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 C h a p t e r  T w e l v e  

 

12. Regional significance and implications for acid sulfate 

soil management 

 

The mapping techniques that were developed during this thesis (e.g. relating surface 

cover features to acid sulfate soil characteristics) were used to construct and improve 

regional scale coastal acid sulfate soil hazard maps for the Gulf St Vincent and South 

Australia. This work also provided the information to characterise Barker Inlet as a 

priority region for the Atlas of Australian Acid Sulfate Soils website, which is linked to 

the Australian Soil Resources Information System – ASRIS (Fitzpatrick et al. 2008e). 

 

An important outcome from the early stages of the project was the production of a 

legislated strategy document for implementing Coastal Protection Board policies on 

coastal acid sulfate soils in South Australia (Coastal Protection Board 2003); Appendix 

H), related to the management and planning during new coastal developments.  

 

The research was also used to define descriptive map units that underpin risk-based acid 

sulfate soil management guidelines for coastal developments in South Australia and that 

were specifically integrated into master development plans for the Gillman area 

(Thomas and Fitzpatrick 2006a); Appendix H). 

 

Broader project findings were disseminated to stakeholders and the public through 

numerous client reports, (e.g. (Thomas et al. 2004a) and educational pamphlets (e.g. 

(Thomas 2001); Appendix H). 

 

 

12.1. Regional scale mapping 

 

For the purpose of producing a regional scale acid sulfate soil map, the twelve map units 

described for the St Kilda and Gillman study areas (Chapter 7) were simplified and 

condensed into seven broader map units (Figure 12-2). The seven map units are 
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consistent with the national classification and terminology used for the national Atlas of 

Australian Acid Sulfate Soils (Fitzpatrick et al. 2008e). The Atlas was assembled by 

collating across Australia all published acid sulfate soils, land systems, marine habitat, 

elevation (DEM), tidal, estuarine, climate, vegetation and remotely sensed data using 

GIS. The Atlas map units shown in Figure 12-2 and Table 2-1 describe the acid sulfate 

soils in the wide range of physiographical environments in the Gulf St Vincent, and are 

summarised here: 

 

Disturbed acid sulfate soil types: 

(i) Sulfuric material in disturbed tidal zones (drained tidal, intertidal or supratidal 

mangrove or samphire marshes, particularly near Gillman). 

(ii)  Sulfidic material in disturbed tidal zones (drained tidal, intertidal or supratidal 

mangrove or samphire marshes, particularly in disturbed salt evaporation ponds). 

(iii)  Monosulfidic material in shallow, stagnant water bodies (e.g. poorly flushed or 

blocked estuaries, rivers, river tributaries, or salt evaporation ponds). 

(iv) Sulfidic or Sulfuric materials buried below fill materials (Figure 12-1; Left). 

 

Other potential acid sulfate soils types: 

(v) Subaqueous materials below the low tidal mark. 

(vi) Sulfidic material in contemporary tidal zones (e.g. mangrove, and samphire and 

salt bush marshes). 

(vii)  Sulfidic material in sand dune ridges (e.g. as buried layers, Figure 12-1; Right). 
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Figure 12-1 (Left image) Soil pit (Profile BG 2) at Gillman, Port Adelaide showing about 110 cm of 
calcareous clayey dredge spoil, used to raise the land surface, overlying 40 cm of sapric hypersulfidic 
material (derived from a former mangrove swamp) and underlain at 150 cm by coarse shelly material 
(chenier). This is a proposed new subgroup; Sulfic* Xerarents (Soil Survey Staff 2010). (Right image) 
Deep excavation at Barcoo Outlet, Adelaide (connecting the Patawolonga with the sea), and construction 
site through a sand ridge showing a relic hypersulfidic material buried under beach dunes (from a former 
mangrove swamp).  
 

 

The Atlas of Australian Acid Sulfate Soils maps have been published as a web-served 

GIS at the Australian Soil Resource Information System (ASRIS) site 

(www.asris.csiro.au). The ASRIS map of the Barker Inlet area that was developed in this 

study is also available on-line from the ASRIS web site (refer to inset map in Figure 

12-2). 

 

In addition, Table 12-1 summarises the wide range of acid sulfate soil types identified in 

the Gulf St Vincent according to: 

(i) Australian Soil Classification (Isbell 2002), with recent modifications to proposed 

new suborders based on (a) the acid sulfate materials proposed by Sullivan et al. 

(2010) and (b) the Subaqueous and Anthroposol concepts. 

(ii)  Soil Taxonomy (Soil Survey Staff 2010). 

(iii)  World Reference Base (IUSS Working Group WRB 2006). 



12. Regional significance  
 

 363 

Figure 12-2 Map showing distribution of coastal acid sulfate soils in Gulf St Vincent and the Gillman-Barker Inlet area (inset map), modified from (Fitzpatrick et al. 2008d). 

  
NOTE:   

   This figure is included on page 363  
 of the print copy of the thesis held in  
  the University of Adelaide Library. 
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Table 12-1 Acid sulfate soil types, map symbol1, Australian Soil Classification2, Soil Taxonomy3, World Reference Base4, Risk Class, Treatment categories5 and aerial extent 
for Gulf St Vincent. Modified from (Fitzpatrick et al. 2008d) 

Acid sulfate soil type 
Map 
Symbol

1
 

Australian Soil  
Classification

2
 

Soil Taxonomy
3
 World Reference Base

4
 Risk Class 

Treatment 
category

5
 

Area 
(Ha) 

Sulfidic material in 
contemporary tidal zones 

Ab (p2)o Sulfidic Intertidal Hydrosols; 
Sulfidic *Subaqueous 
Hydrosols; Epicalcareous, 
Intertidal Hydrosols 

Terric Sulfisaprists; Terric Sulfihemists; Sulfic 
Haplowassists; Sapric Sulfiwassists; Typic 
Sulfiwassists; Haplic Sulfiwassents; Typic 
Sulfiwassents; Haplic Sulfaquents; Sulfic 
Hydrowassents; Typic Hydrowassents; Typic 
Endoaquents 

Sapric or Hemic Histosols 
(Protothionic, Tidalic) 

High H - XH 8,936 

Sulfuric material in 
disturbed (drained) tidal 
zones 

Ax (a1)o 
Ax (a1)h 
Ax (a1) 

Sulfuric Sapric Organosol; 
Sulfuric Hypersalic 
Hydrosols; Sulfuric, Salic 
Hydrosol 

Terric Sulfosaprists; Terric Sulfohemists; 
Hydraquentic Sulfaquepts; 
Salidic Sulfaquepts; Sulfic Fluvaquents; 
Typic Sulfaquepts; Sulfaqueptic* Sulfiwassents 

Sapric or Hemic Histosols 
(Hyperthionic, Drainic) 
Subaquic or Salic Fluvisols 
(Hyperthionic, Drainic) 

Very High VH - XH 135 
87 
188 

Sulfidic material in 
disturbed (drained) tidal 
zones 

Bx (p3) 
 

Sulfidic Hypersalic 
Rudosols; Epicalcareous, 
Hypersalic Hydrosol; 
Haplic, Hypersalic Hydrosol 

Haplic Sulfaquents; Salidic Sulfaquents; Typic 
Haloquepts; Aeric Haloquepts 

Haplic Gleysols 
(Protothionic, Arenic) 

Moderate M- H 5,273 

Sulfidic material in 
disturbed (drained) tidal 
zones (mainly monosulfidic 
material) 

Ax (m1) 
Ax (m3 
Bx (m3)) 

Sulfidic Hypersalic 
Rudosols; Sodosolic, Salic 
Hydrosol Sulfuric, 
Hypersalic Hydrosol* 

Haplic Sulfaquents; Typic Hydrowassents; Salidic 
Sulfaquepts 
 

Anthraquic Gleysols 
(Protothionic, Drainic)  

Moderate M- H 5,973 

Sulfidic material in upper 1 
m in supratidal flats often 
with samphires 

Ac(p2) 
 

Histic-Sulfidic Supratidal 
Hydrosols 

Terric Sulfisaprists; Terric Sulfihemists Sapric or Hemic Histosols 
(Protothionic, Tidalic) 

High to 
moderate 

M-H 4,244 

Sulfidic material in upper 1 
m in extra tidal flats  

Ad(p2)h 
 

Histic-Sulfidic Extratidal 
Hydrosols 

Terric Sulfisaprists; Terric Sulfihemists Histic Gleysols (Protothionic, 
Tidalic) 

High to 
moderate 

M-H 7,139 

Sulfidic material in sand 
plains and dunes 

Ai(p2) Sulfidic Arenic Rudosols Sulfic Fluvaquents; Sulfaquents Subaquic or Tidalic Fluvisols 
(Protothionic, Arenic) 

Moderate 
to Low 

L - M 2,751 

Sulfidic material buried 
below fill materials 

Ax (p3)f 
Bx (m3)f 

Dregic or Urbic 
Sulfidic Anthroposols 

Thapto-Histic Fluvaquents; Sulfic* Xerarents; Haplic 
Xerarents 

Spolic or Urbic Technosols 
(Protothionic) 

Moderate 
to Low 

L - M 6,602 

Sulfuric material buried 
below fill materials 

Ax (a1)f Sulfuric Hypersalic 
Hydrosols 

Hydraquentic Sulfaquepts 
Sulfaqueptic* Xerarents 

Spolic or Urbic Technosols 
(Orthothionic) 

Very High VH - XH 17 

Subaqueous materials 
below the low tidal mark  

Aa(p3) Sulfidic *Subaqueous 
Hydrosols 

Sulfic Haplowassists; Sapric Sulfiwassists; 
Typic Sulfiwassists; Haplic Sulfiwassents; 
Typic Sulfiwassents; Haplic Sulfaquents 

Histic Gleysols (Protothionic, 
Arenic) 

Moderate M- H 15,964 

      TOTAL  57,222 
1
Map Symbols from Figure 12-2: Atlas of Australian Acid Sulfate Soils (Fitzpatrick et al. 2006)/ Australian Soil Resource Information System (ASRIS) site (www.asris.csiro.au); 

2
Australian Soil Classification (Isbell 2002). 

3
Soil Taxonomy (Soil Survey Staff 2010), *Proposed new subgroup; 

4
IUSS Working Group (IUSS Working Group WRB 2006); 

5
Treatment category: L=Low level treatment; M = Medium level treatment, H = High level treatment, VH = Very high level treatment, XH = Extra High level treatment (Dear et al. 2002). 
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12.2. Regional acid sulfate soil hazard associations 

 

The regional map and database information was used to determine the risk to 

development (infrastructure and environment) should the sulfuric and sulfidic materials 

in the soil profiles be disturbed (i.e. acid sulfate soil Risk Classes in Table 12-1). Risk 

classes are associated with treatment categories (Table 12-1) that were based on 

management guidelines developed in Queensland (Dear et al. 2002). The ranking of 

regions and localities by importance of acid sulfate soil ‘hotspots’ (resulting from site 

disturbance) in relation to environmental, economic and social effect is implicit in the 

legend of the risk maps (Table 12-1; Figure 12-2). The highest risk areas are those 

associated with sulfidic materials in sandy soils in tidal and intertidal zones.  

 

Soils with sulfuric material from former sandy tidal zones inside bund wall areas [i.e. 

disturbed acid sulfate soil indicated in map unit code Ax(a1)] have a spatial extent of 

1.88 km2 in the Gillman area (Figure 12-2) and have been assigned treatment categories 

Very High to Extra High (Table 12-1). Sulfidic materials in supratidal [Ac(p2)] and 

extratidal [Ad(p2)h] areas in Gulf St Vincent almost universally contain finely divided 

or shelly carbonate materials with excess potential to neutralise acid that may be formed 

(i.e. hyposulfidic materials). Consequently, these areas fall into the treatment categories 

Moderate to Low (Table 12-1), depending on whether additional mixing of materials is 

required for neutralisation to occur. Intertidal areas in South Australia often have 

sufficient carbonate materials or seawater flushing to neutralise any acidity formed 

during periods of low tide when oxygen may enter exposed soil. However, the 

consumption of seawater bicarbonate deprives downstream ecosystems of this resource. 

 

12.3. Management options for coastal acid sulfate soil in Gulf St Vincent 

 

Coastal development projects such as land reclamation, digging ponds for aquaculture, 

sand and gravel extraction or dredging for ports and marinas are likely to disturb acid 

sulfate soil around Gulf St Vincent. Where acid sulfate soil is disturbed, there is a risk to 

human health, local infrastructure and the local environment. However, appropriate 

management of acid sulfate soil during development can improve discharge water quality, 

increase agricultural productivity and protect infrastructure and the environment (Thomas 

et al. 2004a). Such improvements can generally be achieved by applying low-cost land 
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management strategies based on the identification and avoidance of acid sulfate soil 

materials, slowing or stopping the rate and extent of pyrite oxidation, and by retaining 

existing acidity within the acid sulfate soil landscape (Thomas and Fitzpatrick 2006c). 

Acidity and oxidation products that cannot be retained on-site may be managed by other 

techniques such as acidity barriers or wetlands that intercept and treat contaminated water 

before it is finally discharged into rivers or estuaries (Thomas and Fitzpatrick 2006a).  

 

At Gillman and other areas in St Vincent Gulf, the selection of management options will 

depend on the properties and location of the acid sulfate soil materials and their position in 

the landscape. This is why reliable acid sulfate soil risk maps, at appropriate scales, that 

characterise acid sulfate soil landscapes are so important. Suitable amelioration techniques 

that were identified for different areas in this study are linked to map units in Table 12-2. 

 

Acid sulfate soil management generally requires the principles: 

 
(i) Educate; 

Information enables acid sulfate soils to be avoided or managed appropriately. 

 
(ii)  Minimise disturbance or drainage of acid sulfate soil materials; 

Select an alternative non-acid sulfate soil site, rather than undertake remediation. If an 

alternative site is not feasible, design works to minimise the need for excavation or 

disturbance of acid sulfate soil materials, by undertaking shallow excavations for drainage 

measures or foundations, and avoiding lowering groundwater depth that may result in 

exposure of soils. If acid sulfate soil materials are close (e.g. < 0.3 m) to the surface, cover 

with clean soil to lessen the chance of disturbance and to insulate from oxygen ingress. 

 
(iii)  Prevent oxidation of sulfidic material 

This may include staging the development project to prevent oxidation of sulfidic material 

by covering it with a barrier of slow permeability (e.g. clay), or placing any excavated 

sulfidic material quickly back into an anaerobic environment, usually below the water 

table. 

 
(iv) Minimise oxidation rate and isolate high risk materials from exposure 

This may include covering acid sulfate soil materials with soil or water to decrease oxygen 

availability and control the movement of water, or by controlling bacterial activity or by 
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applying other limiting factors (e.g. alkalinity) through either physical or chemical means 

to decrease oxidation rate. 

 
(v) Contain and treat acid drainage to minimise risk of offsite impacts 

Typically, this would involve installing a leachate collection and treatment system (e.g. 

using lime), a permeable reactive barrier (e.g. lime slot) to intercept and neutralise acidic 

groundwater as it moves thought the soil, or installing an impermeable barrier to locally 

confine acidic groundwater. 

 
(vi) Provide an agent to neutralise acid as it is produced 

This would involve mixing the acid sulfate soil material with an excess of lime, or other 

neutralising agent. 

 

(vii) Separate sulfidic materials 

This may include the use of mechanical separation, such as sluicing or hydrocyclone to 

separate sulfide minerals (e.g. pyrite crystals) from the bulk sulfidic material, followed by 

treatment (e.g. liming) or disposal of the sulfide minerals into an anaerobic environment. 

 

(viii)  Hasten oxidation and collection and treatment of acidic leachate 

This involves spreading the acid sulfate soil materials in a thin layer on an impervious area 

to activate rapid oxidation.  Rainfall or irrigation leaches the acid and this leachate is 

collected and treated (e.g. by liming). 

 

(ix) Management of stockpiled acid sulfate soil materials 

This includes minimising the quantity and duration of storage, minimising the surface area 

that can be oxidised, covering the soil to minimise rainfall infiltration, stormwater control 

measures, controlling erosion and collection, and treatment of runoff (leachate). 
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Table 12-2 Summary of acid sulfate soil mitigation methods suited for the map units. 
 

Map 
unit no. 

 

 
Remediation 

Options 

 
Principles 

 
Remediation/management  strategy 

Scenario 

 
1 
 

Soils suited to re-flooding using either seawater and/-or storm-water 
to construct a permanent wetland system as the soils contain only 
sulfidic material that is currently below permanent saline or brackish 
water. These areas fringe the Gillman site and will intercept and 
neutralise any acidic groundwater before being released to Barker inlet. 
These areas will act as a sink for metal contaminants. 

 
2 

 

 
Re-flooding 
or burial 

Improve 
discharging water 
quality through 
constructed 
Wetlands (Bio-
remediation) and 
Neutralise acidic 
groundwater or 
surface seepage 
from filled areas. 

Soils suited to re-flooding using either seawater and or storm-water 
to construct a permanent wetland system as the soils contain sulfidic 
material that is currently below seasonal (semi-permanent) saline or 
brackish water. These areas fringe the Gillman site and will intercept 
and neutralise any acidic groundwater before being released to Barker 
inlet. These areas will act as a sink for metal contaminants. 

 
3 
 

Re-flooding 
or Burial 

These areas are suited to re-flooding using either seawater and or 
storm-water as the current water table is close to the surface and soil 
acidification is minor. Where these soils are to be Buried, they should 
compress, reducing their porosity and pushing them below the water 
table. Lime should be added to the surface prior to burying where 
sulfuric material is present. 

 
 
4 
 

Burial, 
Chemical 
neutralisation 
and 
Containment 
using 
Watertable 
Management 
or Re-
flooding 

Stop oxidation of 
sulfidic material, 
Contain and 
Neutralise acidic 
groundwater to 
improve 
discharging water 
quality through 
Bio-remediation. 

Burial  and loading soils (both sulfidic and sulfuric materials) should 
compress soil reducing their porosity and pushing them below the 
water table. This process should stop further oxidation of sulfidic 
material and neutralise existing acidity by allowing carbonate rich 
groundwater to contact the sulfuric horizon. Lime should be added to 
the surface prior to burying where sulfuric material is present. 
Watertable management should ensure the compressed soil materials 
remain saturated at all times. Fill material should be geotechnically and 
chemically suited to its intended purpose, have acid buffering capacity. 
Incorporate layers of coarse material to break the capillary rise of 
saline and or acidic groundwater. 

 
5 
 
 
6 
 
 
7 
 

Burial, 
Chemical 
neutralisation 
and 
Containment 
of acidic 
groundwater 
using 
Watertable 
Management 

Stop oxidation of 
sulfidic material 
and Contain 
acidic 
groundwater by 
raising and 
stabilizing the 
watertable 
(Watertable 
Management). 

The burial  of soils in this area should stop the further oxidation of 
sulfidic material  by raising and stabilising the watertable height. 
Watertable management should aim to maintaining a watertable 
height just above sulfidic material (e.g. just above the 4Bjg3 horizon in 
soil profile BG 11) but low enough to limit the movement of 
groundwater from below the filled area. Lime should be added to the 
surface prior to burying to assist in the neutralisation of sulfuric 
materials and acidic groundwater. Fill material should be 
geotechnically and chemically suited to its intended purpose, have acid 
buffering capacity. Incorporate layers of coarse material to break the 
capillary rise of saline and or acidic groundwater. 

8 

9 

10 

11 

Avoid 
disturbing 
sulfidic 
material 

 
Avoidance 
 

 
Avoidance 
 
Neutralisation 
 

12 

C. 

Mix soil 
profile layers  

 
Neutralisation 

 
Self neutralising and alkalinity resource 
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12.4. Planning and development controls 

 

Planning and development controls for coastal acid sulfate soil were developed and 

legislated as policy in South Australia through the Coastal Protection Board (Coastal 

Protection Board 2003). A summary of the strategy used to implement this policy is 

presented in Appendix H and at: 

http://www.environment.sa.gov.au/coasts/pdfs/no33.pdf. Based on the studies in this 

thesis, controls and guidelines for coastal development at Gillman, along with some 

examples of trialled remediation techniques (e.g. experimental drains, see Figure 10-3a, 

and loading experiments, see Figure 6-14, Figure 6-15 and Section 9.4) have been 

developed. These controls, guidelines and trials are described in Thomas et al. (2004a), 

Thomas (2004), Thomas and Fitzpatrick (2006a) and Thomas and Fitzpatrick (2006c).  

 

 

 

12.5. Summary 

 

This chapter presented information that has been put into practice and used by State and 

local authorities to increase awareness of acid sulfate soil problems and their 

management in the region. These approaches were achieved by: 

(i) Producing detailed maps incorporating Atlas map units to show the regional 

distribution of coastal acid sulfate soils 

(ii)  Hazard identification (based on information from this thesis, namely Chapters 7, 

9 and 10) and hazard management, and 

(iii)  Relating mapped soil types to management approaches / options. 
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C h a p t e r  T h i r t e e n  

 

13. Conclusions and future work 

 

13.1. Introduction 

 

The Barker Inlet is one of many coastal landscapes with acid sulfate soils around 

Australia and the world where past inappropriate practices were undertaken through 

ignorance. This resulted in increased formation of sulfuric material, metal mobilisation 

and pyrite oxidation products, which present ongoing hazards to the environment and 

infrastructure. 

 

The aims of this research were focussed initially on identifying, describing and 

comparing complex pedological, redox, geochemical, hydrochemical and mineralogical 

processes for the following two contrasting coastal landscapes in Barker Inlet: 

(i) a ‘near pristine’ landscape at St Kilda, and 

(ii)   a degraded landscape at Gillman. 

 

This thesis has developed a series of descriptive, explanatory and predictive soil-regolith 

process models to describe the pedological and geochemical interactions, at a variety of 

scales, from the: 

(i) wetland scale by conducting detailed site survey investigations and collating 

historical data for two study sites in the Barker Inlet, 

(ii)  landscape feature scale by conducting detailed investigations in focus areas and 

constructing idealised toposequence models, 

(iii)  soil profile scale by intensely studying representative ‘type’ soil profiles, 

(iv) microscopic-scale by using light microscopy, scanning electron microscopy and 

X-ray methods to describe structural and temporal relationships of soil 

redoximorphic and mineralogical features from an array of acid sulfate soil 

materials. 
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These investigations enabled production of acid sulfate soil maps at local landscape 

scales, which were then used to extrapolate to regional scales in areas that share similar 

coastal physiography to the study areas. The local and regional scale maps produced in 

this thesis were published in the Atlas of Australian Acid Sulfate Soils, which is 

viewable via the ASRIS website (www.asris.csiro.au). 

 

The models and soil maps presented in this thesis have been used to educate land 

managers about the nature and distribution of acid sulfate soils in Barker Inlet, and 

provide options for acid sulfate soil management.  In relation to the Barker Inlet and 

similar areas further afield around the South Australian coastline, this thesis will 

continue to assist land managers to: 

(i) better manage and ameliorate acid sulfate soils sites, and  

(ii)  better implement development policy in the coastal protection zone. 

 

Conclusions from each of the relevant research chapters in this thesis are presented in 

the sections below. Finally, recommendations for future work are presented at the end of 

this chapter. 

 

 

13.2. Conclusions 

 

13.2.1. Soil morphology, classification and descriptive soil-regolith models 

This work provided detailed morphological information of the wide range of acid sulfate 

soil types and materials that occur in the Barker Inlet within both: (i) natural intertidal 

areas, and (ii)  non-tidal, disturbed areas.  

 

This is the first attempted application of the following new definitions and terminologies 

to more precisely classify the coastal acid sulfate soil materials and profiles in South 

Australia using: 

(i) hypersulfidic material, hyposulfidic material and monosulfidic material 

terminology (Sullivan et al. 2010), and  

(ii)  subaqueous soils, described as ‘Wassists’ and ‘Wassents’, by Soil Taxonomy (Soil 

Survey Staff 2010). 
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The most recent Keys to Soil Taxonomy (Soil Survey Staff 2010) offers improved 

characterisation and classification of acid sulfate soil landscapes over past editions 

because it now accounts for subaqueous soils. 

 

Classification of acid sulfate soil materials using sulfuric, hypersulfidic, hyposulfidic 

and monosulfidic materials (Sullivan et al. 2010) has provided a much improved 

practical link to describe hazard assessment. This is mainly because their respective 

definition requires measurement of soil pH, pHIncubation and reduced inorganic sulfur (i.e. 

for discriminating between hypersulfidic and hyposulfidic materials) and Acid Volatile 

Sulfur (i.e. AVS for identifying monosulfidic material). 

 

Both the Australian Soil Classification (Isbell 2002) and Keys to Soil Taxonomy (Soil 

Survey Staff 2010) are less developed in defining acid sulfate soil hazards that do not 

relate to acidity because they tend to miss key hazard indicators such a AVS when 

classifying soils. For example: 

 

• The Australian Soil Classification (Isbell 2002) and Keys to Soil Taxonomy 

(Soil Survey Staff 2010) do not describe hyposulfidic material and monosulfidic 

materials (Sullivan et al. 2010) as acid sulfate soil materials. 

These materials are required to contain at least 0.01% reduced inorganic sulfur and 

hence have the ability to release metals upon oxidation. Monosulfides also have 

potential to deoxygenate large surface water bodies. 

 

• Sulfuric material that occurs below a permanently saturated layer of water is not 

accounted for in the Australian Soil Classification (Isbell 2002) and Keys to Soil 

Taxonomy (Soil Survey Staff 2010). These soil conditions were identified in 

areas where acidic groundwater permanently occurred above the surface of 

acidic soil profiles (e.g. as in the open drains located at Gillman focus area A, 

adjacent to profile BG 15, which have continually contained surface water of < 

pH 3 since 2002). 

Consequently, these soil profiles should be described as being subaqueous and 

containing a sulfuric horizon (Soil Survey Staff 2010) or sulfuric material (Isbell 2002). 



13. Conclusions  
 

 373 

Sulfuric material has also been identified under neutral and/or alkaline surface waters in 

wetlands and lakes within the Murray Darling Basin (e.g. Fitzpatrick et al. 2010b). 

 

• Keys to Soil Taxonomy (Soil Survey Staff 2010) does not adequately classify 

soils with sulfidic materials (i.e. Hypersulfidic material) occurring below 1 m of 

the soil surface (where the upper portion of the profile contains non-acid sulfate 

soil material (or hyposulfidic material). 

For the purpose of describing acid sulfate soil hazards it is important to identify the deep 

(below 1 m) occurrence of hypersulfidic or sulfuric materials. This is because, during 

land development many excavations go beyond 1 m, such as for marinas or drains. It is 

also important to identify where these acid sulfate soil materials have been buried. This 

condition was identified at the St Kilda study site in profile BSK 4. In addition, recently 

(during 2010) a large area at Gillman containing sulfuric material has been covered with 

3-4 m of waste derived fill (i.e. a mixture of waste soil, recycled aggregate and mineral 

based industrial residue) in order to raise the low lying site for industrial development. 

The fill platforms can be seen on the most recent aerial photograph (June 2010) of the 

site (Appendix A). 

 

• Unlike Soil Taxonomy (Salidic Sulfaquepts), The Australian Soil Classification 

(Isbell 2002) does not describe sulfuric material occurring below a salic horizon. 

Soils with this condition (i.e. Salidic Sulfaquepts), were identified at the Gillman study 

site in a former tidal creek depression that traversed sulfuric materials (e.g. profile BG 4 

at focus area B) and classified as a Hypersalic Hydrosol. To account for the acidity 

hazard associated with profile BG 4 it was classified as a Sulfuric, Hypersalic Hydrosol 

throughout this thesis. 

 

13.2.2. Mapping 

The correlations that were established between landscape features and soil 

characteristics in this thesis were used to produce soil maps. Previous groundwater 

conditions and geomorphology, together with soil and contamination information, 

provided a valuable data-set to obtain an improved understanding of the temporal and 

spatial variability of the physiography, which enabled map unit boundaries to be refined. 
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Soil-landscape maps were used to portray the spatial variability of soils in the 

landscapes. The map and legends locate and describe where potential hazards, such as: 

acidity, potential acidity, salinity, deoxygenation and metal mobilisation occur or might 

occur in the landscape. 

 

Surface cover types in conjunction with micro-topography and geomorphology provided 

surrogates for mapping acid sulfate materials. The use of geophysical techniques and 

historic aerial photography improved demarcation of map unit boundaries and therefore 

improved hazard assessment. 

 

The spatial distribution and concentration of acidity (i.e. the components of net acidity) 

within the Barker Inlet was linked to: 

• geomorphological features such as sulfuric material, which is closely linked to 

sandy shoreface and back barrier sand units at Gillman), 

• past sea level fluctuations where it is proposed that the formation of sulfuric 

material at Gillman commenced >1500y B.P., as a result of local sea level 

regression following the mid-Holocene high stand, and  

• recent artificial drainage and stormwater management. 

 

The maps and soil-regolith cross-sections showed that existing acidity is largely stored 

as retained acidity in the sandy shoreface facies and is unlikely to move off site unless 

the hydraulic or drainage regime of the area is altered. Export of pyrite oxidation 

products to Barker Inlet over the past 85 years since the bund wall was constructed has 

likely been low due to: 

• containment of oxidation products within the Gillman site by the bund walls, 

• low hydraulic gradients, which limit movement of acidity, 

• carbonate-rich soil horizons that fringe the main acid store, and 

• thick monosulfides occur within the ponding and evaporation basins, which are 

down hydraulic gradient from the major area of acidified soils, provide a sink for 

acidity and metals. 
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However, un-managed development at Barker Inlet that disturbs the soils or changes the 

local hydrology could cause severe environmental damage by increasing the oxidation of 

pyrite and off-site transportation of acidity and other metal contaminants. 

 

The acid sulfate soil maps identify areas that are suited to the application of various 

remediation techniques or areas where disturbance should be avoided. This allows for 

remediation options to be matched to proposed development plans, to achieve desired 

environmental outcomes. 

 

13.2.3. Redox monitoring 

Long-term redox monitoring equipment was developed as part of this project. It was 

deployed in the field at the St Kilda and Gillman sites and the data collected were used 

to gauge the influence of: (i) tidal flooding, (ii)  diurnal and seasonal temperature change, 

(iii)  rainfall events, and (iv) hydromorphic zones on the soil redox potential within 

demarcated mapping units. Descriptive soil-regolith toposequence models were 

developed to illustrate the variations in redox conditions within tidally influenced areas, 

non-tidal areas and recently disturbed sites. The redox data were also used to validate 

geochemical results and mineralogical observations. 

 

Tidal influences on redox conditions: 

• Temporal variability in Eh was generally in phase with tidal cycles. 

• Redox potentials responded rapidly and significantly to tidal drainage and 

flooding cycles that altered oxygen supply to the surface and subsoils, and 

therefore controlled the type and rate of soil biological processes. 

• Strength (flow rate) of tidal flushing influenced the amplitude of fluctuations in 

Eh measurements. Redox potentials were lowest in areas with the most stable 

hydraulic conditions (least amount of tidal flushing). 

• Diurnal fluctuations of lower amplitude that were out of phase with tides were 

likely to be related to changes in temperature and solar radiation, and variation in 

the productivity of soil microbes and vegetation. 

• Monitoring intervals of less than once hourly are required to interpret responses 

of Eh measurements to physico-chemical variables in dynamic environments 

(field-based studies). 
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• Mobilisation of trace elements in these environments can vary diurnally in 

response to the measured diurnal fluctuations in Eh. This has implications for 

modelling trace element mobility and sulfide oxidation rates in these 

environments through Fe cycling. 

 

Redox conditions in non-tidal areas: 

• Eh measurements in non-tidal, sub-aerial environments were characterised by 

relatively minor diurnal fluctuations. 

• Non-tidal, subaqueous soils did, however, experience significant diurnal redox 

fluctuations, similar to intertidal environments. The diurnal redox fluctuations 

observed for these subaqueous soils was attributed to a combination of solar 

radiation, microbial activity, wind-induced wave action and temperature. 

• Redox conditions within the water column became more reducing when 

monosulfidic materials in subaqueous soils were disturbed during rainfall / storm 

events. 

• Rainfall events caused the upper portion of sub-aerial profiles to become more 

reducing. 

• Redox conditions within sulfuric materials were generally oxidising. However, 

acidic, strongly reduced redox conditions were measured within sandy sulfuric 

materials for profile BG 11 during wet winter months. Reducing conditions 

recorded in sulfuric material was likely due to seasonal rising of groundwater 

heights and heterogeneity of soil redoximorphic conditions (micro-scale features) 

within the soil profile. 

• Seasonal variation in ground water table height may have contributed to the 

reformation of pyrite and the consumption of acidity within re-wetted sulfuric 

material in areas where soil organic matter content was adequate for microbial 

activity. 

• Redox variability across meso- and micro-scale redoximorphic features (e.g. 

jarosite mottles) could be better quantified by installation of multiple Pt 

electrodes into and adjacent to redoximorphic features, and by careful subsequent 

excavation of the Pt electrodes so the micro-environment surrounding the tip of 

Pt electrodes could be described. 
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• As expected, excavation of a drain within the sulfuric materials caused soil redox 

conditions to become significantly more oxidising, with ensuing hazards. 

 

Recommendations for data collection with redox monitoring equipment: 

• Synchronous monitoring of soil pH values with Eh would benefit 

characterisation of soil geochemical conditions and geochemical modelling. This 

is because soil pH may fluctuate over a tidal cycle, drop substantially if sulfuric 

materials are re-flooded, and surface waters may acidify if monosulfidic material 

is suspended in an oxygen rich environment. 

• Replacing reference electrodes regularly (every 4-6 months). 

• Allowing platinum electrodes to equilibrate for 2 to 7 days within either reduced 

or oxidised soil environments. 

• Long-term redox monitoring over many flooding and drying cycles partially 

overcomes the problems of spatial heterogeneity, however excavating each Eh 

electrode at the end of monitoring to observe the micro-environment around tip 

of the Pt electrode provides valuable additional information for interpreting soil 

redox data. 

• Installing replicate Pt electrodes (up to 4 is recommended per soil layer) to 

characterise redox conditions within dynamic environments such as in Barker 

Inlet, e.g. (i) in tidal areas, (ii)  at the sediment/water interface of subaqueous 

soils, (iii)  within the water column, and (iv) in oxidising environments. 

• Interpretations of Eh data obtained during long-term monitoring using data 

loggers are improved by short recording intervals (sub-hourly) and regular site 

visits to observe the general operation of the monitoring system and dynamics of 

the environment, particularly within tidal settings. 

• Including (additional) multiple channels to monitor soil and water pH, EC, 

temperature, water levels and weather data, and web connectivity (via mobile or 

satellite phone) for downloading data and streaming live web-cam footage of 

tidal, weather or physical variables that may influence soil and water redox 

measurements. Consideration of site security issues would be imperative prior to 

installation of field equipment. 
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13.2.4. Geochemistry and hydrochemistry 

The soil geochemical and hydrochemical data collected in this study provided evidence 

of the temporal behaviour of trace elements in acid sulfate soil materials at Gillman and 

St Kilda. Defining trace element characteristics along toposequences allowed a soil-

regolith explanatory model to be developed that depicts the spatial distribution and 

movement of elements and acidity within these landscapes. 

 

Geochemical investigations showed: 

• Metals and metalloids (As, Pb, and Zn) were elevated in topsoils of both 

intertidal and non-tidal (drained) soil profiles at Gillman, and are likely 

contaminants due to incoming windblown material from industrial sources. In 

non-tidal areas Cu and V, and to a lesser extent Ni, were also elevated in topsoils. 

• In non-tidal areas As, Cr, Pb, V and Zn were relatively stable in topsoils (post 

active acid sulfate soils) due to their high pH, and high Mn and Fe contents. 

• Seasonal variations in redox and pH conditions promoted the down profile 

migration of trace elements, which became concentrated at the redox front. 

• Zinc, Cu, Pb, V and other trace metals have accumulated in subaqueous soils (of 

the drains and creeks that fringe the areas containing sulfuric material) that 

contain high concentrations of pyrite and monosulfide. This contrasts with 

intertidal areas where subaqueous, sulfidic soils occurring in permanently 

flooded tidal creeks have not accumulated contaminants from more elevated 

positions in the intertidal landscape. 

 

Hydrochemical investigations showed: 

• Trace elements concentrations, such as Cu, Cr, Ni, Pb and Zn exceeded 

ANZECC guidelines in extremely acidic (pH < 3.2) surface waters or soil pore 

waters of soil pits or drains where salt efflorescences occurred. These conditions 

are only likely to occur in areas mapped as units 5 and 6, and only in areas where 

the subsoils are (currently) or become exposed. 

• Trace elements Cd, Cu, Cr, P, Ni, Pb and Zn are not significantly concentrated in 

pore waters or surface waters draining sulfuric material at Gillman. 

• Dissolution of aluminosilicate minerals in sulfuric materials resulted in Al being 

one of the most elevated elements in acidic pore waters and surface waters at 
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Gillman, and was several orders of magnitude higher than the ANZECC 

guidelines. 

• Hydrolysis of aluminium salts increased acidification, which further promoted 

the release of cations and anions (e.g. Na, Mg, Ca, Ba, Cl, SO4
2-, SiO4

4-, etc.) and 

trace elements to pore waters and surface waters. 

• The lateral mobility of contaminants was predominantly by erosion of topsoils, 

which also promoted the movement Fe and Al oxyhydroxides into drains and 

creeks. 

• Oxidation products were reduced and metal contaminants sequestered by sulfides 

at the lowest positions in the landscape at Gillman. 

 

This work has shown that localised vertical and lateral mobility of contaminants at 

Gillman has been greatly enhanced by loss of tidal flooding, and consequent 

acidification of soils. Metals and trace elements in acidic waters were often greater than 

the ANZECC water quality guidelines. 

 

13.2.5. Mineralogy – nature and properties of salt efflorescences 

Salt accumulations on soil-surfaces in this coastal region resulted from a combination of 

the following characteristics: (i) Mediterranean type climate, (ii)  hydrogeology, (iii)  

saline seepages, and (iv) salt crusting formed in drains above sandy sulfuric and 

hypersulfidic materials. 

 

This thesis provided the first documented occurrence of sideronatrite 

[Na2Fe(SO4)2(OH).3H2O], tamarugite [NaAl(SO4)2.6H2O] and alunogen 

[Al 2(SO4)3.18H2O] distributed in coastal acid sulfate soils in Australia. 

 

Although salt efflorescences have the ability to remove potentially toxic trace elements 

form soil pore waters and stream waters they are potentially mobile through physical 

movement (detachment) and remain water soluble. They are also a store of the 

sequestered trace elements and acidity. The mineralogy, pH, Eh and geochemical 

composition of the soils and salt efflorescences helped to explain the mobility 

distribution and concentration of trace elements in these complex acid sulfate soil 

environments. The results obtained during this study indicated that: 
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• Salt efflorescences  that dissolved during wet periods and re-precipitated during 

summer played an important role in the transient storage of acidity and of 

components (Fe, Al, Na, Ca, Mg, Cl, Sr and SO4). These components probably 

contributed to the increased formation of pyrite and iron monosulfides in wetter 

soils such as stranded tidal creeks at Gillman. 

• Salt efflorescences containing blödite, tamarugite, pentahydrite, jarosite, gypsum 

and halite that formed on salt flats or spoil piles have potential for aerial 

entrainment and offsite transport of trace elements and contaminants. 

• Scavenging of trace elements (As, Br, Ce, La, Mo and Sr) by sulfate salts was 

observed, but only slightly elevated concentrations of B, Ni and Zn were 

observed in drain or soil pit waters, even though most of the salts were dissolved 

from the drain or pit walls during winter months. 

• Gypsum, halite, jarosite, goethite and possibly hexahydrite did persist as solid 

phases during wet winter months and may account for the sequestration of As, 

Mo, U and V by goethite and Br, Ce, La and Sr by gypsum, halite and / or 

hexahydrite. 

• Scavenging of metals by carbonate minerals may have occurred in alkaline 

micro-environments. 

• Seasonal formation of metal sulfides may provide a sink for trace elements, such 

as Mo, which appeared to have accumulated near the base of drains in 

hypersulfidic material that was subaqueous during winter months. 

• Limiting the precipitation of salt efflorescences along drain walls is unlikely to 

reduce the total amount of trace elements moving to drain waters, however it 

would allow for a more uniform flow of trace elements to drain waters. This 

would reduce the occurrence of large, episodic fluxes of metals entering the 

drains, which are undesirable for the preservation of down stream aquatic 

organisms. 

• Limiting the accumulation of salt efflorescences may reduce the risk of sulfide 

oxidation by ferric iron in down stream subaqueous soils, where water pH is 

higher than in the drain near the source of the salts. 

 

These processes were collectively summarised in an evolutionary and predictive soil-

regolith model. The precipitation of salt efflorescences could be minimised by covering 
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drain walls to slow evaporation at the surface and maintain humidity (e.g. by placing 

mulch or geo-textiles on drain walls or by using pipes instead of open drains). 

Ultimately the best way to limit the issues associated with sulfuric, saline salt 

efflorescences is to locate drains away from sulfuric and hypersulfidic materials. This 

could be done quite accurately in the Barker Inlet by using the detailed soil maps of acid 

sulfate soil landscapes developed in this study. These processes are also likely to occur 

in inland acid sulfate soil systems. 

 

13.2.6. Micromorphology 

Soil micromorphological investigations, which included scanning electron microscopy 

were used to describe and characterise biological, physical, chemical and mineralogical 

processes within two intertidal soils and one drained supratidal soil profile. These 

techniques were used to: 

• Define the various types of organic matter fractions (e.g. sapric, hemic, fibric 

materials) in the soil profiles. 

• Describe the occurrence of sulfide minerals (e.g. pyrite, monosulfides and 

chalcopyrite) in the soil profiles. 

• Develop and describe micro-scale weathering pathways and mechanisms under 

changing hydrological, physical and biogeochemical conditions in acid sulfate 

soils. 

 

Micromorphology of intertidal (undrained) acid sulfate soils indicated that: 

• Sapric material was more decomposed and less porous than hemic material, and 

allowed the formation of larger pyrite framboids. 

• Partial oxidation of pyrite along coarse pores formed lenticular gypsum crystals 

because of the dissolution of carbonate in a low pH environment. 

• The morphology and form of pyrite and gypsum crystals within the soil profile 

indicated that conditions of their formation are on a micro-scale. 

 

Micromorphology of drained coastal acid sulfate soils indicated that: 

• Sulfide oxidation was extensive and was confirmed by the presence of iron 

oxyhydroxide pseudomorphs (goethite crystallites and framboids) after pyrite, 

jarosite and gypsum crystals. 
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• The morphology and relationships of pseudomorphs after pyrite can be used as a 

palaeo-indicator of the soil’s physico-chemical conditions prior to oxidation. 

• The micromorphology of weathering features of pyrite crystals, framboids and 

redoximorphic features provided insight into the pH and redox conditions (within 

micro-environments) and weathering rates of pyrite as oxidation proceeded. 

• Iron oxide pseudomorphs after jarosite spheroids within salt efflorescences were 

indicators of temporal redox and geochemical changes within micro-

environments. 

• The preservation of pyrite crystals within an oxidised environment can occur by 

armouring with clay coatings and by impregnation or inclusion within gypsum 

and halite crystals. The kind of armouring on pyrite has implications for 

characterisation of acid sulfate soil types by ageing as well as implications for 

acid sulfate soil management. 

 

Micromorphological investigations indicated that soils at Gillman have been subjected 

to a complex geomorphic and drainage history, where the loss of tidal influences caused: 

• Oxidation of sulfidic materials in the upper portion of the soil profile to form 

non-acid sulfate soil (relic or post active acid sulfate soils). 

• Oxidation of hypersulfidic materials in the lower portion of the soil profile to 

develop sulfuric material that led to the acidification of groundwater. 

• Movement of Fe and S to lower portions of the soil profile where they underwent 

reduction, seasonally. 

 

Micromorphological information was included in soil-regolith models, which helped 

explain mineral transformations that occurred during oxidation and re-flooding scenarios 

in soil profiles containing sulfuric material at Gillman. 
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13.3. Considerations for future work: 

 

13.3.1. Soil morphology 

For the purpose of better describing acid sulfate soil hazard it is proposed that Soil 

Taxonomy consider the inclusion of new Subgroups to classify soils with: 

• Sulfuric horizons that are buried by anthropogenic fill material of a thickness that 

exceeds 1 m, but to a depth of 1.5 or at least 2 m. This is relevant for areas at 

Gillman (e.g. map units 5, 6 and 7) that are being progressively covered by fill 

materials. 

• Sulfidic material (hypersulfidic) that occurs below natural soil or is buried by 

anthropogenic fill material of a thickness that exceeds 1 m, but to a depth of 1.5 

or at least 2 m. This includes sections of Map unit 8. 

• Sulfuric horizons that occur below a layer of permanent water. This situation was 

encountered at the Gillman study site (focus area A), within experimental drains, 

which have become permanently saturated. 

 

For the purpose of improving description of acid sulfate soil hazards using the 

Australian Soil Classification (Isbell 2002), a working group has recently been formed 

to incorporate changes that account for: (i) monosulfidic, hypersulfidic and hyposulfidic 

materials and (ii)  subaqueous soil conditions (Acid Sulfate Soil Classification 

Committee 2010). 

 

Using the Australian Soil Classification (Isbell 2002) profile BG 4 classified as a 

Hypersalic Hydrosol, however to account for soil profiles containing sulfuric material 

below a salic horizon, such as for profile BG 4, it has been recommended to the working 

group (Acid Sulfate Soil Classification Committee 2010) that a new Great Group be 

created (e.g. Sulfuric, Hypersalic Hydrosol). Profile BG 4 was classified as a Sulfuric, 

Hypersalic Hydrosol throughout this thesis. 

 

13.3.2. Acid sulfate soil analysis 

Compare acid base accounting and incubation experimental data to refine procedural 

trigger values for conducting retained acidity measurements, particularly for sandy 

sulfuric material where multiple types of salt efflorescence minerals contain stored or 
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retained acidity. This is recommended because a number of soil layers and horizons 

from profiles at the Gillman study site contained retained acidity values greater than the 

lime treatment trigger value of 18.7 mole H+/t (Ahern et al. 2004). However, according 

to the Acid Sulfate Soil Guidelines (Ahern et al. 2004) these soil samples did not require 

assessment of retained acidity content because they had a pHKCl greater than 4.5. In 

addition, acid base accounting does not account for rate limiting processes such as oxide 

or gypseous coatings of carbonates. 

 

13.3.3. Mapping 

The maps produced for the study sites represent land characteristics for only that period 

of time during which this study was undertaken. Sites with acid sulfate soils frequently 

change due, for example, to land development and natural processes (e.g. sea level rise). 

The maps should therefore be updated periodically (e.g. annually at Gillman and once 

every ten years at St Kilda). Changes are rapid for the Gillman area due to encroaching 

industrial development. Updating the soil-landscape maps could be achieved primarily 

by reviewing most recent aerial photography to manipulate map unit boundaries. Site 

investigations and continued monitoring of soil conditions would be a crucial for 

evaluating environmental change. Some suggested parameters for monitoring are 

presented below. 

 

13.3.4. Redox condition 

Improve redox monitoring systems by incorporation of pH electrodes to measure and 

record real time changes in pH within the soil layers being monitored for Eh. This would 

allow for improved geochemical modelling and data interpretation.  

 

Add video capabilities and telemetry to data loggers so that data can be downloaded 

over the web and live images of the study site can be viewed. This would allow obvious 

environmental (or other) changes at the site to be correlated to data plots (e.g. tidal 

influences or vandalism). 

 

13.3.5. Geochemistry and hydrochemistry 

This work has implications for assessing contaminant movement in other coastal 

landscapes, particularly in areas where contaminant issues are known to occur along the 

South Australian coastline, such as at Port Pirie and Port Augusta (where there is a 
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history of smelting and / or heavy industries located on or adjacent to reclaimed coastal 

land). The bioavailability of these metals has not been investigated in this study, 

however it is assumed that metals such as Cu, Ni, Pb and Zn within strongly reduced 

soils are associated with metal sulfides and are unlikely to be bioavailable in 

environments with neutral to alkaline pH. 

 

Geochemical modelling using a software program (e.g. The Geochemist's Workbench®) 

that takes into account high ionic strengths could improve understanding of the 

geochemical behaviour of contaminants within the Barker Inlet acid sulfate soil 

landscapes. Consideration of the free energy concent would help explain the movement, 

or otherwise, of the various ions through the soil to surface waters. 

 

Linking contaminant types to contaminant sources might be better defined by comparing 

the types and levels of contaminants occurring within near surface soils of exposed areas 

to those in soils covered by fill materials, especially where the date of filling is known. 

This technique would work best where fill material has compressed the original topsoil 

and maintained it in a moist environment that promoted the formation of sulfides within 

the buried topsoil layer. 

 

13.3.6. Mineralogy 

Evaluate rates and thermodynamic properties (dissolution) of the major minerals 

identified in salt efflorescences and their contribution to stored acidity. 

 

Investigate the potential for the wide range of minerals identified in salt efflorescences 

to retain (by binding or inclusion) and release (by dissolution) metals. 

 

Investigate the formation of pyrite and monosulfides under acidic conditions. 

 

Evaluate the effect that hypersaline pore water has on mobility of pyrite oxidation 

products and stability of sulfide minerals.  

 

13.3.7. Micromorphology 

Further investigate the potential for armouring of iron sulfides by the range of minerals 

identified in the salt efflorescences in this study. 
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Analyse in more detail the goethite honeycomb structures observed in goethite-rich 

framboids to delineate the oxidation rate and mineral transformations of pyrite 

oxidation. 

 

13.3.8. Management of acid sulfate soil in the Barker Inlet 

Information presented in this thesis should to be incorporated into a revised version of the 

Acid Sulfate Soil Management Manual for the Barker inlet (Thomas et al. 2004a), such as: 

• Updated acid sulfate soil hazard maps. 

• Add cross sectional diagrams and soil-regolith models to show the vertical 

spatial distribution of acid sulfate soil materials and acidity (components of net 

acidity). 

• Add new acid base accounting data. 

• Test acid sulfate soil mitigation methods (i.e. those described in Table 12-2). 

 

The Coastal Protection Board Policy documents (Coastal Protection Board 2003) and 

educational pamphlet on acid sulfate soils for school groups published in 2001 (Thomas 

2001); Appendix H) should be updated using modern terminologies, acid sulfate soil 

maps, popular cross-sectional diagrams (e.g. Figure 8-4) and information produced in 

this thesis. 

 

13.3.9. Monitoring 

The work presented in this thesis provides a baseline for the state of the St Kilda and 

Gillman study sites from which future changes can be evaluated. The effects of 

movement of groundwater (some of it acidic) within the soil profile during both: (i) 

continued oxidation and (ii) re-wetting scenarios should be further tested and monitored 

for the different soil types. 

 

Monitoring is considered an essential component of acid sulfate soil assessments 

because of the temporal nature of the processes that occur. A robust monitoring strategy 

should be instigated in the Barker Inlet and adjacent wetlands, especially during drought 

and reflooding (re-wetting) phases, when acidity and metal mobilisation are likely to be 

greatest.  
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It is recommended that a follow-up survey of the various focus areas studied in this 

thesis is conducted within 2 years to characterise and identify the changes that are 

occurring. The intention would be to revisit selected sites sampled as part of this project, 

with a focus on sites that contained sulfuric material and that have now been covered 

with fill material as the site is developed. The areas of the Gillman site that are currently 

being reclaimed using waste derived fill can be seen on the most recent aerial 

photograph (June 2010) of the site (refer to Appendix A). The chemical and descriptive 

data collected during this study provide a valuable baseline for assessing the 

environmental implications of future changes to land use, and the success of burial and 

loading (compression) as a remediation method for thick, poorly compressible sulfuric 

materials. 

 

13.3.10. Data Interrogation 

The rigorously collected and well distributed data set generated for Barker Inlet has 

substantial potential for further analysis including: 

• Integrating the data with past and future data sets as a baseline to identify 

changes with time, and then to investigate and explain the processes that cause 

the change. This would then allow predictive scenarios presented in this thesis to 

be tested and better developed. 
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