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This work relates to the theoretical and experimental analysis of light guidance within

layered waveguides whose guidance region (the core) has a refractive index equal to or

lower than the lowest of the surrounding material (the cladding).

The Thesis has two primary themes:

• The guidance behaviour of binary–layered-cladding waveguides with cores of arbi-

trary refractive index equal to or less than the lowest of the cladding;

Chapters 2, 3 and 4.

• The fabrication, analysis and simulation of single-material hollow-core microstruc-

tured optical fibres made from soft-glass via an extrusion process;

Chapters 2 and 5.

While each chapter discusses the theoretical and/or experimental analysis of distinct

phenomena, their concepts are deeply related and highlighted as such throughout.





Summary

This summary briefly covers the content of this thesis, chapter by chapter, and indicates

the author’s contribution to the work.

This work relates to the theoretical and experimental analysis of light guidance within

layered waveguides whose guidance region (the ‘core’) has a refractive index equal to

or lower than the lowest of the surrounding material (the ‘cladding’), referred to here

as depressed-core waveguides. The primary focus is toward multilayer hollow-core mi-

crostructured optical fibres made from soft-glass, but much of the analysis is shown

to be more general, applicable to similar areas of waveguide optics, fibre or otherwise.

While each chapter discusses the theory and/or experiment of distinct phenomena, their

fundamental findings are deeply related and highlighted as such throughout.

Author’s contribution to the thesis in general: All theoretical, numerical, fabrication

and experimental results are my own work, except for the few cases indicated below,

with guidance by my supervisors (who allowed me significant freedom to follow my own

intuition, for which I am very grateful). All content within has been written and, upon

regular reviews by my supervisors, edited by myself including the content, typesetting

and figure creation. All figures have been created either from numerical and experimental

data or, for diagrams, using a digital image program.

These same comments apply to all publications and conference presentations resulting

from this work (detailed in the Publications section).

Chapter 1: Beginning with the basics of depressed-core step-index slab and cylindrical

waveguide theory, the first chapter highlights the importance of the obstacles to coerc-

ing the guidance of light in low refractive indices and the guidance mechanisms and

waveguides structures identified and demonstrated to date that achieve this goal. This

review and discussion sets the conceptual groundwork for the remaining chapters. The

‘spider-web’ fibre, forming the basis of Chapter 5 is also introduced.

Author’s contribution: Review of the literature, its interpretation and presentation as

shown in the text (including the relationships between all of the discussed guidance phe-

nomena), and the conceptualisation of the spider-web fibre and its potential behaviour.
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Chapter 2: The second chapter presents a theoretical analysis of a level-core Bragg

fibre (a multilayer-cladding fibre with a core refractive index equal to the lowest of the

cladding layer indices). The existence of novel higher-order, low-loss, bandgaps in such

waveguides is demonstrated numerically and explained. The exploitation of such gaps

for confinement loss reduction is analysed.

Author’s contribution: As per the general comment above, save for the implementation

of the cTMM model which was based upon code written by Mr Michael Oermann.

Chapter 3: The third chapter discusses the relationship between bandgap and anti-

resonance waveguidance phenomena in depressed-core 1-D layered-cladding waveguides.

A new model, coined the Stratified Planar Anti-Resonant Reflecting Optical Waveguide

(SPARROW) model, is presented. It is demonstrated how the analyticity of the model

can be exploited to produce analytic expressions for various nontrivial bandgap proper-

ties and phenomena, while also giving an intuitive explanation of the physical mecha-

nisms responsible for various guidance properties in such waveguides. Various theoretical

tool are used in the resulting analysis.

Author’s contribution: As per the general comment above.

Chapter 4: The fourth chapter details the experimental investigation into a phe-

nomenon discussed in the previous chapter, namely the shifting of bandgaps as the

core refractive index is varied. An experimental demonstration of this effect is presented

where the transmission spectrum of a hollow-core Bragg fibre is examined after being

systematically filled with liquids of various refractive indices. The effect is sufficiently

strong enough such that, for refractive index changes of up to about 50%, the transmis-

sion spectrum is shifted across almost the entire visible spectrum.

Author’s contribution: As per the general comment above, save for the supply of the

Bragg fibre and material ellipsometric results from the Photonic Bandgap Fibers and

Devices Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, US;

in particular Prof. Yoel Fink and Mr Alexander Stolyarov.

Chapter 5: The fifth chapter documents what was initially the primary motivation for

this body of work: the design and fabrication of a soft-glass hollow-core microstructured

fibre via the extrusion method. In step with the work’s earlier chapters, the fibre design

is based on a layered (annular) structure: concentric glass rings supported by connective

radial struts, coined a spider-web fibre (a somewhat generalised air-Bragg fibre). The

fabrication trials are discussed, beginning from the initial step of preform extrusion

through to the transformation of the preform into fibre via the fibre drawing process.

Experimental observation of guidance within these fibres is experimentally demonstrated

and later compared to theoretical models, from simple anti-resonance or bandgap models
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to full-vectorial finite-element solutions to Maxwell’s equations evaluated over waveguide

geometries derived from scanning electron micrographs of the fabricated fibre.

Author’s contribution: As per the general comment above, save for the significant guid-

ance and education with respect to the fabrication facilities from Dr Heike Ebendorff-

Heidepriem. All fabrication processes (preparation and execution) were conducted by

myself, save for the fibre drawing which was conducted by Mr Roger Moore (with my

assistance for by-the-minute microscope fibre structure diagnosis).

Chapter 6: The final chapter concludes the thesis, providing some general discussion

and suggesting possible promising future work.
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5.23 FEM Calculations of Re(ñ) and CL TE01 and TM01 Mode Spectra of an

Idealised Model of Fibre E . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
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All quantities here and within adopt the mks system of units.

Speed of Light in Vaccuo c = 2.99792458 × 108 ms−1 (defined)

= 1/
√

ε0μ0

Vacuum Permeability μ0 = 4π × 10−7 NA−1 (defined)

Vacuum Permittivity ε0 = (μ0c
2)−1 (defined)

≈ 8.854187817 . . . × 10−12 Fm−1
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Symbols

ε ≡ εrεo permittivity Fm−1

εr ≡ ε/εo relative permittivity unitless

μ ≡ μrμo permeability NA−1

μr ≡ μ/μo relative permeability unitless

n ≡ √
εr refractive index unitless

λ free-space wavelength m

k ≡ 2π/λ free-space wavenumber m−1

ki ≡ nik intra-material wavenumber (ith material) m−1

β longitudinal wavenumber / propagation constant m−1

ñ ≡ β/k modal effective refractive index unitless

P power W (Js−1)

CL ≡ 20
ln(10) Im {β} modal confinement loss dB/m

ν frequency Hz (s−1)

ω ≡ 2πν angular frequency rads−1
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