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Abstract

The bacterial factors responsible for the variation in invasive potential between different clones and serotypes of
Streptococcus pneumoniae are largely unknown. Therefore, the isolation of rare serotype 1 carriage strains in Indigenous
Australian communities provided a unique opportunity to compare the genomes of non-invasive and invasive isolates of
the same serotype in order to identify such factors. The human virulence status of non-invasive, intermediately virulent and
highly virulent serotype 1 isolates was reflected in mice and showed that whilst both human non-invasive and highly
virulent isolates were able to colonize the murine nasopharynx equally, only the human highly virulent isolates were able to
invade and survive in the murine lungs and blood. Genomic sequencing comparisons between these isolates identified 8
regions .1 kb in size that were specific to only the highly virulent isolates, and included a version of the pneumococcal
pathogenicity island 1 variable region (PPI-1v), phage-associated adherence factors, transporters and metabolic enzymes. In
particular, a phage-associated endolysin, a putative iron/lead permease and an operon within PPI-1v exhibited niche-
specific changes in expression that suggest important roles for these genes in the lungs and blood. Moreover, in vivo
competition between pneumococci carrying PPI-1v derivatives representing the two identified versions of the region
showed that the version of PPI-1v in the highly virulent isolates was more competitive than the version from the less
virulent isolates in the nasopharyngeal tissue, blood and lungs. This study is the first to perform genomic comparisons
between serotype 1 isolates with distinct virulence profiles that correlate between mice and humans, and has highlighted
the important role that hypervariable genomic loci, such as PPI-1v, play in pneumococcal disease. The findings of this study
have important implications for understanding the processes that drive progression from colonization to invasive disease
and will help direct the development of novel therapeutic strategies.
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Introduction

Streptococcus pneumoniae (the pneumococcus) is a leading cause of

bacterial pneumonia, invasive disease (bacteremia and meningitis

[IPD]) and otitis media, and is responsible for .1 million deaths in

children ,5 years of age annually [1]. However, the ability of

different serotypes and clones to cause IPD varies and has led to

the grouping of serotypes and clonal clusters according to invasive

potential [2–5]. In particular, serotype 1 pneumococci have

repeatedly been reported to have a high invasive potential due to

the rarity of asymptomatic carriage [2,5]. Furthermore, serotype 1

isolates frequently cause disease in patients without an underlying

illness and as such behave as a primary pathogen [6]. In spite of

this, whilst serotype 1 isolates have a high invasive potential,

commonly studied serotype 1 clones tend to cause less severe

disease in both humans and mice when compared to certain other

serotypes and clones that behave as opportunistic pathogens [4,6].

However, a number of clones from the ST217 clonal cluster

(CC217) have been responsible for African epidemics of IPD with

unusually high mortality rates, and are considered to be

hypervirulent. In contrast to these hypervirulent clones, relatively

high rates of serotype 1 asymptomatic carriage have been reported

in a number of communities following vaccination with the 7-

valent conjugate vaccine [7,8]. In particular, serotype 1 carriage

by ST304 and ST227 clones was detected in a number of remote

Indigenous communities in Australia, without an associated

increase in serotype 1 IPD in the same communities [8].

Therefore, it is clear that considerable variation in virulence exists

between strains of the same serotype, which in turn highlights the

contribution that serotype-independent factors play in virulence.

Of particular interest is the existence of many ‘accessory regions’

(AR) within the pneumococcal genome that may contribute to

such differences in virulence [9–14]. However, whilst a number of

potential virulence determinants such as the pilus encoded within
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the rlrA islet and the pneumococcal serine rich repeat protein

(PsrP) have received particular attention, little consistency between

the presence of specific virulence determinants and invasive

potential has been found in large-scale comparisons [10,14–21].

Nevertheless, it is possible that such large-scale comparisons fail to

take into account the significant differences in virulence that may

exist within groups of isolates with apparently equivalent invasive

potential, such as hypervirulent and moderately virulent serotype 1

clones [14]. In addition, comparisons across serotypes risk

underestimating the impact of the serotype itself on virulence,

due to serotype-specific structural differences in the capsule that

can affect complement deposition and resistance against phago-

cytosis [22–25]. Therefore, by comparing the genomes of non-

invasive and invasive serotype 1 isolates, it is possible to identify

serotype-independent factors that alter the outcome of infection.

Initially, the human virulence status of non-invasive and invasive

serotype 1 isolates was confirmed in mouse models of infection,

enabling these isolates to be grouped as non-invasive, intermedi-

ately virulent and highly virulent. Using these virulence profiles as

a basis, preliminary comparisons between the three virulence

phenotypes were performed using comparative genomic hybrid-

ization (CGH), and next generation genome sequencing technol-

ogy. These comparisons identified a number of previously

described ARs as well as new ARs that were present only in the

highly virulent isolates. Of particular significance was that the

highly virulent isolates harbored a version of the pneumococcal

pathogenicity island 1 (PPI-1) that conferred greater competitive-

ness in vivo than the versions in less virulent isolates.

Results and Discussion

The virulence of serotype 1 isolates in mouse models of
infection mimics human disease

An intraperitoneal (i.p.) mouse challenge model identified three

distinct virulence phenotypes by comparing the virulence of a

collection of serotype 1 isolates (Fig. 1A). Menzies1-1 (strain 1) and

Menzies1-2 (strain 2) were avirulent in mice, which mimicked their

non-invasiveness in humans. Menzies1-1861 (strain 1861) and

WCH4496 (strain 4496) were highly virulent in mice, as mice

infected with these strains had significantly reduced survival times

than those challenged with the other two invasive isolates.

Menzies1-3415 (strain 3415) and Menzies1-5482 (strain 5482)

were considered to be intermediately virulent, as they were not

carried asymptomatically in humans, but they were less virulent

than strains 1861 and 4496 in mice. The virulence of strains 3415

and 5482 appears to be similar to the relatively low virulence of

most serotype 1 isolates in mice that has been reported previously

[4,6]. An intranasal (i.n.) mouse challenge model also confirmed

the differences in virulence between the non-invasive strain 1 and

the highly virulent strains 1861 and 4496 (Fig. 1B). A feature of the

highly virulent isolates was their ability to either cause rapidly

fulminant infection within 60 h of challenge, or not cause

detectable disease at all. Interestingly, daily analysis of bacteremia

in all mice revealed that in surviving mice pneumococci did not

reach a detectable level within the blood at any time (data not

shown). Further characterization of the pathogenicity of strains 1,

1861 and 4496 was performed by comparing the recovery of

pneumococci in the nasopharynx, blood and lungs at both 48 h

and 96 h post-challenge using an i.n. mouse challenge model

(Fig. 2). At 48 h a small but significant difference was observed

between the number of pneumococci in the nasopharynx between

strains 1861 and 4496 (Fig. 2A[i]). However, there was no

significant difference in the number of bacteria recovered from the

nasopharynx of strain 1-infected mice when compared to either of

the highly virulent strains at either timepoint (Fig. 2A[ii]). No

pneumococci were recovered from either the blood or lungs of

strain 1-infected mice, which was in stark contrast to the numbers

recovered from both strain 1861- and 4496-infected mice at 48 h

(Fig. 2B[i] and C[i]). Whilst there was a small, but significant

difference in the level of bacteremia between strains 1861 and

4496, this difference was minimal compared to strain 1. As shown

in Figure 2, mice challenged with either of the highly virulent

strains either develop fulminant infection within 60 h or survive

the challenge completely. Therefore, the strain 1861- and 4496-

infected mice analyzed at 96 h represent surviving mice, and

unsurprisingly lack detectable numbers of pneumococci in either

Figure 1. Confirmation of virulence in mice of non-invasive and
invasive serotype 1 isolates. Survival times were recorded following
i.p. (A) or i.n. (B) challenge with approximately 104 CFU and 107 CFU of
the relevant strain, respectively. Experiments were undertaken for 216 h
and 252 h following i.p. and i.n. challenge, respectively. Horizontal
broken lines indicate the median survival time. Statistical significance
was calculated using the two-tailed Mann-Whitney U test. (*, +, P,0.05).
‘*’ indicates comparison with non-invasive isolates; ‘+’ indicates
comparison with intermediately virulent isolates.
doi:10.1371/journal.pone.0019650.g001
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the blood or lungs (Fig. 2B[ii] and 2C[ii]). The fact that a

proportion of mice completely survive i.n. challenge is most likely a

consequence of mouse-mouse variation in the actual number of

pneumococci aspirated into the lungs immediately following i.n.

challenge. However, most importantly the key difference between

the non-invasive and highly virulent phenotypes is the ability of the

latter to invade and survive in the blood and lungs. We used

MLST to examine whether the strains with differing virulence

profiles had any clonal relationship. Strains 1 and 2 (ST304), and

strains 3415 and 5482 (ST227), belong to the lineage A of serotype

1 clones [26], whereas the highly invasive strains 1861 (ST3079)

and 4496 (ST3018) belong to lineages B and C, respectively. In

particular, strain 1861 was found to be a single-locus variant of

ST217 and a double-locus variant of ST618 and ST303, which

were the dominant clones responsible for epidemics of severe

serotype 1 IPD in parts of Africa [27–29]. Therefore, the

heightened virulence of strain 1861 in mice is consistent with the

severity of disease in humans caused by clonally-related strains. A

summary of the virulence and MLST data of the serotype 1

isolates used in this study is shown in Table 1.

Genetic differences between the non-invasive,
intermediately virulent and highly virulent strains were
identified by genomic sequencing

Genome comparisons were performed between the serotype 1

isolates in order to identify ARs present in the highly virulent

strains that might be responsible for their heightened virulence.

Genomic comparisons were initially performed by sequencing the

genomes of strains 1 and 1861. The presence of regions .1 kb in

size that were present only in strain 1861 was subsequently tested

in all six serotype 1 isolates by PCR to identify those regions

associated with heightened virulence. The primers used in these

PCRs are listed in Table S1. In this study, we focused attention on

regions .1 kb, as these were likely to encode an intact gene

product, and probably represent horizontally acquired genetic

material. Of course, the importance of smaller regions (,1 kb),

which might encode bacteriocins, signaling peptides, or regulatory

RNAs, as well as single nucleotide polymorphisms (SNPs) in

coding and non-coding regions should not be discounted.

Nevertheless, the expansive pool of ARs available to the

pneumococcal genome warranted paying particular attention to

these larger regions. The presence of key regions that have

previously been associated with virulence in other studies but not

associated with virulence in this study was confirmed by

comparative genomic hybridization (CGH). The P1031 (ST303;

lineage B) and INV104B (ST227; lineage A) genome sequences

were most closely aligned with strains 1861 and 1, respectively.

Regions associated with heightened virulence
Eight regions .1 kb in size were identified in both of the highly

virulent isolates but absent in all four less invasive isolates (Table 2).

A detailed list of each gene present in each AR is included in Table

S2. Of these regions, those designated 1, 2, 5, 6 and 7 have not

previously been identified as ARs [14].

Region 1 consists of a temperate bacteriophage genome with

greatest homology to SPP_0028–0084 in P1031 and to a lesser

extent the Streptococcus oralis PH10 phage [30]. The prophage is

inserted into a position between genes homologous to SP_0019

(adenylosuccinate synthetase) and 0020 (cytidine/deoxycytidylate

deaminase) in TIGR4 and SPINV104_00170 and 00180 in

INV104. In addition, examination of the sequence of the integrase

gene (SPP_0028) suggests that the phage in strains 1861 and 4496

belongs to the group 1 pneumophage [31,32]. This prophage

encodes genes homologous to platelet-binding protein B (PblB)

and an endolysin, both of which are required for the virulence of

Streptococcus mitis in an animal model of infective endocarditis [33].

PblB and the endolysin have been shown to be required by S. mitis

for adherence to human platelets [34–36]. However, a similar role

for the products of these genes in S. pneumoniae has yet to be

demonstrated. Interestingly, the endolysin gene shares 80%

nucleotide sequence identity with the major autolysin (N-

acetylmuramoyl-L-alinine amidase; lytA), which is an important

pneumococcal virulence factor [37–40]. Of the publicly available

genome sequences, only strain P1031 contains sequences homol-

ogous to the full length of region 1 represented by the prophage.

However, Hungary19A-6, JJA, 70585, OXC141, SPN994039,

SPN034183, SPN994038, and SPN034156 possess pblB- and

endolysin-(in addition to lytA-) like genes at a similar genomic

location.

Region 2 encodes a putative MerR family transcriptional

regulator and MutT/Nudix family protein homologous to

SPP_0750 and 0751, respectively. In addition, the gene encoding

a putative sodium-dependent permease was truncated in the non-

invasive and intermediately virulent strains due to the absence of

region 2. However, it is not clear whether the gene is functional in

the highly virulent strains due to a frameshift mutation

approximately 220 bp downstream of the start codon. Region 2

is inserted between genes homologous to SPINV104_06130 and

06140 in INV104. The genes in region 2 are also present in

numerous other genomes including TIGR4 (SP_0737–0740), D39,

ATCC 700669, JJA, 70585, Taiwan19F-14, G54, CGSP14,

INV200, SPN034156, OXC141, SPN994039, SPN034183,

SPN994038 and TCH8431/19A. A MerR family transcriptional

Figure 2. Number of S. pneumoniae CFU recovered from the nasopharynx, lungs and blood of infected mice. The number of CFU
recovered from the nasopharynx (A), lungs (B) and blood (C) of CD1 mice was determined at 48 h (i) and 96 h (ii) post-challenge. The horizontal
broken lines in each strain group indicate the geometric mean number of CFU that were recovered. Statistical differences were analyzed by two-
tailed unpaired t-test on log-transformed values (*, P,0.05; **, P,0.01; ***, +++ P,0.001). ‘*’ indicates comparison with 4496 and ‘+’ indicates
comparison with 1861. The single horizontal spotted line indicates the limit of detection (LD) which equates to 102 CFU/nasopharynx, 26102 CFU/
lung and 102 CFU/ml blood.
doi:10.1371/journal.pone.0019650.g002

Table 1. Serotype 1 isolates used in this study.

Isolate ST (Lineage*) Virulence status+

Menzies1-1 304 (A) Non-invasive

Menzies1-2 304 (A) Non-invasive

Menzies1-3415 227 (A) Intermediately virulent

Menzies1-5482 227 (A) Intermediately virulent

Menzies1-1861 3079 (B) Highly virulent

WCH4496‘ 3018 (C) Highly virulent

*Lineage is as described in Brueggemann et al. [26].
‘Non-Indigenous isolate. Other isolates were all of Indigenous origin.
+Non-invasive isolates were both non-invasive in humans and mice:
intermediately virulent strains were virulent in humans, but significantly less
virulent in mice than strains 1861 and 4496. Highly virulent strains were
significantly more virulent than the other four strains.

doi:10.1371/journal.pone.0019650.t001
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regulator in S. pneumoniae (SP_1856) has been shown to be involved

in nitric oxide stress and is required for full systemic virulence [41].

Regions 3 and 4 consist of the previously described AR 22 [14],

also known as the PPI-1 variable region (PPI-1v). PPI-1v appears

to be a hotspot for recombination and in some strains contains the

PezAT toxin-antitoxin (TA) system, which has been implicated in

virulence [42–44]. An alignment between PPI-1v from the lineage

A isolates and the highly virulent isolates shows the relative

position of regions 3 and 4 and is compared with the region in

ATCC 700669 and G54 (Fig. 3). In addition, this alignment shows

that PPI-1v consists of two variable components: the pezAT region

(region 3) and an accessory region (region 4) (Fig. 4). In this study,

pezAT was present only in the highly virulent isolates and not in

either the intermediately virulent or non-invasive isolates (Table 2).

In addition to pezAT itself, the non-invasive and intermediately

virulent isolates lack most of the neopullulanase gene (SP_1046;

nplT). However, since nplT is fragmented in strains 1861 and 4496,

it is unlikely that a functional protein is produced by these strains.

The pezAT region is present in numerous other strains including

JJA, ATCC 700669, CGSP14, OXC141, SPN034156,

SPN034183, SPN994038, D39, INV200 and 70585 and as such

is not unique to 1861 and 4496. Between regions 3 and 4 is a 3-kb

region of a Tn5252-like sequence that is approximately 95%

identical in all six strains (Fig. 3). Within this 3-kb region is a 1.5-

kb deletion in the non-invasive and intermediately virulent isolates,

which has led to the loss of a putative Rgg/GadR/MutR family

transcriptional regulator. However, this gene is unlikely to be

functional in the highly virulent strains, due to a previously

characterized frameshift mutation [45]. This mutation led to the

loss of ropB expression in S. pyogenes, which was responsible for loss

of SpeB expression and reduced virulence in murine systemic

models of infection. As can be seen in Fig. 3 the PPI-1v accessory

region, which consists of region 4, is a section of divergent

sequence. In the highly virulent strains, the accessory region is 8-

kb in size and includes a putative operon encoding hypothetical

proteins and metabolic enzymes such as 3-hydroxyisobutyrate

dehydrogenase (3HIBDH), prephenate dehydratase (PDT) and

UDP-glucose 4-epimerase (GalE). Downstream of this operon is a

putative biotin carboxylase and a fragmented transporter of the

major facilitator superfamily. Of the publicly available genomes,

G54, 11-BS70 and MLV-016 also contain this region 4 sequence.

However, unlike strains 1861 and 4496, the genomes of G54, 11-

BS70 and MLV-016 lack pezAT. The PPI-1v accessory region in

the non-invasive and intermediately virulent isolates contains a

fragmented lantibiotic modification and export gene, and a

putative lantibiotic immunity system ABC transporter (Table 3).

However, the region lacks the structural gene for mersacidin

lantibiotic and lantibiotic modifying enzymes. This version of

PPI-1v has previously been described in the pezAT-positive

strain ATCC 700669 [43] and is homologous to ORFs

SPINV104_09130–09190 in the pezAT-negative strain INV104.

This version of the region is also present in the pezAT-positive

strains JJA, SPN033038 and SPN032672.

Region 5 includes the putative zinc metalloproteinase D (ZmpD)

and Tn5253, which are homologous to SPP_1141–1198 in P1031.

However, this region is not present in TIGR4 or INV104 and is

inserted between homologues of SP_1154 and 1155, and

SPINV104_09960 and 09970, respectively. Other pneumococcal

Zmps include the IgA protease and ZmpC, which function to cleave

host IgA and activate human matrix metalloprotease 9, respectively,

and thus contribute to virulence [46–52]. However, as the substrate

of ZmpD is unknown, it is not clear whether this enzyme plays a role

in virulence. Other strains harboring zmpD include ATCC 700669,

JJA, G54, CGSP14 and INV200, and the gene was detected in 49%

of 218 mostly invasive disease isolates in one study [53]. The large

conjugative transposon Tn5253 is a composite element consisting of

regions from Tn916 and Tn5252 and contains genes that confer

resistance to tetracycline and chloramphenicol [54,55]. In the

highly virulent serotype 1 isolates, the region encodes a putative TA

system homologous to PezAT in PPI-1 and an umuCD-like operon.

UmuCD is involved in a branch of the SOS response in E. coli and

in S. pneumoniae has been shown to confer greater UV tolerance

[56,57]. Whilst a number of other strains contain distinct Tn5252

and Tn916 elements with homology to region 5, ATCC 700669

also harbors the compositeTn5253 element [43].

Region 6 encodes a putative high-affinity iron/lead permease

and a fragmented DyP-type peroxidase that are homologous to

SPP_1340 and 1341, respectively in P1031. This region is inserted

between homologues of SPINV104_11210 and 11240 in INV104

and SP_1299 and 1306 in TIGR4. In both TIGR4 and INV104

the corresponding region consists of a number of small

hypothetical genes. Whilst the substrate of the permease in region

Table 2. Genomic regions present only in the genomes of the highly virulent isolates.

Region (AR)* Size
Putative annotation/function of key
gene(s) in region Homologous ORFs Other genomes#

P1031 TIGR4 D39 A B C D E F G

1 35 kb Group 1 pneumophage (pblB-like, endolysin) 0028–0083 - - 2 ‘ ‘ 2 ‘ 2 2

2 1 kb Sodium-dependent permease, transcription
regulator (MerR)

0750–0751 0739–0740 0643–0644 + + + + 2 + +

3 (22) 6.3 kb PPI-1v (PezAT, NplT) 1049–1058 1046–1056 0927–0936 + + + 2 2 2 +

4 (22) 8 kb PPI-1v (Metabolic/hypothetical) 1059–1069 - - 2 2 2 2 2 + 2

5 58 kb ZmpD, Tn5253 (TA system, UmuCD) 1141–1198 - - + 2 2 2 2 ‘ ‘

6 1.7 kb High-affinity iron/lead permease 1340–1343 - 1155–1157 2 2 2 2 ‘ 2 +

7 2.9 kb ABC-type transporter, transcription regulator (ArsR) 1637–1643 - - 2 2 2 2 2 2 2

8 (28) 18 kb ABC transporter, sialic acid degradation enzymes 1350–1371 1346–1349‘ 1164–1183 ‘ ‘ ‘ 2 ‘ ‘ ‘

*AR designated by Bloomberg et al. [14].
#Presence in other S. pneumoniae genomes; A, ATCC 700669; B, JJA; C, 70585; D, Taiwan19F-14 ; E, Hungary19A-6; F, G54; G, CGSP14.
+, Region present; ‘, Region partially present; 2, Region absent; Confirmed by BLAST searches of the KEGG database.
A detailed list of genes present in each AR is included in Table S2.
doi:10.1371/journal.pone.0019650.t002
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6 requires experimental confirmation, other pneumococcal

transporters of metal ions such as Psa (manganese) and Pia (iron)

are important in pneumococcal pathogenesis [58–63]. The

putative metal permease is also present in the genomes of D39,

Hungary19A-6, CGSP14, INV200 and CDC3059-06.

Region 7 encodes a putative ArsR family transcriptional

regulator, and an ABC-2 type transporter including the trans-

membrane and ATP-binding components homologous to

SPP_1779 and 1780 in P1031, respectively. The region is absent

in both TIGR4 and INV104, and if present would be inserted

between SP_1779 and 1780, and SPINV104_15230 and 15250,

respectively. ArsR family transcriptional regulators are often

responsive to metal ions, and like MerR regulators, have been

implicated in resistance against environmental stresses [64].

Examination of other pneumococcal genome sequences revealed

that strains MLV-016, 11-BS70, 9-BS68, 14-BS69 and 18-BS74

also harbor this region.

Region 8 is homologous to SPP_1350–1367 in P1301, which

corresponds to the previously described AR 28 [14]. In particular,

the AR 28 subregion RD8b1 [10,65] encodes a putative ABC

transporter for the transport of glutathione and putative N-

acetylmannosamine-6-phosphate 2-epimerase, kelch-like protein,

glycoside hydrolase family protein and N-acetylneuraminate lyase

genes. Much of this region is also present in D39 (SPD_1164–

1174). A putative ABC transporter is also encoded within the

same, but divergent region in the non-invasive and intermediately

virulent isolates (Table 3). The transporter appears to be similar to

the LplABC polysacchaide transporter in Bacillus subtilis and

Agrobacterium radiobacter [66]. Glycoside hydrolase and N-acetyl-

mannosamine-6-phosphate epimerase genes present within the

region in both groups of strains share 50% nucleotide sequence

identity. Putative diadenosine tetraphosphate hydrolase and

dihydrolipoamide dehydrogenase genes also exist in this region

in the intermediately virulent and non-invasive isolates. Further-

more, the AR 28 subregion RD8b2 that is homologous to

SP_1345–1349 in TIGR4 and includes a second ABC transporter

[10,65] is present in the non-invasive and intermediately virulent

isolates, but absent in the highly virulent isolates. The RD8b3

Figure 3. Alignment of PPI1v between ATCC 700669, 1, 1861 and G54. The nucleotide sequences of PPI-1v were aligned using the artemis
comparison tool between ATCC 700669, 1, 1861 and G54. Strain 1 represents the non-invasive and intermediately virulent isolates, and strain 1861
represents the highly virulent isolates. Blue shading between strains indicates nucleotide sequence identity exceeding 90%. Green arrows indicate
the nplT ORFs, red arrows indicate the pezAT operon, orange arrows indicate ORFs within divergent sequence that are absent in strain 1, yellow
arrows indicate ORFs that are absent in strain 1861 and purple indicates ftsW. Tn5252 ORFs are not shown.
doi:10.1371/journal.pone.0019650.g003

Figure 4. General component structure of PPI-1v. Summary of PPI-1v derived from alignments of the region between ATCC 700669, 1, 1861
and G54. Blue indicates regions of shared sequence between the aligned strains, red indicates the pezAT region and yellow indicates a region of
divergent sequence (accessory region).
doi:10.1371/journal.pone.0019650.g004
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subregion that is homologous to SP_1345–1349 and was reported

to be required for wild-type virulence in TIGR4 [65], was present

in all six serotype 1 isolates in this study. The overall region in the

non-invasive and intermediately virulent isolates is homologous to

INV104_11270–11410 in INV104.

Key regions found not be associated with a virulence
phenotype in this study

Previous genomic comparisons have identified a number of ARs

that were associated with clonal clusters with high invasive

potential. While it is likely that a number of these regions are

involved in virulence, it is unlikely that they are responsible for the

differences in virulence that we observed between the strains in

this study. ARs 5, 6, 9, 15, 20, 21, 29 and 39 were reported to be

present in the majority of tested isolates from highly invasive clonal

clusters [14]. In particular, ARs 5, 6, 15 and 29 have previously

been shown to impact virulence using signature tagged mutagen-

esis (STM) [67,68]. However, AR 5 is absent in all six isolates in

this study (Table 4), and AR 6 is present only in the lineage A

isolates and not in the highly virulent isolates. ARs 9, 15, 20, 21,

29 and 39 were present in all six strains, which is not surprising

since Blomberg et al. [14] found that these regions are present in

the majority of serotype 1 isolates that were tested in their study

[14]. However, this finding implies that these regions are not

responsible for the virulence differences between the isolates in this

study. In addition, AR 6 is also not likely to be required for the

heightened virulence of strains 1861 and 4496. Furthermore, ARs

10, 16, 19 and 27 were shown to be present in some serotype 1

isolates, and not others [14]. In this study ARs 16 and 19 were

present in all isolates and AR 10 was present in the lineage A

isolates, but not the highly virulent isolates (Table 4). Similar to

Blomberg et al., [14] the presence of AR 27 did not appear to

correlate with the invasive potential of the strains in this study

(Table 4) [10,14]. Whilst the deletion of AR 31 has previously

been reported to significantly reduce the virulence of TIGR4 [65],

the region was present in strain 1861, but not in either strain 4496

or the lineage A strains. Therefore, the region is unlikely to be

responsible for the differences in virulence between serotype 1

isolates in this study. In addition, ARs 11, 30 and 34, which

encode the pilus, pneumococcal collagen-like protein (PclA) and

PsrP, respectively, have been implicated in virulence

[10,16,19,69]. However, AR 11 was absent in all six isolates,

and AR 34 was present in the intermediately virulent isolates and

strain 1861, but not in the non-invasive isolates or strain 4496. AR

30 was present only in the intermediately virulent isolates.

Therefore, these regions are unlikely to be important for the

differences in virulence between the isolates in this study. In

addition to the pilus encoded within the rlrA islet, there is a second

pilus (PI-2), which has been reported to be present in emerging

serotypes such as 1, 2, 7F and 19A and is homologous to

SPT_1056–1064 in Taiwan19F-14 [70]. However, genome se-

quencing and PCR (data not shown) showed that PI-2 is present in

the non-invasive and intermediately virulent isolates, but absent in

the highly virulent isolates. Therefore, possession of PI-2 is not

required for the heightened virulence of strains 1861 and 4496.

Differential in vivo expression of key virulence-associated
genes

Genes associated with heightened virulence (Tables 2 and 3) were

selected for in vivo gene expression comparisons to identify genes that

exhibit niche-specific changes in expression. Expression analysis was

performed on nasal lavage, blood and lung samples of strain 1861-

and 4496-infected mice (Figure 2), using qRT-PCR. Expression of

the endolysin, nplT, 3HIBDH and iron/lead permease was elevated

in the blood and lungs of both strain 1861- and 4496-infected mice,

when compared to the nasopharyngeal lavage fluid (Table 5), which

suggests that the products of these genes are more important in the

blood and lungs than the nasopharyngeal surface. Interestingly,

since endolysin activity has been shown to be required for PblB

surface expression in S. mitis [33], surface expression of this potential

adherence factor could be indirectly elevated in the lungs and blood

due to endolysin activity, despite little difference in pblB expression

between niches. In PPI-1v, 3HIBDH is part of an operon that also

encodes PDT and galE (data not shown), which implies that the

expression of all three of these enzymes is elevated in the lungs and

blood compared to the nasopharyngeal surface. While the activities

of these genes remain to be confirmed experimentally, the products

of these genes could provide a survival advantage and facilitate

disease. Interestingly, expression of the iron/lead permease was

greatest in the blood followed by the lungs and lowest on the

nasopharyngeal surface, which suggests that this transporter is more

important in the blood and lungs than on the nasopharyngeal

mucosa. Expression of the major facilitator transporter in PPI-1v

and the glycoside hydrolase in region 8 was significantly greater in

the blood than either the lungs or nasopharyngeal surface.

However, since the substrate of the major facilitator is unknown it

is not clear whether the expression of this gene provides a survival

advantage in this niche. As the glycoside hydrolase is encoded

immediately downstream of the putative ABC transporter in region

8, and no expression-attenuating secondary structures were

predicted in the intervening sequence, it is likely that the expression

of this enzyme reflects the expression of the ABC transporter.

Expression of the sodium-dependent permease, pezAT and biotin

carboxylase expression in PPI-1v did not appear to be niche-specific

since changes in the expression of these genes were not consistent

between the two strains.

Table 3. Genomic regions of the non-invasive and intermediately virulent isolates that replaced regions associated with the highly
virulent strains.

Region (AR) Size
Putative annotation/function
of key gene(s) in region Homologous ORFs Other genomes#

INV104 TIGR4 D39 A B C D E F G

4 (22) 5.5 kb PPI-1v (Mersacidin immunity ABC
transporter)

09130–09190 - - + 2 2 2 2 2 2

8 (28) 24 kb Polysaccharide ABC transporter
(LplBC-like),

11270–11410 - - 2 2 2 2 + 2 2

#Presence in other S. pneumoniae genomes; A, ATCC 700669; B, JJA; C, 70585; D, Taiwan19F-14 ; E, Hungary19A-6; F, G54; G, CGSP14.
+, Region present; ‘, Region partially present; 2, Region absent; Confirmed by BLAST searches of the KEGG database.
doi:10.1371/journal.pone.0019650.t003
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Table 4. Other notable regions not consistently associated with a virulence profile in this study.

AR*
Putative annotation/function of key
gene(s) in region Homologous ORFs Serotype 1 isolates

TIGR4 D39 1 2 3415 5482 1861 4496

5 Hypothetical proteins 0296–0298 - 2 2 2 2 2 2

6 b glucosidase, PTS – metabolic 0300–0310 0276–0283 + + + + 2 2

9 Mevalonate pathway - metabolism 0382–0387 0347–0390 + + + + + +

10 Mannitol PTS 0394–0399 0360–0364 + + + + 2 2

11 RlrA islet - adherence 0461–0468 - 2 2 2 2 2 2

15 b-galactosidase – metabolism 0643–0648 0559–0562 + + + + + +

16 Zinc metalloproteinase B 0664–0666 - + + + + + +

19 Type I restriction modification system 0887–0890 - + + + + + +

20 Amino acid metabolism 0918–0923 0811–0816 + + + + + +

21 CelA - competence 0949–0954 0839–0843 + + + + + +

27 V-type sodium ATP synthase 1315–1331 - 2 2 + + 2 2

29 ABC transporter 1432–1442 1261–1272 + + + + + +

30 Collagen-like protein, PclA – adherence - 1376–1377 + + + + 2 2

31 Ribulose PTS - uptake of ribulose 1612–1620 - 2 2 2 2 + 2

34 PsrP-secAY2A2 - adherence 1755–1772 - 2 2 + + 2 +

39 Type II restriction modification system 1930–1936 1731–1736 + + + + + +

- PI-2 adherence - - + + + + 2 2

*AR designated by Bloomberg et al. [14].
+, Region present; 2, Region absent; Determined from genome sequence of strains 1 and 1861, and by CGH for strains 2, 3415, 5482 and 4496. Presence of PI-2 was
determined by PCR.
doi:10.1371/journal.pone.0019650.t004

Table 5. Relative expression of selected virulence associated genes between different niches of the mouse.

Gene Region+ Expression‘

Blood vs. nose Lungs vs. nose Blood vs. lungs

1861 4496 1861 4496 1861 4496

pblB 1 +1.22ns +1.79ns +1.17ns 22.43b +1.04ns +1.36ns

Endolysin 1 +1311.20*c +221.32*c +1028.74*c +220.30*c +1.27ns 1.00ns

Na+ dep. transporter 2 21.28ns 21.28ns 23.15c +1.54 +2.47b 21.97ns

nplT 3 +55.72c +42.62c +28.38*c +69.07*c +1.96ns 21.62ns

pezAT 3 +1.06ns +11.71c 21.70ns +1.14ns +1.80ns +10.29c

3HIBDH 4 +64.59*c +432.53*c +115.89*c +97.46*c 21.79ns +4.44c

Biotin carboxylase 4 21.63ns +97.01c 22.61c +9.78c +1.60ns +9.92c

Major facilitator 4 +3.27c +10.95c +1.08ns +2.04c +3.03c +5.36c

Fe2+/Pb2+permease 6 +5.92c +24.36c +2.17c +12.10c +2.73a +2.01a

Gly. Hydrolase 8 +29.18*c 369.65*c -# -# +624.55*c +25.22c

*Indicates where the target mRNA was below the limit of detection in nasal wash-derived RNA.
#Indicates where the target mRNA was below the limit of detection in both samples.
‘The values represent the relative amounts of mRNA in the first niche compared to the second.
Results of statistical analysis using t-test: ns, not significant (includes values ,2);
a, P,0.05;
b, P,0.01;
c, P,0.001.
+As numbered in Table 2.
doi:10.1371/journal.pone.0019650.t005
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In vivo competition between D39 PPI-1 mutants
replacing the endogenous version of the region with the
regions of strain 1 and strain 1861

Since the content of PPI-1v varies between the highly virulent

isolates and the four less virulent isolates, and the expression of a

number of PPI-1v genes was favored in niches associated with

disease, it was decided to confirm the role of this region in

virulence determination by mutagenesis. However, a significant

roadblock to such experiments was the inability to genetically

transform the serotype 1 isolates in this study, despite numerous

attempts using various known transformation protocols. There-

fore, it was decided to construct PPI-1v derivatives in the easily

transformable laboratory strain D39 [71], which has a different

version of PPI-1v compared to strain 1 and 1861. Derivatives of

PPI-1v were constructed and used to replace the endogenous

region with the version of the region in the highly virulent isolates

(designated D391861) and the version in the non-invasive isolates

(designated D391). PPI-1v in D391 was also representative of that

present in the intermediately virulent isolates. In addition, a PPI-

1v deletion mutant (D39DPPI-1) was constructed to examine the

contribution of the wild-type D39 version of PPI-1v to virulence.

In order to obtain a D39DPPI-1 knockout, an intermediate mutant

lacking pezT (D39DPezT) was constructed by replacing

SPD_0931–0951 with ermR, as simultaneous deletion of pezA and

pezT has been reported to be lethal [44]. The subsequent

D39DPPI-1 mutant was constructed from D39DPezT by replacing

SPD_0927–0930 with cmlR. D391 was also constructed from

D39DPezT by replacing the remaining non-homologous D39

PPI-1v sequence (SPD_0927–0930) with strain 1 sequence

(SPINV104_09310–09190) (Fig. 5A). D391861 was constructed by

replacing the non-homologous D39 PPI-1v sequence (SPD_0936–

0951) with strain 1861 PPI-1v sequence (SPP_1056–1072) (Fig. 5B).

Expression of 1861-derived PPI-1v genes in D391861 was

confirmed in vitro by qRT-PCR (data not shown). In addition,

there was no detectable difference in in vitro growth rate between

the mutants and D39 (data not shown). The ability of the mutants

and wild-type to cause disease was subsequently compared in mice

using mixed infections using the combinations D39 vs. D39DPPI-

1, D39 vs. D391, D39 vs. D391861 and D391861 vs. D391. Data

were obtained from the nasal lavage fluid, nasal tissue, lungs and

blood at both 24 h and 48 h post-challenge. At 24 h both

D39DPPI-1 and D391 were less competitive than the wild type in

both the lungs and blood (Fig. 6A and 6B). However, D391 was

more competitive than the wild-type at the nasopharyngeal

surface. In contrast, there was no significant difference between

D391861 and the wild type in the blood, lungs or nasal tissue

(Fig. 6C). However, D391861 was more competitive than the wild

type on the nasopharyngeal mucosa. Interestingly, D391861 was

more competitive than D391 in all four niches (Fig. 6D).

Furthermore, at 48 h the wild type was more competitive than

D39DPPI-1 in the nasal tissue, lungs and blood (Fig. 6E). In

contrast, D391 was less competitive than the wild type in the nasal

tissue and the lungs, but was equally competitive in the blood at

48 h (Fig. 6F). Similar to 24 h, D391816 was as competitive as the

wild-type in the nasal tissue, blood and lungs, but more

competitive on the nasopharyngeal surface at 48 h (Fig. 6G).

D391861 was also more competitive than D391 in the nasal tissue

and blood, but equally competitive in the lungs and at the

nasopharyngeal surface (Fig. 6H). In summary, it is clear that PPI-

1v plays a role in virulence in a D39 background, and that it is

possible that PezAT is important as has been previously reported

[42]. However, the importance of other components of PPI-1v in

virulence cannot be ruled out. In addition, while the endogenous

version of PPI-1v is required for wild-type virulence in D39, it is

also true that in a D39 background, PPI-1v from the highly

virulent serotype 1 strains was also more competitive than PPI-1v

from the non-invasive and intermediately virulent serotype 1

isolates in a number of niches, which correlates with differences in

virulence between the isolates in both mice and humans.

Therefore, while it is possible that the relative impact of PPI-1v

on virulence could be different in a D39 background than in the

serotype 1 isolates themselves, the correlation between the

virulence of the wild-type strains, the niche-specific changes in

expression of PPI-1v genes and in vivo competition between PPI-1v

D39 mutants is compelling.

This study aimed to identify serotype-independent virulence

determinants within the genomes of a selection of serotype 1

isolates with wide-ranging virulence in both mice and humans. In

particular, isolates closely related to the hypervirulent clones

responsible for epidemic IPD were found to readily invade and

survive in the blood, whereas non-invasive clones isolated from

episodes of asymptomatic serotype 1 carriage in remote Indige-

nous Australian communities were only able to colonize the

nasopharynx in mice. A number of regions .1 kb in size were

present in the genomes of only the highly virulent isolates, which

included a phage genome with putative adherence factors, a

number of putative metabolic enzymes, an ABC transporter, an

ion transporter as well as a number of potential stress-responsive

transcriptional regulators. In particular, the expression of some

metabolic enzymes, transporters and adherence factors appeared

to exhibit preferential expression in niches associated with IPD. In

addition, the various versions of PPI-1v were shown to impact on

virulence differently and suggests that this region is at least partly

responsible for the greater virulence of highly virulent isolates

compared to less virulent isolates. PPI-1v appears to be a highly

variable AR within the pneumococcal genome that alters the

survival of the bacterium within the host in a content-dependent

fashion.

Materials and Methods

Ethics statements
This study was conducted in compliance with the Australian

code of practice for the care and use of animals for scientific

purposes (7th Edition 2004) and the South Australian Animal

Welfare Act 1985. All animal experiments were approved by the

Animal Ethics Committee of the University of Adelaide (Project

Number: S- 86-2006). Written consent was obtained for studies of

human specimens and ethics approval was obtained for further

molecular analyses from the Human Research Ethics Committe of

the Menzies School of Health Research and Department of

Health and Families.

Strains and media
The S. pneumoniae serotype 1 clinical strains used in this study

that were of Indigenous Australian origin included non-invasive

isolates (strains Menzies1-1 [ST304] and Menzies1-2 [ST304]),

and invasive isolates (strains Menzies1-3415 [ST227], Menzies1-

5482 [ST227] and Menzies1-1861) and were provided by the

Royal Darwin Hospital Pathology Services. An invasive serotype 1

isolate (strain WCH4496) was of non-Indigenous origin and was

obtained from the Women’s and Children’s Hospital, North

Adelaide, Australia. The virulent serotype 2 strain, D39 (NCTC

7466) was also used in this study. The sequence type (ST) of

serotype 1 strains was determined by MLST as described in

Enright & Spratt (1998) and in accordance with the instructions at

http://spneumoniae.mlst.net. Opaque-phase variants of all strains

selected on Todd-Hewitt broth supplemented with 1% yeast
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extract (THY)-catalase plates [72] were used in all animal

experiments. Before infection, the bacteria were grown in serum

broth (SB) (nutrient broth [10 g/l peptone (Oxoid), 10 g/l Lab

Lemco powder (Oxoid) and 5 g/l NaCl] and 10% [v/v] donor

horse serum) to an optical density at 600 nm (OD600) of 0.16,

which approximates 16108 CFU/ml.

PCR
Chromosomal DNA for PCR was extracted and purified using the

Wizard genomic DNA purification kit (Promega Corporation,

Madison, WI), with the exception of cell lysis, which was performed

by incubating cells at 37uC for 10 min with 0.1% (w/v) sodium

deoxycholate. PCR reactions were performed using a G-STORM

GS482 thermal cycler (Gene Technologies, UK). Standard reactions

were performed using Taq DNA polymerase (Roche Diagnostics,

Basel Switzerland) according to the manufacturer’s instructions. The

ExpandTM Long template or High fidelity PCR systems were used

when high fidelity amplification was required. Overlap-extension

PCR was carried out essentially as previously described [73,74], using

the ExpandTM Long Template PCR system. DNA sequencing

reactions were carried out using the BigDyeH Terminator v3.1 Cycle

Sequencing kit (Applied Biosystems, CA, USA).

Animal studies
Inbred 5- to 6-week old female Balb/c mice were used in i.p.

challenge experiments and outbred 5- to 6-week old female CD1

(Swiss) mice were used in i.n. challenge experiments. For i.p.

challenge experiments groups of 5 mice were used. Mice were

challenged i.p with 100 ml of bacterial suspension containing

approximately 16104 CFU in SB. The challenge dose was

confirmed retrospectively by serial dilution and plating on blood

agar. Mice were monitored for signs of illness over 9 days and were

euthanized when moribund. Blood was taken from euthanized

mice and plated on blood agar to confirm the presence of S.

pneumoniae in the blood. For i.n. challenge, groups of 10 mice were

anaesthetized by i.p. injection of pentobarbital sodium (Nembutal;

Rhone-Merieux) at a dose of 66 mg per g of body weight and

challenged with 50 ml of bacterial suspension containing approx-

imately 16107 CFU in SB. The challenge dose was confirmed

retrospectively as described above for i.p. challenge. For

quantification of pneumococci and gene expression analysis in

infected mouse tissues, groups of 30 mice for strains Menzies1-

1861 and WCH4496 and a group of 20 mice for strain Menzies1-1

were challenged via the i.n. route with anesthesia as described

above. At 48 h and 96 h, the mice were euthanized by CO2

Figure 5. Construction of PPI-1v derivatives in D39 representing strains 1 and 1861. The PPI-1v derivatives D391 (A) and D391861 (B) were
constructed to reflect the organization of the region in the lineage A strains and highly virulent isolates, respectively. PPI-1v alignments between the
D39 wild-type region and the region in strains 1 (A) and 1861 (B) indicate nucleotide sequence identity exceeding 90%, and highlights the non-
homologous wild-type sequence that was replaced. The approximate sites of homologous recombination were subsequently determined by
sequencing and are indicated by broken lines. The PPI-1v accessory region of strains 1 and 1861 are colored yellow and the wild-type PPI-1v
accessory region is colored orange. The relative position of the antibiotic resistance genes conferring resistance against chloramphenicol (cmlR) and
spectinomycin (speR) are indicated in the final mutant.
doi:10.1371/journal.pone.0019650.g005
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asphyxiation, and nasal lavage, nasal tissue, lung and blood

samples were processed as previously described [75,76]. A 40-ml

aliquot of each sample was serially diluted in phosphate-buffered

saline and plated on blood agar to enumerate pneumococci

present in each niche and to determine the presence, if any, of

contaminating microflora. Blood plates were incubated at 37uC in

95% air, 5% CO2 overnight. Samples were then stored at 280uC
until further processing was performed. In addition, a 400-ml

aliquot of blood and homogenized nasal and lung tissue was also

harvested from each mouse for extraction of prokaryotic RNA.

For in vivo competition experiments, two replicate experiments

with groups of ten mice per competition group were challenged

i.n. (as described above) with a mixed culture of approximately

56106 CFU per strain. The competitive index (CI) within nasal

wash, nasal tissue, blood and lung samples was determined at 24 h

and 48 h post-challenge on selective media by calculating the ratio

of wild-type to mutant or mutant to mutant as required, relative to

the input ratio. As the CI values were log transformed, a value

close to 0 is expected if strains compete equally.

Extraction of total RNA from infected host tissues
RNA was extracted from host tissues, purified and enriched for

bacterial RNA essentially as described previously [75,77]. In this

experiment bacterial RNA was pooled from the same 4 mice per

niche.

Linear amplification of total RNA
Bacterial-RNA samples were amplified using a RNA linear

amplification kit SenseAMP (Genisphere), as described previously

[75,77].

Real-time relative qRT-PCR
The abundance of mRNAs of the genes listed in Table 5 present in

amplified RNA recovered from pneumococci harvested from all

niches was measured by real-time quantitative RT-PCR (qRT-PCR).

Gene specific primers were designed using OligoPerfectTM software

(Invitrogen), and primers specific for 16S rRNA were used as internal

controls for data normalization (Table S1). qRT-PCR was performed

using a LightCyclerH 480 II (Roche) using the Superscript III One-

step RT-PCR kit (Invitrogen) according to the manufacturer’s

instructions. Quantitative differences for each transcript were

calculated using the 22DDCT method [78]. Expression data are

expressed as a relative increase/decrease between niches.

Comparative Genomic Hybridization
Comparative genomic hybridization (CGH) experiments were

performed on whole genome S. pneumonia PCR microarrays based

on TIGR4 and R6 annotations. Microarray slides were obtained

from the Bacterial Microarray Group at St George’s Hospital,

University of London. The microarray design is available in

BmG@Sbase (Accession No. A-BUGS-14; http://bugs.sgul.ac.

uk/A-BUGS-14) and ArrayExpress (Accession No. A-BUGS-14).

S. pneumoniae DNA for CGH was extracted and purified using a

phenol extraction method as described previously [79]. DNA

(10.5 mg in 100 ml) was digested with Sau3AI (New England

Biolabs [NEB], MA, USA), and purified using the Qiagen

MinEluteH PCR Purification kit. Thereafter, 20 ml of purified

digest was labeled using the Genisphere Array 900 DNATM DNA

labeling kit for Microarrays (Genisphere, PA, USA) for each of

the dyes used (Alexa Fluor 555 and Alex Fluor 647). Slides were

incubated overnight in a dark humidified chamber at 65uC,

washed in a 3-step process (15 min with 26 SSC, 0.03% (v/v)

SDS, at 65uC; 15 min with 16SSC, RT; 15 min with 0.26SSC,

at RT) and dried. Slides were scanned using GenePixH Pro 6.0

software (Axon). CGH was performed in pairs of strains with the

same virulence phenotype per slide (1 & 2, 3415 & 5482, 1861 &

4496). Approximately equal fluorescence per spot on the array

between channels on one slide indicated presence in both strains

of the same phenotype, unequal fluorescence indicated presence

only in one strain of the same virulence phenotype, and

fluorescence not significantly different from the background

indicated absence in both strains of the same virulence

phenotype.

Genomic sequencing
Sequencing and genome assembly were performed by Gene-

works (Thebarton, Adelaide, Australia) using chromosomal DNA

prepared as described for CGH, using an Illumina Genome

Analyzer II (California, USA) and LasergeneH 8 software

(DNASTAR Inc, WI, USA). The sequenced 35-bp reads were

assembled against the P1301 (serotype 1, ST303) genome

(Genbank accession no. CP000920). The assembly of the strain 1

reads generated a 1,947,650-bp consensus sequence (92.22% of

P1031) with an average read depth of 35.72 reads. The assembly of

the strain 1861 reads generated a 2,105,218-bp consensus

sequence (99.68% of P1031) with an average read depth of

43.66 reads. Unassembled sequences were subsequently assembled

de novo into 103 and 62 contigs .300-bp in size from strain 1 and

1861, respectively. While many smaller contigs of boneyard

sequence were assembled, these largely represented gaps in

sequence assembly due to sequence variation below the 80%

sequence identity cutoff. The genome sequence of INV104

(Genbank accession no. FQ312030), ATCC 700669 (Genbank

accession no. FM211187), G54 (Genbank accession

no. CP001015) and D39 (Accession no. NC_008533) were used

in comparisons. Alignments were performed using the Artemis

Comparison Tool (ACT) [80]. The sequences of strains 1 and

1861 were submitted to the sequence read archive at NCBI and

have accession numbers SPX030816.2 and SPX030825.2, respec-

tively.

Construction of PPI-1 variable region mutants
Mutants were constructed using the primers in Table S1.

Mutants requiring the deletion of pezAT were performed in two

steps. D39DPPI-1 and D391 were constructed from D39DPezT.

The construct for D39DPezT was generated by overlap extension

PCR, performed essentially as described below, from products

amplified using primers a – aq and ec – g for the flanking products

and J214–J215 for the amplification of ermR from pVA891 [81].

The construct for D39DPPI-1 was generated by restriction

endonuclease treatment and subsequent ligation using primers t

– ed and ee – g for the flanking products amplified from D39 and

Figure 6. Competition between PPI-1v derivatives and wild type in the nasopharynx, blood and lungs. Competitive index (CI) within
nasal lavage, nasal tissue, blood and lung samples of individual mice are indicated at 24 h (A–D) and 48 h (E–H) post-challenge. CIs are expressed as
log-transformed ratios of the first strain relative to the second strain for mice where pneumococci CFU were recovered from the relevant niche.
Values are pooled from two replicate experiments that used 5 mice per group at each time point. Statistical differences between the log-transformed
geometric mean CI and a hypothetical value of 0 (ratio of 1:1) in each niche were analyzed using the one-sample t-test (*, P,0.05; **, P,0.01;
***, P,0.001).
doi:10.1371/journal.pone.0019650.g006
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RHcatF – RHcatR for amplification of cmlR. The construct for

D391 was generated by restriction endonuclease treatment and

subsequent ligation using primers af – ei and ej – g for the flanking

products amplified from strain 1 DNA and cmlR. The construct for

D391861 was generated by restriction endonuclease treatment and

subsequent ligation using primers ef – eg and eh – c for the flanking

products amplified from strain 1861 DNA and J293a–J254a for

amplification of speR. Generation of competent S. pneumoniae cells

and subsequent transformation was performed using the complete

transformation medium (CTM) method [82,83].

Statistical analyses
Differences in median survival times and differences in the

geometric mean number of pneumococci in each niche between

groups were analyzed by the unpaired t-test (two tailed).

Differences in the relative expression levels of genes between

niches were performed using the unpaired t-test (two tailed).

Differences between the competitive index of a test sample and

CI = 1 were analyzed using log-transformed values by one-sample

t-test. All analyses were performed using GraphPad Prism version

5.01. P,0.05 was considered significant.
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