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Chapter 3

Bragg-Cladding Waveguides;

Antiresonance, Reflectance and

Bandgap Phenomena

T
his chapter focuses on two themes: reconciliation of antiresonance, reflectance and

bandgap phenomena for guidance in depressed-core waveguides with binary 1D-

periodic claddings (e.g., Fig. 3.1); and from this, construction of the SPARROW model—

a simple analytic model for the analysis of the nontrivial antiresonance, reflectance and

bandgap spectra of such structures on and below the low-index light line (ñ < n0).

Figure 3.1: Schematic representation of a depressed-core Bragg fibre. All parameters
are defined within. Refractive indices take any value such that 1 ≤ ncore ≤ n0 < n1.

119



120 Chapter 3

Figure 3.2: Left: The equivalent planar slab representation of the Bragg-cladding of
Fig. 3.1 with N layers of alternating high- and low-index. Right: The planar layers of
the stack considered in isolation. The vector diagram represents the decomposition of
an incident ray’s wavevector. High-index layers (dark blue) have refractive index n1

and thickness t1 and low-index layers (light blue) have refractive index n0 < n1 and
thickness t0.

This chapter is an extension of a publication compiled within the duration of research

for this Thesis: Kristopher J. Rowland, Shahraam Afshar V. and Tanya M. Monro,

‘Bandgaps and antiresonances in integrated-ARROWS and Bragg fibers; a simple model’,

Optics Express, Vol. 16, Issue 22, pp. 17,935-17,951 (16 pages in total), published Oc-

tober 21, 2008—co-published in The Virtual Journal for Biomedical Optics, Vol. 3,

Issue 12, December 1, 2008.

This chapter is somewhat of an extension on Chapter 2 in that it generalises the analysis

now to depressed-core waveguides, not just level-core. By making the core refractive

index a free parameter, a wealth of extra phenomena can be considered. This chapter

goes some way to understand such phenomena using a variety of theoretical techniques,

from analytic to numerical models.

Considering the first theme, fibres with a binary layered cladding, Bragg fibres, are

well known for their ability to confine light to cores with refractive indices equal to or

lower than either of the cladding indices (e.g., Temelkuran et al. [41]). A schematic

representation of a depressed-core Bragg fibre is shown in Fig. 3.1. Analogous types

of planar waveguides known as Integrated Antiresonant Reflecting Optical Waveguides,

I-ARROWs, exhibit similar low-index confinement behaviour but are typically treated

as distinct to Bragg waveguides and their associated bandgap guidance mechanism (e.g.,

Yin et al. [26]). A schematic representation of an I-ARROW with rectangular and arch

shaped profiles was shown in Fig. 1.3. Bragg fibres and I-ARROWs, their concepts,

fabrication methods, examples and applications were discussed in § 1.2.2.

A Bragg waveguide cladding (Fig. 3.1) can be approximated as an infinite 1-D Bragg

stack (Fig. 3.2), a photonic crystal, such that the behaviour of the supported Bloch

modes dictates whether light can or can not couple to the cladding [34, 36–42, 44]: core
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modes exist only for wavelengths and propagation constants that fall within the Bloch

modes’ forbidden regions (bandgaps).

ARROW guidance, on the other hand, is typically attributed to the antiresonance of

light with the cladding layers considered in isolation (Fig. 3.2) as waveguides in their

own right [99–102, 173, 174]: light will preferentially be coupled into a particular layer

at the layer’s resonant frequencies, such that the transverse component of the light

wave interferes constructively with itself for each round trip within the layer; light at

wavelengths sufficiently far from the cladding resonances will be confined to the core due

to restricted coupling (antiresonance) with the cladding layers themselves. In this sense,

the layers act as Fabry-Perot cavities [14], reflecting light not satisfying its resonant

conditions back into the core.

Both the bandgap and antiresonance mechanisms were discussed in detail in §§ 1 and

(in particular for the 1-D case) 2. The critical distinction for the work in this section

is that I am concerned with guidance below the low-index light-line (ñ ≥ n0). Much

of the literature discussed in earlier chapters considers antiresonance on (or above) the

low-index light-line ñ ≥ n0 [9, 99–102, 143, 173]. In other words, the analyses were

limited to the bound mode cut-off (ñ = n0, § A.2.1.3) of the modes supported in the

high-index cladding inclusions.

Here I suggest that the distinction between Bragg-cladding waveguides and integrated-

ARROWs is somewhat artificial, with the only difference being semantic: whether the

cladding has many (‘Bragg’) or few (‘ARROW’) cladding layers. Indeed, with hollow-

core integrated-ARROWs now being considered with multiple cladding unit cells [26, 57,

188] this distinction begins to disintegrate. Thus, since these two waveguide structures

are for all intents and purposes the same, it is natural to expect a strong relationship

between the mechanism to which guidance in each waveguide is attributed: a relationship

between the bandgap and antiresonance guidance mechanisms themselves. I explore this

idea within by analysing and comparing the antiresonance and bandgap phenomena

directly. In doing so, I develop a general antiresonance model for the ñ ≤ n0 regime;

that is, for guidance below the high-index cladding layer mode cut-off condition.

It is useful here to highlight an important misnomer regarding the use of the term

‘ARROW’. As it was initially conceived, the model used to describe ARROWs typically

assumed that one of the cladding layer refractive indices was much greater than the

core and remaining cladding index [173]. As such, many ARROW designs have a core

index equal to the lowest of the cladding indices [99, 101, 102, 173, 194–196]; as defined

earlier, for clarity I call these level-core waveguides. Indeed, this line of thought saw

the ARROW model successfully applied to photonic crystal fibres with a 2-D cladding

lattice structure and has spawned much interest in what have been termed ‘ARROW
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fibres’: PCFs of a low-index substrate with a cladding of high-index rods (typically

on, but not restricted to, a hexagonal lattice), as discussed in § 1.2.3. It is implicitly

assumed that such fibres have a core refractive index equal to the surrounding low-

index substrate, just like the early (level-core) ARROWs, and rightly so since it is

structurally the only possibility for a 2-D cladding of isolated inclusions embedded in a

substrate. For level-core waveguides, with either 1-D (layers or rings) or 2-D (lattice-

based) cladding structures, the predominant antiresonance behaviour comes from the

high-index inclusions alone with little dependence on their spacing (§ 1.2.3).

The general definition of an ARROW by Archambault et al. [174], however, dictates

that the core index can have any value up to that of the lowest cladding index, provided

both the resonances of the high- and low-index layers are considered; I will call these

depressed-core waveguides, as defined in 1. All cladding layer resonances in depressed-

core waveguides influence the spectral behaviour of the core modes [174], not just the

high-index layer resonances. Indeed, it is the Archambault-ARROW model that is con-

sidered for most current work on integrated hollow-core ARROWs [26, 28, 56, 57, 197].

It would seem that this disparity between the use of the general depressed-core compat-

ible Archambault-ARROW model as applied to I-ARROWS and its restricted level-core

Duguay-ARROW [173] form as applied to PCFs (‘ARROW fibres’) is responsible for the

apparent bifurcation of the use of the ARROW principle in the integrated-waveguide

and fibre fields. This is most clearly demonstrated (to the best of the Author’s knowl-

edge) by the absence of antiresonance analyses for depressed-core Bragg fibres and the

absence of a Bloch analyses for Integrated-ARROWs1; the two waveguide structures be-

ing fundamentally similar (depressed core, binary layered cladding), as discussed. The

work presented here clearly demonstrates how both the antiresonance and bandgap prin-

ciples are applicable to any depressed-core waveguide with a binary stratified cladding,

particularly for fibres and integrated waveguides respectively.

Developed within is a generalised version of the Archambault-ARROW model2, dis-

cussed presently, and it is used to demonstrate an intimate relationship between the

bandgap and antiresonance guidance mechanisms associated with stratified cladding

waveguides3. This new model is coined the Stratified Planar Anti-Resonant Reflecting

Optical Waveguide (SPARROW) model to distinguish it from both the Archambault-

ARROW model [174] and, in particular, the more restrictive level-core ARROW and

ARROW fibre applications based on the Duguay-ARROW model [99, 101, 102, 173].
1A recent publication by Hawkins et al. [56] actually mentions the importance of a Bloch analysis

but, similarly for most of the I-ARROW literature (to the best of my knowledge), does not make a deep
connection between the Bloch analysis and antiresonance or use it for the design of such waveguides.

2The SPARROW model presented here, however, was actually developed without knowledge of the
Archambault-ARROW model, discovering its existence only after deeper investigation of the literature.

3Something which the Archambault-ARROW model can not do due to an implicit inclusion of the
core phase condition—discussed below
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Indeed, as will be shown later (§ 3.7.3), the Duguay-ARROW model is a special case of

the SPARROW model, found by enforcing a level-core index profile ñ = n0. Critically,

it will be demonstrated how both high- and low-index cladding layer resonances must

be considered together for the most general waveguide analysis and design. Often (and,

to the best of my knowledge, exclusively), the current I-ARROW literature employs the

Archambault-ARROW model to optimise the layer properties independently from one

another (e.g., Ref. [57, 174, 197]); the following results using the SPARROW model

will demonstrate why, especially for higher-order bandgaps/antiresonances, this is an

incorrect approach.

This leads to the second major theme of this chapter. As shown in § 2.5, air-Bragg

fibres [43, 147, 188] exhibit a class of large bandwidth bandgaps, whose higher-order

gaps can exhibit interesting properties such as orders-of-magnitude lower loss (as per

Chapter 2 and the subsequent publication, Rowland et al. [147]). Importantly, this

analysis also demonstrated that such cladding structures produce bandgap spectra with

rich 2-D [effective mode index vs. frequency—(ñ, Λ/λ)] structure below the light-line of

the lowest-index cladding layer [147]. These gaps are distinct from, yet related to, the

gaps typically studied in more conventional hollow-core/solid-cladding Bragg fibres [41,

42, 171] which lie far from the low-index light-line.

Here the resonances of the individual cladding high- and low-index layers are examined

via the SPARROW model. By using multi-layer reflectance analysis, a connection is

made between this generalised antiresonance model of individual layers and the Bloch

bandgap spectra of the infinite layer stack equivalent. In doing so, an analytical physical

description of the aforementioned nontrivial bandgap properties is derived. It will be

demonstrated how how this model can determine a number of nontrivial bandgap and

antiresonance properties with simple, fully analytic, expressions.

Modelling microstructured waveguides typically relies heavily on often cumbersome nu-

merical analyses of the full waveguide structures to determine the guidance character-

istics, highlighting the need for simpler models. While a Bloch-wave analysis may be

used (and is throughout this work) on 1-D approximations to the cladding of a Bragg-

cladding waveguide [36, 41–44, 147, 171], it is difficult to use the resultant semi-analytic

bandgap condition [36] to glean the direct physical insight into the relationship between

the cladding parameters and the bandgap spectra’s structure and topology that comes

with analytic forms. Such analytic tools are indispensable for the understanding and

design of depressed-core layered-cladding waveguides, whether they be fibres (multi-

dielectric, such as hollow-core Bragg fibres [41, 42, 171], or single-material air-Bragg

fibres [43, 147, 188]) or Integrated-ARROWs [26, 28, 70, 174, 197]. It is thus expected

that the SPARROW model will be particularly useful for the design of layered-cladding
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waveguides with gas, liquid or solid cores for applications in such areas as sensing, mi-

crofluidics, nonlinear optics, particle manipulation and waveguide lasers.

3.1 Chapter Structure and Overview

The following sections are predominantly concerned with the development of the Strat-

ified Planar Anti-Resonant Reflecting Optical Waveguide model and its application to

exposing the interrelationships between and analysis of the antiresonance, reflectance

and bandgap behaviour of 1-D binary layered media, in particular for depressed-core

waveguides. Section 3.3 discusses the relevant background theory on antiresonances,

planar guidance and multilayer reflectance in 1-D structures—bandgaps in 1-D struc-

tures have already been covered in the § 2.3.2. The dispersion characteristics of high-

and low-index slab waveguides are discussed in § 3.3.2 and are used to formally define

the SPARROW model in § 3.4. The expressions fundamental to the SPARROW model

are the dispersion curves of the cladding layers considered in isolation (§ 3.3.2), giving

the wavelengths and modal effective indices at which light preferentially couples to the

cladding (resonances); avoiding these cladding resonances decreases the core-mode loss

(antiresonance).

A thorough theoretical analysis (using the pTMM theory of § 3.3.3) of the multilayer

reflectance of a structure considered in the text is presented; analytical derivations of

the conditions for antiresonance behaviour for one (§ 3.5.1) or two (§ 3.5.2) layers, and

physical insight born from it, is demonstrated using the pTMM formalism. The evolution

from an antiresonance regime into a bandgap regime as increasing numbers of layers are

added to the system is them discussed in § 3.5.3, again employing the pTMM reflectance

analysis.

The SPARROW model’s ability to predict high- and low-loss wavelengths is confirmed

via a numerical example in § 3.6 where it is made clear that both the high- and low-index

layer resonances must be taken into account in order to describe the chosen region of the

2-D bandgap spectrum. This follows directly from the definition of the antiresonance

mean point (§ 3.7.2) which explicitly accommodates this behaviour. As mentioned,

further analysis of the curve interactions (§ 3.7) leads to expressions describing nontrivial

properties of the associated bandgaps, such as: the positions of all bandgap closure points

and, from them, a consistent nomenclature for arbitrary bandgap spectra (§ 3.7.1); the

central antiresonance point (§ 3.7.4)—a special case of the antiresonance mean point;

and a quantitative measure of the topology of arbitrary bandgap spectra—the number

of gaps within a specific domain (§ 3.7.5). Concluding remarks are given in § 3.8.
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3.2 Fibre Parameters

The general structure considered here is that of a depressed-core Bragg fibre, as depicted

in Fig. 3.1, and the equivalent 1-D planar stack based on the cladding, as depicted in

Fig. 3.2. The fibre parameters are defined exactly as in § 2.2 except that here the core

has a variable refractive index such that ncore ≤ n0. Namely:

n(r) =

⎧⎪⎪⎨⎪⎪⎩
ncore ≤ n0 for 0 < r < r0

ni for ri−1 < r < ri and i = 1 → N

n1 for r > rN

where all even or odd numbered rings have the same refractive index ni and thickness

ti = ri − ri−1, allowing one to define ni = {n1, n0} and ti = {t1, t0} ∀ i = {odd, even}.
Thus, the cladding consists of N/2 unit cells (pairs of layers) each with a total width

Λ = t1 + t0 (the pitch). The odd layers have a higher index than the even layers such

that ncore ≤ n0 < n1.

Most of the theory discussed within is completely general. All numerical calculations,

however, are based on a specific fibre structure and its equivalent 1-D cladding stack.

This structure is based on the Bragg fibre of Temelkuran et al. [41]: the cladding layers

were made from As2Se3 chalcogenide glass (n ≈ 2.8) and the polymer polyethersulphone

(PES, n ≈ 1.55) with thicknesses of 270nm and 900nm, respectively. A smaller core

diameter (20 μm) than the cited fabricated fibre (≈ 700 μm), and fewer rings (4 pairs

of layers instead of 9), are considered here due to numerical restrictions of the method

employed (the relevant discretisations are stored in finite computer memory), but note

that the bandgap behaviour would be very similar between the two structures regardless

(like the 700 μm core, a 20 μm core also produces modes close to the ncore-light-line,

demonstrated later in Fig. 3.7).
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3.3 Background Theory

Here the theory used for the analyses of this chapter is presented. The reader should

note that, as for Chapter 2, while attempts have been made to keep the treatment terse,

it is still somewhat detailed and has the potential to break the flow of the discussion. If

desired, one can skip directly to § 3.4 to delve directly into the results and discussion,

since the text refers back to the relevant background material when required. Nonethe-

less, I have placed the following theory components into context as they are discussed

to maintain the work’s flow.

Save for the brief historical account of antiresonance models in § 3.3.1, Appendix A

discusses all of the theory used in this Chapter. The relevant results are abstracted

here for ease of reference. As discussed in the introduction, most of the content in

Appendix A is not original to this Thesis, but has been re-derived and expressed in a

consistent nomenclature for completeness and ease of discussion here. Those parts that

are original are highlighted as such. The theoretical results derived in the body of this

work are, to the best of my knowledge, original to this Thesis.

Section 3.3.1 provides a historical account of antiresonance models and how they relate

to the SPARROW model developed within. Section 3.3.2 describes a ray-based modal

analysis for both high- and low-index planar waveguides—critical to the definition of

the SPARROW model. Section 3.3.3 then presents the pTMM formalism (discussed

for the infinite layer case in § 2.3.2) for a finite number of layers; the evaluation of the

reflectance of the composite system is discussed.

In addition to these methods, this Chapter also employs the infinite pTMM Bloch wave

analysis (§ 2.3.2) and FEM technique (§ 2.3.4 and later in § 5.5).

3.3.1 Antiresonance—Historical Models

Originally discussed in the context of planar waveguides with a single high-index cladding

layer by Duguay et al. in 1986 [173], the Anti-Resonant Reflecting Optical Waveguide

(ARROW) model demonstrated how light could be confined to a low-index core by inhib-

ited coupling (antiresonance) with a high-index cladding layer. The Duguay-ARROW

model was later generalised to arbitrary numbers of cladding layers with arbitrary refrac-

tive indices by Archambault et al. [174] in 1993; the only restriction for core-guidance in

the Archambault-ARROW model was that the core must have a refractive index equal

to or less than the lowest of the cladding indices: ncore ≤ min{ni}. By considering the

transverse phase accumulated by a propagating ray (such as in § A.2.1.3) per round trip

(including that from traversing the core, via the V-parameter) and equating it to 2π
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(resonance), the Archambault-ARROW model determines the wavelengths at which the

ith cladding layer will be resonant with the light guided by the core [57, 174]:

λmi =
2ti
mi

√
n2

i − n2
core +

(
U∞λ

2πtcore

)2

, (3.1)

where mi ∈ Z
+ is the resonance order of the ith layer type and U∞ takes the value

(p + 1)π/2 for a planar core, with mode order p ∈ Z
+, or value jνμ, with azimuthal and

radial mode orders μ and ν respectively [such that the νth-order Bessel function satisfies

Jν(jνμ) = 0], for a cylindrical core.

Note how in Eq. 3.1 the properties of the core are incorporated into the resonance

conditions by default (via ncore, tcore and U∞) such that the propagation constant of

the core is built into the theory, thereby restricting it. In the SPARROW model defined

within, the resonance analysis is completely decoupled from all core properties. Of

critical importance is that the SPARROW model relates the cladding layer resonances

to the core and core mode properties only via the effective mode index ñ. This allows

consideration of all of the layers’ full dispersion curves, when the layers are considered

in isolation (Fig. 3.2). One can then infer a resonance effect in which the closer a core

mode’s ñ lies to those of the isolated cladding layer modes, the stronger the resonance

of the core light with the cladding, producing a larger core-mode confinement loss (CL).

(This effect is actually demonstrated explicitly later via the FEM in § 3.6 and compared

with the equivalent Bloch bandgap map.)

From the Archambault-ARROW model Eq. 3.1, the wavelengths producing antireso-

nance with individual cladding layers are found between the cladding layer resonance

points by considering half-integer layer mode orders: mi → mi + 1
2 [174]. Using

this simple approach, the Archambault-ARROW model has recently been applied suc-

cessfully to depressed-core gas- and liquid-filled hollow-core integrated-ARROW wave-

guides [26, 57, 197] but tends to be used to optimise antiresonance with each cladding

layer individually and only for the fundamental resonance (mi = 1—e.g., Ref. [57]).

While this approach is sufficient for achieving a guidance regime, the tuning of each

layer separately is unnecessarily restrictive (and potentially produces a higher confine-

ment loss than desired by bringing the resonances of both layer types, rather than just

one, close to the k of interest). As will be shown in § 3.7.2, a general analysis requires the

resonances of all layer types to be considered together, leading to the definition of the an-

tiresonance mean point kc which enables a general antiresonance analysis for arbitrary

cladding configurations and is strictly necessary for arbitrary ñ and mi (higher-order

resonances/bandgaps below the low-index light-line).
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By substituting U∞ → π/2 (planar core with p = 0) in Eq. 3.1, the Duguay-ARROW

resonance condition [173] is derived where only one, high-index, cladding layer type is

considered (making the i label redundant). This substitution is equivalent to assuming

the core-bound rays only make glancing incidence with the cladding layer [173] and

hence restrict the applicable regime to guided core modes close to the low-index light-

line ñ = n0. The Duguay-ARROW model has been successfully applied to different types

of level-core (ncore = n0 < n1) ARROWs [173, 194, 195]. More recently, the Duguay-

ARROW model has also been employed by Litchinitser et al.[99, 101, 102] and Abeeluck

et al. [196] to describe antiresonance guidance in photonic crystal fibres (PCFs) in the

large-core regime, including level-core Bragg fibres [99], and, in particular, PCFs with

a cladding of high-index rods [101, 102]. For stratified claddings, the large-core limit

reduces the cladding layer resonance condition to [99]:

λm =
2t1
m

√
n2

1 − n2
0. (3.2)

Incidentally, note that m → m+ 1
2 is required for the rod-cladding case, to accommodate

for the modal cut-off frequencies of cylinders instead of planar layers [101, 102]. One im-

portant property of these level-core (ncore = n0) waveguides is that the resonance effects

of the cladding on the core-guided modes is dominated by the high-index inclusions,

independent of the low-index region between them [99] (§ 1.2.3). This phenomenon is

quantitatively explained (for layered claddings) in § 3.7.3 by setting ñ = ncore = n0 in

the SPARROW model.

3.3.2 Guidance in a Single Layer

The guidance of light within a single, isolated, layer (as represented in Fig. 3.2) is now

considered. A detailed treatment is given in § A.2.1.3 in which both high-index layers

in a low-index medium and low-index layers in a high-index medium are considered.

The basic principle is simple: waves propagating within a layer will be partially or totally

reflected from the interfaces of the layer and bounding medium, trapping the reflected

light within the layer. This is the fundamental premise of waveguidance, represented

schematically in Fig. A.1.

Total internal reflection (§ A.2.1.2) is not considered here since, according to Corol-

lary A.2, any ray originating from a low-index medium—which naturally requires ñ ≤
n0—cannot undergo total internal reflection within any surrounding parallel layer. This

condition holds for the current work since the guidance region of interest has index

ncore ≤ n0. Thus, only leaky guidance within a given layer is of interest here.
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A layer waveguide will only support modes, leaky or otherwise, if the accumulated

transverse phase for one round-trip of the slab (traversing the slab twice, reflecting from

each interface) is an integer multiple of 2π (§ A.2.1.3). For both layers, the transverse

phase accumulated by traversing the slab region once is kixti, Fig. 3.2. The forms of the

low- and high-index slabs’ phase relations thus differ only in their reflection terms.

Reflection of a ray with ñ ≤ n0 will accumulate a phase shift of 0 or π upon each

reflection. Note that this implies the Goos-Hänchen phase shift is absent, which works

in our favour here as its form is transcendental and thus cannot produce an analytic

form. By having only these simple 0 or π phase shifts for any incidence angle, the final

dispersion relations become fully analytic.

Equating the cumulative phase shifts to m2π (m ∈ Z
+), a unified mode dispersion

relation for each waveguide can be derived [178, 198], Eq. A.99:

ñmi =

[
n2

i −
(

miπ

tik

)2
] 1

2

, mi ∈ N

where i = 1 corresponds to a high-index layer in a low-index background (Fig. 3.2 top-

right) and i = 0 to a low-index layer in a high-index background (Fig. 3.2 bottom-right).

Note how, just as for the tube structure earlier (§ 2.3.1), the ñ of the guided modes is

wholly independent of the cladding refractive index.

These analytic dispersion relations for the layers are critical to the general antiresonance

model developed presently.
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3.3.3 Finite Multilayer Stack

Section A.3.1 presents a planar transfer matrix method (pTMM) to describe the prop-

agation of light through multilayer planar structures. By restricting the structure to

two layer types, the method describes propagation through a finite Bragg stack, as in

Fig. 3.2. Section 2.3.2 provided an overview of the treatment of § A.3.2 on the exten-

sion of this transfer matrix formulation to an infinite number of layers, permitting the

existence of Bloch modes (the only eigen-solutions for an infinite periodic structure).

Only a finite number of layers is considered here. Instead of formulating a eigen-mode

analysis4 as for the infinite case, I consider the total reflectance of an incident wave on

the full structure. In this case, the reflectance is essentially the cumulative effect of the

reflection of each interface, taking the wave nature of the light into account (accounting

for interference, hence resonance effects). This description is also more natural for

describing the interaction of an incident (plane) wave upon the cladding structure as is

desired here, instead of inference through calculating the behaviour of cladding modes

(such as a Bloch-wave analysis), which I have not yet seen demonstrated in the literature

(at least in the area of multilayer waveguides and antiresonance analyses—this approach

does have a significant history in thin-film optics [199]).

Using the full system transfer matrix for a finite number (N) of layers, Eq. A.114:

M =

(
M11 M12

M21 M22

)
=

(
N∏

m=1

Dm−1,mPm

)
DN,N+1.

where the constituent interface and propagation matrices D and P account for the evo-

lution of the fields across interfaces and through layers, respectively; they were described

in § 2.3.2 above and in detail in § A.3.1.

Once M has been calculated, by relating the fields at the first and final interfaces, the

total reflectance of the multilayer system can be evaluated as, Eq. A.117:

R = |Γ0s|2 =
∣∣∣∣M21

M11

∣∣∣∣2 ,

where Γ is the reflectance defined in § A.2.1.2 and Mij is the element of M in the ith

row and jth column. The 0 and s indices refer to the extreme outer (buffering) domains

of the finite stack (§ A.3.1). R is thus ultimately a function of the light properties (ñ

and k) and the layer thicknesses (ti) and refractive indices of all regions (ni).

4which can be relatively easily done for the ñ > n0 regime [36, 153].
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Figure 3.3: Top: A bandgap map generated via the Bloch theorem (§§ 2.3.2 and A.3.2)
for a Bragg fibre cladding like that considered in Ref. [41]: t1 = 0.27 μm, t0 = 0.9 μm,
n1 = 2.8 and n0 = 1.55. Color scheme (for ñ < n0): as described in text, § 2.3.2; black
for TE bands, black and grey for TM bands (⇒ white for TM bandgaps, white and
grey for TE bandgaps). Solid blue line: the n0-light-line. Dashed line: the Brewster
line, ñ = nB. Bottom: A plot of all the SPARROW curves (dispersion curves of the
equivalent isolated layers), via Eq. A.99, for the same cladding and bandgap domain.
Magenta: high-index (n1) layer, ñm1(k). Cyan: low-index (n0) layer, ñm0(k).
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3.4 The SPARROW Model

The Stratified Planar Anti-Resonant Reflecting Optical Waveguide model is a novel an-

tiresonance model describing the resonance properties of arbitrary binary layered media,

such as the claddings of depressed-core layered waveguides. It is a generalisation of the

Archambault-ARROW model in that the core mode properties are decoupled from the

cladding resonances, as described above. With the background theory developed, the

formal definition of the SPARROW is rather straight-forward and is now discussed.

Formally, the model itself consists of the use of the resonance curves to describe various

resonance, reflectance and bandgap phenomena. As discussed in §§ 3.3.2 and A.2.1.3,

the resonance curves of a given layer (modal dispersion of the layers in isolation) are

described by Eq. A.99:

ñmi =

[
n2

i −
(

miπ

tik

)2
] 1

2

, mi ∈ N,

and correspond to a single pass transverse phase accumulation of φ = miπ (the condition

for resonance—constructive interference upon a round trip—within a layer). The char-

acteristics of these curves and their relationships to each other (such as their intersection

points or the regions they enclose) form the basis of the SPARROW model and will be

discussed at length in the following sections. Note that mi = 0, ñ = 0 and k = 0 are

important special cases for the model, forming the limits within which it is applicable

(discussed further later).

First, the phenomenological relationship between the bandgap of an infinite stack ap-

proximation to the cladding and the modal dispersion of the individual layers of the

cladding considered in isolation will be considered. Figure 3.4 (top) is produced by

overlaying the slab curves (Fig. 3.3—bottom) upon the corresponding Bragg stack’s

bandgap map (Fig. 3.3—top). A clear and striking similarity between the two plots is

thus revealed: each high- and low-index slab dispersion curve corresponds to a band of

the bandgap spectrum. Also, the gaps completely close at the intersection points of the

high and low refractive index curves (nm1 and nm0 , discussed further in § 3.7.1). This is

because ñm1 = ñm0 implies optimal coupling between the two layer types so that light

can easily propagate through the cladding, precluding the generation of a bandgap.

This is an example of how the resonance curves (and the properties derived from them—

see § 3.7) can be used to quantitatively describe the resonant features of a layered struc-

ture (such as a waveguide cladding), including the properties of an associated bandgap

spectrum. The SPARROW model thus gives direct physical insight into how the thick-

nesses and refractive indices of the constituent high- and low-index layers affect the
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Figure 3.4: Top: The bandgap map of Fig. 3.3 with the cladding layer dispersion
(SPARROW) curves (Fig. 3.3) overlayed. Bottom: The same configuration but with the
high-index layer’s thickness decreased: t1 = 0.27 μm → 0.18 μm. The bandgap topology
dramatically changes between the two cases (new bandgaps are created). Using the
nomenclature and analyses of § 3.7.5: t1 = 0.27 μm produces N1 = 2 and N2 = 4
whereas t1 = 0.18 μm produces N1 = 3 and N2 = 6.

resonant properties of the cladding. The model is thus similar to the Archambault-

ARROW model [174] except that the latter inseparably couples the core properties to

the resonance analysis. Instead, the SPARROW model considers the effective mode in-

dex alone, with no allusion to the properties of the core itself. In this way, the cladding

resonances have been separated from the core properties, providing two benefits: the

ability to easily describe cladding resonances on a bandgap-style (Λ/λ, ñ) plot (e.g.,

Figs. 3.3, 3.4, 3.7 and 3.8); and the freedom to consider core modes of arbitrary ñ. The

latter point requires that, for the SPARROW model to accurately predict core-mode

spectral features, sensible values for a core mode’s ñ must be provided independently.
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For large-core waveguides, this is trivial, since most low-order modes will lie very close

to the ncore-light-line (demonstrated in § 3.6). However, it has also been shown that, at

least for air-core Bragg fibres, it is possible to infer the (real part of the) core modes’

ñ solely from the core geometry [63, 147], including higher-order modes and small core

(∼ λ) waveguides.

Note that between any two adjacent slab dispersion curves, a bandgap region exists

in either the ñ or k dimension, meaning that the discrete bandgaps within the stack

bandgap spectrum are each enclosed by a subset of the SPARROW curves. The concept

of a bound region for any particular bandgap is thus defined: the (k, ñ) region enclosed

by the curves surrounding a particular bandgap. This behaviour implies the nontrivial

discrete bandgap spectrum of the stratified cladding is replicated in position and topol-

ogy by the equivalent SPARROW curves (including the physical limits k = 0, ñ = 0 and

ñ = n0, as discussed). Consequences and applications of this are discussed in § 3.7.
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3.5 Reflectance, Resonances, and Bandgaps

It is clear that, at least phenomenologically (Fig. 3.4), there is a strong connection

between the resonance/modal behaviour of both types of cladding layers considered in

isolation and the Bloch wave bandgap spectra of the infinite Bragg stack built from them.

A more fundamental approach to elucidating the connection between these phenomena

is now considered.

First, the pTMM is used to derive analytic forms for the reflectance of each layer type,

from which the conditions for minimising the reflectance is derived; it is shown how

these conditions are identical to the resonances of the layers themselves (the SPARROW

curves). The result constitutes an explicit analytic explanation of antiresonance for one

(§ 3.5.1) and two (§ 3.5.2) layers. Only TE waves are considered here for simplicity;

the only difference with the TM waves is that the Brewster effect dominates, producing

R = 0 about the Brewster condition ñ = ñB = ni sin(θB) (§ A.2.1.2).

Second, in § 3.5.3, it is demonstrated how, by adding more and more layers to the system,

the reflectance maps evolve into the Bloch-wave bandgap maps. This validates the

assumption that light satisfying the Bloch-wave band conditions which is incident on an

infinite stack will be transmitted through the stack, whereas light satisfying the bandgap

conditions is reflected. More than this, it demonstrates how the light is either totally

transmitted (R = 0) or reflected (R = 1) when within a band or bandgap, respectively;

something which is best demonstrated using this direct reflectance approach, rather than

inference from calculated cladding mode behaviour. Keep in mind that the reason why

confinement loss of guided modes in a Bragg fibre, say, is non-zero (e.g., Chapter 2)

is, at least for the ideal case, related to the fact that realistic cladding structures must

have a finite number of layers and hence non-unity reflectance (as demonstrated by all

R maps in Figs. 3.5 and 3.6).

3.5.1 Relationships Between Reflectance and Antiresonance

—Single Layers

By using the matrix method thoroughly described in § A.3.1, one can evaluate the trans-

fer matrix for propagation onto and through a single layer embedded within an infinite

homogeneous medium; namely those represented in Fig. 3.2 (right). The refractive index

distribution of the system could thus be low-high-low or high-low-high.



136 Chapter 3

Figure 3.5: Reflectance maps R(ñ, Λ/λ) for TE polarised plane waves incident on
isolated single high- and low-index layers and a two-layer planar stack based on the
layer parameters (thicknesses and refractive indices) of the structure defined in § 3.2.
Top: high-index layer in a low-index background (low-high-low). Middle: low-index
layer in a high-index background (high-low-high). Bottom: 2-layer stack (low-high-low-
high). the first two plots are overlayed with the mode trajectories of the supported
modes in each layer. The 2-layer case is overlayed with the modes of the constituent
layers considered in isolation; those of the first two single-layer cases. Qualitative
representations of the planar structures for which the reflectances are calculated are
shown to the right of the respective plot.
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Figure 3.6: Reflectance maps R(ñ, Λ/λ) for TE polarised plane waves incident on
multilayer planar stacks (top: 4-layer stack, middle: 10-layer stack) compared with
the TE bandgap map of the infinite layer analogue (bottom—red regions represent the
bandgaps and blue regions represent the allowed bands). This figure is an extension of
Fig. 3.5.
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For example, for the former, an incident wave first propagates through an infinite low-

index medium and is then reflected from and transmitted through a high-index layer

(two interfaces), the transmitted portion finally propagating into a second infinite ho-

mogeneous low-index medium (and similarly for the high-low-high case).

To generalise, let the layer have refractive index na and thickness ta and the surrounding

medium have refractive index nb with infinite extent. From Eq. A.114, the transfer

matrix relating the fields on one side of the layer to those on the other is:

M =DbaPaDab

=
1

TbaTab

(
1 Γba

Γba 1

)(
eiφa 0

0 e−iφa

)(
1 Γab

Γab 1

)

=
1

TbaTab

(
eiφa + e−iφaΓbaΓab eiφaΓab + e−iφaΓba

eiφaΓba + e−iφaΓab eiφaΓabΓba + e−iφa

)

(by Eq. A.83) =
1

TbaTab

(
eiφa − e−iφaΓ2

ab (eiφa − e−iφa)Γab

−eiφa − e−iφaΓ2
ab e−iφa − eiφaΓ2

ab

)

=
1

TbaTab

(
eiφa − e−iφaΓ2

ab 2i sinφaΓab

−2i sinφaΓ2
ab e−iφa − eiφaΓ2

ab

)
. (3.3)

From Eq. A.117, the reflectance of an incident plane wave is thus:

Rlayer =
∣∣∣∣M21

M11

∣∣∣∣2 =
| − 2i sinφaΓ2

ab|2
|eiφa − e−iφaΓ2

ab|2
. (3.4)

Since φa ∈ R, implying |e±iφa | = 1, the denominator can be evaluated as:

|eiφa − e−iφaΓ2
ab|2 =

∣∣∣∣1 − e−2iφaΓ2
ab

eiφa

∣∣∣∣2
=
∣∣1 − cos(2φa)Γ2

ab + i sin(2φa)Γ2
ab

∣∣2
=
[
1 − cos(2φa)Γ2

ab

]2 +
[
sin(2φa)Γ2

ab

]2
>0 ∀ k,

where the final inequality holds since Γab < 1 here (no total reflection for ñ ≤ min(na, nb),

related to Corollary A.2), and Γab has no explicit dependence on k. φa = kaxta =

nak cos θa (§ A.3.1) obviously does have an explicit k dependence, though.

The numerator is directly evaluated as:

| − 2i sinφaΓ2
ab|2 = 4Γ4

ab sin2 φa.
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The reflectance can then be expressed as:

Rlayer =
4Γ4

ab sin2 φa[
1 − cos(2φa)Γ2

ab

]2 +
[
sin(2φa)Γ2

ab

]2 . (3.5)

Therefore, since the denominator is always finite and non-zero for varying k, one finds

that Rlayer = 0 when sinφa = 0 (φa having the only k dependence). This happens when

φa = mπ, m ∈ Z. This means the layer produces no reflection at all when kax = mπ/ta;

all of the light is transmitted through the layer (by conservation of energy: R + T = 1,

§ A.2.1.2). Indeed, this is precisely the same condition required for guidance within

the layer itself, as just discussed above in § 3.3.2, and discussed in detail in § A.2.1.3.

This is, to the best of my knowledge, the first time such antiresonance effects have been

analytically examined in this way.

Generalising somewhat, this behaviour is an explicit demonstration of what one could

call the resonance principle:

Resonance Principle: Light incident upon a structural feature is

minimally scattered from it when it satisfies the conditions for guidance

within that feature;

so that by extension, low-loss guidance is achieved when the guided light is antireso-

nant with the cladding features. While this phenomenon has been observed throughout

the literature, such as that discussed in Chapter 1, to the best of my knowledge it has

never been summarised in this general form5. While it may now seem trivial for struc-

tures such as the conventional level-core ARROW waveguide or ARROW fibre, this

principle was not at all obviously applicable to arbitrary low-index guiding fibres and

waveguides. This principle can be seen to extend well beyond just the planar case (hence

cylindrical fibre case by extension) here, with recent literature furthering the connec-

tion between bandgap and antiresonance or tight-binding behaviour of many different

types of structured fibres and waveguides with the modal properties of their individual

cladding structural features [9, 130], as discussed in detail in Chapter 1.

Figure 3.5 explicitly demonstrates this important relationship between reflectance and

guided modes; the contour maps represent R over a range of ñ and Λ/λ = Λk/2π and

the curves represent multiple orders of the dispersion function ñ(k) of the layers’ guided

modes, all for the same structure as discussed in § 3.2. In this sense, ñ and Λ/λ either

completely describe an incident plane wave (essentially its incident angle and frequency)
5Although, I recall hearing a comment from Prof. Johnathan Knight in a a presentation of his [200] at

the Conference for Lasers and Electro-Optics in 2009 of which I paraphrase: “It is becoming increasingly
apparent to me that guidance within these types of waveguides (HC-MOF guidance) can be understood
as interactions with a collection of waveguides that make up the cladding structure”.
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or the propagation constant of a guided mode satisfying the guidance criteria discussed

above. The fact that ñ and Λ/λ are unitless implies that the results of Figs. 3.5 apply

for all globally scaled variants of the system (scaling the geometry and wavelength by

the same factor), neglecting material dispersion.

On top of these reflectance maps are overlayed the ñ(k) dispersion curves of the modes

supported by the individual layers, discussed above in § 3.3.2 (represented in Fig. 3.3,

bottom) and discussed in detail in § A.2.1.3. It is clear how the R = 0 regions are

perfectly mapped by the mode trajectories of the layers themselves, validating the above

analysis and again explicitly demonstrating the resonance phenomenon. One can thus

say that along the mode trajectories, the resonant behaviour produces the behaviour:

R(ñ, k) = Rres.
layer = 0 when ñ(k) =

√
n2

a −
(

mπ

tak

)2

. (3.6)

This reflectance versus mode trajectory analysis is thus a novel way to not just describe

but explicitly explain the waveguide resonance phenomenon.

Antiresonance can be similarly defined. Antiresonance is the opposite of resonance in

that it produces a local maximum, not minimum, reflectance of light from a layer.

Indeed, from Eq. 3.5 one can see that the denominator is minimised when φa = mπ
2 .

The numerator is maximised when φa = (m − 1
2)π. In the k-dimension, then, R itself

is thus maximised when φa = (m − 1
2)π. In other words, reflectance is maximised when

the mode condition kax = (m − 1
2)π/ta is satisfied. This condition defines dispersion

curves that sit mid-way (in k) between the supported modes of the layer, due to the half-

integer order. These half-order, anti-resonance, curves6 thus represent the antiresonance

condition in which R is maximised in k. More precisely, along such antiresonance curves,

by enforcing φa = (m − 1
2)π, this maximal reflectance has value:

R(ñ, k) = Rantires.
layer =

[
2Γ2

ab

1 + Γ2
ab

]2
when ñ(k) =

√√√√n2
a −
[

(m − 1
2)π

tak

]2

. (3.7)

which is independent of k as required. It is, however, dependent on ñ (or equivalently,

θb), i.e., the maximum reflectance along the k-dimension between two adjacent layer

mode curves depends explicitly on the value of ñ (along the antiresonance curves).

Since Γ2
a,b → 1 monotonically as ñ → n0 (or equivalently, as θb → π/2 for nb >

na = n0 or θb → θc for na > nb = n0), demonstrated7 by Fig. A.4, one can see

this antiresonant reflectance value Rantires.
layer has physical limiting behaviour: finite at

ñ = 0 (normal incidence) and as ñ → n0 (glancing incidence). In fact, the latter sees
6They aren’t referred to as ‘modes’ since they don’t correspond to the mode conditions; indeed,

precisely the opposite.
7Since Γ ∈ R here, Γ2 is identical to a reflectance.
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Rantires.
layer → 1 monotonically as ñ → n0; as glancing incidence is approached, the light

approaches complete reflection. This variation of reflectance with ñ under antiresonance

is quite different to reflection under resonance in which none of the light is reflected

for all considered values of ñ: Rres.
layer = 0 ∀ ñ < n0. Finally, also note that, for a

specific value of ñ, since Eq. 3.7 is independent of m, the maximum reflectance due to

antiresonance has the same value regardless of the mode order of the resonances:

Rantires.
layer

∣∣
m,m+1

= Rantires.
layer

∣∣
m+1,m+2

∀ m ∈ Z
+. (3.8)

This can be observed in the single layer reflectance plots in Fig. 3.5, where the local

maxima clearly have the same value between resonances for any given ñ.

The special case of ñ = n0 is essentially unphysical under this multilayer analysis: for

nb > na = n0, the incident wave would have an incidence angle of π/2, unable to

be reflected or transmitted across an interface at all; for na > nb = n0, the incident

wave would have an angle of θc such that the transmitted wave would make an angle of

π/2 with the normal, similarly unable to be reflected or transmitted across the second

interface. Nonetheless, it is worthy to note that at ñ = n0, Rantires.
layer = 1, expected from

the above limiting analysis, but8 Rres.
layer = 1, not 0, implying it has a singularity in this

limit, as may be expected from such an unphysical case.

These results hold for any relative values of na and nb, such as the top and middle

images in Fig. 3.5. The antiresonance effect with high- or low-index layers is a critical

and essential concept for much of this work.

This concludes the analysis of the reflectance of single isolated layers, but if one wishes to

consider the behaviour of multilayer structures, the interference effects between adjacent

high- and low-index layers must be considered as well as the aforementioned antireso-

nance effects of the individual layers themselves. For single layers, it was shown above

that resonance can suppress reflection from a layer altogether. How do these resonance

effects change when two layer types are put in close proximity in a multilayer structure,

similar to the case of a Bragg stack? This is the question I now turn my attention to,

providing a detailed analysis of the reflectance of a two-layer system and relating it to

an antiresonance picture.
8Found by setting Γab = 1 in Eq. 3.4.
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3.5.2 Relationships Between Reflectance and Antiresonance

—Two Layers

Figure 3.5 (bottom) shows a reflectance map similar to that for the single layers (top

and middle) but for a two-layer case (low-high-low-high), i.e., the reflectance of a plane

wave incident from an infinite homogeneous low-index medium onto a high-index layer,

then a low-index layer and then an infinite homogeneous high-index medium. The full

transfer matrix for the system is the same as that of the infinite stack two-layer unit cell9

in § 2.3.2 (§ A.3.2) M = D01P1D10P0 except that the low-index layer matrix component

is followed by an interface matrix D01 to accommodate for propagation from a low-index

(n0) layer into an high-index (n1) infinite homogeneous medium:

M = D01P1D10P0D01

=
1

T 2
01T10

(
1 Γ01

Γ01 1

)(
eiφ1 0

0 e−iφ1

)(
1 Γ10

Γ10 1

)(
eiφ0 0

0 e−iφ0

)(
1 Γ01

Γ01 1

)

=
1

T 2
01T10

(
eiφ0eiφ1 + eiφ0e−iφ1Γ01Γ10 e−iφ0e−iφ1Γ01 + e−iφ0eiφ1Γ10

eiφ0eiφ1Γ01 + eiφ0e−iφ1Γ10 e−iφ0e−iφ1 + e−iφ0eiφ1Γ01Γ10

)(
1 Γ01

Γ01 1

)

=
1

T 2
01T10

⎛⎜⎜⎜⎜⎜⎝
ei(φ0+φ1) + Γ2

01

[
e−i(φ0+φ1) − ei(φ0−φ1) − ei(φ1−φ0)

]
Γ01

[
ei(φ0+φ1) + e−i(φ0+φ1) − ei(φ1−φ0)

]
− Γ3

01e
i(φ0−φ1)

Γ01

[
e−i(φ0+φ1) + ei(φ0+φ1) − ei(φ0−φ1)

]
− Γ3

01e
i(φ1−φ0)

e−i(φ0+φ1) + Γ2
01

[
ei(φ0+φ1) − ei(φ0−φ1) − ei(φ1−φ0)

]

⎞⎟⎟⎟⎟⎟⎠ (3.9)

where the reciprocity relation Γba = −Γab (Eq. A.83) has been used in the final line. The

reflectance is evaluated from the first two matrix elements, as above R = |M12/M11|2.

From the figure, one can clearly see the influence of both the high- and low-index layer

resonances; it appears as though the reflectance maps of the single layers have been

multiplied together, with the maxima and minima of each dominating the topography

creating discrete peaks in both the Λ/λ and ñ dimensions. However, the multiplicative

appearance is only approximate, with the exact R values also having contributions from

interference effects between the two layers types. For example, the local maxima extend

to lower ñ compared to the single-layer cases; a result of constructive interference from

reflections from the two layer types. The two-layer R map discretisation has a greater

complexity than that seen in the single-layer maps (Fig. 3.5—top and middle) which

each exhibited continuous bands which monotonically increased in maximum amplitude

as ñ = 0 → ∞. Note that the R minima no longer form continuous curves with R = 0

because of these interference effects.
9Swapping the subscripts 1 ↔ 0 in Eq. A.128
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By overlaying the SPARROW curves [individual layers’ ñ(Λ/λ)] upon the two-layer re-

flectance map (Fig. 3.5) one can see how the minima of the reflectance map are well

approximated by the curves themselves. However, in contrast to the single-layer treat-

ment above where the SPARROW curves agreed exactly with the reflectance minima,

the curves here don’t provide an exact agreement with the minima for the two-layer case.

This can be appreciated from the fact that, as just discussed and shown in Fig. 3.5, the

minima themselves don’t form continuous bands, instead forming discrete local minima;

such structural features are difficult to compare to a single curve even on face value.

Naive expectations aside, one actually does find fascinating resonance behaviour hidden

in the reflectance of the two layer system, as I now demonstrate.

The modes of the layer’s considered in isolation (SPARROW curves), Eq. A.99, were

solved for (§§ 3.3.2 and A.2.1.3) by asserting the accumulated phase for a guided wave

(or more accurately, ray) was an integer multiple of 2π. The reflection components

were shown to be equal to 0 or π because total reflection can not occur for ñ ≤ n0. The

critical phase term was thus the phase shift induced by traversing the layer (Eq. A.98)10:

kaxta = mπ. In the pTMM formulation used in the reflectance analysis here, this implies

that resonance in the ith layer type requires φi = mπ.

Resonance in the low-index layer thus requires φ0 = mπ which implies e±iφ0 = (−1)m.

Substituting this into M11 via Eq. 3.9 produces:

M11|φ0=mπ = (−1)m eiφ1 − Γ2
01e

iφ1

T 2
01T10

=
(−1)meiφ1

T 2
01T10

(1 − Γ2
01)

=
(−1)meiφ1

T 2
01T10

(1 + Γ01Γ10)

= (−1)meiφ1
1

T01
, (3.10)

where the third and final steps follow from Eqs. A.83 and A.84, respectively.

For M12:

M12|φ0=mπ = (−1)m Γ01e
−iφ1 − Γ3

01e
−iφ1

T 2
01T10

=
(−1)mΓ01e

−iφ1

T 2
01T10

(1 − Γ2
01)

= (−1)me−iφ1
Γ01

T01
, (3.11)

where the final step follows from Eqs. A.83 and A.84.
10Up to an extra term of π to differentiate the low-index layer and high-index layer guidance/resonance.
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One finds that the reflectance R = |M12/M11|2 (Eq. A.117) at resonance with the low-

index layer is thus:

R(ñ, k) = Γ2
01 when ñ(k) =

√
n2

0 −
(

mπ

t0k

)2

. (3.12)

This is precisely the same expression (Eq. A.76) as for reflectance from a single low- to

high-index interface!

Similarly, one can also evaluate the transmittance T = ksx/k0x|1/M11|2 (Eq. A.118)

where the indices 0 and s refer to the first and final homogeneous media, respectively.

In the present case, ksx → k1x and k0x remains the same (but the 0 index now refers

to the refractive index n0 instead of a label for the ‘first’ medium11). Using the form of

Eq. 3.10, one finds:

T (ñ, k) =
k1x

k0x
T 2

01 when ñ(k) =

√
n2

0 −
(

mπ

t0k

)2

. (3.13)

This is precisely the same expression (Eq. A.77) as for transmittance through a single

low- to high-index interface. This could also have been inferred via the conservation of

energy requirement R + T = 1 (§ A.2.1.2).

It is thus quantitatively true that, when light is resonant with the low-index layer, the

reflectance and transmittance of the two-layer system is such that it is as if the layer is not

present, i.e., the light is reflected from or transmitted through the layer is of intensity as

if the low-index layer’s refractive index were increased to that of the high-index regions,

creating an interface between two homogeneous low- and high-index regions. This has a

direct parallel with the single-layer case above in which light resonant with a layer has

a null reflectance from it, just as though it were not there.

The difference between the two-layer case to the single-layer one is the addition of an

infinite homogeneous terminating region which creates a second layer against the first.

By creating an extra interface in this way, instead of the reflectance, say, being null at

resonance, it adopts a value dictated by the additional low- to high-index interface; just

as though the low-index layer were absent in both cases.

In the same vein, resonance in the high-index layer thus requires φ1 = mπ which implies

e±iφ1 = (−1)m. Substituting this into M11 via Eq. 3.9, and noting the symmetry of the
11An unfortunate degeneracy in the nomenclature. Were the first medium to have had a refractive

index n1, say, then the label would have been altered as k0x → k1x, where the 1 refers to the refractive
index type.
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exponential terms, produces:

M11|φ1=mπ = (−1)m eiφ0 − Γ2
01e

iφ0

T 2
01T10

= (−1)meiφ0
1

T01
, (3.14)

where the last step follows from Eq. 3.10.

For M12:

M12|φ1=mπ = (−1)m Γ01e
−iφ0 − Γ3

01e
−iφ0

T 2
01T10

= (−1)me−iφ0
Γ01

T01
, (3.15)

where the last step follows from Eq. 3.11. One can then evaluate the reflectance for

resonance with the high-index layer as:

R(ñ, k) = Γ2
01 when ñ(k) =

√
n2

1 −
(

mπ

t1k

)2

, (3.16)

and the transmittance as:

T (ñ, k) =
k1x

k0x
T 2

01 when ñ(k) =

√
n2

1 −
(

mπ

t1k

)2

. (3.17)

Just as for the low-index layer resonance above, these forms for the reflectance and

transmittance are both as they would be for for a single interface. The explanation is

also identical, except that in this case the high-index resonance makes it as if the high-

index layer is not present, reducing the (power) response of the system to one in which

the high-index layer is removed leaving behind a single low- to high-index interface.

Cursory inspection of the 2-layer reflectance map (Fig. 3.5) may suggest that the SPAR-

ROW curves don’t correspond to the single-interface Fresnel reflectance values (Fig. A.4)

since the curves are surrounded by peaks and troughs. Closer inspection, though, shows

that the layer mode curves do correspond these single-interface values and represent a

transition region between local peak and troughs in the two-layer R map due to construc-

tive or destructive interference between the two layers as the light shifts off-resonance

with one of the layers and hence begins to ‘see’ them both, rather than ‘ignoring’ one of

the layers when resonant with it as just discussed. Because of this, the discrete regions

defined by the SPARROW curves each contain a single large R maxima corresponding

to constructive interference. This is an important point since, as more layers are added

to the system, these maxima evolve into bandgaps. The evolution of finite reflectance

maps into bandgap maps is discussed in the next section.
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The last two sections have quantitatively demonstrated that for a single layer or two-

layer (low-high-low-high) stack, when light is resonant with a layer, the reflectance and

transmittance of the system is such that it is as if that layer is not present; a validation

of the SPARROW model. I believe this analytic treatment to be unique and that it

provides significant insight into the nature of the antiresonance mechanism by relating

the reflectance of the structures considered directly and analytically to the supported

modes of the constituent layers (the SPARROW curves). The consideration of both

single high- or low-index layers and a two-layer stack demonstrates that this type of

antiresonance effect and analysis holds not just for isolated layers but also for strongly

coupled high- and low-index layers, the latter being a critical observation in order to

apply it to multilayer stacks.

The extension of this analysis to cases of multiple high- and low-index layers (N > 2)

sees the transfer matrices become increasingly complex and an analytic treatment is

omitted here. Nonetheless, by numerically calculating the reflectance maps for increasing

numbers of layers, shown in Fig. 3.6, the broad effects of the antiresonances can still

be identified in that the resonances approximately correspond to the R minima. The

evolution of the R maps to larger N is now discussed.

3.5.3 Evolution of Bandgaps for Multiple Layers

Figures 3.6 (top and middle) shows the reflectance maps for the same structure as Fig. 3.5

(bottom) but where the number of layers N has been increased to 4 then 10 from the

original 2, respectively.

The most striking effect is the rapid convergence of all local R maxima toward a value

of 1 and all minima toward 0. It was noted in the 2-layer analysis above that the

local reflectance peaks increased in amplitude toward lower ñ due to the greater number

of interfaces capable of reflecting the light; when the reflected waves add coherently,

the reflectance is larger than that of a stack with fewer layers because there are more

layers capable of reflecting. For the 10-layer case one can see (Fig. 3.6—middle) that

the cumulative coherent reflectance from all interfaces reflects almost all of the incident

light within the high-reflectance bands and transmits almost all the light in the low-

reflectance bands; the peaks thus form a table-top shape on the map surface (the dark

red regions in Fig. 3.6, middle). The minima (dark blue regions) maintain their low

value due to the resonant nature of the transmission as discussed above.

The edges of the bands appear ‘blurred’ such that the local table-top maxima have a

smooth transition curve down to the valleys of the minima. The 2-layer case shown in

Fig. 3.5 (bottom) demonstrates significant blurring of the edges, forming a relatively
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slow gradation from the local maxima down to the minima. As more layers are added,

as in Figs. 3.6 (top and middle), this gradual descent begins to become sharper, reducing

the blurring of the band edges.

Also note that the minima valleys contain many thin local ridges with lower value than

the extended maxima bands and can be seen in Figs. 3.6 (top and middle). For the case

of multiple ridges, they increase in maximum amplitude toward the edges of the main

bands, as in Figs. 3.6 (middle). These ridges are due to higher-order interference between

the unit cells of the stack; there are typically N/2−1 ridges between the maxima bands.

The 2-layer structure of Fig. 3.5 (bottom) does not exhibit any ridges because it only has

a single unit cell. In each case, there also appears to be an extra ridge along the k = 0

(Λ/λ = 0) axis. The nature of these higher-order interference ridges, while interesting,

is not so important here. What is important is to note how their amplitude tends to

decrease as they become more numerous with the addition of extra layers, gradually

flattening the amplitude of the (dark blue) minima valleys towards R = 0.

So, as more layers are added to a stack, the local maxima peaks increase towards R = 1

and flatten out to a table-top while the minima valleys decrease and flatten out to

R = 0. Importantly, the edges distinguishing the band of peaks from the valleys be-

comes sharper, forming distinct banded domains. In fact, one can see that the distri-

bution of the reflectance map is approaching that of the Bloch-wave band diagram for

an infinite-layer equivalent stack, shown in Fig. 3.6 (bottom)—only the TE bands are

shown since the reflectance calculations above considered only the TE polarisation. The

colour scheme for the Bloch bands and bandgaps is matched here to that of the max-

imum and minimum reflectance values, respectively, shown in Figs. 3.5 and 3.6. The

bandgap map itself is otherwise identical to that is Figs. 3.3 (top) and 3.4 (top).

The evolution of the structure of the reflectance maps toward that of the Bloch-wave

band maps can be explained by similar observations as given in § 2 for the confinement

of core modes of a Bragg fibre to the cladding bandgaps: light incident upon the stack is

subject to the same boundary conditions and interface impedance as that of modes that

would be supported in the stack. This was observed analytically for the more simple

case of single- and two-layer stacks in terms of resonances with the layers themselves.

The critical difference for multiple layers is that the more complex structure can support

a larger number of modes owing to the interactions of the all layers in the stack. An

infinite number of layers supports a continuum of Bloch modes within the allowed bands

(dark red regions of Fig. 3.6, bottom) and no modes in the bandgaps (dark blue regions).

For many layers, then, just as for the supported Bloch modes, incident light satisfying

the allowed Bloch band conditions will be preferentially supported by the structure and

allowed to pass through it, just as light satisfying the mode condition of a single layer is
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allowed to be totally transmitted through it (§ 3.5.1); similarly, incident light satisfying

the bandgap conditions will not be supported by the structure and hence reflected, again

similar to the single-layer case above.

There are also parallels here with the photonic tight-binding model discussed in § 1 in

that the Bloch modes residing predominantly in a specific feature/layer define the band

edges. The implication here is that, due to the evident evolution of the reflectance maps

towards the structure and topology of the bandgap maps, the PTBM also defined the

sharp transitions of the reflectance map for high-N multi-layer stacks, i.e., in the same

way as I have shown here that the sub-light-line antiresonance conditions (SPARROW

curves) define (for single layers) or approximate (for multiple layers) the R minima

for the ‘blurred’ low-N reflectance maps, the PTBM thus defines the sharp transition

regions R = 1 → 0 shown by high-N multi-layer stacks.

This also validates the assumption that light satisfying the Bloch-wave band conditions

which is incident on an infinite stack will be transmitted through the stack, whereas

light satisfying the bandgap conditions is reflected (as argued in the core-mode analysis

of § 2). More than this, it also demonstrates how the light is either totally transmit-

ted of reflected when within a band or bandgap, respectively; something which is best

demonstrated using this direct reflectance approach.

Note that as the band edges of the reflectance maps become sharper and better defined

with the addition of extra layers to the structure, the saddle-points corresponding to

the intersection of the SPARROW curves begin to become sharper, tending towards a

singularity. This explains why the Bloch mode bands close to a point at the SPARROW

curve intersections.

3.5.4 Summary

In summary, §§ 3.5.1 and 3.5.2 imply:

• The resonances of a single isolated high- or low-index layer exactly determine the

conditions of no reflectance from that layer, i.e., layer modes ñmi correspond to

R = 0, allowing all light to pass through the layer. The maximum reflection from

the layer corresponds to half-order resonances mi − 1/2—antiresonance.

• The same resonances for a 2-layer stack (low-high-low-high) reduce the reflectiv-

ity of the structure to that of a single interface. As for the single-layer case,

resonances with a certain layer type make the system respond (with respect to

reflected and transmitted power) as if that layer were absent from the structure.

The reflectance minima exist close to the resonances (the mode trajectories of the
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layers in isolation). Antiresonances reside in the bound regions of all resonance

curves—analysed further below.

• The ‘blurred’ reflectivity map of the 2-layer structure evolves into the sharp-edged

Bloch band map structure as more layers are added to the stack. The reflectance

maxima R = 1 regions correspond to the Bloch wave allowed bands whereas

the reflectance minima R = 0 regions correspond to the Bloch wave bandgaps.

This provides a consistent picture of reflectance vs. supported modes as for the

more simple single- and 2-layer cases. Due to the robust evolution toward the

bandgap structure, the equivalence of the SPARROW curve topology with that of

the bandgap map as observed above (§ 3.4) is explained.

• For all cases one deduces: if guidance of light is supported in a structure, it is

efficiently transmitted through the structure when externally incident; if guidance

of light is not supported in the structure, it is reflected. This is the Resonance

Principle as defined above and is responsible for the antiresonance phenomena

discussed in the literature reviewed in Chapter 1 and throughout this Thesis.

Section 3.5.3 implies:

• Few layers produce reflection from a layered medium (such as a depressed-core

waveguide cladding) in a manner closest to an antiresonance regime, whereas many

layers produce reflection behaviour closer to a bandgap regime. Numerical demon-

stration given with discussion of the underlying physical mechanisms. One can

thus conclude that the SPARROW model will best describe high-loss regions of

depressed-core multilayer waveguides for a small number of layers, whereas the

Bloch wave analysis is better suited for many layers (as the Bloch band edges

become more well-defined, due to the increasing number of modes within the mul-

tilayer stack converging to the continuum of Bloch modes). Because of this rela-

tionship between the two regimes, the it is found that the SPARROW model can

be used as an analytic tool to describe many features of the associated bandgap

spectrum, as will be shown in the following sections.

• An explicit verification of arguments presented in Chapter 2 in that modes (in-

cident plane waves here) with effective mode indices close to the low-index light

line (ñ ≈ n0) produce the lowest confinement loss since the cladding reflects light

most efficiently in that regime. The reflectance maps above demonstrate this ef-

fect directly, clearly revealing the trend that the maximum reflectance within a

given bound region increases the closer it is to ñ ≈ n0; the extreme case being the

regions terminating on ñ = n0 which, as discussed, produce a maximal reflectance

of unity.
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3.6 Confirmation via FEM Analysis

The validity of the SPARROW model for determining the low-loss guidance spectral

regions of binary layered-cladding waveguides for 1 ≤ ñ ≤ n0 is verified directly here by

calculating the confinement loss spectrum of a particular Bragg fibre configuration in

which both high- and low-index resonances are evident. For this, the realistic depressed-

core Bragg fibre parameters of Ref. [41] discussed in § 3.2 are considered, with a few

alterations.

First, the core refractive index is altered to be ncore = 1.45 rather than 1 (air/vacuum)

since this index value produces core modes with effective mode indices in about the

middle of the bandgap spectrum in the ñ-dimension. This could be achieved exper-

imentally by filling the hollow core with a liquid of refractive index 1.45—achievable

with index-matching liquids or various oils; Chapter 4 demonstrates this experimentally

by systematically filling the core of a Bragg fibre with a range of liquids of various

refractive indices. Intercepting the bandgap structure within the region 1 ≤ ñ ≤ n0 (ac-

cessible only by depressed-core configurations such as a liquid-filled Bragg fibre) reveals

nontrivial and interesting spectral structure; it provides an ideal scenario in which to

demonstrate how the resonances described by the SPARROW model can anticipate the

large confinement loss regions of the core modes guided within these cladding bandgap

regions.

Second, the parameters of the extended structure are relaxed. A smaller core diameter

of 20 μm is considered rather than the that of the cited fabricated fibre’s ≈ 700 μm [41].

Fewer rings are also considered: 4 pairs of layers instead of 9 [41]. These parameters

result in a smaller structure to model numerically, working within the numerical restric-

tions imposed by the calculation method employed (FEM); the relevant discretisations

are stored in finite computer memory—the smaller the structure, the lower the required

memory. These alterations will not significantly affect the observed bandgap and an-

tiresonance behaviour calculated; like the 700 μm core, a 20 μm core also produces

modes close to the ncore-light-line, Fig. 3.7, thus intercepting the bandgap spectrum at

approximately the same positions.

A finite element method is used to model the modal behaviour of the waveguide via the

commercial FEM package COMSOL Multiphysics. Perfectly matched layers (PMLs) [182]

are employed in order to solve for the complex ñ, and hence for the confinement loss

CL = 20 log10(e)kIm{ñ} (Eq. A.25). The FEM method and PMLs were discussed in

§ 2.3.4.

Figure 3.7 shows the TE01 core mode dispersion trajectory ñ(Λ/λ) and confinement loss

CL(Λ/λ) spectra for the considered fibre structure. The mode trajectories are overlayed
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Figure 3.7: Top: A portion of the SPARROW curves and bandgap map from Fig. 3.3.
Green line: the TE01 mode’s Re{ñ} from the FEM calculation of the equivalent Bragg
fibre, with a core of size tcore = 20 μm. Red dashed line: the ncore-light-line (ñ = 1.45).
Red circles: positions of the antiresonance mean point kc (§ 3.7.2) on the ncore-light-
line. The gaps are labelled using the nomenclature of § 3.7.1. The limit value Λ/λ = 3
corresponds to λ = 390nm in this case. Bottom: The associated CL spectrum (blue
curves). Cyan and magenta dashed lines: low- and high-index SPARROW resonances
on the ncore-light-line, respectively (corresponding to circles of the same color in the
top plot). Red lines: positions of the antiresonance mean points from the top plot (red
circles).

upon the analogous infinite 1-D stack cladding bandgap map. Since only the TE01 mode

is considered here (for similar reasons as discussed in Chapter 2 for considering low-order

modes), only the TE Bloch bands (black regions) will have influence over the guided

core modes; the TM bands (black and grey regions) are shown for completeness. The

bandgap region shown is a portion of the same band map as shown in Fig. 3.3. The

mode trajectories of the equivalent isolated cladding layers (the SPARROW curves) are

overlayed upon the band map.

Note how the Bloch bands are again approximated by the SPARROW curves (magenta
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and cyan lines) in their location on the (ñ, Λ/λ) plane. This is as already demonstrated

in § 3.4 (e.g., Fig. 3.4) and explained in § 3.5; Fig. 3.7 is just a zoomed-in version of

Fig. 3.4 (top). This waveguide structure and section of the band map (ñ ≈ ncore = 1.45)

is particularly interesting because the higher-order bands correspond to both high- and

low-index SPARROW curves. This means the modes bound to the core of the Bragg

fibre will be influenced by resonances of both layer types. This is a generalisation of

the behaviour of level-core waveguides which are dominated by resonances of only high-

index features in accordance with the ARROW model, as discussed in Chapter 1. In

fact, in § 3.7.3, this level-core resonance behaviour is analytically shown to be a special

case of the more general depressed-core behaviour shown here.

As expected from the discussions of § 2, Fig. 3.7 also shows how the supported TE01

mode exists only within the cladding bandgaps. In accordance with the bandgap guid-

ance mechanism, no mode solutions exist within the allowed bands (light is permitted

to propagate through the cladding). From the reflectance picture above (§ 3.5) the non-

existence of core mode solutions arises from the low-reflectance of the cladding which

approximately correspond to the Bloch wave band maps: reflectance minima (maxi-

mum transmittance) of light incident upon the cladding approximately corresponds to

cladding bandgap regions; light in these regions is efficiently transmitted through the

cladding, extinguishing the supported core modes.

The most important observation here is that the CL spectrum of Fig. 3.7 (bottom) shows

how the core-mode loss dramatically increases as the Bragg fibre core modes approach

the SPARROW resonance features. Here the resonances are the isolated layer mode

trajectories evaluated on the ñcore-light-line (kmi(ncore) via Eq. A.100). The light-line

intersections withe the SPARROW curves is a good approximation to the core mode

resonances here since, as shown in Fig. 3.7, the considered mode lies close to the core’s

light-line ñ ≈ ncore = 1.45 (expected from large-core waveguides as discussed). This

example clearly demonstrates how the SPARROW model truly is a generalised antireso-

nance model for guidance below the low-index light line ñ ≤ n0. It is also apparent that

the resonant properties of both high- and low-index layers must be considered when

evaluating the resonances for arbitrary ñ. The separation of the cladding layer reso-

nances from the core mode behaviour is what sets the SPARROW model apart from the

Archambault-ARROW model and the results shown here highlight just how important

this separation is in the analysis of depressed-core layered waveguides. Owing to this

separability and the importance of the resonances of both layer types, the interactions

and relationships between the SPARROW curves is analysed in detail in the following

sections.
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One example of the importance of considering both layer type resonances is seen in

that the minimum CL for each gap falls close to mid-way (in frequency) between the

adjacent cladding resonance points. This critical point is discussed further in § 3.7.2

and is vital for the antiresonance predictive component of the SPARROW model, per-

mitting the definition of an antiresonance condition in the presence of not one but two

dominant layer type resonances. Incidentally, the CL spectra of the next two higher-loss

modes, TM01 and HE11, have values above the domain presented in Fig. 3.7 (bottom),

unsurprisingly (due to the narrow TM bandgap due to the Brewster effect, Fig. 3.3)

and is commensurate with the predicted effectively-single-mode behaviour of Bragg fi-

bres [63, 171].

As for the level-core case in Chapter 2, and the cited cases discussed in Chapter 1, one

sees that the antiresonance curves only provide an approximation to the limits of the

low-loss regions of the core mode: the CL curves rise rapidly closer to the bandgap edges

than the resonance points—with the latter proving a good approximation. For the level-

core cases it was argued that the interactions between the dominant high-index features

of the cladding were responsible for broadening the resonances into continuous bands. In

the depresses-core case here, it is difficult to make an analogy with this explanation since

both the high- and low-index layers are dominant. In the level-core case, the low-index

regions served only to separate the high-index features; the larger the low-index regions,

the weaker the interactions between the high-index features and hence the more narrow

the bands surrounding the resonances. Here, the thickness of the low-index layers has a

direct influence on the loss spectrum: the larger the low-index regions, the more modes

are supported in the low-index layers. The increased mode volume would produce more

low-index resonances to interrupt the core mode trajectory. In other words, once again

one must appreciate that, in the depressed-core regime, the influence of both layer types

is critical, highlighting the importance of the SPARROW model. The non-zero width

of the Bloch bands for ñ < n0 thus can’t be explained by the large t0 limiting argument

used for the level-core regime; the sub-n0-light-line Bloch bands must be considered as

a result of the interaction of all layers (high- and low-index alike) in the generation

of a continuum of Bloch modes. The SPARROW resonances only approximate those

Bloch modes that may reside predominantly in one or the other layer type, similar to the

photonic tight-binding models discussed in Chapter 1 (but differing in that isolated layer

modes, not infinite stack Bloch modes, are considered, as required of an antiresonance

model).

These observations also explain why the higher-order gaps of this ñ < n0 case do not

necessarily support modes of lower confinement loss compared to their lower-order coun-

terparts; this behaviour is in contrast to the ñ ≈ n0 case discussed in Chapter 2 where

gaps close to the n0–light-line were shown to produce modes of lower minimum CL for
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increasing gap order. In the depressed-core regime considered here, the low-index res-

onances must be considered: their introduction of nontrivial gap closure points with

the high-index resonances produces a much more complicated bandgap spectrum than

that of the level-core case. The core modes thus intercept the nontrivial gap spectrum

at points where the width of adjacent gaps differs considerably from one to the next,

unlike the level-core case in which all gaps along the n0–light-line have a similar width

(with respect to ω or k). Thus, since the CL increases as the bandgap edges are ap-

proached [63, 64], a variety of gap widths will produce a variety of minimum CL values

attainable within the intercepted bandgaps, as seen in Fig. 3.7. In short: core modes

in the ñ < n0 regime intercept a more complex bandgap spectrum than those in the

ñ ≈ n0 regime, producing a greater variety of minimum CL values attainable in the

higher-order gaps along the core mode trajectory.
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3.7 Further Analysis of the SPARROW Model

Here the relationships between the SPARROW curves are analysed. This is where the

analyticity of the model becomes most useful. Many nontrivial properties of the cladding

resonances, and hence of the associated bandgap spectra, are derived in wholly analytic

forms.

By deriving the following properties and relationships in this manner, the antiresonance

picture of light guidance in depressed-core Bragg waveguides is ‘solved’ in the sense that

one can use relatively simple expressions to evaluate many nontrivial properties of the

resonant response of a given waveguide structure. Evaluation of all expressions below

typically only require the knowledge of the core-guided modes’ ñ, the cladding layer

refractive indices ni, the layer thicknesses ti, the order of the layer resonances of interest

mi, and the wavelength of interest λ.

Expressions relating the antiresonance and bandgap pictures will be derived for the

following properties:

• the intersection points of any two SPARROW curves and hence the precise closure

points of any given gap (§ 3.7.1),

• a consistent nomenclature for arbitrary SPARROW or bandgap spectra (§ 3.7.1),

• the approximate position of lowest core-mode confinement loss within any bound

region or gap, defining a generalised antiresonance condition (§ 3.7.2),

• the antiresonance-based ‘center’ of a bound region and, by inference, of a bandgap,

in both ñ- and k-dimensions (§ 3.7.4),

• and the number of bound regions (hence bandgaps) within a specific domain, thus

the associated bandgap spectrum topology (§ 3.7.5).

In doing so, it is further demonstrated (in addition to the discussions above) how there

exists an intimate relationship between the bandgap and antiresonance pictures of light

confinement in binary-layered-cladding waveguides on and below the low-cladding-index

light-line. This implies that Bragg fibres and integrated-ARROWs, say, guide by fun-

damentally the same principles even though each are typically ascribed to a bandgap or

anti-resonance guidance mechanism in the current literature, as discussed above.

3.7.1 Curve Intersections and Gap Nomenclature

As has been demonstrated, the bandgaps of an infinite Bragg stack close upon the points

at which two high- and low-index layer dispersion curves meet. Clearly, an analytic ex-

pression, if it exists, for the locations of these points is desirable, if only for reasons of
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ease of calculation, physical insight and completeness. Indeed, such an analytic expres-

sion for arbitrary intersection points will be derived here. As will be shown in § 3.7.5, one

example of the application of such expressions for the SPARROW intersections (hence

gap closure points) is that they can be used to express the topology of an arbitrary

bandgap spectrum (in this case, how many gaps exist within a given sub-domain).

The intersection points of the high- and low-index layer dispersion curves can be found

by equating either ñ(k) or k(ñ) for a pair of modes with indices m1 and m0 ∈ N.

First consider two arbitrary high- and low-index dispersion curves ñm1(k) and ñm0(k),

respectively. By equating their functional forms as given by Eq. A.99:
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Similarly, by equating the functional forms for the inverse functions k(ñ) of the same

curves as given by Eq. A.100:
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)2

⇒ ñ2

[
1 −
(

m1t0
m0t1

)2
]

= n2
1 − n2

0

(
m1t0
m0t1

)2

Implying that the ñ-coordinate of the intersection point is:

ñ =

√
n2

1 − n2
0η

2

1 − η2
(3.19)

where η = (m1/m0)(t0/t1).
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The intersection point of arbitrary ñm1(k) (high-index) and ñm0(k) (low-index) curves

is thus found to be:

P(m1,m0) ≡ (k, ñ)|ñm1=ñm0
=

⎛⎝π

√
1

n2
1 − n2

0

(
m2

1

t21
− m2

0

t20

)
,

√
n2

1 − n2
0η

2

1 − η2

⎞⎠ , (3.20)

These points thus form the corners of the aforementioned bound regions for a particular

gap, and are here referred to as the bounding points.

Of particular note is that this expression for P is fully analytic in that each coordinate

is independent of the other and a function of only the layer parameters ni and ti and

mode orders mi. This is entirely due to the analyticity of the SPARROW curves in

which the transcendental Goos-Hänchen phase shift does not appear, as discussed above

and in § A.2.1.2.

Note that this expression for the form of the bounding point P in Eq. 3.20 is invariant

under the symmetry transform 1 ↔ 0, as should be expected; the intersection between

two curves is invariant to the order in which the curves are considered. Note that this

does not imply that Pab ≡ Pba, since all indexed values are swapped (ni, ti, etc.) under

the transform 1 ↔ 0, not just the values of m1 and m0 which the subscripts of Pab refer

to. For example, by the definition of Eq. 3.20, the intersection point P3,5 of bounding

curves ñm1=3 and ñm0=5 is quite distinct from the intersection point P5,3 of bounding

curves ñm1=5 and ñm0=3, since only the mode indices have been swapped, not the layer

types as is done under the 1 ↔ 0 transform.

Since the ñmi(k) curves monotonically approach asymptotes at ni (ñmi → ni as k → ∞),

all bound regions (hence bandgaps) will have a maximal bounding point: the intersection

point whose k and ñ values are larger than those of all other bounding points for that

region. The maximal bounding point for a given bound region is thus the top-right

bounding point when represented on a (Λ/λ, ñ) plot. Since the maximal bounding point

exists for all gaps for all cladding configurations by construction, it may be used to

define a consistent nomenclature for arbitrary bandgap spectra. Here one adopts the

convention that each bound region or gap is referred to by the mode orders of the

bounding curves producing the maximal bounding point. Explicitly, an arbitrary bound

region is labelled as the 〈m1, m0〉 region. Some examples of how this nomenclature can

be used to classify subsets of types of bound regions and their properties:

• the lowest order (fundamental) bound region (housing the fundamental bandgap)

is labelled 〈m1, m0〉 = 〈1, 0〉 (using the § 3.4 definition that m0 = 0 corresponds to

the n0-light-line),

• any region bound above by the ñ = n0 line is an 〈m1, 0〉 region or gap,
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Figure 3.8: SPARROW model curves overlayed upon a portion of the cladding
Bandgap map of the Bragg fibre examined in [43] and [147]: t1 = 0.37 μm, t0 = 4.1 μm,
n1 = 1.45 and n0 = 1. The color scheme is the same as for Figs. 3.3 and 3.4. The
bandgaps are labelled according to the nomenclature introduced in § 3.7.1. Red circles:
intersection points (P , § 3.7.1) of the SPARROW curves. Magenta circles: ñ = n0

resonances (Eqs. 3.2 and A.100). Green dashed curves: a specific bandgap’s half-order
curves, the intersection of which form Pc (§ 3.7.4), the green circle. The chosen gap is
of order 〈m1, m0〉 = 〈3, 1〉 with Pc = (kc, ñc) ≈ (5.34898 μm−1, 0.976641).

• if the 〈m1, m0〉|m0>0 bound region exists, its maximal bounding point will be

the lowest bounding point (in both ñ and k) of the adjacent 〈m1 + 1, m0 − 1〉
bound region. Associating this with the equivalent enclosed bandgaps in each

bound region, this implies the 〈m1, m0〉 bandgap closes up and opens again as the

〈m1 + 1, m0 − 1〉 gap, as shown in Fig. 3.3 and discussed in §§ 3.4 and 3.5.

The bandgaps shown in Figs. 3.7 and 3.8 are labelled using this convention. It should

be noted that this nomenclature is different (and more general) than that previously

proposed by the authors in [147]. While that particular nomenclature was suitable

for the particular fibre parameters examined, the system introduced here (and in the

associated publication [61]) is more general and suitable for all conceivable configurations

and regimes; due to the fact that the 〈m1, m0〉 nomenclature here is based on a feature

common to all bound regions [the maximal bounding point P(m1,m0+1)].

Using this nomenclature, one can now quantify that the portions of the 〈m1, m0〉 gap

that close up within the 0 < ñ < n0 region will do so at the intersection points P(m1,m0)



Bragg-Cladding Waveguides 159

Figure 3.9: Schematic representation of the three fundamental types of SPARROW
bound regions and their bounding points, complete with curve and intersection point la-
bels. Each type differs only in their relative values of the ñ components of the bounding
points P(m1−1,m0) and P(m1,m0+1). See text for details.

and P(m1−1,m0+1), should these points exist within the domain for the given gap. If these

points don’t exist, the gap must then be terminated by the ñ = 0 or n0 lines, leaving it

open (seen explicitly in Figs. 3.4 and 3.8). Incidentally, it is likely that this gap closure

behaviour explains the mode suppression phenomena observed in Ref. [201].

It should be noted here that during the completion of this thesis, a paper was published

(April 2010) by Hsueh, Wun and Yu [202] (based upon an earlier work of Nusinsky and

Hardy [203]) in which a they detailed a numerical technique quite similar to the SPAR-

ROW model and its ability to predict gap-closure points, but not from an antiresonance

perspective (indeed, they make no mention of it) so much as a Bloch wave based analysis.

Unfortunately, they appear to have neglected the SPARROW publication [61]. Nonethe-

less, their work goes further to establish how the antiresonance conditions (although,

again, they make no allusion to the antiresonance mechanism explicitly) analytically

satisfy the full Bloch wave gap closure points—although they use a structure scaling

approach, not a frequency scaling one as done here. This is a direct formal validation

of the reason for why the SPARROW model can be used in the ways described herein,

building upon the phenomenological argument given in this Chapter.



160 Chapter 3

3.7.2 The Antiresonance Mean Point

From Eq. A.100 the antiresonance mean point kc is defined, at arbitrary ñ = ñ
′
, as the

arithmetic mean of the bounding curve values kmi(ñ
′
) either side of the bound region

(the central k value):

kc(ñ′) = 1
2

[
kmp(ñ

′) + kmq(ñ
′)
]
, (3.21)

where p and q refer to the adjacent bounding curve types in the k-dimension and mq

and mp to their order, i.e., p, q ∈ {1, 0} and mp, mq ∈ Z
+.

The nature of the adjacent curves in the definition of kc depends upon the type of bound

region considered and where within the region ñ′ sits. Three types of closed bound

regions have been identified for a given 〈m1, m0〉:

Type I: ñ|P(m1−1,m0) < ñ|P(m1,m0+1)

Type II: ñ|P(m1−1,m0) > ñ|P(m1,m0+1)

Type III: ñ|P(m1−1,m0) = ñ|P(m1,m0+1),

summarised in Fig. 3.9.

The bound regions of each type can be divided into three sections: a top, middle and

bottom. In Fig. 3.9, the top and bottom sections are represented as grey patches, and the

middle section as white. The top section is the part of the region between the maximal

bounding point P(m1,m0+1) and the next lowest bounding point in the ñ-dimension.

The bottom section is the part of the region between the lowest two bounding points

in the ñ-dimension. The middle section is the part of the region between the middle

two bounding points P(m1−1,m0) and P(m1,m0+1). The precise points (and their order)

defining each section depends on the region type. The adjacent mode orders required

for the evaluation of kc are now given for each section of each region type.

Type I

Top section: ñ|P(m1,m0+1) ≤ ñ′ ≤ ñ|P(m1,m0)

⇒ mp = m1 and mq = m0,

Bottom section: ñ|P(m1−1,m0+1) ≤ ñ′ ≤ ñ|P(m1−1,m0)

⇒ mp = m1 − 1 and mq = m0 + 1,

Middle section: ñ|P(m1−1,m0) ≤ ñ′ ≤ ñ|P(m1,m0+1)

⇒ mp = m0 and mq = m0 + 1.
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Type II

Top section: ñ|P(m1−1,m0) ≤ ñ′ ≤ ñ|P(m1,m0)

⇒ mp = m1 and mq = m0,

Bottom section: ñ|P(m1−1,m0+1) ≤ ñ′ ≤ ñ|P(m1,m0+1)

⇒ mp = m1 − 1 and mq = m0 + 1,

Middle section: ñ|P(m1,m0+1) ≤ ñ′ ≤ ñ|P(m1−1,m0)

⇒ mp = m1 − 1 and mq = m1.

Type III Type III can be considered as either Type I or II for the top and bottom

sections in this case since the intersection points lie on the same ñ′ (being a special case

of both types above). The middle section is singular due to the level bounding points

and can hence be considered non-existent.

The remaining types of regions are those that are terminated by the physical boundaries

for guidance below the low-index light-line, namely the lines defined by: ñ = n0 (the

low-index light line—e.g., glancing incidence in a level core), ñ = 0 (normal incidence),

and k = 0 (infinite wavelength limit). Regions terminated by any of these boundaries

can be considered variations of one of the above types except that the boundary line

is dominant. The definition of the SPARROW model in § 3.4 defined the ñ = n0 and

k = 0 lines as corresponding to SPARROW curves with m0 = 0 and m1 = 0, respectively.

These definitions ensure that the parameterisations of the SPARROW model results are

consistent, and are highlighted as such where relevant.

Note how the bandgaps associated with the regions terminated by the ñ = n0 and ñ = 0

lines remain open, Figs. 3.4 and 3.8. Of particular note is the former case since the gap

edges are those terminated by the low-index light-line correspond only to high-index

layer resonances, since the low-index layer modes are asymptotic to the ñ = n0 line and

hence can’t intercept it. The fact that only the high-index resonances dominate there

explains to some degree why the 〈m1, 0〉 gaps are typically wider than those at lower ñ:

the low-index resonances can only interrupt the bound regions (hence gaps) for regions

below the low-index light-line.

To demonstrate the efficacy of the antiresonance mean point, Figure 3.7 demonstrates

how kc naturally predicts the approximate position of lowest CL for a core mode of the

fibre discussed in § 3.6. The reason CL reaches a minimum near kc follows directly from

the findings of § 3.5 where it was shown how the reflectance from the layers is maximum

in between the individual layer resonances; at kc, the guided wave is approximately max-

imally antiresonant with the pair of layers which produce the bounding dispersion curves
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(of order mp and mq). Essentially, as one or the other bounding curve is approached,

the guided wave becomes more resonant with the associated layer which allows greater

out-coupling of the light from the core through the cladding (i.e., the reflectance of the

cladding is reduced—§ 3.5).

This is why the resonances of all layer types must be considered together, rather than

separately, as discussed earlier, and is inherent in the definition of kc. The antiresonance

mean point is thus a powerful tool for binary layered waveguide design and analysis,

allowing immediate determination of the approximate point of minimum CL at arbitrary

ñ within an arbitrary region of the band map.

Note that, due to the analyticity of Eq. 3.21, the derivatives of kc with respect to all

waveguide parameters (∂kc/∂ni, ∂kc/∂ti, etc.) can be easily derived. Such expressions

would be ideal for the direct calculation of fabrication tolerances in waveguide design or

sensitivities to core materials for sensing, for example.

3.7.3 Special Cases

There are two important special cases of the SPARROW model: ñ = n0 and ñ = 0.

It is easily shown that the former case actually reduces the SPARROW model to the

large-core limit of the Duguay-ARROW model, since by setting i = 1 (high-index layer)

and ñm1 = n0 in Eq. A.99 one derives Eq. 3.2. These ñ = n0 resonances are shown

in Fig. 3.8 (magenta circles); such resonances would be accessible predominantly to

large core level-core waveguide structures in which ñ ≈ n0, as demonstrated by Fig. 2.8

in which the Duguay-ARROW type resonances (magenta circles) are overlayed on the

bandgap map of the (level-core) idealised air-Bragg fibre analysed in Chapter 2. Thus,

the SPARROW model also explains why the Duguay-ARROW model in the large-core

regime (Litchinitser et al. [101]) is typically independent of the thickness of the low-index

region as discussed in § 1: all orders of the low-index slab dispersion curves (ñm0) have

an asymptote at ñ = n0 and hence never intercept it; their resonant features can never

appear on the n0-light-line (the region of applicability of Eq. 3.2).

The other special case, ñ = 0 (the zero-line), is derived in much the same way. However,

in this case, both high- and low-index curves intercept the zero-line. Setting ñi = 0 one

derives:

λmi =
2niti
mi

(3.22)

where i ∈ {1, 0}. ñ = 0 corresponds to rays normally incident to the layered cladding

since ñ = ni sin(θi) = 0 for θi = 0 (normal incidence).
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The knowledge of these points is important for any practical implementation of the

SPARROW model since they define the bounding points of bound regions terminating

on the ñ = n0 and ñ = 0 lines. Beyond use for the SPARROW model itself, these special

cases occupy quite distinctly different regimes. The importance of the (Duguay-ARROW

type) ñ = n0 resonances for theoretical understanding of level-core antiresonant guidance

and waveguide design is clear and has been discussed at length above. The ñ = 0

resonances, however, are less obvious in their utility beyond the SPARROW model.

Normal incidence is an important regime for multilayer optical structures, particularly

for high- or anti-reflection coatings, or for high-order modes within Bragg fibres [63].

However, for the infinite Bragg stack case, the Bloch band-edges themselves can be

solved for relatively easily by enforcing ñ = 0 in the Bloch wave existence condition

Re(M11) ≤ 1, §§ 3.5 and A.3.2, which provide a more precise location of the high-

reflectance regions of the stack than the individual layer resonances.

While useful in themselves, these two special cases reveal important information about

the structure and topology of the antiresonance and Bandgap map. A more general

consideration in § 3.7.5 develops this further, providing analytical expressions describing

the general topology of the SPARROW and bandgap spectrum.

3.7.4 The Central Antiresonance Point

The concept of the central antiresonance point can now be introduced: the points on

the (ñ, Λ/λ) at which both cladding layer types are antiresonant.

Note that the slab dispersion curves with half-orders (1
2 ,32 ,52 ,. . .) fall mid-way between

adjacent integer-order curves for both i = {1, 0} in both the k and ñ dimensions. An

example is shown in Fig. 3.8 (green dotted curves). Thus, I define the central antires-

onance point as the intersection point of the half-order curves within a particular gap,

naturally defining the point at which both layer types are antiresonant.

Using the nomenclature defined in § 3.7.1, the curves producing the central antiresonance

point for the 〈m1, m0〉 gap are the m
′
1 = m1 − 1

2 and m
′
0 = m0 + 1

2 curves, so that the

position of the gap’s center is given a modified form of Eq. 3.20 where m1 → m1 − 1
2

and m0 → m0 + 1
2 , namely:

Pc ≡(kc, ñc) ≡ P(m1− 1
2
,m0+ 1

2
)

=

⎛⎜⎝π

√√√√√ 1
n2

1 − n2
0

⎡⎣(m1 − 1
2

t1

)2

−
(

m0 + 1
2

t0

)2
⎤⎦,

√
n2

1 − n2
0η

2
c

1 − η2
c

⎞⎟⎠ , (3.23)
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where ηc = (m1− 1
2
)t0

(m0+ 1
2
)t1

. An example based on the fibre cladding examined in [43, 147]

is shown in Fig. 3.8, where Pc = P
(
5
2 ,

3
2 )

≈ (5.34898 μm−1, 0.976641) (green circle)

corresponding to the 〈3, 1〉 gap.

In fact, Pc is formally compatible with the antiresonance mean point (kc) of Eq. 3.21

such that:

kc(ñc) = kc. (3.24)

This is not at all obvious at first glance. The proof for Eq. 3.24 follows.

Proof:

For a Type I bound region (Fig. 3.9), the antiresonance mean point expression from

Eq. 3.21 implies:

kc(ñc) =1
2 [km0(ñc) + km0+1(ñc)]

=
m0π

2t0

(
n2

0 − ñ2
c

)− 1
2 +

(m0 + 1)π
2t0

(
n2

0 − ñ2
c

)− 1
2

=
(m0 + 1

2)π
t0

(
n2

0 − ñ2
c

)− 1
2 . (3.25)

But from the definition of ñc (Eq. 3.23), the argument of the (. . .)−
1
2 factor can be

evaluated as:

n2
0 − ñ2

c = n2
0 −

n2
1 − n2

0η
2
c

1 − η2
c

=
n2

0 − n2
1

1 − η2
c

, (3.26)

so that:

kc(ñc) =
(m0 + 1

2)π
t0

√
1 − η2

c

n2
0 − n2

1

. (3.27)

Now, note that also from the definition of ñc (Eq. 3.23):

n2
1 − ñ2

c = n2
1 −

n2
1 − n2

0η
2
c

1 − η2
c

= η2
c

n2
0 − n2

1

1 − η2
c

, (3.28)

such that one can use the expression for the high-index half-order antiresonance curves

(km1= 1
2
, 3
2
,... via Eq. A.100) to express kc as:

kc(ñc) =
(m1 − 1

2)π
t1

(
n2

1 − ñ2
c

)− 1
2

=
(m1 − 1

2)π
t1

1
ηc

√
1 − η2

c

n2
0 − n2

1

=
(m0 + 1

2)π
t0

√
1 − η2

c

n2
0 − n2

1

=kc(ñc), (3.29)
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where Eqs. 3.28 and 3.27 have been used at the second and final steps, respectively.

This proves Eq. 3.24 for Type I bound regions. This last step can also be derived by

manipulating the form of kc from Eq. 3.23 directly.

For a Type II bound region (Fig. 3.9), the antiresonance mean point expression from

Eq. 3.21 implies:

kc(ñc) =1
2 [km1(ñc) + km1−1(ñc)]

=
m1π

2t1

(
n2

1 − ñ2
c

)− 1
2 +

(m1 − 1)π
2t1

(
n2

1 − ñ2
c

)− 1
2

=
(m1 − 1

2)π
t1

(
n2

1 − ñ2
c

)− 1
2

=
(m1 − 1

2)π
t1

1
η2

c

√
1 − ηc

n2
1 − n2

0

=
(m0 + 1

2)π
t0

√
1 − η2

c

n2
1 − n2

0

, (3.30)

where Eq. 3.28 has been used at the fourth step. One can use the expression for the

low-index half-order antiresonance curve (km0= 1
2
, 3
2
,... via Eq. A.100) to express kc as:

kc(ñc) =
(m0 + 1

2)π
t0

(
n2

0 − ñ2
c

)− 1
2

=
(m0 + 1

2)π
t0

√
1 − η2

c

n2
0 − n2

1

=kc(ñc), (3.31)

where Eqs. 3.26 and 3.30 have been used at the second and final steps, respectively.

This proves Eq. 3.24 for Type II bound regions. This last step can also be derived by

manipulating the form of kc from Eq. 3.23 directly.

The proof for Type III bound regions follows immediately from those for Type I and II

since the former can be considered as either one or other of the latter for this purpose.

QED

Since the gaps bound by the ñ = n0 and/or ñ = 0 lines are open (above and below,

respectively), this definition of the center point is insufficient when Pc reaches these lines,

or where Pc simply doesn’t exist (as is the case for all 〈m1, 0〉 gaps). In these cases, the

antiresonance mean point (Eq. 3.21) is used to define Pc = (kc(ñ
′
), ñ

′
) where ñ

′
= n0 or

0 as appropriate. Thanks to Eq. 3.24, this gap center formalism is thus consistent for

all bandgaps.



166 Chapter 3

It is expected that Pc will determine the approximate point of lowest modal CL for a

given bandgap in not just the k-dimension (via the relation to kc from Eq. 3.24) but also

the ñ-dimension. This is to be expected from the work of [63], where it was demonstrated

that as the bandgap edges are approached from any direction, CL generally increases.

Since Pc dictates the point at which light is maximally antiresonant with both cladding

layer types, it is reasonable to expect that the CL is thus minimum near this point.

While omitted here for brevity, a quantitative verification of this would be straight-

forward, requiring the CL spectra of the modes of interest to be calculated for a range

of ñ. This could be achieved by iterating the spectral analysis (via a FEM as in § 3.6,

for example) over a range of ncore to generate modes within the entire domain of the

bandgap of interest (i.e., to calculate CL in both the k- and ñ-dimensions).

Also, similar to the discussion of § 3.7.2, the derivatives of Pc with respect to all cladding

parameters (∂kc/∂ni, ∂kc/∂ti, ∂ñc/∂ni and ∂ñc/∂ti) can also be easily derived, and

would also be ideal for similar applications.

3.7.5 Bandgap Topology and the Bound Region

Here another powerful feature of the SPARROW model is derived: the determination

of the topology of an arbitrary 1-D stack’s antiresonance (and equivalently, bandgap)

spectrum via a simple analytic expression. That is, it can be used to determine the

number of bandgaps in a given region and how they join together.

Eq. 3.20 can be used to determine the number of bandgaps (or more precisely, bound

regions) that exist between a pair of adjacent high-index slab curves, nm1(k), which

have orders m1 − 1 (left curve in the k-dimension) and m1 (right curve). The domain

enclosed by this curve pair and the ñ = n0 and ñ = 0 lines is denoted Dm1 . Insofar

as a correlation with antiresonance and bandgap behaviour is concerned (as discussed

above), this analysis pertains to only TE bandgaps directly. Extension to TM gaps is

trivial since they have the same topology as the TE gaps save for the gap closure induced

by the Brewster condition at ñ = ñB (§ 2.3.2, Figs. 3.3, 3.4 and 3.8).

It is easy to see from Fig. 3.10 (and Figs. 3.3 and 3.4) that the number of bound

regions, hence TE gaps, within Dm1 is one greater than the number of intersection points

made by the low-index curves [nm0(k)] with the rightmost bounding curve [nm1(k)],

excluding the n0-light-line (m0 = 0). To show this analytically, one must enforce upon

the intersection point expression (Eq. 3.20) the physical condition: P(m1,m0) ∈ R
2. By

enforcing k ∈ R, the square-root requires (m1/t1)2 − (m0/t0)2 > 0 ⇒ η > 1 (where

η is defined with Eq. 3.20). This can be used to find an upper limit m0 < m1(t0/t1),

but a more strict limit is found by enforcing the second physical condition ñ ∈ R: since
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Figure 3.10: An example of antiresonance and bandgap map topology via the SPAR-
ROW model. The SPARROW curves shown here are those shown in Figs. 3.3 and 3.4.
The shaded region represents the second Dm1 domain, D2. The circles highlight the
intersection points of the high-order high-index bounding curve ñm1=2(Λ/λ) with all
low-index curves ñm0=1,2,3(Λ/λ) passing through D2. There are thus N2 = 3 intersec-
tion points and N2 + 1 = 4 bounded regions, as per the text.

η > 1, 1− η2 < 1 so that the numerator (within the square-root) must also be negative:

n2
1 − n2

0η
2 < 1 ⇒ n1/n0 < η. This last inequality gives the most strict range physically

imposed on m0, namely:

m0 < m1
n0t0
n1t1

. (3.32)

Thus, the maximum permissible order of an m0-curve within Dm1 is:

mmax
0 = floor

{
m1

n0t0
n1t1

}
, (3.33)

which is also the number of m0-curves within Dm1 (excluding the ñ = {0, n0} lines).

The number of TE bandgaps within Dm1 is thus mmax
0 + 1; the ‘+1’ accounting for the

ever present 〈m1, 0〉 gaps, bound above by the n0-light-line, whose maximal bounding

point P(m1,0) doesn’t contribute to mmax
0 by definition, as discussed.

There is an exception to this analysis: where a maximal bounding point lies on the

zero-line (ñ = 0) such that the point exists but the associated gap does not (the bound

region becomes singular). In this case, the number of gaps within Dm1 is exactly equal

to the number of intersection points on ñm1(k) (including the ñ = 0 bounding point).

Quantitatively, the condition for this behaviour can be deduced from the SPARROW

model’s ñ = 0 special case (Eq. 3.22) by setting λm1 = λm0 , demonstrating that the

above inequality (Eq. 3.32) becomes an equality (i.e., the floor function of Eq. 3.33

becomes redundant).
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One can thus express the total number of gaps bound within Dm1 as:

Nm1 =

⎧⎨⎩mmax
0 + 1 when mmax

0 < m1
t0n0
t1n1

mmax
0 when mmax

0 = m1
t0n0
t1n1

(3.34)

which depends only upon the cladding parameters and just one order parameter, m1

(required to define Dm1).

The only difference in topology for the TM gaps over the TE gaps is that the Brewster-

induced gap closure increases the number of gaps within Dm1 by 1 (i.e., Nm1 + 1), the

position of the extra closure being ñ = nB (§§ 2.3.2 and A.3.2). The only exception is

when nB coincides with a TE gap closure point, P(m1,m0), in which case the associated

TM gap’s bound region becomes singular (similar to the Pc at ñ = 0 case above) and

the number of gaps within Dm1 is identical to the TE case (i.e., Nm1).

The above expressions for the intersections points (Eq. 3.20) and the number of gaps

within a given domain Dm1 (Eq. 3.34) explicitly define the topology for any given

bandgap spectrum: the number of gaps (in a finite domain) and how they join together.

Figure 3.4 gives an explicit example of how a bandgap spectrum topology can change

with varying cladding parameters. The top plot in the figure shows the bandgap map

of Fig. 3.3 with the cladding layer dispersion (SPARROW) curves (Fig. 3.3) overlayed.

The bottom plot of the figure shows the bandgap and SPARROW curves of the same

cladding structure configuration but with the high-index layer’s thickness decreased:

t1 = 0.27 μm → 0.18 μm. The bandgap topology dramatically changes between the two

cases with the bandgaps shifting with the layer resonances and, most importantly for

here, new bandgaps created which alter the topology of the bandgap spectrum. Using

the nomenclature and analysis just developed, number of gaps within a given domain

can be easily evaluated. The first case (t1 = 0.27 μm) produces N1 = 2 bandgaps in

the D1 domain (the region bound by the ñm1=2 curve and the k = 0 line—the ñ-axis)

and N2 = 4 bandgaps in the D2 domain (bound by ñm1=1 and ñm1=2). By shrinking

the high-index layer to t1 = 0.18 μm, the number of gaps (equivalently, bound regions)

in the respective domains becomes N1 = 3 and N2 = 6. The topology dramatically

changes.

Considerations of resonance and bandgap topology are critical if one wishes to design a

low-index core layered-cladding waveguide which exploits higher-order bandgaps.
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3.8 Concluding Remarks

In this chapter, an intimate relationship between the bandgap and antiresonance pic-

tures of light confinement in binary-layered-cladding waveguides on and below the low-

cladding-index light-line was demonstrated. From this it was implied that Bragg fibres

and Integrated-ARROWs guide by fundamentally the same principles. From these con-

siderations, a novel antiresonance model was developed, the SPARROW model, that

describes the resonances of an arbitrary waveguide’s binary cladding layers independent

of the core properties. The SPARROW model is a generalisation of the Archambault-

ARROW model [174] in that the resonances of both high- and low-index layers are

described but their resonant properties are considered as decoupled from those of the

core. This decoupling permits the direct comparison of the layers’ dispersive behaviour

with the associated Bloch-wave bandgap spectra.

Foremost, the model demonstrates that the cladding layer dispersion curves replicate

the nontrivial structure and topology of the analogous Bloch-mode bandgap spectrum

for all ñ on and below the light-line of the low-index cladding layer. By exploiting

this, the model is also capable of quantitatively and analytically describing nontrivial

features of such spectra. Among the most important features of the model derived were:

a consistent nomenclature for arbitrary bandgap spectra (〈m1, m0〉); the approximate

position of lowest core-mode confinement loss of any gap via the antiresonance mean

point (kc); the precise closure points of a given gap (P(m1,m0) and/or P(m1−1,m0+1)); the

center of a gap in both ñ- and k-dimensions via the central antiresonance point (Pc); and

the number of bandgaps within a specific domain (e.g., Nm1 for TE), thus the bandgap

spectrum topology; all via simple analytic expressions.

The SPARROW model is thus a powerful and simple tool for the spectral analysis

and design of layered cladding dielectric waveguides with core refractive indices equal

to or less than the lowest cladding index. Integrated-ARROWs have recently been

demonstrated as ideal hollow-core waveguides for sensing and microfluidics [26–29, 56–

59]. However, using the SPARROW model, an analysis of a liquid-core Bragg fibre was

performed (and confirmed via a finite element model) implying that fibres hold similar

promise. Indeed, recent literature [19] has highlighted the potential promise of Bragg

fibres for sensing and microfluidics applications.

The hollow cores of Bragg fibres or Integrated-ARROWs could also be filled with active

gain media (e.g., Ref. [30]) to develop novel waveguide lasers or filled with other low-

index media such as nonlinear liquids and gases for novel low-power nonlinear optical

applications. The SPARROW model and the principles of, and relationships between,
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their antiresonances and bandgap behaviours will simplify and give deeper insight into

the design of such waveguides and their applications.

Of particular importance is the SPARROW model’s ability to determine the aforemen-

tioned properties of higher-order resonances and bandgaps. Since many applications

typically exploit the fundamental (or low-order) resonance(s) or bandgap(s), the exis-

tence of the rich topology of higher-order spectral features suggests great potential for

novel extensions of the aforementioned applications.

This chapter also presented a thorough analytical analysis of the reflectance properties

of binary stratified media with a finite number of layers. It was demonstrated how

conditions for antiresonance, as per the SPARROW model, can be derived by minimising

the reflectance functions of the layered structures. From this, physical insight into

the connections between the antiresonance mechanism and multilayer reflectance was

discussed. Extending upon this analysis, the evolution of the reflectance maps from few

layers to many layers was demonstrated, indicating an evolution from the antiresonance

to the bandgap regime. The implications for this behaviour were discussed both in terms

of the connections between the antiresonance and bandgap mechanisms themselves and

their relevance for practical multilayer waveguides.

The application of resonance analyses like the SPARROW model to more complicated

structures, such as 2-D photonic crystals, could provide an interesting avenue for future

work. As noted in Chapter 1, however, the bandgap spectra of such 2-D structures

below the low-index light-line are less regular owing to the increased complexity in the

Bloch wave behaviour sue to the inclusion of periodicity in 2 dimensions instead of only

one. It was also discussed how the photonic tight-binding model, which considers only

the Bloch modes on the edges of the Brillouin zone (and hence the most confined to the

dominant structural features), can precisely describe such gap edges. The consideration

of the resonance of an isolated resonator (dominant structural feature), rather than one

coupled to neighbouring resonators, would likely make for a poor approximation to the

required Bloch edges. Nonetheless, this is an area worthy of further study.

In the next chapter, the concept of resonance-based refractive index sensing is investi-

gated experimentally by systematically filling the core of a Bragg fibre with liquids of

various refractive indices—a clear connection with the results of this chapter is obvious.

The shift of the transmission spectrum with respect to the core refractive index is mea-

sured and compared with the associated bandgap spectrum and the position of the core

modes within it.
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