Flasher calibration of the T1 and T2 CANGAROO telescopes and TeV gamma ray observation of Markarian 421 and EXO 055625-3838.6 BL Lacertae blazars

David Swaby

This thesis is submitted as a Master of Science (Research) to the School of Chemistry and Physics (High Energy Astrophysics), University of Adelaide

> Supervisor: Prof. Roger Clay

Adelaide, December 2010

Contents

bstra	\mathbf{ct}		v
eclara	ation		vi
cknov	wledgn	nents	vii
reface	9		viii
st of	abbre	viations, units and symbols: Table 1 of 2	ix
st of	abbre	viations, units and symbols: Table 2 of 2	xi
Intr	oducti	on	2
1.1	Strong	ly ionizing radiation from space	2
1.2	A brie	f history of Gamma Ray Astronomy	5
	1.2.1	X-ray and Gamma Ray satellite detectors	5
	1.2.2	A history of ground based gamma ray observatories	10
TeV	gamn	na ray blazar emission and imaging of Čerenkov events	14
2.1	Čerenl	kov imaging of atmospheric showers	14
	2.1.1	$\check{\mathrm{C}}\mathrm{erenkov}\ \mathrm{radiation}\ \ldots\ \ldots\$	16
	2.1.2	Hillas parameters for gamma ray showers	19
2.2	Blazar	electronic emission models $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	21
	2.2.1	Inverse-Compton scattering emission	23
	2.2.2	Synchrotron radiation	25
	2.2.3	Synchrotron Self Compton (SSC) emission	28
	eclar: cknow ceface st of Intr 1.1 1.2 TeV 2.1	reface st of abbrev st of abbrev Introducti 1.1 Strong 1.2 A brie 1.2.1 1.2.2 TeV gamm 2.1 Čerenk 2.1.1 2.1.2 2.2 Blazar 2.2.1 2.2.2	eclaration cknowledgments reface st of abbreviations, units and symbols: Table 1 of 2 st of abbreviations, units and symbols: Table 2 of 2 Introduction 1.1 Strongly ionizing radiation from space 1.2 A brief history of Gamma Ray Astronomy 1.2.1 X-ray and Gamma Ray satellite detectors 1.2.2 A history of ground based gamma ray observatories 2.1 Čerenkov imaging of atmospheric showers 2.1.1 Čerenkov radiation 2.1.2 Hillas parameters for gamma ray showers 2.2 Blazar electronic emission models 2.2.1 Inverse-Compton scattering emission

		2.2.4	Doppler boosting \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	32
	2.3	Blazai	hadronic emission models	34
	2.4	Extrag	galactic Background Light (EBL) absorption	37
		2.4.1	TeV gamma ray attenuation due to pair production \ldots .	38
		2.4.2	Extragalactic background light prediction models	39
		2.4.3	The effect of the EBL on the spectrum of Markarian 421 $\ .$	42
3	The	e CAN	GAROO Imaging Atmospheric Čerenkov Telescopes	47
	3.1	The C	ANGAROO-II 10 metre Imaging Atmospheric Čerenkov Telescope	47
		3.1.1	The CANGAROO-II dish and mirrors	47
		3.1.2	The CANGAROO-II camera	51
		3.1.3	The CANGAROO-II electronics modules	56
	3.2	The C	ANGAROO-III 10 metre Imaging Atmospheric Čerenkov Telescopes	57
		3.2.1	The CANGAROO-III project	57
		3.2.2	The CANGAROO-III camera	59
		3.2.3	CANGAROO-III photomultiplier tube specifications	62
		3.2.4	Winston light guides	65
		3.2.5	Crosstalk effects	67
		3.2.6	The T1 and T2 electronic data acquisition system \ldots	68
		3.2.7	Stereoscopic data acquisition	78
4	$\mathrm{Th}\epsilon$	e flashe	er calibration experiment	80
	4.1	The c	ustom-made flasher apparatus	80
		4.1.1	Description of the flasher apparatus	80
		4.1.2	Seasonal flasher calibration	84
		4.1.3	Flasher apparatus LED emitters	85
	4.2	Calibr	ation of the flasher apparatus	87
		4.2.1	Description of the PIN diode monitor apparatus	87
		4.2.2	Measurement of the flasher output using the PIN diode monitor	89
5	Flas	sher ca	libration: Analysis and results	97
	5.1	Flashe	er field measurements and data file calibrations	97
		5.1.1	Introduction	97
		5.1.2	T1 discriminator settings for flasher calibration	100

		5.1.3	Background light affecting ADC count	101
		5.1.4	Flasher calibration procedure	104
		5.1.5	LED flat fielding	106
		5.1.6	ADC pedestals	110
		5.1.7	Pixels corrected in the flasher image via "bad channel" correction	112
	5.2	T1 flas	sher calibration analysis	114
		5.2.1	Anomalous diffraction effects in the flasher image	114
		5.2.2	Flasher image movement in the camera field of view	123
		5.2.3	Size of the flasher image	131
		5.2.4	Measurement of the flasher output using a single photomultiplier	
			tube detector \ldots	134
		5.2.5	Earlier abandoned attempts at pixel correction in the T1 camera	135
	5.3	T2 flas	sher calibration analysis	140
		5.3.1	T2 flasher calibration introduction	140
		5.3.2	T2 cross-correlation analysis of the flasher image	143
6	Atte	empt a	t cosmic ray zenith angle calibration of the T1 telescope	151
	6.1	Introd	uction	151
	6.2	Zenith	compie new collibration regults	150
7			cosmic ray calibration results	152
	Gan		ay source analysis of the Markarian 421 and EXO 055625-	
		nma ra	ay source analysis of the Markarian 421 and EXO 055625-	
		nma ra 8.6 BL	ay source analysis of the Markarian 421 and EXO 055625-	
	3838	nma ra 8.6 BL	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars	156
	3838	nma ra 8.6 BL Marka	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156
	3838	n ma ra 8.6 BL Marka: 7.1.1	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 156
	3838	nma ra 8.6 BL Marka 7.1.1 7.1.2	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 156 157
	3838	nma ra 8.6 BL Marka 7.1.1 7.1.2 7.1.3 7.1.4	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 156 157 161
	3838 7.1	nma ra 8.6 BL Marka 7.1.1 7.1.2 7.1.3 7.1.4	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 156 157 161 167
	3838 7.1	mma ra 8.6 BL Marka 7.1.1 7.1.2 7.1.3 7.1.4 EXO 0	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 157 161 167 183
	3838 7.1	mma ra 8.6 BL Marka: 7.1.1 7.1.2 7.1.3 7.1.4 EXO (0 7.2.1	ay source analysis of the Markarian 421 and EXO 055625- Lacertae blazars rian 421 results	156 156 157 161 167 183 183

8	Cor	nclusio	ns	195
	8.1	Flashe	r Calibration	195
		8.1.1	T1 flasher image movement analysis	195
		8.1.2	T2 flasher image movement analysis	198
	8.2	HBL I	Lacertae blazar source analysis	199
		8.2.1	Conclusions from the Markarian 421 source analysis	199
		8.2.2	Flaring state of Markarian 421 during 2001	202
		8.2.3	Conclusions from the EXO 055625-3838.6 source analysis	205
\mathbf{A}	Cire	cuit dia	agrams of the flasher apparatus and PIN diode monitor	208
в	T1	and T2	2 flasher calibration data files	211
\mathbf{C}	$\mathbf{T1}$	flasher	calibration: Mean ADC Pedestals	215
D	T1	flasher	calibration: Pedestal difference between the sample mea	n
	AD	C and	histogram calculated mean ADC	232
\mathbf{E}	Two	o-dime	nsional flasher calibration image results from T1 and T2	's
	can	nera		249
\mathbf{F}	T1	and T2	2 flasher calibration results & weather station data	255
G	Log	book d	lata from $24/2/01, 25/2/01$ and $2/1/01$ flasher calibrations	5,
	\sup	portin	g "square structure"	260
н	CA	NGAR	COO-II (T1) TeV blazar observation summary: Data files	263
Ι	T1	Monte	Carlo simulation results: Proton showers	267
J	Ma	rkarian	421 and EXO 055625-3838.6 $alpha$ plot results from T1	274
K	Inc	rement	al significance (S, Li & Ma (1983)) plotted against 5° alph	na
	dist	ributic	ons from Tables 7.2 and 7.3	283
Bi	bliog	graphy		288

iv

Abstract

Calibration tests were made on the T1 and T2 telescopes of the CANGAROO collaboration in 2001 to 2003, using a custom-made LED light flasher apparatus to test the two (T1 and T2) telescope responses to a fixed amplitude light signal. The flasher apparatus was set up (a kilometre distance from the telescopes), to trigger the telescopes with a 10 nanosecond or 20 nanosecond pulse width flash, running at a rate of 1 kilohertz. Measurement of the light intensity of the flasher was achieved by using a custom-made PIN diode monitor coupled to the flasher output. After data analysis, it was found that the principal flasher signal amplitude variation (from month to month) as measured by a telescope, was due to errors in the encoders upon slewing and parking the telescope. This effect was found and measured by taking the two dimensional cross-correlation of the flasher pixel images (acquired in the camera of the two telescopes), taken monthly. Measurement of the T1 telescope energy threshold was attempted, using cosmic ray showers at the zenith, on two separate occasions. Finally, 2313.9 on-source minutes of data on the HBL Lac. blazar, Markarian 421 data was acquired by T1 in 2001 to 2003, and 1013 on-source minutes of data on the BL Lac. blazar EXO 055625-3838.6 were acquired in 2002 and 2003, by T1. From alpha plot distributions (where $alpha \leq 40^{\circ}$), it was found that the TeV gamma ray signal significance for Markarian 421 was 2.8 σ (in 2001-03); 3.3 σ (in 2001) and 0.4 σ (upper limit in 2002-03). Furthermore, from $(alpha < 20^{\circ})$ to maximize signal over noise, the significance for Markarian 421 was found to be 3.5 σ (2001-03); 3.5 σ (in 2001) and 1.2 σ (upper limit in 2002-03). The TeV gamma ray signal significance (where $alpha \leq 20^{\circ}$), was 2.2 σ for EXO 055625-3838.6 over 2002-03.

Declaration

This thesis does not contain work which has been accepted for any other award in any university. Nor does it contain work which has previously appeared elsewhere, except where referenced within the text. It is available to be photocopied/downloaded and lent from the University (Barr-Smith) Library. I give permission for digital versions of this thesis to appear on the internet, provided all acknowledgments to the author and reference to this work are made, and no changes to this thesis is permitted without written authorization from the author.

David Swaby

December, 2010

Acknowledgments

I would like to thank Prof. Roger Clay (University of Adelaide) for his assistance and advice with the analysis work and thesis on this project, overall, showing considerable patience throughout. I would also like to thank Dr. Greg Thornton (University of Adelaide) for his advice with the flasher calibration image analysis and Dr. John Patterson (University of Adelaide), for his concept and involvement with the flasher project (1999-2002). Furthermore, I would like to thank technical staff at the University of Adelaide; Neville Wild (electronics) and Graham Eames (fabrication), for their contribution to the flasher calibration apparatus and PIN diode monitor. Finally I would like to thank Japanese colleagues; Dr. Satoshi Hara and Dr. Kimihiro Okumura (University of Tokyo) for their assistance with the data acquisition data banks from CANGAROO and also for assistance with the gamma ray source analysis algorithm (Dr. Satoshi Hara).

Non est ad astra mollis e terris via.

Preface

In the following chapters, most italicized words with the first letter capitalized, represents a trade name (or experiment name), for a component (electronic) module or software, e.g. *Nichia*. Words in standard capitals are usually abbreviations, e.g. CAN-GAROO (see the list of abbreviations, units and symbols tables at the beginning of this thesis). Words that are in bold text often represent: 1. Raw or calibrated telescope data format, e.g. **calib10a**. 2. A measured variable, e.g. **ievent**. 3. An ion e.g. He^{++} .

List of abbreviations, units and symbols: Table 1 of 2

AC	Alternating Current
ADC	Analogue to Digital Conversion
AGN	Active Galactic Nuclei
ASCA	Advanced Satellite for Cosmology and Astrophysics
BNC	Bayonet Neill-Concelman connector
CAMAC	Computer Automated Measurement And Control
CANGAROO	Collaboration between Australia and Nippon (Japan) for a GAmma Ray Observatory
	in the Outback
CCD	Charge-Coupled Device
CCMP	Cross-Correlation Maximum Position
CGRO	Compton Gamma Ray Observatory satellite
CIB	Cosmic Infra-red Background
CMB	Cosmological Microwave Background
CMOS	Complementary Metal-Oxide Semiconductor
CPU	Central Processing Unit
DAC	Digital to Analogue Conversion
DAT	Digital Audio Tape format
dec.	declination: Degree angular coordinate north or south of the celestial equator (see RA)
DC	Direct Current
DSM	Discriminator and Summing Module
DVM	Digital Volt Meter
EGRET	Energetic Gamma Ray Experiment Telescope
EAS	Extensive Air Showers (atmospheric particle showers by cosmic/gamma rays from space)
EBL	Extragalactic Background Light
EIC	External Inverse Compton
EXO	European X-ray Observatory satellite
FoV	Field of View
FWHM	Full Width at Half Maximum
GLAST	Gamma-ray Large Area Space Telescope satellite
GPS	Global Positioning System
HBL Lac.	H (H=high; GeV-TeV energy peaked) BL Lacertae blazar sources
HEGRA	High Energy Gamma Ray Astronomy collaboration.
HESS	High Energy Stereoscopic System collaboration
HV	High (DC) Voltage
IACT	Imaging Atmospheric Čerenkov Telescope
IC	Inverse-Compton
ICRR	Institute for Cosmic Ray Research, at the University of Tokyo, Japan
ID	IDentification
IR	Infra Red
LED	Light Emitting Diode
MAGIC	Major Atmospheric Gamma Imaging Čerenkov collaboration
MC	Monte Carlo
ND	Neutral Density polymer film broad spectrum light filter
NIM	Nuclear Instrumentation Module
NSB	Night Sky Background
Op. amp.	Operational amplifier
PC	desktop Personal Computer
PDM	PIN Diode Monitor
p.e.	photo-electron
PMT(s)	Photo Multiplier Tube(s)
T M T (D)	Those Multiplier Tube(S) x

List of abbreviations, units and symbols: Table 2 of 2

p-n	positive (p-type) and negative (n-type); combined (p-n) semiconductor diode junction
\mathbf{PRR}	Pulse Repetition Rate
P/V	Peak-to-Valley ratio of a single electron spectrum peak in a photomultiplier tube
RA	Right Ascension: Celestial equatorial coordinate in hours, minutes & seconds (see dec.)
RMS	Root Mean Square
ROSAT	ROentgen SATellite
RXTE	Rossi X-ray Timing Explorer satellite
SED	Spectral Energy Distribution
SI	Le Système International d'unités, International System of (metric) Units
SSC	Synchrotron Self-Compton
STACEE	Solar Tower Atmospheric Čerenkov Effect Experiment
T1	the CANGAROO-II telescope (first (T1) telescope in the CANGAROO-III array)
T2	second (T2) telescope in the CANGAROO-III array
Т3	third (T3) telescope in the CANGAROO-III array
T4	forth (T4) telescope in the CANGAROO-III array
TDC	Time to Digital Conversion
UV	ultraviolet
VERITAS	Very Energetic Radiation Imaging Telescope Array System collaboration
VME	Versa-Modular Eurocard
VR	Variable Resistor
mA	milliampere = 10^{-3} ampere, SI unit of electrical current
μA	microampere = 10^{-6} ampere
dB	decibel, dimensionless logarithmic unit of intensity measurement
eV	electronvolt $\approx 1.6 \times 10^{-19}$ joule, SI energy unit
MeV	megaelectron volt = 10^6 electronvolts
GeV	gigaelectron volt = 10^9 electronvolts
TeV	teraelectron volt = 10^{-2} electronvolts
μF	microfarad = 10^{-6} farad, SI unit of capacitance
$ \frac{\mu\Gamma}{nF} $	nanofarad = 10^{-9} farad
	picofarad = 10^{-12} farad
m pFHz	
	hertz, SI frequency unit kilohertz = 10^3 hertz
kHz MIL-	$megahertz = 10^6 hertz$
MHz	0
GHz	gigahertz = 10^9 hertz
Jy	jansky, radio astronomy unit of electromagnetic flux density = 10^{-26} Wm ⁻² Hz ⁻¹
MJy	$megajansky = 10^6 jansky$
μm	micrometre = 10^{-6} metre
Ω	ohm, SI unit of impedance or resistance (DC)
kΩ	kilohm = 10^3 ohms
$M\Omega$	$megohm = 10^6 ohms$
ns	nanosecond = 10^{-9} second
sr	steradians, SI solid angle unit
mV	millivolt = 10^{-3} volt, SI electrical potential difference unit
W	watt, SI unit of power = kg $m^2 s^{-3}$
$\rm Wm^{-2}$	watt per square metre
nW	nanowatt = 10^{-9} watt
c	velocity of light in a vacuum constant; 3×10^8 m s ⁻¹
Ι	electrical current: ampere. (Unless I is specified as intensity or flux amplitude)
λ	wavelength: metres
ν	frequency: hertz xii
V	electrical potential: volt

List of Figures

1.1	A sketch of the EGRET gamma ray observatory aboard the CGRO satellite. $\ . \ .$	7
1.2	The third EGRET catalogue map in galactic coordinates. The size of the symbol on	
	the map represents the intensity of the source as seen by EGRET, Hartman $et al$.	
	(1999) [75]	8
1.3	Distribution of high significance TeV gamma ray sources in galactic coordinates:	
	HBL Lac.; asterisks, LBL Lac.; cross, radiogalaxy; dot, star-burst galaxy; plus, SNR;	
	diamonds, plerions; triangles, binary system micro-blazar; square, OB star associ-	
	ation; <i>circle</i> . These were the majority of TeV gamma ray sources at the time the	
	observation of the two gamma ray sources in this thesis were taken	11
2.1	From Weekes (1988) [167]. A Monte-Carlo simulation showing the vertical and hor-	
	izontal EAS profile (to an altitude of 20 km above sea level), of a 250 GeV cosmic	
	ray proton (left) and 250 GeV primary gamma ray (right)	15
2.2	From Rowell (1995) [151]. A sketch of a particle traveling at high velocity $(v > c/n)$	
	through a dielectric medium of refractive index (n) , will form an optical shock front	
	with constructive interference at CB	17
2.3	From Dazeley (1999) [52]. A schematic diagram showing representations of the shape	
	Hillas Parameters from the ellipsoid.	20

2.4	From Bradt (2008) [38]. Head-on IC scattering frames of reference: (b) Before col-	
	lision in the relativistic electron rest frame, becoming a normal Compton scattering	
	event. "The incident photon in S', has been Doppler shifted to higher energy $(h\nu')$,	
	because of the motion of this frame relative to an observer at S .", [38]. (c) After	
	scattering in S' frame. "The photon having been backscattered with energy $(h\nu_s')$,	
	moves to the right with slightly less energy.", [38]. (d) The scattered photon has a	
	much higher energy $(h\nu_s \gg h\nu_s')$, having been transformed back into the observer's	
	rest frame, S. Diagram (a) is not shown due to its superfluity in our case	24
2.5	From Rybicki & Lightman (1979) [152]. Sketch showing helical gyro-rotation of a	
	particle in an uniform B -field. Particle velocities and acceleration is shown	26
2.6	From Rybicki & Lightman (1979) [152]. Sketch showing emission cones at various	
	points of the particles trajectory, emitting synchrotron radiation.	27
2.7	From Bradt (2008) [38]. Sketch showing a simplistic model of the Synchrotron Self-	
	Compton emission process.	28
2.8	From Bradt (2008) [38]. Theoretical Spectral Energy Distributions (SED) from SSC	
	emission, for blazars across a broad frequency range showing observational wave-	
	lengths (grey shaded areas). The SED of blazars though SSC emission shows a	
	classic "double hump". The LBL (Low energy peaked BL Lac.) blazars SED is	
	shown as a solid line where synchrotron emission occurs in radio to optical energies	
	and X-ray though IC emission from the same synchrotron electrons (higher energy	
	peak). The HBL (High energy peaked BL Lac.) blazars (shown as a dotted line) are	
	emitting synchrotron X-rays (low energy peak) and IC scattering though to GeV-	
	TeV gamma rays (higher energy peak). The SEDs of LBL versus HBL blazars may	
	be compounded by Doppler shift	31
2.9	From Bradt (2008) [38]. Beamed radiation from a fast moving ($\gamma = 10$) source,	
	emitting isotropically in the rest frame. The beam includes half the rays lying within	
	the inner cone of the half-angle (~ $1/\gamma = 5.7^{\circ}$, equation 2.22) at this Lorentz factor.	
	The outer cone half-angle is situated at $\delta = 1$ ($\nu = \nu_0$, equation 2.23), at 25.2°	
	representing a null Doppler shift at this location. Angles greater than this will be	
	observed to be Doppler red-shifted	33

- 2.12 Template spectra representing different realizations of the EBL, from Fig. 2 of Dwek & Krennrich (2005) [54], where the realization templates are also discussed. This figure shows data points from a large number of authors showing theoretical EBL modeling and from experimental results (see Dwek & Krennrich (2005) [54], to ascertain data reference).
- 2.14 Differential energy spectrum of Mkn 421 from MAGIC, Fig. 10 of Albert *et al.* (2006)
 [12]. The observed (grey points) of the spectrum, and de-absorbed (black) points are multiplied by E². Solid line shows power law fit, and dot-dashed line the curved power law fit both to the intrinsic spectrum (without absorption), the results shown in inlays to this figure. Dotted line shows absorbed (observed) power law with cutoff. 44

3.1	Photograph of the CANGAROO-II IACT, 10 metre diameter T1 telescope, from	
	Mori (2000) [120]. The camera access tower in front of T1 is approximately 9 metres	
	high. The hut at the ground level is the electronics, T1 data acquisition control, and	
	telescope array control (observer's) hut	48
3.2	A diagram of the CANGAROO-III telescope mirror array, from Gunji (2006) [73].	
	There are six equally sized steel plate radial sections which each hold 19×80 cm,	
	diameter mirrors. The black numbering of each 114 mirrors is indicated, as seen by	
	the camera's point-of-view. The red numbering, e.g. D1, is a radially positioned	
	mirror clustering indicator, and is extraneous.	49
3.3	A sketch of the CANGAROO-II individual 80 cm mirror stepper motor adjustment,	
	from Kawachi et al. (2001) [94]	50
3.4	The Hamamatsu R4124 spectral efficiency characteristics, from Hamamatsu (1998)	
	[74], showing both quantum efficiency and cathode radiant sensitivity curves. The	
	cathode radiant sensitivity is defined as the ratio of the cathode current, I_k , (less	
	the dark current) to the incident photon flux, Φ , i.e. $S_k(A/W) = \frac{I_k(A)}{\Phi_e}$, where I_k is	
	in milliamperes (mA), and Φ_e is in Watts", Flyckt & Marmonier (2002) [61]. The	
	cathode radiant sensitivity is expressed in radiometric units; mA per Watt. $\ . \ . \ .$	51
3.5	Sketch of the dimensional outline of the R4124 PMT (<i>left</i>) in millimetres, from	
	Hamamatsu (1998) [74], and the positions of the cathode, anode and 10 dynodes $$	
	pins in the socket, where ${\bf K}$ shown in the <i>middle</i> diagram is the cathode, ${\bf P}$ is the	
	anode, $\mathbf{DY1}$ and $\mathbf{DY10}$ is the first and tenth dynodes respectively, and \mathbf{IC} is the	
	internal circuit. These PMT elements map to the $right$ diagram positions, showing	
	the 13 pins of each element and the short pin in the E678-13A socket of the R4124 $$	
	PMT. The short pin, which is used to guide the PMT into the socket insertion, is	
	shown in the <i>right</i> diagram as; \odot	52
3.6	A photograph of the front end of the CANGAROO-II camera, receiving light from	
	the primary mirror, from Mori (2000) [121]. There are spaces for 576 $\frac{1}{2}$ inch PMTs,	
	behind the Winston cone light guides shown. See Section $3.2.4$ for a discussion on	
	Winston cones	55

3.7	Sketch of the CANGAROO-II camera 36 boxes array with numbers shown, from	
	Mori (2000) [122]. Each box holds 16 (4×4) $\frac{1}{2}$ inch PMTs. The corner boxes 33 to	
	36, hold only 10 PMTs	56
3.8	An overview sketch of the CANGAROO-III telescope array site at G-range, Woomera.	
	Distances between telescopes are included in metres. Also shown are access roads,	
	the direction of the rifle club mound where the flasher experiment was conducted, and	
	nearby buildings; CANGAROO-I and BIGRAT (from previous IACT experiments),	
	and the rifle club sheds.	57
3.9	A photograph of the CANGAROO-III T2 telescope, from Mori (2002) [123]. This	
	telescope has a 10m dish with the same compound mirror system as T1, but uses a	
	different camera. The scale of T2 is very similar to T1, see Figure 3.1. The hut at	
	ground level is the dish steering control hut, with the data acquisition hut sited on	
	the left of the dish platform, above the dish pedestal. \ldots \ldots \ldots \ldots \ldots	58
3.10	A schematic view of the CANGAROO-III camera, taken from Ito (2000) [88]	60
3.11	The left figure (figure(a)), shows the single electron peak from Flyckt & Marmonier	
	(2002) [61], as it may appear when measured by a multi-channel analyzer. The rel-	
	ative scale of the horizontal axis represents increasing energy and the vertical axis	
	represents the frequency count of each channel. Each dot in figure(a) represents a	
	single channel. The $right$ figure (figure (b)), represents the relative variation of the	
	secondary emission coefficient, δ (vertical axis), as a function of primary electron	
	energy, E_p (horizontal axis), [61]. The secondary emission coefficient ratio first in-	
	creases to a maximum (when the initial energy of the primary electrons is, E_p'), then	
	gradually decreases with primary electron energy, as the proportion of the electrons	
	excited at greater depth in the material increases	63
3.12	Schematic side view of a Winston cone light guide, from Winston (1970) [170]. The	
	left figure shows that the entrance and exit apertures are of radii, a , and a' , respec-	
	tively. F , is the focus of the upper parabola section and, f , its focal length. The	
	right figure shows the origins and orientations of the focus-centred and symmetry	
	axis-centred coordinate systems.	65

- 3.13 "The angular acceptance as a function of the angle of incidence light rays at the entrance aperture for an ideal three-dimensional Winston cone", from Winston (1970) [170]. The angular acceptance measures the degree of transmission from the exit aperture for rays entering the Winston cone at angles, where 1.0 is 100% and 0.5 is 50% transmission. Note that "the angular acceptance cuts off over a narrow region, $\Delta \theta$ (approximately 1° centred about $\theta_{\rm max}$). In this example, $\theta_{\rm max} = 16^{\circ "}$, [170]. 66 3.14 Sketch of how forward and backward crosstalk effects can occur in parallel wires, from Brooks (2003) [40]. The lower wire carries the AC aggressor current, which has stepped down at point X and is moving to the right. The arrows indicate the flow 68 directions of the crosstalk currents from point X, in the top victim line. 3.15 Network diagram of the overall data acquisition system electronics modules, data buses, and controlling & recording computers for T1. From Kubo et al. (2001), [105]. 69 3.16 Network diagram of the overall data acquisition system electronics modules, data buses, and controlling & recording computers for T2. From Kubo et al. (2003) [104]. 703.17 This diagram shows the data bus and discriminators for the Discriminator and Summing Module, (DSM) (or TKO module), taken from the CANGAROO observation manual, Gunji (2006) [73]. The box labeled, "AC", in the diagram is the (Digital) 713.18 Left diagram: The <u>LSUM</u> and <u>NHIT</u> discriminator data bus; threshold control for **nhit_disc** discriminator. Right diagram: The ASUM data bus to the CAMAC C285 & LeCroy 4413 NIM crates; threshold control for the CAMAC and nbox_disc 723.19 The left diagram is the data bus for the TKO DSM, (Hoshin 2548, [127]). Circuitry within the dashed line boxes are not included in T1. The right diagram shows the data bus acquisition trigger, which is an extension of the LSUM and ASUM 73discriminator logic gates shown in the left diagram, from Kubo (2001) [105]. . . . 4.1Photograph of the flasher apparatus above (top figure), including a design sketch of Unit 1 (bottom figure), from Patterson, Swaby & Wild (2001) [136]. 80

4.3	Sketch of the PIN diode flasher monitor apparatus. The circuit is held in a die cast	
	metal box; 11.3 cm \times 3 cm \times 6.2 cm shown. The PIN diode monitor circuit is shown	
	in Figure 4.4	87
4.4	Circuit diagram of PIN diode monitor apparatus to measure the flasher output. For	
	clarity, this figure is enlarged in Appendix A, Figure A.2	88
4.5	PIN diode monitor output voltages, testing the linearity of the light intensity output	
	of the flasher using neutral density filters	90
4.6	PIN Diode monitor output voltage measurements of the flasher, taken at the 10	
	ns & 20 ns setting, using the unit 2 emitter. Weighted means of the voltage were	
	calculated, usually because two or more readings were taken at the time of calibration	
	(see equation 4.2, for weighted mean definition). The open symbols indicate where	
	the sticky tape (semi-opaque film), on unit 2 was not changed immediately before	
	taking PIN diode readings	92

5.3	A LED calibration (or scan) plot result for a single PMT pixel (number 1), produced	
	by $calib10$, Okumura (2000) [132]. The mean ADC (the average summed ADC counts	
	of every camera pixel shown on the x -axis), is plotted against their individual ADC	
	count value on the y -axis. The two circle points on each graph is a LED run; the	
	slightly higher value pixels is a LED data file set to 0 dB, and the lower value is LED	
	1 dB. These points are closely spaced due to the standard output of flat-fielding	
	calibration. The equation; $y = P2x + P1$, describes the fitted line through these two	
	points, results shown in the upper right box	107
5.4	LED scan result for 16 PMTs (pixels) in Box number 1, produced by <i>calib10</i> , [132].	
	PMT 1 is shown larger in Figure 5.3. Each graph is a LED scan in ADC counts for	
	the i^{th} pixel number (ADC pixel numbers 1 to 16 in this case)	108
5.5	Calib10 bad channels as represented by the T1 camera. Crossed pixels are flagged	
	as bad channels, square ([]) pixels are accepted (not bad channel) pixels and the	
	asterisks are printing padding. PMT boxes information for T1 camera is found in	
	Figure 3.7. The left figure is from July 2001 (data file no. 1071712), and the right	
	figure from Feb. 2002 (data file no. 2020705)	113
5.6	A sketch of the Neutral Density (ND) holder for the flasher. The arrows show where	
	the aluminium sheet is folded over at the edges to enable the ND filter film to be	
	held in place when slotted in	118
5.7	Geometry of the knife-edge diffraction, acting as an interferometer. From Kumar et	
	al. (2007) [106]	119
5.8	Two dimensional cross-correlation results for T1 flasher calibration by the calibration	
	month, shown in the cross-correlation transform space of x-shift (delta, δ), y-shift	
	(epsilon, ϵ). Flasher calibration month shown as the first month above each slide	
	with the slide number on the top left, e.g. slide 1 is the April 2001 calibration. The	
	concentric rings centre position in these slides (numbers 1 to 8), is the position of the	
	cross-correlation maximum. This maximum position is shown in δ and $\epsilon,$ in Table	
	5.4. Slide no. 8 shows the autocorrelation function (cross-correlating October 2003	
	with itself). For clarity, this figure is enlarged in Figure E.4, Appendix E	124

- 5.10 Normalized ratio of average mean ADC of the eight selected T1 camera pixels over all calibration months for the 10ns setting with T1 cross-correlation maximum position distance (where 1.0 indicates the camera centre position and a lower value, further away from it). See Table 5.5. Both these quantities plotted together are unit-less. The average mean ADC datum point from June 2003 has been left out due to mirror dewing. This figure is enlarged in Figure F.2 (Appendix F), for clarity. 128
- 5.11 Plot of cross-correlation maximum position distance from 1.0 (see Figure 5.10), versus ratio of average mean ADC of the eight selected T1 camera pixels over all calibration months for 10ns setting to test the hypothesis, that of correlation, between these two variables. The least linear squares fit result equation is shown in the lower right of the figure.
- 5.12 Comparison of 10ns flasher hit-map contour images with the calibration in Feb. 2002, compared to July 2001. Slide A is July 2001 (unit 2), slide B is Feb. 2002 (unit 2), slide C is July 2001 (unit 1), slide D is Feb. 2002 (unit 1). The number of equidistant contour lines are fixed at 10. Contour colours are false and not set to any level. Contour levels are determined from the maximum pixel value to zero. This figure is enlarged in Appendix E, Figure E.2.

- 5.13 T1 flasher mean ADC two dimensional pixel map (top two slides), and mean sum ADC (bottom two histograms). The data for all four figures is 20ns (no ND filters) from T1 in June 2003. The colour scale on the right hand side of the top slides is mean ADC count where, e.g. yellow indicates a mean ADC pixel count between 1000 to 1999. The isolated bright (> 7000 mean ADC counts) pixel in the lower right hand corner of the pixel maps is a scaling reference pixel only, and is not a real data point. "Flashercut" and "saturated" were an early attempt at pixel correction, where "saturated" are uncorrected pixels, see Section 5.2.5. This figure is also shown (enlarged) in Figure E.3, Appendix E.
- 5.15 Sketch showing any T1 camera pixel (except edge pixels). The central pixel is grey shaded, with eight adjacent pixels. The two crossed pixels are "bad" pixels. . . . 139

- 5.19 Plot of cross-correlation maximum position distance from 1.0°, versus ratio of average mean ADC of the 192 inner T2 camera pixels over January & October 2003 for 10 ns and 10 ns ND 0.4 settings, to test the hypothesis (that of correlation), between these two variables. The least linear squares fit result equation is shown in the centre left of the figure. The data from June 2003 has been left out due to mirror dewing on this month.

- 7.1 T1 dish tracking plot of the zenith angle of one Mkn 421 on-source data file (number 01012619) as an example. The zenith angle is 90° minus the dish degree elevation angle. The **ievents** number is the number of the telescope triggered events, proportional to the exposure time.

- 7.3 Histograms of primary gamma ray EAS Monte Carlo *GEANT 3.21* simulation results for Markarian 421: Showing the Hillas parameter *length* (*len*) and *width* (*wid*), all given in units of degrees, amongst other results. The assumed spectral index for this source is 3.0, the zenith angle is 70° and the number of events simulated is 1×10^5 . 163
- 7.4 Histograms of primary gamma ray EAS Monte Carlo *GEANT 3.21* simulation results for Markarian 421: Showing the Hillas parameter *alpha* (top left histogram, given in units of degrees), amongst other results. The spectral index for this source is 3.0, the zenith angle is 70° and the number of events simulated are 1×10^5 164
- 7.5 Plot of elapsed data acquisition seconds from the start, versus trigger rate for the calib10a data file; 01012809 (Mkn 421, see Table H.1, Appendix H). Trigger rate is the number event triggers per second (rate per sec.).

- 7.12 Histograms of primary gamma ray EAS Monte Carlo *GEANT 3.21* simulation results for EXO 055625-3838.6: Showing the Hillas parameter *length* (*len*) and *width* (*wid*), all given in units of degrees, amongst other results. The spectral index for this source is 2.7, the zenith angle is 10° and the number of events simulated are 1×10^5 188
- 7.13 Histograms of primary gamma ray EAS Monte Carlo *GEANT 3.21* simulation results for EXO 055625-3838.6: Showing the Hillas parameter *alpha* (top left histogram, given in units of degrees), amongst other results. The spectral index for this source is 2.7, the zenith angle is 10° and the number of events simulated are 1×10^{5} 189

8.1	Plot of cross-correlation maximum position distance from 1.0 (see Figure 5.10), versus	
	ratio of average mean ADC of the eight selected T1 camera pixels over all calibration	
	months for 10ns setting to test the hypothesis, that of correlation, between these two	
	variables. The least linear squares fit result equation is shown in the lower right of	
	the figure	196
8.2	From Okumura et al. (2002) [133]: Differential energy spectra from CANGAROO	
	shown from Okumura $et~al.~(2002)~[133]$, Whipple and HEGRA (shown separately)	
	derived from the Mkn 421 TeV gamma ray observation dataset, during a flaring state	
	in late 2000/early 2001. The differential energy spectra is described by equation 8.2	
	(Whipple $[103]$), equation 8.3 (HEGRA $[8]$), and equation 8.4 (CANGAROO $[133]$) in	
	this section. The inset; "with the filled circles was used for the spectral shape fitting.	
	The fluxes plotted for the HEGRA group have been scaled in order to normalize it	
	to the Whipple flux at 1 TeV", [133]. \ldots \ldots \ldots \ldots \ldots \ldots	205
A.1	Circuit diagram (rotated 90°) of the <i>Nichia</i> blue LED flasher calibration apparatus.	209
A.2	Circuit diagram (rotated 90°) of pin diode monitor apparatus to measure the flasher	205
$\Lambda.2$		210
	output	210
C.1	ADC pedestals over 15 months. Box 1. Each figure shows 1-16 boxes of the T1 inner	
	camera (16 pixels per box). ADC pixel number is shown below each histogram. $\ .$.	216
C.2	Box 2. ADC pixel number is shown below each histogram	217
C.3	Box 3. ADC pixel number is shown below each histogram.	218
C.4	Box 4. ADC pixel number is shown below each histogram	219
C.5	Box 5. ADC pixel number is shown below each histogram	220
C.6	Box 6. ADC pixel number is shown below each histogram	221
C.7	Box 7. ADC pixel number is shown below each histogram.	222
C.8	Box 8. ADC pixel number is shown below each histogram.	223
C.9	Box 9. ADC pixel number is shown below each histogram	224
C.10	Box 10. ADC pixel number is shown below each histogram.	225
C.11	Box 11. ADC pixel number is shown below each histogram.	226
C.12	Box 12. ADC pixel number is shown below each histogram	227

C.13 Box 13. ADC pixel number is shown below each histogram
C.14 Box 14. ADC pixel number is shown below each histogram
C.15 Box 15. ADC pixel number is shown below each histogram
C.16 Box 16. ADC pixel number is shown below each histogram. $\dots \dots \dots$
 D.1 ADC pedestals differences over 15 months. Box 1. Each figure shows a box of the T1 inner camera, (16 pixels per box). "Pedestal difference" is the difference between the sample mean ADC, see equation 5.4 (Section 5.1.6), and the mean ADC generated by <i>PAW</i>, from the ADC histogram.
D.2 Box 2. ADC pixel number is shown below each histogram
D.3 Box 3. ADC pixel number is shown below each histogram
D.4 Box 4. ADC pixel number is shown below each histogram
D.5 Box 5. ADC pixel number is shown below each histogram
D.6 Box 6. ADC pixel number is shown below each histogram
D.7 Box 7. ADC pixel number is shown below each histogram
D.8 Box 8. ADC pixel number is shown below each histogram
D.9 Box 9. ADC pixel number is shown below each histogram
D.10 Box 10. ADC pixel number is shown below each histogram
D.11 Box 11. ADC pixel number is shown below each histogram
D.12 Box 12. ADC pixel number is shown below each histogram
D.13 Box 13. ADC pixel number is shown below each histogram
D.14 Box 14. ADC pixel number is shown below each histogram
D.15 Box 15. ADC pixel number is shown below each histogram
D.16 Box 16. ADC pixel number is shown below each histogram

- E.2 Comparison of 10ns flasher T1 hit-map contour images with the calibration in Feb. 2002, compared to July 2001. The number of equidistant contour lines are fixed at 10. Contour colours are false and not set to any level. Contour levels are determined from the maximum pixel value to zero. Slide A is July 2001 (unit 2), slide B is Feb. 2002 (unit 2), slide C is July 2001 (unit 1), slide D is Feb. 2002 (unit 1). 251

xxviii

- F.1 Mean ADC over all calibration months, per pixel (rotated 90° to fit page). The eight selected inner camera linear pixels used are (by ADC ID-number); 60, 64, 73, 74, 154, 227, 228, 236. Flasher settings are 10ns (solid lines), and 10ns ND 0.4 filter (dotted lines), recorded in calib10a data format. Each point and line, pertinent to its particular pixel, is indicated by the table on the right of the graph. Each monthly mean ADC value is corrected using the PDM derived ratio values, shown in Table 4.3.256
- F.2 Normalized ratio of average mean ADC of the eight selected T1 camera pixels over all calibration months for the 10ns setting with T1 cross-correlation maximum position distance (where 1.0 indicates the camera centre position and a lower value, further away from it). Both these quantities plotted together are unit-less. The average mean ADC datum point from June 2003 has been left out due to mirror dewing. . . 257

G.2	Page 2 logbook entry, detailing flasher image analysis from 25/2/01 (and previous month's data on the 2nd January 2001), showing consistent dark bands through different flasher data files.	262
I.1	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for Markarian 421: Showing the Hillas Parameter <i>distance</i> (<i>dis</i>), amongst other results. The spectral index for this source is 2.7, the zenith angle is 70° and the number of events simulated are 1×10^5	268
I.2	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for Markarian 421: Showing the Hillas Parameter <i>length</i> (<i>len</i>) and <i>width</i> (<i>wid</i>), amongst other results. The spectral index for this source is 2.7, the zenith angle is 70° and the number of events simulated are 1×10^5 .	269
I.3	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for Markarian 421: Showing the Hillas Parameter <i>alpha</i> (top left histogram), amongst other results. The spectral index for this source is 2.7, the zenith angle is 70° and the number of events simulated are 1×10^5 .	270
I.4	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for EXO 055625-3838.6: Showing the Hillas Parameter <i>distance</i> (<i>dis</i>), amongst other results. The spectral index for this source is 2.7, the zenith angle is 10° and the number of events simulated are 1×10^5 .	271
I.5	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for EXO 055625-3838.6: Showing the Hillas Parameter <i>length</i> (<i>len</i>) and <i>width</i> (<i>wid</i>), amongst other results. The spectral index for this source is 2.7, the zenith angle is 10° and the number of events simulated are 1×10^{5}	272
I.6	Histograms of primary proton EAS Monte Carlo <i>GEANT 3.21</i> simulation results for EXO 055625-3838.6: Showing the Hillas Parameter <i>alpha</i> (top left histogram), amongst other results. The spectral index for this source is 2.7, the zenith angle is 10° and the number of events simulated are 1×10^{5}	273

J.1	The $alpha$ image plot for all Markarian 421 T1 observation data from 2001 to 2003	
	(data files; see Tables H.1 and H.2, Appendix H). On-source <i>alpha</i> plot only. See	
	Figure 7.7 for comparison.	275
J.2	The $alpha$ image plot for all Markarian 421 T1 observation data from 2001 to 2003	
	(data files; see Tables H.1 and H.2, Appendix H). Off-source <i>alpha</i> plot only. See	
	Figure 7.7 for comparison.	276
J.3	The $alpha$ image plot for Markarian 421 T1 observation data from 2001 (data files;	
	see Table H.1, Appendix H). On-source <i>alpha</i> plot only. See Figure 7.8 for comparison.	277
J.4	The $alpha$ image plot for Markarian 421 T1 observation data from 2001 (data files;	
	see Table H.1, Appendix H). Off-source <i>alpha</i> plot only. See Figure 7.8 for comparison.	278
J.5	The $alpha$ image plot for Markarian 421 T1 observation data from 2002 to 2003	
	(data files; see Table H.2, Appendix H). On-source <i>alpha</i> plot only. See Figure 7.9	
	for comparison.	279
J.6	The $alpha$ image plot for Markarian 421 T1 observation data from 2002 to 2003	
	(data files; see Table H.2, Appendix H). Off-source <i>alpha</i> plot only. See Figure 7.9	
	for comparison.	280
J.7	The $alpha$ image plot for EXO 055625-3838.6, T1 observation data from 2002-2003	
	(data files; see Table H.3, Appendix H). On-source $alpha$ plot only. See Figure 7.14	
	for comparison.	281
J.8	The $alpha$ image plot for EXO 055625-3838.6, T1 observation data from 2002-2003	
	(data files; see Table H.3, Appendix H). Off-source $alpha$ plot only. See Figure 7.14	
	for comparison.	282
K.1	Data taken directly from Table 7.2: Plot of Mkn 421 2001-2003 incremental signif-	
	icance calculated using equation 7.3 (Li & Ma (1983), [111]) against each 5° (bin	
	width) angle in Figure 7.7 $alpha$ cut histogram. The size of the error bars (uncer-	
	tainty) in this figure are explained in Section 7.1.4 and in Table 7.2 caption	284
K.2	Data taken directly from Table 7.2: Plot of Mkn 421 2001 incremental significance	
	calculated using equation 7.3 (Li & Ma (1983), [111]) against each 5° (bin width)	
	angle in Figure 7.8 $alpha$ cut histogram. The size of the error bars (uncertainty) in	
	this figure are explained in Section 7.1.4 and in Table 7.2 caption.	285

- K.3 Data taken directly from Table 7.2: Plot of Mkn 421 2002-2003 incremental significance calculated using equation 7.3 (Li & Ma (1983), [111]) against each 5° (bin width) angle in Figure 7.9 *alpha* cut histogram. The size of the error bars (uncertainty) in this figure are explained in Section 7.1.4 and in Table 7.2 caption. . . . 286
- K.4 Data taken directly from Table 7.3: Plot of EXO 055625-3838.6 incremental significance calculated using equation 7.3 (Li & Ma (1983), [111]) against each 5° (bin width) angle in Figure 7.14 *alpha* cut histogram. The size of the error bars (uncertainty) in this figure are explained in Section 7.1.4 and in Table 7.2 caption. 287

List of Tables

2.1	Weighted moment of the ellipse, calculated from camera coordinates	21
2.2	Hillas Parameters of the ellipsoid, based on the shape of a gamma ray shower on the	
	ground	21
4.1	Table of ACU telescope pointing coordinates	85
4.2	Table of flasher time measurements	89
4.3	Table of normalizing ratios for flasher	95
5.1	Table of Discriminator module settings for T1	100
5.2	T1 ADC pedestal file table	111
5.3	Knife-edge interferometer diffraction fringe sizes	121
5.4	T1 cross-correlation maximum position and distance from camera centre	126
5.5	T1 cross-correlation distance versus mean sum ADC	129
5.6	Table of Discriminator module settings for T2	140
5.7	T2 cross-correlation maximum position and distance from camera centre	145
5.8	T2 cross-correlation distance versus mean sum ADC	147
7.1	The gamma ray signal significance (S), of Markarian 421 $alpha$ distributions	180
7.2	Incremental significance (S, Li & Ma (1986)) of Mkn 421 per 5° $alpha$ distributions	181
7.3	Incremental significance (S, Li & Ma (1986)) of EXO 055625 per 5° alpha distributions	s193
B.1	Table (1 of 2) of flasher calibration data files from the T1 telescope $\ldots \ldots \ldots$	212
B.2	Table (2 of 2) of flasher calibration data files from the T1 telescope $\ldots \ldots \ldots$	213
B.3	Flasher calibration data files from the T2 telescope	214
H.1	Table (1 of 2) of Mkn 421 observation data files (2001) $\ldots \ldots \ldots \ldots \ldots \ldots$	264

H.2	Table $(2 \text{ of } 2)$ of Mkn 421 observation data files (February 2002 and January 2003)	265
H.3	Table of EXO 055625 observation data files	266