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Chapter 1

Introduction

T
he year 2010 celebrates the 50th anniversary of the laser; light amplification via

stimulated emission of radiation enabled the generation of the most spectrally pure

and coherent light possible in its day. Now the laser is a commonplace device, responsi-

ble for applications from reading and displaying digital media for work or entertainment

via compact laser diodes to scientific experimentation and analysis using complex and

sophisticated apparatus capable of generating a wide range of light frequencies, pulse

lengths, bandwidths and energies. The invention of the laser heralded the field of pho-

tonics: the study of the behaviour of light and its generation, transmission, modulation,

amplification, frequency conversion, and detection [1]. Today, the photon is poised to

replace the electron in many of its modern applications, and in some areas has already

successfully done so (telecommunications being a prime example - discussed later).

As critical as the generation of light is for technology, so is its manipulation. While

the fields of optics and photonics have made many advances by manipulating light us-

ing sequences and arrays of mirrors, lenses, crystals, and other optical apparatus, the

applications using these techniques are predominantly based upon directing a beam of

light, naturally diffracting as it propagates, through various media. These media are

usually in a macroscopic and homogeneous form, often termed ‘bulk’ media. While

much (arguably, the majority) of the development of optics and photonics owes its exis-

tence to application of light propagation through bulk media, the ability to manipulate

light beyond its natural tendency to diffract, and doing so on the scale of the light’s

wavelength, allows control over it in ways that are otherwise impossible. An established

robust and flexible platform for achieving this level of control is by confining light within

a waveguide.

Optical waveguides are structured optical media that can confine and guide light some

distance, from microns to kilometres as the platform permits, without allowing it to

diffract as it naturally would in a homogeneous medium. The region to which the light

is confined is called the waveguide’s core. The core is surrounded by a structure called

1
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the cladding which presents a specific refractive index distribution to the light, effectively

reflecting some or all of it back into the core. The reflection is the result of coherent

scattering from the cladding structure whose form may be anything from a homogeneous

medium to a smooth index gradient or a complex, discrete, multi-component structure;

the last case being of most interest here. The way in which this reflection occurs, the

efficiency with which it happens for various wavelengths, and its relationship with the

structure of the cladding is of vital importance for the fundamental behaviour of a given

optical waveguide1.

1.1 Low-index Guiding Waveguides

For this thesis I am interested in types of waveguides in which the core has a refractive

index equal to or lower than the lowest index of the cladding structure. Confining

light within such waveguides is inherently nontrivial since light naturally ‘prefers’ to

propagate within regions of relatively high refractive index. This propensity of light to

seek regions of high index is thus the fundamental problem, and hence inherent interest,

in coercing light to be guided within a low-index material.

Conventional waveguides typically rely on guiding light within a material of refractive

index larger than its surrounds. Such high-index waveguides can be constructed from

a wide range of materials. High-index guiding waveguides rely on the total internal

reflection (discussed in § A.2.1.2) of light incident on the interface between the core and

cladding regions2. For high-index waveguides with structured claddings, a generalised

form of the total internal reflection mechanism can be implied, denoted index guidance [2,

3]. When one desires guidance within a material with a lower index than the rest of

the waveguide structure, however, index guidance ceases to be a dominant guidance

mechanism.

Appropriately designed low-index waveguides are thus of immense importance since

they greatly expand the range of materials to which light can be effectively confined and

guided within, such as liquids and gases. Such materials hold significant promise for

myriad applications once their interaction with confined light, guided over interaction

distances unattainable in bulk media, becomes possible.

Low-index waveguides can also be designed with cores made from materials that could

otherwise be used as the high-index core feature in another waveguide design. By making
1Note that this is a simple ray (or more precisely, plane wave) representation of waveguidance. A

more physically accurate electromagnetic field ‘mode’ picture is discussed later; this modal description
is necessary when diffraction effects become non-negligible.

2The term ‘internal’ here refers to the fact that the light must be within the medium of highest
refractive index.
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such materials the low-index feature, by surrounding them with high-index structure,

the guidance mechanisms available to the guided light gives it properties unattainable

via index-guiding waveguides, opening up possibilities for applications impossible via

index-guiding.

No matter the core material—vacuum, gas, liquid or solid—low-index guidance mecha-

nisms are typically based on resonant interactions with the cladding structure. These

resonance phenomena, the structures supporting them and their applications are re-

viewed in detail in the following section (§ 1.2).

While much of the discussion within can be applied to various waveguide platforms,

the focus here is predominantly (but not exclusively) on optical fibres: longitudinally

invariant waveguides forming a long, hairlike structure. Of particular interest are micro-

structured optical fibres (MOFs): fibres that contain micron-scale structure in the fibre’s

cross-section. While interesting regimes can be accessed by other platforms, such as

planar waveguides, MOFs have proved to be the most versatile in achieving robust and

complex transverse waveguide structures over long lengths [2, 3]; a review of the hollow-

core versions is presented presently.

The most prevalent variant of a low-index guiding structure is a hollow-core waveguide: a

waveguide whose core region consists principally of air3. The most simple form of hollow-

core fibre (HCF), a simple tube, was first considered by Lord Reyleigh in 1897 [4]; Fig-

ure 1.1-A qualitatively represents this simple structure. It was only until many decades

later, when fabrication techniques and the potential for applications had advanced, that

the tube structure was seriously considered for applications requiring the guidance of

electromagnetic radiation. In 1964, Marcatili and Schmeltzer [5] published a seminal

work on the propagation of light within hollow tubes made of either dielectric or metal-

lic materials. As they discussed, this work came at a time not long after the invention

of the laser which, among many other things, ignited great interest in the potential for

transporting light for long-distance communication. With various candidates consid-

ered for this important application [5–7]—such as sequences of lenses and mirrors for

free-space propagation, hollow pipes, and solid-core dielectric waveguides—the hollow

waveguide was (after a great amount of research into microwave, millimeter wave and

optical waveguides) ultimately not considered as the ideal platform for the task due to

issues such as high modal volume, loss, multi-modal dispersion and high bend-loss [7].

It was the latter platform, the ‘dielectric wire’, guiding light in a core of refractive index

relatively higher than the cladding, which proved to be the most suitable, overcoming

many of the shortcomings of the hollow tube approaches. guidance in a high-index di-

electric core could confine light at low loss to a much smaller core than possible with
3The term air can be equally substituted with vacuum in this context.
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Figure 1.1: Qualitative representations of the cross-sectional structures of most of
the historical and contemporary hollow core fibres described in the literature. The
coloured regions represent a relatively high refractive index substrate whereas white
regions represent regions of air or vacuum. A: Tube. B: Conventional hexagonal-lattice
cladding hollow-core MOF. C: Honeycomb hollow-core fibre. D: Bragg fibre; the darker
rings represent a second cladding refractive index higher than the substrate. E: Square
lattice. F: Kagomé lattice. G: Average-index Bragg fibre. H: Air-Bragg fibre. I:
Spider-web air-Bragg fibre—a novel waveguide presented in Chapter 5.

a simple hollow tube. This produces fewer modes, reducing the effects of multi-modal

dispersion and giving a greater resilience to bend loss, predominantly due to the nature

of the total internal reflection mechanism (§ A.2) and great advances made in the re-

duction of material losses for the silica glass used for the single-mode silica fibres which

form a vital ingredient for our global telecommunications infrastructure today [7]. If any

more evidence were required for the influence and importance of fibre and waveguide

optics in this area, the 2009 Nobel Prize in Physics was awarded to Prof. Charles Kao

for, according to the Nobel Foundation, “groundbreaking achievements concerning the

transmission of light in fibers for optical communication” [8], which included a significant

contribution towards the aforementioned silica material refinement.
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Figure 1.2: Qualitative representations of the cross-sectional structures of two level-
core fibres. The dark regions represent a relatively high refractive index while the light
regions represent a low refractive index. A: Level-core Bragg fibre, discussed in detail
in Chapter 2. B: ARROW fibre.

Figure 1.3: Qualitative representations of the cross-sectional structures of two
Integrated-ARROWs. The dark regions represent a relatively high refractive index
while the light regions represent a low refractive index. White regions represent the
hollow cores of each. A: Rectangular core. B: Arch-shaped core.

This history aside, the applications for confining light to a region of low refractive index

such as air are important and numerous (many discussed in § 1.2), and are applicable to

many more applications than just point-to-point transmission. Once the many modern

nontrivial waveguide designs are appreciated, the immense potential of guiding light in

low-index materials becomes apparent with functionality far superseding a simple tube.

Most of the low-index guiding waveguides in question are qualitatively depicted in cross-

sectional form in Figs. 1.1, 1.2 and 1.3; their guidance mechanisms, optical behaviour,

fabrication and applications as reported in the literature are reviewed in § 1.2.

Often air-guidance is desirable because the confinement of light to air avoids the inher-

ent absorption that arises when it is guided within potentially ‘lossy’ solid materials—

materials which, due to their compositional makeup, attenuate light to some degree. In

fact, with careful waveguide design, one can produce hollow-core waveguides whose total

optical power losses are far less than the substrate material from which the structure

is made (examples are discussed in § 1.2). This is unique to hollow-core waveguides

since conventional waveguides generally rely on guidance within the substrate mate-

rial which necessarily increases the light overlap with a potentially lossy material. The

substrate thus often defines the minimum transmission loss achievable in a waveguide.

From this perspective, appropriately designed hollow-core waveguides can break this

substrate material loss barrier by guiding light in a region with a lower optical loss, such
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Figure 1.4: Comparison between focusing light in free-space, guiding light in a hollow
tube, or guiding light in a HC-MOF. Focusing in free-space can produce a high intensity
‘spot’ with a spot size and depth of focus determined by the initial beam width and lens
focal length. Guiding light within a tube can confine the light to a beam of diameter
about the size of the tube’s bore over an effective length dictated by the relatively large
confinement loss of the tube. Guidance within a HC-MOF can confine light at a design
wavelength at low loss for much longer effective lengths due to the lower confinement
loss possible via coherent scattering from the structured cladding.

as air [2, 3, 9]. This property is important for the creation of optical waveguides for

guidance in the mid-to-far infrared spectrum, where many viable waveguide materials

have a large optical material loss. This is especially important when high-power deliv-

ery is desired such applications as medical laser ablation [10–13] where a lossy substrate

material would otherwise succumb to damage were light guided in it directly, owing to

the material absorbing excessive power.

Another important concept for many parts of this thesis is the potential to fill a hollow

core with gases or liquids. This behaviour offers the possibility of confining light to such

materials over interaction lengths unattainable with conventional approaches such as

free-space optics, as depicted in Fig. 1.4: an appropriately designed hollow waveguide

can enable long light-matter interaction lengths within a hollow or filled low-index core.

The free-space analogue can only produce a relatively small interaction region or ‘spot’

due to the diffractive nature of light (Fig. 1.4, top). The purpose of a waveguide is to
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combat this diffraction by confining and guiding the light within the waveguide struc-

ture. For low-index guidance, a hollow tube achieves this to some degree, but allows

light to escape through the high-index cladding region (Fig. 1.4, middle). By adding

appropriately designed structure, such as multiple layers, to the cladding surrounding

the core, light can be coherently scattered (reflected) back into the core region with

much greater efficiency than possible with the plain core/cladding interface of a tube

(Fig. 1.4, bottom); comparative analyses between a multilayer MOF and the equivalent

simple tube are presented via numerical calculation in later sections, such as § 2. This

coherent scattering reflection effect of hollow-core MOFs (with appropriate cladding

structure) allows guided light to travel much further at a higher local intensity than

possible with a tube or propagation in bulk media.

For example, Gaussian beam optics [14] dictates that in free space a fundamental Gaus-

sian beam’s cross-sectional area increases by a factor of 2 when propagating from its focal

point, the most tightly focused part of the beam, to its Rayleigh range z = zR = πw2
0/λ,

where λ is the wavelength of the light, z is the propagation distance from the focal point

and w0 is the minimum waist of the beam. The waist is measured as the distance w at

which the intensity of the beam drops by 1/e2 from its centre, perpendicular to the axis

of propagation; the waist is minimised at the focal point, having value w = w0. The

‘spot size’ of the focused beam is thus 2w0 (the 1/e2-intensity–based diameter of beam

at the focal point), as depicted in Fig. 1.4 (top). This spreading out of the beam reduces

the local maximum intensity of the light. The depth of focus of the beam can thus,

somewhat arbitrarily, be defined as ld.o.f. = 2zR, depicted in Fig. 1.4. Many applications

of optics require high-intensity light to interact with some material or system over long

interaction lengths. One can calculate that the on-axis intensity decreases by 1 dB after

propagating about half of the Rayleigh range from the waist; more precisely, a 1 dB loss

in axial intensity corresponds to an axial distance from the waist of Δz ≈ 0.509zR. As

an example, for a Gaussian light beam of λ = 1.55 μm and w0 = 10 μm propagating

through air or vacuum, the on-axis intensity decreases by 1 dB after only about 103 μm

from the waist.

One can also calculate (e.g., §§ 2.3.1 or A.4.3) the intensity decrease in a tube that

maintains a similar spot size. Consider a silica tube (nsilica ≈ 1.45) with a hollow core

diameter of 40 μm; a core diameter 4× the waist of the above Gaussian beam would

produce guided light with a Gaussian-like intensity profile approximate to that at the

waist of the free-space beam. For the same 1.55 μm wavelength, the light in such a tube

would travel ≈ 3.2mm before decreasing in intensity by 1 dB (due to a confinement loss

of about 312.5 dB/m); that’s about 30× longer than the Rayleigh range of the free-space

equivalent.
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In contrast, state of the art hollow core optical fibres can confine such light to similar

dimensions in air over almost a kilometer before the intensity drops by 1 dB [15–18],

making the interaction length many orders of magnitude longer than possible in free

space or a simple tube. These comparisons are qualitatively represented in Fig. 1.4.

Conventional waveguides require the core region to have a larger refractive index than the

cladding so as to exploit total internal reflection (see § A.2). Most low-index materials

either have a lower refractive index than the available compatible cladding materials or

are in a form incompatible with waveguide fabrication on their own, such as liquids or

gases. To circumvent this issue, propagation in the bulk form of a low-index medium

(like the free-space propagation example above) is the most simple alternative. With the

promise of low-index low-loss waveguidance, however, a significant light-matter overlap

can be achieved with such materials over propagation distances unattainable in the bulk

material alone. This functionality opens the way for novel applications in sensing [19–

22], nonlinear optics [9], microfluidics and particle manipulation [23–29], and waveguide

lasers [30, 31], where a long interaction length between material and light is critical.

The most important types of low-index guiding waveguide structures that can be found

in the literature today are discussed presently in § 1.2. As mentioned, the perspective

will be predominantly toward optical fibres rather than waveguides in general. The

simple theoretical explanations of waveguidance discussed here are expanded on in the

relevant subsequent chapters throughout and in much more detail in Appendix A. By

discussing the various fibre geometries in Figs. 1.1, 1.2 and 1.3 in the sequential manner

below, the associated guidance mechanisms can be naturally introduced as the structural

and conceptual complexity increases, while also giving a comprehensive review of the

literature.

The field of structured optical waveguides, especially fibres, is rapidly evolving, catalysed

by the invention of the microstructured optical fibre just before the turn of the millen-

nium. Because of this, a comprehensive overview of the relevant literature, in order

to detail the various waveguides and their associated guidance phenomena, fabrication

techniques and applications, cannot currently be found in the current literature. Indeed,

due to the intimate relationship between the many distinct concepts, the presentation

of these details must be careful and considered. This is the intent of the majority of the

remainder of this chapter.
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1.2 Low-index Guiding Waveguides—Review

Figure 1.1 shows qualitative representations of most types of hollow-core microstructured

optical fibres reported in the literature today. Each will be discussed here in terms of

its guidance mechanisms, fabrication techniques and applications.

Tube While a tube (Fig. 1.1-A) is capable of guiding light in low-

index media, its simple guidance mechanism is quite restrictive. A tube

guides by reflecting light from the single core-cladding interface. Upon

each reflection, light is reflected back into the core, propagating down

the tube until it is once again reflected. In a ray/plane-wave picture of light, a zig-zag

path is traced along the core.

Since the core has a lower refractive index than the cladding, the light can only be

partially reflected at the interface due to Fresnel reflection, the remaining power being

lost to the cladding or ultimately into whatever surrounds the tube. This type of power

loss from the core is particular to the confinement mechanism (reflections from the

interface in this case), rather than absorption or scattering by the substrate material,

say, and is naturally termed confinement loss (CL). As the relative size of the core is

reduced, the number of reflections per unit length increases, naturally increasing the

confinement loss (this is a simple ray picture; a more physical vector wave description

is discussed in the following sections). This behaviour means that only large core tubes

can be effectively used to efficiently guide light. As discussed in §§ 2.3.1 and A.4.3, this

is seen explicitly in the inverse-cube core radius (a) dependence and square wavelength

(λ) dependence of confinement loss (CL): CL ∝ λ2/a3, from Eq. 2.2 (based on [5]).

Cores that are significantly larger than the wavelength of guided light tend to support

many modes. Each mode represents a specific way of ‘fitting’ the electromagnetic field

of light of a specific wavelength within the waveguide. The smaller the core, the fewer

ways light can fit, hence it supports fewer modes. Waveguides with only one or a few

modes are much more suitable for various applications than those with many modes.

For example, exciting multiple modes can broaden an optical pulse since each mode

typically travels at a different speed to another, which is often an unwanted effect.

Thus, a tube is not an ideal waveguide for few-mode guidance since the use of a small

core leads to a correspondingly large confinement loss. Further, such waveguides can

not be bent significantly without the loss increasing dramatically [5, 32, 33], providing

another obstacle to practical implementation.

To circumvent these kinds of obstacles to low-loss waveguidance in a hollow core, the sim-

ple reflections from a single interface as for the tube give way to complex resonance and
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interference based interactions with the structured claddings of many modern hollow-

core and low-index guiding waveguides. These will be discussed in § 1.2.2 after a brief

discussion of some fundamental concepts required for the following sections.

Note that there are many different ways in which to simulate (model) the great number of

waveguides reported in the literature, some more appropriate for different structures and

regimes than others. Due to the fact that there are so many of them, only those modelling

techniques pertinent to the discussion at hand will be described. Those theoretical tools

used for the research in the body of this thesis will be discussed in detail when they are

required.

1.2.1 Waveguidance Concepts

After discussing the simple tube, it is worth introducing some fundamental waveguidance

concepts. A thorough theoretical treatment is given in Appendix A, along with a de-

veloping dialogue throughout the following chapters. Some fundamentals are abstracted

here from these later sections, along with some general comments.

To introduce some important concepts, plane wave approximations to light propagating

within a planar waveguide will be considered4. More complex models and phenomena

are discussed in § 1.2.2 and in much more detail in the following chapters. As discussed

in detail in § A.2.1.1 a plane wave travels on a straight path in the direction of its

wavevector k. Since the whole wave travels in one direction, it can be referred to as

a ray with its path direction represented as a straight line (the ray). As per Fig. 1.5,

rays within either the core layer or cladding region of the planar waveguide in question

have wavevector (Eq. A.47) ki = kik̂i = nik {cos θix̂ + sin θiẑ} (i = a, b for the core

or cladding respectively); k = 2π/λ is the free space wavenumber, λ is the free space

wavelength and θi is the angle the ray makes with the normal to the interface. As well

as ki determining the ray’s direction of propagation, it also determines its spatial phase

as per the wave’s oscillatory factor of ei(ωt−ki·r) (§ A.2.1.1), where ω is the angular

frequency of the wave (related to the free space wavelength λ as ω = 2πc/λ). The phase

accumulated by the wave upon the wave propagating a distance l through a medium of

refractive index ni is φ = kil = nikl.

Figure 1.5 depicts ray propagation within a planar waveguide with high- or low-index

core with respect to the cladding. The layer (the core—refractive index na) guides light

by reflecting the rays from each of the interfaces made with the surrounding medium
4More precisely, the waves are assumed to be locally plane. Plane waves can strictly only exist in

infinite homogeneous media since their equi-phase wavefronts are infinite in extent. In regimes where
the effect of the diffraction of light is relatively small, plane waves can often be used as a suitable
approximation to components the local electromagnetic field.
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Figure 1.5: Ray propagation within planar waveguides with either high- or low-index
cores; a duplicate of Fig. A.1. Top: A layer with a higher core refractive index than the
surrounding cladding. Bottom: The same waveguide but with a core index lower than
the surrounding cladding. All vector labels represent amplitudes.

(the cladding—refractive index na). The reflected rays make the same angle with the

interface normal as the incident rays, as per the Law of Reflection (Eq. A.62). Provided

the index of refraction of the cladding is different to that of the core (i.e., na �= nb), the

light will be reflected back into the layer. Once the light reaches the other side of the

core, it is again reflected back toward its centre. This trapping of the light as it travels

down the core is referred to as guidance or confinement. Figure A.1 demonstrates this

light-ray guidance concept.

The relative values of the layer and cladding refractive indices greatly influences the

type of reflection undergone by the light as it interacts with the interface. If the core

index is larger than the cladding index (i.e., na > nb), and the angle the guided ray

makes with the interfaces is equal to or greater than a critical value (i.e., θ ≥ θc), the

light will succumb to total internal reflection (TIR). In this regime, all light is confined

to the core and none can escape into the cladding5 (§ A.2.1.2 discusses TIR in detail).
5Although a portion of the light’s field will penetrate into the cladding as an evanescent field, it is

bound to the interface and cannot propagate away from the layer. This is discussed in more detail in
§ A.2.1.2.
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If, however, the ray is incident below the critical angle, only a portion of the power of

the light is reflected back into the core, with the remainder escaping to the cladding,

never to be recaptured. For propagation over a certain distance, then, a certain amount

of guided light power will be lost from the guidance region by means purely due to the

way the light is confined (such as inherent material losses, say). This effect is known as

confinement loss. The waveguidance mechanisms behind confinement loss are not always

as simple as the example just described, especially when microstructured waveguides are

considered (discussed at length in the following § 1.2.2).

Most important for the work considered here, however, light can also be guided within

a core of lower refractive index than the surrounding cladding (i.e., when na < nb). In

this regime, confinement loss occurs for all incidence angles of the guided rays within

the core. This is because no TIR regime exists for propagation from a low-index to

a high-index medium, hence there will always be some fraction of the light allowed to

escape the core guidance region6. This is the precise reason why guiding light in low-

index media can be troublesome. While some applications can make do with the high

transmission losses that come with low-index guidance with a homogeneous cladding,

there is a wealth of rich physics and a plethora of unique applications that flow from

the various ways in which one can coerce light to be guided within a region with a low

refractive index.

While each diagram of Fig. 1.5 represents the same guided longitudinal wavenumber β

(the ka vector is the same for each by design—arbitrary but useful here), the transmitted

rays differ markedly depending on whether the ray penetrates into a higher or lower

refractive index region. Rays propagating from the medium with refractive index na

into the medium with index nb approach the interface with wave-vector ka at an angle

θa to the interface normal and exit with wave-vector kb at an angle θb to the normal, as

per the Law of Refraction (Eq A.63). The other possibility is that a fraction (possibly

all) all of the light can be reflected from the interface, as discussed, but this regime

is not considered here. Figure 1.5 also shows the decomposition of the wave-vectors

into Cartesian components: the x-component kix = ki · x̂ and the z-component kiz =

β = ki · ẑ; no y-component exists by the orientation of the x-z-plane with the plane of

incidence here. Integral to much of the following work is that the longitudinal component

kiz is conserved, as will be derived later. i.e., The longitudinal component of the wave-

vector has the same value before and after transmission and reflection, so that one may
6Note that this is a simple ray picture. In a more precise field picture (e.g. Appendix A), waves

undergoing TIR at a high- to low-index boundary will have an exponentially decaying field amplitude
normal to the interface which, if terminated by a high-to low-index boundary, say, can be coupled out
of the core, inducing a loss. In practice, this cladding region can be made large enough to render such
confinement loss negligible. This same tactic of increasing the size of the cladding region can not be
used for guidance in low-index media since confinement loss is inherent to guidance within low-index
media and not an artifact the premature termination of a TIR evanescent field, say.
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set kaz = kbz = β; a direct result of the Law of Refraction, Eq. A.63. β thus becomes

an important quantity when considering the confinement of light within a waveguide.

Waveguides support so-called modes: rays whose accumulated transverse phase for one

round-trip of the slab (traversing the slab twice due to reflection from each interface)

is an integer multiple of 2π—both propagation and reflection contribute to the phase

accumulation, § A.2.1.3. This condition implies that the waves must be self-consistent

in that their local amplitude is the same upon each round trip. There are only a discrete

range of β values (hence ray angles θi) that can satisfy this modal condition. It is easy to

see that there is a maximum β for which the mode condition is satisfied: a larger value

would produce a ray with such a glancing angle θa (close to parallel with the interface)

that it cannot complete a full 2π phase cycle in a single round trip. This maximum-β

mode is referred to as the fundamental mode. The discrete modes with smaller values of

β are referred to as higher-order modes and complete more accumulated 2π transverse

phase cycles per round trip than the fundamental (larger integer multiples of 2π as

above). By a similar argument, there are only a finite number of higher-order modes

(modes can only have 0 < θi < π/2—equivalently 0 < β < k).

Formulation of an arbitrary waveguide system in (the more general) terms of oscillating

electromagnetic fields which must satisfy Maxwell’s equations (Eqs. A.1 and A.2) shows

that this mode description of light guidance appears naturally. In particular, the electro-

magnetic fields must satisfy the time-harmonic wave equations for inhomogeneous media,

derived from Maxwell’s equations, § A.1.3. The wave equations require that the solutions

have fields whose oscillatory terms are similar to the plane waves above but allowing ar-

bitrary transverse field structure (Eqs. A.21 and A.22)7: E(r⊥, z) = E(r⊥)ei(ωt−βz) (and

equivalently for the magnetic field H). These conditions imply that the solutions (the

modes) of the waveguide system have invariant oscillations (are harmonic) in both time

and the longitudinal spatial dimension. The spatial harmonic condition is equivalent to

the self-equivalence of the modes described above for guided rays. The (discrete) modal

nature of the solutions is clear when one appreciates that the problem is essentially an

eigenvalue problem as per Eqs. A.28 and A.29 (discussed in § A.1.4). The discrete modes

have their own values of β and transverse field configurations [E(r⊥) and H(r⊥)]; modes

with equal values of β are termed degenerate. This wave description of waveguidance is

typically used in the body of this work when the calculation of the modal characteristics

of various waveguide structures is performed (well beyond the simple case of a planar

layer).

Since β is conserved for all types of propagation, in the ray or wave formulation, it

is termed the propagation constant of a mode. It is useful to define a closely related
7The sign convention used for the oscillatory term in certain sections is discussed in § A.1.3 ¶2.
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quantity, the effective refractive index, denoted ñ here. The effective index is related to

the propagation constant simply as:

ñ =
β

k
=

λβ

2π
. (1.1)

The consideration of ñ as a type of refractive index for a mode can be seen in the way it

appears in the wave equations and expressions in § A.1. In general, at least in dielectric

media, ñ will tend towards the value of the refractive index in which the transverse field

is most confined (suggested by the dependence of ñ on the fields as per Eq. A.26).

The wave formulation naturally permits the description of confinement loss for the guided

modes. When calculating the modes of low-index guiding waveguides, one always finds

that the propagation constant is complex: β ∈ C. As discussed in § A.1.4 the longitu-

dinal oscillatory field term eiβz produces a decay factor e−Im{β}z for complex β. This

field decay is precisely the manifestation of confinement loss inherent in the complex

eigenvalues of such modes. As shown in Eq. A.25, this decay leads to a quantitative

expression for the confinement loss (loss of power through the transverse structure for

axial mode propagation) related to the imaginary part of the propagation constant, or

effective index, in units of dB as:

CL =
20

ln(10)
Im{β} =

20
ln(10)

k Im{ñ} .

These considerations are critical for the discussion and analysis within as, according to

Corollary A.2, for light guided within a low-index region, TIR cannot occur anywhere

within the structure. This has the implication that β (equivalently ñ) will always be

complex for such waveguides—all modes will have confinement loss. Such modes are

often termed leaky modes, for obvious reasons.
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1.2.2 Effectively 1-D Structures

Waveguide structures based on an effectively one dimensional cladding structure are

now reviewed. The term ‘effectively’ is used here since the structures are all either

continuously or discretely azimuthally invariant; the cladding structure is composed of

either continuous concentric rings or rings made from holes of various shapes. The 1-D

nature exists in the radial dimension only.

Hollow-Core Bragg Fibre The so-called Bragg fibre (Fig. 1.1-D)

provides a means of improving confinement loss under hollow-core guid-

ance. The hollow core is surrounded by alternating, radially periodic

layers that have thicknesses of the order of the wavelength of the light to

be guided. Light impinging on the cladding is thus reflected multiple times from each in-

terface made between the layers and the multiple reflection all interfere with one another.

When all reflected light waves return to the core-cladding interface and add in-phase

(i.e., they are coherently scattered), minimal light is lost through the cladding, reducing

the confinement loss. However, it is also possible, through varying the wavelength or

incidence angle, for the light to add out of phase and be predominantly out-coupled

through the cladding, substantially increasing the confinement loss. These two oppos-

ing conditions see that the transmission spectrum of such a fibre has discrete, periodic,

peaks and troughs.

The relative height of the peaks to the troughs increases with increasing numbers of

cladding layers, as may be expected; the more layers that exist, the more light that can

be coherently reflected, decreasing the minimum confinement loss; Chapter 2 discusses

this relationship between the number of layers and confinement loss from a wave/field

description of light. This behaviour is essentially that of a one dimensional photonic

crystal (PhC): a 1-D periodic planar structure; called a Bragg stack or Bragg reflector in

this case of two layer types. In the language of photonic crystals, the conditions of high

reflectivity (low confinement loss in-fibre) are said to exist in photonic bandgaps [34];

states of light which are denied propagation in the layered structure and hence reflected.

This bandgap waveguidance behaviour was discussed earlier with Figs. 1.4 and 1.6.

Bandgap effects can also be observed in periodic structures with higher-dimensionalities,

such as a 2-D array of cylinders or 3-D lattice of spheres. In each case, the sub-units

(layers, cylinders, spheres, etc.) scatter light in some manner. When the light impinging

on the structure has (λ, ñ) within a bandgap, the light is reflected to some degree since

propagation in the structure is prohibited. In fact, it is a general principle that the

higher the dimensionality, the more scarce the bandgaps [34]. The reason for this is
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that there are more ways for light to scatter from photonic crystals with structure in

more dimensions, hence a higher likelihood that the scattered light will not add in-phase

(not be in a bandgap). 2-D photonic crystal structures will be discussed later for other

HC-MOF types.

The concept of the Bragg fibre was first discussed by Melekin and Manenkov in 1968 [3,

35]. A solution to Maxwell’s equations for the 1-D Bragg stack was derived by Yeh, Yariv

and Hong in 1977 [36], where the bandgap conditions for out-of-plane propagation were

explicitly derived, among many other important results. This analysis was extended

to the case of the cylindrical Bragg fibre in 1978 by Yeh, Yariv and Marom [37], later

improved upon by others [38–40]; essentially, the plane wave analysis of the 1-D solution

in [36] is replaced by a Bessel or Hankel function analysis to accommodate for the fibre’s

cylindrical symmetry. Both techniques (for the planar and cylindrical Bragg structures)

are covered in Section 2.3 and more thoroughly in Appendix A. The latter work [37]

appears to be the first discussion and analysis in the literature of what is now often

called a photonic bandgap fibre (PBGF), since the guidance mechanism appears to rely

on a bandgap effect. For sufficiently large core sizes, the cladding of a Bragg fibre can

be approximated by a planar Bragg stack [41–43], a property that is exploited in later

sections of this thesis.

Figure 1.6 shows a qualitative representation of bandgap guidance in a Bragg fibre. The

ray paths to the left of the figure represent guided light with decreasing (top to bottom

images) longitudinal wavenumbers β, and hence decreasing modal effective refractive

index ñ. Only light with a frequency and longitudinal wavenumber pair (ω, ñ) satisfying

the cladding layers’ bandgap conditions (the white regions in the figure) can be reflected

efficiently and hence guided with low loss. The qualitative bandgap representation in the

figure is close to that of the transverse-electric (TE) bandgap of a Bragg fibre cladding

(shown in detail in Chapters 2 and 3). In general, modes lying deep within a bandgap

exhibit the lowest loss (most efficient reflection from the cladding) and hence maintain

a higher guided power. Modes approaching the edge of the bandgap are increasingly

permitted to propagate through the cladding since the multiple reflections from the

cladding layers become less coherent (less in phase). Modes within the bands (the

inverse of the bandgap regions—black regions in the figure) do not support modes at

all since light is permitted to efficiently propagate through the cladding. These three

scenarios are termed ‘bandgap’, ‘bend-edge’ and ‘in-band’ in the figure, respectively.

Cladding bandgaps can exist at other ranges of frequencies, too. The same behaviour

holds for modes satisfying the bandgap conditions there, as well, except that they will

obviously be of different wavelengths—represented by the different colours of the guided

light in Fig. 1.6.
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Figure 1.6: Simple qualitative representation of bandgap guidance in a Bragg fi-
bre. The ray paths to the left represent guided light with decreasing (top to bottom
images) longitudinal wavenumbers β = kñ. Only light with a frequency and longitu-
dinal wavenumber pair (ω, ñ) satisfying the cladding layers’ bandgap condition can be
reflected efficiently and hence guided with low loss.

Note that guidance also requires the light’s (ω, ñ) to satisfy the mode condition on the

core as well as the cladding bandgap condition. Thus, the representation of the guided

light with lower ñ in the end-face views of the figure are rather simplistic here and would

realistically exhibit more complex patterns associated with higher-order modes of lower

β. Alternatively one can access such lower ñ by, when possible, decreasing the core

refractive index; discussed in detail in Chapters 3 and 4.

As an aside, as will be shown in detail in Section 3, the bandgap effect isn’t the only

mechanism that can be attributed to the guidance of a Bragg fibre. Because of similar

considerations for other fibres, such as the 2-D ARROW or Kagomé fibres discussed later,

the term PBGF quickly leads to confusion when discussing the contemporary literature

as a whole. Because of this, here the more general term Hollow-Core Microstructured

Optical Fibre (HC-MOF) will be used for any fibre with a hollow core throughout this

work, rather than implying a specific guidance mechanism.

Practically, a Bragg fibre requires two layer materials that are sufficiently chemically,
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thermally and mechanically compatible. In 1998, Fink et al. [44] demonstrated theoret-

ically and experimentally the viability of an omnidirectional reflector based on a Bragg

stack made from chemically deposited layers of polystyrene (a polymer) and Tellurium

(a chalcogen element). The term omnidirectional refers to the fact that the specific

structural configuration reflects most of the incident light for all incidence angles and

polarisations (over a limited wavelength range). One year later, the same group demon-

strated the fabrication and the predicted bandgap guidance of a large core (∼ 1mm)

cylindrical waveguide (essentially a large fibre) whose cladding was an omnidirectional

reflector made from polyurethane and Tellurium layers using a similar deposition tech-

nique upon a sacrificial silica core which was etched away to produce a hollow core.

This proof-of-concept paved the way for later demonstrations, again from the same

group, of smaller core (∼ 100 μm) Bragg fibres with polyethylsulfonate (PES) and

Arsenic-triselenide (As2Se3, a chalcogenide glass) layers [41] and polyetherimide (PEI)

and As2Se3 layers [42]; the smaller core sizes achievable were due to the refined fabri-

cation technique employed. The fabrication technique involved depositing layers of the

materials onto a planar substrate via physical vapour deposition (PVD) which was then

rolled into a cylinder to form a fibre preform (a macroscopic version of the target fibre).

The preform was then heated and drawn down to fibre in a process very similar to the

drawing of other modern fibres [2, 3]: once the preform reaches the critical temperature

at which its materials begin to soften, a drop forms which is pulled downward due to

gravity, leaving behind it a thin strand which forms the fibre (Chapter 5 discusses a fibre

drawing process particular to this thesis in much more detail).

These fibres could guide low-loss in the near- to mid-infrared (NIR to MIR) spectrum,

wavelengths of about 0.7 μm–15 μm (depending on one’s definition), owing to the large

core and numerous layers; as discussed above, the more layers, the lower the minimum

confinement loss—again, see the results of Chapter 2 for another explanation of this from

a field/wave picture. The fibre of [42] demonstrated up to an astounding 35 pairs of layer;

keeping the required periodicity over so many layers requires strict fabrication tolerances.

The high-reflectivity of the fibre claddings at their design wavelengths means that the

optical losses could be reduced orders of magnitude below those of the cladding materials

themselves. This permits light to be transmitted through the fibre at very high power

without damage to the waveguide; a property which saw the fibre design implemented

in precision medical laser delivery devices not long after its demonstration [10, 11].

While most applications only consider a hollow core, Chapter 4 presents an experimental

and theoretical analysis I have performed on the spectral properties of Bragg fibres after

filling the core with liquids of various refractive indices; the work was a collaboration

with Prof. Yoel Fink and one of his students, Alexander Stolyarov, of the Photonic
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Bandgap Fibers and Devices Group, Massachusetts Institute of Technology (Cambridge,

Massachusetts, US), the group predominantly involved in the above cited research. I

presented the results shown in Chapter 4 at the Conference on Lasers and Electo-Optics

(CLEO) 2009 in Baltimore, Maryland, US.

The idea of filling the core of a hollow-core Bragg fibre leads to the concept of the next

structure.

Filled-Core Bragg Fibre A variant on the above type of Bragg fibre

is one in which the core is not hollow but filled with a material either

during or after fabrication. The bandgap (or antiresonance, Chapter 3)

guidance mechanism allows guidance of light in cores of refractive index

equal to or lower than the lowest of the cladding layer indices: ncore ≤ n0. Here I define

level-core waveguides to be those with a core index equal to the lowest cladding index,

demonstrated in Fig. 1.2-A, and the more general depressed-core waveguides to be those

with a core index equal to or less than the lowest cladding index (e.g., Fig. 1.1-D, but

with a variable core index). A 2-D lattice level-core fibre is discussed later: the ARROW

fibre, Fig. 1.2; where a discussion of the unique guidance regime attainable from 1-D

and 2-D ARROW fibres is also given.

Before the demonstration of the first hollow-core Bragg fibre discussed above, the first

reported fabrication of any Bragg fibre was from Brechet et al. [45–47] in 2000. This

fibre’s core was not hollow but solid. The fibre preform was fabricated by using molecular

chemical vapour deposition (MCVD) to deposit layers of silica and Germanium-doped

silica around a solid rod of slightly Fluoride-doped silica glass, making it a depressed-

core waveguide. The preform was then heated and drawn down to fibre in a manner

similar to that described above. The resultant fibre had a very small (for a Bragg

fibre) core radius of 6.7 μm with layers of about 1.2 μm thickness producing 7 layer

pairs. This particular fibre was designed to have a zero-dispersion wavelength about

1.06 μm in order to explore nonlinear effects such as soliton generation and parametric

amplification.

Katagiri et al. [48, 49] (in 2004 and 2006, respectively) demonstrated the fabrication of a

level-core Bragg fibre by using a sputtering technique to deposit multiple layers of silica

and silicon around a prefabricated 125 μm pure silica fibre, producing 8 cladding layer

pairs. While silicon is typically an extremely optically lossy material in the visible and

NIR, this type of low-index guidance allows light to be guided by, but not contained in,

a lossy material, as previously mentioned.
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Dupuis et al. [50] demonstrated a similar approach, but used a core and layers made

from polymers. To construct the fibre preform, multiple pairs of polystyrene (PS) and

polymethyl methacrylate (PMMA) films were wrapped about a large PMMA rod, pro-

ducing 25 cladding layer pairs. The composite preform was then drawn down to fibre,

similarly to the Bragg fibre mentioned above, producing core diameters of 100−300 μm.

The fact that the cross-section is solid, without a hollow core, makes the scale reduc-

tion during drawing much more stable [51] in comparison to the nontrivial dynamics of

drawing a similar hollow-core Bragg fibre. In [50], it is demonstrated how by varying

the outer diameter of the fibre during the drawing procedure, and hence altering the

size of the whole structure (including the layers), the transmission peaks can be shifted

through much of the visible spectrum, from green to red. The reason for this is that,

up to material dispersion, Maxwell’s equations are scale invariant, i.e., as the layers

decrease or increase spatially, so do the wavelengths at which the bandgaps sit. This

property has even been exploited in the application to ‘photonic textiles’ [52] in which

the fibre is weaved into a fabric whose appearance depends upon the spectral properties

of the cladding structure or the transmission out through the cladding of light coupled

into the fibres themselves.

Bookey et al. [53] employed a very similar method to [48] but where a preform was fab-

ricated by depositing cladding layers of silica containing undisclosed dopants (e.g., Ger-

manium) within a jacket and about a core made predominantly of silica. The cladding

layers were claimed to have average local refractive indices of about 1.470 and 1.458,

whereas the silica core is implied to have an index of about 1.45. This makes the fibre

a depressed-core Bragg fibre. The technique employed permitted a relatively small core

diameter of about 11 μm. The small core enables light to be confined to a small area,

reducing the number of guided modes and increasing the local power density, opening

the possibility of exciting nonlinear optical effects. This behaviour was exploited to

demonstrate supercontinuum generation8 in such a fibre [53]. The complex dispersive

and spectral characteristics of such bandgap/antiresonance based fibres, along with such

results, enable the possibility of many novel applications for nonlinear optics in low-index

media.

While these examples employ solid cores fabricated into the geometry from the start,

one can create a filled-core Bragg fibre by filling a hollow-core fibre with liquids or other

materials post-fabrication. As discussed above, this forms the main topic of Chapter 4

(presented in Ref. [55]) and is intimately related to Chapter 3.
8Supercontinuum generation is a complex interplay between various nonlinear optical effects resulting

in a significantly broadened spectrum [54]—often used to produce visible white light from a single pump
wavelength.
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An interesting example of what can be achieved by filling a hollow-core Bragg fibre

has been demonstrated by Shapira et al. [30] in which the core of a Bragg fibre very

similar to those described in [41, 42] was filled with an organic dye embedded in a co-

polymer. A significant portion of the dye’s fluorescence spectral peak lay within both the

longitudinal and transverse bandgaps of the cladding, i.e., the fluorescence light could be

confined by being both guided longitudinally along the fibre core and (uniquely) confined

transversely via a cavity effect; the cladding acted as a mirror to create a resonant cavity

perpendicular to the fibre axis. This transverse cavity then formed a laser resonator in

which the organic dye acted as a gain medium. The result was lasing in the transverse

direction, pumped by light propagating longitudinally down the fibre. The device was

termed a surface emitting fibre laser (SEFL). Because of the cylindrical symmetry of the

effective cavity, the emitted light formed a dipole pattern whose orientation depended

explicitly on the polarisation of the guided pump light. The applications for such a

device range from in-vivo medical imaging to active textiles [30].

Integrated-ARROW Recently there has been significant interest in

fabricating a hollow-core Bragg fibre type structure in a planar geom-

etry. Typically called an Integrated Anti-Resonant Reflecting Optical

Waveguide (I-ARROW) [28, 56], multiple layers of silicon dioxide and silicon nitride are

deposited upon a planar substrate. The core region is created by either the use of a sac-

rificial medium like polyimide [57], etched out post-fabrication, or by careful ‘crinkling’

of the top layers to reveal a hollow arch-shaped gap [26].

The I-ARROW has been applied to various novel applications, particularly for on-chip

microfluidics and particle guidance. Being a planar design with a hollow core it is ideally

suited for on-chip microfluidics: the hollow core can act as a channel for pumping through

a fluid to interact with the guided light, ideal for sensing [26, 58, 59]. By carefully

exciting only a fundamental Gaussian-like mode in the filled waveguide, the ‘optical-

tweezer’ radiation pressure effect [60] can be exploited to guide micron scale particles,

such as cells or other bio-material, along the waveguide [27, 29]. This application has

potential for areas such as sensing, medical diagnostics and on-chip particle sorting.

It is important to note that in the literature, the guidance mechanism of these waveguides

is most often attributed to the anti-resonance effect in which light not satisfying the

guidance conditions within a individual layers is reflected to some degree back into the

core, as opposed to the bandgap mechanism in which light not supported by the entire

cladding structure is reflected [61]. Since the geometry of an I-ARROW is conceptually

identical to that of a Bragg fibre, one may very well question why the attributed guidance

mechanism is most often antiresonance, not bandgap. This question is discussed in detail
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in Chapter 3 (and my publication upon which it’s based [61]), where a formal unification

of the two mechanisms is developed, with many useful analytical tools and conclusions

drawn from it.

Average-Index Bragg Fibre Figure 1.1-G shows a qualitative rep-

resentation of what is here called an average-index Bragg fibre. The

concentric rings surrounding the hollow core, instead of being made of

a second material, are made up of a finite number of relatively small

circular air holes. Note that only one material is required to fabricate the entire struc-

ture, rather than the two or more materials for the Bragg structures above; I will refer to

such structures as single-material HC-MOFs, which describes all but one of the following

structures, as well.

The average-index Bragg fibre was investigated by Argyros et al. [62–65] and demon-

strated experimentally by the same group [66, 67] using a polymer substrate, PMMA.

The structure was fabricated by machine drilling holes through a cylindrical bulk sample

(a billet) of PMMA, forming the fibre preform which was then heated and drawn into

fibre. The limitation of the drilling preform fabrication technique is that one is restricted

to circular inclusions, a drill bit obviously not being able to precisely produce long holes

of any other shape.

Numerical simulation [62–65] implies that the guidance mechanism can be interpreted

as that of a conventional Bragg fibre, but where the refractive index of the rings of holes

is spatially averaged out in some manner to a homogeneous value. This average index

must obviously be higher than that of air but lower than that of the substrate material.

In this sense, the average-index Bragg fibre is essentially a depressed-core waveguide.

Much like the polymer level-core Bragg fibres discussed above ([50]), Ref. [66] demon-

strated the shifting of the transmission spectrum with the global scale of the fibre, again

as to expected of a bandgap-type guidance mechanism, but this time in a hollow core.

The fact that only one material was used for the fabrication alleviates the restriction of

materials matching. Adding microstructure to a single substrate allows unique freedom

to contemplate otherwise unattainable structures and guidance regimes. This is a critical

point that is also demonstrated by most of the following waveguides.
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Air-Bragg Fibre Figure 1.1-H demonstrates a structure related to

the average-index Bragg fibre, defined here as an air-Bragg fibre. Instead

of concentric rings of holes, an air-Bragg fibre consists of concentric rings

of substrate material supported by thin connective struts. The reasoning

behind this design is that it approximates a Bragg cladding consisting of alternating

layers of the substrate material and air. Since concentric tubes suspended in air are

not mechanically feasible, due to obvious structural issues, the tubes must support each

other through the connective struts.

Prior to the my results presented in Chapter 5, the first and only practical demonstration

of an air-Bragg fibre was demonstrated by Vienne et al. in 2004 [43, 68]. The fibre was

created by constructing a fibre preform from multiple silica tubes and capillaries: three

thin-walled tubes were concentrically placed within a larger, thicker, tube which acted as

an outer jacket; the voids in between the concentric tubes were filled with many closely

packed silica capillaries. The preform was then heated and drawn down to fibre in the

usual manner [2, 3], with care taken to preserve the structure. The resultant fibre cross-

section was similar to that of Fig. 1.1-H, with the capillaries’ walls forming the connective

struts between the concentric glass rings. For their so-called OD90 fibre, the rings, air

gaps and supportive struts had thicknesses 0.14 μm − 0.22 μm, 2.27 μm − 2.4 μm, and

60nm − 80nm, respectively, with a core diameter of ≈ 10 μm.

An important observation for the work presented in Chapter 5 is that the cladding rings

of this fibre were somewhat distorted from perfect annuli due to the surface tension effect

of the softened silica glass during the drawing process. Nonetheless, the large number

of connective struts ensured these deformations weren’t severe, since the surface tension

force was spread more evenly over the rings than it would have been with fewer struts.

For an explicit example of this surface tension effect, see the preliminary fabrication

trials of Chapter 5.

Experimental testing of the fibre demonstrated that its transmission spectrum was close

to what one would expect from a Bragg fibre with alternating silica and air rings. The

discrete transmission bands corresponded well to the regions of low confinement loss

calculated from a simplified model of the Bragg fibre in which the struts had been ne-

glected and the rings were assumed perfectly cylindrical [43] in spite of the deformations

of the rings. Note that this simplified model did not accommodate for an averaging

over the refractive index of the air and glass struts in the air rings, as was done for

the average-index Bragg fibre above; even if this were done, the effect would be small

due to the relative thickness of the struts compared to the space between them (as the

agreement with experiment implies). Also, as for the cases mentioned above, varying
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the scale of the fibre structure during fabrication also saw the expected scaling of the

transmission spectral peaks.

For the work to be shown in Chapter 5, the most important property of the silica air-

Bragg fibre demonstrated by [43] is the very low transmission loss measured for so few

cladding rings. With only 3 cladding rings, their so-called ‘OD120’ fibre exhibited a

transmission loss as low as 1.5 dB/m at λ = 1.4 μm. This is comparable to the losses

reported for the conventional Bragg fibres discussed above which are made with many

more (tens) of cladding layers and large cores (hundreds of μm). The reason for the

air-Bragg fibre’s much lower loss is due to the large index contrast of the glass and air

layers of the cladding and the fact that the guided modes access the wide transmission

bands close to the light line, analysed in detail in Chapter 2. It is this low-loss, wide

transmission spectrum behaviour via a relatively simple structure (compared to most

other HC-MOF designs) that made the air-Bragg structure an appealing choice for the

work presented in Chapter 5.

While the air-Bragg fibre’s observed behaviour agreed with what is expected from the

simplified strut-less case, the influence of the struts on the guidance mechanism is also

important. There have been various reports [69–73] on the numerical modelling of the

modal behaviour of the full air-Bragg structure reported in [43, 68] (or close approxima-

tions to it). Thus far, the most promising work [70–72] discusses how the incorporation

of struts induces a symmetry breaking that permits the coupling of core modes to modes

that propagate within the innermost glass ring itself; these are often called surface modes.

The type of coupling is demonstrated to be due to anticrossings, in which the core mode

continuously ‘morphs’ into a surface mode. It was shown [70–72] that the presence of

these anticrossings was a likely reason for the observed disruptions in the fibres’ transmis-

sion spectra [43]. However, in comparing the confinement loss spectra of the calculated

core modes (typically the lowest order modes of each polarisation class), none of the

predictions agree with either the experimentally measured transmission spectra or the

numerical results of the simplified strut-less model. This point is explored further in

§ 2.7 where I re-calculate the CL spectra calculations of Foroni et al. [71, 72] of a model

of an air-Bragg fibre similar to that of [43].

This disparity between the full numerical model and the simplified model and experi-

mental results implies there is a crucial misunderstanding or missing concept somewhere

in the analysis, the origin of which is not clear at this time. The spectral cladding prop-

erties of many other popular large and complex transverse structures can be modelled by

approximating the cladding as infinitely periodic, permitting a Bloch-wave analysis [34];

similar to the way in which the conventional Bragg fibre cladding can be approximated
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by a planar stack, as mention above. This reduces the minimal spatial calculation do-

main significantly, from the entire fibre cross-section down to a single unit cell. The

full air-Bragg structure is not amenable to this type of simplification precisely due to

the existence of the connective struts which break the continuous azimuthal symmetry,

implying that for as long as one considers the struts the cladding can’t be considered

as effectively radially periodic. The only way to accurately and precisely model the

behaviour of the waveguide is then to model the entire 2-D irreducible structure.

It is conceivable that the numerical methods employed for solving the large and complex

structure may be reaching a limit in precision or accuracy in this regime, or at least for

the computational resources typically used. However, drawing a conclusion on this

possibility would require a thorough review of various numerical techniques and their

application to this uniquely nontrivial structure.

Another possibility is that other guided core modes (beyond just the calculated he11

of [71, 72]) have a significant influence over the transmission spectrum. An explicit

example of why this may be necessary is provided in § 2.7 where it is shown how the

TE01 mode has a significantly different (broader and lower) CL spectrum which better

matches that of the strut-less case.

These technicalities aside, the agreement between the approximate strut-less model and

the experimental results imply that the radial thicknesses of the rings are a major deter-

mining factor for the waveguide’s guidance behaviour. In other words, the interaction of

light with the air and glass rings in the cladding is the predominant guidance mechanism.

This interaction can be considered as bandgap or antiresonant in origin, the distinction

becoming less important for large pitch structures as discussed further in § 1.2.3.

Nonetheless, the influence of the connective struts is an important problem, with clear

implications for real structures. This issue is investigated from both fabrication and

theoretical perspectives in § 2.7 and Chapter 5.
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1.2.3 2-D Structures

Waveguides based on two dimensional cladding structures are now reviewed. Each wave-

guide is essentially based on a structure that cannot be classified as effectively 1-D as

in the previous section. In most cases, the cladding structure is based on a periodic

regular lattice, e.g., hexagonal or square. However, as will be discussed, periodicity isn’t

required for efficient hollow-core guidance with many of the structures, especially those

of large cladding pitch.

Hexagonal-Lattice Fibre Figure 1.1-B represents a fundamentally

different type of hollow-core fibre to those discussed above; one in which

the cladding is based on a 2-D, not 1-D, lattice structure. This structure

consists of a hollow core surrounded by a cladding consisting of many

smaller holes aligned on a periodic 2-D hexagonal lattice: each hole is separated from

its neighbours by the same distance such that any given three closest neighbour holes

lie on the vertices of an equilateral triangle; each single hole is thus surrounded by

a ring of holes whose members each lie on the vertices of a hexagon, hence the term

‘hexagonal’—the existence of the equilateral triangle unit sometimes sees the structure

also referred to as a trigonal lattice . This is a significant departure from the effectively

1-D cladding structures of the Bragg fibres above. Confinement of light to the hollow

core using this cladding structure is effective because, like the Bragg fibres above, the

cladding structure acts as a photonic crystal.

Two dimensional photonic crystals are well known to exhibit bandgaps for propagation

in the transverse plane of the structure [34] (i.e., for propagation directly perpendicular

to the holes of the cladding). However, in 1994, Maradudin et al. [74] calculated for

the first time that, for a substrate with a hexagonal array of holes, such bandgaps still

exist for a large range of incidence angles that lie out-of-plane, with some wave-vector

component along the invariant longitudinal axis. In 1995 Birks et al. [75] extended this

work to calculate the full bandgap spectra for such structures over all incidence angles—

now often called a projected band map—and made a link with exploiting this out-of-plane

bandgap property for waveguidance within a hollow core; light of ñ and λ satisfying a

bandgap condition (representing a point in a bandgap region of the projected band map)

of the 2-D photonic crystal cladding would be reflected back into a low-index core. This

type of waveguide is often called a ‘hollow-core photonic crystal fibre’ (HC-PCF), even

though the Bragg type fibres above also fall under this nomenclature. Keeping with the

convention used in this thesis, here this structure will be referred to as a hexagonal-lattice

HC-MOF.



Introduction 27

Just as for the 1-D cases above, it is a general principle that the more cladding rings a

HC-MOF structure has, the lower the confinement loss will be. Again, as for the 1-D

case, this is because an increased number of units in the cladding structure will be able

to coherently scatter light back into the core when a bandgap condition is satisfied. This

correlation is seen regularly throughout the literature, often via numerical modelling [76–

78], and later here in § 3.5.

Important structural measures for a hexagonal lattice of air holes are the air-filling-factor

and the air-filling-fraction. If cladding lattice holes have diameter d and separation

distance Λ (the pitch), then the air-filling-factor is defined as the ratio of hole diameter

to pitch: d/Λ. The air-filling-fraction is, as the name suggests, the fraction of a cladding

unit cell which is occupied by air. It can be shown using some straight-forward geometry

that the air-filling-fraction Aair is related to the air-filling-factor as: Aair =
√

3π/6(d/Λ)2.

It should be noted that this formula is specific only to this geometry of circular holes on

a hexagonal (trigonal) lattice.

After considerable effort in inventing and refining a theretofore unknown fabrication

technique [2, 3, 79], the first hollow-core microstructured optical fibre (HC-MOF) was

demonstrated by Cregan et al. in 1999 [80]. Indeed, this was the first demonstration

of a hollow-core microstructured optical fibre, predating even the first demonstrations

of the structurally more simple Bragg fibres discussed above [45, 46]. The fabrication

technique used employed the close packing of many thin (∼ 1mm) silica capillaries,

forming a hexagonal array. Seven capillaries were removed from the centre of the array,

leaving a large defect which formed the hollow core of the fibre. This composite preform

was then heated and drawn down to fibre in a manner which allowed the holes to remain

open without closing, an undesirable effect due to the surface tension of the softened

silica glass. This technique is now commonly referred to as the stack-and-draw technique.

The precise fabrication parameters used ensured that the interstitial air holes remained

open during the fibre drawing, almost representing a thick-walled Kagomé structure

(Fig. 1.1-F), but according to the transmission spectra still convincingly guided via a

photonic bandgap effect due to the hexagonal array of holes.

Importantly, it was reported that this fibre guided only a single, gaussian-like, transverse

mode, owing to the small 7-cell core. This single-modedness is desirable for any appli-

cations requiring well-defined dispersion characteristics and a gaussian-like mode shape

such as high-power ultra-short pulse compression and delivery [81]. Also, the guidance

of a single mode ensures that the bandgap edges associated with the fundamental mode

dictate the transmission spectrum of the fibre, not a superposition of the filtering effect

of band edges associated with multiple higher-order modes.
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This structure has also been considered for substrate materials of refractive index higher

than that of silica (nSilica ≈ 1.45) [76, 82, 83]. Refractive indices larger than that of silica

exist in so called soft glasses: glasses that have a softening temperature lower than that

of standard silica glass9. Of course, there are many other materials that can exhibit

high refractive indices, such as metals or semiconductors, but the ‘glassy’ characteristics

(e.g., ability to heat and draw into fibre, relatively low optical attenuation, ability to

alter properties via small changes in composition, etc.) of soft glasses make them ideal

for fabrication into fibre and their resultant optical properties (e.g., their broad low-loss

transmission windows, making them ideal for applications to near- and mid-infrared

air-guidance).

Soft glasses are typically made from multiple chemical components in various quantities,

important additives being elements such as lead, bismuth and fluorine. For example,

the spider-web HC-MOF of Chapter 5 is made from a lead-silicate glass (F2 from Schott

Australia Pty. Ltd.). Soft glasses typically have refractive indices higher than that of

silica: nSiO2 ≈ 1.45 at λ = 1550nm, e.g., the aforementioned lead-silicate glass has an

index of about 1.6 at the same wavelength. However, there is a subset of soft-glasses

that can be made from elements of the chalcogen elemental group, such as tellurium,

selenium or sulphur (often coupled with complimentary elements such as germanium,

gallium, arsenic and antimony) [84–88]. These chalcogenide glasses typically have very

large refractive indices. For example, the Bragg fibre used for Chapter 4 uses an arsenic

trisulphide (As2S3) glass of index ≈ 2.6 for one of the two cladding layer types, very sim-

ilar to the fibres in [41, 42]. Depending on their composition (their elemental makeup),

soft-glasses can produce a continuum of physical, chemical and optical properties, in-

cluding the refractive index, from the properties of silica through to the chalcogenides

(typically thought of as the two extremes of glass compositions) [89, 90].

Pottage et al. [82] demonstrated numerically how new types of bandgaps begin to emerge

as the refractive index of a hexagonal HC-MOF substrate is increased. Such bandgaps

exist for glass indices from about 1.6 to 3.6 with an optimal bandgap width and depth

at about 2.4—much higher than silica. As discussed as a common theme throughout

this work, the spectral width of a bandgap determines the lowest loss achievable for a

core mode within it (analysed for this very case by Ref. [76]). The depth of a gap refers

to its extent in the ñ (or equivalently β) dimension and hence determines the range

of effective mode indices the gap can support; the loss of a core mode, as discussed

above for the Bragg fibre case, is determined by the distance of a core mode from the

gap edges in both the frequency and ñ dimensions and thus to the spectral width and
9The term ‘soft’ actually refers to the mechanical strength of the glass, e.g., that it can be scratched

more easily. This property is typically correlated with it’s softening temperature, though, so the term
can also be used to refer to the lower softening temperature of a glass.
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effective index depth of the gap itself. Arguably the most important result of the analysis

of Ref. [82] was that the optimal air-filling-fraction of about 60% required to produce

such gaps was well below the ≥ 80% required to produce wide gaps within silica in

which bandgap width increases monotonically with air-filling-fraction (which is typically

> 90%) [76, 82]. This behaviour reveals the nontrivial properties of 2-D structures with

respect to bandgap formation: by changing the substrate refractive index, the bandgap

topology can be drastically altered. In contrast, 1-D structures are appealing in this

regard: as shown in Chapter 3, 1-D layered structures can produce rich, yet predictable

and ordered, bandgap and antiresonance spectra which scale in an analytically manner

with structural dimensions and refractive index.

Since the use of a higher substrate index produces gaps requiring a relatively low air-

filling-fraction (≈ 60%), one could argue that the fabrication of such fibres has fewer

constraints since the shape of the cladding holes remains circular, unlike the honeycomb

geometry described later, i.e., the structure would be easier to fabricate owing to its more

conventional geometry, not requiring significant inflation, for example (again, see the

honeycomb geometry later). In this vein, practical structural parameters for exploiting

these gaps were numerically analysed by Pearce et al. and Hu and Menyuk [76, 83].

Pearce et al. [83] numerically investigated the suppression of so-called surface modes

in such high-index substrate HC-MOFs. Surface modes are cladding modes that can

exist in and about the interface between the cladding structure and the hollow core;

discussed in more detail for the honeycomb structure later. Hu and Menyuk [76] later

numerically investigated the ideal cladding parameters for fabricating a high-index HC-

MOF with a high substrate indices in the range considered by Pottage et al. [82], but

expanded the analysis to consider the confinement loss of such waveguides (neglected

in [82]). They confirmed the validity of the physically reasonable assumption of [82]

that maximising the relative bandgap width also minimised the confinement loss. This

concept is well-known for 1-D structures [63], but becomes nontrivial in 2-D structures

due to the possibility of light ‘leaking’ through the regions between cladding features.

While these analyses suggest that non-silica high-index substrate hexagonal HC-PCFs

are theoretically viable, their fabrication is highly nontrivial. The most promising sub-

strate materials for this task, such as chalcogenide glasses, are very difficult to fabricate

into hollow-core MOFs. While much progress has been made into the fabrication of

chalcogenide MOFs which guide light within a solid high-index core [84–88, 91–94], the

2-D periodicity of the HC-MOFs like those discussed in [76, 82, 83] must be highly

uniform over the cross-section. Small perturbations across the cross-section can destroy

bandgap guidance, as demonstrated in [95]. This task is made even more difficult by

the analysis of [76] which found that for an optimised HC-MOF with substrate index

of 2.6 and air-filling-factor d/Λ = 0.8 (air-filling-fraction ≈ 60%) the loss is reduced to
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below the minimum standard of 1 dB/m only with a minimum of 6 rings of cladding

holes (a larger number of features makes maintaining periodicity more difficult). It can

only be assumed that these obstacles are the reasons why a high-index soft-glass (e.g.,

chalcogenide) HC-MOF has not yet been demonstrated. This observation contributed

to the decision to focus on 1-D air-Bragg soft-glass HC-MOFs for this thesis, presented

in detail in Chapter 5 (and somewhat in § 2.7), as they offer a much simpler geome-

try and the promise of using far fewer rings for equivalent loss figures and much wider

transmission bandwidth.

(2-D) ARROW Fibre A variation of the hexagonal-lattice fibre is

shown in Figure 1.2-B where the holes in the cladding are replaced with

high-index rods and the core is ‘filled-in’ such that it becomes a homo-

geneous region with the same refractive index as the cladding substrate;

it is thus a level-core waveguide.

Much like a lattice of air-holes embedded in a high-index substrate, a lattice of high-index

rods embedded in a low-index substrate also produces a full photonic bandgap for out-of-

plane propagation [34, 96–98]. Because it is a bandgap effect, it can be exploited to guide

light in a low-index core in much the same way as the hollow-core guidance of the above

hexagonal HC-MOF. As will be discussed, however, due to its geometry the structure is

typically restricted to solid cores, an array of rods suspended in air not being practically

amenable to fabrication (at least in the optical regime), much like the idealised air-Bragg

discussed above. Making parallels to the air-Bragg fibre, to some extent, the concept

of rods (as opposed to rings) suspended in air via interconnecting struts is exhibited by

examples of the honeycomb- and square- lattice structures described later.

With the potential for such bandgap behaviour in mind, this level-core structure can

also exhibit an important guidance regime for relatively short wavelengths, i.e., for

wavelengths sufficiently shorter than the cladding pitch: λ � Λ. In 2002 Litchinitser et

al. [99] demonstrated that in the short wavelength regime, the transmission spectrum

of such waveguides is determined predominantly by the size and refractive index of the

high-index features in the innermost ring. Using a beam propagation method [99], it

was numerically shown that this was due to a strong anti-resonance interaction with the

innermost features, like that discussed for the I-ARROW above: light precluded from

coupling into the features surrounding the core, whether they be solid rings or individual

rods, is coherently scattered back into the low-index core region, i.e., light not satisfying

the mode conditions of the individual cladding features is reflected back into the core.

Ref. [99] showed this only for the effectively 1-D (level-core Bragg type) fibre case, but

the effect was theoretically analysed for the 2-D lattice case by White et al. [100].
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In the latter work it was explicitly demonstrated that the transmission spectrum was also

reasonably insensitive to the relative positions of the high-index cladding features, e.g.,

rods of the same size but of random position within a ring produced a similar loss spec-

trum to those with uniform placement. Together with further analysis by Litchinitser

et al. [101, 102], it was determined that in the short wavelength regime (λ � Λ) the size

and shape of the high-index features themselves, and not their relative positions, deter-

mine the spectral guidance behaviour of such waveguides. This principle would become

synonymous with what is now often called the antiresonance guidance mechanism in the

field of microstructured waveguides.

As I will show in Chapter 3, this general description of antiresonance breaks down for

guidance below the low-index light-line ñ < n0, at least for 1-D layered structures. This

is because the mode conditions of the low-index regions become non-negligible in this

regime, making the relative positions of the high-index features of critical importance

since they define the size of the low-index regions in between.

As it was initially suggested [99], and subsequently analysed and demonstrated (e.g.,

Refs. [9, 97, 103]), for longer wavelengths the relative position and periodicity of the

cladding features does become important since the coupling and leakage between them

increases; low-loss guidance is then favoured by periodic media producing coherent scat-

tering via bandgap behaviour (e.g., Refs. [34, 96–98] above), requiring a periodic ar-

rangement of structural features. One conclusion from this is that cladding structures

with a large pitch tend to exhibit predominantly antiresonance behaviour since the high-

index features are sufficiently separated that coupling between them is reduced. This is

also a phenomenon that is seen in the air-Bragg fibre above and the Kagomé- and square-

lattice fibres discussed below, since each structure is of level-core type with high-index

cladding inclusions typically separated with a large pitch.

Because most interest in this fibre structure has been borne from its antiresonance

guidance behaviour, it is most often termed an ARROW fibre (borrowing the acronym

defined above), even though a strictly bandgap regime can also be accessed, but only in

the case of a periodic lattice as discussed.

The transition from bandgap to antiresonance guidance regimes via decoupling of the

cladding inclusions is summarised, in Fig. 1.7, along with other guidance phenomena to

be discussed. The bandgap maps represented in the figure are based on those calculated

for an ARROW fibre structure by Birks et al. [104]. The figure represents the effects

of increasing the pitch: the tails of the bands in the ñ ≥ n0 region become relatively

thinner, collapsing down upon the trajectory of the mode that would be supported in

a single separated cladding rod. This bandgap-to-antiresonance behaviour is described
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in various ways by Benabid et al. [9], Yeh and Yariv [36, 37], and Birks et al. [104],

discussed further presently.

Closely related to the antiresonance phenomenon is the photonic tight-binding model

(PTBM). The ARROW fibre geometry was first used to investigate the phenomena on

which the PTBM is based. Instead of describing mode behaviour for decoupled cladding

features, as the antiresonance model does, the PTBM explicitly includes the effects of

coupling by considering the full Bloch modes of a periodic cladding. All representations

of the PTBM10 seek to describe the discrete edges of the cladding bandgaps, rather than

the full continua of the bands themselves mapped out by all supported Bloch modes.

It was shown by Birks et al. [104] that the Bloch modes of the cladding that were

maximally confined to the high- or low-index regions produce mode trajectories that

map out the edges of the bandgaps themselves. In fact, they considered approximations

to Bloch modes by considering a single cladding inclusion bound by specific boundary

conditions imitating a unit cell used to solve for the Bloch modes of an infinite lattice.

The similarity with the antiresonance model lies in that each considers regimes in which

the cladding light is maximally confined to particular cladding features. The two differ

as follows: The antiresonance model approximates the cladding features as independent

waveguides, describing only the decoupled regime and able to approximate regions of

high transmission loss for core modes close to the low-index light line; the agreement

between the cladding rod modes and the band edges breaks down below the light-line,

even in the decoupled regime since the modes residing in the low-index portions of the

cladding become dominant for regions sufficiently below the light-line [104]; The tight-

binding model, on the other hand, considers the cladding as a collection of coupled

waveguides (the decoupled antiresonant regime being a special case), describing the

bandgap edges themselves, and can hence accurately describe the modal properties of

the cladding for any ñ.

In short, the PTBM provides a simplified model for determining the band edges of a

given bandgap structure, whereas the antiresonance picture provides an (even simpler)

model for determining the resonances on and above the low-index light-line (ñ ≥ n0) to

which the band edges close upon as the relative pitch increases (Λ → Λ 
 λ).

Figure 1.7 qualitatively represents these relationships between the decoupled antireso-

nance regime and the coupled bandgap and PTBM. The figure is ordered into three

main sections: bandgap, antiresonance, and Von Neumann Wigner (the latter case is

discussed later); PTBM is represented under the bandgap section. The left hand side
10Whether they are called a ‘photonic tight-binding model’ or not in the relevant literature is not

so important here as their approach is same. PTBM is a convenient and accurate name to use for all
approaches here.
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of the figure depicts cross sections of two example structures that are commonly associ-

ated with bandgap guidance: the 2-D ARROW and honeycomb (discussed in the next

section) fibres. Below them, the 2-D ARROW fibre structure with a finite number of

cladding rings (3) is focused on. A cross sectional slice is taken, conceptually showing

how the field of a core mode (red lines) would be distributed at various positions within

a bandgap; being well-confined within the bandgap, as the mode’s ñ approaches either

side of the gap, its (electric11) field begins to become more confined in either the low- or

high-index cladding regions as appropriate for the particular band edge. In this thesis,

this behaviour is theoretically analysed in Chapter 2 for the 1-D equivalent case.

The right hand side of the bandgap section in Fig. 1.7 depicts an infinite lattice ap-

proximation to the cladding structure (an infinite number of inclusions with no core

defect) and depictions of Bloch modes that may be supported in it. The Bloch modes

depicted are examples of those that would be maximally confined to either the high-

or low-index regions of the infinite lattice (blue and green lines, respectively), forming

the so-called tight-binding Bloch states. The bandgap map for the structure is depicted

below this, representing in grey the (ω, ñ) regions to which arbitrary Bloch modes are

permitted to exist within the structure; the modes defining the edges of the bands are

depicted as dark grey lines. The blue and green dotted arrows imply how it is in fact the

tight-binding Bloch modes that define the band edges, defining the PTBM, closely based

on the analysis of [104] as discussed above. Below the bandgap map the transmission

spectrum of the considered core mode is depicted; in particular how the band edges

themselves define the edges of the transmission peaks.

The antiresonance section of the figure depicts how, as the lattice pitch Λ is increased,

the high-index regions begin to decouple from each other such that the Bloch modes

themselves approach a degeneracy, the limit of which is the trajectory of the modes

supported by a single isolated lattice inclusion, e.g., the modes of a single suspended

rod in the 2-D case here. This is the antiresonance phenomenon as discussed above.

In particular, the transmission spectrum below the bandgap map represents how the

high-loss regions of the core modes are well approximated by the single-inclusion modes

(resonances) at cut-off12 for large relative pitch Λ 
 λ. The reason the cut-off points on

the ñ = n0 light-line satisfy these high-loss regions, rather than the band edges below, is

because by increasing Λ the core mode trajectories approach the light-line from below,

escaping the effects of such band edges. Note that this happens in spite of the air-type

band edges also approaching the light-line in the same manner [104].
11The magnetic field could also be considered, but it isn’t in order to be consistent with the work of

this thesis.
12‘Cut-off’ is the point at which a high-index mode ceases to be truly bound (bound modes for high-

index core planar or cylindrical, for example, are bound for ñ ≥ n0 producing ñ ∈ R - see Appendix A).
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Benabid et al. [9] demonstrated a toy model for considering the tight-binding phenomena

in a linear array of high-index rods, similar to the ARROW fibre cladding structure. The

work derived a semi-analytic coupled waveguide model for solving for the propagation

constants of all modes supported by the rod array. Using this model it was again shown

that the edges of the allowed-bands of the waveguide array were defined by the modes

confined maximally to either the high- or low-index regions, as required by the PTBM.

It was also noted how, for ñ > n0, the supported modes converged upon trajectories

common to the modes of a single isolated rod, as required by the antiresonance model

discussed above and represented in Fig. 1.7.

In Ref. [9], however, the bands consist of a finite number of modes, rather than a con-

tinuum, since a finite number of rods were considered in the array. The more inclusions

that are added, the more modes that are supported; an effect that was also analysed for

1-D planar structures much earlier by Yeh and Yariv [36, 37]. The latter work went on to

demonstrate how, by continuing this trend of adding elements to the structure, the full

continuum Bloch modes (the bands) could evolve from the finite case. The treatment,

however, dealt only with modes on and above the low-index light-line (ñ ≥ n0), so while

this conclusion is still valid, the region of applicability does not overlap with modes that

would be supported in a core defect forming a depressed-core waveguide. On the other

hand, the linear rod array model of Ref. [9] considered modes below the low-index line,

but corresponds only to 2-D structures consisting of rods.

Chapter 3 presents an extension of this Bloch band evolution concept as presented by

Refs. [36] and [37] for 1-D planar multilayer structures for waves below the low-index line.

A multilayer reflectivity analysis is used as opposed to a modal analysis; the principle

is similar for this purpose and at the same time gives significantly more insight into the

nature of reflections due to antiresonance. In particular, I demonstrate how the closed

form of the reflectance minima can be solved to recover precisely the analytic forms for

the resonances (mode conditions) of the layers themselves.

The concept of antiresonance has a deeper history than the relatively recent works

discussed above, particularly for 1-D planar structures, but its account is reserved for a

thorough treatment in Chapter 3 where the particulars of the various historical theories

are required.

The structural simplicity of the ARROW fibre has seen that it can be fabricated by post-

processing an existing, well-understood, silica photonic crystal fibre (PCF), namely those

with a solid core and hexagonal lattice of holes [2, 3] (just like the ARROW structure

presented here but with vacated holes instead of high-index rods). In all cases, the

post-processing consists of filling the air holes of the PCF with a material of higher

index than the fibre substrate. The most common technique is to fill with a high-index
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liquid as discussed by Refs. [102] and [105] and demonstrated experimentally by many

works hence [106–111]. Filling with liquid crystals has also been analysed [98] and

demonstrated [107, 109, 111, 112].

Liquid-filled ARROW fibres are often demonstrated in a refractive index sensor appli-

cation as a proof-of-principle for the sensitivity of the transmission spectrum to the

properties of the cladding inclusions’ refractive index. This is often achieved by altering

the index of the filling material by changing its temperature via heating the waveguide;

as the temperature of a given liquid changes, its refractive index will also change, de-

pending on its thermal properties (many liquids typically have greater refractive index

sensitivities to temperature changes than do solids). When filling with liquid crys-

tals, tuning of the inclusion refractive index can also be achieved by applying a voltage

bias across the crystal [112], although the polarisation then becomes important; this

technique would make electronic tuning of the resonances possible with a much faster

response time than the slower thermal analogue. The application of an ARROW fibre

as a refractive index sensor was first discussed by Litchinitser et al. [102, 105] and has

since been demonstrated experimentally [106–110, 112].

The shifting of transmission spectra via a change in refractive index is a central theme

of Chapters 3 and 4, although it is the core refractive index that considered, not the

cladding inclusion index; a critical distinction.

Another variant of the ARROW fibre is one in which the cladding rods are not liquid but

solid glass. This can be achieved by either fabricating the fibre using multiple glasses

from the beginning [96, 113] or by post-processing by filling the holes with molten soft-

glass and allowing it to cool to a solid [114]. The advantage of all-solid ARROW fibres

is that issues with filling and sealing liquids in the cladding holes are circumvented and

that functionalisation of the filling material can be achieved in ways often inaccessible

to liquids, such as doping with rare-earth gain materials.

One such application was considered by Fang et al. [115] in which a PCF’s inner rings

of holes could be filled in a pattern supporting an ‘in-phase supermode’ (a distributed

multi-peaked fundamental mode which is spatially coherent across the cross-section). It

was calculated that if the filled holes contained a gain material such that the supermode

produced significant overlap with the material, the light would be amplified significantly

(requiring careful tuning of the resonances). Conveniently, the distribution of the co-

herent supermode profile sees that it forms a Gaussian-like beam profile in the far-field,

permitting the local power in the waveguide to be distributed over a larger volume,

extending the potential device’s damage threshold to some degree.
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An interesting approach to all-solid ARROW fibre fabrication was demonstrated by

Argyros et al. [116, 117] in which a large-hole prefabricated honeycomb fibre (see below

for definition), without a core defect, had many prefabricated multi-mode fibres (of the

conventional type: doped-core silica step-index fibres) inserted into its cladding holes.

A solid, undoped, rod was inserted into the central hole to create the low-index core.

The composite fibre was then drawn again into a composite structure, closing the air

regions, creating an ARROW fibre structure consisting of a silica substrate peppered

with high-index cladding rods created by the multi-mode fibres’ cores. The remarkable

feature of these structures was that they produced efficient guidance in the low-index

silica core even though the cladding rods only produced an index step of about 1 percent.

While such extreme regimes might not have been thought practical from early work on

HC-MOFs, it was shown to be consistent with the theory of antiresonant guidance [117].

The ARROW fibre can be seen as a promising platform for applications in which guid-

ance within a solid core of relatively low refractive index is desirable and which exploit

the fibres unique dispersion properties, such as nonlinear optical applications [118, 119].

As with most of the structures discussed here, more and more is being learned of AR-

ROW fibres and the antiresonance guidance mechanism, from the particulars of the

fundamental guidance mechanism such as the existence of Fano resonances [120] (which

has an established history in quantum mechanics) and other concepts [9, 121] to detailed

analyses of bend-loss properties [97, 117] (an area of research that is particularly lacking

in all literature on low-index guiding waveguides).

For all its convenience with respect to structural simplicity and antiresonant guidance

behaviour, the ARROW fibre is restrictive in that the core must always be formed

by the substrate material (since it is part of the substrate that hosts the high-index

cladding inclusions). This precludes the use of a hollow, or gas- or liquid-filled, core as

is possible with the tube, Bragg, and hexagonal lattice fibres above (and all the structures

mentioned hereafter). Indeed, were a low-index core to be considered, leaving the higher-

index cladding substrate with high-index rods, one finds that the bandgaps terminate

at ñ not too far below the substrate index [97, 122], as represented in Fig. 1.7. Thus,

the only way to achieve a hollow core with a cladding lattice of high-index inclusions is

to have the cladding features structurally supported in some way; essentially a feature

exhibited by the following fibre types.
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Honeycomb-Lattice Fibre Closely related to the above hexagonal

HC-MOF structure is one which is similar except that it has effectively

been significantly inflated, stretching out the structural features to pro-

duce a much larger air:glass filling ratio. The resultant cladding structure

is a lattice reminiscent of honeycomb where small solid nodes (where the interstitial air-

holes have collapsed) are supported by thin connective struts. Figure 1.1-C shows a

qualitative representation of this fibre structure. Indeed, after the demonstration of

the viability of the 2-D PBG guidance mechanism above [80], this inflated structure

quickly became the principal goal for silica based HC-PCFs owing to the fact that the

transmission bands increase with an increasing air-filling-factor d/Λ [76, 82].

Official demonstrations of a honeycomb HC-PCF were first reported in conference pro-

ceeding by West et al. [123] in 2001 and Venkataraman et al. [124] in 2002, demonstrating

guidance in honeycomb HC-MOFs in the NIR spectrum.

The first journal publication for guidance in a similar fibre was reported by Bouwmans et

al. in June 2003 [125]. They reported the fabrication and analysis of a silica hollow-core

honeycomb fibre, fabricated via the stack-and-draw method using thin silica capillaries.

Seven rings of cladding holes were used around a 7-cell core which had a final, elliptical,

diameter of about 6 μm × 7 μm. Guidance was observed in a bandgap extending from

about 800nm → 900nm with a minimum loss of 180 dB/km at 847nm. The cladding

pitch was Λ = 1.94 μm, which is, as for many of the following honeycomb fibres, of

the order of the central wavelength; the fibre is thus a small-pitch fibre, unlike, say, the

Kagomé fibre discussed later (where its importance will become clear).

The final air-filling-fraction of the fibre was over 85%. Since the theoretical maximum air-

filling-factor of circular holes on a hexagonal/trigonal lattice is Amax
air = π/(2

√
3) ≈ 90.7%

(found by setting d = Λ in the definition of Aair above) higher values of Aair require

deformed hole shapes. In reality, the surface tension effects of the softened glass during

drawing will begin to deform the holes before this geometrical limit is reached. This is

shown in the rounded hexagonal shapes adopted by the holes of the honeycomb-lattice

cladding of [125] and all other honeycomb fibres discussed below.

To achieve the higher air-filling-fractions required for larger bandgaps, and hence larger

transmission windows and lower losses, one must make the substrate features smaller and

thinner [76, 82]; a limit is obviously imposed by the restriction of the amount of inflation

possible during the fabrication process and whether or not the struts and nodes can be

made smaller and potential issues with fragility of the fine structure during fabrication.

The results of an improved honeycomb HC-MOF were published by Smith et al. later

in 2003 [126]. The same stack-and-draw technique was employed using silica capillaries,
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also with a 7-cell core. During the fibre drawing stage the outer-diameter was reported

as 125 μm with fluctuations of ±2 μm (±1.6%). This suggests that the internal structure

is likely to fluctuate by the same relative fraction; a point which is important for the

results presented in Chapter 5. The cladding had a hole-to-hole pitch of Λ = 4.7 μm

and a very large air-filling-fraction of 94%. The lowest loss of this particular fibre was

measured to be 13 dB/km at a wavelength of 1.5 μm with at least two supported core

modes.

An important observation of [126] was that the mechanism responsible for the high-loss

features discovered within the fundamental bandgap was due to coupling of the core

mode with modes of the cladding itself. This phenomenon has since been investigated

in detail [81, 127–129], finding that these modes reside on the interface of the cladding

and core (the core wall) and because of their nature are referred to as surface modes

(closely related to the case of the air-Bragg fibre discussed above [70, 71]). It has been

shown theoretically and experimentally that such surface modes can be suppressed by

careful placement of the position and design of the thickness of the core wall such that the

periodic cladding is terminated ‘as naturally as possible’ [81, 128, 129]; this property can

be anticipated from the understanding that surface modes exist due to the termination

of an otherwise periodic structure [34, 81, 128, 129].

As fabrication of the geometry has been consistently optimised and the confinement loss

decreases, other loss mechanisms begin to become dominant. One such mechanism is

due to light scattering off of so-called surface capillary waves: frozen-in ripples on the

surface of the inner walls of the fibre due to subtle fluid flow and thermal effects during

the drawing process. Roberts et al. [16, 17] demonstrated that by tuning the thickness

of the core wall, the intensity of the guided light at the interface can be reduced, limiting

the scattering from the frozen-in surface capillary waves. This core wall tuning is closely

related to the antiresonance principle discussed above. By exploiting such techniques,

the minimum loss of a silica honeycomb HC-MOF has been demonstrated to be as low

as 1.2 dB/km [17] and represents the state of the art in terms of low-loss hollow-core

waveguidance.

The photonic tight-binding model has been applied to the honeycomb cladding structure,

just as for the 2-D ARROW fibre structure above. Couny et al. [122] demonstrated both

theoretically and, impressively, experimentally how the tight-binding cladding modes

define the edges of the bandgaps and hence spectral transmission peaks of light guided

in the honeycomb fibre’s core. The theoretical approach analysed the Bloch modes of an

infinite lattice approximation to the cladding. Building on the results of Ref. [104] for the

2-D ARROW fibre structure, the work demonstrated how three resonator types dictate

the behaviour of the band edges, namely the nodes, struts and holes; the addition of
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the strut-type resonators makes the spectral band features of the honeycomb structure

more complicated than the 2-D ARROW fibre. Nonetheless, the PTBM was convincingly

shown to be valid, the cladding modes bound predominantly to the nodes, struts and

holes defining the band edges of the cladding bandgaps in both theory and experiment.

The theoretical aspects of this work were expanded upon in [9] discussed above, namely

via the PTBM toy-model of coupled rod waveguides, among other observations.

Incidentally, it appears (my having not seen it discussed in the literature) that the reason

the honeycomb structure hasn’t been observed under or associated with an antiresonance

guidance mechanism is precisely because it contains these three resonator features: the

nodes struts and holes. The 2-D ARROW can transform from a bandgap to an antires-

onance guidance regime because it only effectively has two resonators (the rods and the

low-index regions between them) allowing the mode trajectories of each to collapse upon

a common dispersion curve (that of a single rod) as the pitch Λ is increased, decoupling

adjacent rods and reducing all supported modes to a degeneracy. With an extra res-

onator feature to consider, such a single degeneracy would not be feasible and, given the

complicated interplay between the various tight-binding modes, is the reason a bandgap

to antiresonance transition has thus not yet been seen for the honeycomb structure.

Nonetheless, given the discovery of the Von Neumann Wigner guidance phenomenon

(which doesn’t require full bandgaps for core guidance) discussed below, the behaviour

of the honeycomb structure in a large-pitch regime warrants further investigation.

Light et al. [130] analysed theoretically and experimentally honeycomb fibre structures

which exhibited a higher-order bandgap close in proximity to the lowest order bandgap.

They used the PTBM to explain existence of such bandgaps, demonstrating that it was

predominantly the node- and strut-type cladding modes that determine the topology

and structure of the gaps. In doing so, the structure could easily be optimised to

maximise the usable bandwidth of the second gap since the calculation of the tightly

bound modes is much quicker than calculating the entire spectrum of Bloch modes. This

optimisation procedure led to the fabrication of fibres with two low-loss bandgaps in the

NIR spectrum. Such design flexibility can extend the transmission regions such that

one could guide both λ = 1 μm light and the whole telecommunications band within

1.5−1.6 μm, say, or both 800nm and 633nm simultaneously; this could not be done with

previous designs exploiting a single, smaller, fundamental bandgap. The particular fibres

fabricated had air-filling-fractions of about 97%, which is well and truly reaching the

limits of fabrication of such fibres, evident in the reported deformations of the structure.

While an important result, Ref. [130] again highlights that the hexagonal honeycomb

structure, while ideal in its own regime, is rather limited in its scope when other spectral

regimes and properties are desired. The Kagomé- and square-lattice structures discussed
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presently provide such alternatives. Chapter 5 (and somewhat § 2.7) focus on a fibre

structure I have developed and studied, based not on a 2-D lattice, but on an effectively

1-D (air-Bragg based) geometry.

Due to its well understood properties, the honeycomb HC-MOF has seen many appli-

cations. In line with exploiting the hollow core of the fibre, there have been demonstra-

tions of: nonlinear gas lasers [131]; high-power soliton generation [132]; other gas-based

nonlinear optics [133–135] (e.g., using Rubidium [134] or Acetylene vapour [135]); elec-

tromagnetically induced transparency [136]; gas sensing [137–139] (e.g., saturation ab-

sorption spectroscopy with Acetylene [137] and hydrogen-cyanide [138] or carbon dioxide

ro-vibrational Raman sensing [139]); and particle guidance [24, 25] in which large parti-

cles of polymer can be guided within and along the core of the fibre, with a vision toward

biological particle manipulation and sensing. These are some of the most prominent and

topical applications, but there are other more commonplace applications such as short

and high-power pulse delivery, pulse compression, or spectral filtering.

Further development on this tried and tested silica structure continues, such as the

work of Petrovich et al. [140] in which a robustly single-mode honeycomb HC-PCF was

numerically and experimentally demonstrated via use of a single-cell core in place of a

multi-cell one; the results were comprehensively compared against a 7-cell and a 19-cell

core versions. Nonetheless, it appears that a limit has been reached in as far as the loss,

usable bandwidth and clean dispersion properties of the silica honeycomb HC-PCF is

concerned, wholly due to the choice of cladding geometry and substrate refractive index.

The current state of the art, commercially available [18], silica honeycomb fibres exhibit

properties such as:

• transmission bandwidths of up to ≈ 300 nm,

• transmission losses below ≈ 10 dB/km (state-of-the-art down to 1.2 dB/m [17]),

• light/material overlap (fraction of mode power in the substrate) of down to < 3%,

to name a few. However, these properties represent the maximum achievable with the

honeycomb structure. For example, wider transmission bands require unreasonably thin

cladding features, as discussed in [76, 82]. If a richer variety of guidance regimes are

to be accessed, the fundamental structure of the waveguide must be altered, such as

the other HC-MOFs discussed already. There are yet more HC-MOF designs, however,

which demonstrate nontrivial rich and robust guidance regimes not observed in any of

the above structures; these are the fibre structure discussed next.
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Kagomé-Lattice Fibre One alternate HC-PCF structure is the

Kagomé lattice cladding, represented in Figure 1.1-F. This structure is

very similar to the honeycomb lattice except that the interstitial air holes

are kept open during fabrication; sufficient inflation of the structure re-

sults in a lattice of intersecting arrays of struts at an angle of 2π/3 to each other. The

resultant lattice contains sub-units with a star shape13 made from overlapping two iden-

tical equilateral triangles which are rotated by 2π/3 with respect to each other; it can

alternately be viewed as a lattice of hexagons joined only at their apexes, never touching

sides, thus leaving interstitial equilateral triangles between each all sides of the adjacent

hexagons.

The first report of guidance in such a fibre was by Benabid et al. [141] in 2002. As for

the above honeycomb14 and hexagonal-lattice HC-PCF fibres, this fibre was fabricated

via a stack-and-draw process using thin-walled silica capillaries, removing some to make

a 7-cell core. In that particular work, the fibre was used as a gas cell which was filled

with hydrogen gas and used to demonstrate low-threshold stimulated Raman scattering

(SRS) due to the long interaction length offered by the filled waveguide. Indeed, it

was calculated, using a reasonable figure of merit [141], that the Kagomé HC-PCF was

almost 10, 000 times more effective for SRS generation than a simple capillary tube

or free-space beam. The ability of this fibre to support the Stokes and anti-Stokes

frequencies of the SRS is due to its remarkably wide, low-loss, transmission spectrum

(Fig. 3-A of [141]): besides a sharp ‘water’ (OH) absorption peak, the measured loss

spectrum demonstrated an unprecedented total transmission loss of less than 3 dB/m

over the entire detectable spectral range of 350nm − 1700nm. While not as low-loss

as their previously reported hexagonal-lattice HC-PCF [80], the practical transmission

window was much wider, easily supporting the multiple generated SRS spectral peaks.

The large transmission window can be attributed to the thin ∼ 500nm lattice struts

which produce a wide antiresonance response [9]. Further insight into the guidance

mechanism and how it differs to that of the hexagonal and honeycomb HC-PCFs was

not suggested until some time later [142].

The Kagomé lattice fibre was first explicitly studied as a waveguide in its own right

by Couny et al. [143] in 2006 in a work describing a refined fabrication technique for

such fibres. Three different fibres were presented, each with a single-cell 7-cell or 19-cell

core. The fibres were again fabricated via the stack-and-draw process. It was revealed,

however, that in order to maintain the desired structure, the core, cladding and cladding-

jacket interface all were pressurised separately, and in all cases the air-filling-fraction was
13Sometimes referred to as a ‘Star of David’.
14It is interesting to note that the presentation of the first Kagomé-lattice fibre [141] came before the

presentation of the first honeycomb-lattice fibre [126].
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maintained at � 85% with a strut thickness of ≈ 500nm − 700nm. While the guidance

mechanism responsible for its unique properties wasn’t broached, remarkable properties

of the fibre were demonstrated, such as:

• Extremely wide transmission bands: > 600nm fundamental bandwidth with low

nominal loss ≈ 1dB/m (19-cell core); even wider in Ref. [141],

• No detectable surface mode interaction over full transmission bands,

• At ≈ 2ps/nm/km, 25× lower dispersion than honeycomb or hexagonal HC-PCF,

• Efficient guidance via the fundamental mode of the single-cell core fibre, even with

a large ≈ 25 μm core diameter.

The fact that the transmission bands are so wide, with an air-filling-fraction of only

about 85%, is the first hint that the guidance mechanism is not due to a complete

photonic bandgap of the periodic 2-D cladding structure. As discussed, the bandgaps of

the honeycomb structure in silica increase with increasing air-filling-fraction; the state-

of-the-art honeycomb fibres today can achieve an impressive ≈ 95% air-filling-fraction

but this can only produce a maximal bandwidth of up to ≈ 300nm [76, 82]. Further,

the demonstrated Kagomé lattice had a relatively large pitch of ≈ 12 μm, compared

to the small pitch of 2 μm of most honeycomb fibres. As discussed in [143], these

fabrication challenges, including the suppression of surface modes, of the honeycomb

fibre are not an issue for the Kagomé fibre. Coupled with the impressive properties just

listed, the Kagomé-lattice fibre represents a fundamentally different type of hollow core

fibre providing access to bandwidth and dispersion regimes in which the honeycomb or

hexagonal HC-PCF can not operate.

Argyros and Pla [144] reported the fabrication and analysis of a single-cell core Kagomé

fibre made from polymer (PMMA) via a stack-and-draw process, exhibiting similar

broad-band transmission behaviour as for the silica versions above. The significance of

the demonstration was that it was the first hollow-core polymer fibre with demonstrable

guidance. Moreover, it exhibited guidance in the infrared spectral region, where poly-

mers are typically very lossy [144], thus circumventing the inherent high losses of the

substrate (much like the Bragg fibre examples discussed above, e.g., Ref. [41, 42]).

The work was also the first to explicitly analyse the guidance mechanism of the Kagomé

structure. It was found that the cladding actually doesn’t exhibit a full photonic bandgap

as do the honeycomb and hexagonal structures discussed above. A density-of-states

map of an infinite-lattice version of the cladding structure is thus non-zero every-

where [142, 145], representing a uninterrupted continuum of Bloch states on the lattice.

The explanation for the tenacious guidance was attributed to a combination of well-

separated propagation constants between the core and cladding modes and, when this

isn’t the case, a small field overlap between the core and cladding modes. With sepa-

rated propagation constants and poor field overlap, the core and cladding modes have
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very low coupling between each other [146]. The cladding modes were also identified

as being either predominantly confined to the high-index struts of the lattice or to the

low-index holes.

This high- and low-index mode/structure identification was numerically explored further

by Pearce et al. [145] in which the continuum cladding band-map was shown to exhibit

strong features of both modes confined to the struts and modes confined to the holes;

a theme investigated in detail for 1-D structures in Chapter 3. The work also went on

to demonstrate the strong similarities between the Kagomé-lattice guidance and that of

claddings constructed from concentric shapes (hexagons or circles) approximating the

Kagomé structure without connective struts; very similar to the idealised air-Bragg fibre

structure discussed above [43, 147], discussed in more detail in Chapter 2. The high-

loss peaks for these concentric ring approximations were, as one may expect from the

behaviour of the air-Bragg fibre [43, 147], attributed to resonances with the high-index

rings. Since the core-guided modes satisfied conditions so close to the ‘air-line’ [145]

(their propagation constants were close to those of plane waves in a free space vacuum),

the resonances of the low-index hole modes had a negligible effect on the confinement

loss spectrum of the core mode; a point which is explained in detail for the case of

an arbitrary 1-D Bragg cladding in Chapter 3. Calculations of the equivalent Kagomé

structure reveal that the positions of the corresponding high-loss regions are aligned

with those of the ring-based analogues, implying that the high-index struts are the

dominant resonance feature for both the full Kagmome and ring structures. For narrow

loss peaks, then, one requires cladding features of equal thickness throughout, especially

around the core; this later point is quite different to the requirement of the honeycomb-

cladding fibre which requires the core wall to be tuned so as to suppress surface modes

capable of inducing coupling losses with the core modes, as discussed above.

A critical conclusion of the Pearce et al. work [145] was that the addition of extra

cladding unit cells (2 rings to 4 rings) had a negligible effect on decreasing the modal

confinement loss, maintaining it at the order of 1 dB/m − 10 dB/m for the main trans-

mission region analysed. This is at direct odds with the behaviour of the simplified

concentric hexagonal ring model, whose loss decreased by over two orders of magnitude

to ≈ 0.5 dB/m by adding one extra ring to a single-ring model [145]. It was argued that

this discrepancy in behaviour was due to the connective struts of the Kagomé structure

dominantly coupling light through the cladding; possible due to the non-existence of any

full bandgaps, i.e., the resonances of the struts, as for the concentric ring case, confine

the light via antiresonance, but this confinement is interrupted by efficient out-coupling

through the lattice struts connecting the concentric rings.
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This concept possibly explains the results of the work of Eijkelenborg et al. [148] in which

it was shown how a 2-ring polycarbonate Kagomé type HC-MOF exhibited a minimum

confinement loss of ≈ 3.1 dB/m at λ = 1550nm using rings of average thickness 640nm

and a 61 μm core, similar to most Kagomé fibres (as above) with many more than just

2 rings.

Indeed, similarly low losses have also been demonstrated by Gerome et al. [149] in a

silica HC-MOF with only a single ring; the one 340nm ring is sufficient to provide

antiresonance with the light in the 35 μm core to produce confinement losses as low as

0.2 dB/m at λ ≈ 600nm.

Given the above argument of strut-limited confinement loss, one could argue that by

removing as many struts as possible, leaving the concentric rings intact (as simulated

in [145]), one may considerably reduce the modal confinement loss by limiting the leakage

through the struts. This is not suggested as a fabrication possibility in works such

as [145, 148]; to the best of my knowledge, this idea, and progress towards its execution,

is unique to this thesis. Indeed, this is precisely the type of structure, represented in

Fig. 1.1-I, that I have fabricated for this research and is discussed in Chapter 5. Note

that in relaxing the structure to one of concentric polygons in this manner, the number

of vertices in each ring need not be restricted to the 6 of the Kagomé lattice rings, but

may be greater or lesser as desired; just one of the increased degrees of freedom of the

new structure.

Couny et al. [142] discussed the guidance mechanism of the Kagomé fibre in more detail.

In it, it was suggested that the bound modes that exist in the core of the Kagomé fibre

are akin to the discrete energy levels that may exist in a continuum of states as described

by Von Neumann and Wigner in 1929 [150], shortly after the invention of quantum me-

chanics, in their work “Uber merkwürdige diskrete Eigenwerte” (which loosely translates

as “On strange/anomalous discrete eigenvalues”), and later expanded on by Stillinger et

al. [151]. The Von Neumann Wigner (VNW) phenomenon relates to the existence of a

discrete set of eigenstates that occupy energies above the walls of a spatially oscillating

quantum potential, in spite of the existence of a continuum of lower-energy background

states. VNW states were experimentally measured by Capasso et al. [152] as excited

electronic states in a stratified semiconductor heterostructure. This is directly analo-

gous to the behaviour of light within the Kagomé fibre structure: Refs. [142, 144, 145]

show the continuum15 of cladding modes that exist in the structure, never producing a
15Technically, Fig. S1 of the supplementary material of Ref. [142] and Fig. 1 b) of Ref. [145] are the

only true representations of the continuum, showing a density-of-states map of an infinite lattice. The
other references demonstrate calculations of the modes for a necessarily spatially finite representation of
the full fibre structure, hence the continuum of modes is reduced to a discrete set of cladding modes; this
continuum-to-discrete behaviour under infinite-to-truncated regimes is expected from the tight-binding
analysis of, say, [9, 36, 153]. Nonetheless, the absence of a full bandgap is clear in all cases.
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bandgap. To push the analogy further, the fact that the high-loss regions of core-modes

in the Kagomé fibre exist close to the resonance conditions of the struts (discussed

above, and explicitly in Refs. [9, 142]) is very similar to the coherent diffractive wave-

function interference effect responsible for the quantum VNW phenomenon [150, 152].

The VNW phenomenon is in agreement, then, with the concept of the co-existence of

core and cladding states which don’t interact due to low inter-mode coupling, as de-

scribed above [9, 144].

A comparison of the VNW-enabled antiresonance guidance behaviour of waveguides such

as the Kagomé fibre is qualitatively represented in Fig. 1.7. Gaps in the cladding band

map no longer exist for such waveguide structures, allowing the core and cladding modes

to occupy the same regions in the band map. Regardless of their coexistence coupling

between the core and cladding modes has very low efficiency due to their poor overlap

arising from the large pitch of the structure. This allows the core mode to propagate

at low loss with minimal interaction with the cladding modes in the absence of a true

cladding bandgap. The transmission spectra of the core modes is dominated by the

antiresonant interaction of the core mode fields with the surrounding cladding struts,

just as described for all of the antiresonance phenomena above. It is important to keep

distinct the concepts of modal resonance and inter-mode coupling; the resonance of the

core modes with the structure does not require interaction with the cladding modes—

although the existence of the cladding modes is deeply related to the existence of the

resonances. This is explored in various ways in this thesis, numerically for effectively

1-D §§ 2.4.2 and analytically for purely 1-D 3.5 structures.

Von Neumann Wigner guidance and the dominance of antiresonance within these large-

pitch structures implies that the cladding structure need not be periodic, as discussed

for the ARROW fibre above. Examples of aperiodic square-based cladding lattices are

discussed below. There are more extreme demonstrations of this permissible aperiodic-

ity, however. Skibina et al. [154] and Bethge et al. [155] demonstrated a silica HC-MOF

whose cladding lattice resembled a Kagomé pattern which was radially chirped with the

lattice pitch increasing from the inner to the outer rings. Beyond antiresonant hollow-

core guidance, Ref. [154] demonstrated experimentally how such a structure produces

lower modal dispersion than currently demonstrated Kagomé fibres; the argument being

that the chirped cladding helped smooth out sharp resonances, as numerically investi-

gated16 in Ref. [155].
16Although it was not explained how or why the structural convolution technique of Ref. [154] works,

except that it produced numerical results closer to experiment than the untreated data.
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An even more extreme demonstration of the permissibility of aperiodicity has been

demonstrated by Konorov et al. [156] in which a random large-pitch thin-strut HC-

MOF was demonstrated. Few details of the hollow-core guidance properties of that

particular fibre were discussed, but observable hollow-core guidance was reported. By

permitting such a variety of cross-sectional structures which support robust and rich

guidance regimes, large-pitch HC-MOFs and their many designs exploiting VNW and

antiresonant guidance will surely represent the next generation of state-of-the-art low-

index guiding waveguides.

There have been many other application of the Kagomé fibre, the most prominent of

which exploit its broadband low-loss guidance behaviour. Of particular note is the work

of Couny et al. [142]: by filling a Kagomé fibre with hydrogen gas, a stimulated Raman

scattering (SRS) frequency comb spanning over three octaves (from 325nm to 2500nm)

was generated, of which all frequency components were efficiently guided in the fibre.

The effect was demonstrated at powers much lower than those used in other techniques,

down to six orders of magnitude lower in peak power, possible because of the long

interaction length and low broadband loss offered by the Kagomé fibre structure. The

bandwidth spanned by the frequency comb was almost 1THz, approaching the UV to IR

span required for ultra-short (potentially attosecond) pulse generation and guidance [9]

and similar applications, something that is impossible using the limited bandwidth [82]

of other established hollow waveguides such as the honeycomb fibre.

Many other Kagomé fibre applications have been demonstrated such as stimulated Ra-

man scattering in hydrogen gas filled fibres [141] (and with enhanced efficiency from

Bragg gratings written into the fibre structure [157]), leading to the generation of

the aforementioned three-octave Raman-induced frequency combs [9, 142] (pointing a

way toward fibre based low-power ‘atto-science’ [142]), robust integrated HC-MOF gas-

cells [131], and particle guidance [23] in which particles of polystyrene were guided within

and along the core of the fibre (with a vision toward applications to biological particle

manipulation and sensing, say). With the advent of similar VNW/antiresonance guiding

fibres (including the spider-web fibre I present in Chapter § 5) the applications of the

robust and rich guidance regimes of this type of fibre can only increase in number and

importance.
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Square-Lattice Fibre The square lattice HC-MOF depicted in Fig-

ure 1.1-E is a variation on the honeycomb and Kagomé structures in that

it is based on an array of thin struts, but this time arranged on a lat-

tice whose unit cells are squares. This structure is interesting in that it

can exhibit both bandgap behaviour [158] and antiresonance behaviour [159], the latter

possible due to a VNW effect as for the Kagmome lattice [9, 142, 144, 145].

Poletti and Richardson [158] numerically investigated the guidance behaviour of a HC-

PCF based on a square lattice of thin struts whose intersection points form nodes; i.e.,

no sharp corners. An example of the pitch of the cladding unit cells for guidance about

λ = 1540nm was Λ = 2.8 μm; close to the wavelength. They demonstrate how such a

structure can produce a fundamental bandgap 20% wider than a honeycomb structure

at the expense of a greater number of unit cells rings required to reduce the confinement

loss. Using a 9-cell core, the considered fibre structure is effectively single-moded with

the first higher-order-mode (HOM) having CL 4 orders of magnitude higher than the

fundamental mode; due to the HOM being pushed out of the bandgap, an effect which

is discussed for 1-D structures in Chapter 2. The demonstrated cladding bandgap was

shown to be predominantly sensitive to the radius of curvature of the nodes, which

dictates their size; larger radii of curvature produce larger nodes. It was shown that

as the size of the nodes was altered, the bandgap size and position shifted accordingly;

while not mentioned in the work, this is again in accordance with the photonic tight-

binding model [9, 122] in which the Bloch modes bound predominantly to the nodes

would dictate the bandgap structure (similarly to the antiresonance behaviour of the

ARROW cladding rods discussed above).

Argyros et al. [159] demonstrated a square-lattice hollow-core fibre using a polymer

substrate (PMMA). Couny et al. [160] demonstrated a very similar structure using a

silica substrate. In each case, the fibre was made via a stack-and-draw process in which

the polymer or silica capillaries were stacked in a square array and drawn such that

the interstitial air-holes between the capillaries are kept open, becoming equal in size

to the capillaries themselves as the fibre is drawn under tension with the walls of the

capillaries stretching until they are straightened to form the hatched pattern of the

square lattice. Importantly, this technique sees that the nodes formed at the junctions

of the struts are almost non-existent (i.e., have a very small radius of curvature). In

each work [159, 160], the core is made by removing a single capillary from the centre

of the structure, with [160] also fabricating a zero-cell core variant by not removing

any capillaries and inflating the central lattice cell such that it becomes larger than the

surrounding cells (producing a deformation to the surrounding structure in the process).

The critical point for these structures is that they were fabricated with large cladding

pitches in the range of Λ = 6 μm to 18 μm [159, 160], much larger than the 2.8 μm or
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so for the cases considered in [158]. Also with strut thicknesses down to 120nm [159]

and small junction nodes, these structures are markedly different to those considered

in [158]. The guidance observed within the core of these fibres is similar to that of

the Kagomé fibres reported above: wide [160] and multiple [159] low-loss transmission

bands, e.g., the ‘single-cell #4’ fibre of [160] exhibits transmission losses below 4 dB/m

over a wide spectral region from 900nm to 1600nm from a structure with a 39 μm–46 μm

core diameter, Λ = 17 μm lattice pitch and d = 310nm strut thickness.

The large-pitch square lattices, much like the large-pitch Kagomé lattices above, do

not form photonic bandgaps and instead support a continuum of cladding modes, rep-

resented by the density-of-states map of [160]. Just like the Kagomé structure, the

guidance mechanism is attributed to antiresonance with the lattice struts [159] with a

minimal interaction between the cladding and core modes, again implying a VNW ef-

fect [160]. With this established, [160] points out that this is also the reason one observes

a significant proportion of cladding light in the transmission images of the fibre endface;

any light from a broad range of wavelengths coupled into the cladding can be efficiently

guided there, up to the resonances of the struts as for the core modes, owing to the

absence of any bandgaps.

Note that the work of [158] stated that because a full bandgap doesn’t cross the air-line

for the square lattice (no junction nodes were assumed) then no core guidance could be

observed. Of course, this doesn’t take into account the VNW effect and hence the work

mainly concentrated on regimes in which the bandgap effect dominates. The reasons

for focussing on the bandgap picture are justified in that case since the lattice pitches

considered were of the order of the wavelength and significant coupling between cladding

features would occur, as discussed previously. Only once the pitch is increased to larger

scales do the cladding features decouple and permit the antiresonance dominated VNW

guidance as observed in Ref. [160].

Sub-Wavelength Holes One particular guidance mechanism not yet

discussed is that of sub-wavelength guidance: a phenomenon by which

holes of diameter well below that of the wavelength of light can produce

guidance with significant enhancement of the optical fields within the

hole region. The basic premise of the guidance mechanism is that the fields succumb to

impedance matching effects at the air/substrate boundary of the waveguide structure.

As per the typical behaviour for electromagnetic waves at a dielectric interface, the fields

penetrating into the low-index region (the air hole) jump in amplitude as the impedance

dictates and then decay exponentially away from the interface (e.g., Refs. [14] and [146]);

by using a very small hole region, such as that in the core of the PCF of this paragraph’s
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inset image, the fields from either side of the hole don’t have enough space to decay

appreciably and thus superpose to produce a significantly enhanced field than otherwise

could be achieved with such small feature sizes (producing tight confinement to the

sub-wavelength hole).

In the sense that it relies not on resonant interactions with cladding structure but on

the evanescent decay of light within regions of low refractive index, the sub-wavelength

guidance mechanism is essentially an index-guiding mechanism and does not rely on any

resonant effect with the cladding (the reason it has been omitted from the comparison

table below, Tables 1.1 and 1.2). Indeed, in the works discussed presently, it appears

that sub-wavelength guidance requires a finite high-index region to surround the sub-

wavelength features (giving way to a low-index outermost region) which has the effect

of confining the tails of the supported modes in order to produce low-loss guidance (and

likely, in order to produce any guided modes at all). This is again quite different to the

resonance-based guidance mechanisms just described as the latter exist for cases where

the outermost regions of the waveguide structure have a higher refractive index to the

central guidance regions, not lower, and can be assumed to extend to infinity.

The sub-wavelength guidance phenomenon was first reported in theory and experiment

by Wiederhecker et al. [161] using a silica PCF with a small hole, down to diameters

of 110 nm, in the centre of its solid core. Scanning near-field microscope images indi-

cated that light of particular wavelengths was indeed confined to the small hole via the

described mechanism. Being able to confine light to dimensions far smaller than the

wavelength has applications in scanning near-field microscopy, for example, where the

collection of light from a very small region (with a large acceptance angle) is required.

The sub-wavelength guidance effect has also been applied to structures whose cores

consist of an array of sub-wavelength holes, not just a single hole. Fibres based on this

structure have been termed porous fibres [162–167]. Owing to the fact that the scale

of the holes in which the light is guided is so small (with hole diameters of ∼ λ/10)

most work to date has focused on the terahertz (THz) spectral region—also known

as the sub-millimeter wave region: λ ≈ 100nm–1 μm). At such long wavelengths,

the waveguide structures are easier to fabricate since the features are correspondingly

larger (scale invariance up to material dispersion). THz porous waveguides have been

demonstrated theoretically [162–166] and experimentally [163–166]. Indeed, the work

of Atakaramians et al. [162, 163] adopted the spider-web structure (discussed further

in §§ 1.4 and § 2.7 and Chapter 5), initially designed for this thesis work, to the sub-

wavelength hole regime. While the spider-web fibre design was initially created for

the resonance-based hollow-core guidance discussed within, it was shown in Refs. [162,

163] that the structure could also guide as a porous waveguide in which the guided
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light is guided within all holes of the structure (produce a Gaussian-like profile over

all holes), rather than confinement predominantly to the core; this required the hole

sizes to be much smaller than the wavelength (i.e., hole diameter Dhole ∼ λ/10) rather

than reasonably larger (Dhole ∼ 10λ) as required for the hollow-core antiresonance-

based guidance it was designed for. This cross-over of the design during its development

from the HC-MOF core guidance demonstrated for this thesis to that of THz porous

waveguides is a result of the principal author of Refs. [162, 163] also being a member of

the group I performed this thesis research within and the close relationship between the

two types of waveguide regimes (just a matter of scale) and their fabrication technique (as

for the spider-web fibre fabrication—Chapter 5—the porous THz waveguide employed

an extrusion fabrication technique—Ref. [163]).

One of the main motivations of this type of structure for the THz regime is the ability to

reduce the transmission losses to below that of the substrate material [162–166] (typically

polymer for THz radiation) which, as discussed at length in the previous sections, is one

of the benefits of air-guidance in general, regardless of the guidance mechanism. The

porous fibre geometry has also been analysed theoretically for the optical regime for

mid-IR guidance using a chalcogenide substrate [167]. Again, due to the fact that it

is essentially an index-guiding mechanism with drastically different optical properties,

and that it has not yet been demonstrated as a versatile HC-MOF platform, the sub-

wavelength guidance mechanism does not fit within the family of low-index guiding

mechanisms discussed above; needless to say, though, it clearly has merit and its own

impressive qualities unattainable by other means.

1.3 Summary

In the preceding sections I have reviewed and discussed the current state-of-the-art

hollow-core waveguides, predominantly HC-MOFs. The bias toward fibres over, say,

integrated or planar waveguides is not arbitrary: MOFs are currently the only waveguide

structure capable of the rich variety of structures and guidance mechanisms to which

they are host to, owing to the discussed fabrication techniques possible for MOFs.

The fibres geometries discussed were based on either effectively 1-D or 2-D structures.

The effectively 1-D structures discussed were the:

• Tube,

• Bragg fibre (depressed-core and the level-core ‘ARROW’ special case),

• Integrated-ARROW waveguide,

• Average-index Bragg fibre,

• and the Air-Bragg fibre.
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The 2-D structures discussed were the:

• Hexagonal-lattice fibre,

• 2-D ARROW fibre,

• Honeycomb-lattice fibre,

• Kagomé-lattice fibre, and the

• Square-lattice fibre.

Qualitative representations of these structures were provided in Figs. 1.1, 1.2 and 1.3.

The above review of these fibres, including their associated guidance mechanisms and

selected applications, is summarised in Tables 1.1 and 1.2. Due to the complex interre-

lations of the guidance mechanisms, many of the waveguides may or may not be able to

support multiple guidance regimes (depending on their pitch, say), but only those guid-

ance regimes which have been explicitly discussed for the specific waveguide at hand

in the appropriate literature have been listed. Similarly, only the applications which

were discussed above have been listed. This list is reasonably thorough, but likely not

absolutely exhaustive; the motivation was to collate the majority of the most important

and unique applications reported in the literature.

The rich variety of guidance mechanisms supported by the various waveguide structures

was discussed. These were the:

• Bandgap effect,

• Photonic tight-binding model,

• Antiresonance, and the

• Von Neumann Wigner phenomenon.

Qualitative representations of these phenomena, how they relate to waveguidance and

how they relate to each other were provided in Fig. 1.4. For completeness, these phe-

nomena and their relationships with each other will now be summarised and reviewed

briefly.

Bandgaps represent configurations of light for which Bloch modes can not exist on a

given infinite optical lattice. Bloch modes exist in the allowed bands. Light incident

on an infinite (half) lattice will be totally reflected if it satisfies a bandgap condition;

it is transmitted if satisfying conditions within a band. A bandgap picture is a good

approximation for finite periodic microstructured fibre cladding structures (for those

that support bandgaps). Light within the core of such a fibre is transmitted at low

loss when the bandgap conditions are satisfies (reflected from the cladding), but are

attenuated rapidly (coupled out through the cladding) when the light satisfies as allowed

band condition.

The photonic tight-binding model (PTBM) is simply the expression of the extreme

Bloch modes whose fields are maximally bound within various structural features of the
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periodic structure (the struts, apexes or holes of the honey-comb HC-MOF, say). The

dispersion properties of these tightly bound Bloch modes define the edges of a given

bandgap spectrum, providing a simplified means of determining bandgap spectra for

waveguide design and analysis.

Antiresonance refers to a phenomenon in which light is reflected from a structural feature

when it does not satisfy the guidance conditions within that feature, e.g., light in the core

of an ARROW fibre will be reflected from the cladding rods when it doesn’t satisfy the

mode conditions for the rods (examined analytically for the planar case via a reflectance

analysis in this thesis—§ 3.5). Low loss modes in such a waveguide thus correspond to

modes which ideally dis-satisfy the cladding rod mode condition. Light which can be

guided in the cladding features is efficiently coupled out of the core, leading to large core-

mode loss. Antiresonance is a practical description only when the cladding features are

sufficiently decoupled from one another; otherwise the cladding features must be treated

as coupled waveguides. Indeed, for fibres such as the ARROW or square-lattice fibres,

bandgap guidance reduces to an antiresonance regime as the cladding pitch increases

and the cladding features decouple.

The Von Neumann Wigner (VNW) phenomenon enables waveguide structures whose

cladding doesn’t exhibit a bandgap to support both coexisting core and cladding modes

which have a minimal interaction due to a small field overlap. In this regime, antires-

onance can dominate, permitting antiresonant low-loss core guidance in the absence of

an equivalent bandgap behaviour.

The particulars of the aforementioned new fibre design I present in this thesis are now de-

tailed, concluding with a summary of the thesis structure and the relationships between

the various chapters.

1.4 Spider-Web Fibre

Figure 1.1-I qualitatively represents the fibre structure I devised,

designed and fabricated during the research for this thesis. The cross

sectional structure consists of concentric polygonal rings supported

by colinear struts. Due to its appearance, I have coined it the spider-

web fibre17. The fabrication and experimental results with some

numerical analysis and comparison with theory of the fibre are given in Chapter 5 (with

some complimentary theoretical analysis presented in § 2.7).
17I have sometimes heard this term used as a synonym for the honeycomb fibre, but its usage is rare

and is clearly better suited to the structure at hand.
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In general, the relative substrate layer and air gap thicknesses, the strut thicknesses, and

the size of the core are arbitrary. The number of struts, hence the number points of each

polygon, is also arbitrary. Due to its nature, the geometry allows all of these parameters

to be altered independently of one another. It has similarities with the air-Bragg and

Kagomé type HC-MOFs both in structure and guidance behaviour.

The primary structural difference with the air-Bragg geometry is that, instead of em-

ploying many offset struts in alternating air layers to support the solid concentric rings,

the spider-web structure has struts which are aligned (colinear) with one another, and

hence there are relatively fewer of them within the outermost layers compared to the

air-Bragg structure, since their number must be conserved in each air layer. Because

of this, surface tension effects during fabrication ensure that the concentric rings, were

they to have initially been circular, adopt straight edges and thus form concentric poly-

gons whose vertices coincide with the struts; this effect is explicitly demonstrated in the

fabricated fibres presented in Chapter 5. Thus, the similarity between the spider-web

and air-Bragg geometry lies in the common features of concentric rings supported by

connective struts. Because of this, one would anticipate that the guidance behaviour

would be similar between the two. Because the spider-web cladding is essentially a 1-D

stack of substrate material and air layers, the term ‘air-Bragg’ can still apply to this

structure.

The similarities with the Kagomé structure lie in the fact that the spider-web geometry

consists of concentric polygons; as per Ref. [145], the Kagomé fibre guidance mechanism

can be considered as that from concentric hexagons, principally due to the antiresonance

or Bragg bandgap effect from the high-index rings. As discussed earlier, the addition of

extra rings to the Kagomé structure appears to have little effect on decreasing the core-

mode confinement loss [145]. Thus, as suggested earlier, by removing as many struts as

possible, this excessive tunneling effect may be circumvented. By reducing the structure

to concentric hexagons supported only by colinear struts coincident with the polygon

vertices, the resonant influence of the concentric polygons could potentially overcome

this tunneling through the struts. This concept is embodied in the spider-web structure

by design.

In this sense, the spider-web HC-MOF design lies somewhere between the air-Bragg and

Kagomé designs. It embodies the ideal of concentric rings suspended in air (c.f., quota-

tion of Prof. Russell above) and represents a fabricable version of the idealised, concen-

tric polygon, version of the Kagomé fibre geometry of Ref. [145].

Important to both of these structural comparisons is that the air-filling fraction in all

cases is reasonably large with a large lattice pitch (compared to the guided light wave-

length), i.e., all structural features such as struts and rings are relatively thin and well
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separated. To draw the point a final time, the guidance phenomena of other large-pitch

structures such as the air-Bragg and Kagomé fibres above would thus be expected to

translate to the spider-web geometry here, including antriresonance in the presence of

Von Neumann Wigner cladding mode continuum coexistence phenomena.

1.5 Thesis Structure

This thesis is structured in a manner representing both a logical evolution of the ideas

embodied in each chapter and also a relatively close chronology of the results as they

were completed.

Chapter 2 discusses the principles behind the guidance of level-core Bragg fibres, with

an emphasis towards silica air-Bragg fibres. Higher-order bandgaps in such waveguides

are investigated numerically, finding that higher order gaps typically exhibit much lower

modal confinement loss, at the expense of bandwidth. Exploitation of this phenomenon

for reducing confinement loss at a given wavelength is demonstrated; it is shown that,

at least for low-order modes, increasing the scale of the entire fibre geometry in order

to shift a low-loss higher-order gap to a particular wavelength is far more practical than

increasing the core size in order to achieve an equivalent reduction in confinement loss

for that wavelength. The chapter also discusses some fundamental properties of the

guidance behaviour of level-core Bragg fibres, such as the relationship of the guided core

modes’ dispersive behaviour to that of a dielectric tube.

Chapter 3 naturally follows in that the spectral properties for general depressed-core

Bragg waveguides are explored. In doing so, an intimate relationship between the

bandgap and anti-resonance guidance mechanisms is examined. In identifying this rela-

tionship, and from it a simple, analytic, antiresonance model describing confinement of

light on or below the light-line of the lowest layer material index is derived and coined

the Stratified Planar Anti-Resonant Reflecting Optical Waveguide (SPARROW) model.

The implications of the SPARROW model are then discussed with its efficacy in de-

termining a waveguide’s spectral transmission regions demonstrated via the numerical

modelling of a full Bragg fibre structure whose core has been filled with an index between

that of the lowest cladding layer and vacuum. The SPARROW model is also extended

to demonstrate how it can be applied to the description of nontrivial properties of the

full 2-D bandgap spectra of such 1-D photonic crystal structures, such as: a consistent

nomenclature for arbitrary bandgap spectra; the approximate position of lowest core-

mode confinement loss of any gap; the precise closure points of a given gap; the center

of a gap in both bandgap map dimensions (not just in wavelength); and the number of
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Figure 1.8: Relational diagram of the main chapters, reflecting the relationship be-
tween the principal themes of each chapter. There are of course many other fundamental
and subtle relationships between the sections not depicted in the figure.

bandgaps within a specific domain, thus describing the bandgap spectrum topology; all

via simple analytic expressions.

Chapter 4 discusses the experimental results of systematically filling a Bragg fibre with

liquids of various refractive indices. The refractive index of the core is shown to dic-

tate which region of the layered cladding’s 2-D bandgap spectrum is intercepted by the

lowest-loss guided modes. The transmission spectrum is shown to be shifted to lower

wavelengths as the core index is increased. The results are directly compared with theo-

retical predictions based on the cladding bandgap spectrum with convincing agreement

between the two.

Chapter 5 presents the design, fabrication and experimental demonstration of a novel

hollow-core microstructured optical fibre made from soft-glass via an extrusion preform

fabrication technique. As discussed above, the structure for this fibre was chosen to be

an air-Bragg fibre structure whose cross-section is reminiscent of a spider-web. Insight

into the guidance behaviour of the fabricated 2-ring spider-web fibre of Chapter 5 is

given by considering antiresonance, reflectance and modal pictures using a variety of

modelling techniques.

Appendix A gives a comprehensive review of the theory relevant to this thesis. It con-

tains the results from the relevant literature reformulated and re-derived for the present
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work; many of the steps that are glossed over in the literature have been explicitly

demonstrated for completeness. This is done in the hope that the concepts and con-

ventions used within are explicit and obvious—something that otherwise requires some

effort when consulting multiple references.

Appendix B provides a reference to miscellaneous mathematical concepts and identities,

with derivations where appropriate. These are referenced either in the main text or,

more frequently, in the theory of Appendix A.

Figure 1.8 depicts a relational map between the chapters. Chapters 2 → 3 → 4 are

connected in that they follow the conceptual path of: level-core theory → depressed-

core theory → depressed-core experiment. Chapters 2 → 5 are conceptually related as:

air-Bragg and polygonal ring theory → fabrication and numerical analysis of spider-web

fibres.

1.6 Concluding Remarks

The myriad guidance mechanisms displayed by the vast variations of structures of low-

index guiding waveguides has been reviewed. Fundamental waveguidance concepts have

been highlighted and explained throughout, albeit mostly qualitatively. It is clear that

the versatility of low-index guiding waveguides (especially those with a hollow-core)

makes them ideal for varied applications such as high-power delivery, gas-based highly

nonlinear photonics, fibre lasers (nonlinear and gain-media based), frequency comb gen-

eration for atto-science and metrology, sensing (e.g., refractive index, temperature),

medicine (surgery), and more. The reviewed waveguides, their properties, applications

and guidance mechanisms were collated in Tables 1.1 and 1.2. The guidance mechanisms

themselves, and their relationships to each other, were summarised in Fig. 1.7.

The following chapters (summarised in § 1.5) will discuss various findings relating to

low-index guiding waveguides including: theoretical analysis of higher-order bandgaps in

idealised air-Bragg fibres and the influence of cladding ring shape and strut incorporation

and configuration; generalising the antiresonance concept to depressed-core waveguides;

experimental analysis of the spectral properties of liquid filled Bragg fibres; and the

design, fabrication and theoretical analysis of a novel HC-MOF—the spider-web fibre.
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