensity, ωocclusion, ωresidual

and ωconsistency suggested in the previous chapter, as they are general to any local sys-

tem, is applied in this section. Fig. 5.1 demonstrates the results of the weighted local

system on the sequence Long Street. It can be seen that, although the motion bound-

ary between the red car and the background is reasonably clear, the motion boundary

between the blue car and the background is still over-smoothed.

Because of this, the motion inconsistency detection theories introduced in Chapter 3

are developed to two new weighting functions. Particularly, the first motion outlier

rejection function ωrank is defined by the rank difference between the spatial Hessian
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matrix and the spatio-temporal Hessian matrix of the kth pixel,

ω
(k)
rank =

{
0 if rank(H(k)

3D ) > rank(H(k)
2D )

1 otherwise
(5.3)

which indicates the contamination of pixel k by the inconsistent motion.

The other rejection function ωintersection is defined by the lack of non-trivial intersection

of the solution manifolds of Eq. 5.2 associated with c and k respectively (see Section

3.2 for the detection strategies),

ω
(k)
intersection =

⎧⎨⎩ 0 if Ω(c) ∩ Ω(k) =
{
�0
}

1 otherwise,
(5.4)

where Ω(c) and Ω(k) denote the solution manifolds of the two pixels.

The final weighting function ω(k) of the kth pixel is given by

ω(k) = ω
(k)
intensity · ω

(k)
occlusion · ω

(k)
residual · ω

(k)
consistency · ω

(k)
rank · ω

(k)
intersection. (5.5)

Fig.5.2 shows the results on Long Street using the new weight defined by Eq. 5.5,

which validates the improvement by ωrank and ωintersection.

recovery error a zoomed in view

Figure 5.2. The recovery results by the local system weighted by ω
(k)
intensity · ω

(k)
occlusion · ω

(k)
residual ·

ω
(k)
consistency · ω

(k)
rank · ω

(k)
intersection. Compared to Fig. 5.1, the zoomed in view clearly

shows that the motion boundary around the car is better preserved.

The local computation is implemented using iterative refinement. If the weighted sys-

tem is rank-deficient in any refinement stage, the neighborhood is enlarged in the sub-

sequent refinement/warping steps. This is in a similar spirit to (Kanade and Okutomi

1991).
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5.2 Flow Field Segmentation

The local flow computation recovers each pixel’s displacement independently. On one

hand, if the recovery at one pixel is erroneous, the error does not affect the recov-

ery at other pixels. On the other hand, the motion coherence of pixels in the same

moving object is not exploited. In (Ohta 1991), it has been shown that a global flow

stabilization improves the local flow computation in textured regions. In (Birchfield

and Pundlik 2008), the motion coherence has been utilized to track corners and edges

jointly, and evident improvement over the traditional Lucas-Kanade independent fea-

ture tracking has been reported. In this work, to take advantage of the global regular-

ization and avoid over-smoothing across motion boundaries, an motion segmentation

step is implemented. This is to make sure that global constraints are only applied to

pixels that do have consistent motion pattern. The scene is segmented to independently

moving objects based on the flow field obtained by local computation. It involves three

steps: measure the confidence of the computed flow vectors; estimate motion models

by mean shift clustering of the flow vectors with high fidelity; label all the pixels by

model compatibility.

Flow vectors recovered by local methods have different fidelity at different pixels. As

discussed above, in smooth regions or near motion boundaries, local flow estimation

is error prone. Consequently, it is not robust to estimate the number of motion models

and motion parameters if the unreliable flow vectors are involved. Therefore, in this

work only flow vectors with high fidelity are picked up for segmentation. In our local

computation model, a necessary condition for a pixel’s flow to be recovered reliably is

that the associated Hessian matrices (both 2D and 3D) have rank 2, which implies that

the pixel has sufficient spatial information and consistent motion through consecutive

frames. In addition, as it is assumed that pixels in the local patch have similar flow,

the deformation and acceleration parameters in Eq. 5.2 should be small. That is, if we

rewrite Eq. 5.2 to

H3D�V = −

⎡⎢⎢⎣
ux vx

uy vy

ut vt

⎤⎥⎥⎦
⎡⎢⎢⎣

Ex

Ey

Et

⎤⎥⎥⎦ = �f , (5.6)

then
∥∥∥�f∥∥∥ should vanish. Conversely, large magnitude of deformation and acceleration

generally signals motion inconsistency. Therefore, pixels with rank 2 Hessian matrices

(both 3D and 2D) and
∥∥∥�f∥∥∥ below a threshold, which are referred to as flow features, are

selected for segmentation.
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Mean-shift clustering algorithm (Comaniciu and Meer 2002), which has been widely

applied to image segmentation, is run for the selected flow features. Particularly, the

flow features are first clustered according to the angular closeness measured by the

normalized inner product of the flow vectors, with the cluster bandwidth limited to

π/6. This yields clusters of flow vectors with similar velocity direction. Within each

cluster, the mean shift algorithm is further applied according to the magnitude simi-

larity measured by the Euclidean distance between flow vectors, with the bandwidth

of each cluster limited to 0.5; Let N be the number of clusters obtained, and Ci be the

ith cluster, the center of each cluster [ui, vi] is taken as a motion model.

The flow vector of an arbitrary pixel [u, v] is then labeled according to its closeness

to the models. More specifically, motion models whose angular difference from the

flow vector is larger than π/6 are first excluded. Among the remaining M clusters

Cj, (j = 1, · · · , M), the magnitude difference dj between [u, v] and [uj, vj] is computed.

The pixel is labeled by cluster j0, if j0 = arg min dj. To remove the noise effect in each

cluster, a smooth filtering is applied to the segmented objects.

Fig.5.3 shows the segmentation result on a benchmark sequence Long Street, which

depicts a street scene with two cars moving into the image and the camera moving to

the left. The segmentation extracts the cars from the rest of the scene with the bound-

ary sharply preserved. Despite the transparency of the right car’s front window, the

corresponding region is successfully segmented as the background.

5.3 Global Regularization

Global regularization of the flow obtained by local methods can further improve the

accuracy. However, as pointed in (Ohta 1991), the significance of the improvement

varies from region to region. In textured area, where local computation generally

has reliable performance, the accuracy can be further improved by global stablization.

However, in smooth areas where local computation suffers the aperture problem, the

improvement is less obvious. The reason is due to the intrinsic weakness of the global

smoothing, which propagates the error in one flow vector to adjacent ones during the

diffusion-reaction process. In (Irani 2002), a global subspace constraint is proposed to

address the aperture problem. The root of the subspace constraint is that, in case of
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Test Frame Segmented Object 1

Segmented Object 2 Segmented Object 3

Figure 5.3. The three objects segmented from the benchmark sequence Long Street by mean shift

clustering of the flow obtained from local computation.

static scene and moving camera, the tracked positions (Tomasi and Kanade 1992)/tra-

jectories (Irani 2002) of multiple points across multiple frames reside in low rank sub-

spaces. Compared to the global smoothness constraint, the subspace constraint is able

to relate the error-prone flow vectors to the reliable ones rather than the spatially prox-

imate ones. However, despite this advantage, the subspace constraint is far less stud-

ied and applied in the literature of optical flow computation. This is partly due to the

strict requirement of the scene to be static and the sequence to be long-range. In this

work, we derive a new subspace constraint for the matrix formed by flow vectors of

all points across multiple frames. As the scene has been segmented into regions with

consistent motion, the relative motion between each individual object and the cam-

era can be taken as that the object is static and the camera undergoes the compound

motion. Therefore, the subspace constraint can be applied to each individual object.

With the erroneous flow vectors corrected by the reliable ones, the spatial smoothness

constraint is further applied to the low rank subspace to exploit the flow connection

between spatially adjacent pixels. The combination of the two global constraints is

achieved by minimizing an integrated energy functional in the subspace.
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5.3.1 Global Subspace Constraint

Subspace constraint of the trajectory matrix

In (Irani 2002), it is shown that the displacement of N points across F frames reside

in a low rank subspace. Particularly, let �Pi,t = [xi,t yi,t]
T denote the position of the ith

pixel of an object at time t, and �di,j =
[
dx

i,j dy
i,j

]T
be the pixel’s displacement from the

reference frame (t = 0) to the current frame (t = j). Thus �di,j can be represented by

�di,j = �Pi,j − �Pi,0,

or equivalently ⎡⎣ dx
i,j

dy
i,j

⎤⎦ =

[
xi,t − xi,0

yi,t − yi,0

]
.

Define U and V by

U =

⎡⎢⎢⎢⎢⎢⎣
dx

0,0 dx
1,0 . . . dx

N,0

dx
0,1 dx

1,1 . . . dx
N,1

...
...

...
...

dx
0,F dx

1,F . . . dx
N,F

⎤⎥⎥⎥⎥⎥⎦ , V =

⎡⎢⎢⎢⎢⎢⎣
dy

0,0 dy
1,0 . . . dy

N,0

dy
0,1 dy

1,1 . . . dy
N,1

...
...

...
...

dy
0,F dy

1,F . . . dy
N,F

⎤⎥⎥⎥⎥⎥⎦ . (5.7)

The trajectory matrix [U
V ] is actually of very low rank (≤ 9). The proof is based on a

case by case discussion of the 3D motion model and the camera projection model.

New subspace constraint of the flow matrix

This section extends the theory to the long range flow field. We show that, for all

points on the same moving object, the cumulative flow field across multiple frames

also resides in a low rank space. Given the initial flow recovery for each object by local

computation, �di,j can be expressed as the sum of the flow vectors obtained from each

pair of adjacent frames. Denote the flow at position �Pi,t by �Vt =
[
ut

(
�Pi,t

)
vt

(
�Pi,t

)]T
.7

This relates the pixel’s positions at time t and t + 1 by

�Pi,t+1 = �Pi,t + �Vt

(
�Pi,t

)
. (5.8)

Also,

�Pi,t+1 = �Pi,0 +
t

∑
k=0

�Vk

(
�Pi,k

)
. (5.9)

7 Generally �Pi,t are not at integer pixels, where each frame’s flow is calculated. We compute the flow

vectors at sub-pixel positions by a bilinear interpolation.
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Moreover,

�di,t+1 = �Pi,t+1 − �Pi,0 =
t

∑
k=0

�Vk

(
�Pi,k

)
, (5.10)

which represents �di,t+1 by an accumulation of flow vectors.

Define flow matrix F as

F =

⎡⎢⎢⎢⎢⎢⎣
�V0 (P0,0) �V0 (P1,0) . . . �V0 (PN,0)

�V1 (P0,1) �V1 (P1,1) . . . �V1 (PN,1)
...

...
...

...
�VF (P0,F) �VF (P1,F) . . . �VF (PN,F)

⎤⎥⎥⎥⎥⎥⎦
2F×N

. (5.11)

Each column of F records a pixel’s flow “history” across all the frames, while each

row of D collects the flow vectors of all pixels at a certain time. By elementary row

summation, it can be easily seen that F can be transformed into the following matrix

F ∼

⎡⎢⎢⎢⎢⎢⎣
�d0,0 �d1,0 . . . �dN,0

�d0,1 �d1,1 . . . �dN,1
...

...
...

...
�d0,F �d1,F . . . �dN,F

⎤⎥⎥⎥⎥⎥⎦
2F×N

.

By row permutations, the matrix can be further transformed to

F ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx
0,0 dx

1,0 . . . dx
N,0

dx
0,1 dx

1,1 . . . dx
N,1

...
...

...
...

dx
0,F dx

1,F . . . dx
N,F

dy
0,0 dy

1,0 . . . dy
N,0

dy
0,1 dy

1,1 . . . dy
N,1

...
...

...
...

dy
0,F dy

1,F . . . dy
N,F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2F×N

=

[
U
V

]
.

That is, matrix F is row equivalent to
[U

V
]
. Therefore the flow matrix F has the same rank

as matrix
[U

V
]
, with an upper bound of 9. This means that if the flow history vectors of

all pixels across all the frames are correctly computed, they are supposed to reside in

a low rank subspace, despite the size of the object and the length of the sequence. In

other words, every pixel’s flow history is highly correlated with the others.
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The importance of this theory is that the less reliable flow vectors thus can be regulated

by the reliable ones, by constraining the regularized ones to be in the same subspace.

In particular, let matrix F̃ be formed by stacking the flow history vectors of m flow

features across F frames. Note that if all the flow vectors in F and F̃ are correct, the

two matrices should have the same column space and rank. However in practice,

F̃ is more reliable than F, therefore the rank and the column space can be found by

the singular value decomposition of F̃ = ŨΣṼT, where Σ is a diagonal matrix of the

singular values with σ1,1 ≥ σ2,2 ≥ . . . ≥ σm,m ≥ 0. The decay of the singular values

gives the rank r of F̃, and the first r columns of Ũ span the column space of F̃ (and F

as well). With the r columns denoted by�b1,�b2, · · · ,�br, the subspace constraint implies

that an arbitrary flow history vector �̃fi should reside in the subspace. Hence there exist

r scalar coefficients ci,1, · · · , ci,r, such that

�̃
if =

r

∑
k=1

ci,k�bk, i = 1, 2, · · · , N, (5.12)

The obtained flow vector �̃fi can be taken as a corrected reconstruction of �fi, and fin-

ishes the global regularization; or it can be further regularized by spatial smoothness

constraint for improved accuracy, as explained below.

5.3.2 Spatial Smoothness Constraint

A key functionality of the subspace constraint is to regularize the flow vectors in

smooth regions by flow vectors of the corners or textures. The regularization can be

further enhanced by the spatial smoothness of the flow field. Given that nearby pixels

belong to the same moving object, it is expected that flow vectors of spatially adjacent

pixels have strong correlation. A simple heuristic to formulate the regularization is to

bound the spatial variation of the reconstructed flow �̃fi. However, note that each �̃fi

contains the flow vectors across multiple (at least 5) consecutive frames. This means

at least 10 energy functionals and diffusion processes have to be implemented. In this

work, the spatial regularization is formulated in the subspace domain rather than the flow

domain, which is more practical. First, Eq.5.12 indicates that, if the spatial variation of

the flow vectors are bounded, then the spatial variation of ci,k is also bounded. There-

fore the spatial smoothness constraint is applicable to the the subspace domain. Fur-

thermore, the rank of the column space is much smaller than 9 in most motion models

(Irani 2002), which means far less iteration processes and hence lower computational

cost.
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The spatial regularization can be formulated by minimizing the variation of a continu-

ous function ck(x, y), of which ci,k is the ith sample,

Esmooth =
∫ ∫

Ω
‖∇ck‖2 dxdy. (5.13)

To enforce the flow smoothness to conform with the image structure, the energy func-

tional is adapted to

Esmooth =
∫ ∫

Ω

[
p(x, y)

∥∥∥∥∂ck
∂x

∥∥∥∥2

+ q(x, y)
∥∥∥∥∂ck

∂y

∥∥∥∥2
]

dxdy. (5.14)

where the anisotropic steering functions p and q are defined by

p(x, y) =
1∥∥∥ ∂E

∂x

∥∥∥+ ε
, q(x, y) =

1∥∥∥ ∂E
∂y

∥∥∥+ ε
(5.15)

with the small value ε = 0.001 to avoid division by zero.

The global regularization is implemented by minimizing Esmooth. The associated Euler-

Lagrange equation reads
∂
(

p ∂ck
∂x

)
∂x

+
∂
(

q ∂ck
∂y

)
∂y

= 0; (5.16)

Eq.5.16 is discretized by the energy preserving 5-point differencing scheme, e.g.,

∂
(

p ∂ck
∂x

)
∂x

= p
∂ck
∂x

∣∣∣∣
x+ 1

2 ,y
− p

∂ck
∂x

∣∣∣∣
x− 1

2 ,y

∂ck
∂x

∣∣∣∣
x+ 1

2 ,y
= ck(x + 1, y)− ck(x, y)

∂ck
∂x

∣∣∣∣
x− 1

2 ,y
= ck(x, y)− ck(x − 1, y). (5.17)

The differencing leads to

ck(x, y) =
�1ck(x + 1, y) + �2ck(x − 1, y) + �3ck(x, y + 1) + �4ck(x, y − 1)

∑4
j=1 �j

(5.18)

where

�1 = p(x +
1
2

, y), �2 = p(x − 1
2

, y), �3 = p(x, y +
1
2
), �4 = p(x, y − 1

2
). (5.19)

The optimal solution thus can be found by standard iteration scheme, such as Gauss-

Seidel. The converged coefficients {c̄i,k}N,r
i=0,k=1 give the final recovery of the optical

flow by

�̄
if =

r

∑
k=1

c̄i,k�bk, i = 1, 2, · · · , N. (5.20)
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5.4 Experimental Results

The proposed algorithm is designed for long range sequences. Minimally, the subspace

constraint requires local flow across 5 consecutive frames, and local flow requires both

2 preceding and 2 succeeding frames to approximate Et and Ett by central differencing.

Long benchmark sequences created in (McCane et al. 2001) are used to test the entire

system.

Quantitative performance is measured by average end-point (AEP) error (Baker et al.

2007) and average angular error (AAE) (Barron et al. 1994). We also report the per-

centage of pixels that have the error measure above a certain level X, denoted RX.

We report R1.0 to R5.0 for AAE and R0.1, R0.5, R1.0 for AEP. Two pixel wide bands

around the image boundaries are discarded, due to the boundary effect in convolving

differencing filters with the image.

The first experiment is conducted on sequence Long Street (McCane et al. 2001), the

test frame of which is shown in Fig.5.3. The significant difference around the cars

in Fig5.4.a and Fig5.4.b validates the motion boundary preserving capability of the

weighted local flow computation. Table 5.1 shows the decrease in error as each step

of the proposed method is applied. While each step results in an overall reduction

in average error, the application of local (step B) and global methods (C and D) have

complementary effects. Step B significantly reduces the number of vectors with an

error of 4 degrees or more, but does not improve the overall accuracy of flow vectors

with a small error. Conversely, steps C and D significantly improve the accuracy of

flow vectors with an error of 3 degrees or less, but do not significantly reduce the

number of outliers. Thus the application of local followed by global constraints has the

overall effect of first preserving the motion boundary, and then improving the accuracy

in each motion segment.

The experiments conducted on sequence Office illustrate the effect of applying global

constraints to alleviate the aperture problem. This sequence simulates a camera mov-

ing toward a static scene. Its 10th frame is shown in Fig5.5.a. On this image, the AAE

result obtained in (Bruhn et al. 2005) is 3.24 ◦, which is comparable to the proposed

method. The large non-textured regions of the images result in the erroneous flow

recovery in the local computation step, as shown in Fig5.5.c-Fig5.5.d. However, the

application of the global constraints significantly corrected such errors, as shown in

Fig5.5.f. Table 5.2 lists the errors as each step is applied to the Office sequence.
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ground truth flow

(a) (b)

(c) (d)

Figure 5.4. Visual results on sequence Long Street. (a) Angular error map of the local computation

step without consistency-weighting. Darker intensity indicates larger error. (b) Angular

error of the flow field by weighted local computation. (c) Angular error of the dense

flow regularized by global subspace constraint. (d) Angular error of the dense flow

regularized by spatial smoothness constraint.
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Office ground truth flow

(a) (b)

(c) (d)

Figure 5.5. Visual results on sequence Office. (a)-(d): Average angular maps by steps as described

in Fig. 5.4.
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AAE AEP

steps mean R1 R2 R3 R4 R5 mean R0.1 R0.5 R1

A. 3.04 49.39 26.36 20.75 17.89 15.27 0.10 19.63 5.57 0.93

B. 2.55 49.39 27.49 19.24 14.40 12.02 0.08 17.68 2.42 0.90

C. 2.12 37.41 20.32 15.11 12.12 10.39 0.07 14.99 2.03 0.72

D. 2.00 31.40 22.14 17.02 13.47 11.39 0.07 16.28 2.73 0.29

Table 5.1. Reduction in error as each step is applied to sequence Long Street. Step A is local flow

computation without consistency-weighting, B is local flow with consistency-weighting,

C is flow with the global subspace constraint, and D is flow with both global subspace

and smoothness constraints applied.

AAE AEP

steps mean R1 R2 R3 R4 R5 mean R0.1 R0.5 R1

A. 5.79 92.43 75.43 55.98 40.39 30.76 0.14 35.34 3.84 1.30

B. 4.26 88.63 69.16 49.08 35.40 27.19 0.10 31.14 0.93 0.00

C. 4.10 88.13 66.29 46.62 33.83 25.49 0.09 29.44 0.84 0.00

D. 3.39 75.88 51.42 35.38 24.66 17.85 0.08 24.59 0.83 0.00

Table 5.2. Error statistics as each step is applied to sequence Office. Steps are as described in

Table 5.1.

Although the experiments show promising results, it is worth noting that, the effec-

tiveness of the subspace constraint relies on the accuracy of the basis vectors detected.

The factors that may affect the accuracy include the flow feature selection and the rank

decision strategy. For example, if problematic flow vectors obtained in local compu-

tation are selected as the flow features in Section 5.3.1, these outliers may lead to dis-

torted estimation of the basis vectors for the subspace. Moreover, even if outliers are

not over numbered in this selection, a different rank decision strategy may lead to a

different result of the basis vectors. If the rank of the flow subspace is underestimated,

important information will be discarded when applying Eq. 5.20; whereas if the rank

is overestimated, the contribution of subspace constraints is trivial.
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5.5 Summary

This chapter has investigated the complementary effects of local and global optical

flow constraints, and proposed improving flow computation accuracy by the combi-

national use of the local and global constraints. The first section has proposed a lo-

cal computation system with motion outliers removed or inhibited. With the motion

boundary preserved in local computation, the second section has demonstrated that

a baseline mean shift clustering algorithm is able to segment multiple moving objects

satisfactorily. More advanced motion segmentation techniques can be employed if the

scene involves complex motion models, which is out of the scope of this chapter. In

the interior of each moving object, the global subspace constraint and spatial smooth-

ness constraint have been used in tandem to further regularize the flow field in the

third section. The flow history vectors of all pixels in the same object across multiple

frames have proved to reside in a low rank subspace. This subspace constraint enables

correcting the less reliable flow vectors by the highly confident ones, and thereby al-

leviates the aperture problem suffered by the local computation. With the erroneous

flow corrected by the subspace constraint, the error propagation problem suffered by

the spatial regularization is lessened. The spatial consistency constraint has been for-

mulated as energy minimization in the subspace domain. Experimental results con-

firm that these constraints complement each other, and address the over-smoothing

and aperture problem with better accuracy than previous methods.
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Chapter 6

Optical Flow Computation
for Fast Rotation

Optical flow computation with fast rotation is a challenging problem in

computer vision. This chapter analyzes the aspects of the current flow

computation energy functionals that hinder accurate rotational flow recov-

ery, and improves them in three aspects. Firstly, the gradient constancy

assumption, which does not apply in the presence of rapid object or cam-

era rotation, is replaced by the constancy of directional derivatives in the

isophote and the normal directions. Secondly, the prior assumption of

small flow variation, which penalizes the apparent shape change quanti-

ties such as curl, divergence and deformation, is inadequate to recover fast

rotation. Therefore, it is replaced by the affine motion assumption. Finally,

the conventional diffusion in the horizontal-vertical image grid is replaced

by directional diffusion in the local isophote-normal grid. Instead of pro-

jecting the data terms and the smoothness term to local directions indepen-

dently, the coordinate system is locally oriented to the intrinsic directions.

The global energy functional is posed in this oriented coordinate frame,

and a numerical scheme to obtain the global minimizer is derived. With

these three modifications to use locally adaptive coordinates, substantial

improvement can be achieved over the state-of-the-art techniques.
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6.1 Fast Rotation and Large Displacement

The discussion in the preceding chapters focuses on preserving motion discontinu-

ities in the flow computation. To this end, the computation models are based on the

brightness constancy assumption (Chapter 3, Chapter 5), gradient invariance assump-

tion (Chapter 4) and minimal flow variation assumption (Chapter 5). Such models

have demonstrated promising reliability on sequences that meet the assumptions. In

fact, these assumptions can be often found in top performing techniques, for example,

(Zimmer et al. 2009) and (Wedel et al. 2009). 8 However, as the gradient invariance

assumption implies translational motion, and the minimal flow variation assumption

favors constant flow with minimal change in apparent shape, these models are not

suitable for flow recovery with fast rotation. Unfortunately, rotation is one of the most

basic motion types and is frequently encountered in practice. Moreover, its consequent

large displacement confounds the current optical flow techniques. However, research

effort dedicated to rotational flow recovery is still limited.

Solutions to overcome large inter-frame displacement have been proposed in (Brox et al.

2009) and (Steinbruecker et al. 2009). Both methods employ an additional searching-

matching step to compute the displacement. In (Brox et al. 2009), the SIFT region

matching provides another constraint to steer the flow computation to the right di-

rection; while in (Steinbruecker et al. 2009), the data term of the cost function is mini-

mized by a complete search. Although the searching-matching enables recovery of large

displacement, it is computationally intensive. Moreover, it does not really resolve the

intrinsic limitations of the flow estimation models. The most recent attempt for rota-

tional flow recovery is (Ho and Goecke 2008), which suggests using the Fourier-Mellin

Transform to deal with rotation and scale change. However, since the spatial infor-

mation is largely discarded in the Fourier transform, the method does not perform as

well as those techniques that exploit flow spatial consistency (e.g. (Ren 2008)) when

rotation is not involved.

This chapter elaborates a new approach to generalizing the discontinuity-preserving

flow computation to fast rotation, based on an affine motion model in a special coor-

dinate frame that is always aligned with the local isophote and normal directions. Ex-

periments show that, a) when the motion does not involve fast rotation, the proposed

flow computation remains the same performance as the traditional ones; b) when the

8The performance is according to Middlebury flow evaluation (Baker et al. 2009), by the time of

writing.
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objects undergo fast rotation, substantial improvement can be achieved over the state-

of-the-arts techniques.

6.2 Local Adaptive Coordinate System

Previous works tend to formulate flow computation in the horizontal-vertical Carte-

sian coordinate frame formed by the image grid, except for a few techniques in the

log-polar coordinate systems (e.g., (Tistarelli and Sandini 1993) (Daniilidis and Kruger

1995),(Ho and Goecke 2008)). This coordinate system is computationally convenient,

but inflexible for flow recovery with rotation. Because fast rotation changes the hori-

zontal and vertical structure between adjacent frames. In other words, a pixel and its

horizontal-vertical neighbours have different velocity rather than “moving together”.

A primary consequence is that the gradient constancy assumption used in previous

works becomes invalid, i.e., a pair of true correspondence may have significantly dif-

ferent gradient vectors, as gradient depends on the horizontal-vertical structure. A

secondary consequence is that the flow smoothness constraints are inapplicable, since

they assume that a pixel has similar velocity to its horizontal-vertical neighbours. As

such, it is desirable to construct a coordinate system in which the structure preserva-

tion and smoothness constraints can be applied. This section provides a solution based

on the local isophote and normal directions, which are widely used in differential geom-

etry to describe intrinsic properties of a surface. The following subsections discuss

how to detect these local directions.

6.2.1 Isophote Direction Detection

In differential geometry, an isophote is defined as the curve of constant intensity. Its

tangent and normal directions are intrinsic to the local surface, and form a local refer-

ence frame. It is known that derivatives expressed in this reference frame are invariant

with rotation and translation. In practice, due to the existence of noise in the image

intensity, the isophote/normal direction generally means the direction of least/largest

intensity variation. In many applications, the isophote direction is computed as the

direction perpendicular to the gradient. This method is simple yet sensitive to noise.

A more robust approach is to compute the intrinsic directions as the local structure

tensor’s eigenvectors. However, this involves structure tensor construction and eigen-

decomposition, which is computationally intensive. In this dissertation, the task is
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accomplished in a different strategy. Particularly, the 2D plane [0, 2π) is evenly quan-

tized to 40 directions. The direction that corresponds to the least directional variation

is detected as the isophote direction. The reason for choosing 40 directions is due to the

success of the SIFT feature (Lowe 2004), which uses 36 histogram bins to cover the 360◦

range of orientation. Furthermore, experiments conducted on the image that contains

edges of different directions also validate that 40 directions are adequate to present the

orientations in the 2D plane (see Fig. 6.3).

The cost of this procedure is dominated by directional derivative computation. A

straightforward computation of directional derivative ∂E
∂�d

in direction �d (normalized

to unit length) is by the “steerable filters” (Freeman and Adelson 1991), which projects

the gradient vector ∇E = [Ex, Ey]T to �d, i.e.,

∂E
∂�d

=
〈
�d,∇E

〉
. (6.1)

However, such a projection implicitly assumes that the image is everywhere continu-

ously differentiable, which is hard to ensure in practice. This work computes direc-

tional derivatives based on its original definition. That is,

∂E

∂�d
= lim

t→0+

E(X + t�d)− E(X)

t
, t ∈ R+. (6.2)

On the discrete image grid, ∂E
∂�d

is numerically approximated by the central difference

quotient with unit distance, i.e.,

∂E
∂�d

≈ E(X + �d)− E(X − �d)

2
∥∥∥�d∥∥∥ =

E(X + �d)− E(X − �d)
2

, (6.3)

where E(X ± �d) are obtained by bilinear interpolation.

Fig.6.1 shows an example with the quantized direction �d = [cos(θ), sin(θ)]T, θ ≤ π/2.

In this example, the bilinear interpolation reads

E(X + �d) = (1 − cos(θ))(1 − sin(θ))E(X) + cos(θ)(1 − sin(θ))E(X +

[
1

0

]
)

+ (1 − cos(θ) sin(θ)E(X +

[
0

1

]
) + cos(θ) sin(θ)E(X +

[
1

1

]
)

E(X − �d) = (1 − cos(θ))(1 − sin(θ))E(X) + cos(θ)(1 − sin(θ))E(X −
[

1

0

]
)

+ (1 − cos(θ)) sin(θ)E(X −
[

0

1

]
) + cos(θ) sin(θ)E(X −

[
1

1

]
).

Page 74



Chapter 6 Optical Flow Computation for Fast Rotation

which means that the derivative in direction �d can be readily obtained by filtering the

image with the following mask

1
2

⎡⎢⎢⎣
− cos(θ) sin(θ) −(1 − cos(θ)) sin(θ) 0

− cos(θ)(1 − sin(θ)) 0 cos(θ)(1 − sin(θ))

0 (1 − cos(θ)) sin(θ) cos(θ) sin(θ)

⎤⎥⎥⎦ .

The masks with θ > π/2 can be obtained similarly. Fig. 6.1 also explains the numerical

difference between using steerable derivatives and directional convolution. Steerable

filtering is a linear combination of the horizontal and vertical variation; whereas the

directional convolution takes the diagonal neighbours into account as well. This extra

information leads to better accuracy when the intensity variation is fast.

Filtering the image E(x, y) with this mask can be written as the convolution with a high

pass kernel K ∂
∂�d

, i.e.,

∂E
∂�d

= K ∂
∂�d
∗ E, (6.4)

which involves one pixel and its nearest neighbours only (see Fig. 6.1), hence we call

it pixel-wise directional convolution (PDC). To improve the robustness, a Gaussian

convolution with an N × N Gaussian kernel Gσ, where σ is the standard deviation,

can be further applied. Similar to the Derivative of Gaussian (DoG), the directional

derivative filtering and Gaussian smoothing can be combined to one filtering process.

That is, we need only convolve the image with the one kernel, i.e., the Directional

Derivative of Gaussian. This process is expressed by the following derivation

∂ (Gσ ∗ E)
∂�d

= K ∂
∂�d
∗ (Gσ ∗ E) =

(
K ∂

∂�d
∗ Gσ

)
∗ E =

∂Gσ

∂�d
∗ E, (6.5)

which involves the local area of size N × N around the pixel, therefore we call it

region-wise directional convolution (RDC). As shown in Eq. 6.5, RDC is actually PDC

smoothed by a Gaussian convolution. Note that the central differencing is symmetric,

therefore only 20 convolutions are needed for the derivatives along 40 directions.

By the directional differencing used for directional derivatives (Eq. 6.3), it can be seen

that E−�d = −E�d. Thus the absolute edge strength in direction �d and −�d is the same.

Therefore, in the work, the two directions are unified to the same direction that falls in

the range [0, π].

Fig. 6.2 and Fig. 6.3 demonstrate two examples of estimating the edge direction by the

gradient’s perpendicular, the eigenvector of the structure tensor, PDC and RDC. For
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Figure 6.1. An example of pixels used to precompute the directional differencing kernel in direc-

tion �d = [cos(θ), sin(θ)]. The steerable filtering uses only X,X ±
[

0

1

]
,X ±

[
1

0

]
,

whereas the proposed method also uses X ±
[

1

1

]
. The extra information allows more

accuracy when the intensity oscillation is fast.

clarity of visualization, in all methods, the edge directions are modulated to the range

[0, π].

Fig. 6.2 compares these methods on a textured image with noise. The detection is noisy

by the gradient method and PDC. The robustness is improved by using the structure

tensor and RDC. Moreover, RDC evidentially performs better in the table cloth area

than the structure tensor method. Fig. 6.3 presents the performance comparison on

a structured image which consists of edges in various directions. In this experiment,

PDC and RDC perform comparably to the gradient and structure tensor methods re-

spectively. The comparable performance validates that 40 directions are adequate to

quantize the [0, 2π] orientation range.

6.2.2 Constructing the Local Reference Frame

The detected isophote direction, its normal direction, and their opposite directions dis-

tribute evenly in the 2D plane, with each direction’s unit vector lying in one quadrant.
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test image Barbara Middlebury Colorwheel

gradient perpendicular eigendecomposition of structure tensor

pixel-wise directional convolution region-wise directional convolution

Figure 6.2. Detect isophote direction by different methods on a noisy textured image. For the

visualization clarity, the direction vectors and edge strength are coded by the Middlebury

colorwheel. The edge strength is computed as (1) the gradient magnitude in the gradient

method; (2) the largest eigenvalue in structure tensor method; (3) the largest directional

intensity variation in PDC and RDC. In all tests, the edge strength is mapped to [0,20].

Attention should be drawn to the two pieces of triangle table cloth. The lines on the

piece of table cloth that is closer to the camera have positive diagonal direction. The

lines on the piece of table cloth that is further away from the camera have negative

diagonal direction. The RDC detect the directions in these two regions more accurately.
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test image Middlebury Colorwheel

gradient perpendicular eigendecomposition of structure tensor

pixel-wise directional convolution region-wise directional convolution

Figure 6.3. Detect isophote direction by different methods on a image that contains edges in various

directions. The scaling and coding are as same as in Fig. 6.2. The comparable results

confirm that the 40 quantization directions represent various directions in the 2D plane

with adequate approximation accuracy.
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The local reference frame is constructed in such a way that its axes are always aligned

with the direction vectors in the first and second quadrant. In the rest of the disser-

tation, the local reference system is called the “ξη” frame; notations �d and �n denote

the unit vectors on the isophote and normal axes. The new coordinate system thus is

rotated to the local reference system at each pixel. This system is an extension of the

traditional one. If �d and �n are unit vectors in the horizontal and vertical directions at

each pixel, then the “ξη” frame degenerates to the image grid. The next section intro-

duces the formulation of affine flow computation in the rotated coordinate system.

6.3 Flow Formulation in the Local Coordinates

Since the coordinate frame is always locally aligned with the intrinsic directions, the

flow computation in this coordinate frame is based on local intrinsic structure. In pre-

vious works, the energy functionals for flow computation are generally based on the

brightness constancy constraint, gradient constancy constraint and smoothness con-

straint. This section discusses the new formulation of energy functional in the rotated

coordinate system, assuming a local affine motion model, i,e,

u = α1 + α2ξ + α3η

v = α4 + α5ξ + α6η, (6.6)

where motion parameters αi’s are locally constant.

6.3.1 The Brightness Constancy Constraint

The brightness constancy constraint in the oriented coordinates is the same as in the

conventional coordinates. That is, the flow vector (u, v) is constrained to minimize the

brightness mismatching error

EĖ = |E(x, y, t)− E(x + u, y + v, t + 1)| (6.7)

≈ ∣∣Exu + Eyv + Et
∣∣ ;

Here we use Ė as a compact notation for the total temporal derivative of E w.r.t. t.

To tackle the non-differentiability of the function of absolute value, function Ψ(•) =√•2 + ε is used instead of |•|, where ε is a small positive number. Therefore, the first

energy term for the flow vector is

EĖ = Ψ
(
Exu + Eyv + Et

)
. (6.8)
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6.3.2 The Edge-Normal Derivative Invariance Constraint

Based on the brightness constancy constraint Ė = 0, many existing works assume that
∂Ė
∂x = 0 and ∂Ė

∂y = 0. In the oriented coordinate system, they are replaced by ∂Ė
∂�d

= 0 and
∂Ė
∂�n = 0. That is, the flow vector (u, v) is constrained to minimize the bias

EĖd
= Ψ

(
∂Ė
∂�d

)
= Ψ

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)
EĖn

= Ψ
(

∂Ė
∂�n

)
= Ψ

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

)
, (6.9)

where subscripts �d and�n denote the directional derivatives in the two directions.

6.3.3 The Regularity Constraints in Edge and Normal Directions

The three constraints given by Eq.6.8 and Eq.6.9 all originate from the brightness con-

stancy assumption, and therefore are always linearly dependent. As a consequence,

there are infinite number of flow vectors that may fulfill the three constraints, and

they can be combined with infinite possibilities for the whole dense flow field. A typ-

ical solution is to find the one which has the most desirable variation over the whole

image. The difficulty is to quantify the “desirable variation”, which means simulta-

neously preserving the flow regularity in smooth motion area and the sharpness at

motion boundaries. As introduced in Chapter 2, one approach is to limit the flow

smoothness by the intensity smoothness (e.g., (Nagel 1983b), (Brox et al. 2009)). An

alternative approach is to regularize the flow field by the motion discontinuities suc-

cessively (e.g., (Weickert and Schnörr 2001)). More recently, researchers have proposed

using Joint Image- and Flow- driven regularization (e.g., (Zimmer et al. 2009)), where

the flow gradient is projected to the intensity normal and edge direction. In this work,

the regularization is also controlled by both intensity and motion discontinuities, yet

by a different method. The regularity constraints of the flow are imposed in the edge

and normal directions, which are the most and least variation of intensity directions.

To tune the smoothness anisotropically in different directions, two affine prior terms

have been tried in this work. The first term, as shown in Eq.6.10, aims at penalizing

the variation of flow gradient based on the affine parameters.

Es =
∫ ∫ ((

u�d − α2
)2

+ (u�n − α3)
2 +

(
v�d − α5

)2
+ (v�n − α6)

2
)

dξdη. (6.10)
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This is in a similar spirit to (Ju et al. 1996), where the parameter αi’s are estimated from

the neighbouring patch. This approach suffers the error propagation at motion bound-

ary. Because the motion estimation is generally error-prone around motion bound-

aries, therefore the subsequent estimation of the αi’s is usually unreliable. The signif-

icant errors in the αi’s are propagated to further iterations in the numerical scheme.

To avoid this issue, another affine prior term is proposed. Similar to (Nir et al. 2008),

the proposed regularization term penalizes the gradient of motion parameters. More

specifically, let

�m =
[

u v u�d v�d u�n v�n
]T

.

The regularization term penalizes the variation of �m by minimizing

Es =
∫ ∫

Ω

(
‖∇d�m‖2

2

)
dξdη. (6.11)

To preserve the flow smoothness in the edge direction and impede oversmoothing in

the normal direction, the energy functional is adjusted to

Es =
∫ ∫

Ω

(
p · ∥∥�m�d

∥∥2
2 + q · ‖�m�n‖2

2

)
dξdη. (6.12)

where p and q are nonnegative monotonically decreasing functions of the flow varia-

tion. Particularly in this work, they are defined by

p =
(∥∥�m�d

∥∥2
2 + ε

)− 1
2

q =
(
‖�m�n‖2

2 + ε
)− 1

2 . (6.13)

The advantage of such definition is two-fold. First, function p and q steer the flow

smoothness based on the flow itself, and hence avoid over-segmenting at intensity

edges. Second, the energy functional is in the same order of an L1 regularizer, which

is more robust than its L2 counterpart; Although the authors of (Trobin et al. 2008)

pointed out that bias might be induced by the regularization term proposed in (Nir et al.

2008), the empirical study shows that using Eq.6.12 is uniformly more robust than

Eq.6.10. Therefore this work adopts Eq.6.12 as the smoothness term.

6.3.4 The Balanced Combination of the Constraints

The ultimate energy functional of the flow computation is a balanced combination of

the above constraints

E = λ1EĖ + λ2

(
EĖd

+ EĖn

)
+ λ3Es, (6.14)
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where λi’s are Lagrange multipliers balancing the importance of each error term. By

calculus of variation, the minimizer of the energy functional fulfills the associated

Euler-Lagrange equation pair in the oriented coordinate system

∂E

∂u
− ∂

∂�d

(
∂E

∂u�d

)
− ∂

∂�n

(
∂E

∂u�n

)
= 0

∂E

∂v
− ∂

∂�d

(
∂E

∂v�d

)
− ∂

∂�n

(
∂E

∂v�n

)
= 0. (6.15)

By substituting Eq. 6.14 into the Euler-Lagrange pair, and introducing the following

notation for the directional divergence

divd() =
∂

∂�d
() +

∂

∂�n
()

one has

0 = 2λ1Ψ′ (Ė
)

Ex
(
Exu + Eyv + Et

)
+ 2λ2

[
Ψ′ (Ėd

)
Ex�d

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)]
+ 2λ2

[
Ψ′ (Ėn

)
Ex�n

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

)]
− 2λ2divd

⎛⎝ Ψ′ (Ėd
)

Ex

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)
Ψ′ (Ėn

)
Ex

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

) ⎞⎠
− λ3divd

⎛⎝ ∂p
∂u�d

· ∥∥�m�d

∥∥2
2 + 2p · u�d

∂q
∂u�n

· ‖�m�n‖2
2 + 2q · u�n

⎞⎠ (6.16)

0 = 2λ1Ψ′ (Ė
)

Ey
(
Exu + Eyv + Et

)
+ 2λ2

[
Ψ′ (Ėd

)
Ey�d

(
Ex�du + Exu�d + Ey�dv + Eyu�d + E�dt

)]
+ 2λ2

[
Ψ′ (Ėn

)
Ey�n

(
Ex�nu + Exu�n + Ey�nv + Eyu�n + E�nt

)]
− 2λ2divd

⎛⎝ Ψ′ (Ėd
)

Ey

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)
Ψ′ (Ėn

)
Ey

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

) ⎞⎠
− λ3divd

⎛⎝ ∂p
∂v�d

· ∥∥�m�d

∥∥2
2 + 2p · v�d

∂q
∂v�n

· ‖�m�n‖2
2 + 2q · v�n

⎞⎠ . (6.17)

As the equation pair have the same form for u and v, the following discussion focuses

on u and can be extended to v straightforwardly. Given the motion model is affine, the

second order derivatives of the flow vector vanish. Thus it can be easily verified that

divd

⎛⎝ ∂p
∂u�d

· ∥∥�m�d

∥∥2
2

∂q
∂u�n

· ‖�m�n‖2
2

⎞⎠ = 0.
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Consequently the Euler-Lagrange equation is simplified to

0 = λ1Ψ′ (Ė
)

Ex
(
Exu + Eyv + Et

)
+ λ2

[
Ψ′ (Ėd

)
Ex�d

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)]
+ λ2

[
Ψ′ (Ėn

)
Ex�n

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

)]
− λ2divd

⎛⎝ Ψ′ (Ėd
)

Ex

(
Ex�du + Exu�d + Ey�dv + Eyv�d + E�dt

)
Ψ′ (Ėn

)
Ex

(
Ex�nu + Exu�n + Ey�nv + Eyv�n + E�nt

) ⎞⎠
− λ3divd

(
p · u�d

q · u�n

)
(6.18)

The optimal flow field (uo, vo) is obtained by solving Eq. 6.18 and its counterpart for v.

In the next section, we derive the numerical scheme to obtain the solution.

6.4 Multi-Scale Multi-Stage Numerical Solution

To deal with the large displacement caused by fast rotation, the numerical implemen-

tation of the algorithm follows the multi-scale multi-stage refinement routine. The

optimization thus requires nested loops of iterations to achieve the solution. Briefly

(as shown in the pseudo-code below), in each level, the flow is computed by several

iterations of image warping and refinement; in each refinement stage, the optimal so-

lution of the non-linear equations is approximated by several iterations of solving the
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linearized functions; in each step of solving linearized equations, standard Jacobi iter-

ations are employed. Details are explained in the following subsections and the flow

chart.

Input: I(x, y, t),I(x, y, t + 1)

Output: u,v

foreach Level l (Sec. 6.4.1) do
initialize the flow of level l;

warp the second image and compute the new partial derivatives;

foreach Stage s (Sec. 6.4.2) do

foreach Re-weight step r (Sec. 6.4.3) do

compute Ψ′(), p() and q();

foreach Jacobi iteration τ (Sec. 6.4.4) do
compute h1, h2, g1, g2;

compute δul,s,r,τ+1, δvl,s,r,τ+1 by Eq. 6.25;
end

end

warp the second image and compute the new partial derivatives;
end

end

6.4.1 Multi-Scale Pyramidal Implementation

Figure 6.4. An illustration of the pyramidal implementation. The flow computation starts from the

coarsest level of the pyramid, and is propagated to the next level as an initialization.
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In the implementation, a Gaussian pyramid is constructed by down-sampling the orig-

inal image pair by a factor of 2. The flow computation starts from the coarsest level L

with the initialization (uL, vL) = (0, 0) and is then refined. The computed flow on level

l is propagated to the next level by (ul−1, vl−1) = (2ul, 2vl) until the bottom level of

the pyramid is reached.

6.4.2 Multi-stage Refinement

in each level l

input: l,S,ul, vl

initialization: ul,0 = ul, vl,0 = vl

output: δul,S, δvl,S

for s = 0 : S

solve Eq.6.19 for δul,s, δvl,s

warp

Figure 6.5. The flow chart for multi-stage image warping and flow refinement in the level l.

In each level, the optical flow can be estimated from the down-sampled image pair

according to Eq.6.18. The flow accuracy can be further refined by successive image

warping. More particularly, the flow field is initialized by (ul,0, vl,0) = (ul, vl). In each

stage s, the second image is warped according to (ul,s, vl,s). The “residual” mismatch

between the warped image Il,s(X, t + 1) and the first image Il(X, t) generates the new

partial derivatives in Eq.6.18, which yields a flow increment (δul,s, δvl,s). The flow is

then updated by ul,s+1 = ul,s + δul,s and vl,s+1 = vl + δvl,s. The refinement procedure

can be repeated for several stages until the flow increment is smaller than a predefined
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threshold. In this setting, Eq.6.18 becomes

0 = λ1Ψ′
(

Ėl,s
)

El,s
x

(
El,s

x δul,s + El,s
y δvl,s + El,s

t

)
+ λ2Ψ′

(
Ėl,s
�d

)
El,s

x�d

(
El,s

x�d
δul,s + El,s

x δul,s
�d
+ El,s

y�d
δvl,s + El,s

y δvl,s
�d
+ El,s

t�d

)
+ λ2Ψ′

(
Ėl,s
�n

)
El,s

x�n

(
El,s

x�nδul,s + El,s
x δul,s

�n + El,s
y�nδvl,s + El,s

y δvl,s
�n + El,s

t�n

)
− λ2div

⎛⎜⎝ Ψ′
(

Ėl,s
�d

)
El,s

x

(
El,s

x�d
δul,s + El,s

x δul,s
�d
+ El,s

y�d
δvl,s + El,s

y δvl,s
�d
+ El,s

t�d

)
Ψ′
(

Ėl,s
�n

)
El,s

x

(
El,s

x�nδul,s + El,s
x δul,s

�n + El,s
y�nδvl,s + El,s

y δvl,s
�n + El,s

t�n

)
⎞⎟⎠

− λ3div

(
p(�ml,s

�d
+ δ�ml,s

�d
) · (ul,s

�d
+ δul,s

�d
)

q(�ml,s
�n + δ�ml,s

�n ) · (ul,s
�n + δul,s

�n )

)
(6.19)

6.4.3 Removal of the Nonlinearity and Its Relation to Iteratively Re-

weighted Least Squares

in each stage s, to solve Eq. 6.19

input: l,s,R,ul,s, vl,s

initialization: δul,s,0 = 0, δvl,s,0 = 0

output: δul,s,R, δvl,s,R

for r = 0 : R

compute Ψ′(), p(), q() for fixed l,s,r

solve Eq.6.20, Eq.6.21 for δul,s,r+1, δvl,s,r+1

Figure 6.6. The flow chart for approximating the optimization of nonlinear functions by multiple

steps of linear optimization.

A significant problem with using Eq.6.19 is its nonlinearity, because Ψ′, p and q involve

δu and δv. This is a side effect of replacing the L2 regularization by L1 regularization.

In (Brox et al. 2004), the nonlinearity is removed by a fixed-point iteration, which is ap-

plied here. The process begins by initializing (δul,s,0, δvl,s,0) to zeros, in each iteration
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step r, the values of Ψ′, p and q are computed as functions of (δul,s,r, δvl,s,r). Subse-

quently, Eq.6.19 becomes a linear equation of (δul,s,r+1, δvl,s,r+1),

0 = λ1Ψ′
(

Ėl,s,r
)

El,s
x

(
El,s

x δul,s,r+1 + El,s
y δvl,s,r+1 + El,s

t

)
+ λ2Ψ′

(
Ėl,s,r
�d

)
El,s

x�d

(
El,s

x�d
δul,s,r+1 + El,s

x δul,s,r+1
�d

+ El,s
y�d

δvl,s,r+1 + El,s
y δvl,s,r+1

�d
+ El,s

t�d

)
+ λ2Ψ′

(
Ėl,s,r
�n

)
El,s

x�n

(
El,s

x�nδul,s,r+1 + El,s
x δul,s,r+1

�n + El,s
y�nδvl,s,r+1 + El,s

y δvl,s,r+1
�n + El,s

t�n

)
− λ2div

⎛⎜⎝ Ψ′
(

Ėl,s,r
�d

)
El,s

x

(
El,s

x�d
δul,s,r+1 + El,s

x δul,s,r+1
�d

+ El,s
y�d

δvl,s,r+1 + El,s
y δvl,s,r+1

�d
+ El,s

t�d
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Ψ′
(

Ėl,s,r
�n

)
El,s

x

(
El,s

x�nδul,s,r+1 + El,s
x δul,s,r+1

�n + El,s
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�n + El,s

t�n

)
⎞⎟⎠

− λ3div

(
p(�ml,s

�d
+ δ�ml,s,r

�d
) · (ul,s

�d
+ δul,s,r+1

�d
)

q(�ml,s
�n + δ�ml,s,r

�n ) · (ul,s
�n + δul,s,r+1

�n )

)
(6.20)

Similarly, Eq.6.20’s counterpart for v is

0 = λ1Ψ′
(

Ėl,s,r
)

El,s
y

(
El,s

x δul,s,r+1 + El,s
y δvl,s,r+1 + El,s

t

)
+ λ2Ψ′

(
Ėl,s,r
�d

)
El,s

y�d

(
El,s

x�d
δul,s,r+1 + El,s

x δul,s,r+1
�d

+ El,s
y�d
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�d
+ El,s

t�d

)
+ λ2Ψ′

(
Ėl,s,r
�n

)
El,s

y�n
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El,s
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�n + El,s
y�nδvl,s,r+1 + El,s

y δvl,s,r+1
�n + El,s

t�n

)
− λ2div

⎛⎜⎝ Ψ′
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)
El,s

y
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El,s

x�d
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�d

+ El,s
y�d
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�d
+ El,s

t�d

)
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(

Ėl,s,r
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)
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y
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El,s

x�nδul,s,r+1 + El,s
x δul,s,r+1

�n + El,s
y�nδvl,s,r+1 + El,s

y δvl,s,r+1
�n + El,s

t�n
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⎞⎟⎠

− λ3div

(
p(�ml,s

�d
+ δ�ml,s,r

�d
) · (vl,s

�d
+ δvl,s,r+1

�d
)

q(�ml,s
�n + δ�ml,s,r

�n ) · (vl,s
�n + δvl,s,r+1

�n )

)
(6.21)

Recall the definitions of functions Ψ′, p and q, which are monotonically decreasing

functions of the deviation of the constraints. Therefore, in Eq.6.20 and Eq.6.21, they

measure “how well” the corresponding constraint is fulfilled by the flow recovered in

step r. If the residual is small, the corresponding constraint is emphasized with larger

weights in the iteration step r + 1 . Thus the nonlinearity is removed by iteratively

re-weighting each constraint, where the weights are defined by the fulfillment of the

constraint in the previous step. This is in a very similar fashion to achieving least

absolute deviation regression by iteratively re-weighted least squares (IRLS) (Chapter

4, (Björck 1996)).
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6.4 Multi-Scale Multi-Stage Numerical Solution

6.4.4 Jacobi Iteration

To derive the numerical iteration scheme at each pixel, finite differencing is needed to

approximate the partial derivatives in Eq.6.20 and Eq.6.21. Standard central differenc-

ing is used to approximate the first order partials in the non-divergence terms. For

example

δu�d =
δu|X+�d − δu|X−�d

2

δu�n =
δu|X+�n − δu|X−�n

2
. (6.22)

δv�d, u�d and v�d are approximately similarly.

in each re-weight step r, to solve Eq. 6.20, Eq.6.21

input: l,s,r,T,ul,s, vl,s,δul,s,r, δvl,s,r

initialization: δul,s,r,0 = 0, δvl,s,r,0 = 0

output: δul,s,r,T, δvl,s,r,T

for τ = 0 : T

compute h1, h2, g1 and g2 for fixed l,s,r,τ

implement Eq.6.25 for δul,s,r,τ+1, δvl,s,r,τ+1

Figure 6.7. The flow chart for each step of linear optimization by Jacobi iteration.

Partial derivatives involved in the divergence terms are approximated by energy pre-

serving differencing scheme, which is necessary for the numerical iteration to converge.

For example

∂

∂�d

(
C (•) · δu�d

)
= C (•) δu�d

∣∣
X+

�d
2
− C (•) δu�d

∣∣
X− �d

2
,

δu�d

∣∣
X+

�d
2

= δu|X+�d − δu|X ,

δu�d

∣∣
X− �d

2
= δu|X − δu|X−�d , (6.23)

where C(•) is a general function representing any coefficient function that may ap-

pear before δu�d in the divergence terms. Bilinear interpolation is employed to estimate
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Chapter 6 Optical Flow Computation for Fast Rotation

C (•)|
X± �d

2
. Approximations to ∂

∂�n (C (•) δu�n), ∂
∂�d

(
C (•) δv�d

)
and ∂

∂�n (C (•) δv�n) are ob-

tained in the same way. Let N (X) =
{

X ± �d, X ±�n
}

denote the set of the four neigh-

bours of pixel X. Eq.6.20 and Eq.6.21 then can be re-written using these neighbours to

the form of

δul,s,r+1 (X) = hl,s,r
1 + g1

(
δvl,s,r+1 (X) , δul,s,r+1

j , δvl,s,r+1
j

)
δvl,s,r+1 (X) = hl,s,r

2 + g2

(
δul,s,r+1 (X) , δul,s,r+1

j , δvl,s,r+1
j

)
, (6.24)

where hl,s,r
1 and hl,s,r

2 are the sum of constant terms with fixed l, s, r; and g1(),g2() are

linear functions; and j ∈ N (X). The Jacobi iteration, which starts from initializing

(δul,s,r+1,0, δvl,s,r+1,0) by zeros, is updated at iteration step τ + 1 by

δul,s,r+1,τ+1 (X) = h1 + g1

(
δvl,s,r+1,τ (X) , δul,s,r+1,τ

j , δvl,s,r+1,τ
j

)
δvl,s,r+1,τ+1 (X) = h2 + g2

(
δul,s,r+1,τ (X) , δul,s,r+1,τ

j , δvl,s,r+1,τ
j

)
, (6.25)

6.5 Experimental Results

6.5.1 Comparison with Existing Methods

Table 6.1 presents the algorithm’s numerical performance on 5 Middlebury training

sequences. Similar to (Brox et al. 2004), the parameters are set to λ1 = 1, λ1 = 2,

λ3 = 600 for synthesized images; and following (Brox et al. 2009), λ1 = 1, λ1 = 5,

λ3 = 100 are used for real images; ε = 1.0−3 in all the experiments.

Table 6.1 also compares the performance of the proposed method to a contemporary

technique (Ho and Goecke 2008), which deals with rotation using the Fourier-Mellin

Transform (FMT). It can be seen that except on Venus, the proposed method signif-

icantly outperforms FMT on all the other sequences. Moreover, to illustrate the per-

formance of the proposed method relative to other methods, Table 6.1 also lists the

numerical results on the same sequences reported in a recent work (Ren 2008) and the

reference therein. The visual results of these experiments are presented in Fig. 6.8.

6.5.2 Numerical Evaluation of Each Step

This section experimentally evaluates the three features of the proposed technique.

These are the oriented coordinate system, the affine model and the proposed direc-

tional derivatives computation method. Experiments are conducted on benchmark
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6.5 Experimental Results

Table 6.1. Comparison of the proposed directional flow recovery technique with traditional and

contemporary methods. Bold numbers indicate the smallest errors on the test sequences.

The results by Black-Anandan’s method (Black and Anandan 1996) are taken from

(Ren 2008)

.

sequences that undergo a variety of motion, such as rigid/non-rigid fast/slow trans-

lation or rotation. In all the experiments, two frames are extracted from the sequence

and converted to gray-scale to compute the dense flow field.

The three features are tested separately, by evaluating the difference with a given fea-

ture is “on” and “off” with all other components of the experiment remain unchanged.

In the numerical evaluation, both average angular error (AAE) and average endpoint

error (AEP) metrics are applied. The two metrics are found to be highly consistent

with each other in all experiments, hence only AAE values are reported in Table 6.2.

The AEP values support the same analysis and conclusion.

The Oriented and Horizontal-Vertical Coordinate System

Table 6.2 compares the flow computation in the oriented and traditional coordinate

system. On sequences that are dominated by rigid translation, such as the Hydrangea

and Venus sequences, computation in both systems obtain similar results. The bene-

fit of the oriented coordinate system is clearly demonstrated by tests on Dimetrodon,

which contains non-rigid motion; and Grove2, which is viewed by a moving and tilting

down camera. On sequences RubberWhale and Urban2, the error using the oriented

coordinate system is slightly greater than the traditional coordinate system. This is

most likely because the motion boundaries in both sequences are mainly in the hori-

zontal, vertical or diagonal directions, which coincide with the axes of the traditional

coordinate frame. In contrast, Hydrangea, Dimetrodon and Grove2 contain motion

Page 90

a1172507
Text Box
                           NOTE:     This table is included on page 90  of the print copy of the thesis held in    the University of Adelaide Library.



Chapter 6 Optical Flow Computation for Fast Rotation

boundaries of various directions, and hence the oriented coordinate frame adapts to

the direction change more flexibly.

The Steerable Derivatives and Directional Convolution

Directional derivatives can be obtained by either steerable filtering or using directional

convolution as proposed in Section 6.2.1. In all experiments (Table 6.2), directional con-

volution either improves the computed flow field or achieves similar results to using

the steerable filtering. On sequences Dimetrodon and Grove2 this benefit is more obvi-

ous. This confirms that directional convolution is more flexible when objects undergo

nonrigid motion or shape change, whilst still performing well under translation.

Affine and Constant Motion Model

On all the test sequences except Urban2, affine model demonstrates better performance

than the constant motion model (see Table 6.2); however the improvement is not as

substantial (generally around 0.1 in AAE metric) as in the case of changing coordinates.

The only exception is Grove2, where the difference is 0.27◦. This not surprising because

the tilting camera in Grove2 causes clear change in the apparent shape, which is better

described by an affine motion model.

Dimetrodon Grove2 Hydrangea Venus
Rubber

Whale
Urban2

proposed 2.64 3.54 2.68 7.09 5.03 4.05

coordinate 3.22 3.94 2.74 7.22 4.81 3.72

derivative 3.08 3.89 2.69 7.24 4.96 3.97

motion model 2.76 3.81 2.77 7.03 4.93 3.91

Table 6.2. Numerical comparison of each feature’s contribution based on the AAE metric. 1st row:

the AAE performance of the proposed method; 2nd row: the AAE performance if the

proposed coordinate system is replaced by the traditional coordinate system; 3rd row:

the AAE performance if the directional convolution is replace by steerable filtering; 4th

row: the AAE performance if the 4 deformation parameters are replaced by 0s.
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6.6 Summary

6.5.3 Real Sequences

Both (Brox et al. 2009) and (Steinbruecker et al. 2009) report experimental results on

the HumanEva-II sequence as shown in Fig 6.10. To simulate large displacement, both

works extract frame 546 and 550 for experimental testing. For direct comparison, we

have also used the same frames for evaluation. The most challenging region in the

scene occurs where the running person’s right foot has a large 2D displacement (about

20 pixels) due to translation and rotation. To examine the role that each feature plays

on the real sequence, the interpolation error is computed. The second frame is warped

according to the flow computed. The difference between the first frame and the warped

second frame is coded by 8-bit grayscale, as shown in Fig.6.9.

From the interpolation errors before and after each feature is applied, noticeable im-

provement by the affine motion model can be observed in the foot area. However,

computation for the foot’s motion in the oriented coordinate frame is less accurate

than in the traditional frame. A closer inspection shows that the rotated coordinate

system slightly improves the computation performance in the area of the right hand

and around some segments of the motion boundaries, but not substantial.

Fig.6.10 compares the colorcoded flow field obtained by different methods. Compared

to the patch matching guided technique of (Brox et al. 2009), the proposed method

recovers the motion of the right foot with more success; compared to the complete

search technique of (Steinbruecker et al. 2009), the motion estimation of the right foot

by the proposed method is more blurry. However, the proposed method does more

faithfully recover the motion between the two legs.

6.6 Summary

This chapter has presented a method to generalize the flow computation from trans-

lational motion to fast rotation. This is done by rotating the coordinate system to the

local isophote-normal directions, which are detected by directional convolution with

pre-computed high pass kernels. Optical flow computation in the locally oriented co-

ordinate system is formulated based on the rotational invariance of the directional

derivatives, directional smoothness constraints, and the affine motion model. The nu-

merical scheme to find the optimal flow field is derived. Experimental results have

confirmed the contribution of the intrinsic direction detection approach, the use of the

oriented coordinate system and the affine motion prior.
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Dimetrodon

Grove2

Venus

Hydrangea

RubberWhale

Urban2

Figure 6.8. Visual results of the flow estimation by the proposed method on Middlebury sequences.

From left to right, the test image, the ground truth flow, the computed flow, and the

AAE images. In the grayscale error maps, darker intensity indicates larger errors.
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6.6 Summary

(a) (b) (c)

(e) (f) (g)

Figure 6.9. The interpolation errors between the first frame and the warped second frame according

to the flow computed by a) the proposed method; b) replacing the oriented coordinate

system by the traditional one; c) replacing the deformation parameters in the motion

model by zeros; (e)-(f) zoomed-in view of the feet area of (a)-(c). Darker intensity indi-

cates larger error at the position. Errors are uniformly scaled for clarity. The comparison

between (e) and (f) shows that the traditional coordinate frame works better near the

boundary between the right foot and the background; the comparison between (e) and

(g) demonstrates that the affine morel significantly improves the recovery accuracy for

the right foot in this example.
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Frame 546 Frame 550 overlaid

colorwheel warping patch matching

(Brox et al. 2009) (Brox et al. 2004) (Brox et al. 2009)

(Brox et al. 2004)

colorwheel complete matching

(Steinbruecker et al. 2009) (Steinbruecker et al. 2009)

Middlebury colorwheel proposed method

Figure 6.10. Performance comparison on HumanEva-II. Results by previous works are taken from

the corresponding publications. Different work uses different colourcoding schemes to

visualize the flow field. This works adopts the standard Middlebury colorwheel. The

patch matching method does not recover the flow of the right foot, where the complete

matching method shows success. The proposed method recovers the flow in this area,

but with blurry effects. The complete matching method estimates the motion between

the two legs inaccurately; whereas the proposed method performs better in this area.
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Chapter 7

Optical Flow Computation
by

Expectation-Maximization

The first part of this chapter presents an alternative framework to com-

bine local and global optical flow computation, in a similar fashion to

Expectation-Maximization. The expectation step predicts the flow vector

subject to the global smoothness assumption, while the maximization step

estimates the optimal flow refinement by solving a local system. The second

part of the chapter generalizes this combinational computation to fast rota-

tion. To this end, both steps are adapted to the intrinsic directions. Different

from the quantization vectors used in the previous chapter to represent the

isophote direction, a new set of integer vectors are proposed. The conve-

nience and demands of applying these quantization vectors are discussed.

Experimental results show that the proposed combination framework pre-

serves sharp motion boundaries better than using either the local system or

global computation of the previous chapters. Moreover, it also shows better

performance than some contemporary flow techniques that are designed to

be robust to rotation.
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7.1 Combine Local and Global Computation by EM

In the previous chapter, a global flow computation scheme is generalized to rotation

by locally rotating the coordinate frame to the intrinsic directions. In this chapter, a lo-

cal computation system is introduced to improve the robustness of global computation

for fast rotation. Different from the combinational computation proposed in Chapter

5, the method presented in this chapter does not involve segmentation, because the

flow caused by rotation is difficult to segment reliably. To allow more flexibility, the

optimization is realized by two sub- optimization steps. One step minimizes the de-

viation from the global smoothness, while the other one minimizes the deviation from

local structure preservation, which is in a similar fashion of expectation-maximization

(Dempster et al. 1977). Due to the separation of the two steps, the global and local con-

straints are adapted to rotation separately, rather than formulating all the components

in a unified framework as in the previous chapter.

7.1 Combine Local and Global Computation by EM

Variational flow computation is typically formulated as an energy minimization prob-

lem, which minimizes the overall error composed of the data term D(x, y) and the

smoothness term S(x, y). The global flow computation of the previous chapter falls

in this category. As global computation is more sensitive to noise than local meth-

ods (Barron et al. 1994), it is suggested in (Bruhn et al. 2005) to replace the data term

D(x, y) of the global energy functional by a Lucas-Kanade local computation system.

For instance, in Horn-Schunck global formulation, the original data term

D(x, y) =
∫ ∫ (

Exu + Eyv + Et
)2 dxdy

is replaced by

D(x, y) =
∫ ∫ ∥∥∥∥∥

[
Gσ ∗ E2

x Gσ ∗ ExEy

Gσ ∗ ExEy Gσ ∗ E2
y

] [
u

v

]
+

[
Gσ ∗ ExEt

Gσ ∗ EyEt

]∥∥∥∥∥
2

2

dxdy,

where Gσ is a Gaussian convolution kernel of standard deviation σ. This combina-

tion has been demonstrated to be more powerful than using either the local or global

component individually. Furthermore, the improved robustness to noise has been val-

idated by experimental results reported in (Bruhn et al. 2005).

This chapter applies this idea of using a local system for improved robustness. Thus

it seems to be an easy solution to formulate the computation in the same way as in
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(Bruhn et al. 2005), but on the locally oriented coordinate system. However, there

are two potential drawbacks to this strategy. First, the combination is still posed as

a global computation problem, which, although it has improved robustness to noise,

still suffers error propagation. Second, both the local and global components in the

combination can estimate the flow independently, which can be utilized to guide each

other; however, in the standard combination scheme, the interaction between the local

and global computation is limited. In (Xiao et al. 2006), it is shown that the minimiza-

tion process of a global energy function can be separated into two steps, with each step

updating the flow subject to the data and smoothness terms respectively. Furthermore,

as the latter step is equivalent to a bilateral filtering operation, more flexibility of cus-

tomization (e.g., weight by occlusion labelling) is allowed. Inspired by this idea, this

work structures the optimization by two sub-steps rather than integrating them into

one global framework.

More particularly, with the flow field initialized by u0 = 0 and v0 = 0, in each iteration

step (indexed by τ), the algorithm computes the intermediate flow [ uτ+ 1
2 vτ+ 1

2 ] by

minimizing the smoothness term Sτ, i.e.,[
uτ+ 1

2

vτ+ 1
2

]
= argmin

u,v
Sτ. (7.1)

The local image patch is then warped based on the intermediate flow, and the data term

Dτ+ 1
2 is computed accordingly. The flow [ uτ+1 vτ+1 ] is obtained by minimizing the

data term, i.e., [
uτ+1

vτ+1

]
= argmin

u,v
Dτ+ 1

2 . (7.2)

The two steps are implemented alternatively for several steps until convergence or

reaching the predefined number of iterations.

In this algorithm, the fist step (Eq. 7.1) explores the underlying spatial smoothness

of the motion field. Its numerical scheme of optimization is equivalent to a low pass

convolution (Xiao et al. 2006). In other words, this step evaluates the expectation of

the flow from the surrounding flow vectors. The second step (Eq. 7.2) optimizes the

flow refinement given the warped image patch. Therefore, this two step optimiza-

tion process is in the same fashion of the Expectation-Maximization algorithm. This

framework of combining the local and global computation is general, in the sense that

S(x, y) and D(x, y) can be designed freely according to the application needs. In the
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next section, we extend this formulation to flow recovery for rotation, and show how

to construct D(x, y) and S(x, y) for this purpose.

7.2 Generalization to Fast Rotation

To extend the computation to rotation, the bilateral filtering in the E-step should be at-

tached to the isophote and normal directions; while the data term in the M-step should

be based on the preservation of a rotational invariant feature. Thus the isophote direc-

tion detection and directional derivative computation discussed in the previous chap-

ter can be directly applied for these purposes. However, this chapter proposes another

set of 40 directions to quantize the 2D plane. The new set of directions are special as

they are represented by integer vectors. As will be shown soon, this allows computa-

tional convenience in computing directional derivatives and structuring the EM steps,

but also requires sufficiently high image resolution. We start from introducing these

quantization directions.

7.2.1 The Quantization of the 2D plane by Integer Vectors

Within a local 11 × 11 patch there exist 40 vectors, which originate from the patch

center and end at 40 integer positions. More importantly, they cover the 2D plane

quite evenly. In particular, the 10 vectors that cover the first quadrant are

�e0 = [0, 1]; �e1 = [1, 5]; �e2 = [1, 3]; �e3 = [1, 2]; �e4 = [2, 3];

�e5 = [1, 1]; �e6 = [3, 2]; �e7 = [2, 1]; �e8 = [3, 1]; �e9 = [5, 1].

Their orthogonal vectors cover the second quadrant, as shown in Fig.7.2.1.

Among these vectors, the largest angle between two neighbouring vectors is 11.31◦

(e.g., between �e0 and �e1) and the smallest is 7.13◦ (e.g., between �e3 and �e4). Thus the

quantization distortion is smaller than 5.7◦ = 11.31◦/2. This is comparable to using the

40 evenly distributed quantization directions in Section 6.2.1, where the quantization

distortion upper limit is 4.5◦.

Together with the opposite vectors, the quantization vectors in Fig. 7.2.1 can be grouped

into 5 sets, as shown in Fig. 7.2.1. Each set contains 8 vectors that constitute 4 cardi-

nal and 4 ordinal directions. Therefore, no matter how the local patch is rotated, the 8

intrinsic directions fall into one of the five sets.
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Figure 7.1. An illustration of the 20 vectors that fall on the integer positions of the image grid,

covering the first and second quadrant. The pair of vectors that are of the same colour

are orthogonal.

In each of these quantization direction �d, the directional derivative computation is then

adapted to

∂E
∂�d

≈ E(X + �d)− E(X)∥∥∥�d∥∥∥ . (7.3)

With �d represented by integers, pixel X + �d falls on the image grid. Thus Eq.7.3 utilizes

intensity values that are immediately available from the image. For example, the first

order derivative in the direction of �e2 can be obtained by simply filtering the image

with the high pass filter

K ∂
∂�e2

= 1/
√

3

[
−1 0 0

0 0 1

]
.

Compared to the differencing scheme in Section 6.2.1, which needs bilinear interpo-

lation to approximate the intensity values at subpixels, Eq.7.3 avoids blurring sharp

edges resulted from smooth interpolation. However, as these directions are not at the

same scale, sample aliasing may lead to biased approximation. Therefore, this scheme

suits the applications that have high image resolution.

If this requirement is satisfied, the local isophote direction is computed by the follow-

ing steps. First, the partial derivatives in the 40 directions are computed by convolving

the image with the directional high pass filters, and grouped into 5 sets. Next, the local
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Figure 7.2. The quantization vectors are grouped into 5 sets. Each set contains the cardinal and

ordinal direction of a rotated compass rose.

dominant direction is detected by the eigen-decomposition of structure tensors (Sec-

tion 6.2.1), and modulated to the range of [0, π]. Finally, the pixel is assigned one of the

basis sets in Fig. 7.2.1 that the dominant direction belongs to.
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7.2.2 E-Step for Rotation

The expectation step of the algorithm predicts the flow of a pixel from the nearby pix-

els, subject to the assumed smoothness correlation. Note that, as explained in the pre-

vious section and shown in Fig 7.2.1, whichever the isophote direction is, its 8 neigh-

bours in the 4 cardinal and ordinal directions also fall into the same set. Therefore in

this section the prediction is given by the weighted average of the flow at these neigh-

bouring pixels. Denote the set of 8 neighbours by N , the prediction step is performed

by a low-pass filtering

uτ+ 1
2 =

∑i∈N ωiuτ
i

∑i∈N ωi

vτ+ 1
2 =

∑i∈N ωivτ
i

∑i∈N ωi
(7.4)

The weights ωi, i = 1, · · · , 8 is to steer the flow smoothness anisotropically. It can

be given by intensity contrast, occlusion labeling or spatial distance, as in (Xiao et al.

2006). In this work, we use two weight functions, which are the simplified ωintensity

and ωconsistency defined in Chapter 4,

ωi =
1√(

uτ − uτ
i
)2

+
(
vτ − vτ

i
)2

+ ε
· 1√

(E − Ei)
2 + ε

. (7.5)

where ε = 0.001 to prevent the denominators from being zero. It can be seen that

if the neighbouring pixel has large intensity inconsistency or motion inconsistency

with the current pixel, it is weighted down. Therefore the low pass filtering Eq. 7.4

steers the regularization toward pixels that have consistent pattern, and alleviates over-

smoothing across the motion boundaries.

7.2.3 M-Step for Rotation

The flow vector obtained from the expectation step is used to warp the local patch.

The M-step estimates the optimal flow increase [ δu δv ] given the intensity variation

of warped patch, by minimizing the deviation from the preservation of a feature. To

adapt the M-step to rotation, this feature should be rotational invariant. This section

proposes a new feature descriptor for this purpose.

Let �d(t) be a pixel’s quantized dominant direction at time t. As discussed before, �d(t)

falls into one of the 5 sets illustrated in Fig.7.2.1. Denote the 8 directions, in clockwise
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order, by �d0(t), · · · , �d7(t) with �d0(t) = �d(t). The first order partial derivatives in these

directions form a vector �f (t),

�f (x, y, t) =

[
∂E(x, y)
∂�d0(t)

, · · · ,
∂E(x, y)
∂�d7(t)

]
. (7.6)

Because each component of this descriptor hinges on the intrinsic directions, it is ro-

tational invariant. It should be noted that, however, approximating the partial deriva-

tives by the differencing scheme Eq. 7.3 may weaken the invariance, if the image reso-

lution is low.

The invariance of �f (x, y, t) provides a constraint for the pixel’s displacement between

the first image and the warped second image (δuτ+ 1
2 , δvτ+ 1

2 ), which is in the same form

of the brightness constancy assumption

d�f
dt

= �fxδuτ+ 1
2 + �fyδvτ+ 1

2 + �f τ+ 1
2

t = 0, (7.7)

where �f τ+ 1
2

t is computed on the first image and the warped second image. Further-

more, we assume the local motion model to be affine,

δu(k,τ+ 1
2 ) = α1x(k) + α2y(k) + α3

δv(k,τ+ 1
2 ) = α4x(k) + α5y(k) + α6, (7.8)

where the superscript k is the index of a generic pixel in the neighbourhood, and

α1, · · · , α6 are the motion parameters. Combining Eq.7.7 and Eq. 7.8, the following

equation can be easily verified:

− �f (k,τ+ 1
2 )

t = �f (k)x (δuτ+ 1
2 + α1Δx(k) + α2Δy(k)) +

+ �f (k)y (δvτ+ 1
2 + α4Δx(k) + α5Δy(k)), (7.9)

where Δx(k) = x(k) − x and Δy(k) = y(k) − y. To alleviate the distortion caused by

outliers, the equations are weighted by the motion consistency measured from the flow

obtained from the previous step, i.e.,

− ω(k,τ+ 1
2 )�f (k,τ+ 1

2 )
t = ω(k,τ+ 1

2 )�f (k)x (δuτ+ 1
2 + α1Δx(k) + α2Δy(k)) +

+ ω(k,τ+ 1
2 )�f (k)y (δvτ+ 1

2 + α4Δx(k) + α5Δy(k)), (7.10)

with

ω(k,τ+ 1
2 ) =

1√(
uτ+ 1

2 − u(k,τ+ 1
2 )
)2

+
(

vτ+ 1
2 − v(k,τ+ 1

2 )
)2

+ ε

. (7.11)
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Note that other weighting functions discussed in Chapter 4 can be applied to remove

or inhibit outliers. The collection of all pixels’ Eq.7.10 form an overdetermined system

A�X =�bτ+ 1
2 , where �X = [δuτ+ 1

2 , δvτ+ 1
2 , α1, α2, α4, α5]

T.

Although the weighting functions can weight down pixels with inconsistent patterns,

there may still be outliers in the local system. As discussed in Chapter 2, to achieve

robustness to outliers, L1 norm penalizing terms may be used; however, the associated

side effects such as non-differentiability have to be handled with extra effort. Thus it

is preferable to use L1 penalization if the presence of outliers is detected in the sys-

tem and L2 penalization otherwise. To choose the penalizing functions adaptively, the

COIN measure introduced in Section 3.3 is employed to detect occurrences of incon-

sistent motion. In particular, the measure values are initialized to be zeros. For the

measure computed at each stage τ of the optimization, the mean and standard devi-

ation are computed over the whole image. A threshold T is determined as the mean

value plus one standard deviation. If the measure at a pixel is smaller than the thresh-

old, the motion in the local surrounding area is considered to be consistent; In this case,

the flow refinement at stage τ + 1 is estimated by the LSE solution, i.e.,

�Xτ+1 = argmin
�X

∥∥∥A�X −�bτ+ 1
2

∥∥∥
2

.

Elsewhere, the local area is partitioned to two segments along the isophote direction,

and a sub-system Ai�Xi =�bτ+ 1
2

i , i ∈ [1, 2] is formed for each segment. The least absolute

error solution is computed for each segment, i.e.,

�Xτ+1
i = argmin

�X

∥∥∥∥Ai�X −�bτ+ 1
2

i

∥∥∥∥
1

, i = 1, 2

which is robust to outliers, by linear programming. The solution that best satisfies

the brightness constancy assumption recovers the flow increase at the current pixel.

Therefore, the flow obtained by the M-step is given by

uτ+1 = uτ+ 1
2 + δuτ+ 1

2

vτ+1 = vτ+ 1
2 + δvτ+ 1

2 (7.12)
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7.3 Experimental Results

The proposed flow computation method aims at providing a reliable initial point for

motion analysis tasks that involve fast rotation. One particular example is human ac-

tivity recognition (e.g., (Wang et al. 2009),). Therefore, the method is tested on bench-

mark human motion sequences depicting a variety of scenarios. Moreover, to evaluate

its generality in applications where rotation is not involved, it is also tested on Middle-

bury sequences quantitatively.

7.3.1 Experiments on Real Sequences

The first experiment evaluates the performance of the proposed method for large dis-

placement caused by fast rotation; and compares to recent works that aim at large

displacement recovery. The experiment is conducted on a pair of frames taken from

the HumanEva-II dataset, which have also been used for the experiments in Section

6.5, as shown in Fig 7.3. Despite the large displacement and fast rotation presented

in area of the right leg and foot, our technique recovers the flow reliably. The col-

orcoded result shows that different moving parts are well recovered with consistent

motion, and hence one can clearly tell the motion type of each body segment. Com-

pared to the results reported on the same test frames (Brox et al. 2009) (and the re-

sults by (Brox et al. 2004) reported therein), where gradient constancy is assumed, the

presented method faithfully recovers the leg and foot motion that is too large to be

captured by (Brox et al. 2004) and (Brox et al. 2009). This confirms the advantage of

using the proposed rotation invariant feature over the gradient feature. Compared to

a recent technique (Steinbruecker et al. 2009), the presented flow computation shows

comparable performance, but preserves the motion boundary between the two legs

more sharply. Fig.7.4 provides the comparison of the zoomed-in views in this area.

The experiments on two outdoor sequences Minicooper and Walking, which are taken

from the Middlebury and Brown University Datasets, demonstrate the improvement

by the motion boundary handling. Moreover, the results are compared to SIFT-Flow

(Liu et al. 2008), which computes the flow based on the preservation of a rotational

invariant feature SIFT and a global regularization. This method, as it is designed for

scene matching rather than accurate flow computation, does not take motion bound-

aries into consideration. In the Minicooper sequence (Fig. 7.6), the shading on the right

arm causes brightness change and some moving structures are of very small scale (e.g.,
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left arm, hair, and nose tip). In the Walking sequence (Fig. 7.5), self occlusion occurs at

both arms. Nevertheless, motion boundary in both sequences are well preserved by the

proposed method, whereas SIFT-Flow shows blocky effects. This example illustrates

that motion boundary handling is necessary if the feature on which flow computation

is based has a large image footprint.

Fig 7.7 demonstrates the importance of bilateral filtering in the intrinsic directions (the

E-step adapted to rotation). In this example, the camera is moving to the right of the

scene. The results are compared to the bilateral filtering on horizontal, vertical and

diagonal neighbours. The prediction by the nearest neighbours shows inferior per-

formance in area of the quickly rotating arm as well as non-textured regions. This is

because the oriented E-step “fills in” the edgy region by the flow of the “corners” along

the isophote direction, and thereby preserves the regularity adaptively.

7.3.2 Quantitative Evaluation

Experiments are also conducted on benchmark sequences with ground truth Rubber-

Whale, Grove2, Venus, Hydrangea and Dimetrodon to evaluate the generality of the

proposed method, because these sequences contain a variety of motion patterns. The

numerical results are presented in Table 7.1, which also lists the results by the local

computation proposed in Chapter 4, and by the global computation proposed in Chap-

ter 6, as well as by the Local Grouping method (Ren 2008) and Fourier-Mellin Trans-

form (FMT) (Ho and Goecke 2008).

On comparison, the proposed scheme performs better than the local or global com-

putation presented in other chapters on Venus, Grove2 and RubberWhale. These se-

quences contain substantial motion boundaries which coincide with object boundaries.

Therefore, the combination with the local system effectively alleviates the oversmooth-

ing caused by the global computation. Fig. 7.8 shows an example on Grove2, which

illustrates the regions where the proposed computation has better accuracy than the

global computation. It can be seen that such regions are around motion boundaries.

Moreover, these boundaries are sharp, i.e., the two motion patterns at each side of the

boundary have large contrast.

This is not only observed on Venus and RubberWhale, but also on Hydrangea, where

the proposed computation performs worse on average than the global computation.

Fig. 7.9 shows the regions where either method achieves better accuracy. It confirms

Page 107



7.4 Summary

that the proposed method preserves sharp boundaries more faithfully. But the per-

formance is weakened around boundaries which have low intensity or motion con-

trast. Presumably this is because of the weighting functions defined in Eq.7.5 and

Eq.7.11, which detect outliers by the motion and intensity inconsistency. This suggests

that more sophisticated weighting functions may be defined based on the knowledge

on the scene obtained along with the process. Fig. 7.9 presents another example on

Dimetrodon, where the integration of local computation seems to weaken the perfor-

mance of the global computation in the area with low intensity contrast and shadows.

The comparison with other contemporary works shows significant improvement on

most of the sequences to the FMT technique (Ho and Goecke 2008), which is designed

for rotation; and shows comparable performance to the semi-local method of (Ren

2008).

Method Venus Grove2 RubberWhale Dimetrodon Hydrangea

AAE AEP AAE AEP AAE AEP AAE AEP AAE AEP

proposed 5.57 0.35 2.89 0.20 4.69 0.15 3.18 0.16 4.24 0.34

Chap.4 7.86 0.58 3.30 0.24 5.01 0.16 2.80 0.14 4.56 0.40

Chap.6 7.09 0.40 3.54 0.26 5.03 0.16 2.64 0.14 2.68 0.25

Grouping 3.93 0.26 - - 5.32 0.17 3.34 0.17 2.77 0.26

FMT 5.51 0.14 - - 10.07 0.26 7.33 0.18 11.83 0.56

Table 7.1. Comparison of the proposed techniques with two contemporary methods. The results by

other works are taken from the original publications. The bold number in each column

indicates the best performance on the corresponding sequence.

7.4 Summary

This chapter has described another approach to combine local and global computation,

which has also been generalized to recover fast rotation. First, the flow computation

is formulated as an iterative Expectation-Maximization process, which allows explicit

interaction between local and global flow computation and flexibility for customiza-

tion. Second, a new feature descriptor is introduced that is robust to significant image

or object rotation, which facilitates adjusting the expectation and maximization steps

to fast rotation. The experimental results have demonstrated the benefit of employ-

ing the proposed rotational robust feature and directional bilateral filtering in flow
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computation for fast rotation. The advantage of the proposed scheme has also been

confirmed over using Fourier-Mellin transform in the log-polar coordinates on many

test sequences.
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Frame 546 Frame 550 overlaid

colorwheel warping patch matching

(Brox et al. 2009) (Brox et al. 2004) (Brox et al. 2009)

(Brox et al. 2004)

colorwheel complete matching

(Steinbruecker et al. 2009) (Steinbruecker et al. 2009)

Middlebury colorwheel proposed method

Figure 7.3. Test results on the frame 546 and 550 from a benchmark HumanEva-II sequence by

previous methods and the proposed methods. Results by previous methods are taken

from the corresponding publications.
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Zoom-In view (Brox et al. 2009)

(Steinbruecker et al. 2009) the proposed method

Figure 7.4. A Zoom-In comparison of the results reported in Fig. 7.3
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(a)

(b) (c)

(d) (e)

Figure 7.5. Experimental results on sequence Walking. (a): The overlaid image of the two test

frames. (b): the motion boundary probability measured by the COIN measure (Chapter

3) of the image in an intermediate stage. Dark colour indicates higher probability. (c):

The flow computed by SIFT-Flow (Liu et al. 2008). (d): The flow computed by the

proposed method without boundary handling. (e): the flow computed with motion

boundary handling.
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(a)

(b) (c)

(d) (e)

Figure 7.6. Experimental results on sequence MiniCooper. (a): The overlaid image of the two test

frames. (b): the motion boundary probability measured by the COIN measure (Chapter

3) of the image in an intermediate stage. Dark colour indicates higher probability. (c):

The flow computed by SIFT-Flow (Liu et al. 2008). (d): The flow computed by the

proposed method without boundary handling. (e): the flow computed with motion

boundary handling.
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(a) (b)

(c) (d)

Figure 7.7. Experimental results on sequence Moving, taken from the Brown University dataset.

(a): The overlaid image of the two test frames. (b): Flow computation by the

expectation-maximization scheme without adaption to rotation or motion boundary

handling. (c): Flow computation by the expectation-maximization adapted to rota-

tion, but without motion boundary handling. (d): Flow computation by the proposed

method. This improves the estimate on the outside edge of the arm, and in background

regions including the pigeonholes and the top of the head.

Grove2 flow ground truth performance comparison

Figure 7.8. An illustration of regions where the proposed method performs better than the global

method on Grove2. Bright pixels in the right image indicate regions where the angular

error of the proposed method is at least 10 ◦ smaller than the global method.
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Dimetrodon Hydrangea

true flow true flow

Highlighted areas where the proposed method performs better

Highlighted areas where the global method performs better

Figure 7.9. A comparison of the strength and weakness of the proposed and global methods. In the

images of the 3rd row, highlighted regions indicate that the proposed method is at least

3◦ more accurate than the global method; whereas images of the 4th row illustrates the

regions where the global method is more accurate.
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Chapter 8

Summary and Discussion

8.1 Summary

This dissertation has presented several techniques for optical flow computation in the

presence of discontinuous and fast rotation, which are two of the most challenging

problems in this area.

The thesis started with detecting the presence of multiple motions in a local area, which

violates most prior assumptions for flow computation. Chapter 3 has proposed motion

inconsistency detection schemes, based on the evidence found from the pixels’ 2D and

3D Hessian matrices. Moreover, it has derived a new motion inconsistency measure,

based on evaluating the constraint inconsistency in a general linear system. This mea-

sure has also been shown to be a good confidence measure, which estimates the flow

recovery reliability without having to compute the flow.

With the motion discontinuity detection investigated in Chapter 3, Chapter 4 pro-

ceeded to address the motion outliers in the local computation system. Different possi-

ble weighting functions have been studied to remove or inhibit the outliers. Empirical

study has demonstrated promising improvement by the weighting functions based on

intensity contrast, occlusion likelihood and dynamic motion inconsistency detection,

especially around motion boundaries.

With the motion discontinuity preserving local computation described in Chapter 4,

Chapter 5 has further improved the local computation by the combinational use of

global subspace and smoothness constraints. The benefit of linking the local and global

computation by motion segmentation has been discussed. The combination addresses

two common problems in optical flow: the aperture problem and motion boundaries.

Experimental results show that they reduce the error of calculated flow in these cases,

to lower values than previously reported for these test sequences. The analysis has
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shown the complementary effects of local and global constraints in correcting large

(outlier) and small (inlier with noise) errors respectively.

Chapter 6 has described an approach to generalize flow computation from transla-

tional motion with small deformation to fast rotation, by formulating the flow com-

putation on a special coordinate system which is locally oriented to the intrinsic di-

rections. A numerical scheme to recover the optimal flow using these coordinates has

been derived. Quantitative evaluation shows superior performance to a contemporary

technique that utilizes polar coordinates for flow computation with fast rotation.

Chapter 7 has investigated a new combination scheme for local and global computa-

tion by Expectation-Maximization, which is also generalized to rotation by adjusting

the E-step and M-step individually. The E-step regularizes the flow along the oriented

sub-grid determined by the local structure; and the M-step updates the flow by intro-

ducing a new feature descriptor, which is robust to rotation, noise and additive illumi-

nation change. The method has been demonstrated to preserve sharp motion bound-

aries more faithfully than the local or global computation proposed in other chapters.

Moreover, it also outperforms contemporary techniques for large displacement or ro-

tation on both synthetic and real sequences.

8.2 Future Research

Although this thesis has presented new ideas for optical flow computation, and has

shown advantages over previous methods, the performance can be further enhanced.

Based on the investigation presented in this thesis, future research on the following

topics are believed promising.

Spatially adaptive Lagrange multiplier In Chapter 6, the data terms and the regular-

ization term are balanced by Lagrange Multipliers in the global energy function.

These Lagrange multipliers play the role of adjusting the dependency of the op-

timization on each term. In the current literature, as well as in this work, these

multipliers are predefined heuristically based on empirical experience, and they

remain fixed for all the pixels. This predefinition lacks flexibility - in smooth re-

gions, the optimization should count more on the regularization term; whereas

around motion boundaries, the data terms should have the leading position in

the optimization. Therefore, it is preferable to adaptively define the Lagrange
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multipliers based on the nature of each pixel. So far to the best of our knowl-

edge, there has not been any particular work about the optimal decision of these

parameters in the literature of flow computation. This topic is believed worth

investigating.

Comparison of different solution methods Variational flow techniques typically for-

mulate flow computation by integrating the data terms and smoothness terms

into an energy functional, the minimizer of which gives the flow field. There are

two main branches of optimization methods in the literature: one is to use an

auxiliary variable to link the data terms and the smoothness terms, and divide

the optimization to two sub-processes. The other one keeps the terms combined

in the associated Euler-Lagrange equation pair, and finds the optimal solution

by numerical iterations (see Chapter 2). Both approaches have been used to ob-

tain numerical results on benchmark sequences. However, they use different for-

mulation of the energy functionals and different experimental settings. Chap-

ter 7 qualitatively compares the proposed Expectation-Maximization framework

to two state-of-the-art methods, which fall in these two categories, on a real se-

quence HumanEva-II. However, it would be interesting to quantitatively com-

pare their performance for the same energy functional in the same experimental

settings, which would provide important information for future research.

Generalization to scale change Optical flow for sequences that contain significant scale

change has not been investigated much. However, scale change is rather common

in real sequences, for example, when the camera changes zoom. A scale invari-

ant feature is thus in need. Therefore, a possible direction for the future research

based on this work is to develop the feature descriptor in Chapter 7 to become

scale invariant.

More sophisticated motion segmentation In Chapter 5, the local and global computa-

tion are linked by motion segmentation, which is performed by a basic mean-shift

clustering on the flow vectors. This baseline segmentation is limited to scenes

that contain distinguishable motion patterns. A more sophisticated mean-shift

clustering based on both motion, intensity and spatial proximity may further

improve the performance. Moreover, in the current stage, the local flow com-

putation is used as an input to the segmentation algorithm. Indeed, a pyramidal

segmentation algorithm that can interact with the local computation is preferable.
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8.3 Conclusion

With the increased demand for automatic processing of digital videos, computer vision

systems that are able to infer motion from images with high accuracy are more and

more in need.

The optical flow techniques presented in this work, although they are not yet of the

precision and generality required of a fully automatic machine vision system, have

demonstrated the ability to improve the performance of contemporary techniques in

several challenging situations. Adaptively selecting and combining different optical

flow constraints has proved useful in enhancing the accuracy and robustness of the

flow computation, in the presence of motion discontinuity and fast rotation.
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List of Test Sequences

?? This appendix lists the data sets used for evaluation throughout the thesis. For

each data set, the test frame and the ground truth flow are shown and the property is

specified.

A.1 MiddleBury Training Dataset

This data base was created to compare state-of-the-art flow computation techniques

(Baker et al. 2007). Details about the creation of the datasets can be found in the au-

thors’ extended Technical Report (Baker et al. 2009). The training data sets and their

ground truth are publicly available at http://vision.middlebury.edu/flow/data/.

The authors also proposed using the colorwheel (shown in Fig. A.1) to densely code

the flow vector recovered at each pixel. The colorwheel is used throughout the the-

sis to visualize the dense flow field. As the Middlebury datasets cover a variety of

motion patterns, they are used in Chapter 3 to test the generality of the COIN mea-

sure, in Chapter 4 to evaluate the performance of different weighting functions, and in

Chapter 6 to validate that the flow formulation designed for fast rotation have stable

performance in different scenarios.

Figure A.1. The Middlebury colorwheel used to code the flow vectors.
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A.1.1 Hidden Fluorescent Texture Sequences

RubberWhale This training sequence depicts several objects moving independently

in the scene, as shown in Fig. A.2. It contains motion boundaries, occlusion,

disocclusion and non-rigid motion. The largest displacement is about 4.6 pix-

els/frame. The sequence has 8 frames.

Hydrangea This sequence depicts a rotating Hydrangea against a moving background,

as shown in Fig. A.2. It contains motion boundaries, occlusion, disocclusion and

non-rigid motion, two moving objects. Low contrast background. The maximum

motion is about 11 pixels/frame. The sequence has 8 frames.

Dimetrodon This sequence has only two frames. The first frame is demonstrated in

Fig. A.2. The motion is non-rigid and a large area of the scene has minimal

texture. The maximum flow is about 4.6 pixels/frame.

A.1.2 Computer Graphics Synthetic Sequences

Grove2 In this 8-frame synthetic sequence, the rising camera creates an elevated view.

Meanwhile the camera is tilting down a little bit. The sequence contains motion

discontinuities caused by the depth discontinuities. The maximum motion is

about 5 pixels/frame. The test frame is shown in Fig. A.3.

Grove3 In this 8-frame sequence, the camera is rising to the left and tilting down. The

sequences contains substantial parallax and motion discontinuities. The maxi-

mum motion is about 18 pixels/frame. The test frame is shown in Fig. A.3.

Urban2 This 8-frame synthetic sequence depicts an urban scene, which contains inde-

pendently moving objects, including the camera. The camera is rising up to the

right and panning left. Fig. A.3 shows the test frames. The sequence is also char-

acterized by motion discontinuity, occlusion, disocclusion. It has large motion

range, with the maximum motion up to 22 pixels/frame.

A.1.3 Modified Stereo Sequence

Venus This sequence has been widely used for stereo matching evaluation. In the

Middlebury database, this stereo pair is modified to evaluate optical flow tech-

niques. The scene undergoes rigid motion, but contains motion boundaries. It
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RubberWhale Flow ground truth

Hydrangea Flow ground truth

Dimetrodon Flow ground truth

Figure A.2. Test frames and their color-coded ground truth flow of the Middlebudy hidden texture

sequences RubberWhale, Hydrangea and Dimetrodon

has 2 frames only. The first frame and the ground truth flow are presented by

Fig. A.4.

A.1.4 Real Sequence

MiniCooper A real sequence captured by a high speed camera (60 frames per sec-

ond). Every other frame is provided. This sequence depicts a man pushing the

back door of a minicooper. Fig. A.5 shows the test frame. It contains non-rigid

human motion, with a large area affected reflection and shadows. As this is a

real sequence, the ground truth is the intermediate frame (the apparent motion),

rather than the 2D motion field. Algorithms tested on this sequence are evalu-

ated by the interpolation error, which is obtained by warping the test frames by
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A.2 McCane et al. Dataset

Grove2 Flow ground truth

Grove3 Flow ground truth

Urban2 Flow ground truth

Figure A.3. Test frames and their color-coded ground truth flow of the computer graphics synthetic

sequences Grove2, Grove3, Urban2.

the computed flow and taking the difference between the warped image and the

true intermediate frame. The sequence has 8 frames.

A.2 McCane et al. Dataset

A.2.1 Computer Graphics Synthetic Sequences

This database created by McCane et al. by computer graphics rendering in their sur-

vey (McCane et al. 2001) for algorithm evaluation. Therefore the ground truth for the

optical flow is the 2D motion field. Compared to the Middlebury datasets, these se-

quences are longer, the size of the images is smaller. However, the temporal aliasing
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Venus Flow ground truth

Figure A.4. Stereo sequence Venus and its color-coded flow.

in this dataset is higher. These sequences have been used in Chapter 3, Chapter 4 to

test the generality of the proposed COIN measure and the weighting functions for lo-

cal computation. They are also used in Chapter 5 to test the proposed combination

scheme of local and global computation, as the algorithm requires at least 9 frames of

the sequence.

Short Street This sequence depicts a street scene with a car moving to the right of the

scene, and the camera is moving to the left. Fig. A.6 illustrates the test frame.

It contains independently moving objects. The motion is rigid. The sequence

contains shadows and transparency (in the area of the car window). Compared to

the Middlebury sequences, this sequence has small motion range. The maximum

motion is about 4.5 pixels/frame. The data sets and the flow ground truth are

available at http://of-eval.sourceforge.net/.

Long Street Similar to Short Street, this sequence depicts a street scene with two cars

moving to each other, and the camera is moving to the left. See Fig. A.6 for

the test frame. The maximum motion is about 2.6 pixels/frame. The data sets

and the flow ground truth are available at http://of-eval.sourceforge.net/.

Compared to Short Street, this sequence is of longer range.

Office In this sequence, the camera is moving into the office scene, as shown in Fig.

A.6. This sequence contains substantial motion discontinuity caused by depth

discontinuity, large area lack of texture, and a transparent window. The maxi-

mum motion is about 1.4 pixels/frame. The data sets and the flow ground truth

are available at http://sourceforge.net/projects/of-eval/files/of-eval/1.

0/.
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Frame 10

Frame 11

The intermediate frame

Figure A.5. Real sequence MiniCooper. The groundtruth is given by the intermediate frame.

A.3 Miscellaneous

Yosemite A sequence synthesized by texture mapping the image onto the depth map.

The original version with flying clouds is used in Barron et al.’s seminal survey

paper (Barron et al. 1994), and has been widely used for evaluation since then.

Black argued that the cloud is doing Brownian motion, and hence the ground

truth flow for the clouds does not make sense (see FAQ, http://www.cs.brown.

edu/~black/). Therefore contemporary techniques generally report results on

the Yosemite without cloud. Compared to other sequences used in this thesis,

Yosemite has relatively low difficulty, although it contains occlusion between the

mountains and aliasing in the lower portion of the image. The displacement is as

large as about 5 pixels/frame. It is interesting to note that Yosemite used to be the

most challenging synthesized sequence when (Barron et al. 1994) was published.

Page 126



Appendix A List of Test Sequences

Furthermore, the publicly available ground truth is quantized to 8 bits, which

is a limit for accurate evaluation. This sequence is used in Chapter 3 to test the

generality of the COIN measure. Fig. A.7 presents the test frame.

Walking A real sequence created by Black, available at http://www.cs.brown.edu/

~black/. It depicts a person walking parallel to the camera. It contains self oc-

clusion and large area of reflection. See Fig. A.8 for the test frame. This sequence

is used in Chapter 7 to evaluate the optical flow computation with fast rotation,

especially the motion boundary handling.

Moving A human motion sequence created by Black, available at http://www.cs.

brown.edu/~black/. In the scene, a person is stretching the right arm to the

phone, and the camera is moving too. The sequence has low resolution, fast hu-

man motion, nonrigid motion, independently moving objects and large area with

little textures. See Fig. A.8 for the test frame. Chapter 7 conducts experiments on

this sequence to test the performance of oriented diffusion in the textureless area.

HumanEva-II This dataset is created by Brown University to evaluate techniques for

articulated human motion estimation. It is available at http://vision.cs.brown.

edu/humaneva/. The test frames used in this thesis depict a running person,

whose right leg and foot undergo fast motion. The dataset is captured by high

speed camera. To simulate large displacement, in the thesis test frame 546 and

550 are extracted as a frame pair. See Fig. A.8 for the test frame. As this sequence

is used in state-of-the-art flow techniques for large displacement, it is used in

both Chapter 6 and Chapter 7 for comparison.
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Short Street color-coded trueflow

Long Street color-coded trueflow

Office color-coded trueflow

Figure A.6. Computer graphics rendered sequences Short Street, Long Street and Office. The

ground truth flow is coded by the Middlebury colorwheel.
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Yosemite ground truth flow

Figure A.7. Yosemite without cloud. The ground truth flow is color-coded by Middlebury color

wheel.

Walking Moving

HumanEva-II

Figure A.8. Test sequences Walking, Moving and HumanEva-II. The pair of test frames are overlaid

in each image.
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BJÖRCK-Å. (1996). Numerical Methods for Least Squares Problems, SIAM, Philadelphia.

BLACK-M., AND ANANDAN-P. (1996). The robust estimation of multiple motions: Parametric and

piecewise-smooth flow-fields, Computer Vision and Image Understanding, 63(1), pp. 75–104.

BROX-T., BREGLER-C., AND MALIK-J. (2009). Large Displacement Optical Flow, Proc. Computer Vision

and Pattern Recognition 2009.

BROX-T., BRUHN-A., PAPENBERG-N., AND WEICKERT-J. (2004). High accuracy optical flow estimation

based on a theory for warping, Proc. European Conference on Computer Vision 2004 (LNCS), Vol.

3024, pp. 25–36.

BRUHN-A., AND WEICKERT-J. (2006). A confidence measure for variational optic flow methods.
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