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Chapter 2

Silica Air-Bragg Fibres

T
his chapter explores the guidance mechanisms of level-core air-guiding Bragg fibres

whose cladding consists of alternating layers of a dielectric and air (or vacuum).

This is done using both analytical and numerical techniques. Of particular interest is

the existence and behaviour of higher-order bandgaps in such fibres—in particular, the

potential to exploit their low-loss properties. This chapter is based on a publication com-

piled within the duration of research for this thesis: Kristopher J. Rowland, Shahraam

Afshar V. and Tanya M. Monro, ‘Novel Low-Loss Bandgaps in All-Silica Bragg Fibers’,

Journal of Lightwave Technology, Vol. 26, Issue 1, pp. 43-51 (8 pages in total), 2008

[Special Issue (post-deadline sessions—OFC 2007)]. In addition, the effects of connec-

tive struts and their placement between the (annular or polygonal) cladding rings on

modal confinement loss spectra are also discussed.

Section 1.2.2 discussed the history and state of the art of Bragg fibres, but I will recap

some important points here. The effectively one-dimensional nature of the Bragg fibre

cladding is appealing in that the bandgaps available to the guided light can be greater

in both bandwidth and number than those of a two-dimensional cladding. As discussed

earlier, this follows from the general principle that bandgaps become more elusive as

extra dimensions of periodicity are introduced into a structure [34]. The basic reason

for this is that, as structure is introduced to more dimensions, light can ‘fit’ within the

structure in a greater variety of ways; the more configurations light can adopt within a

structure, the harder it is to find conditions where it is not supported. In other words,

introducing greater dimensionality to the structure produces increased modal complexity

which results in a greater coverage of the band spectrum, leaving few regions not covered

by adjacent modes (i.e., fewer bandgaps).

Even though they have a more complicated bandgap spectrum, hollow-core fibres with a

2-D cladding (like the honeycomb fibre, say) are appealing in that they can be fabricated

from a single material. A single-material structure is freed from the restrictions imposed

by structures like the conventional Bragg fibre which require more than one material to
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62 Chapter 2

construct, the greatest restriction being material compatibility. Air is chemically and

thermally compatible with almost all practical fibre materials, while producing a large

refractive index contrast at the same time. It would thus be ideal to have both a 1-D

periodic cladding and a single material substrate: a Bragg fibre with an air-core and

alternating dielectric and air layers: an air-Bragg fibre. Clearly the fabrication of a

true air-Bragg fibre is impossible since the independent concentric dielectric rings would

have no structural support. One must then resort to supporting the rings somehow.

The most practical solution is to introduce connective struts between the layers.

In this vein, Vienne et al. [43] demonstrated a guiding hollow-core single-material Bragg

fibre whose cross section consisted solely of silica and air. They showed that by using

only three rings of silica layers connected by such struts, the novel fibre design can

produce substantially improved light confinement than what can be achieved in conven-

tional fibres such as the Bragg and honeycomb structures. For example, their so called

‘OD90’ fibre design was reported as having a low-loss hollow-core guidance bandwidth

of over an octave (impossible via the other mentioned designs) with a nominal loss of

∼ 1 dB/m using just three pairs of cladding layers. This behaviour is distinct from

that of conventional (solid-cladding) Bragg fibres because the cladding and core share a

common refractive index (air in this case: nair ≈ 1). When the core index has a value

close to that of the lowest of the cladding layers, the supported core modes are able to

intercept bandgaps that are significantly broader and more robust than those accessible

by modes in a lower-index core. Analysis of this effect, and its exploitation, forms the

basis of this chapter. Generalisation to cores with refractive indices below the lowest

cladding index is dealt with in detail in Chapter 3.

Vienne et al. [43] modeled the confinement loss spectra of an idealised version of their

OD90 fibre via an asymptotic transfer matrix method [176]. While the confinement

loss values predicted were about 100 times lower than the total losses measured in the

fabricated fibre, good agreement was achieved with respect to the predicted and ob-

served transmission windows. This suggests that the dominant confinement mechanism

is due to the 1-D periodicity of the cladding rings, with the connective struts perturbing

the transmission spectrum by various means (increasing CL and introducing sharp loss

features); a thorough understanding of the mechanisms responsible for how the connec-

tive struts alter the confinement loss spectrum is somewhat lacking. While there has

been some significant progress towards explain the phenomenon [69–72], no convincing

agreement between the modelling of the full fibre structure and experiment has been

made. Section 2.7 analyses this topic further and presents some new results extending

the findings of Refs. [69–72] to give more insight into these effects for a range of guided

modes within various structures (with and without connective struts placed in various
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arrangements between annular and polygonal rings). Nonetheless, as discussed, accord-

ing to the experimental results of [43], it appears that the 1-D periodicity of the cladding

plays a dominant role, so it is this behaviour analysed initially in § 2.4, generalising to

the case of struts and polygonal rings in § 2.7.

The analysis of an idealised version of an air-Bragg fibre provides a vital foundation

from which more thorough analyses can be based. Since the bandgap spectra of the ide-

alised case apparently match well with transmission spectra of the fabricated fibre [43],

it is fair to say the guidance is limited by confinement loss, i.e., confinement loss is the

dominant loss mechanism, at least for the current state of the art air-Bragg fibres. Con-

finement loss limited transmission has also been observed experimentally in conventional

(solid-cladding) Bragg fibres for similar near-infrared (NIR) wavelengths [42]. It is thus

important to find ways in which to minimise this loss. As will be shown in § 2.4, this can

be achieved for idealised air-Bragg fibres by a simple global scaling of the cladding ge-

ometry to exploit higher-order bandgaps which naturally produce lower CL. Such global

structure scaling is trivial to accomplish during the fibre drawing process, requiring only

small changes in the fibre drawing parameters such as speed or temperature [177].

Other means of reducing confinement loss include the addition of more cladding rings

or increasing the size of the core. The effect of adding rings to reduce confinement

loss is well documented, as discussed in Chapter 1 above, but represents a significant

increase in structural complexity. A natural alternative means to reduce confinement

loss is to increase the size of the core, keeping the ring thicknesses constant. I will

analyse this mechanism and demonstrate that, while effective, it requires impractical

scaling of the core diameter in order to lower confinement losses to those achievable by

exploiting a higher-order gap. Indeed, for the case considered, it is shown that the core

radius would have to be about two orders of magnitude larger (at ∼ 1 mm) than the

core diameter required to achieve the same loss with the fundamental bandgap after a

global structure scaling in order to shift the second-order gap to the working wavelength

(producing a core radius of 24 μm). With a cladding pitch of the order of microns,

such a large core would be extremely difficult to fabricate while maintaining the fibre

details of the cladding. By maintaining a relatively small core, the cladding structure

is easier to fabricate since the full extent of the structure is reduced. The following

results thus point a way to reducing the confinement loss of full-structure air-Bragg

fibres, where the nontrivial effects of the connecting struts are incorporated, without

introducing additional or impractical structural requirements.

As discussed in Chapter 1, the reduction of losses within hollow-core waveguides is

paramount for widening their applicability. The example of mid-infrared high-power

delivery discussed earlier demonstrates how one must avoid even moderate waveguide
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losses since, by absorbing a fraction of a large amount of power, they can have the

potential to damage the waveguide structure (by melting it, for example). Reducing

waveguide losses is also paramount for their many other applications such as sensing,

nonlinear optics and particle manipulation, also discussed earlier.

Optimising confinement loss aside, this Chapter will also provide a commentary on the

fundamental behaviour of guidance within this type of waveguide. In particular, it is

noted how a rich bandgap spectrum exists for the 1-D cladding structure below the low-

index light-line ñ ≤ n0. Unlike the typical bandgap spectra of 2-D cladding structures,

such 1-D structures support bandgaps of substantial width and depth below (in the ñ

dimension) the regions where the gaps that intercept the ñ = n0 light-line terminate.

An in-depth analysis of this behaviour is given later in Chapter 3. It is also shown how

the dispersion of the core modes is very well approximated by the equivalent modes

supported in a dielectric tube of the same core size. This comparison is then used to

explain the role of the addition of multiple cladding layers in affecting the guidance of

light within the core.

2.1 Chapter Structure

Section 2.3 details the various modeling techniques used to analyse the idealised fibre

and discuss points pertinent to the discussions of §§ 2.4 to 2.6. Section 2.4 analyses the

dispersion and confinement loss properties of the considered fibre and its homogeneous-

cladding analogue (a simple tube) and compares it to the bandgap and antiresonance

characteristics of the cladding, elucidating some fundamental explanations for the be-

haviour of the air-Bragg fibre’s guidance properties (such as features of the core mode

confinement loss spectra). In particular, it is shown how there exists a second bandgap

providing four orders of magnitude lower confinement loss than the fundamental and

the reasons for this behaviour are discussed via the analyses just mentioned. Section 2.5

looks at the bandgap structure of the fibre cladding in greater detail, demonstrating a

nontrivial bandgap topology uniquely accessible to such level-core Bragg fibres. Sec-

tion 2.6 presents a way to exploit the second bandgap for potentially broadband air-core

guidance with far lower confinement loss than that already observed [43]. Section 2.7

presents modal FEM analyses of the confinement loss spectra of a range of fibre cross-

sectional structures based on an approximation to the structure of Vienne et al. [43] for

various combinations of ring shapes and strut distributions; a discussion of the behaviour

of the first three lowest order modes for each structure is presented. The details of the
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modelling techniques used throughout (sans the FEM—detailed below, § 2.3.4) are cov-

ered in Appendix A, with the relevant sections referenced when appropriate. Concluding

remarks are given in § 2.8.

2.2 Fibre Parameters

Here a level-core Bragg fibre geometry is considered: a circular core surrounded by

concentric annular layers that alternate between two types; each layer type has a specific

thicknesses and refractive index and the core has the same refractive index of the lowest

of the cladding layers’. Taking r as the radial coordinate, the refractive index distribution

of N layers is thus defined:

n(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ncore = n0 for 0 < r < r0

n1 for r0 < r < r1

n0 for r1 < r < r2

...

n1 for rN−2 < r < rN−1

n0 for rN−1 < r < rN

n1 for r > rN

where layers (excluding the core 0 < r < r0 and jacket r > rN regions) of the same

refractive index ni have the same thickness ti = ri − ri−1. The core has radius a = r0

and the outermost interface of the final cladding layer (i = N) is at r = rN , the space

beyond forming a high-index jacket1. More compactly:

n(r) =

⎧⎪⎪⎨⎪⎪⎩
ncore = n0 for 0 < r < r0

ni for ri−1 < r < ri and i = 1 → N

n1 for r > rN

where all even or odd numbered rings have the same refractive index ni and thickness

ti = ri − ri−1, allowing one to define ni = {n1, n0} and ti = {t1, t0} ∀ i = {odd, even}.
Thus, the cladding consists of N/2 unit cells (pairs of layers) each with a total width

Λ = t1 + t0 called the pitch (the period of the concentric stack).

Fig. 2.1 is a schematic representation of a general level-core Bragg fibre where the re-

fractive indices can generally take any value such that n1 > n0 = ncore ≥ 1. The general

level-core configuration is important for Chapter 3. Here, however, the special case
1This must be the case for the idealised air-Bragg fibre considered here as the jacket must consist of

the substrate material. Other solid level-core Bragg fibres, however, often have a low-index jacket. The
difference between the jacket types would likely only be a small confinement loss change, but it is an
important point to consider if comparing the fibre types.
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Figure 2.1: An arbitrary level-core Bragg fibre geometry. Refractive indices take any
value such that n1 > n0 = ncore ≥ 1. The calculations made here are for the idealised
air-Bragg fibre case where n0 = 1.

ncore = n0 = 1 (vacuum/air) is considered: an idealised air-Bragg fibre. This config-

uration has five free parameters: the core radius a = r0 = tcore/2, the two layer type

thicknesses t1 and t0, the number of binary layer pairs Npairs, and the refractive index of

the high-index layer n1. The main case considered here is the idealised silica air-Bragg

fibre considered by Vienne et al. [43], namely: a = 10 μm, t1 = 0.37 μm, t0 = 4.1 μm,

Npairs = 4, and n1 = 1.45 (approximately silica).

2.3 Background Theory

Here the theory used to analyse the problem at hand is presented. The reader should

note that while the treatment here is intended to be brief, it is still somewhat detailed

and has the potential to break the flow of the discussion. If desired, one can skip

directly to § 2.4 to delve directly into the results and discussion, since the text refers

back to the relevant background material when required. Nonetheless, the following

theory components are put into context as they are discussed to maintain the work’s

flow.

Appendix A discusses all of the theory used in this Chapter. The relevant concepts and

equations are highlighted here for ease of reference. As discussed in the introduction,
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the content of Appendix A is not original to this thesis except where explicitly stated,

and the relevant resources are referenced throughout. Note, however, that most of the

theory covered in Appendix A has been re-derived such that many missing conceptual

or mathematical steps in the source material have been included and expressed in a

consistent nomenclature for completeness and ease of discussion here. Some modest

novel results are also presented and highlighted as such within the Appendix.

Section 2.3.1 covers the modal guidance properties of a simple tube waveguide. Section

§ 2.3.2 discusses the Bloch mode bandgap properties of an infinite layer Bragg stack.

Section 2.3.3 covers the theory of antiresonance (the ARROW model) for a single inclu-

sion type, i.e., for level-core multilayer waveguides. Section 2.3.4 discusses the modal

guidance properties of multilayer cylindrical waveguides (Bragg fibres here), covering

two modelling techniques: the transfer matrix method (semi-analytical) and the finite

element method (fully numerical).

Two properties of guided light that will be often referred to here are the effective re-

fractive index ñ and confinement loss CL, also discussed in § 1.2.1. ñ is defined directly

from the longitudinal wavenumber (propagation constant) β of a guided wave: ñ = β/k

(§ 1.1). When solving electromagnetic waveguide problems like those used throughout

this thesis (discussed in detail in Appendix A), one aims to find solutions to the full

vectorial wave equation(s), e.g., Eq. A.28. The problem can be cast as an eigen-problem

whose eigen-solutions (modes) have specific field configurations associated with a dis-

crete eigenvalue ñ. As an aside, given only the modal field configurations, the ñ can

actually be calculated directly from the integral relation Eq. A.26.

As discussed in § A.1.4 the real part of ñ, Re{ñ}, contains information about the dis-

persion of the mode (essentially the phase it accumulates per unit length over various

wavelengths) and the imaginary part Im(ñ) corresponds to the attenuation of the mode.

In the case of no material loss or scattering (from waveguide imperfections, say), this

attenuation is entirely due to the confinement loss of the waveguide, pertaining purely

to the guidance mechanism itself allowing leakage of the field out of the guidance region.

Both of these effects are derived from the form of the modal fields in which a term of

eiβz can be factored, e.g. Eq. A.21. As shown in Eq. A.25, this leads to a quantitative

expression for the confinement loss related to the imaginary part of the propagation

constant, or effective index, in units of dB as:

CL =
20

ln(10)
Im{β} =

20
ln(10)

k Im{ñ}

Often when the effective index ñ is referred to here without taking the real or imaginary

parts, the real part is typically implied; context will indicate whether ñ ∈ C or R.
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Figure 2.2: Schematic of a tube waveguide. The analysis here assumes an infinite the
outer radius.

In general: if modal confinement loss is incorporated, ñ ∈ C; if no confinement loss is

considered (as is the case for planar waveguide, multilayer reflectance and Bloch bandgap

analyses here), ñ ∈ R.

2.3.1 Tube

It is useful to analyse the guidance behaviour of a simple hollow dielectric tube, such as

that discussed in § 1.2. The dispersion and confinement loss properties of an idealised

air-Bragg fibre will be compared to those of such a tube. It will be demonstrated how

the mode conditions with respect to Re(ñ), hence the dispersion properties, of the Bragg

fibres considered agree closely with the modes of a simple tube (up to the effects of the

Bragg cladding bandgaps).

Section A.4 describes the guidance of modes within cylindrical waveguides with a ho-

mogeneous cladding, a special case of which is a dielectric tube. The analysis itself is

relatively involved, but can be deconstructed into a few fundamental steps. The parame-

ters used to describe the tube are shown in the schematic representation of the structure

in Fig. 2.2.

A basis of cylindrical wavefunctions satisfying Maxwell’s equations are used to build so-

lutions to an arbitrary cylindrically symmetric waveguide consisting of a homogeneous
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core and cladding; Bessel functions of the first kind Jl(r) are used for wavefunctions in

the core in order to keep the field at the origin finite, while Hankel functions Hl(r) are

used for the cladding fields to ensure the appropriate out-going sinusoidal oscillatory

behaviour of the fields as r → ∞ (as expected for modes below cut-off—discussed in

§ A.4.1). Boundary conditions requiring the continuity of the electric field tangential to

the core-cladding interface result in the formulation of a transfer matrix M relating the

electric and magnetic fields within the core to those in the cladding. The system has

eigen-solutions when the determinant of the transfer matrix equals zero: det(M)=0. I

explicitly demonstrate the expansion and simplification of this relatively complex de-

terminant in Eq. A.171; something never shown in the literature, no doubt for brevity.

Setting the determinant to zero and rearranging produces the dispersion relation or

characteristic equation of the waveguide, Eq. A.173, which for dielectric media becomes

Eq. A.174:⎡⎣ J
′
l (u)

uJl(u)
+

H
(1)
l

′
(v)

vH
(1)
l (v)

⎤⎦⎡⎣n2
0

J
′
l (u)

uJl(u)
+ n2

1

H
(1)
l

′
(v)

vH
(1)
l (v)

⎤⎦ = l2
β2

k2

(
1
u2

+
1
v2

)2

where:

u = a
√

k2n2
core − β2 = ak

√
n2

core − ñ2

v = a
√

k2n2
clad − β2 = ak

√
n2

clad − ñ2

and a = tcore/2 is the core radius. This equation can be solved numerically to calculate

the exact complex propagation constant β ∈ C for a dielectric tube, up to numerical

precision. As mentioned above, the real part of ñ = β/k, Re{ñ}, contains information

about the dispersion of the mode (essentially the phase it accumulates over various

wavelengths) and the imaginary part Im(ñ) corresponds to the attenuation of the mode.

In the absence of material loss and scattering (due to imperfections in the waveguide

structure, say), the attenuation is entirely due to the confinement loss of the waveguide,

pertaining purely to the guidance mechanism itself allowing leakage of the field out of

the waveguide.

While the complex root-finding involved in solving this dispersion relation isn’t exactly

computationally intensive, a much more simple and analytic form of the solution ñ can

be found by considering the asymptotic form of Eq. A.174. Such analytic forms can give

a powerful insight into the phenomena at hand and it is used here for that reason2. The

analysis in § A.4.2 follows the treatment of Marcatilli and Schmeltzer [5]. By assuming a

small wavelength relative to the core size and considering only low-order modes close to
2Indeed, much of the motivation for Chapter 3 is based on the fact that the theory there can be

expressed in an analytic form such that it can elucidate similar physical insight.
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the air-line (ñ ≈ n0), which is valid for all structures considered in this work, one finds

that the dispersion relation can be simplified using the asymptotic forms of the Hankel

functions and enforcing a perturbation analysis. One then finds that the solution to the

characteristic equation can be approximated by (Eq. A.177):

β =
2π

λ

{
1 − 1

2

(
ulmλ

2πa

)2
}

+ i
(ulm

2π

)2 λ2

a3
νl,

where νl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
n2

clad−1
for TE0m

n2
clad√

n2
clad−1

for TM0m

n2
clad+1

2
√

n2
clad−1

for HElm

and ulm is the mth zero of the function Jl−1; approximate values of ulm for the first few

l and m indices are given in Table A.2.

Re{ñ} and CL (Eq. A.25) can be evaluated from these expressions directly, namely:

Re{ñ} = 1 − 1
2

(
ulmλ

2πa

)2

, (2.1)

CL =
20

ln(10)

(ulm

2π

)2 λ2

a3
νl. (2.2)

Note that the only dependence on refractive index is on nclad in the imaginary loss term

via νl, as may be expected from the ray picture’s Fresnel reflection dependence. The

real part has no dependence on the cladding index because, again considering the ray

picture as described in § A.2, say, the mode condition is independent of the cladding

index, where only the core index contributes to the accumulated round-trip phase of the

ray (up to integer multiples of π on reflection).

The transverse electric (TE) and transverse magnetic (TM) modes referenced by the

expression for νl refer to guided modes whose electric or magnetic fields (respectively)

are transverse at all points to the core-cladding interface. The hybrid modes (termed

HE, for ‘hybrid electric’, for historical reasons [178]) contain both electric and magnetic

components normal to the interface [5]. The mode indices l and m ∈ Z
+ are referred to

as the azimuthal and radial quantum numbers, respectively, and determine how many

local maxima a given mode has in each dimension; an excellent visual overview of the

qualitative nature of each mode type is given in [5]. As demonstrated in § A, the

transverse TE and TM modes require a null azimuthal quantum number (which in

turn suppresses the z-component of the associated field—electric or magnetic), and so

are always termed TE0m or TM0m (also see [146, 178, 179]). The hybrid HE modes
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Figure 2.3: Schematic of an infinite Bragg stack. Dark blue: High-index layer with
refractive index n1 and thickness t1. Light blue: Low-index layer with refractive index
n0 < n1 and thickness t0. The number of layers N is infinite. The vector diagram
represents the decomposition of an incident ray’s wavevector.

essentially represent all modes that aren’t transverse and so have an azimuthal quantum

number l > 0.

2.3.2 Infinite Periodic Multilayer Stack

As discussed in Chapter 1, the bandgap behaviour of the cladding of a Bragg fibre can

typically be considered to be that of a planar 1-D Bragg stack [36, 37, 41, 42, 171, 180].

Section A.3.2 presents a Bloch wave analysis describing the propagation of light through

infinite periodic multilayer planar structures. By restricting the structure to two layer

types, the method describes propagation through an infinite Bragg stack. The technique

is based upon a planar transfer matrix method (pTMM), discussed in detail in § A.3.1.

There is an elegant way to describe the optical behaviour of an infinite multilayer stack,

rather using the pTMM formalism for a finite number of layers N (producing N/2

pairs of layers), involving mathematical techniques exploited predominantly in solid-

state physics. In fact, much of the following analysis (and § A.3.2) is isomorphic to the

Kronig-Penney model used in solid-state physics to describe the energy levels of atomic

lattices [181].

Consider a wave with wavevector k, where |k| = k = ω/c = 2πc/λ is the wavenumber and

ω and λ are the wave’s angular frequency and wavelength, respectively. The problem is

simplified by, as depicted in Fig. 2.3, decomposing a supported wave’s wavevector ki into

longitudinal (z-dimension) and transverse (x-dimension) components with amplitudes

β and kix, respectively. The index i refers to the layer type the wave resides in and

hence the background refractive index. The wavevector of a wave in the ith layer is thus

represented k = nikk̂ = kizx̂+ βẑ. In the case of an infinite plane, the supported waves
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could propagate with a y-z component in any direction, but the z-direction is chosen

here to be consistent with the cylindrical coordinates chosen for the fibre case, as used

throughout Appendix A.

The component with amplitude kix represents plane waves propagating normal to the

interfaces of the stack. These plane waves will either be transmitted or reflected from

each interface in the stack so that a the field of the wave in the ith layer can be represented

as a superposition of transmitted and reflected waves (Eq. A.102):

Ei =
[
Aie

−ikix(x−xi) + Bie
+ikix(x−xi)

]
ei(ωt−βz),

where A and B are the amplitudes of the transmitted and reflected waves; finding their

values constitutes a solution to the problem.

The propagation of a wave through a unit cell (one pair of high- and low-index layers)

of the infinite stack can be formulated as a transfer matrix problem. Taking the binary

layer pair (N = 2) case of the general Eq. A.104, the field amplitudes can be related as:(
Ai−2

Bi−2

)
= M

(
Ai

Bi

)
.

The unit cell transfer matrix M can be decomposed into matrices describing the prop-

agation across each interface and through each layer, labelled D and P respectively.

D is constructed from the Fresnel formulae (§ A.2.1.2) which describe reflection and

transmission at an interface such that, for propagation from layer ‘a’ to layer ‘b’ (Eq. A.110):

Dab =
1

Tab

(
1 Γab

Γab 1

)
,

where Γ is the reflectivity (Eqs. A.70 and A.72) of an interface and T is the transmissivity

(Eqs. A.71 and A.73).

P is more simple, accounting for the phase accumulated while travelling through a layer.

The transfer matrix for propagating through the ith layer is (Eq. A.112):

Pi =

(
eiφi 0

0 e−iφi

)
,

where φi = kixti is the absolute value of the phase accumulated by a wave travelling in

either direction.
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The unit cell transfer matrix can thus be written (Eq. A.127):

M = D10P0D01P1,

where the subscripts 1 and 0 refer to the high- and low-index layers respectively.

The pTMM can be used to calculate the behaviour of waves within a finite number of

layers, and is used this way in Chapter 3. In order to extend the analysis to the case of

an infinite number of layers, one must employ the Bloch-Floquet theorem to relate the

field amplitudes as demonstrated in detail in § A.3.2; Eq. A.122 states:(
Ai

Bi

)
= e±iKΛ

(
Ai−2

Bi−2

)
,

such that all components accumulate a phase of KΛ after traversing the unit cell. The

Bloch-Floquet theorem also states that the fields of such solutions, known as Bloch

waves, will exhibit the same periodicity (Λ) as the lattice, as per Eq. A.120. K is known

as the Bloch wavenumber and has a similar interpretation to the plane wave wavenumber

k.

Since there are two ways to express the propagation across the unit cell, the problem

can be cast as an eigenvalue equation (Eq. A.124):

M

(
Ai

Bi

)
= e∓iKΛ

(
Ai

Bi

)
,

Solving this eigen-problem (see § A.3.2) is relatively involved, but ultimately produces

eigenvalues e∓iKΛ with a specific value related to the elements of M (Eq. A.152). The

Bloch wavenumber can be found by adding together the two inverse eigenvalues, pro-

ducing (Eq. A.153):

K(ñ, ω) =
1
Λ

cos−1 [Re(M11)] ,

where M11 is the first element of the unit cell transfer matrix (Eq. A.133).

Due to the Bloch wave x-dimension oscillatory term e±iKx, as per Eq. A.120, the Bloch

waves will be evanescent and hence decay into the structure when K is complex; note

that the results I derive for Table A.1 are subtle but necessary and are not discussed

in such detail in the literature. This condition happens when |Re(M11)| > 1, making

the cos factor in the solution for K complex. On the other hand, the waves will not be

attenuated (ignoring material absorption, of course) when |Re(M11)| ≤ 1 and K is real,

being permitted to propagate through the structure.
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Figure 2.4: Bandgap map of an infinite 1-D approximation to the idealised air-Bragg
fibre cladding. The Bloch wave existence condition Re(M11) ≤ 1 map evaluated (grey
regions—details given in the text) over unitless propagation constant βΛ/2π and an-
gular frequency ωΛ/2π. Solid red line: Air-line β = k = 2π/λ. White dashed line:
Light-line representing Brewster angle ray incidence (θ = θB); note that it coincides
with the TM bandgap closure.

The regions of the (ñ, ω) plane corresponding to the condition |Re(M11)| ≤ 1 are said

to constitute the allowed bands of the Bloch waves (their dispersion curves lying within

these regions). The regions corresponding to |Re(M11)| > 1 are said to constitute the

Bloch wave bandgaps (regions where the Bloch waves are evanescent hence not permitted

propagation). The band edges are thus defined by the Bloch mode dispersion curves

satisfying |Re(M11)| = 1.

These allowed band and bandgap regions can thus be calculated directly by simply

evaluating the expression for the K ∈ {R, C} conditions above for a range of ñ and ω.

It is useful to note that the Re(M11) factor can be expanded by using the expression for

M11 in terms of the D and P transfer matrices, shown in Eq. A.133. I have derived a

compact, polarisation invariant, explicit form of Re(M11) in Eq. A.154, where the phases

are shown to be coupled as a sum or difference in the two terms:

Re(M11) =
cos(φ1 + φ2)

T12T21
+
(

1 − 1
T12T21

)
cos(φ1 − φ2).

The TE and TM polarisation dependence has been relegated to Γ and T . Its evaluation

requires only the input of the stack parameters n1, n0, t1 and t0, and the light wave
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parameters ñ = β/k and k = ω/c = 2πc/λ.

Figure 2.4 shows the results of evaluating the Bloch wave existence condition Re(M11) ≤
1 map over unitless propagation constant βΛ/2π and unitless angular frequency ωΛ/2π

for the idealised air-Bragg fibre cladding considered here; these units are a common

choice for representing bandgap maps, although a more appropriate choice for the work

here will be demonstrated later. Note that the real part needn’t explicitly be taken

for β for the Bloch analysis since it is real by construction; the distinction between the

real and imaginary parts must be made later, though, when leaky modes of the finite

fibre structure are considered. The grey regions represent the allowed Bloch bands of

the Bragg stack. Left of the air-line (β < ω/c), the TE allowed band is the dark grey

region and the TM allowed band is both the dark and light gray regions. The white

region represents the TM bandgap and the white plus light gray regions represent the

TE bandgap.

More correctly, in terms of set theory, the dark grey regions represent the intersection

of the TE and TM bands and the light plus dark grey regions represent their union;

this definition is only relevant when considering the bands also to the right of the air-

line (β > ω/c). The complement of either of these regions are thus the bandgaps

of the associated TE or TM Bloch modes: those wave configurations disallowed from

propagating in the cladding structure.

Note that to the left of the air-line (the region of most interest for this work), the TM

band is always wider than the TE band so that the TE bandgap is always wider than

the TM bandgap. This effect is entirely due to the Brewster phenomenon discussed in

detail in § A.2.1.2. To explain this effect from a ray picture: since the reflectance of a

TM ray is always lower than a TE ray, reaching precisely zero at the Brewster angle

θB (Eq. A.86 and Fig. A.4), TM light is allowed through the periodic structure more

efficiently than the TE light. The latter is thus reflected more at each interface which

in turn manifests in the allowed TE Bloch bands being smaller than the TM bands (of

course, the precise details require analysis of the pTMM itself (see § 3), but the concept

is identical). Indeed, one finds that the TM gap closes up completely at the Brewster

condition [63, 64, 172] β = nik sin(θB) (white dashed line in Fig. 2.4), discussed in detail

in § A.2.1.2. The Brewster closure effect becomes more important in Chapter 3, but the

general reduction of the TM bandgap width is quite important for this chapter.
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2.3.3 Resonance of a Single Layer—ARROW Model

Since the structure to be analysed is a level-core waveguide with a large core size and

relatively large cladding pitch, the guidance mechanism can be approximated by an AR-

ROW model as described for the level-core Bragg fibre and 2-D ARROW fibre discussed

earlier in Chapter 1. The calculations presented within will demonstrate a quantita-

tive agreement between the antiresonance and Bloch wave analyses in determining the

high-loss regions of the waveguide.

Antiresonance models of low-index guidance state that the resonances of the cladding

features as they would exist if the feature were isolated from the surrounding structure

determine the wavelengths at which light is best coupled to the cladding and hence lost

from the core [9, 99–102, 173]. As argued in the Introduction (cf. Fig. 1.7), for level-core

structures this approximation is only accurate when the cladding features are sufficiently

decoupled3 (typically for a large pitch: Λ ∼ 10 × λ—as per § 1.2.3). In other words, in

this regime, light is lost through the cladding most when it satisfies a mode condition

within the cladding features. For level-core waveguides (the most studied structures

for ARROW guidance), the appropriate cladding feature to consider is a high-index

inclusion [99–102, 173].

In this case of a level-core Bragg fibre, one must consider the guided modes (resonances)

of a high-index cladding layer embedded in an infinite homogeneous low-index back-

ground. As derived in § A.2.1.3, a single layer supports modes when a ray accumulates

a round-trip phase of 2π. For the case of light originating from a low-index medium

(ñ ≤ n0), the Goos-Hänchen phase shift is absent upon each reflection, the phase shift

instead being only either 0 or π. Combining this with the phase accumulated by travers-

ing the layer itself kixti, one can derive an analytic dispersion relation for all supported

modes, Eq. A.99 for i = 1):

ñm =

[
n2

1 −
(

m1π

t1k

)2
] 1

2

, m1 ∈ N

where m is the mode order and all other parameters have been defined above. TE and

TM modes are degenerate due to the nature of the reflections for ñ ≤ n0. This expression

can be rearranged (since it is analytic) into an expression for λ:

λm =
2t1
m

[
n2

1 − ñ2
] 1

2 . (2.3)

3Chapter 3 derives an accurate description of antiresonance for 1-D depressed-core waveguides, the
SPARROW model, where decoupling doesn’t seem as critical.
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By setting ñ = n0 (approximation for low-order modes in a level-core large core wave-

guide, corresponding to shallow ray incidence angles—see § A.2.1.3):

λm =
2t1
m

[
n2

1 − n2
0

] 1
2 . (2.4)

These values of λ thus represent the resonances of the cladding layers as typically de-

scribed in the literature [99–102].

For this ñ = n0 formulation (Eq. 2.4), the antiresonance points are defined as the half-

order resonances such that m = 1
2 , 3

2 , 5
2 , . . . [99–102, 173]. This is equivalent to taking

the arithmetic mean of adjacent resonant wavenumbers km = 2π/λm:

kantires.
m =

ki + ki−1

2
(2.5)

such that the antiresonant wavelength of order m is λantires.
m = 2π/kantires.

m . Being the

mid-point between resonances in frequency space, these points represent the wavelengths

at which the guided light is maximally anti-resonant with the cladding inclusions.

The case of ñ ≤ n0 is more complicated and its treatment is reserved for the theory I

develop in Chapter 3.

2.3.4 Multilayer Cylindrical Waveguide

Two techniques are employed here in order to solve Maxwell’s equations for the propa-

gation constants and fields of guided modes within Bragg fibres: the cylindrical transfer

matrix method and the finite element method.

Cylindrical Transfer Matrix Method Section A.5.1 presents the cylindrical trans-

fer matrix method (cTMM) to generally describe the propagation of light within a cylin-

drical core defect enclosed by multiple concentric cylindrical layers. The method is

closely based on the treatment of Yeh and Yariv [37]. By restricting the structure to

two layer types and a depressed-index core, the method describes propagation within a

Bragg fibre. Here the level-core structure of Fig. 2.1 is considered.

The solution technique is similar to that for the pTMM discussed above (details in

§ A.3.1) but where the solution waves are superpositions of incoming and outgoing

cylindrical waves instead of plane waves and so must be composed of Bessel functions

of the first (Jl) and second kind (Yl) since they constitute a basis set of solutions for

the cylindrical Helmholtz equation (Eq. A.46), the governing equation for longitudinally

invariant waveguides with homogeneous subdomains, derived from Maxwell’s equation.
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The z-components of the electric and magnetic (auxiliary) fields about a given interface

thus have form (Eq. A.182):

{Ez, Hz} =

⎧⎨⎩[{A1, C1}Jl(k1xr) + {B1, D1}Yl(k1xr)] cos(lθ + {ψ1, φ1}) r < ρ

[{A2, C2}Jl(k2xr) + {B2, D2}Yl(k2xr)] cos(lθ + {ψ2, φ2}) r > ρ
,

where Ai and Bi are the relative field amplitudes to be solved for, ψi and φi are arbitrary

azimuthal phase terms, and ρ is the radius of the particular layer interface (arbitrarily,

this particular example has a type 1 layer for the small r side of the interface and a

type 2 layer on the other side—the opposite will hold for an adjacent interface). As per

standard cylindrical waveguide theory (see § A.1), the radial and azimuthal components

of the fields Er, Eθ, Hr and Hθ can be evaluated from the z-components alone, as per

Eqs. A.40 to A.43.

As for the pTMM, a transfer matrix formulation can be established relating the fields in

each layer to one another via the interface boundary conditions, this time for cylindrical

waves and layers, though. The analysis is much more involved than for the planar case;

again, a thorough treatment is given in § A.5.1. For the work in this chapter, only

a finite number of layers are considered for this technique, so that the calculated core

modes best represent the guidance properties of the idealised air-Bragg structure.

Ultimately, one can relate the field amplitudes from within the core to the outermost

interface of the N -layer cladding via the simple matrix equation:⎛⎜⎜⎜⎜⎜⎝
AN+1

BN+1

CN+1

DN+1

⎞⎟⎟⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎜⎜⎝
A0

B0

C0

D0

⎞⎟⎟⎟⎟⎟⎠ ,

where the, rather complicated, forms of the elements of the 4 × 4 matrices which con-

stitute the total system transfer matrix M are given in Eqs. A.204. As for the tube

solution above, one can then calculate det(M) = 0 and solve for the propagation con-

stant β (ensuring to enforce the physical condition of no incoming waves on the outermost

layer [39]). For TE and TM modes, M reduces to a 2×2 matrix, simplifying (and hence

speeding up) the numerical calculations required [39].

In general, for waveguides in which the core refractive index is lower than those of

the cladding, an inherent modal confinement loss will exist, resulting in a complex

propagation constant β ∈ C as discussed earlier. Indeed, it is precisely this behaviour

that makes the cTMM so appealing: the ability to precisely calculate confinement loss
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using a semi-analytical method. Such loss calculations are critical to the results discussed

presently.

Finite Element Method The finite element method (FEM) is a purely numerical

technique for solving partial differential equations that can be applied to waveguide

analysis via the full vectorial wave equations Eq. A.28 and A.29, say—in particular,

HC-MOFs [69, 182, 183]. Here the FEM is used to solve the Helmholtz wave equa-

tion Eq. A.46—the wave equation to which the full vectorial versions reduce to when

considering homogeneous subdomains (as done here). The FEM is suited to waveguide

modal analysis for practically any cross-sectional structure. A cost of this flexibility is

increased complexity of the model and the increase in computational intensity for the

numerical calculations required [183]. Because of this, for all FEM calculation within,

the commercial FEM package COMSOL Multiphysics [182] is employed.

The fundamental premise of the FEM, as it’s used here, is that each continuous domain of

a structure is discretised into many smaller elements. The meshes generated for this work

are based on triangular elements (quadratic Lagrange elements to be exact [182, 183]).

An example of a mesh used to solve for core guided modes of the air-Bragg structures

considered presently is shown in Fig. 2.5. This particular geometry is analysed later in

§ 2.7 whereas an idealised variant (in which the connective struts have been removed,

leaving only concentric rings) is considered throughout the earlier sections.

The accuracy and precision of the numerical solution thus depends on the density of the

mesh; the more information about the solution that can exist on the mesh, the closer

the solution represents a ‘true’ mode. More correctly, the appropriate refinement of the

mesh parameters (local element size and spatial distribution) will allow the model to

converge to an accurate and precise solution. Generation of an appropriate mesh is quite

nontrivial and typically relies on following some rules of thumb combined with trial and

error. Such rules would be to make the mesh more fine (smaller elements, denser mesh)

about regions of fine structural detail and about any other region where the solution

will exhibit sharp field gradients. However, the greater the number of mesh elements,

the greater the number of field discretisation values and hence the more information

that must be calculated. A reasonably converged solution (with a sufficiently dense and

appropriately distributed mesh) thus requires significant calculation power and memory

resources.

The computer used for most FEM calculations within contained 24 GB of DDR2 RAM

(with a 500 MHz bus speed) and an Intel Xeon eight-core processor architecture running

at a 3 GHz clock speed with a 8 MB of total L2 cache. The total amount of RAM was

rarely utilised since the bus speed produced the system’s bottleneck; in order to iterate
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Figure 2.5: Geometry, mesh and solution example of a FEM model. Top-left: A
quarter-plane representation of the geometry used to model the OD90 fibre of Vienne
et al [43], using the simplified structure parameters of Refs. [71, 72], as described and
used later in § 2.7. Dark regions: glass (nSi ≈ 1.45). White regions: air. The thin
annulus around the edge of the structure represents the PML. Top-right: distribution of
the generated finite element mesh upon the truncated geometry. Bottom: an example
of the fields of a numerical solution to the model [Sz and log(Sz) of the TE01 mode at
λ = 800 nm, arbitrary units].

the FEM model thousands of times so as to calculate spectra of sufficient resolution,

only about 8 GB of the RAM was accessed, bringing the calculation time per iteration

down to approximately 10 to 15 minutes. Using one processor core, the 1000 iterations

typically required for a reasonable spectral resolution thus took up to about 10 days to

complete. Time was thus the predominant determining factor in the quality of the mesh

used, hence the convergence of the solutions.

The geometries within consisting of only concentric rings (no struts or other features)
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are typically converged over the considered full spectral range to a numerical error of

less than ±0.0001% in Re(β) and less than ±1% in Im(β) (hence CL). For most other

geometries, such as that of Fig. 2.5, calculated here can only be converged to within

numerical error of less than ±0.1% in Re(β) and less than ±100% in Im(β). The latter

may appear extreme, but since most interesting CL spectral features vary by orders of

magnitude, this is not a terminal issue. Also, it is generally observed that the spectral

features of a given solution maintain their relative magnitudes with respect to adjacent

features, the numerical error (from altering the mesh density slightly, say) manifesting

as a greater or lesser shift of the entire spectrum [Re{ñ}(λ) or CL(λ), say].

In defining the model, one must enforce the appropriate boundary conditions. Since all

of the internal structure is dielectric, the usual continuity conditions are enforced for

all interfaces internal to the solution domain (as used for the analytic and semi-analytic

analyses in Appendix A). The outer boundaries, on the other hand, represent an artificial

truncation of the geometry and hence must be treated appropriately. This is done in

two ways.

First, all structures modelled via the FEM in this chapter (and Chapter 3) exhibit at

least 4-fold symmetry (2 rotation and 1 mirror), meaning it belongs to the C4,ν symmetry

group [184]. Due to the symmetry of the constructed geometry, one can truncate the

domain to a 1/4 azimuthal slice, as represented in Fig. 2.5. Owing to group theoretical

arguments, this truncated domain can be used to simulate modes for which the boundary

conditions support a given mode type [184, 185]. The modes of most interest here are

the TE01, TM01 and HE11. For the case here, as per [184, 185], the TE01 mode is

solved for by enforcing perfect electric conducting boundary conditions on the outermost

boundaries of the truncated geometry: E× n̂ = 0 at the boundaries (n̂ is the normal to

a given boundary); this permits the characteristic azimuthal electric field polarisation

of the TE01 mode. The some holds for the TM01 mode but under the so-called perfect

magnetic conducting boundary condition: H × n̂ = 0; this permits the characteristic

radial electric field polarisation of the TM01 mode. The HE11 mode requires one of

the boundaries cutting into the otherwise complete (full-plane) geometry to be perfect

electric and one perfect magnetic; this permits the characteristic linear polarisation

of the HE11 mode (linear in the direction of the perfect magnetic boundary). The

polarisations just described should technically be termed quasi-azimuthal, -radial and

-linear, owing to the vectorial nature of the system disrupting the field directions close

to wavelength-scale features of large index contrast [186].

Beyond symmetry exploitation, the second requirement of domain truncation here is

more vital to the ability to calculate confinement loss. Ideally one would model a domain

of infinite extent since, in truncating the region beyond the waveguide structure with
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perfect electric or magnetic boundary conditions, unphysical reflections are introduced

into the model. These stray reflections must be suppressed in order to not only converge

to a more physical solution, but in order to be able to calculate confinement loss. The

latter is impossible using reflecting boundary conditions since no radiation is permitted

to escape the calculation domain, hence there is a null loss value and a purely real prop-

agation constant β [Im(β) = 0]. One means of truncating the domain but maintaining a

close to physical loss behaviour is to introduce an artificial absorbing region in place of

the reflecting boundary. A perfectly matched layer (PML) is one such implementation

of an absorbing domain commonly used for numerical electromagnetism [183, 187] and

has been applied successfully to modal analysis of optical waveguides (e.g., Refs. [69–

72, 76, 78, 188, 189] (and in particular for the COMSOL package used here [182]).

The PML itself is incorporated into the FEM calculation as an artificial inhomogeneous,

anisotropic, absorbing medium which absorbs all incoming radiation regardless of field

amplitude or orientation (up to numerical convergence). PMLs are thus a means of

approximating a surrounding homogeneous medium of infinite extent. In practice, this

requires a tensorial description of the artificial permittivity of the medium such that

field lines approaching from any direction and of any amplitude are attenuated in a

similar manner. The PML formulation used here is discussed in detail in [182, 187]. An

example of a PML domain is shown in Fig. 2.5 as the outermost annulus surrounding

the structure (the PML to solution domain interface is represented by the dashed white

line, top-left).

By truncating the solution domain using the symmetry and absorbing PML techniques

just described, the number of mesh elements required in order to discretise the geometry

and solve for the appropriate eigenmodes is greatly reduced. Indeed, the calculation

wouldn’t be at all possible without the inclusion of an absorbing PML boundary domain

(reducing the effectively infinite cladding region, requiring infinite memory to represent,

to a finite one). The exploitation of the symmetry of the structure and supported

modes allows a further reduction in the required number of mesh elements. Each vertex

(node) and edge of a mesh element represents a set of field amplitudes and phases

which, in aggregate across the entire mesh, form the characteristic discretised matrix of

the waveguide system [183, 187]; the fewer mesh elements required, the more efficient

the calculation in terms of required memory and computational power. Indeed, without

truncating the domain to this extent, the calculation of the results presented below would

have prohibitive, requiring greater computational resources than readily available.
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2.4 Bragg Fibre Guidance and Low-Loss Bandgaps

The supported core modes of the idealised air-Bragg fibre structure as defined above in

§ 2.2 are analysed using a variety of techniques and comparisons. Section 2.4.1 presents

calculations of the core modes of the idealised air-Bragg fibre (ñ and CL spectra via

the cTMM, § A.5.1 and FEM, § 2.3.4, methods) together with the bandgap calcula-

tions an infinite-layer approximation to the cladding structure (via the infinite pTMM,

§ 2.3.2). Section 2.4.2 details some phenomenological characteristics of the mode be-

haviour and explains it via considerations of the interaction of the core light with the

cladding structure. The air-Bragg fibre modal behaviour is then compared with that

of a homogeneous cladding analogue (a simple dielectric tube—theory in § 2.3.1) with

various comparisons and contrasts made between the two waveguides in order to high-

light common waveguidance features and mechanisms, highlighting how the simple form

of the tube mode dispersion behaviour can be used to closely predict that of the Bragg

fibre equivalent (up to band-edge effects). Section 2.4.4 discusses the relation of the dis-

persive and confinement loss properties of the Bragg fibre modes with the antiresonance

(theory in § 2.3.3) behaviour of the cladding; comparisons between the bandgap and

antiresonance mechanisms are discussed (preparing the introduction of the more general

unification of bandgap and antiresonances for depressed-core waveguides in chapter 3).

Section 2.4.5 then qualitatively discusses how all of these observations fit into practical

scenarios, such as asymptotic single-modedness, the influence of structural deformations

and the incorporation of connective cladding struts (the latter examined in detail later

in § 2.7).

2.4.1 Core Mode and Bandgap Calculations

Only the TE01, TM01, and HE11 modes are calculated here as they represent the lowest-

loss modes of their respective classes. While higher-order modes are by no means un-

interesting or trivial, much of their behaviour can be inferred by first analysing their

low-order counterparts. More importantly, it is well-known that the low-order modes

of low-index guiding waveguides exhibit much lower loss than higher-order modes. This

often leads to the waveguide being described as effectively single-moded or asymptoti-

cally single-moded [39, 43, 63, 64, 69, 171, 172]; the high-order modes are attenuated

faster than the low-order ones such that in practice the transmitted light would consist

predominantly of the lowest loss mode or modes. In the case of a Bragg fibre, the lowest

loss mode is typically the TE01 mode [39, 43, 63, 64, 69, 171, 172], although it has been

shown that under certain regimes this can change [49, 190]. Note, however, that the
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Figure 2.6: Grey regions: TE and TM Bloch bands of the equivalent 1-D infinite
cladding stack; colour scheme explained in the text. TE bandgap nomenclature 〈l,m〉
is defined in § 3.7.1. Black line: Air-line (ñ = n0 = 1). Solid coloured lines: Re{ñ}
(top) and CL (bottom) of the TE01, TM01, and HE11 modes of the idealised Bragg fibre
found using the cTMM (for TE01 and TM01) and FEM (for HE11). Crosses: FEM
calculations for CL of the TE01 and TM01 modes. Green circles: Sample points for
evaluation of the fields in Fig. 2.7.

TE01 mode is not the lowest order mode since the HE11 has both the highest Re{ñ} and

only a single local maximum within the core region.

Dispersion curves Re{ñ(λ)} and confinement loss spectra CL(λ) of the first three low-

order modes TE01, TM01 and HE11 of the idealised air-Bragg fibre considered are shown

in Fig. 2.6. The figure also shows the bandgaps associated with the cladding on the

Re{ñ} plot. It is important to note that both the bandgap maps and the CL spectra are

considered together here. As discussed, the bandgap analysis is really an approximation
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to the behaviour of the spatially finite waveguide, approximating the cladding as an

infinite periodic planar structure, permitting the Bloch-Floquet analysis. Nonetheless,

it is a very useful tool in explaining the behaviour of the core modes found via the more

‘realistic’ cTMM and FEM models. Both the Bloch wave and full structure core mode

pictures offer valuable information and each have their benefits and drawbacks: the Bloch

analysis is numerically cheap (evaluation of the semi-analytic expression Re(M11) ≶
1) but is only an approximation to the spatially finite cladding-mode behaviour; the

cTMM and FEM analyses give a comprehensive description of the core mode behaviour,

including confinement loss, at the cost of numerical efficiency (§ 2.3.4).

Fig. 2.6 demonstrates these concepts: both cladding bandgaps and core-mode properties

are represented on the same plot. The bandgap analysis is represented by the grey

banded regions. The bandgap map is actually exactly the same as that shown in Fig. 2.4

but where the coordinates have been changed: (βΛ/2π, ωΛ/2π) → (λ, Re{ñ}). The

sloped light-lines β ∝ k thus become horizontal lines ñ = const. in these new coordinates.

The colour coordination of the bands is the same as for Fig. 2.4, but note that the region

to the ‘left’ of the air line β < ω/c = k is now mapped to below the air line ñ = β/k < 1

and similarly for β > ω/c = k → ñ = β/k > 1, although the latter region is of little

interest here as it can not be accessed by modes bound to the core of the Bragg fibre.

This last point is a direct result of Corollary A.2 I derive in § A.2.1.2 where it is shown,

via a ray picture, why modes guided in a low-index core are restricted to the region

below the low-index light-line ñ < n0 (cf. Eq. A.91).

The dispersion curves of the TE01, TM01 and HE11 modes are overlayed on top of the

band maps in Fig. 2.6, with the associated modal confinement loss CL(λ) plotted below.

Re(ñ) and CL are calculated using the cTMM for TE01 and TM01 modes and the FEM

for the HE11 mode. The TE bandgap nomenclature defined and used throughout this

thesis—〈l,m〉—is derived and defined in § 3.7.1. The green circles correspond to the

points at which the field profiles were evaluated for Fig. 2.7.

All modelling considered here demonstrates an excellent agreement between the cTMM

and FEM models, both in Re{ñ} and CL (Fig. 2.6). In the figure, where there are both

cTMM and FEM results, the Re{ñ} values are indistinguishable between the two models

(the HE11 mode was only calculated using the FEM for reasons of convenience). For

the two modes that were calculated using both models (TE01 and TM01), CL agrees to

below 1%, resulting in the FEM data points (green and blue crosses, respectively) lying

almost directly on top of the solid lines representing the cTMM results. Because of this

excellent egreement between two disparate mode types (the TE01 and TM01 polarisation

content and loss characteristics being distinct) one concludes that the two models are

accurate representations of the system’s solutions.
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In comparison with the asymptotic cTMM results of [43] (where approximate asymp-

totic forms of Bessel functions are used in the analysis [40, 176, 191, 192]) for the same

fibre structure, the non-asymptotic (and fully vectorial) cTMM and FEM results clearly

produce a significantly lower CL (≈ 20×). Since both the cTMM and FEM methods

agree so well here, one can conclude that they are accurately converged and more ap-

propriate models for quantitative modeling of CL in air-Bragg fibres; possibly due to

the asymptotic field approximations upon which the asymptotic-TMM is based [176]

breaking down for the level-core (ñ ≈ n0) regime.

2.4.2 Phenomenology

It is clear that by comparing the modes’ dispersion and loss characteristics (Fig. 2.6) their

confinement losses increase dramatically as the bandgap edges are approached. This

behaviour is fundamental to the guidance mechanism of bandgap waveguides [2, 34, 41–

43, 63, 64, 171, 172, 180] and is explained for the case here presently.

The modes’ Re{ñ} lie relatively close to the light-line and generally continue to approach

it as the wavelength decreases. This can be expected by analogy with the tube modes

discussed above: Eq. 2.1 shows how 1 − Re{ñ} ∝ λ2/a3. As λ → 0, the modes thus

approach the behaviour of a plane wave in vacuum as the core becomes relatively much

larger than the wavelength. The fact that the cladding is structured in the Bragg fibre

case is qualitatively of no consequence for this argument as the modes in each structure

are confined predominantly to the core. The homogeneous-cladding and layered-cladding

cases depart significantly in that the multiple reflections from the Bragg fibre’s cladding

layers reduce the confinement loss and also influence the dispersion and CL behaviour

of the core modes as they approach the cladding bandgap edges. As will be shown in

the next section (see Fig. 2.8), the modes closely follow the Re{ñ(λ)} trajectories of

their homogeneous cladding (tube) counterparts until the bandgap edges are reached.

Further comparisons with the analogous tube modes are made in § 2.4.3.

Indeed, the discontinuities for each mode, in both Re{ñ} and CL, correspond closely

to the edges of the bandgaps. The TM01 mode exhibits slightly higher dispersion than

the TE01 mode at the gap edges, which is expected from the Brewster phenomenon

discussed earlier for the Bloch analysis (§§ 2.3.2 and A.3.2) which explain that the TM

bandgap is always smaller than the TE gap (since the TM allowed bands are always

envelop the TE bands).

This increase in confinement loss at the gap edges for all modes is qualitatively explained

by noting that, as the bandgap edges are approached, light is increasingly allowed to

propagate within the cladding. This effect is demonstrated by the behaviour of the
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Figure 2.7: Azimuthal electric field component of the TE01 mode at the three wave-
lengths chosen from Fig. 2.6: 1.155 μm, the position of CLmin of the fundamental
gap, where the light is most confined to the core; 795 μm, the low-λ band edge of the
fundamental gap; and 759 μm, the high-λ band edge of the higher-order gap. The
fields are overlayed on a radial slice of the refractive index profile. TE modes only have
one nonzero electric field component: Eθ θ̂. The field is azimuthally symmetric, so the
field amplitude distribution has the familiar ‘doughnut’ shape with local polarisation
everywhere in the direction of θ̂ (up to the sign of the field amplitude).

electric field profiles Eθ(r) of the TE01 mode shown in Fig. 2.7. Without the coherent

reflection from the cladding that occurs for light deep within the bandgap, the mode’s

fields are able to penetrate further into the cladding structure, increasing the leakage of

the field through the cladding and hence increasing the confinement loss4.

The observation that modal confinement loss increases as bandgap edges are approached

is a general one [63, 64]. This means that the modal confinement loss will increase

regardless of the direction of approach to the bandgap edges, a point discussed in detail

for the case of Bragg fibres by Argyros et al. [63]. Approach to the edges in the λ

dimension is trivial, requiring only the wavelength to be changed. Approach in the

Re{ñ} dimension requires either the consideration of higher-order modes (which exhibit

lower values of Re{ñ} for a given λ) or, more importantly, the alteration of the core
4Note that it is possible for the evanescent fields of bound modes in small-core structures (such as

optical nanowires) to increase in amplitude external to the waveguide structure without an increase in
loss. This scenario is quite different, though, as such waveguides aren’t inherently leaky and restrict
guidance to ñ > n0.
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refractive index which necessarily alters the value of any supported mode’s Re{ñ} since

the core index represents the maximum asymptotic value for low-index guidance—e.g.

§§ A.4 and A.2.1.2).

Note that reduction of ncore is not practical for the case here (ncore = n0 = 1) since ncore

cannot be less than 1 for dielectric media, but the idea is perfectly sensible when n1,0 > 1

and is the case that forms the basis of the concepts of § 3. Confinement loss changes

by traversing the Re{ñ} dimension are less trivial than those via the λ dimension since,

in changing the order of a mode or the refractive index of the medium in which it is

guided, the leakage loss will naturally change as well, even in the absence of a bandgap;

this can be inferred directly from the CL behaviour of a tube in that CL ∝ νl which

increases depends on the refractive index contrast. Nonetheless, as shown in [63], when

bandgaps do exist, the band edges have a dominant influence on CL.

The increase in dispersion (slope of Re{ñ}) of the modes near the band edges can be

explained by noting that, as their field distribution increasingly overlaps with more of

the cladding structure (Fig. 2.7), the influence of the various refractive index regions of

the cladding structure causes Re{ñ} to rapidly depart from its trajectory as the field

conforms to the cladding structure. This can be more qualitatively explained using the

explicit expression for (the real part of) β as a spatial integral of the field components

in Eq. A.26. With Re{ñ} being explicitly dependent on the field distributions within

the various refractive index regions of the waveguide media, as the fields are increasingly

permitted to penetrate the cladding structure their nontrivial overlap with the cladding

features (Fig. 2.7) will directly alter the integral value of Re{ñ}. In other words, as

the field begins to overlap with the cladding, the phase conditions of the fields are

influenced increasingly by the cladding layers; the modes’ dispersion curves begin fol-

lowing the edges of the bandgaps since the layers themselves produce dispersion profiles

closely following the cladding bands—cf. the photonic tight-binding model discussed in

Chapter 1. In a sense, as the bandgap edges are approached and the modal fields are

increasingly permitted to penetrate the cladding, the core modes begin to behave more

as cladding modes, inasfar as their dispersive character is concerned.

With this in mind, note that the TE01 and TM01 modes’ Re{ñ} lie almost exactly on top

of each other, departing close to the band edges (Fig. 2.6). This quasi-degeneracy will

be explained by comparison with the tube waveguide in § 2.4.3. Given that the modes

are quasi-degenerate within the bandgap, the degeneracy splitting near the band edges

can be explained with the argument of the last paragraph. The TE01 and TM01 modes

will succumb to the bandgap behaviour of the TE or TM bands, respectively, since their

fields at the layer interfaces satisfy transverse electric or transverse magnetic boundary

conditions by definition. Since the TM gap is always smaller than the TE gap when
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traversing the gap from the inside out, the TM01 mode will succumb to the dispersive

effects of its band edges before the TE01 mode is effected by its more separated band

edges. While the effect is subtle in this current case, it is an important observation,

nonetheless. In fact, an extreme case can be seen in the works of [63, 64, 172] in which

the TM type modes are suppressed altogether by designing the lowest order modes

to be guided close to the Brewster condition where the TM gap closes up completely.

This idea has the potential of permitting the low-loss guidance of only the TE01 mode,

having suppressed most other mode types [63, 64, 172], including the HE modes which

essentially contain a TM component.

Here it should be stressed that it is purely the properties of the guided modes themselves,

not the cladding modes, that are responsible for the core mode behaviour between and

close to the bandgap edges. While it is strictly true that the bandgaps are a represen-

tation of the guidance (or lack thereof) of cladding Bloch modes within an equivalent

infinite cladding, the cladding modes exhibit no influence over the core-modes them-

selves, inasfar as their own field distributions and ñ are concerned. As the core modes

approach the bandgap edges, the tails of their fields succumb to the same influences of

the cladding structure as enforced on the cladding mode fields and thus the core modes

begin to behave like the cladding modes. This is essentially the behaviour embodied by

the mode properties of Figs. 2.6 and 2.7 discussed above.

Cladding modes may also influence guidance by inter-modal coupling due to field over-

lap between the core and cladding modes. For the bandgap regime considered here,

this is of little concern since the core mode has lowest loss within the bandgap region in

which cladding modes are suppressed; not considering surface-modes [43, 70–73]. Core/-

cladding inter-modal coupling does become feasible, however, for structures which guide

via the Von Neumann Wigner phenomenon such as the Kagomé or square fibres dis-

cussed in Chapter 1. These structures permit cladding modes to co-exist within regions

of low loss (antiresonance) of the core modes but, as discussed, it has been demon-

strated how such coupling produces only a minor loss mechanism for the core modes as

the core/cladding field overlap is very small for such large pitch structures [142, 145].

If approaching the bandgap edges increases the loss of a guided mode, a natural conclu-

sion is that there will thus be a point between the bandgap edges where a guided mode

has a locally minimal confinement loss CLmin. This behaviour is explicitly observed

in the CL curves of the modes shown in Fig. 2.6 in which the cladding bandgaps are

seen to split the loss spectrum into two locally low-loss regions. The long-λ bandgap is

the fundamental bandgap of the cladding. The shorter-λ bandgap will be referred to as

the second-order gap. This nomenclature isn’t general. The bandgap map of Fig. 2.6

shows how multiple simply-connected bandgap regions exist for the considered cladding



90 Chapter 2

structure (not all gaps shown are labelled). The 〈l,m〉 labels used represent a general

nomenclature for bandgaps of a 1-D layered structure which is derived in § 3.7.1. For

now, only the two gaps just discussed are of interest, so the terms ‘fundamental’ (for

〈1, 0〉) and ‘second-order’ (for 〈2, 0〉) will suffice.

Fig. 2.6 shows how the calculated CLmin of all modes in the second-order gap are lower

than their counterparts in the fundamental gap. Quantitatively, the CL of the TE01

mode in the fundamental gap has a minimum of CLmin = 4.80 × 10−3 dB/km at λ ≈
1155 nm. However, one finds that in the second gap the same mode has CLmin =

4.21 × 10−7 dB/km at λ ≈ 480 nm, which is four orders of magnitude lower than that

of the fundamental gap. Note also that CLmin of all calculated modes decreases by this

order from the fundamental to the second-order gap (Fig. 2.6).

The reason for the higher-order gap producing a lower loss lies in the fact that the modes’

Re{ñ} lies closer to the ncore-light-line in the second gap than in the fundamental. The

modes appear to approach an asymptote towards shorter wavelengths: Re{ñ} → n0 as

λ → 0. This behaviour is explained soon in the context of the tube waveguide in § 2.4.3.

This asymptotic behaviour can be used to give insight into the decrease in confinement

loss in the higher-order gap. From a ray picture5, ñi = βi/k = ni sin θi (Eq. A.90)

implies6 Re{ñ} → n0 as the incidence angle approaches glancing θ → π, purely from

the definition of β as the longitudinal wavenumber. The Fresnel formulae (Eqs. A.70 to

A.73) imply that the reflectance of each interface is larger for rays of larger incidence

angle (larger ñ). Thus, when the light is reflected coherently from the stack of layers—

i.e., at CLmin within a bandgap—the bandgap supporting modes with ñ closer to the

n0-light-line will reflect light more efficiently since the reflectance from each interface is

larger. Again, this a only a qualitative ray picture, but the concepts follow naturally

from the plane-wave decomposition employed in the infinite stack pTMM analysis.

Also contributing to the reduction of loss as Re{ñ} → n0 is the fact that the rays being

reflected back into the core would experience fewer ‘bounces’ from the cladding per unit

length than those with lower ñ. This is because the former rays would have a larger

normal incidence angle θ (closer to glancing incidence) such that their trajectory would

allow them to travel further before being reflected from the cladding again.

In the ray picture, then, there are thus two mechanisms at work acting to decrease

CLmin in higher-order gaps: an increase in reflection efficiency for each interface (taking
5Of course, the ray picture is quantitatively insufficient for waveguides with guidance regions where

diffraction effects become important, but it will suffice for the qualitative explanation of the large-core
example here.

6Taking the real part of ñ being redundant for this ray formulation as it is purely real by construction.
One must still be careful and take the real part of the solution to the full wave equation solution, though,
as it is naturally complex.
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resonance/bandgap effects into consideration) and a reduction in the number of reflec-

tions per unit length. Both are the result of an increase in ñ and hence an increase in

normal incidence angle θ so that it approaches glancing incidence (θ = π).

Ultimately, however, the interference effects of the light reflected from the multiple layers

is dominant. This is seen in the fact that the second-order gap’s CL calculated in [43] is

higher than the fundamental’s; the structure used was a variation of the one considered

here: the layers had different thicknesses across the cross section. In this case, the

interference effects for higher-order gaps (lower λ) become quite different for, say, the

fundamental gap. This is discussed further in § 2.4.4.

2.4.3 Comparison with a Homogeneous Cladding

Fig. 2.8 is an adaptation of Fig. 2.6 in which the Re{ñ(λ)} and CL(λ) for the analogous

tube modes (§§ 2.3.1 and A.4.3) are shown together with the Bragg fibre modes.

Observe the behavior of Re{ñ} in Fig. 2.8: all calculated modes of the Bragg fibre lie

on top of the trajectory of their tube analogues, deviating as they approach the band

edges. Similarities between Bragg fibre modes and their tube analogues have already

been observed in the context of surface modes [64], so its applicability here follows

naturally. Thorough comparisons between Bragg fibres and hollow metal waveguides

were performed by Johnson et al. [171]—dielectric tubes (as in Ref. [64]) are considered

here. This deep connection between the two types of waveguide (homogeneous or layered

cladding) is quite revealing.

As discussed in § 2.3.1, Eq. 2.1 implies that Re{ñ} for the tube is independent of the

cladding properties; only λ and the core radius a are important as the ratio (λ/a)2.

In other words, only the core itself is responsible for tube modes’ Re{ñ}. This is also

the case for the single layer waveguide discussed in § A.2.1.3 where the mode condition

depends only upon the phase accumulated by a ray propagating through the core and

the phase accumulated from reflection off of the interface. It was shown in detail in

§ A.2.1.2 how the reflection phase is equal to only 0 or π for light originating from a

low-index medium. Recall that only low-index cores are of interest here; as discussed in

§ A.2, rays propagating in high-index cores succumb to total internal reflection which is

coupled with the nontrivial Goos-Hänchen reflection phase shift which can take values

from 0 → π as a function of β and both the core and cladding indices. These arguments

translate directly to the tube case so that one can see why the tube Re{ñ} would be

independent of the cladding index (at least for the regime considered).
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Figure 2.8: This figure is an adaptation of Fig. 2.6. Grey regions: TE and TM
Bloch bands of the equivalent 1-D infinite cladding stack; colour scheme explained in
the text. TE bandgap nomenclature 〈l,m〉 is defined in § 3.7.1. Black line: Air-line
(ñ = n0 = 1). Solid coloured lines: Re{ñ} (top) and CL (bottom) of the TE01, TM01,
and HE11 modes of the idealised Bragg fibre found using the cTMM (for TE01 and
TM01) and FEM (for HE11). Crosses: FEM calculations for CL of the TE01 and TM01

modes. Black dashed lines: Re{ñ} for the equivalent tube modes. Coloured dashed
curves: CL for the equivalent tube modes. Magenta circles and vertical dashed lines:
Cladding layer resonance wavelengths calculated from the 1-D ARROW model. Green
circles: Sample points for evaluation of the fields in Fig. 2.7.

Since the mode trajectories of the tube agree so well with those of the Bragg fibre,

one can infer that a similar mode condition holds for it as well. Indeed, according to

Corollary A.2, a ray originating from a low index will not succumb to total reflection

(and hence no Goos-Hänchen phase shift) at any subsequent interface. The accumu-

lated phase from all reflections must then be an integer multiple of π. The phase from

traversing the layers must also be incorporated, ultimately leading to the interference
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effects accommodated for in the pTMM, cTMM and Bloch analyses. Thus, the Bragg

fibre behaviour departs significantly from the tube as the modes reach the band edges,

Fig. 2.8, as the fields leak into the cladding structure, Fig. 2.7. The tube and Bragg fibre

modes thus agree so well within the bandgap since the Bragg fibre modes are suppressed

within the cladding layers (Fig. 2.7) so that the phase accumulation within the layers has

a negligible effect due to the field strength being so low there; the phase accumulation

in the core is dominant.

These comparisons between HC-MOF tube guidance are closely related to the experi-

mental and theoretical work of Issa et al. [95] in which the core, not the surrounding

microstructure, was found to be the dominant guidance mechanism of a polymer bandgap

fibre (although it was discovered that the disorder in the fabricated cladding destroyed

any measurable bandgap behavior, actually reducing the waveguide to essentially the

behaviour of a tube).

This dominance of the core in the guidance of both the tube and Bragg fibre thus

explains why the Bragg fibre mode trajectories approach an asymptote towards short

wavelengths: Re{ñ} → n0 as λ → 0. From the tube dispersion relation Eq. 2.1 one

sees this behaviour directly since 1 − Re{ñ} ∝ λ2/a2 so the same general trend should

be followed by the Bragg fibre, at least within the bandgaps where light is restricted

mostly to the core. This is also seen in the planar waveguide case where, from Eq. A.99,

precisely the same proportionality holds: 1−Re{ñ} ∝ λ2/t2. Here, this behaviour comes

directly from the phase accumulated by a wave from propagation through the layer’s

core (up to terms of π due to reflection) as demonstrated in § A.2.1.3, and the equivalent

principle holds for the tube and thus Bragg cases as argued.

Fig. 2.8 also compares the CL of the Bragg fibre and equivalent tube, showing that,

within the bandgaps, the coherent reflection from the Bragg cladding reduces the CL

significantly. The addition of the Bragg layers reduces the CL = 4.10 × 106 dB/km

of the tube by 9 orders of magnitude down to CLmin = 4.80 × 10−3 dB/km at λ =

1155 nm within the fundamental gap. The effect is even more pronounced for the

second-order gap where CL = of the tube is reduced by 13 orders of magnitude to

CLmin = 4.21 × 10−7 dB/km at λ = 480 nm. It should be noted that the structure

considered only has 4 cladding layer pairs; the reduction in confinement loss for level-

core 2-d HC-MOFs is typically about 10 dB per additional ring [76]. This idealised

air-Bragg structure reduces loss, on average, by more than 100 dB per unit cell for

the fundamental gap and over 1000 dB per unit cell for the second-order gap, again

demonstrating how the wide bandgaps produced by the air-Bragg structure are superior

to many other geometries. This was seen explicitly in the experimental results of Vienne

et al. [43] in that the low-loss bandwidth spanned over an octave, even though the
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spectrum was interrupted by the effects of the supporting struts [70–73] and other likely

loss mechanisms.

The arguments given above regarding modes lying close to the light-line having lowest

loss are verified explicitly for the tube case. CL curves of the tube clearly monotoni-

cally decrease of decreasing wavelength, Fig. 2.8. This is due to the fact that CL ∝ λ2

(Eq. 2.2). As discussed above, from a ray picture ñ approaching the light-line is equiva-

lent to bound rays approach glancing incidence, thus confinement loss is reduced as the

Fresnel reflectance is increased (Fig. A.4) as discussed for the layered case earlier.

2.4.4 Antiresonance Approximation

Figure 2.8 also shows the resonance wavelengths of a planar approximation to a high-

index cladding layer in isolation. This represents an ARROW model as described above

(§ 2.3.3 and further in Chapter 3). The Bloch bands themselves are shown to be relatively

thin (in the λ dimension), which is due to the relatively large cladding pitch (Λ = 4.1 μm

versus, say, the first Bloch bands on the light-line at λ ≈ 750 nm—Fig. 2.8) beginning

to induce a decoupling effect between the cladding rings, as discussed in Chapter 1: the

interaction between the layers is reduced, reducing the splitting of the coupled waveguide

degeneracy [9, 36, 104, 153]. This is also the regime in which the ARROW model may be

accurately applied; each layer is approximately decoupled from the others so the modes

(resonances) of the layers (in isolation) determine the high-loss regions of the core modes

(discussed at length in Chapter 1). ARROW models for level-core waveguides with a

large core size typically only calculate the cladding resonances at cut-off [99–102, 173];

that is, only the mode conditions at ncore = n0 are calculated since the bound modes

reach cut-off (cease to be bound) at this point (called the low-index light-line—the

propagation constant of a plane wave travelling through a homogeneous region of the

same refractive index). The generalised antiresonance model presented in Chapter 3

actually extends the consideration of resonances to below the cut-off condition, hence

accurately describing modes that exist significantly below the light-line.

The first two cut-off resonance wavelength points superimposed on the bandgap map in

Fig. 2.8 are: λ1 = 777 nm and λ2 = 388.5 nm. They clearly coincide with the first and

second order Bloch bands (the short-λ edges of the first and second order bandgaps),

respectively, as expected from the ARROW model and the tight-binding model of band

formation [9, 36, 104, 153]. Of interest is that the resonances reside precisely on the edge

of the Bloch bands, not in them as appears common for 2-D cladding waveguides [9, 104];

this phenomenon warrants further investigation as to the precise relationship between

the Bloch waves of an infinite stack and the modes of a single layer (one might suggest
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that the answer is related to the tight-binding Bloch wave phenomenon discussed in

Chapter 1).

These resonance points are also overlayed as vertical lines on top of the confinement loss

curves in Fig. 2.8. There is a very close agreement between the high-loss regions of all

calculated modes and the resonance points, as expected from the ARROW model. The

antiresonance points (the mid-points in frequency space between adjacent resonances)

are λantires.
1 = 518 nm and λantires.

2 = 1036 nm. These coincide reasonably well with the

CLmin points in the fundamental and second-order gap, which occur at λ = 1155 nm and

λ = 480 nm, respectively, as discussed. These CLmin are thus 7.73% and 11.9% (respec-

tively) away from the antiresonance points normalised to the bandwidth between adja-

cent resonances (all in frequency). The reason for the discrepancy is that, as discussed,

on the air-line the Bloch band edges extend into the region between the resonances; i.e.,

the bandgaps on the air-line are somewhat smaller than the distance between the asso-

ciated mode cut-off points. This is an artifact of residual coupling between the layers

broadening the Bloch bands. This has the effect of shifting the position of CLmin away

from the antiresonance point in each gap.

Were the core modes to exist at lower ñ, they would intercept ever more nontrivial band

edges which do not align with the cut-off resonances even qualitatively. This observation

forms the motivation of the analysis of Chapter 3 and the subsequent invention of the

SPARROW model developed within it.

2.4.5 Practical Considerations

As mentioned above, it is often quoted that Bragg fibres are effectively, or asymptoti-

cally, single-moded [39, 43, 63, 64, 69, 171, 172], since the TE01 mode typically has a

substantially lower confinement loss than all other supported modes. This case is obvi-

ously no exception as per Fig. 2.8. The assumption of differentiation of modes purely

due to a splitting of confinement loss values may be somewhat optimistic, though. The

difference between the propagation constants β of two modes determines the extent of

coupling between them due to various effects (such as fibre deformations like surface

roughness or microbending) [146]. Since the Re{ñ(λ)} of the quasi-degenerate TE01 and

TM01 and modes lie very close to one another within all gaps (Fig. 2.8) the considered

fibre would only be asymptotically single-moded when inter-mode coupling is minimised.

By considering the tube equivalents of the fibre modes (explained in §§ A.4 and A.4.3), it

can easily be shown that only 8 modes lie within the higher order bandgap and have con-

siderably separated Re{ñ} compared to the separation of the quasi-degenerate modes

(note that the HE21 mode is also quasi-degenerate with the TE01 and TM01 modes,
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§ A.4). It is thus likely that, in the presence of inter-mode coupling (due to scattering,

say), the four modes with lowest total loss per unit length would be the quasi-degenerate

TE01,TM01 and HE21 modes (linked via inter-mode coupling) and the HE11 mode (since

its CL typically has values between the TE01 and TM01 modes, as discussed). Even in

the face of this probable multi-modedness, it is clear that the higher order bandgap may

be exploited to produce modes of overall lower CL, Fig. 2.8. In this way, low-loss (albeit

potentially multi-mode) propagation can be achieved. This is explored further in § 2.6.

It is interesting to note that Vienne et al. [43] actually calculate the higher order gap

CL for their structure (very similar to that considered here) but where the cladding

layers have different thicknesses as exhibited by their fabricated OD90 fibre. Since the

cladding layers aren’t periodic in that case, one can’t use the bandgap analysis used here.

In their work, the CL values of the modes in the second-order gap are actually shown to

be higher than those of the fundamental gap. This effect, however, is almost certainly

due to the aperiodicity of the cladding layers. In antiresonance terms, as the cladding

layers deviate in thickness, their resonances are shifted along the spectrum: thinner

rings produce resonances at shorter λ (obvious once scale-invariance is considered and

seen directly in the form of λm in Eq. 2.4). With rings of differing thicknesses, then, the

resonances from one will fall between those of an adjacent ring. This has the effect of

interrupting higher-order gaps more than low-order ones. To see this, consider Fig. 2.8:

by decreasing the thickness of a ring, the resonance of the first band would be shifted such

that it sits within the original second-order gap; there would be no equivalent disruption

of the fundamental gap. This reduction in anti-resonance bandwidth explains why the

modes calculated in the second-order gap in [43] have a higher loss than those in the

fundamental. For this reason, periodicity (or at least equal high-index ring thickness) is

more important for higher-order gaps than for the fundamental gaps.

In practice, the addition of supporting struts between the cladding layers, as in [43],

would alter the CL of all bandgaps by two effects: an increase in ‘tunnelling’ through

the cladding and the introduction of nontrivial resonance effects such as coupling to

surface modes. Surface modes have been studied extensively in conventional hollow-core

silica bandgap fibres [81, 126, 128, 193] as discussed in Chapter 1. Calculations from

recent work have shown that surface modes exist in single-material Bragg fibre struc-

tures, introducing a complicated structure to the CL spectrum by coupling with the core

modes [70–73]. However, as discussed in Chapter 1, such modelling is in rather poor

agreement with experimental results [43] in that the calculated low-loss modal CL spec-

tra do not correspond to the experimentally measured transmission spectra, indicating

that surface modes likely aren’t the only important phenomena introduced by the addi-

tion of struts. Indeed, the influence of tunnelling and other, non-surface-mode, cladding

effects due to the introduction of struts is still poorly understood. However, in light of
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much recent work on novel hollow-core microstructured fibres based on square [159, 160]

and Kagomé [9, 141–145] cladding geometries, it seems that the understanding of such

effects may be related to a Von-Neumann Wigner phenomenon [9, 142, 145, 150–

152], in which modes may be guided in the core amidst even a continuum of cladding

modes [142, 144, 145]. Nonetheless, as is shown in §§ 2.7 and 5.5, the radial 1-D structure

plays a pivotal role in the guidance mechanism.

Since the CL spectrum is determined by a combination of the radial periodicity and other

potential strut-induced phenomena, only after the idealised 1-D case is understood can

the behavior of a full, strut-laden, structure be appreciated. Further, the conclusions

which may be drawn from the semi-analytical treatment given here would be very dif-

ficult to deduce from a full-structure model alone, precisely because of the increased

complexity. Thus, the main focus here is to analyse the idealised bandgap behaviour

which may be used to provide the groundwork for analysis of fabricable geometries.

2.5 Analysis of Bandgaps

To investigate the behavior of the second bandgap further, the structure of the cladding

bandgaps is now considered in more detail. Fig. 2.4 shows the Bragg cladding bandgap

maps evaluated over unitless propagation constant and angular frequency (βΛ
2π , ωΛ

2πc). This

is the usual representation of Bragg stack bandgaps used in most literature.

This first representation shows where air-core modes would lie in the first bandgap since

the actual dispersion curves, Fig. 2.8, of the low order modes are almost indistinguish-

able from the light-line in this representation. From this one sees that this level-core

fibre has dispersion properties quite dissimilar to depressed-core Bragg geometries where

ncore < {n1, n0} [10, 35–47, 63, 171, 172]. Instead of the core’s light-line intersecting the

bandgaps somewhere in the middle, here it lies close to the region where the bandgaps

terminate. This is entirely due to the fact that here ncore = n0. Fig. 2.4 clearly shows

how the (βΛ
2π , ωΛ

2πc) representation makes it difficult to determine the interaction of the

light-line with the bandgaps for fibres satisfying this condition since the band features

close to the light-line seem to approach it asymptotically. In order to reveal this hidden

detail, one must find a way of re-scaling the band map.

By transforming the band diagram to new coordinates (Λ/λ, Re{ñ}), as in Fig. 2.9,

the detail close to the air-line in Fig. 2.4 is exposed. Immediately one notices how the

bandgap structure in the region close the the air-line is very different to most of the the

gaps shown in Fig. 2.4. Represented in these coordinates, the bandgaps clearly have a

far richer structure than one would have previously thought.
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Figure 2.9: The same map as Fig. 2.4 recast in unitless, scale-invariant, frequency Λ/λ
and real effective index Re{ñ} coordinates. The color scheme for the bandgap maps has
been retained and the TE bandgaps are again labeled according to the system discussed
in § 3. Blue line: air-line. Blue curve: The mode trajectory of the l = 0, m = 1, modes
of an a = 10 μm radius tube (TE01,TM01 and HE21 tube modes are degenerate in
Re{ñ}). Dashed green curves: Same as the blue curve but for a = 12 μm (above) and
a = 7 μm (below).

The higher order bandgaps of the Bragg stack clearly aren’t simply connected (Fig. 2.9),

as may be assumed from the original representation (Fig. 2.4). The first order gap is

simply connected ∀ 0 ≤ ñ ≤ 1 (at least for these fibre parameters7), but all higher order

gaps close at points within ñ = 0 → 1 and open up again as new gaps. Note that

this gap closure is wholly unrelated to the Brewster phenomenon [indeed, the Brewster

condition corresponds to a constant value ñ = ñB = ni sin(θB), § A.2.1.2, far below the

plotted domain of Fig. 2.9].

A general nomenclature is derived for these discrete bandgaps in § 3.7.1, where it is shown

that each TE gap can be referenced by a unique integer pair8 〈l,m〉. Here it will suffice to

observe that l typically increases with increasing frequency (Λ/λ) and m increases with

decreasing ñ. More specifically, at each TE gap closure point, the corresponding gap on

the high-frequency side will have indices 〈l + 1, m− 1〉 with respect to the indices 〈l,m〉
of the corresponding gap on the low-frequency side of the closure point, i.e., traversing

7See § 3 for a general description.
8The 〈l, m〉 nomenclature of § 3.7.1 is truly general, applicable to any Bragg fibre configuration (not

just air-Bragg). The TM gaps aren’t used for the nomenclature as they always sit within the TE gaps and
their topology only differs in that they close at the Brewster condition ñ = nB = ni sin(θB) (§ A.2.1.2).
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a TE gap closure point in the high-frequency direction will increase the gap l index by

1 and reduce the m index by 1. All gaps shown in Figs. 2.8 and 2.9 are labeled using

this system.

The ability to generate this bandgap taxonomy is critical in that it allows one to uniquely

identify a particular gap for any layer configuration. Beyond this, § 3.7.1 demonstrates

how the nomenclature is actually inextricably and invaluably linked with the underlying

physical behaviour of such bandgaps.

As will be demonstrated in § 3, all gaps terminating on the ñ = 0 and/or ñ = n0

lines are topologically open, whereas all other gaps are closed. It is the open nature of

the gaps terminating on the n0-light-line (the 〈l, 0〉 gaps) that is responsible for their

remarkably large bandwidth and hence for the novel guidance properties of air-Bragg

fibres; there are clear parallels here to the bandgaps and guidance of conventional 2-D

bandgap fibres [2, 3] which are widest on the low-index light-line. Incidentally, one can

now identify the fundamental and second-order gaps as 〈1, 0〉 and 〈2, 0〉, respectively.

Gaps with m > 0 can strictly only be accessed by Bragg fibre configurations with

ñ < {n1, n0}; typically the case for ncore < {n1, n0} (the basis of Chapter 3).

2.6 Reducing Confinement Loss

The observation that CLmin is lower in higher order 〈l, 0〉 gaps than in the fundamental

〈1, 0〉 is a general one. This applies to any fibre with a sufficiently large core radius

a such that Re{ñ(λ)} intercepts the 〈2, 0〉 gap. To see this, take the n0 = 1 example

where the tube analogy is again made: one can see how any given mode’s Re{ñ} is

increased towards its asymptote at n0 for increasing core radius a since, as per Eq. 2.1,

1 − Re{ñ} ∝ λ2/a2. § 2.4 presents one such case of this use of these wide bandgaps.

Other air-Bragg fibre configurations may vary in core radius a, global scale factor G,

cladding layer thickness ratio t1
t0

, substrate refractive index n1, or the total number

of cladding rings pairs N . For all cases, higher order bandgaps will always exist and

produce a lower CLmin for the reasons discussed above9.

Reduction of confinement loss of an idealised air-Bragg fibre at a given wavelength, with-

out introducing extra structural complexity such as increasing the number of cladding

rings, is now investigated. Here this is done for λ ≈ 1155 nm: the wavelength of the

considered air-Bragg fibre’s CLmin. There are two ways to do this: by exploiting a
9Konorovet al. [156] indirectly demonstrate an example of this generality with the calculation of the

CL spectrum of an air-Bragg approximation to a 2-D hexagonal HC-MOF in which many higher-order
gaps are calculated and shown to have decreasing CLmin towards shorter λ.
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higher-order bandgap; or by increasing the size of the core. As discussed above, both

techniques essentially bringing ñ closer to the light-line, which generally reduces CL.

The first technique requires spatially scaling the whole geometry up to shift the position

of the 〈2, 0〉 gap’s relatively lower CLmin (λ = 480 nm) to that of the fundamental

(λ ≈ 1155 nm). This method is possible from the scale invariance of the problem: since

none of the fibre parameters depend on λ (ignoring material dispersion here), by scaling

λ and the geometry by the same factor, ñ must be invariant, thus CL is also invariant to

within an inverse factor of the spatial scaling factor10, seen directly from a unit analysis:

[CL] = m−1. This type of global scaling can be almost trivially implemented during

the fibre drawing process, say, by altering the drawing speed, temperature or internal

pressure. This is the principal reason this scaling approach to CL reduction would be

so appealing. Indeed, it also allows one to fabricate a fibre whose fine structural details

are larger, hence typically easier to fabricate, than those of one which guides within the

fundamental bandgap requiring smaller dimensions.

Scaling only the core radius a of the fibre, keeping all other structural parameters con-

stant, can be implemented to reduce the CLmin of the fundamental gap itself, without

significantly shifting its position. This method works because, by increasing a, Re{ñ}
approaches n0. As discussed, this is explained via the tube analogue: Eq. A.177 de-

scribes how β → k0 (Re{ñ} → n0) monotonically as a → ∞. Fig. 2.9 explicitly shows

this, with the Re{ñ} of the T(E/M)01 modes of a tube analogue for a range of a over-

layed on the bandgap maps. It is interesting to note that CL reduction via increasing

core size has also been considered for conventional, hexagonal/trigonal lattice cladding,

PBGFs [16].

The results in Fig. 2.10, calculated for the TE01 mode via the cTMM, demonstrate the

scaling of CL(λ) within the 〈1, 0〉 gap with respect to the core radius a (top) and the

shifting of the 〈2, 0〉 gap’s CL(λ) curve position with respect to the global scale factor

G (bottom). The scale factor multiplies the structural dimensions of the fibre by the

same amount in each dimension, e.g., G = 1 produces the original structure and G = 2

doubles the size of the whole structure.

Fig. 2.10 (top) demonstrates the expected 1/G relation between CLmin in the second-

order gap and the global scale factor: CLmin decreases to 1.63 × 10−7 dB/km as its

position is shifted, along with the entire 〈2, 0〉 gap, to λ = 1.155 μm—noting that it

was already much lower than the 〈1, 0〉 gap loss to begin with. The scale factor required

for this is G = 2.4. Note that this is greater than a factor of 2: the scale factor that

would be implied by considering only an antiresonance model, implied from the forms of
10By the same reasoning, all calculations considered here thus also describe the behaviour of all similar

waveguides related via a global scale factor to the one considered (a simple but important point).
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Figure 2.10: The TE01 mode calculated by the TMM. Top: CL of the TE01 mode in
the 〈1, 0〉 gap a range of core radii a = 7 μm → 12 μm. The original radius a = 10 μm
corresponds to the solid curve. Bottom: CL for the 〈2, 0〉 bandgap for global scale
factors G = 1.6, 2.0, and 2.4. The solid curve corresponds to G shifting the 〈2, 0〉 gap’s
CLmin to λ = 1.155 μm (the 〈1, 0〉 gap’s CLmin position when G = 1).

λm and λantires.
m above. The full CL and antiresonance models depart here for the same

reasons the antiresonance points and CLmin position don’t align as described earlier:

the band edges provide a more accurate description of the low-loss regions rather than

the layer resonance approximations.

In order to produce a similarly low CLmin using the 〈1, 0〉 gap, a must be increased

significantly. Fig. 2.10 (bottom) shows that CLmin within the fundamental gap initially

exhibits an extremely rapid decrease in its rate of change for increasing R. This is

explained by observing the position of the equivalent tube dispersion curves with respect

to the bandgaps as shown in Fig. 2.9: as a decreases from 10 μm, Re{ñ(λ)} shifts down

and enters a smaller region of the 〈1, 0〉 gap. As the available bandgap region decreases,
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Figure 2.11: Blue curve: CLmin of the TE01 mode in the 〈1, 0〉 bandgap for a range
of core radii. Magenta line: CLmin of the TE01 mode obtained by scaling the entire
fibre structure (by G) such that CLmin in the 〈2, 0〉 gap is shifted to the position of
CLmin in the original (unshifted) 〈1, 0〉 gap; this corresponds to a global scale factor of
G = 2.4.

CLmin is affected by both the encroaching band edges and the fact that the mode is

moving away from the n0-light-line. Both these effects see that CLmin increases rapidly

as a is decreased, as demonstrated in Figs. 2.10 (top) and 2.11. As a increases, however,

Re{ñ(λ)} approaches the light-line at a slower rate; relating to the tube analogue again,

this is due to the reciprocal relationship 1 − Re{ñ} ∝ 1/a2 from Eq. A.177. Since

this decreased rate of approach also occurs within a region where the band edges don’t

change significantly, CLmin decreases slowly, as demonstrated by the tail of the curve in

Fig. 2.11.

Global scaling of the whole structure to exploit the second-order bandgap is thus an effec-

tive means of reducing CL at a desired wavelength, embodied in Fig. 2.11: a scale factor

of G = 2.4 shifts the 〈2, 0〉 gap to λ = 1.155 μm giving CLmin = 1.63 × 10−7 dB/km,

whereas increasing a by the same scale can only produce CLmin = 1.45 × 10−5 dB/km

within the 〈1, 0〉 gap. In order to achieve the same CLmin via increasing rcore as by

shifting the 〈2, 0〉 bandgap, an impractical core radius of a ≈ 1mm would be required

(beyond the axes of Fig. 2.11 by 3 orders of magnitude). Exploiting the higher order

bandgap in this way provides a real advantage in terms of fabrication since scaling of the

fibre structure during the drawing process is much easier to implement than significant

scaling the core radius alone. As mentioned earlier, a global scaling of the structure

requires only the variation of fibre drawing parameters such as temperature and draw

speed, say. Increasing the core radius dramatically, however, is much more difficult, es-

pecially when maintaining the same cladding dimensions; the resulting large core size to
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cladding pitch ratio a : Λ would require much extra care during the fabrication process

(extreme differences in hole sizes being very hard to fabricate due to the large pressure

gradients between holes of disparate sizes). Also, many more supporting struts would be

required to hold together the rings—the volume of air between adjacent rings becoming

larger as their radius increases.

Also, by avoiding a significant increase in core size, the exploitation of higher-order gaps

makes asymptotic single-modedness much easier to achieve; smaller core radii produce

fewer core-modes within the desired bandgap and hence fewer modes with loss low

enough for practical guidance.

For completeness, it is noted that in using this method, the 〈2, 0〉 gap can be shifted

to the popular wavelength λ = 1550 nm using a scale factor of G = 3.23, producing

CLmin ≈ 1.21 × 10−7 dB/km for the TE01 mode.

2.7 Struts and Polygonal Geometries—Modal Analysis

Here the confinement loss properties of the lowest order core modes, TE01, TM01 and

HE11, are analysed for variations to an idealised structure to which connective struts have

been added in various configurations and in which the rings have been transformed from

annular to hexagonal. This is done for a few reasons: to analyse the effect of connective

struts and their number and distribution on modal confinement loss; to analyse the

influence of the shape of the cladding rings on the modal behaviour; and the use of

the latter to justify the investigation of polygonal air-Bragg fibres, fabricable via an

extrusion technique, say—critical to the motivation of Chapter 5.

The finite element method is used for this analysis since it is sufficiently flexible to

make the eigen-analysis of such complex geometries soluble, as discussed in § 2.3.4.

The waveguide structures upon which it was used are represented with their calculated

confinement loss spectra in Fig. 2.12 (overleaf).

2.7.1 Fibre Structures and Model Parameters

The air-Bragg structures considered here are based on the structure considered by

Foroni et al. [71, 72] in which a FEM was also used to calculate the modal proper-

ties of an air-Bragg fibre. The structure considered was based on the fabricated ‘OD90’

air-Bragg fibre structure of Vienne et al. [43] and will be referred to as the Vienne-

structure.
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The Vienne-structure consists of concentric annular rings connected by the (realistically

required) bridging struts. The geometrical parameters were: core diameter Dcore =

20 μm, strut thickness tstrut = 45 nm, glass ring thickness tring = 200 nm, air gap

thickness tair = 2.3 μm, number of binary cladding layer pairs Npairs = 3. These same

parameters are use here.

In order to produce a geometry that exhibits 4-fold symmetry, making it possible to

truncate the geometry to a quarter plane to reduce the calculation complexity (as dis-

cussed in § 2.3.4), the number of struts in each air region is approximated by an even

integer (differing from the real OD90 fibre by a few struts per ring). From the inner

ring to the outer ring, for a full (non-truncated) structure, the number of equally az-

imuthally spaced struts in the first to final air rings is 24, 34 and 44, respectively (as

used in Refs. [71, 72]). The struts are orientated with respect to each so as to produce

the maximum symmetry possible: C2ν group symmetry (2 mirror symmetries and one

rotational [184]) in which the quarter-plane truncation contains 6, 8.5 and 11 struts in

the inner to outer air gaps, respectively (shown in Fig. 2.5 and Fig. 2.12-F ).

As described in § 2.3.4, the appropriate boundary conditions for the internal terminated

boundaries (the symmetry planes of the truncated structure) must be employed in order

to solve for the mode classes containing the TE01, TM01, or HE11 modes (requiring

perfect electric, perfect magnetic, and combinations of the two, respectively). The HE11

mode here was calculated using a perfect electric boundary condition on the vertical

internal boundary (Fig. 2.5 and Fig. 2.12-F ) and perfect magnetic conditions on the

horizontal (swapping the two produces a very similar mode with only very subtle modal

differences that exist due to the way the struts are distributed—they produce 2, not 4,

mirror symmetries).

Here, sharp edges are made between the rings and the struts; no rounded corners are

used to approximate a fabricated structure. This is done predominantly for simplicity of

systematic analysis since such rounding is a deviation from the simplest representation.

As shown in Ref. [72], by incorporating rounded edges into the Vienne-structure model,

the calculated CL spectrum is shifted by 200 nm to longer wavelengths—possibly due to

the increased high-index material in the cladding increasing the average refractive index

in the low-index (air-hole) cladding layers, shifting the effective bandgap or resonances.

Nonetheless, the qualitative details of the model are left intact by ignoring the rounding

and is satisfactory for the analysis here since the qualitative behaviour is of most interest.

Maximum mesh element sizes generated over the structure are as follows: glass regions,

0.1 μm; core region, 0.2 μm; and PML region, 0.1 μm. The PML annulus has a thickness

of 1 μm. The air regions in the cladding have maximum element sizes of ≈ 0.2 μm but

are automatically generated by COMSOL’s advanced mesh generation routines (i.e.,
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a maximum element size isn’t strictly enforced). Using these mesh parameters, the

models required a total of ∼ 104 mesh elements. As discussed earlier, a single iteration

with this number of mesh elements takes about 10 minutes to complete. Since each

of the calculated spectra shown in Fig. 2.12 contains about 1000 points, the spectral

calculations for each mode required a calculation time of at least a week (requiring a

total computational time of about a month—all modes must be calculated separately

due to the unique boundary conditions of each mode type). The computer system used

for these calculations is the same as described earlier in § 2.3.4 in the discussion of the

finite element method implementation.

The other structures considered are variations on the Vienne-structure, all shown in

Fig. 2.12, labelled A → F . Fig. 2.12-A is for an idealised version of the Vienne-structure

in which all struts have been removed, leaving the concentric annular rings. Fig. 2.12-B

incorporates 6 colinear struts in each air ring (1.5 within the quarter-plane). Fig. 2.12-

C is identical to Fig. 2.12-B but employs offset struts such that the struts in each ring

are azimuthally offset from those in the adjacent ring by π/6. Fig. 2.12-D is the same

as the idealised Vienne-structure (Fig. 2.12-A) but where the annular rings have been

replaced with hexagonal rings (the edges of the hexagonal rings are as far from the

centre of the fibre as the idealised version’s annular rings’ radii, i.e., if overlayed the

edges of the circular rings would fit within the edges of the hexagonal rings, not vice

versa). Fig. 2.12-E is identical but incorporates 6 colinear struts (1.5 in the quarter-

plane geometry) that coincide with the apexes of the hexagonal rings. Fig. 2.12-F is the

Vienne-structure itself, as described above.

2.7.2 Numerical Results

Here, the confinement loss spectra calculations for the TE01, TM01 and HE11 modes for

all considered structures will be discussed with inferences of the CL features made with

respect to its parent fibre structure. Re(ñ) is not considered here since the curves of

all modes tend to deviate only slightly from their tube analogues (in the same way the

Bragg fibre and tube mode dispersion curves were related in the previous sections). For

these investigations into the influence of the cladding structure upon mode guidance, CL

is the most appropriate and revealing as it is directly related to the radially propagating

power that manages to make its way through the cladding structure, as per Eq. A.27,

making subtle interactions with the cladding obvious.

This section will be split into two main topics: the discussion of novel confinement loss

phenomena calculated for the Vienne-structure once all modes are considered; and the

influence of the distribution of cladding struts and the shape of the cladding rings.
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Novel Confinement Loss Phenomena

The first observation to make is that the HE11 mode CL spectrum for the Vienne-

structure (Fig. 2.12-E) is, as far as can be told from investigating the plots, very close

to that calculated by Foroni et al. [71, 72]. This is useful for a ‘sanity-check’ in that it

appears the FEM model can replicate the modal properties of the (particularly complex)

full Vienne-structure. From this, the validity of the calculations of the other modes

and structures is implied (since the HE modes effectively contain both TE and TM

components—hence the mixed terminal boundary conditions—and the other structures

are geometrically more simple).

One thing to note about the results of Refs. [71, 72] (and indeed all11 references on

the numerical modelling of this air-Bragg fibre [70, 73]) is that only the HE11 mode

is calculated12. As noted in Ref. [72], the Vienne-structure produces a CL spectrum

much higher than the idealised (no strut) equivalent structure. This is seen explicitly in

comparing the calculations here between Fig. 2.12-F and Fig. 2.12-A. Not only is the

loss significantly increased (by about 4 orders of magnitude) by introducing the struts

of the Vienne-structure, but the CL minimum is shifted to longer wavelengths: the CL

curve appears relatively smooth (save for some thin loss peaks—surface mode couplings

according to Ref. [72]) down until the CL rapidly increases as if it has encountered a

strong resonance at about λ ≈ 0.85 μm. There appears to be another similar strong loss

feature at about λ ≈ 0.62 μm; between these two features the loss drops (to an even

lower value) as if the two features were indeed strong cladding resonances. There is also

a smaller resonance-like feature (not as visually obvious as the first two) at λ ≈ 0.5 μm.

None of these high-loss regions coincides with a resonance of the annular cladding rings

since the only ring resonance in the calculated domain is plotted on top of this data and

sits at precisely λ = 0.42 μm (calculated as per the antiresonance analysis of § 2.3.3).

These resonance-like features were not clearly defined in the results of Refs. [70–73]

(often being excluded from the displayed results) possibly due to insufficient numerical

accuracy13, although one can make out the features within the noise such as in the inset

to Fig. 4 of Ref. [72], say.
11Save for Ref. [69] which considers all three but only for a single wavelength.
12Except for the results in Fig. 6 of Ref. [72] where the TE01, TM01 and HE11 modes are shown for

Vienne-structure with rounded edges. However, there the CL spectrum is restricted to the domain of
the shown HE11 mode (which excludes the novel resonance-like features discussed here) and so it is
unclear as to whether the observations made here could be made of their model, too; keeping in mind
the rounded edges can effect the CL spectrum, as discussed within.

13This is justified by the fact that the CL spectrum for the idealised geometry shown in Fig. 4 of
Ref. [72] has a moderately ‘noisy’ structure. The idealised geometry should only produce a smooth CL
curve as shown here in Fig. 2.12-A, or in Figs. 2.6 and 2.8 where the FEM is compared to excellent
precision with a semi-analytic cTMM. Any ‘noisy’ deviations indicate that the model employed con-
tains inaccuracies (due to a coarse FEM mesh or boundary absorber parameters producing insufficient
convergence, say.).
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Clearly something interesting is occurring upon introduction of the struts which is in

addition to the resonance effects of the cladding rings. It is unclear as to whether these

resonance-like features are due to the surface mode anti-crossings (symmetry-induced

couplings) that are responsible for the fine peaks seen throughout the CL spectra, as

characterised by Ref. [72]. Since the surface mode interruptions appear to become more

severe as shorter wavelengths are approached (Fig. 2.12-F ), this is a possibility that war-

rants further investigation. However, surface modes need not be the only explanation.

During the calculations of these CL spectra it was observed that some of the fine loss

peaks were not associated with a surface-mode anti-crossing: some of the small CL peaks

exist in the absence of an interaction with surface modes (evidenced by the lack of core-

to-surface evolution observed during simulations about these points). Some of these

loss features could thus be due to nontrivial resonances with the cladding structure,

rather than symmetry-induced anti-crossing interactions with cladding modes. This,

too, warrants further investigation.

In order to analyse the guidance properties further, the TE01 and TM01 modes were also

calculated for all structures (instead of just the HE11 mode as in Refs. [70–73]). Staying

with the Vienne-structure for now, Fig. 2.12-F demonstrates how the TM01 mode has

very similar CL behaviour to the HE11 but the TE01 mode is markedly different.The fact

that the HE11 mode closely follows the loss characteristics of the TE01 has been seen

and explained earlier (§ 2.4) in the context of an idealised air-Bragg fibre: the effective

TM components of the HE11 mode sees it dominated by the loss characteristics enforced

by the TM components. This is seen directly here, too, in that, just as for the idealised

structure in Fig. 2.12-A, the HE11 mode’s CL spectrum has a values closer to the TM01

mode than the TE01 mode.

Given these observations, note how extremely different the TE01 mode’s CL spectrum

is to the other modes for the Vienne-structure (Fig. 2.12-F ): the resonance-like fea-

tures at λ ≈ 0.62 μm and 0.5 μm are absent. In particular, the absence of the 0.8 μm

feature allows the TE01 mode’s CL to drop down closer the value of its idealised ana-

logue (Fig. 2.12-A) than was possible for the other modes. A similar, but less striking,

observation is made for the feature at 0.5 μm. Clearly, then, these resonance-like loss

features are polarisation dependent; the azimuthally-pointing (up to vector effects at the

structure interfaces) nature of the TE01 mode negates its interaction with whatever is

responsible for this loss feature. It would seem that this is a vital observation for the

investigation of these novel confinement loss features.

As was mentioned in § 1.2.3, the HE11 mode CL calculations of Refs. [70–73], and hence

also the calculations here, do not appear to match with the observed bandwidth and

position of the experimentally measured transmission spectra of Ref. [43]. Not only
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that, but the minimum calculated CL of the HE11 mode (∼ 10 dB/m) is rather higher

than the nominal measured loss of (∼ 1 dB/m), implying that the broader bandwidth

of the calculated mode would be well above this measured value by about two orders of

magnitude or more.

One could then argue that modes of predominantly TE field content have a broader

bandwidth at low CL and could thus be responsible for the broader experimentally

measured transmission spectrum and the position of its transmission maximum. Indeed,

since the resonance-like feature at λ ≈ 0.85 μm is absent from the TE01 spectrum, it is

able to reach a minimum CL ≈ 8.5 × 10−3 dB/m (at λ ≈ 0.92 μm), well below that of

the nominal measured value, leaving a reasonable amount of headroom for the broader

bandwidth of the CL spectrum to accommodate for the wider measured transmission

spectrum.

In fact, if one inspects Fig. 4 (a) of Ref. [43], it will be noted that the measured spectrum

of the OD90 fibre (which these models are an approximation to upon) appears to follow

the trends of the TE01 mode CL spectrum calculated here (Fig. 2.12-F ): the transmission

spectrum reaches its peak at λ ≈ 1 μm, which is where the calculated TE01 CL minimum

occurs; this peak drops off rapidly but then rises again on the short- and long-λ sides,

possibly due to the predominance of the TM01 and HE11 CL minima which occur at

about these positions; what was attributed to a “second-order peak” (as in: a second-

order bandgap or cladding ring resonance) in Ref. [43] at λ ≈ 500 nm could indeed be

due to the combined CL minima bound between the fundamental cladding ring resonance

and the short-λ resonance-like feature at λ ≈ 0.62 μm in Fig. 2.12-F . While modelling of

a more faithful structure to the fabricated one is required (rounded corners at the strut-

ring junctions, say) these results go a long way to potentially explaining the nontrivial

transmission spectrum of these fibres, and certainly further than just considering the

HE11 mode alone. Further investigations should consider the properties of higher-order

core modes and their resonant effects with the cladding structure as well as the influence

of cladding modes.

In summary, one can conclude that:

• the Vienne-structure exhibits at least three novel resonance-like high-loss features

in the confinement loss spectra of the TM01 and HE11 modes (and hence likely all

modes with TM content),

• the TE01 is not affected by two of these features, allowing it to span a greater

bandwidth at much lower loss than the TM01 or HE11 modes,

• these two comments imply that the resonance-like features are polarisation depen-

dent (insofar as the TE and TM content of the full-vector fields of the leaky modes

is concerned),
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• the experimentally observed transmission spectra of which the model of Fig. 2.12-F

approximates can potentially be explained by the markedly different behaviour of

the calculated mode types, particularly the low, broad-band, loss spectrum of the

TE01 mode,

• and by investigating the origins of these loss features, one might be able to suppress

them for certain mode types (such as those with TM content) by altering the air-

Bragg design in some way.

The Effects of Strut Distribution and Ring Shape

The behaviour of the variants to the Vienne-structure shown in Fig. 2.12 are now dis-

cussed. These variants are based upon different distributions of the cladding struts and

the alteration of the cladding ring shape from concentric annuli to hexagonal rings. They

will now be discussed in order from Fig. 2.12-B to Fig. 2.12-E.

Structure B is a variation to the Vienne-structure that has only 6 struts per air ring

(1.5 in the quarter-plane) which are radially aligned (colinear). The first observation

to make regarding the computed confinement loss structure of this fibre geometry is

that it is remarkably similar to the full Vienne-structure. All of the aforementioned

novel resonance-like features exist for the TM01 or HE11 modes at the same positions

and with the same spectral widths as for the Vienne-structure. Also similar is the fact

that the TE01 mode does not succumb to the high-loss features at λ ≈ 0.85 μm and

λ ≈ 0.5 μm. One can thus make the same arguments as above with respect to the these

features being polarisation dependent and their absence for the TE01 mode allowing

it to reach a lower minimum CL than the other modes. In fact, the TE01 mode for

structure B reaches a minimum CL of ≈ 9 × 10−4 dB/m (at λ ≈ 0.87 μm) which is an

order of magnitude lower than for the full Vienne-structure. This lower confinement loss

could be due to the fact that the reduction of struts in the cladding naturally reduces

the average refractive index of the low-index (air-hole) layers such that the core modes

move closer to the effective low-index light-line of the cladding, reducing the confinement

loss (in the same way it was discussed how core modes approaching the light-line have

low loss in the previous sections). In the sense that the cladding struts could manifest

as an average layer index and contribute to the effective bandgap behaviour in this

way, the Vienne-structure is potentially similar to an average-index Bragg fibre [66] as

discussed in § 1.2.2. The removal of struts has the effect of moving the fibre structure

conceptually closer to a level-core Bragg fibre in that the average refractive index of the

cladding region is reduced to essentially that of air (the same as the core), reducing the

minimum CL.
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Important for the justification of the spider-web geometry, introduced in § 1.4 and

demonstrated experimentally (and compared with theory) in Chapter 5, is the fact that

the colinear nature of the supportive struts does not seem to have the effect of increasing

the confinement loss any more than their mere presence does. One could argue that in

having the struts aligned, they allow light to be tunnelled through them and out into the

jacket region much more easily than if they weren’t colinear. Indeed, when the struts

are offset as much as possible (so that the end of each strut is as far from the one in

the adjacent layer as possible), as for the structure C in Fig. 2.12-C, one can see that,

if anything, the offset struts disrupt the CL spectrum more than the colinear ones do

(discussed further presently). This apparent lack of a significant tunnelling effect may

very well be due to the fact that the struts are quite thin (45 nm thickness), well below

the wavelengths considered here; the effect of tunnelling could be investigated further by

scaling the strut thickness in these models. Ref. [71] considers the effect of altering the

thickness of the struts of the full Vienne-structure from 45 nm to 70 nm, demonstrating

an increase in CL (as would be expected for increased tunnelling) but coupled with a

significant shift in the position of the minimum CL. This latter effect indicates that

the effect of increasing the thickness of the struts in the Vienne-structure increases the

average-index of the low-index rings, hence altering the effective bandgap/resonance

positions. In order to determine the effect of tunnelling further, the average-index effect

(if that is the mechanism responsible) should be suppressed by considering structures

with fewer struts, like those considered here. This suggests future work to consider for

these few-strut models.

Structure B has a significantly ‘cleaner’ CL spectrum than the Vienne-structure, espe-

cially for the TE01 mode; the CL curves of all modes exhibit fewer interruptions along

the calculated range of wavelengths. This implies that, perhaps unsurprisingly, the re-

duced number of struts produces fewer surface-mode couplings (as per Ref. [71, 72]) and

nontrivial cladding resonance (as discussed above). Reduction of the number of struts

even further (to 4 or 2 per layer, say) thus appears to be a means of isolating the novel

resonance-like features from the more fine-grained surface mode type interactions that

disrupt the CL spectra in an effort to better understand the various loss mechanisms at

play.

Structure C (Fig. 2.12-C, just discussed) is an identical structure to structure B (6

struts per air ring—1.5 in the quarter-plane) but where the colinear struts have been

modified to be offset from each other. More precisely, the struts of the second ring

are azimuthally offset from those in the adjacent rings by a π/6 rotation. The first

obvious effect of offsetting the struts is the increase in the number of interruptions to

the CL spectra the TM01 and HE11 modes, likely due to an increase in surface-mode

anti-crossings. However, the TE01 mode CL spectrum appears almost unchanged when
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compared to its colinear strut counterpart. Thus, whatever the reason for the increase

in loss features of the other modes, the TE01 mode appears to be unaffected. Perhaps,

then, given the predominance of this effect and the large resonance-like features (at

λ ≈ 0.85 μm and 0.5 μm) for only the TM01 and HE11 modes, one could suggest that

the effect of offsetting the struts is also polarisation dependent in the same sense (and

possibly under the same mechanism) as the resonance-like features.

Another noteworthy feature of loss of structure C compared to B is that the width of

the large resonance-like features at λ ≈ 0.85 μm, 0.62 μm and 0.5 μm all appear to the

‘sharper’ in that their width seems to be reduced to a point. This appears to have the

effect of lowering the minimum loss between them for all modes as well. Thus, while

offsetting the struts appears to introduce many more fine loss features to the CL spectra

of the TM01 and HE11 modes, the widths of the large resonance-like loss features are

reduced for all modes. This suggests that the broadness of the large loss features depends

upon the proximity of adjacent struts since these features appear to be occupy the same

range of wavelengths for structures B and F (which have struts in adjacent rings close

to one another) but occupy only a very small (possibly singular) wavelength when the

struts are maximally offset.

Structure D represents a deviation from annular rings to hexagonal rings. It is the same

idealised (strutless) structure as A but with hexagons replacing the circular ring edges

such that the shortest distance from the centre of the core to the hexagons is equal to

the radius of the original annuli (i.e., the circles fit within the hexagons). This structure

is thus very similar to that considered by Pearce et al. [145], discussed in § 1.2.2, in

which they used a FEM to model the modal confinement loss properties of a structure

consisting of concentric hexagons; the principal difference with their structure, however,

was the inclusion of a hexagonal core ring which was rotated by π/3 in order to best

approximate a Kagomè fibre (neglecting the interstitial struts). It is unsurprising, then,

that one should also observe that the CL spectrum of structure D exhibits surface-mode

style interruptions that increase in number and severity toward the edges of the CL curve,

as was shown for the structure of Ref. [145]. These loss features appear in the absence

of connective struts, so their existence cannot be attributed to the arguments above

(based on the surface-mode results of Ref. [71, 72]), and were explained in Ref. [145]

as being due to surface modes induced by the corners of the polygonal rings. This is

possible since, like the inclusion of the connective struts, the corners of the polygonal

rings breaks the cylindrical symmetry of the waveguide, providing a defect with which

to induce symmetry-based mode coupling (anti-crossings) with surface modes.

Polygonal rings, like colinear struts, are also important for the motivation of the spider-

web fibre design. This is because, by having only a few colinear struts in the design,
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annular rings would not hold their shape under the surface tension effects of fabrication,

as will be demonstrated and discussed in Chapter 5. This ‘straightening out’ of the ring

edges is unavoidable for any air-Bragg structure hoping to employ reasonably spaced

struts.

Note also that the TE01 mode of structure D has CL generally raised closer to that of

the TM01 and HE11 modes compared to the equivalent annular case (structure A), even

though the TM01 and HE11 modes appear unchanged between the two structures save

for the surface mode effects. This is likely because the low-loss behaviour of the TE01

mode is due to it field configuration at the cladding ring boundaries [171]. The TE01

mode’s electric field is everywhere tangential to the cladding ring boundaries in a Bragg

fibre with circular rings. When these rings are disrupted from such a prefect circle, the

TE01 mode cannot maintain this constant boundary condition over the entire ring; the

loss follows suit. Nonetheless, it is clear that the TE01 is still the lowest loss mode for

the polygonal structure and, importantly, that the loss is not increased beyond an order

of magnitude buy replacing annular rings with hexagonal ones.

Structure E is identical to D except that connective strut have been included. The struts

are the same width (45 nm) as those in the previous structures and lie along the vertices

of the hexagonal rings. Naturally, in this case the struts must be colinear in order to

approximate a fabricable structure (as discussed above). This structure is thus most

reminiscent to a spider-web fibre, consisting of concentric polygonal rings supported by

connective struts.

The effect of adding the struts to the hexagonal structure is considerable: all modes’

(particularly TM01 and HE11) CL spectra become ‘noisy’ in that the CL values rapidly

fluctuate as that follow a general trajectory similar to that of the strutless case. This

noisy CL behaviour is very similar to that calculated for a Kagomé structure in Ref. [145].

The similarities between the Kagomé structure this spider-web type structure are thus

quite deep. It is unclear as to why the addition of struts to the hexagonal rings produces

this noise effect when it is not observed for the addition of struts to the annular case,

highlighting another avenue for investigation.

One can also note that all of the major novel resonance-like CL features are present in the

modes of structure E just as for all of the other strut-laden structures considered here.

This includes the polarisation dependence of the loss features since the TE01 mode once

again appears to be unaffected by the loss features at λ ≈ 0.85 μm and 0.5 μm. In this

sense, the fibre structure still produces behaviour very much like the Vienne-structure

and its variants.
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For experiment, the noisy CL spectrum is likely of little concern. Indeed, Kagomè fibres

have already been demonstrated as an emerging platform for hollow-core guidance and

their transmission spectra and dispersion profiles appear not to exhibit such rapid fluc-

tuations (e.g., see the references in Table 1.2). As argued later in § 5.5, this discrepancy

between rapid CL fluctuations and experimental observation could be explained by the

fact that fabrication tolerances during the fibre fabrication process would see the small

structural fluctuations along the length of a fibre smooth these fine features out as they

are shifted over one another as the light propagates down the fibre length. In other

words, it would be very hard to maintain such fine spectral features in a fabricated

waveguide.

In summary, one can conclude that:

• the addition of struts in general (circular or hexagonal alike) induces large, anoma-

lous, polarisation dependent resonance-like features in the CL spectra,

• reducing the number of struts in the cladding reduces the minimum CL of all

modes (possibly due to many struts raising increasing the average refractive index

of the air-hole layers),

• offset struts produce more well-defined anomalous resonance-like CL features (which

reduces the minimum CL of all modes),

• colinear struts produce ‘cleaner’ CL spectra than offset struts,

• the TE01 mode is barely affected by the transition from colinear to offset struts,

again indicating its indifference to possible polarisation dependent resonance effects

of the cladding,

• hexagonal structures (and thus likely polygonal structures in general) exhibit many

of the same general modal features, and exhibit very similar minimum loss values

for all modes, as their circular counterparts both with and without connective

struts,

• the addition of struts to the hexagonal structure (D → E) converts the comparably

smooth, Bragg fibre like, CL spectrum into a ‘noisy’ spectrum as calculated for

Kagomé fibres (but still maintaining the predominant CL features of the circular

equivalent structures).

Of course, all geometries presented here that include struts must be exhibiting a Von

Neumann Wigner type guidance mechanism, permitting the confinement of light to

the low-index waveguide core in the absence of a true cladding bandgap: low-loss core

modes can co-exist with the cladding modes (see § 1.2.3 and Fig. 1.6). It is clear from

these results, however, that many nontrivial interactions with the cladding modes and

resonances with the cladding itself are evident in the confinement loss behaviour of the

calculated modes (an observation made for both air-Bragg and Kagomé fibres numerous
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times before, as discussed above). The investigation into the novel effects discussed here,

such as the anomalous polarisation dependent resonance-like features in the CL spectra,

is required before the guidance mechanisms of such fibres (spider-web, air-Bragg and

Kagomé alike) can truly be understood in order to influence future structure designs

and better understand the guidance mechanisms in their own right.

These results thus indicate that the spider-web design holds much promise as a plat-

form for low-index guidance since it exhibits modal traits very close to both air-Bragg

and Kagomé type fibres but via a more simple geometry. Structurally, the spider-web

geometry is more flexible for design purposes since the structure places few restrictions,

permitting (within fabrication and guidance limits) arbitrary ring, air gap and strut

thicknesses, polygonal vertices (hence the numbers of struts) and numbers of rings. Ef-

forts towards fabricating such a structure and the light guidance properties in experiment

and theory thereof, are presented in Chapter 5.

2.8 Concluding Remarks

Using a variety of modeling techniques, the guidance mechanisms of idealised air-core

all-silica air-Bragg fibres have been presented and discussed. Transfer matrix and finite

element methods have been shown to produce more accurate confinement loss calcula-

tions for the considered idealised air-Bragg fibre than the previously used asymptotic

transfer matrix method (§ 2.4.1). Using semi-analytic techniques, the guidance prop-

erties of these waveguides calculated using the aforementioned numerical methods were

compared and contrasted to the modal guidance properties of a simple tube and a Bloch

mode analysis of the layered cladding (§§ 2.4.1 and 2.4.2).

By examining the bandgap structure of the fibre cladding it has been shown that the

Bragg stack exhibits a nontrivial topology of bandgaps (which form the basis of the work

of Chapter 3), especially close to the low-index light-line (§ 2.5). It was shown that

single-material air-Bragg fibres can access higher order, wider, bandgaps unavailable

to conventional Bragg fibres with core refractive indices much lower than the lowest

of the cladding indices (§ 2.6). A scheme for exploiting the higher order gaps at a

specific wavelength via a global scaling of the fibre geometry was proposed and favorably

compared to scaling only the core radius when considering the fundamental bandgap

(§ 2.6)—by accessing the second order bandgap closest to the light-line, the idealised

all-silica Bragg fibre considered could potentially achieve a minimum confinement loss

four orders of magnitude smaller than that attainable by using the fundamental gap.

By incorporating these principles into fabricable fibre designs, it is expected that the

confinement loss can be reduced to levels where other loss mechanisms become dominant.
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Calculations of the modal confinement loss properties of all-silica air-Bragg fibres in-

cluding the connective cladding struts were also performed (§ 2.7). It was generally

observed that the influence of the extra cladding features is predominantly to fracture

the CL spectrum by introducing various loss features. Aside from the already known

surface-mode anticrossings which introduce fine loss peaks into the CL spectrum of all

supported core modes, the present work identified several large anomalous resonance-

like loss features in the CL spectra. These novel loss features were present for all struc-

tures containing connective cladding struts, regardless of their distribution. Two of the

observed resonance-like losses were absent from the CL spectrum of the TE01 mode,

indicating that the origin of these dominant confinement loss features is polarisation

dependent; a predominance of TE field components appears to circumvent the under-

lying loss mechanisms for these particular features and appears to be the case for all

strut-laden structures considered. In the same vein, the TE01 mode of all structures

was shown to have CL much closer to its strutless equivalent geometry in comparison to

the TM01 and HE11 modes. This sees that the TE01 mode is, as for the idealised case

(no struts), the lowest loss mode of all structures considered, significantly helped by its

invulnerability to two of the anomalous loss features.

The conversion of annular cladding rings to hexagonal rings saw that the modal con-

finement loss spectra became significantly ‘noisier’ than their circular counterparts upon

the addition of struts (§ 2.7.2). These noisy spectra are very similar to those calculated

elsewhere for full Kagomé fibre structures and reveal the close relationship between

them. These rapidly fluctuating loss features were superposed upon similar CL curves

observed for the circular equivalent structures. These points highlight that the polygo-

nal ring spider-web geometry would guide in a similar fashion to both the Kagomé and

air-Bragg structures (and thus potentially share their exotic guidance regimes), thus

providing a flexible platform for a novel HC-MOF design—critical for the motivation of

Chapter 5.

Given that all considered strut-laden geometries essentially produced CL spectra similar

to those of their strutless analogues, the principles of confinement loss reduction via

exploitation of higher-order bandgap/resonances would thus follow naturally to them as

well, pointing a way towards a better understanding of the design principles required

for advancement of air-Bragg, Kagomé or spider-web structure HC-MOFs.
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