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Summary 
Acid sulfate soils occur in dynamic and geomorphologically complex inland and coastal 

landscapes that are inherently susceptible to natural and human induced changes. These changes 

can lead to environmental degradation and loss of infrastructure through acidification of soil and 

water and metal mobilisation. This study has identified and described the interrelationships 

between acid sulfate soil materials and their geomorphic environment, composition (pedology, 

mineralogy), redox status and geochemistry, and potential environmental hazards, within a 

complex estuarine landscape in the Barker Inlet region, north of Adelaide, South Australia. 

 

For this purpose two study sites were chosen within Barker Inlet, namely Gillman and St Kilda. 

The Gillman site was chosen because it was known to have problem acid sulfate soils with 

sulfuric material and was ideally suited for comparative research because it contained “paired 

sites” with intertidal soils abutting an area that had been reclaimed for industrial development. 

The reclaimed land at Gillman was non-tidal due to the construction of bund walls 75 years ago. 

An intertidal site at St Kilda was selected as a control site and to assess the influence of tidal 

variations on soil properties. 

 

The aims of this study were to: 

(i) conduct detailed field and laboratory examinations to characterise the range of soil types 

occurring across the tidal and disturbed (formerly tidal) landscapes, 

(ii)  construct detailed soil maps to relate the data spatially to hazards associated with soil types 

and landscape features within the study sites, and 

(iii)  construct descriptive and predictive conceptual soil-regolith models to validate and increase 

understanding of environmental degradation processes occurring within these complex acid 

sulfate soil landscapes. 

 

A review of the natural history and previous research work was conducted in conjunction with a 

preliminary soil survey of the Gillman and St Kilda study sites and these indicated that areas most 

vulnerable to contamination and acidification were geomorphically controlled. Detailed soil 

surveys were then conducted to target the typical landscape features at the study sites (i.e. focus 

areas). Detailed acid sulfate soil characterisation and mapping of soil types within the focus areas 

allowed surface cover types from aerial photography to be used as a surrogate for accurately 

mapping acid sulfate soil types. Soil maps were produced, in this manner, covering the two study 

sites. For management purposes, this enabled map units to be assigned descriptive properties that 

included ‘hazard classes’ and ‘acid sulfate soil treatment categories’. 
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New, in-situ soil redox monitoring methods were developed to reliably measure Eh in 14 selected 

soil profiles over extended periods of time within contrasting tidal and non-tidal environments. 

Redox data loggers continuously recorded redox measurements at depth increments ranging from 

+10 cm (surface water) to 2 m below the soil surface.  Results showed that significant changes in 

redox status occurred at sub-hourly timeframes in both tidal and non-tidal soils. Tidal 

environments were characterised by large, cyclic fluctuations in redox conditions, which were 

proportional to the timing and strength of tidal currents. When freely draining mangrove soils 

were exposed at low tide, redox conditions generally became more oxidising. However, soil that 

remained submerged in tidal creeks during low tide become more reducing due to less movement 

and mixing of surface water. Storm events and seasonal variations influenced soil and water redox 

conditions for non-tidal environments (i.e. reclaimed land at the Gillman site). Redox conditions 

within some sulfuric materials alternated seasonally between oxidising and strongly reducing, 

causing oxidation and subsequent re-formation of pyrite. Storm-related disturbance of subaqueous 

soils at Gillman initially caused redox potential (Eh) in the water column to decrease, due to the 

dispersion of monosulfidic material. 

 

Developing the ability to link soil and water contaminant issues to soil map units was particularly 

important for the non-tidal area at Gillman because elevated concentrations of potentially toxic 

elements (As, Ba, Co, Cu, Pb, V and Zn) were identified and these were related to historic land 

use (industrial) and landforms. Results indicated that trace metals were concentrated in surface 

soil layers of the more elevated areas containing sulfuric material as well as in low lying areas 

containing monosulfidic material. Trace metals were more concentrated at depth in soil profiles at 

Gillman that were subjected to seasonal flooding. This is due to redox conditions in the upper 

portion of the soil profile alternating seasonally from oxidising to reducing, and causing trace 

metals to accumulate at the summer redox front where iron sulfides remain stable as well as form 

during wet months. Acidic soil conditions promoted migration down the profile of trace elements, 

which were scavenged by salt efflorescences that formed on soil surfaces near the water table. 

Dissolution of salt efflorescences following rain events negatively impacted drainage water 

quality, mainly by release of Al, Fe and acidity. 

 

Salt efflorescence mineralogy was a result of characteristic Mediterranean type climate, 

hydrogeology, saline seepages, and salt crusting formed in drains above sandy sulfuric, 

hypersulfidic and hyposulfidic materials. This study documented the first occurrence of 

sideronatrite [Na2Fe(SO4)2(OH).3H2O], tamarugite [NaAl(SO4)2.6H2O] and alunogen in coastal 

acid sulfate soils in Australia. They formed together with starkeyite, pentahydrite, gypsum and 

some halite on the exposed face of soil pits and drains at Gillman. These Fe/Al oxyhydroxysulfate 

and oxyhydroxide minerals are indicators of very acidic soil conditions (i.e. indicate the presence 
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or former presence of oxidised pyrite), and as such their identification provides an important 

environmental indicator of acid sulfate soil processes. Descriptive and predictive soil regolith 

models were constructed to describe and explain the origin of these minerals at the Gillman study 

site. The models were tested by constructing experimental drains through sulfuric material at the 

Gillman site. 

 

Micromorphological studies helped to identify features indicative of contemporary and relic 

processes within acid sulfate soils and verify soil characteristics within tidal and non-tidal 

environments. The results indicated that micro-environments of pyrite oxidation can control bulk 

soil pH, particularly in sandy soil profiles with little buffering capacity. The varied morphology 

and composition of pyrite crystals and framboids, and goethite pseudomorphs after pyrite, were 

used as palaeo-indicators of the soil physio-chemical conditions. The morphology and 

composition of pyrite oxidation products indicated oxidation rates and carbonate availability. 

Microanalysis of sulfidic materials and sulfide oxidation products (including salt efflorescences) 

assisted in identifying migration pathways of trace elements through the landscape. The 

preservation of pyrite crystals within oxidising environments was identified to occur by armouring 

with clay coatings and by pyrite framboids being overgrown by (or included within) gypsum and 

halite crystals. Armouring of pyrite in soils has implications for the characterisation of acid sulfate 

soil types using ageing experiments, as well as for hazard assessment and management, by 

underestimating the potential sulfidic acidity of some soil materials. 

 

The development of descriptive and predictive conceptual soil-regolith models was based on the 

integration of all results to provide a holistic understanding of the coastal landscape and the 

impact of acid sulfate soils on the environment. The information and mapping techniques 

developed here were used to construct local and regional scale acid sulfate soil hazard maps. This 

information was used in the production of Coastal Protection Board policy documents and 

educational material underpinning risk-based acid sulfate soil management options for coastal 

developments in South Australia, and was specifically integrated into new master development 

plans for the Gillman area. 
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Figure 3-2 The Gillman study site is predominately vacant, consisting open grasslands, samphire shrublands 

and salt and sand flats. It is bordered by urban and industrial development to the south and abuts tidal 

mangrove woodland along North Arm. The Gillman area has been progressively reclaimed from the 

intertidal and supratidal environments of Barker Inlet since the 1930s by construction of a series of bund 
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Figure 3-3 The St Kilda study site. An old bund wall runs north-south through the site and dissects the 

intertidal zone. It was built in 1890 but was breached and abandoned after 1914, allowing the tide to 

once again flood the reclaimed area to its east. A new bund wall and salt evaporation ponds were 
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Figure 3-4 Pre-European coastal environments of the Barker Inlet estuary and the 2-4 m high bund walls 

that were progressively constructed over the last 100 years to exclude tidal waters and reclaim intertidal 
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Figure 3-7. Aerial photograph of the St Kilda study site with major topographic features highlighted. The 

topography of the site is very much related to vegetation type, corresponding to tidal influence. Seagrass 

and mudflats occur in the lowest lying areas to the west of the site and are generally between -1.0 and 0.0 

m AHD, mangrove trees cover the majority of the site where elevation ranges between 0.0 and 1.0 m 

AHD, while samphire vegetation occurs along shell-grit mounds that have less tidal influence, ranging 

1.0 to 1.5 m AHD. Levee banks form the highest land features at the study site, being between 2 and 3 m 

AHD............................................................................................................................................................36 

Figure 3-8 Potentiometric surface and flow direction of surface aquifers at Gillman (Belperio 1993b)........40 

Figure 4-1 Generalised flow diagram of field procedures used for soil sample collection and storage (green 

boxes), sample preparation (blue boxes), and analytical methods (orange boxes) applied. Abbreviations 

used: GPS – Global Positioning System, ABA – acid base accounting using the Chromium reducible 

Sulfur (SCR) suite (Ahern et al. 2004), EC – electrical conductivity, pHf – field measured soil pH (paste), 

pHW – soil pH measured in 1:1 solution in water, pHOX – soil pH after treatment with hydrogen peroxide, 

pHIncubation – soil pH after ageing under moist conditions in a chip tray for at least 8 weeks, Total S% and 

Total C% by LecoTM, Organic C%, CO3 as CaCO3%, XRD and XRF. ......................................................48 

Figure 5-1 St Kilda study site. Focus area – A is located close to the seaward extent of the mangrove 

woodland and transects a well defined tidal creek. Focus area B – is located on a topographical high and 

transects from mangrove woodland to a bare patch on the shell based chenier ridge.  Focus area – C is 

located near the upper extent of the intertidal zone and transects samphire marsh, mangrove woodland 

and permanently inundated tidal creek soils.  Soil profile numbers refer to Table 5-1..............................63 

Figure 5-2 Map (1) showing map units in Focus area A and location of toposequence transect A-A’ with soil 

profiles BSK 4 and BSK 5. The St Kilda boardwalk is indicated by the white dotted line. Landscape photo 

(2) showing the relative positions of soil profiles along the toposequence transect and contrasts between 
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Figure 5-3 Descriptive soil-regolith toposequence model (cross section A-A’ as shown Figure 5-3) indicating 

map units and position of representative soil profiles with colour photograph and average water table 

depths during low and high tide. The dotted line indicates the shape of the filled tidal creek depression at 

profile BSK 5. Refer to Table 5-3 and Table 5-4 for soil profile descriptions............................................66 

Figure 5-4 Down profile soil chemistry and acid sulfate soil characteristics of profile BSK 4. All soils 
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Figure 5-6 Map (1) showing map units in Focus area B and the location of toposequence transect B-B’ with 

soil profiles BSK 1 and BSK 3. The St Kilda boardwalk is indicated by the white dotted line. Landscape 

photo (2) shows the relative positions of soil profiles along the toposequence transect and contrasts 

between the map units.................................................................................................................................78 

Figure 5-7 Descriptive soil-regolith toposequence model (cross section B-B’ as shown in Figure 5-6) 

indicating map units and position of representative soil profiles with colour photograph and average 
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Figure 5-9 (1) Figure showing the map units in Focus area C and the location of toposequence transect C-C’ 

and soil profiles BSK 6, BSK 7 and BSK 8. The St Kilda boardwalk, which also runs along the top of the 

old bund wall, illustrated as map unit 8 (Artificially filled areas and embankments), is indicated by the 

white dotted line. (2) Landscape photo showing the relative positions of soil profiles along the 

toposequence transect and contrasts between the map units. A redox data logger was located in the white 

box on top of the grey wooden bird-hide and recorded soil redox conditions at depth increments within 

these three soil profiles...............................................................................................................................86 

Figure 5-10 Descriptive soil-regolith toposequence model (cross section C-C’ as shown in figure 5-9) 

indicating map units and position of representative soil profiles with colour photograph and average 
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Figure 5-11 Down profile soil chemistry and acid sulfate soil characteristics of profile BSK 6.....................90 

Figure 6-1 Gillman study site indicating localities of four focus study areas. Focus area – A is located in the 

former supratidal zone and transects from a topographical high (surficial geomorphology is sandy 

shoreface facies), to topographically low surficial geomorphology includes supratidal marsh and back 

barrier sands). Focus area – B transects across a well defined stranded tidal creek that is seasonally 

inundated. Focus area – C transects the 3.5 m high bund wall, from former (drained) intertidal zone to 

the undisturbed intertidal zone.  Focus area – D transects from exposed former intertidal zone 

(dominated by mangrove peats) to intertidal soils which have been buried (re-claimed) using imported fill 

material. The small map and legend on the side bar indicate general landscape characteristics for the 
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Figure 6-2 (1) Detailed aerial photograph of focus area A showing the location of soil profiles and map 

units; (2) oblique photograph showing general landscape characteristics of focus area A.......................98 

Figure 6-3 Descriptive soil-regolith toposequence model (cross section A-A’ shown in Figure 6-2) indicating 

map units, position of representative soil profiles with colour photographs and average water table depth 
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Figure 6-9 Descriptive soil-regolith toposequence model (cross section B-B’ shown in Figure 6-8) indicating 

map units, position of representative soil profiles with colour photographs and average water table depth. 
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Figure 6-10 Aerial photo of focus area C (1) with a transparent map indicating map units and the position of 

representative soil profiles along transect C’-C, from an intertidal zone covered by thick samphire and 
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bund wall, which was constructed in 1935. Landscape photo (2) shows the position of the soil profiles 
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Figure 6-11 Descriptive soil-regolith toposequence model (cross section C-C’ see Figure 6-10) indicating 

map units, position and photographs of representative soil profiles with colour photographs of each 

profile, average water table depth and groundwater flow direction. Full descriptions of profiles are 
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Figure 7-8 Kriged κ data overlaid on aerial photography for Gillman Focus area A. Dots show κ data 

collections points, red dots indicate type soil profiles, and the black lines demarcate the map units.  Red 

lines outline drains and mounds. Note that the kriged data set is only reliable for the area between data 
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Figure 7-9 Kriged EM38 (horizontal dipole) data overlaid on aerial photography for Gillman Focus area A 

(depth of measurement was approximately 0.75 m). Dots show data collections points, red dots indicate 

type soil profiles and the black lines demarcate map units described previously. Red lines outline drains 

and mounds. Units are in dS/m. Note that the kriged data-set is only reliable for the area between data 
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Figure 7-10 Kriged EM38 (vertical dipole) data overlaid on aerial photography for Gillman Focus area A 

(depth of measurement was approximately 1.5 m). Dots show data collections points, red dots indicate 

type soil profiles and the black lines demarcate map units described previously.  Red lines outline drains 

and mounds. Units are in dS/m. Note that the kriged data-set is only reliable for the area between data 
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Figure 8-1 (a) photograph and schematic diagram of a Pt electrode.  The red copper wire attaches to a data 

logger.  (b) Data logger set up for redox monitoring showing connection to a power supply, Ionode IJ14 

(Ag/AgCl) reference electrode, two precision thermistors and one Pt electrode. ....................................191 

Figure 8-2 (a) Schematic illustration toposequence cross-section showing an example redox data logger 

system installed in the field for automatic monitoring of redox conditions at the following two locations: 

(i) 8 depth intervals in a soil profile and (ii) at 8 depth increments through the water column and across 

the water-sediment interface in a tidal creek. (b) Two data loggers (located in the upper, water tight 

drum) were connected to a 12 Volt battery (located in the lower drum) that was kept charged by a solar 

panel. This data logger system was deployed at St Kilda where it was secured in the canopy of a 

mangrove tree, above the high tide mark (c). Redox data was downloaded to a computer every 2 to 3 
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Figure 8-3  The Eh-pH ranges found in soil environments at 25oC and one atmosphere pressure, showing the 

following redox “classes”, divided by the blue dotted lines: (i) acidic-oxidising, (ii)  acidic-reducing, (iii)  

basic-oxidising, and (iv) basic-reducing (adapted from Krauskopf (1967) and Zhi-Guang (1985).  The red 

dotted line shows the limits of the natural environment in terms of pH and oxidation-reduction potentials, 

described by Baas Becking et al. (1960)...................................................................................................194 

Figure 8-4 Schematic cross-section of the St Kilda study site showing the local geomorphology, tidal extent 

and the location of soil profiles within Focus areas. Redox monitoring was conducted at profiles BSK 4 

and 5 within Focus area A, and at profiles BSK 6, 7 and 8 within Focus area C. ...................................195 

Figure 8-5 (a) schematic cross-section of St Kilda Focus area A showing the location and relative depth of 

Pt electrodes and redox data logger. The black lines indicate the location soil profiles and the coloured 

marks represent platinum electrode tips set at specific depth intervals, with colours being applicable to 

the Eh vs time graphs shown in the figure below. (b) photograph showing redox monitoring sites and 

equipment installed at the St Kilda Focus area A.....................................................................................196 

Figure 8-6 Intertidal soils with strong tidal flushing at St Kilda Focus area A. Time (over two months) versus 

measurements of: (a) tidal fluctuations showing the surface elevation (0.3 m AHD) for soil profile (BSK 
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5) in an eroded tidal creek and the surface elevation (0.5 m AHD) for soil profile (BSK 4) within 

intertidal mangrove woodland.  Note that four dodge tides occurred during the monitoring period. Soil 

redox potentials for 8 depth intervals measured in profile BSK 5 (b) and eight depth intervals measured 

in profile BSK 4 (c). ..................................................................................................................................198 

Figure 8-7 (a) range of daily air temperature (light grey shaded area) and soil temperature at 10 cm depth 

(blue line), (b) daily climatic water balance indicating rainfall (dark grey) and evaporation (light grey).
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Figure 8-8 Plot of mean redox (red dots) measurement (mV) versus depth (cm) for soil profiles BSK 4 and 

BSK 5.  Eh (mV SHE) is displayed on the bottom axis, with error bars showing the range of 

measurements either side of the mean.  Depth is shown in centimetres from the surface (left axis) and as 

AHD (right axis).  The horizontal blue dotted line indicates surface water height at low tide.  The green 

lines show mean field measured soil pH (pHf). ........................................................................................199 

Figure 8-9 (a) schematic cross-section of St Kilda Focus area C showing the location of soil profiles and 

position of and relative depth of each Pt electrodes within the profiles. The colours representing the 

platinum electrode tips are applicable to the Eh vs time graphs shown in the figure below. (b) photograph 

showing the very portable redox data logger and location of profiles. (c), (d) and (e) are photographs of 

Pt electrodes installed at sites (c) BSK 8, (d) BSK 7 and (e) BSK 6.........................................................200 

Figure 8-10 (a) tidal fluctuations and surface elevations of 3 intertidal soils profiles with small tidal 

influence at St Kilda Focus area C. Time (20 days) versus measurement of: (b) soil redox potentials for 4 

depth intervals measured in profile BSK 6 covered by samphire vegetation, (c) BSK 7 (four electrodes) 

covered by mangrove vegetation and (e) 5 electrode depths within profile BSK 8, a subaqueous soil 

located in a tidal creek. (d) variability in redox conditions within the 0-2 cm depth increment of 
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Figure 8-11 (a) daily climatic water balance indicating rainfall (dark grey and black) and evaporation (light 

grey). (b) range of daily air temperature (light grey area), soil temperature at 10 cm depth (red line) and 

40 cm depth (blue line). ............................................................................................................................204 

Figure 8-12 Plot of mean redox (red dots) measurement (mV) versus depth (cm) for soil profiles BSK 6, BSK 

7 and BSK 8.  Error bars show the range of Eh (bottom axis) measurements either side of the mean.  

Depth is shown in centimetres from the surface (left axis) and as AHD (right axis). The blue dotted line at 

40 cm AHD indicates the minimum water height above profile BSK 8. The green lines show mean field 
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Figure 8-13 Aerial photograph of Gillman Focus area C.  Soil profiles BG 20 and BG 21 are located in the 

undisturbed intertidal zone.  Soil profiles BG 28 and BG 22.1 are located behind a bund wall that was 

constructed in 1935. The bund wall excluded tidal influences to this former intertidal zone. North Arm 
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Figure 8-14 Intertidal soils, Gillman Focus area C. (a) tidal fluctuations showing the surface elevation (1.6 

m AHD) of the intertidal samphire soil profile (BG 20) and the surface elevation (1.2 m AHD) of 
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(b) BG 20 (5 cm (blue), 45 cm (purple), 85 cm (green) and 125 cm (cyan)), and (c) 4 depths measured in 

profile BG 21 (5 cm (blue), 10 cm (purple), 15 cm (green) and 20 cm (cyan)). .......................................208 
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Figure 8-15 Time versus measurements of: (a) air temperature range (light grey shaded area) and soil 

temperature recorded at 20 cm depth in soil profile BG 21. (b) water balance showing evaporation 

potential (light grey shaded area) and rainfall (dark grey and black areas). ..........................................209 

Figure 8-16 Plot of mean redox (red dots) measurement (mV) versus depth (cm) for soil profiles BG20 and 

BG 21.  Error bars show the range of Eh (bottom axis) measurements either side of the mean.  Depth is 

shown in centimetres from the surface (left axis) and as AHD (right axis).  The green lines show mean 
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Figure 8-17 Non-tidal soils, Gillman Focus area C. (a) surface elevations (solid lines) for BG 22.1 (1.2 m 

AHD) and profile BG 28 (0.6 m AHD) showing the former extent of tidal influence. Soil redox potentials 

for 4 depth intervals measured in profile BG 28 (b) and 4 depth intervals measured in profile BG 22.1 (c). 

Depth intervals were at 5 cm (blue), 45 cm (purple), 85 cm (green) and 125 cm (cyan) for both profiles. 

Time versus measurements of: (d) air temperature range (light grey shaded area) and soil temperature 

(brown line) at 15 cm depth, and (e) water balance showing evaporation (light grey area) and rainfall 

(dark grey areas). Note that 10 ml of rain fell on the 16th to 18th of September 2002, prior to the 

monitoring period. ....................................................................................................................................213 

Figure 8-18 Plot of mean redox (red dots) measurement (mV) versus depth (cm) for soil profiles BG 28 and 

BG 22.1. Error bars show the range of Eh (bottom axis) measurements either side of the mean.  Depth is 

shown in centimetres from the surface (left axis) and as AHD (right axis). The green lines show mean 

field measured soil pH (pHf). The blue dotted lines indicate watertable height.......................................214 

Figure 8-19 (a) platinum electrodes being positioned for installation in soil profile BG 11 (a). Pt electrodes 

were pushed horizontally into the soil layers in order to minimise cross contamination from the 

overlaying soil materials. (b) the Ag/AgCl reference electrode was placed at the base of the profile in 

moist soil...................................................................................................................................................215 

Figure 8-20 Non-tidal soil profile BG 11, with a surface elevation of 2.5 m AHD. Water table was at 160 cm 

depth during the monitoring period. Time versus measurements of: (a) air temperature range (light grey 

shaded area) and soil temperature (brown line at 10 cm depth) and the (blue line at 40 cm depth). (d) 

water balance showing evaporation (light grey area) and rainfall (dark grey and black areas), (c) soil 

redox potentials for 12 depth intervals measured in profile BG 11. Depth intervals were 10 cm (blue), 30 

cm (pink), 40 cm (yellow), 50 cm (cyan), 65 cm (red), 70 cm (green), 110 cm (dark blue), 150 cm 

(purple), 160 cm (dark yellow), 170 cm (dark red), 190 cm (dark cyan) and 200 cm (dark green). ........217 

Figure 8-21 Plot of mean redox measurement (mV) versus depth (cm) for soil profiles BG 11.  Error bars 

show the range of Eh (bottom axis) measurements either side of the mean. Depth is shown in centimetres 

from the surface (left axis) and as AHD (right axis).  The green line shows soil pHf measurements.  The 

blue dotted lines at 160 and 170 cm depth indicate the increase in watertable height during the 

monitoring period. Jarosite mottles are common between 50 cm to 190 cm depths. ...............................218 

Figure 8-22 Photo (winter 2003) of the drain transecting sulfuric and sulfidic materials at Gillman Focus 

area A.  Soil profile BG 15 is located on the left (western) wall of the drain. The drain was excavated in 

August 2002 as part of a lime slot remediation trial.  The water in the drain had a pH that ranged 

between 2 and 3. Salt efflorescences (with pH values ranging from 0.8 to 3) precipitated on drain walls, 
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particularly during summer months and were washed away after heavy rains. The drain runs north-west, 

positioning profile BG 15 in direct sunlight for the greater portion of the day........................................219 

Figure 8-23 Non-tidal soil profile BG 15, with a surface elevation of 2.05 mAHD.  Time versus 

measurements of: (a) air temperature range (light grey shaded area) and soil temperature (brown line at 

20 cm depth). (d) water balance showing evaporation (light grey area) and rainfall (dark grey and black 

areas), (c) soil redox potentials for 8 depth intervals measured in profile BG 15.  Depth intervals were 80 

cm (dark blue), 90 cm (purple) and 150 cm (dark yellow). ......................................................................221 

Figure 8-24 Plot of mean redox measurement (mV) versus depth (cm) for soil profiles BG 15.  Error bars 

show the range of Eh (bottom axis) measurements either side of the mean.  Depth is shown in centimetres 

from the surface (left axis) and as AHD (right axis).  The green line shows soil pHf measurements.  The 

blue dotted line at 45 cm AHD indicates the watertable height.  Redox status: oxidising (> 400 mV); 

weakly reducing (400 to 200 mV); moderately reducing (200 to -100 mV); strongly reducing (< -100 

mV).  Photo (summer 2004) of profile BG 15 is located on the side of a drainage channel that was 

excavated 12 months prior to the monitoring period.  A pole containing 7 Pt electrodes was inserted 

vertically into the sloping face of the drain.  Salt efflorescence (with pHs ranging from 0.8 to 3) 

precipitated on the drain walls, particularly during summer months and were washed away after heavy 

rains..........................................................................................................................................................222 

Figure 8-25 Time versus measurements of: (a) air temperature range (light grey shaded area) and soil 

temperature (brown line at 10 cm depth within soil sediment); (d) water balance showing evaporation 

(light grey area) and rainfall (dark grey and black areas); (c) soil redox potentials for 5 depth intervals 

measured within subaqueous soil profile BG P 5 and 3 depth intervals within the overlaying water 

column (storm water ponding basin).  Redox measurements were recorded at 1 cm (cyan), 20 cm (red), 

22 (green), cm 40 cm (dark blue) and 60 cm (black) below the sediment-water interface., and at 20 cm 

(yellow), 40 cm (pink) and 60 cm (blue) above the sediment-water interface. Water depth was 65 cm...225 

Figure 8-26 Plot of mean redox measurement (mV) versus depth (cm) above and below the sediment-water 

interface for soil profile BG P 5. Error bars show the range of Eh (bottom axis) measurements either side 

of the mean. Electrode depth is shown in centimetres from the surface (left axis) and as AHD (right axis). 

The green line shows soil pH measurements (field pH). The blue dotted line at 95 cm AHD indicates the 

water height. The red dotted line at 30 cm AHD indicates the elevation of the sediment-water interface.

..................................................................................................................................................................226 

Figure 8-27 Descriptive soil-regolith toposequence model of St Kilda focus area ‘A’ showing changes in 

redox classes from high tide (hyposulfidic subaqueous organic soil) to low tide (hyposulfidic organic 

soil). At low tide soils become more oxidising near the surface (i.e. change from strongly reducing to 

moderately reducing). However, at depth in the tidal creek channel (BSK 5) deeper soils become more 

reduced at low tide. At high tide there is more movement and mixing of oxygenated water in the tidal 

creek depression (BSK 5) with sapric materials compared with the adjacent mangrove soils (BSK 4) with 

hemic materials. During low tide the water drains more freely from the mangrove soils compared to the 

tidal creek, where the deeper soil layers become strongly reducing as there is less water movement and 
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Figure 8-28 Descriptive soil-regolith toposequence model of St Kilda focus area ‘B’ and ‘C’ showing 

changes in redox classes from high tide to low tide. In focus area ‘B’ soils change from hyposulfidic 

subaqueous organic soil with strongly reducing redox conditions at high tide to hyposulfidic organic soils 

with moderately to weakly reducing conditions at low tide. In focus area ‘C’ soils under samphire and 

mangrove vegetation change from hypersulfidic subaqueous organic soils at high tide to hypersulfidic 

organic soils at low tide, and become slightly more oxidising in the process. In the tidal creek channel 

(BSK 8) soils remain as hyposulfidic subaqueous organic soils with monosulfidic materials during high 

tide and low tide situations. However deeper soils within the tidal creek become more reduced at low tide 

as there is less water movement and mixing occurring. ...........................................................................230 

Figure 8-29 Descriptive soil-regolith toposequence model of the Gillman study site, specifically focus areas 

‘A’ and ‘C’, showing changes in redox conditions under modified hydromorphic (focus areas ‘A’) and 

tidal (focus areas ‘C’) conditions. Gillman focus area ‘A’ contained sulfuric sandy soil materials that 

were dominated by strongly reducing conditions during wet winter months. The soils redox conditions 

became significantly more oxidising following excavation of a drain within the sulfuric materials. Tidal 

influences at Gillman focus area C change from hyposulfidic subaqueous organic soil dominated by 

strongly reducing redox conditions at high tide to hyposulfidic organic soils dominated by moderately 

reducing conditions at low tide.................................................................................................................232 

Figure 8-30 Idealised Eh versus pH diagram showing the redox “classes”, divided by blue dotted lines 

(adapted from Krauskopf (1967) and Zhi-Guang (1985)). Mean Eh vs pH of intertidal soil profiles are 

plotted as square points and non tidal soil profiles are plotted as circular points. Red dotted line indicates 

the constraint line for natural environments (after Baas Becking et al. (1960)). Soil profiles are colour 
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Figure 8-31 Idealised Eh/pH diagram for the Fe-S-O system showing mineral phases that might be expected 

to be stable under various conditions (after van Breemen (1988)). Red dashed line indicates the 

constraint line for natural environments (after Baas Becking et al. (1960)). Mean Eh/pH of intertidal soil 

profiles (square points) and non tidal soil profiles (round points) represent measurements taken in soils 
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on drain walls through element concentration at the surface by capillary action and evaporation and (ii) 

winter with dissolution of most salt efflorescences and subsequent flow into the drain water. Salt 

efflorescences are dominated by the widespread occurrences of goethite, jarosite, sideronatrite, 
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gypsum and halite. Salt morphologies range from thin, powdery, very transient efflorescences to thicker, 

more persistent, soil-cementing crusts. The salt crusts form by the upward / sideways wicking of Na, Mg, 

Cl and SO4 containing groundwaters and their subsequent concentration by surface evaporation. These 

Fe/Al oxyhydroxysulfate and oxyhydroxide minerals are indicators of very acidic soil conditions caused 

by pyrite oxidation and have the ability to accumulate trace elements by evaporative concentration of 

pore waters, or via erosion of surface soil layers. Rain events, during winter, cause water levels to rise 

and salts to dissolve, releasing acidity and trace elements to the drain water. The downward movement of 

sulfide oxidation products during summer may also contribute to the very high sulfide contents measured 
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impregnation with epoxy resin, the blocks were cut to size and one surface polished. (e) a thin section was 

produced from an area on each block (e.g. indicated by the yellow square on (d)) and viewed with a 

microscope under plane polarised light (PPL) and crossed-polars (XPL). The uncovered thin section 
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Figure 11-2 Profile 600. Thin section photographs using; (a) plane polarised light, (b) reflected light and (c 

and d) back-scatter electron (BSE) photomicrographs of polished resin-impregnated blocks from profile 

600, horizon Oe2 (12-32 cm). (a) hemic material with blackened and red phlobaphene-rich tissue 

residues in a groundmass of yellow amorphous polymorphic organic matter. (b) same field of view as 

photograph (a). (c) enlargement of  area (c) in image (a) showing 3 tightly packed pyrite framboids 

within porous blackened organic matter. (d) enlargement of area (d) in image (c) showing pyrite 

framboids. Two of the framboids are composed of cubic pyrite crystals while the third framboid (right) is 
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The field of view indicates scale and is 2.1 mm across in (a) and (b); 500µm across in (c) and 75µm 
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photograph (a). (c) enlargement of area (c) in image (a) showing a cluster of loosely packed pyrite 
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matter and pyrite framboids in groundmass. (e) enlargement of area (e) in image (c) showing a large 

cluster of loosely packed pyrite framboids within the groundmass. (f) enlargement of area (f) in image (a) 
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shows pyrite framboids scattered throughout the groundmass. (BO: black organic matter, RO: red 

organic matter, Py: pyrite, Gy: gypsum). The field of view indicates scale and is 1500µm across in (a) 

and (b); 500µm across in (c); 150µm across in (d); 300µm across in (e); 800µm across in (f)..............337 
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Figure 11-11 Thin section photographs from soil profile BG 11, horizon 4Bjg3 using; (a) plane polarised 

light and (b) reflected light. (a) circular cross section of a pore (root channel) surrounded by Fe oxide 
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