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Chapter 4

Liquid-Filled Bragg Fibres

C
hapter 3 demonstrated how a 1D stratified binary dielectric medium can produce

a rich 2D spectrum of photonic bandgaps. It was discussed how any waveguide

whose cladding can be considered as such a layered medium will guide light with low

loss within a low index core provided the light’s ñ(λ) (incident ray angle or effective

mode index) lies within a bandgap of the cladding. Pertinent to the discussion of this

chapter, Chapter 3 also showed how the bandgap edges shift significantly in frequency

for varying ñ, i.e., the bandgap edges are highly dispersive. This means that the low-loss

transmission bands of the waveguide (the cladding bandgaps) can depend strongly upon

the position of the guided modes’ ñ(λ) trajectory within the bandgaps (e.g., Fig. 3.7).

This chapter is based on the results presented at the Conference on Lasers and Electro-

Optics in Baltimore, Maryland, US, in 2009, oral presentation (K. J. Rowland), with a

talk entitled Spectral Properties of Liquid-Core Bragg Fibers (authors: K. J. Rowland,

S. Afshar V., A. Stolyarov, Y. Fink and T. M. Monro). The work was a collaboration

with Prof. Yoel Fink and Alexander Stolyarov of the Massachusetts Institute of Tech-

nology (MIT) Photonic Bandgap Fibers and Devices Group, detailed further presently.

To elucidate this bandgap shifting mechanism further, note that ñ(λ) of the core mode

depends strongly upon the refractive index of the core, ncore. The regions of the bandgaps

that the core modes intercept thus depend strongly upon ncore. By altering ncore, the

transmission spectral peaks can thus be shifted in the direction of the intercept between

the core mode and bandgap edges’ ñ(λ).

More precisely, since the bandgap structure extends from ñ = 0 → n0 (Chapter 3),

and guided modes take values ñ ≤ ncore, the value of ncore producing guided modes

can exhibit effective index values of 1 ≤ ncore ≤ n0 (for dielectric filling materials, at

least). Since the guided modes of large core waveguides typically exhibit ñ ≈ ncore (e.g.,

Fig. 3.7 and § 2.3.1), upon filling the hollow waveguide’s core with such materials, the

guided modes’ ñ can also span this range of refractive indices: 1 ≤ ñ ≤ n0. Since the

bandgap edges are dispersive, the frequency range enclosed by the intersection points of

173



174 Chapter 4

the modes’ ñ = ncore with a given gap’s edges will also be dispersive (thus exhibiting

approximately the mean of the dispersion of the bandgap edges).

In this chapter, this core index dependent bandgap shifting effect is analysed experimen-

tally (§ 4.2), with comparison to theory (§ 4.3). The experiment involves filling the core

of a Bragg fibre with liquids of various refractive indices with the results compared to

a Bloch wave bandgap model. The results are related to such applications as refractive

index sensing. To begin, the some background history on the filling of hollow waveguides

is discussed to motivate the results presented in the following section.

4.1 Motivation and History

One of the primary motivations of this experimental work was to demonstrate these

effects and validate the associated concepts of the previous chapter and in particular

the SPARROW model. There are currently at least two types of hollow-core waveguides

that could demonstrate such behaviour upon changing the core index: Bragg fibres and

Integrated-ARROWs. Each were discussed in detail in Chapters 1 and 3.

As has been mentioned in the previous chapters, the possibility of guiding light within

low-index media by filling the hollow cores of such waveguides has potential applica-

tions in sensing [19], waveguide lasers [30], particle guidance [27, 29], and nonlinear

optics [133].

Cox et al. [67] demonstrated how by filling the hollow core of an average-index Bragg fibre

(Chapter 1) with water, the transmission can be shifted by hundreds of nm. However,

the cladding of an average-index Bragg fibre consists of rings of holes, whereas the

cladding of the more conventional Bragg fibre considered here consists of layered solid

dielectrics. The work of Ref. [67] relied on filling the cladding holes as well as the hollow

core, and only with one liquid. The case here is quite different in that the fibre structure

is fundamentally different (solid cladding), the cladding indices are much higher than

core indices considered, the cladding properties stay the same upon filling, and multiple

liquids are used.

More research into this type of transmission spectrum shifting with respect to refractive

index has been studied using an I-ARROW platform. Bernini et al. [58] theoretically

analysed the behaviour of an I-ARROW in which the second of two layers of the wave-

guide consisted of a liquid channel; by altering the refractive index of the liquid in the

layer, the high-loss regions of core-guided light could be tuned. Closer to the case at

hand, the work of Campopiano et al. [59] demonstrates experimentally a similar concept

but by filling a hollow-core I-ARROW with various liquids. The results showed how the
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high-loss features of the transmission spectrum shift with the altered core index with a

sensitivity of ≈ 555.55 nm/RIU (RIU: refractive index unit).

The great difference of the latter work with the results shown here is that the guidance

of the waveguide used was closer to an antiresonance regime than a bandgap regime.

The I-ARROW of [59] employed only 2 layers, whereas the Bragg fibre used here has

many more. As per the bandgap evolution discussion of § 3.5.3, adding more layers to the

structure makes the band structure more well-defined; this is the reason why the low-loss

regions are a better feature to exploit for the few-layer case whereas, as will be shown

here, the transmission peaks of the many-layer Bragg fibre are well-defined implying the

high, not low, transmission features should be exploited for a sensing architecture since

they are better defined.

In short, this chapter explicitly demonstrates the transmission band shifting effect within

a Bragg fibre by filling it with a range of transparent liquids. Section 4.2 presents

the experimental results of systematically filling a Bragg fibre with liquids of various

refractive indices and measuring the resultant transmission spectrum. Section 4.3 then

compares these results with what is expected from theoretical considerations.

To the best of my knowledge, prior to this work, such transmission spectrum shifting

by systematically filling the hollow-core of a Bragg fibre had not been demonstrated.

Indeed, it seems to not have been demonstrated for any hollow-core waveguide within

the bandgap regime (many layers). With the highlighting of this Bragg fibre filling

technique for refractive index sensing in the work of Skorobogatiy et al. [19] (which

unfortunately overlooked the results I presented in [55]), it is clear that this platform

holds some promise for applications to biological and chemical sensing, fibre lasers and

nonlinear optics.

4.2 Experiment—Liquid Filling and Transmission Spectra

The Bragg fibre used for this work was very similar to that discussed in [42]. Col-

laboration with the MIT Photonic Bandgap Fibers and Devices Group was sought, as

they are leaders in the area of Bragg fibre fabrication, with Prof. Yoel Fink (the group

leader) being an author of most of the publications relating to Bragg fibre fabrication

and demonstration mentioned in Chapter 1 (e.g., [41, 42]—see Table 1.1 for more). With

this collaboration, several samples of a particular Bragg fibre were made available. The

particular fibre used, however, instead of guiding light in the near- to mid- infra-red

when empty (like most reported hollow-core Bragg fibres to date), guided close to the

long-λ edge of the visible spectrum at λ ≈ 700 nm. 15 cm long samples of this fibre
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Figure 4.1: A schematic of the Bragg fibre filling and spectral measurement config-
uration. All optical components are labeled in the legend at the bottom of the figure.
The light beam exiting the fibre is (arbitrarily) colored to represent the spectral filter-
ing effect upon the white light due to the cladding structure. Each (cleaved) end of the
Bragg fibre is hermetically sealed within its own liquid-filled windowed cell, as shown
in the zoom-in region in the bottom right of the figure.

were used in the following tests. The hollow core was 330 μm in diameter, surrounded

by a periodic cladding of concentric rings with 9 pairs of layers consisting of Arsenic

Trisulphide (As2S3) chalcogenide glass and Poly-ether Imide (PEI) polymer of approx-

imate thicknesses 76 nm and 124 nm, respectively. The cladding was terminated by a

thick jacket of PEI producing a total outer diameter (OD) of 585 μm. The first and

final As2S3 layers of the cladding were half-thickness (40 nm) in an attempt to minimise

guided surface states (which, through inter-mode coupling, can introduce loss peaks

in the core-modes’ transmission spectra). Importantly, in the regimes of interest here,

As2S3 and PEI have non-negligible material dispersion. This is an important point for

Section 4.3.

In order to fill the fibre and measure the transmitted spectra, a hermetically sealed filling

apparatus (Fig. 4.1) was employed: each end of the fibre is pierced though the rubber

membrane of a sealed, windowed, cell. This technique was conceived of and custom-

made for this application. The cells were hand-made, each consisting of the top of a

laboratory grade capped cuvette and a microscope slide. To make such a cell, the top

of a cuvette (to which a sealed screw-cap with a penetrable rubber membrane can be

fastened) is cut from the cuvette body by carefully sawing it off with a glass-cutting saw.
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The open (cut) side of the cuvette top is then placed against a clean microscope slide and

sealed to it using a silicon based sealant, providing both a hermetic seal and sufficient

mechanical stability 1. This construction forms a the hermetically sealed windowed cell.

The fibre under test can then be inserted into a hollow needle which is subsequently

pierced through the rubber membrane of the screw-cap. The needle is then removed,

sealing the membrane about the outside of the fibre. With both ends of the fibre sealed

within these cells, light can be easily in- and out-coupled from the fibre via the cell

windows formed by the microscope slides.

To fill the fibre, the membrane of one cell was pierced with a hollow needle, allowing the

empty cell to be filled with a liquid under pressure. In order to prevent over pressuri-

sation of the cells, a second hollow needle was inserted into the second cell’s membrane

prior to filling the first with the liquid sample. As the first cell was filled, the end of the

fibre became immersed, after which the liquid was forced down the length of the fibre

and into the second cell, displacing the air. Once the fibre and each cell were filled, the

needles could be removed, leaving the fibre filled with, and suspended in, the liquid of

interest. The existence of the cell windows makes coupling from free space, through the

liquid reservoir, and into the fibre, an almost trivial affair, avoiding optical issues that

could occur were menisci or bubbles to exist within the optical path.

The light source used as an input to the fibre was a fibre-based supercontinuum white-

light source (a Koheras SuperKTM Compact). A supercontinuum source such as this

produces white light with a broader, flatter, spectrum at a much greater brightness than

conventional sources, such as a filament globe, say. The supercontinuum itself is pro-

duced from the mutual interaction of many nonlinear optical effects such as self-phase

modulation, cross-phase modulation, stimulated Raman scattering, and four-wave mix-

ing, and hence are typically most efficient to excite in nonlinear fibre-based devices [204].

The liquids used to fill the fibre were ‘Immersion Liquids’ from the CargilleTM with

refractive indices 1.4019, 1.4620 and 1.5780 (all standardised at a wavelength of λ =

589.3 nm and at a temperature of 25◦C). While the precise chemical composition of the

liquids is not readily available for commercial reasons, they are thought to be organic

solvents in various concentrations. All liquids used were transparent over the entire

visible range so that, compared to the waveguide losses, the liquid material losses were

negligible over the considered spectrum. According to the product data, the chromatic

dispersion of the liquids was negligible (flat) compared to the dispersive properties of

the fibre materials, modes and bandgap edges.
1The silicon based sealant appeared to be sufficiently chemically stable when in contact with all

liquids used for the filling experiments.
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Figure 4.2: Experimentally measured transmission spectra from the filled and unfilled
Bragg fibre, as shown in Fig. 4.1. Peak 1 corresponds to a non-filled (empty) fibre
where ncore = 1 and peaks 2, 3, and 4 (right to left) correspond to a liquid filled core
of refractive indices nliquid = 1.4018, 1.4720, and1.5780, respectively. Each spectrum is
normalised to its own maximum value, i.e., no relative loss information is contained in
this representation. The inset figure represents spectral positions of the peak maxima
against the filling refractive index—the trend is almost linear, owing to the property of
the material dispersion ‘straightening out’ the bandgaps, as per § 4.3.

The light transmitted through the fibre was subsequently free-space coupled into an

optical spectrum analyser (OSA), with spectral resolution δλ = 0.05 nm. Each spectral

trace of the output light was point-averaged over 200 samples to reduce the signal to

noise ratio due to low power throughput (depending on the bandgap regime accessed)

and environmental influences, such as potential convection current in the liquid reservoir.

Fig. 4.2 shows the measured transmission spectra of the Bragg fibre when empty, ncore =

1 (Peak 1, Fig. 4.2), and when filled with each liquid, ncore = 1.4018, 1.4720, 1.5780

(Peaks 2 through 4, respectively, Fig. 4.2). There is a clear trend followed by the set

of peaks: as the core index increases the wavelength monotonically decreases, covering

almost the entire visible spectrum; peaks 1 to 4 (Fig. 4.2) have maxima at wavelengths

of λ0 = 700 nm, 555 nm, 533 nm and 500 nm, respectively. Also, the peak width appears

to initially decrease and then increase again: peaks 1 to 4 have widths at half-maximum

of 30 nm, 21 nm, 33 nm and 40 nm, respectively. This behavior coincides with what

is qualitatively expected of the fundamental TM bandgap, discussed presently. These

results are summarised in Table 4.1.

In general, the shifting, and hence sensitivity, of the transmission peaks with respect to

ncore is not linear due to the dispersive properties of the band edges. Here, however,

as will be shown in § 4.3, the dispersion of the layer materials themselves has the
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Peak Number ncore λ0(nm) ΔλFWHM(nm) Colour

1 n = 1 (empty) 700 nm 30 nm Dark Red

2 n = 1.4018 555 nm 21 nm Yellow

3 n = 1.4720 533 nm 33 nm Green

4 n = 1.5780 500 nm 40 nm Green-Blue

Table 4.1: Summary of the filled Bragg fibre transmission peaks.

effect of ‘straightening out’ the band edges; this explains why the shifting of the peaks

follows an approximately linear trend as shown in the inset of Fig. 4.2. Given this, the

average shifting of the transmission peaks with core index here corresponds to an average

sensitivity of ∂λ0/∂ncore ≈ 330 nm/RIU. This sensitivity value is comparable with the

I-ARROW refractive index sensors architecture of Ref. [59] discussed above. Indeed,

this should probably be expected owing to the similarities between the bandgap and

antiresonance regimes discussed in the previous chapter; the dispersive features of the

antiresonance (SPARROW) and bandgap edges are quite similar, so that the sensitivity

of the intercept of the core modes with these antiresonance or bandgap features is also

similar. This result indicates that waveguides like the Bragg fibre indeed do hold promise

for applications to refractive index sensing via the exploitation of cladding resonances

(again, as suggested in Ref. [19] after I had performed these experiments and reported

and analysed them in Ref. [55]).

4.3 Comparison with Theory

As discussed in Chapters 2 and 3, the cladding of a Bragg fibre can be approximated as

a planar Bragg stack with the cladding bandgaps obtained from a Bloch-wave analysis.

However, such analyses typically assume the cladding layer indices are constant. In the

regimes considered here, it is important to explicitly include any material dispersion in

the analysis for any meaningful comparison with experimental results. Figure 4.3 shows

how the real part of the refractive index varies with wavelength (i.e., the material dis-

persion) for the individual cladding layer materials used for the considered fibre (As2S3

and PEI). The curves are actually polynomial interpolation functions of thousands of

experimentally measured data points (measured using a precise ellipsometric technique

conducted by the MIT group).

In order to incorporate material dispersion into the Bloch analysis, the Bloch wave ex-

istence condition, |Re(M11)| ≤ 1 from Eq. A.153, is evaluated using the continuously

interpolated forms (8th-order Gaussian series fits) of nAs2S3(λ) and nPEI(λ), Fig. 4.3;
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Figure 4.3: Material dispersion data for the materials constituting the Bragg fibre
layers: As2S3 (top) and PEI (bottom). The curves used are actually 8th-order Gaussian
series fits to measured ellipsometric data points.

a function of the form
∑8

n=0 e(x−an)n/bn is optimised over an and bn to fit the experi-

mental refractive index data to within a 95% confidence interval. The results are two

continuous interpolation functions nAs2S3(λ) and nPEI(λ); the datapoints are practically

indistinguishable from these curves when plotted as per Fig. 4.3. Note that the Gaussian

fit was used instead of a more conventional Sellmeier fit (a series of inverse powers of

wavelength) for reasons of convenience (a fitting routine was readily available for the

Gaussian series).

Figure 4.4 shows calculated bandgap spectra when material dispersion is considered

(bottom) and neglected (top); in the neglected material dispersion version I somewhat

arbitrarily take nAs2S3 = nAs2S3(λ)|λ=700nm and nPEI = nPEI(λ)|λ=700nm. The bandgap

spectrum neglecting material dispersion (Fig. 4.4, top) demonstrates how the bandgaps

tend to flatten out as the wavelengths decreases. This behaviour can be explained using

the SPARROW model (Chapter 3), in which the bandgap structure tends to follow the

trajectories of the individual modes that would exist within the cladding layers were

they isolated from the stack. The fundamental high-index SPARROW mode (ñm1—the

As2S3 layer since nPEI < nAs2S3 ∀λ) is dominant here, explaining why TE gap is open

from below 1 to the lowest layer index within the wavelength range of interest; i.e., the

ñm1=0 SPARROW mode curve never crosses the ñm1=1 curve.

The high-index modes asymptotically approach the high layer index as λ decreases:

ñm1(λ) → n1 = nAs2S3 as λ → 0. Since nAs2S3(λ) and nPEI(λ) tend to increase as

λ decreases (Fig. 4.3), the effect of incorporating material dispersion into the Bloch

analysis is to ‘straighten out’ the bandgap edges; the increasing material indices tend to
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Figure 4.4: Top: the fundamental bandgap of the used Bragg fibre, neglecting material
dispersion of the constituent layers. Bottom: the same bandgap spectrum with material
dispersion (Fig. 4.3) included.

increase the effective mode index (ñm1 and ñm0 if considering the SPARROW picture).

In other words, the asymptotes the SPARROW curves tend towards increase in value

for lower wavelengths, straightening out the dispersion curves (similarly considerations

would apply for the Bloch modes defining the band edges). Figure 4.4 shows how this

band edge straightening effect is quite significant for the wavelength range and materials

considered here, and must be considered when comparing to the experimental results of

Section 4.2.

Variations in the filling liquid refractive indices should also be taken into account. Ac-

cording to the specifications of the supplier (CargilleTM ), the natural material dispersion

of the liquids is negligible (orders of magnitude lower) in comparison with the dispersion

of the layer materials. The dominant influence on the liquid refractive indices is thus

likely to come from the effects of temperature variations. Throughout the experiments,

no temporal dependence was observed in the transmission spectra, indicating that local

heating of the liquids due to the light source is negligible; unsurprising since the liquids

are transparent in, at least, the visible spectrum. Thus, it is assumed that temperature

variations predominantly arise from atmospheric variations. Given the sensitivity of

refractive index over temperature given by the official data sheets for the liquids, the
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variation of the liquid indices is approximated here to be ±1%. The horizontal dashed

and solid lines in Fig. 4.5 represent the upper and lower limits, respectively, of this

approximated variation in ncore.

In order to compare the Bloch-wave bandgap maps (Fig. 4.4) with the observed experi-

mental transmission spectra, the band edges between which a given mode resides must

be determined. This is relatively simple for the given regime since one can assume the

lowest-loss guided modes all lie very close to the ncore-light-line, as discussed in Chap-

ters A.4 and 2.4. Given this, it is fair to assume the guided modes will lie between the

points where the ncore-light-line itself intercepts the bandgap edges. Figure 4.5 repre-

sents this for the considered fibre and liquids: Each liquid refractive index corresponds to

a particular horizontal line; The intercepts of these lines with the bounding TM bandgap

edges are represented by the associated vertical lines dropped to the horizontal axis. To

accommodate for the aforementioned potential ±1% variation in ncore, since the gap

edges are generally monotonically decreasing with λ, the short-λ edge is taken as the

intersection of the upper ncore limit (dotted horizontal line) with the TM gap edge and

the long-λ edge as the intersection with the lower ncore limit (solid horizontal line). The

transmission spectrum of a fibre with core index ncore and cladding structure producing

such bandgaps would thus be expected to transmit light predominantly in the wave-

length region between the band edges bound by the pair of vertical lines corresponding

to the appropriate value of ncore.

Figure 4.5 demonstrates how the experimentally measured transmission spectra do in-

deed align with the aforementioned theoretically predicted bandgap edges for all con-

sidered values of ncore, but only when the layer material dispersion (Fig. 4.3) is con-

sidered. This agreement can be appreciated moreso when one compares it to the

bandgap edges calculated when material dispersion is neglected (Fig. 4.5 bottom). When

material dispersion is ‘turned off’, in this case by arbitrarily setting nAs2S3,PEI(λ) =

nAs2S3,PEI(700 nm), all calculated bandgaps are shifted to lower values of λ. While the

transmission peak for ncore = 1 still sits within the predicted band edges, the edges

are widened and pushed toward shorter λ somewhat such that the transmission peak

lies closer to the longer λ region band edge, rather than close to the midpoint of the

edges. More strikingly, this effect is more severe for the other peaks (corresponding to

ncore = 1.4019, 1.4620, and 1.5780) where, once material dispersion is neglected, the gap

edges barely align with their associated transmission peaks at all. Indeed, the calculated

short-λ edge of the gap corresponding to ncore = 1.5780 (blue lines in Fig. 4.5) resides

beyond the displayed axis limits, excluding the experimentally measured transmission

peak from the bandgap region all together. From this one concludes that the incorpo-

ration of the layers’ material dispersion is vital in order to predict the position of the
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Figure 4.5: The experimentally measured transmission spectra from the Bragg fibre
filling setup (Fig. 4.1) using liquids of various refractive indices (as well as the empty
case). The associated bandgap spectra including and ignoring layer material dispersion
are aligned above and below (respectively) the measured transmission spectra’.

bandgap edges, as might be expected from the large variations of nAs2S3 and nPEI as

λ → 0 alone (Fig. 4.3).

Only the TM bandgap edges have been considered in the above analysis because they

represent the dominant bandgap for randomly polarised light, which is in agreement with

the observations of [42]. Both TM0n and HEmn modes contain TM field components

and hence succumb to the effects of the TM bandgap. Since no effort is made to excite a

particular mode class (e.g., only the TE0n modes), one can assume most modes excited
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in the fibre contain TM ray components which, when residing within a TM band, will be

preferentially coupled out through the cladding due to the Brewster-type transmission

effect (the effect that makes the TM gaps smaller than the TE gaps, Chapter 1), i.e.,

the TM bandgap edges will predominantly define the low-loss region of such a waveguide

when most excited modes contain TM field components.

The TE gap still plays a significant role in the confinement process, especially in the

regions close to the Brewster condition (where the TM gap closes up, Chapter 1). Within

the TE gaps, once the TM ray components have been filtered out due to the increasing

dominance of the Brewster effect, the TE components are left behind. This explains

the existence of an obvious transmission spectrum for light propagating close to the

TM gap closure point (the Brewster condition), such as exhibited by the ncore = 1.4019

case in Fig. 4.5. A more convincing analysis of this behaviour would require both more

transmission spectra to be measured for filling liquids with refractive indices about

the Brewster point nB and a more thorough theoretical description of the propagation

mechanism, possibly via either an eigenmode treatment or, more appropriately for the

large-core regime considered here, a vectorial beam propagation simulation.

4.4 Concluding Remarks

The shifting of a Bragg fibre’s transmission spectrum by filling the core with liquids

of various refractive indices has been experimentally demonstrated. At the time of

presentation (at the Conference on Lasers and Electro-Optics 2009 [55]) these results

represented the first demonstration of transmission band shifting via scaling solely the

core refractive index in a solid-cladding HC-MOF (and, to the best of my knowledge,

still the only demonstration).

Reasonable agreement with what is expected from a Bloch-wave based analysis was

achieved, but only when the material dispersion of the layers was incorporated (some-

thing typically not incorporated into bandgap calculations). The layers’ material dis-

persion acted in such a way that the band edges became more linear over the frequency

spectrum, rather than their characteristic asymptote-like trend towards the low-index

light-line. This material-induced band edge straightening was verified in both experi-

ment (by the approximate linearity of the peak shifting with core index, e.g., § 4.2) and

theory (by calculation of the bandgap maps incorporating the experimentally derived

material dispersion, e.g., § 4.3).

These results verify some of the key features of variable core refractive index (including

liquid-filled) low-index guiding multilayer waveguides discussed in Chapter 3, pointing a
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way towards the application of liquid-core Bragg waveguides (and hence also I-ARROW

waveguides, as per their equivalence argued in Chapter 3 and its partner publication,

Ref. [61]) in sensing, microfluidics, fibre lasers, and novel nonlinear devices [19]. Owing

to the similar, multilayer cladding, geometry, these results can also be applied to investi-

gations of the design and operation of SEFLs [30] with cores of varying refractive index.

As an explicit example, the fibre used in this work demonstrated a transmission peak

sensitivity to core refractive index of ∂λ0/∂ncore ≈ 330 nm/RIU, which is comparable

with the results of a similar I-ARROW based architecture (which relies on detection of

a transmission minimum, not maximum as used here) [59].





Chapter 5

Soft-Glass Air-Bragg Fibres

via Extrusion

T
he initial principal goal of my research toward this thesis was the fabrication of a

demonstrably guiding soft-glass photonic bandgap fibre via the extrusion method.

In what follows, I will demonstrate the modest success that has been born from this

work.

There are a few approaches to this goal. Discussed by way of introduction will be:

the motivation and the most promising approaches; explanation of the choice of an

effectively 1D-cladding fibre structure (an air-Bragg fibre design); and how the extrusion

preform fabrication technique ideally compliments the process, especially for soft-glass

substrates. The successes of this work thus far, both in terms of fabrication progress

and observed guidance properties will then be discussed, concluding with a comparison

of the experimental results with numerical modeling.

This chapter is a considerable extension upon the work reported at the conference pro-

ceedings of the Australian Conference on Optical Fibre Technology (ACOFT), 2009, oral

presentation (K. J. Rowland) [175]—authors: K. J. Rowland, H. Ebendorff-Heidepriem,

S. Afshar V. and T. M. Monro. The presentation was awarded the Wanda Henry Prize

for ‘best student presentation’.

5.1 Motivation and Fabrication Method

The motivation for the fabrication of soft-glass air-guiding fibres is relatively simple. As

discussed at length in Chapter 1, silica hollow-core microstructured optical fibres are a

proven and well-understood air-guiding platform, both theoretically and experimentally.

As discussed, this is primarily due to the very well-understood properties of silica glass,

having been used in optical fibre fabrication for many decades. However, the use of

187
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silica glass restricts the cross-sectional structures and refractive indices from which a

HC-MOF can be made: capillary stacking is capable of producing only a limited range

of cross-sectional fibre structures and silica itself has a refractive index nSi ≈ 1.45 (up to

material dispersion: ≈ ±0.01 over the visible to near-infrared spectrum), e.g., capillary

stacking has been used for the fabrication of hexagonal-, honeycomb-, Kagomé-, and

square-lattice silica HC-MOFs (as discussed in § 1.2).

The most appealing benefits of non-silica substrates, such as soft-glasses, are at least

three-fold. Depending on the glass composition, soft glasses have potential benefits for

HC-MOFs owing to their:

• larger range of refractive indices,

• lower transformation temperatures, hence a greater variety of fabrication tech-

niques,

• greater variety of low material-loss transmission windows.

The range of refractive indices from various soft-glasses are from about 1.5 (e.g. boro-

and lead-silicate glasses [89, 90, 205]) to 3.3 (chalcogenide glasses [84–88, 206, 207])

and a continuum in between (accessed by appropriately altering the amount of various

chemical compounds used in the ‘recipe’ of a given glass). As discussed in § 1.2.3,

larger substrate refractive indices can produce guidance regimes in which core modes of

hexagonal-lattice HC-MOFs can access high-order bandgaps which don’t exist for lower

refractive index substrates like silica—numerically analysed in Ref. [76, 82, 83].

Another way of accessing a wider range of guidance regimes is to alter the geometrical

structure of the waveguide. Owing to the high transformation temperatures of silica

glass, the stacking of thin-walled capillaries has proven to be the most effective fabrica-

tion method for HC-MOFs. The various geometries attainable using this technique were

discussed in detail in Chapter 1. The capillary-stacking method is now standard for

the fabrication of air-guiding silica HC-MOFs [2, 3, 81, 126], and is a straight-forward

extension of a similar technique used for solid-core PCFs [2, 3]. In both cases, silica cap-

illaries are precisely stacked in a hexagonal/trigonal lattice within a ‘jacket’ tube which

hold them all together (also made of silica). To make a hollow core, several capillaries

are removed from the centre of the structure, leaving a defect in the lattice. The trigo-

nal pattern represents the optimal packing possible for such capillaries in 2 dimensions

and so is the most common geometry for the fabrication of silica HC-MOFs, although

there are a few variations as mentioned above (such as the Kagomé- and square-lattice

variants). This packed structure forms the fibre preform.

Capillary-stacking can also be applied to soft-glass microstructured fibre preforms. Re-

cent examples of successful stack-and-draw processes for soft-glass (solid-core) MOF
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fabrication have been demonstrated by Refs. [85, 86, 88, 94, 208]. However, since such

glasses have significantly varied properties depending on their composition, much devel-

opment is required to produce capillaries of the required optical quality and uniformity,

unlike the ubiquitous silica glass; the development of refined capillary fabrication tech-

niques is required. Furthermore, true to their name, soft-glasses are much more easily

scratched and fractured than silica, making it difficult to produce preforms in which the

interfaces between all capillaries are ideal; a small scratch or crack in a capillary could

manifest as a significant defect in the final fibre cross-section.

Even with silica’s benefits, its high softening temperature (≈ 1700◦C) has seen that

the fabrication of silica MOFs is restricted solely to the capillary-stacking technique;

the methods and materials used in other preform fabrication techniques have not yet

shown to be suitable at such high temperatures. Soft-glasses, however, have much

lower transition temperatures than the conventional silica glass, typically in the range

of about 300◦C − 600◦C depending on the glass composition. It is the availability of

lower fabrication temperature windows that makes these glasses amenable to other, more

flexible, fabrication techniques. One such technique is extrusion: the principal preform

fabrication method used in this work. The details of the extrusion of soft glass are

presented in the next section.

Arguably, the final point above resembles the most important restriction of silica glass

to circumvent: the finite low-loss transmission window of silica. The ‘infra-red edge’

of silica (the wavelength beyond which the glass most absorbs long-wavelength light)

exists at a wavelength of about 2.5 μm [178]; light of longer wavelengths is heavily

attenuated, making silica essentially opaque above the infra-red edge. The IR edge is due

to vibrational modes of the silica lattice, which are centered between 7 μm and 11 μm,

with anharmonic coupling broadening the absorption down to the NIR [178]. There is

an ultra-violet (UV) edge below which light is strongly attenuated; this absorption is

predominantly due to the electronic bandgap of the material in the visible spectrum, but

becomes dominated by Rayleigh scattering within the NIR spectrum [178]. The low-loss

guidance of light in the Near- to Mid-IR spectral regions is a very promising area for

applications in areas such as medicine, high-power delivery, sensing and nonlinear optics.

High-power delivery using a hollow-core Bragg fibre has been demonstrated [11, 41, 42],

but as discussed in Chapter 1 the fabrication technique for these HC-MOFs is not

easily scalable down to small core sizes, as desirable for applications beyond high-power

delivery in which control over the modal dispersion and an enhanced peak intensity is

desired. The alternative to the solid multilayer cladding Bragg fibre geometry is the

fabrication of a single-material HC-MOF capable of low-loss guidance in the infra-red

spectrum. Even though the field overlap of the guided light with the cladding structure

is very small in most state-of-the-art silica HC-MOFs (∼ 1% − 5%, [18, 140]), it is still
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large enough for the material loss to become the dominant loss mechanism beyond the

IR absorption edge. For example, assuming 1% of the guided light intensity overlaps

with the substrate material but a large material loss of 10 dB/km, say (as would have

silica in the MIR spectrum), the power loss of the guided mode would be of the order

of 100 dB/m; this level of loss to the material itself (not incorporating confinement loss

here) would enforce a limit to the amount of power able to be guided before the substrate

itself is damaged.

The use of soft-glasses has the potential to extend the transmission window of HC-MOFs

into the NIR to MIR. Soft glasses have the potential to circumvent this absorption, in

particular chalcogenide glasses which can exhibit low material absorption well into the

MIR spectrum [84–88, 206, 207]. There are many other soft-glass compositions which

hold similar interest. The types considered here are bismuth oxide and lead silicate

glasses (discussed further later) that, while they don’t have transmission windows that

extend well into the MIR, have optical and fabrication properties that are enough for

proofs of principle and interest in their own right.

All of these degrees of freedom are fundamental to accessing the potential landscape of

guidance properties available from air-guiding fibres. By designing HC-MOFs with vari-

ous substrate refractive indices and low-loss transmission windows using unconventional

cross-sectional geometries, regimes of unprecedented bandwidth, modal loss, dispersion,

etc., will become accessible. The use of soft-glasses has the potential to access such

points in this landscape of guidance regimes and fibre designs. Of most interest for this

work is the possibility to use a novel method in the fibre preform fabrication process:

extrusion—ideally suited to soft-glasses.

Given the flexibility offered by the extrusion technique, I decided a promising fibre

geometry to fabricate would be a variant of the air-Bragg fibre discussed in Chapters 1

and 2; namely, a Bragg fibre whose cladding consists of alternating concentric rings of

glass and air. The rings must be supported by connective struts in order to represent a

realistic, fabricable, fibre structure. The air-Bragg fibre structure is appealing in that it

has already been demonstrated in silica as supporting very wide low-loss transmission

regions [43] in a geometry almost representing the ideal structure of solid concentric

rings suspended in air, as discussed in Chapter 1. The final fibre design also exhibits

many of the structural principles of the Kagomé- and square-lattice type fibre structures

(Chapter 1) in that it represents concentric polygons supported by connective struts

and hence predominantly exhibits an antiresonance type guidance mechanism; there are

particular parallels here to the numerical modelling results of Ref. [145].

The following sections detail the design principles employed and the success and fail-

ures encountered in implementing them. Of particular note is the way in which the
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produced structures exhibit properties that would be very difficult, if not prohibitive,

under conventional fabrication techniques such as capillary stacking. One such example

is the fabrication of colinear struts supporting rings of constant pitch (§ 1.4), as will be

demonstrated.

It should be noted that there are other preform fabrication techniques such as casting

and drilling. Casting involves pouring the glass in molten form onto a die structure,

rather than slowly pushing softened (not molten) glass thorough a die; when solidified1,

the glass can then be lifted from the die structure to reveal the cast preform. An impres-

sive example of casting a soft-glass (chalcogenide) structured preform was reported by

Coulombier et al. [91]. Drilling is at it sounds: drilling holes directly into a solid billet

of glass using a precision drill press. Drilling is routinely employed in the fabrication

of structured polymer preforms, such as in Ref. [66]. Drilling can even be employed

for silica MOF fabrication, and was actually part of the process used to fabricate the

first demonstrated MOF by Knight et al. [209], but in terms of internal surface quality

(discussed further presently), the process is inferior to the refined stacking technique

used for silica MOFs today [2, 3].

Casting and drilling limits the length of the preform to the length of the die features or

length of the drill bits (the latter of which, incidentally, can only produce circular holes of

a minimum diameter for mechanical reasons). The extrusion method on the other hand

can produce almost arbitrarily long preforms owing to the fact that the softened glass

is continuously pushed through the die; the extruded parts of the continuous preform

solidify once sufficiently far from the die exit face. Also, methods such as the casting

and drilling fabrication methods are often unsatisfactory in terms of surface quality and

glass temperature cycle effects such as crystallisation [90]. These adverse effects degrade

the inner and surface structure of the glass itself, inducing scattering or absorption

centres in the resultant waveguide; although there has recently been some very promising

success with the casting of microstructured chalcogenide preforms producing very low-

loss fibres [91].

These potential negative effects are circumvented somewhat with the extrusion method,

owing to the fact that extrusion is a relatively less severe process in both glass transfor-

mation time and temperature ranges and rates [90]. While this is part of the reason for

employing it here, another reason is more to do with circumstance in that extrusion is

also the technique with which the research group I have been part of while conducting

this research is most familiar and for which the available fabrication facilities were best

equipped to provide. Fabrication quality and circumstance aside, the most appealing
1Glass is an amorphous solid with identifiable phase transitions, not simply an extremely viscous

liquid as often claimed by the lay-person [90].
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aspect of the extrusion technique here is its potential to produce almost arbitrary cross-

sectional structures—vital for the creation of the spider-web fibre structures that will

be demonstrated below.

5.2 Soft-Glass HC-MOF Fabrication via Extrusion

The fibre fabrication process used for this research is now described, with special at-

tention given to details of the soft-glass extrusion process. Section 5.2.1 details the

extrusion technique used to fabricate the structured soft-glass preforms. Section 5.2.2

then discussed the fibre drawing technique used to fabricate fibres from these preforms.

5.2.1 The Extrusion Technique

The extrusion technique as used in this work is a method of making a fibre preform:

the macroscopic precursor to a fibre itself. The extrusion technique involves the trans-

formation a solid billet of glass (e.g. Fig. 5.1, left) into a structured preform [90].

Figure 5.2 shows a schematic representation of the process. This is achieved by in-

creasing the temperature of the glass to a point where it softens sufficiently (typically

about 300◦C−600◦C for soft-glasses, depending on the glass composition [90]), at which

point it can be pushed through a solid die. As described above, the extrusion die is a

typically metallic structure (stainless-steel here) whose exit-face exhibits the inverse

cross-sectional structure desired for the fibre preform. An example of an extrusion die

as used here is shown in Fig. 5.1 (right).

Figure 5.1: Left: a 5 cm diameter soft-glass (lead-silicate, F2) billet. Right: the exit-
face of a spider-web structure stainless-steel extrusion die used for soft-glass preform
fabrication (same as in Fig. 5.8). Like this die, all dies made to extrude glass billets
of diameter 5 cm shown here have a exit-face outer rim diameter of about 44 mm and
entrance diameter of about 5 cm.
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Figure 5.2: A schematic of preform fabrication via extrusion. Details in the text.

The apparatus used to achieve this extrusion typically consists of a metal body which

holds the die and glass billet which, once heated, is pushed through the structured die

via a mechanised ram. These components are placed within a furnace and heated to

the precise target temperature at which the glass softens sufficiently. A schematic of the

extrusion apparatus is shown in Fig. 5.2. In more detail, a billet of glass is placed on top

of the structured extrusion die, both held within a thick-walled stainless-steel body. The

glass is shielded from the body’s inner surface by a cylindrical stainless steel sleeve. A

circular plate is placed on top of the glass billet, upon which the mechanised ram pushes.

The whole structure is placed within a furnace and heated to the temperature at which

the glass softens sufficiently to be pushed through the vacant channels of the die by the

ram. The structured glass preform is formed once the glass passes the die’s exit face

and cools. All of the components with which the glass comes into contact are cleaned

thoroughly using an ultrasonic cleaning bath with de-ionised water and detergent—the

components are subsequently rinsed with distilled water, then methanol, before assembly

for the extrusion process, ensuring the glass is not contaminated with impurities or even

water2.
2Water content within the glass or on its surface can produce significant defects within the final

preform due to the production of water vapour upon the heating of the glass within the presence of
water, say. This can result in bubbles within or on the surface of the preform.
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In order to produce satisfactory extruded preforms, the precise values of ram speed

(hence pressure on the glass and die) and furnace temperature (hence viscosity of the

softened glass) require both quantitative knowledge of the glass properties, including its

flow dynamics, but also qualitative practical experience with the extrusion technique in

general. If the extrusion parameters are not employed correctly, the extrusion process

can produce less than desirable results due to excess deformations in the extruded glass

structure due to undesirable flow dynamics or (more severely) due to the die itself

deforming or breaking under excess pressure.

Since all fabricable microstructured fibres must have simply-connected glass regions in

their cross-section (all regions must have structural support), an extrusion die cross-

section often appears as a collection of solid ‘islands’ (Fig. 5.1, right). The islands

block the flow of glass, leaving corresponding holes in the preform. One will notice how

these solid features of such a die appear disconnected from each other. This mechanical

problem is overcome by anchoring these solid islands to a common plate containing an

array of small holes (obfuscated in most images of dies here, but visible in Fig. 5.13,

left), named a ‘sieve-plate’ owing to its appearance, not its behaviour (all incident glass

on the sieve plate passes through the holes in the plate). These holes allow the glass to

flow through into the primary structured region of the die while holding the die structure

together [90].

So, provided the glass regions in the design’s cross-section are simply-connected, almost

any preform structure can be extruded, up to the limitations on die fabrication and

glass fluid-dynamics. In this way it is apparent how the extrusion technique offers an

effectively infinitely greater variety of preform structures to be created than by using the

restrictive capillary-stacking technique. Extrusion is restricted to soft-glasses because

their lower softening temperatures permit the use of machinable materials, like stainless

steel, for complex dies; no such materials exist for the working temperatures required for

silica glass. The examples demonstrated presently show structures that are inaccessible

to conventional silica fibre fabrication, and represent some of the possibilities presently

at the forefront of glass extrusion today.

5.2.2 The Fibre Drawing Process

No matter the preform fabrication process, once the preform is made it is then reduced

to smaller dimensions via the fibre drawing process; the result is the desired optical

fibre. The reduction of the preform down to fibre dimensions is termed fibre drawing. A

schematic of the process is shown in Fig. 5.3.
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Figure 5.3: Centre: A schematic of fibre drawing from preform. Left: A preform
constructed via the cane-in-tube concept; permits structured regions far smaller than
those fabricable directly from extrusion. Right: A full preform made directly from
extrusion utilising an integrated jacket, avoiding the need for structural support via the
cane-in-tube technique but limited to the smallest structural feature sizes permitted by
the die. Details in the text.

Drawing the preform to fibre involves holding the preform vertically in a fibre drawing

tower. A schematic representation of the process is shown in Fig. 5.3. The bottom end

of the preform is heated to a temperature about 50◦C − 100◦C higher than required for

extrusion (≈ 700◦ − 800◦ for the soft glasses used here). At this temperature, the glass

begins to become more liquid or ‘runny’. When this temperature range is reached, a

drop of glass will form at the base of the preform due to gravity and surface tension
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effects. Much like honey dripping from a spoon, this drop then falls away from the

preform, leaving behind it a connecting strand of glass. If the temperature of the preform

and internal pressure of the holes is tuned correctly, the structure will be preserved

throughout the length of this connecting strand, as depicted in Fig. 5.3 (centre). With

these conditions maintained, the glass will continue to flow in this manner, drawing

down the preform structure into a thin fibre of outer diameter ≈ 100 μm− 250 μm. As

it is pulled from the preform, the fibre is continuously wound around a drum, allowing

the fibre to be pulled from the preform until as much of the preform material as possible

is consumed.

Often when smaller structural features are desired but within practical fibre outer-

diameters (≈ 100 μm − 250 μm), the preform is first drawn down to a cane: an in-

termediate structure somewhere between a preform and a fibre. The outer-diameter of a

cane is typically a few mm in diameter, rather than ∼ 100 μm as for the fibre. The cane

drawing process is similar to fibre drawing except that the cane must be kept straight

during the draw owing to its larger structure compared to the fibre; the glass only be-

comes flexible enough to wind onto a drum once the fibre diameter reaches � 250 μm

or so, depending on the glass composition. The cane is then inserted into a thick-walled

jacket ; a tube of the same glass typically with similar macroscopic dimensions to the

initial preform, as depicted in Fig. 5.3 (left). The jacket tube is also fabricated by the

extrusion process. This is often imaginatively referred to as the cane-in-tube technique.

The composite preform (cane inside the tube jacket) is then pulled down to fibre in the

same way as the direct preform-to-fibre method just described.

By introducing an intermediate drawing step (caning) and then adding extra material

(the jacket) to the outside of the structure, the preform structure can be pulled down

to far smaller dimensions than possible with direct-drawing. Note that the relative size

of the cane to the outer diameter of the jacket can be varied considerably and is not

restricted to the relative sizes depicted in Fig. 5.3. Attempting to produce, via direct-

drawing, features on the small scale achievable via the cane-in-tube method, would

produce a an unmanageably fragile fibre due to the very small outer-diameter required

(tens of microns, say)3 in the absence of a buffering jacket.

Also, by using a cane-in-tube method, the full real-estate of the die can be exploited to

embed more structure into the preform cane than would be possible on a preform with

an integrated jacket since the solid jacket region required for structural integrity for the

latter takes up space on the die. It is very important to note that, in order for the small
3There is a range of outer-diameters within which a glass fibre is sufficiently ‘bendable’ and generally

manageable owing to a combination of the mechanical and thermal stress properties of the particular
drawn glass and the structure fabricated into it. Certain glasses may be more or less fragile based on
their chemical composition, but a significant proportion of air within a cross-sectional structure typically
increases the fragility regardless of the glass type.
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gap between the cane and tube to be closed during drawing, a vacuum must be created

over the interface. This vacuum must not be applied to the cane structure, or else the

holes would quickly collapse.

This is related to a very important observation. Pressurisation of the holes within the

structure during the fibre drawing process is critical in determining the ultimate cross-

section of the microstructured fibre. In the absence of adequate internal hole pressure,

the structure of the preform would collapse upon heating, producing a simple stand

of glass without any internal structure. There are two ways to pressurise a structured

preform during the fibre drawing process: self -pressurisation or active-pressurisation.

Self-pressurisation is just as its name suggests: the exposed (non-drawn) end of the

preform is sealed off (by blocking the holes of a preform or melting the end of a cane,

say), allowing the pressure of the holes themselves to build up as material is pulled from

the preform during the drawing process. One side effect of this is that the pressure

within the holes increases as the draw goes on, owing to the fact that preform material

is being removed while both ends of the preform are effectively sealed (the holes of the

fibre being small enough to restrict significant air flow though them). The dynamics of

this self-pressurisation fibre drawing process are significantly nontrivial, meaning that

refinement of the microstructured fibre drawing process has historically been a matter

of empiricism, intuition and practical knowledge. There has recently (mid-2009) been

some impressive theoretical analysis on the dynamics of drawing microstructured optical

fibres by Voyce et al. [177] in which an analytic treatment was employed, requiring almost

30 physical parameters to describe the preform, air, and furnace properties; the final

problem becomes a complex interaction of thermal, mechanical and fluid dynamics.

While the model was elegant and robust, it was still only for the simple case of a

tube or capillary (a single circular hole), highlighting the fact that the analysis of more

complicated structures is an incredibly complicated problem requiring the interactions

of many physical concepts. Of most importance, though, is that it demonstrates how

and why the self-pressurisation method works and why it works so well.

The results of Ref. [177] also demonstrate how easily instabilities in the fibre drawing

process can occur, manifesting themselves in fluctuations in the scale of the fibre cross-

sectional structure, for example. In practice, under the drawing conditions used for the

fibres fabricated for this work, one can reduce these fluctuations to about ±1 μm−2 μm

of the fibre’s outer-diameter. This is a very important point and is a critical consideration

for later analysis.

Active-pressurisation, alternatively, involves sealing the exposed end of the preform to a

controlled gas source, allowing arbitrary pressurisation of the holes. Active pressurisa-

tion may provide another degree of freedom during fibre drawing, but it is an inherently
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sensitive procedure; the internal pressure of the preform/fibre must stabilise before the

effects of pressure changes can be determined and with only a finite amount of material

to draw, this requires both experience and skill to perfect owing to the fact that the

parameter window required for stable drawing is very small: if the pressure is too small,

the structure typically collapses on itself; too large and one risks damaging the structure

due to over-inflation (often resulting in the draw-down region ballooning out, similar to

the way a professional glass-blower inflates their samples). Further, soft-glass is in-

herently fragile, making active-pressurisation even more challenging as the fibre strand

can fracture under the stress induced by inflation, depending on the drawing parameter

regime.

The downside of the cane-in-tube technique is that, due to the geometry of the com-

posite structure (a cane completely surrounded by a jacket-cane interface), one can only

pressurise the cane or apply a vacuum to the interface at one time. To achieve both

an interface vacuum and cane pressure requires a setup in which the tube supplying

the pressure to the cane passes through the wall of the vacuum seal over the interface;

while this can be done, it is typically a very nontrivial setup to achieve. Given this,

cane-in-tube drawing is often done only with self-pressurisation of the cane (by melting

the exposed end). The ramifications of this on the fibre fabrication results here are

discussed in the following sections.

The next section details the results I have so far achieved in the pursuit of fabricating an

extruded soft-Glass air-Bragg fibre, both failures (from which the technique is refined)

and successes. Given the success I report presently, the fabrication technique will open

up the possibility of fabricating other similar structures via extrusion, such as hollow-

core fibres with a Kagomé-lattice, or air-Bragg fibres based on other concentric cladding

shapes such as squares rather than rings; possibilities that are inconceivable by any

other fabrication technique. Further, the extrusion technique makes this possible using

a variety of substrates [90], from polymers to soft-glasses to any other optical material

capable of being extruded to sufficient quality.

5.3 Fabrication Results

Due to its complexity, fibre fabrication is often an iterative process, requiring the fabri-

cation of many intermediate attempts in order to determine the appropriate fabrication

regimes for the case at hand. The soft-glass air-Bragg fibre fabrication here is no ex-

ception. The results that follow demonstrate how the results of fabrication trials—the

properties of the structured glass itself—can be a determining guiding factor in the de-

sign process. As mentioned earlier, microstructured fibre fabrication is an incredibly
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Preform Fibre Die/Fibre Structure Glass

1 – Offset, tring > tstrut, 4-ring, cane-in-tube Bi-oxide

2 A Offset, tring = tstrut, 4-ring, cane-in-tube Bi-oxide

2 B Offset, tring = tstrut, 4-ring, cane-in-tube Bi-oxide

3 C Colinear, tring = tstrut, 4-ring, cane-in-tube Lead-silicate

3 D Colinear, tring = tstrut, 4-ring, cane-in-tube Lead-silicate

4 E Colinear, tring = tstrut, 2-ring, integrated jacket Lead-silicate

Table 5.1: Summary of air-Bragg preform extrusion and fibre fabrication.

complicated physical system, making predictions of the fabrication behaviour of a given

glass and structure incredibly difficult. Nonetheless, some guiding principles can be de-

termined from which can form part of the basis for iterative refinement in combination

with design requirement from simulation and knowledge of the light guidance properties

required from the waveguide. The results I present are quite promising, indicating that

extrusion is a viable alternative means of HC-MOF fabrication, allowing one to design

and fabricate fibres beyond the limits of conventional materials and techniques such as

silica capillary stacking towards almost arbitrary structures in a plethora of extrudable

optical substrate materials.

Table 5.1 contains a summary of all extrusion and fibre drawing results to be discussed,

with information about the die structure, glass composition, and brief comments on the

results. Each preform and fibre fabrication result is discussed sequentially as it appears

in the table (top to bottom).

5.3.1 Offset Struts

The first attempts at preform extrusion for the air-Bragg fibre used a bismuth-oxide

glass, orange in appearance since the bulk transmission window lies closer to the NIR

spectrum, opaque to most of the short-wavelength visible light. This glass has a refrac-

tive index of about nBi = 2.0 and a softening temperature of approximately 480◦C −
490◦C. This particular glass was supplied by Asahi Glass, Japan. The particular die

used, Fig. 5.4 (left), was based on a similar die used previously to extrude a polymer

preform (which was not developed further); the polymer preform in question can be seen

in [90]. The use of this die was primarily proof-of-principle, demonstrating that the ex-

trusion of such structures is possible with soft-glass. Particularly noteworthy is that the

die was designed with offset struts; the struts connecting adjacent layers were placed so

as to minimise the chance of being colinear with one another (the air layers containing

either 6, 9, 12, and 16 struts). This principle simply followed from the design of the silica
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Figure 5.4: Preform 1. Left: Photograph of the exit-face of the stainless-steel die
used to extrude a 5 cm diameter bismuth-oxide glass billet to create the initial air-Bragg
fibre preform. Right: Photograph of the end of the produced preform (a glass-cutting
saw has been used to produce a clean, flat, end-face). The diameter of this section of
the preform is about 2 cm.

air-Bragg fibre of Vienne et al. [43], under the impression that, in the final fibre, tun-

nelling of the light through the cladding would be minimised. As was discussed in § 2.7,

the placement of the struts with respect to each other doesn’t have a great effect on the

guidance properties (at least as far as the general CL spectrum structure is concerned);

this gives more freedom to the placement of the struts between rings during the design

process. Also, the struts in this case are designed to be thinner than the concentric rings

(tring > tstrut), also in line with the design of the fibre of Ref. [43]. However, a thorough

study is required to reveal the effects of the presence of struts (extending on the work of

Ref. [70–72] and the new results presented in § 2.7) over the behaviour of the idealised

structure, such as whether the thickness and placement of the struts can be designed to

reduce confinement loss while maintaining a practical, fabricable structure.

The preform fabricated from this die, Preform 1 (Table 5.1), is shown in Fig. 5.4 (right).

All practical samples of extruded preform, this and all subsequent samples, were cut to

approximately 18 cm long. Note how the structure of the die was reasonably well repli-

cated by the extruded preform. There were, however, deformations to the structure of

the rings due to the surface tension of the heated glass essentially rounding off the sharp

edges the struts make with the rings. The surface tension also produces an unbalanced

force at each strut-ring junction, ‘pulling’ the ring structure into distorted shapes. This

effect is most evident when there are fewer struts connected to a ring (e.g., the first two

rings about the core in Fig. 5.4), allowing each strut to deform a larger section of a given

ring. This distortion effect becomes particularly important when drawing to fibre due to

the higher temperatures and lower glass viscosity at the drawing temperature compared

to the extrusion temperature, as will be shown soon, but not for this particular preform.
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Figure 5.5: Preform 2. Left: Photograph of the exit-face of the stainless-steel die
used to extrude a 5 cm diameter bismuth-oxide glass billet to create the second air-
Bragg fibre preform. Right: Photograph of the end of the produced preform (sawed
flat). The diameter of this section of the preform is about 2 cm.

The second trial of preform fabrication used a die with an almost identical structure to

that used for Preform 1, but with considerably thinner rings (Fig. 5.7, left). Thinner

rings are generally desired in order to shift the centre of the fundamental resonance to

practical wavelengths, as discussed in many of the works discussed in Chapter 1. For

example, recall Eq. 2.4 under which the first-order antiresonance wavelength occurs for

resonance order m = 1/2. Rearranging Eq. 2.4 for the layer thickness, one finds:

tring =
λmm

2
[
n2

ring − 1
]− 1

2 . (5.1)

For a target guidance wavelength of 1.55 μm, say, and an F2 glass refractive index of

nring ≈ 1.6, the calculated target ring thickness for the fundamental antiresonance is

calculated using Eq. 5.1 as tring ≈ 300 nm. This ring dimension represents the target

of most designs considered here. As it turns out, this was too fine to fabricate within

the current fabrication technique (improved inflation techniques being required, § 5.3.2),

but very interesting results were nonetheless observed, discussed § 5.4.

Note that, in this case, the rings and struts are designed to have the same thicknesses

(tring = tstrut), purely because they represent the smallest manufacturable channel fea-

ture sizes (0.6 mm) for the dies used at the time. Exceeding this limit may not be

feasible, anyway, since the restriction in glass flow may induce too much strain on the

die, leading to structural deformations in the die itself (and possibly breakage). This

die deformation effect was observed in at least a couple of fabrication trials and, in one

extreme case, the solid core region on the die was actually broken from the die itself

due to excess pressure, registered as above 60kN of force on the ram (due to the glass
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Figure 5.6: Fibre A. Left: A SEM of the first fabricated air-Bragg fibre using Bis-
muth Oxide glass. A cane-in tube technique was used after caning down a segment of
Preform 2 (Fig. 5.8). Right: A magnified view of the structured region of the same
fibre. One of the holes collapsed during drawing, leaving a solid region of glass in its
place, distorting the structure further.

temperature being low—high viscosity—or the ram speed being too high—high force)4.

The rest of the die designs shown here also use this tring = tstrut design for the same

reasons.

Preform 2 exhibits similar deformations as Preform 1, though less pronounced. This is

likely due to the fact that the struts are now relatively larger than the those previously,

making the surface tension effects less apparent. Nonetheless, the fact that the struts

are offset from each other has remarkable implications when pulling this structure to

fibre.

Fig. 5.6 shows a scanning electron micrograph (SEM) of a fibre pulled from Preform 2.

The preform was first pulled down to a cane and then inserted into a hollow tube

extruded from the same bismuth glass (explaining the much larger region of glass about

the structure in fibre form than for the preform alone). The end of the cane was then

sealed closed and a vacuum applied to the interface between the cane and tube during

drawing. The vacuum allows the interface to seal sufficiently during drawing, while the

sealing of the top end of the cane enforces self-pressurisation of the internal structure

during drawing to keep the holes sufficiently open, as discussed above (c.f., Ref. [177]).

All fibre samples were cleaved by hand using razor blades or surgical blades. With

practice, practical, clean, fibre cleaves can be achieved with minimal fracturing of the

end-face. Ceramic blades may be used but metal blades were found to produce the
4These issues of excess pressure can be alleviated by increasing the temperature of the glass or by

slowing down the ram speed. Both options are restricted by practical barriers due to the glass itself
(high-temperature crystallisation, say) or by more banal issues such as the time required to personally
monitor the process.
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most replicable results here. One can use more complicated mechanical fibre cleaving

machines, but these can be quite cumbersome, especially for small and fragile soft-

glass fibre samples. Hand-cleaving was preferred for this work for its efficacy and ease,

paramount during the development stage of a novel fibre structure, as is the case here.

The effects of surface tension upon the offset struts is now much more apparent after

drawing down the fibre than observed in the preform: every hole is significantly rounded,

destroying the concentric ring nature of the initial structure (5.6, right). This is due

to the fact that, as the glass becomes less viscous, the structure is distorted so as to

minimise the surface tension forces (the most obvious effect is the rounding of sharp

features); in essence, the structure tends towards a global minimum of potential energy

inherent in the surface tension of the structure. This effect is also seen in the final

fabricated silica fibre of Ref. [43], but the deformations aren’t as obvious as the present

soft-glass case since a relatively large number of struts were placed between each pair

of layers, and since the drawing tension and temperature regime used in the drawing of

such silica MOFs is far removed from that used for soft-glasses, the structure typically

deforms less during fabrication. Of particular importance is to note the tendency of the

struts and rings to tend towards linear alignment. This propensity for the thin features

to align is exploited later (§ 5.3.2) in a refinement of the air-Bragg structure.

Fibre A has a collapsed hole in the outer cladding ring (Fig. 5.6). This is likely due to

the fact that the jacket tube used had a slight curve along its length; a peculiarity of

the glass properties and particular extrusion setup at the time such as an asymmetric

temperature gradient across the glass billet and die region. This curvature required the

cane to be slightly bent when inserting it into the jacket, putting undue pressure on

one of its sides, weakening it. During drawing, this can manifest as a collapsed hole

as the outer wall of the cane can break open at this weak point as the glass softens.

Such a deformity, while unwanted, isn’t critical and simply represents room for refining

fabrication technique, rather than a fundamental design flaw.

Another fibre, Fibre B, was drawn from another piece of Preform 2, again via a cane-

in-tube technique. Fig. 5.7 shows a SEM of Fibre B. The features of Fibre B are

relatively thinner than Fibre A, due to refined drawing parameters from the experience

of the previous drawing Fibre A; a step in the right direction, but clearly hampered by

more severe issues. As for Fibre A, an outer hole collapsed during drawing, for similar

reasons. The fact that the same type of hole collapsed is likely coincidental, and appears

less remarkable once notices that it could have occurred at 3 other sites, identical up to

rotational symmetry. More concerning is the observation that similar deformations as

seen in the Fibre A are seen for Fibre B. These deformations are again due to the surface

tension effects upon the offset struts of the glass during caning and fibre drawing.
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Figure 5.7: Fibre B. Left: A SEM of the second fabricated air-Bragg fibre using
Bismuth Oxide glass. A cane-in tube technique was used after caning down a segment
of the same preform used for Fibre A, Preform 2 (Fig. 5.8). As for Fibre A (Fig. 5.6),
the structure is heavily deformed and a hole collapsed in the outer ring. Right: A
magnified view of the structured region of the same fibre.

Such structural deformations will clearly destroy any 1D bandgap style guidance since

the structure is no longer effectively 1D. Even if one were to argue that an antiresonant

effect could produce efficient guidance, the variation in the strut and/or ring dimensions

(distinguishing them becomes artificial under such severe deformations) sees that there

would be a large range of resonator thicknesses, leading to a blurring together of the

associated resonance transmission peaks. Finally, in retrospect the cores of these fibre

samples were very small (≈ 5 μm) compared to the core sizes demonstrated in the

guiding silica air-Bragg fibre of Vienne et al. [43] (≈ 20 μm); following the results of

Chapter 2, this has the effect to significantly increase the loss, regardless of the efficacy

of the resonances with the cladding structure.

Indeed, no core-guidance was observed for either Fibre 1 or 2 in the laboratory, in line

with the comments above. A range of techniques were used to test for guidance. In

order to merely try to observe guidance, short lengths of fibre were used to reduce the

transmission losses as far as possible; 4 cm lengths were typically used, providing a

reasonable trade-off between minimal length and handleability. If guidance could not

even be observed in such a short length, the efficacy of the HC-MOF is questionable and

the loss is assumed too large for practical guidance. The experimental methods employed

to analyse the guidance behaviour of these fibres is discussed in the next section (§ 5.4).

It is clear that, in the presence of surface tension effects, the offset struts are the primary

contributing factor in producing significant deformation in the fibre cross-section. The

next step in the design of the soft-glass air-Bragg fibre here is to instead fabricate a fibre

which works with the surface tension effects from its mere design. It was clear to me

that the best candidate was to design the structure with colinear struts. As mentioned
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previously, from a light guidance perspective, colinear struts have the potential to pro-

duce similar guidance properties to offset struts according to the preliminary numerical

modelling in § 2.7 and the guidance properties of other HC-MOF designs in which the

cladding struts are aligned such as the Kagomé-lattice HC-MOF discussed in Chapter 1.

The important result of this is that the surface tension induced structural deformations

of a structure with colinear struts should be confined to only rounding of the corner

regions of the holes, rather than significant deformations to the ring structure. This is

expected since struts in between adjacent rings would meet at common points; there

would thus be no net force to ‘pull’ the vertices of the lattice in relatively different di-

rections, deforming the rings. In other words, the internal forces due to surface tension

during fibre drawing are more balanced for the colinear-strut case, pulling each vertex

on a ring in a similar manner, reducing structural deformations.

Here I coin this air-Bragg structure with colinear struts a spider-web fibre, for obvious

aesthetic reasons. This new structure was discussed in Chapter 1. The demonstration

of its fabrication and light guidance properties are now discussed.

5.3.2 Colinear Struts—The Spider-Web Fibre

The next die design (Fig. 5.8, left) was similar to the previous two but, as discussed,

employed colinear struts: every air layer contained 12 struts each, all aligned with the

adjacent ring’s set, effectively producing 12 long struts that cut through all the rings of

the cladding. All other parameters were the same as for the previous die, except that

the distance between concentric rings was a little larger (in order to increase the amount

of air in the structure, aiding the self-pressurisation to produce thinner rings and struts

and to reduce rounding of the features).

At this stage, the bismuth-oxide glass was replaced with a lead-silicate glass (F2, com-

mercially available from the Schott glass company). The reasons for this change weren’t

so much functional as economical: the bismuth-oxide glass was not readily available

as it was made available to us only through a collaboration with Asahi Glass and its

availability was limited (due to the exotic nature of the glass). The lead-silicate glass,

however, was readily commercially available via Schott. With respect to this particular

extrusion technique, F2 is also a well-understood glass, so working with it is somewhat

more straightforward than the more exotic bismuth-oxide glass. F2 has a higher soften-

ing temperature than the bismuth glass at about 590◦C − 600◦C and a lower refractive

index of nF2 ≈ 1.6.
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Figure 5.8: Preform 3. Left: Photograph of the exit-face of the stainless-steel die
used to extrude a 5 cm diameter lead-silicate (F2) glass billet to create the third air-
Bragg fibre preform. Right: Photograph of the end of the produced preform (cleaved).
The diameter of this section of the preform is about 6 mm.

The preform extruded from this die, Preform 3, already demonstrates how the colinear

struts work with the surface tension of the heated glass, better preserving the die struc-

ture than Preforms 1 and 2 of Fig. 5.4 and 5.5. The only discernible deviations of the

preform structure to the die are a slight rounding of the sharp corners between the struts

and rings, and a global thickening of the struts and rings (due to a common extrusion

effect known as die swell—controllable to some extent by refining the extrusion parame-

ters to reduce pressure on the glass [90]). The reason the surface tension doesn’t disrupt

the structure as it did for the previous designs is that in having the struts colinear, the

surface tension forces tend to predominantly cancel out (at least locally): the forces

from the rings and struts upon a particular cladding node (where the struts and rings

intersect) tend to cancel each other in the azimuthal and radial directions, respectively.

By not having an adjoining strut opposite a given node in the cladding, the earlier de-

signs could not produce this force balance. The spider-web structure clearly produces

the desired result insofar as minimisation of structural deformations is concerned.

Fig. 5.9 shows a scanning electron micrograph (SEM) of Fibre C pulled from Preform 3.

As for the bismuth-oxide glass cases above, a cane-in-tube technique was used: the

preform was first pulled down to a cane and then inserted into a hollow tube extruded

from the same lead-silicate (F2) glass. The end of the cane was then sealed closed and

a vacuum applied to the interface between the cane and tube during drawing to enable

self-pressurisation of the holes and sealing of the cane/tube interface. As an aside, the

image of Fig. 5.9 (right) was voted ‘Most Beautiful Image of a Fibre’ at the Workshop

for Specialty Optical Fibers in Brazil, 2008.

Although significant rounding of the holes is still evident, the overall structural fidelity to

both the preform and die is far superior to that observed for the offset-strut case above.
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Figure 5.9: Fibre C. Left: A SEM of the first fabricated air-Bragg fibre using F2
glass. A cane-in tube technique was used after caning down a segment of Preform 3
(Fig. 5.8). The shown fibre segment has an outer diameter of 170 μm. Right: A
magnified view of the structured region of the same fibre. The latter image was voted
‘Most Beautiful Image of a Fibre’ at the Workshop for Specialty Optical Fibers in
Brazil, 2008.

The structure clearly better represents the goal of thin concentric rings supported by

connective struts. It is also interesting to note the high degree of symmetry exhibited

by the final fibre (12-fold, the number of struts), whereas the deformed examples above

could only exhibit 3-fold symmetry due to the strut orientation (even without deforma-

tions). The enforcement of colinear struts is clearly a key step in producing a soft-glass

air-Bragg fibre.

The fibre was able to be drawn down sufficiently that the rings reached the target

dimensions of about 300 nm (Fig. 5.9, right); similar to the dimensions of the rings

in [43]. However, at these dimensions, this particular design produces a core diameter

of only approximately 4.1 μm. A core this small would increase confinement loss to

impractical levels (§ 2.6). Note that the guiding fibre of Vienne et al. had a reasonably

large core diameter of 20 μm. This is a fundamental design issue with the extrusion

technique: only a certain number of features of a given dimension can physically fit onto

an extrusion die. This makes it impossible to increase the size of a preform’s air regions

relative to the minimum feature size. A solution to this problem would be the alteration

of the structure after extrusion; namely, the active inflation of the fibre structure during

caning or drawing.

The inflation mechanism is quite subtle. First, consider that during fibre drawing the

internal pressure of the fibre structure is actively increased. This has the effect of

increasing the outer diameter of the drawn fibre while stretching the internal structure,

making it relatively thinner compared to the inflated air regions. However, by increasing

the drawing speed, it is possible to maintain the initial, smaller, outer diameter of
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Figure 5.10: Fibre Da. Left: A SEM of the second fabricated air-Bragg fibre using
F2 glass. A segment of Preform 3 (Fig. 5.8) was inserted directly into a tube, rather
than caning it down first. The shown fibre segment has an outer diameter of 130 μm.
Right: A magnified view of the structured region of the same fibre.

the fibre while also pressurising it. This is because by increasing the drawing speed,

the dimensions of the fibre are naturally reduced (this happens also in the absence

of inflation). The underlying reason for this is the principle of conservation of mass;

the material flux through a given region must be conserved. In this way, by using

inflation one is able to increase the dimensions of the air:glass ratio of the structure

while maintaining the same fibre outer diameter. By careful tuning of pressurisation

and draw speed during fibre drawing, a broad range of inner structural dimensions are

attainable. This point is returned to soon.

To see how far self-pressurisation can take the fabrication process, a second fibre, Fi-

bre D, was drawn from another segment of Preform 3. Three samples of this fibre draw

are presented here: Fibres Da, Db, and Dc. An SEM image of a sample of Fibre Dc

in shown in Fig. 5.10. The difference with this fibre draw was that the preform wasn’t

caned down but inserted directly into a tube. This was possible owing to the fact that

the preform itself tapered significantly under its own weight during extrusion since the

furnace temperature was intentionally increased by a few ◦C; this produced a reasonably

straight region of the preform which had an outer diameter of about 6 mm, much smaller

than the die exit face structure but still larger than typically possible via caning. The

preform thus took the place of the cane in the cane-in-tube process.

The idea in this method was that the increased draw-down ratio5 is substantially larger

(larger ‘cane’ dimensions), increasing internal pressure at the target dimensions, thus

keeping the holes open more effectively [177]. Unfortunately, the dimensions one can

draw down to using this technique is restricted by the outer diameter of the jacket one
5The factor by which the cane-plus-jacket structure must be scaled to reach the target dimensions.
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Figure 5.11: Fibre D. SEMs of Fibre D (Fig. 5.10) taken during different stages of
the fibre-drawing process, producing fibres with outer diameters (left to right) 210 μm,
170 μm, and 130 μm (resp.). These fibres will be referred to, from left to right, as
Fibre Da, Fibre Db, and Fibre Dc. Note how the features become relatively larger
(the air-filling fraction decreases) as the global fibre dimensions are reduced under self-
pressurisation.

can extrude; fibres with outer diameters smaller than about 100 μm become very fragile.

Since the preform used is quite larger than a typical cane, the available jacket material

is considerably smaller relative to the structured region (due to the finite real-estate

one can exploit on a die used to make the jacket tube). Nonetheless, while the target

cladding ring thickness could not be achieved (achieving a minimum of tring ≈ 1 μm

rather than ≈ 300 nm), Fig. 5.10 shows how the surface tension effects of Fibre Da are

reduced even further compared to that in Fibre C, Fig. 5.9. Take particular note of the

holes closest to the core. This implies that the larger draw-down-ratio has a measurable

effect upon the effective self-pressurised inflation of the structure, although repeated

fabrication trials should be conducted in order to compare fibres of equal core size.

Even though the core of Fibre Da is larger than that of Fibre C (≈ 12 μm versus

≈ 4.5 μm, respectively), no guidance was once again observed, again likely due to global

confinement loss typically being very large for small core sizes (§ 2). Again, this is almost

obvious in retrospect, but it was thought the ring dimensions were the most important

target parameter at the time. Thin rings are most certainly not a necessary condition

to simply observe guidance, as will be demonstrated presently.

Fig. 5.11 shows the cross-section of Fibre D at various stages during the drawing process,

producing fibres Da, Db and Dc. Each sample was taken at a specific outer diameter,

from larger to smaller for Da → Dc. The most obvious trend the samples demonstrate

is how the surface tension effects appear to increase as the structural dimensions are

decreased. This is most likely due to the increased glass flow required to reduce the

structure to smaller scales; the surface tension effects have a greater opportunity to

manifest under more complicated flow dynamics. Of course, this is not a sufficient
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Fibre Dcore (μm) tring (μm) tair (μm)

Da 25.0 2.4, 1.7, 1.7, 2.1 8.1, 8.1, 8.3, 10.0
E 40.0 6.3, 5.4 11.6, 17.3

Table 5.2: Summary of selected air-Bragg fibre dimensions. Multiple entry values represent

the innermost to outermost cladding features for a given structure. The measurements are to

within a precision of ≈ ±0.2 μm, dictated by the resolution of the SEM technique used.

explanation, but serves as a qualitative concept in the absence of a rigorous model or

understanding of the fine details of the drawing of this particular HC-MOF geometry.

The structural parameters of fibre Da as measured from the SEM image represented

in Fig. 5.11 are as follows: Dcore ≈ 25 μm, tring ≈ [2.4, 1.7, 1.7, 2.1] μm and tair ≈
[8.1, 8.1, 8.3, 10] μm, for the core diameter, inner to outer glass ring (minimum) thickness

and inner to outer air gap (maximum) thicknesses, respectively. These are summarised

in Table 5.2. The minimum glass ring and maximum air gap thicknesses are taken since

they represent a longitudinally planar slice taken in between any two adjacent struts.

The core itself if perfectly circular to within measurement error. The effects of the

variations in feature sizes across the cross-section is an important consideration, but

these measurements are sufficient for the discussions here.

Note that there is at least an error of ≈ 0.3 μm in these measurements of owing to

the resolution of the SEM technique used. While one is justified in arguing that finer

detail is required, it is a somewhat moot point in this stage of the development since the

aforementioned longitudinal structural fluctuations of at least ≈ 1% that occur during

the fibre drawing process imply any given sample may be measurably different to the

next. Measurable via SEM or not, these fluctuations have implications for light guidance

along long lengths of fibre, discussed later.

While the target ring thickness parameters for this fibre design were closer to those of

Fibre Dc than Da or Db (tring was to be as small as possible to enhance the range of

any resonances, hence guidance windows), an important discovery was made: Fibre Da

actually demonstrated observable light guidance within the air core over a large wave-

length range. This result is discussed in detail in next section (§ 5.4) together with

experimental results.

Given these promising results (both in terms of structural fidelity and guidance be-

haviour), active inflation of this structure was also investigated. This turned out to be

a highly nontrivial procedure. As discussed above, the fabrication procedure for active

inflation is identical to self-pressurisation except that the cane is not sealed but sealed

to a pressurised gas source. The difficult part of the process lies in achieving the ideal
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Figure 5.12: Optical microscope images (in reflection mode) of a failed cane-in-tube
active inflation attempt using a cane produced from a segment of Preform 3 in which
all holes are pressurised by the same amount (a common connection to the same pres-
sure source). These undesired results imply alternative inflation techniques should be
pursued to accommodate the varied sizes of the cladding holes. The extent of the struc-
tured region (the inner diameter of the jacket) is ≈ 35 μm. Left→right, top→bottom:
Samples taken from sections of the fibre drawn with increasing uniform gas pressure
applied to the end of the cane, demonstrating how the inflation evolved such that the
larger outer holes inflate far more rapidly than the smaller ones.

drawing regime, balancing parameters such as pressurisation, draw speed and tempera-

ture. In this case, there was no vacuum applied to the cane/jacket interface under the

assumption that the inflated cane would close the gap naturally (a technique regularly

used for other cane-in-tube MOF fabrications).

The issue with the pressurisation of the cane in this case was that an equal pressure was

applied to the entire cane structure. This saw that a greater force was applied to the

outer structure walls than to the inner ones, owing to the larger outer holes. Fig. 5.12

shows the results of the inflation attempt. Without sufficient pressure, the cane collapses

upon itself, forming a small solid rod stuck to the side of the inner jacket wall, Fig. 5.12
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(top-left)6. Increasing the pressure, the holes of the cane structure begin to open to some

degree, beginning with the largest hole: the core; the smaller inner holes preferentially

collapsing for the above reasons. By increasing the pressure further, the outer holes

balloon out until they touch the jacket wall, Fig. 5.12 (bottom-left). The core doesn’t

inflate to the same degree since the outer wall of the cane is relatively thin, offering the

outer holes less resistance to inflation; the core has more material surrounding it that

would have to be expanded in order to allow the core to inflate further. Finally, all of the

out holes expand until they fill the void of the inside of the jacket (Fig. 5.12, bottom-

right); no further significant inflation effects were observed after this point, although

it is not clear whether increasing the pressure further would force the opening of the

smaller holes as well, as is suggested by the presence of the small holes just next to the

inflated outer holes in Fig. 5.12 (bottom-right).

It appears that this inflation differential across the structure prohibits this simple in-

flation technique from being suitable for this complex structure. In order to take the

idea any further, pressurisation of the different hole types independently from one an-

other may be required. This more complicated type of pressurisation technique has been

successfully demonstrated for Kagomé- [9, 143] and square-lattice [160] fibre fabrication

and represents a promising way forward for future work here. Alternatively, one could

employ self-pressurisation (which has a propensity for maintaining structural fidelity by

simply sealing one end of the cane/preform—discussed earlier) using a very large draw-

down ratio so as to increase amount of inflation. It is unclear at this time whether this

could be achieved to the desired scale in practice and also warrants further investigation.

An important result of this inflation trial, however, was the observation that of the holes

that were inflated their walls were significantly reduced in thickness and remained intact,

Fig. 5.12 (bottom-right). Indeed, the thickness of the outer struts can not be measured

via the optical micrograph, implying that they must be less than ≈ 100 nm; well below

the target region of tring ≈ 300 nm. This represents a proof of principle of the inflation

technique, indicating that controlled reduction in feature size should possible given the

appropriate pressurisation of the holes.

Given these difficulties with inflation, it seemed clear that a larger core size was a more

accessible key development to at least observing guidance in this fibre design before

being able to move on to the refinement of the cladding structure, and hence guidance

regimes, by techniques such as inflation. However, it has already been highlighted how

the space available on the extrusion die can only accommodate a core as large as the
6Close inspection reveals that there is actually a very small hole in the centre of the cane, representing

a near total collapse of the core.
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Figure 5.13: Preform 4. Left: Photograph of the exit-face of the stainless-steel die
used to extrude a 3 cm diameter lead-silicate (F2) glass billet creating a 2-Ring air-
Bragg fibre preform with colinear struts and a thick outer jacket. The exit-face outer
rim diameter is about 23 mm. Right: The fabricated preform.

extent of the cladding structure will allow. With the current cladding structure, the

core size relative to the cladding extent was essentially fixed.

There were thus two primary obstacles in furthering the development of the spider-web

fibre: increasing the size of the core and the inflation of the full structure. These issues

were approached by changing the design of the fibre structure itself, moving to a more

simple design which allows the flexibility to potentially manage these obstacles in the

development of scientific validity of the fibre structure.

The new design consisted of not 4 but 2 glass cladding rings. As discussed in all previous

chapters, especially §§ 2 and 3.5, at least for the idealised case without connective struts,

a reduction in the number of cladding rings would decrease the minimum confinement

loss achievable within a bandgap (or equivalently, at an antiresonance). This was of

little concern at the time since a reduction in confinement loss represents a refinement

to the waveguide; simply demonstrating resonant guidance as a proof-of-principal was

more important.

The removal of two of the rings allowed the integration of a thick jacket into the die

design. The manufactured die is shown in Fig. Fig. 5.13 (left); note that here that a

3 cm billet design was used, requiring smaller die dimensions compared to those used

previously which were designed to accommodate 5 cm glass billets. The reduction in

total die area implies a reduction in the amount of detail that can be manufactured onto

the die (again, limited by feature sizes of about 0.6 mm), but this is of little concern

since it is the relative, not absolute, structural feature sizes that are important when

the preform is drawn down to fibre. With in integrated jacket, the cane-in-tube method

could be avoided since the preform would already have sufficient jacket material to
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Figure 5.14: Fibre E. Left: A SEM of the third fabricated air-Bragg fibre using F2
glass made by directly drawing down Preform 4, sporting 2 glass cladding rings allowing
an integrated jacket. The shown fibre segment has an outer diameter of ≈ 200 μm.
Right: A magnified view of the structured region of the same fibre.

ensure the drawn fibre was structurally robust. Fig. 5.13 shows the preform, Preform 4,

fabricated using the new die design. By drawing Preform 4 down to fibre, the final core

diameter would be much larger than that available using the previous designs7. The

trade-off is that the cladding rings would be much thicker than those achieved by Fibres

A→D since, even though they were of similar size on the die, the draw-down ratio is

not as large for the new design due to the thinner, but integrated (hence more easily

fabricable), jacket.

With thicker cladding rings, only higher-order resonances would be accessible to the

wavelength range of interest (visible to the NIR). This is immediately derived from the

antiresonance condition used above in that the order of the resonances is a coefficient

of the inverse of the ring thickness—from Eq. 2.4: λ ∝ m/tring. That higher-order

resonances are dominant is demonstrated experimentally in the next section and theo-

retically in the next chapter.

The integration of the outer jacket in this manner also has the potential to stabilise the

inflation of the fibre structure. The ballooning out of only the outer ring of holes in

the 4-ring structure above was principally due to the thin wall of the pressurised cane.

With a thicker wall built into the structure by default, it could be expected that the

internal structure would inflate under more control. Indeed, this was attempted during

the drawing of this Preform 4, but no obvious inflation effects were observed. This

could be due to insufficient pressure being used, the jacket being too thick, the draw

temperature being too low, a leak occurring at the seal of the pressurised gas source to

the preform, or other similar reasons; further investigation is clearly required in order
7A similar draw-down ratio could be achieved using the previous cane-in-tube technique using a very

thin jacket tube, which has its own fabrication difficulties.



Soft-Glass Air-Bragg Fibres via Extrusion 215

to optimise the process. Nonetheless, the fibre produced from the drawing of Preform 4

exhibited remarkable structural and optical properties, in particular the latter (as will

be discussed in § 5.4).

An SEM image of a sample of Fibre E in shown in Fig. 5.14. Dcore ≈ 40 μm, tring ≈
[6.3, 5.4] μm and tair ≈ [11.6, 17.3] μm, for the core diameter, inner to outer glass ring

(minimum) thickness and inner to outer air gap (maximum) thicknesses, respectively.

These are summarised in Table 5.2. The minimum glass ring and maximum air gap

thicknesses are taken since they represent a longitudinally planar slice taken in between

any two adjacent struts. The core itself is approximately circular to within (has elliptical

semi-axes that differ by) < 1 μm, beyond the resolution error of ±0.3 μm. The effects

of the variations in feature sizes in the transverse cross-section is an important consid-

eration, but these measurements are sufficient for the discussions here. Longitudinal

variations along the fibre length are quite important and discussed in more detail soon

with respect to their effect on transmission spectra for various fibre lengths.

Of most importance for these results is that Fibre E, the 2-ring spider-web fibre, like

the 4-ring Fibre Da above, exhibits light guidance within the core. More than this, the

transmission spectrum clearly implies a strong resonant guidance mechanism. These

experimental results are now presented and discussed.
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5.4 Hollow-Core Guidance—Experimental Results

and Antiresonance Analysis

In order to first test a given fibre sample for guidance within the hollow core (regardless

of guidance mechanism), short lengths of fibre were used to reduce the transmission

losses as far as possible; 4 cm lengths were typically used, providing a reasonable trade-

off between minimal length and handleability. If guidance could not be observed in such

a short length, the efficacy of the HC-MOF was deemed questionable and the loss was

assumed too large for practical guidance and hence of little use for diagnostics.

The first test for light guidance involved simply mounting a short sample of fibre (hand-

cleaved using a razor blade) on an optical microscope in transmission mode such that

the condenser lens focuses the incandecent lamp’s light as tightly as possible upon the

end face of the short fibre sample. With sufficient alignment of the sample, one can

efficiently couple light into the guiding structures of a fibre.

For measurements of a fibres transmission spectrum, a supercontinuum white light

source8 was coupled into the fibre in a similar manner, except appropriate fibre mounts

(micro- and nano-positioning stages) coupling optics (microscope objectives and lenses)

and detectors were used (similar to § 4—sans the filling apparatus). After aperturing

off the small amount of light coupled into the cladding (due to unavoidable in-coupling,

inter-mode coupling or scattering effects), the core light was free-space coupled input

into an optical spectrum analyser (OSA).

8A SuperKTM Compact from the commercial photonics company Koheras, now a part of NKT Pho-
tonics.

Figure 5.15: Spider-web air-Bragg fibre spectra measurement schematic.
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A 60× microscope objective was used to focus the out-coupled light into the OSA, while

either a 40× or 20× objective was used to couple into the samples of Fibre Da or Fibre E,

respectively. For samples below a length of about 10 cm, mounting each end of the fibre

on an independent nano-positioning stage became impossible; only one stage was used to

hold the small sample with the mount of the second (out-coupling) stage being removed

so that the second objective could be placed as close as possible to the free end of the

sample9. Figure 5.15 shows a schematic of the apparatus used including the modified

combination of the positioning stages.

5.4.1 4-Ring Spider-Web Fibre—Fibre Da

Figure 5.16 shows an optical microscope image in transmission, demonstrating the guid-

ance properties of Fibre Da in the visible region. The over-exposed appearance of the

cladding structure is due to the poor in-coupling of the incandescent lamplight of the

microscope into the fibre; the condenser lens only has a finite focal length and working

distance, so the resulting large spot-size illuminated much of the cladding as well as the

core. In the laboratory, with the appropriate optical equipment, minimal coupling to

the cladding is achieved. The experimental results of this guidance are discussed in the

next section and, in particular, whether the guidance exhibits any resonant behaviour

with the cladding structure.

Now, suspicion was immediately drawn to the possible dominance of simple ‘capillary’

guidance, a result of Fresnel reflection from only the core interface (just as for the tube

waveguide of § 2.3.1). Capillary dominated guidance in polymer HC-MOF trials due

to insufficient structural integrity in the cladding was reported by Ref. [95]; the prin-

ciple could potentially apply here, too. Capillary guidance, as discussed in § 2.3.1 and

Ref. [95], produces confinement loss that increases monotonically with λ (transmission

spectrum increased for decreasing λ); the normalised transmission spectrum of such a

waveguide asymptotically approaches 1 for decreasing λ. While this tendency for the

transmission to increase (loss decrease) toward shorter wavelengths, the important ob-

servation for the fibre at hand was that a rich variety of strong spectral features was

observed within this trend. This spectral structure and its, origin is now discussed.

Fig. 5.17, shows the transmission spectrum of Fibre Da as measured using the super-

continuum source as described above. Fig. 5.17 shows the transmission spectra of two

samples: one of length 5.8 cm (top) and the other of 4 cm, measured with an OSA

wavelength resolution of 5 nm and 1 nm, respectively (a 5 nm resolution version of the
9This practice could be a problem for small-core fibres, but the dimensions of the spider-web fibres

used here are large enough such that one can afford to be a little more lax with the precision of the
out-coupling optics.
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Figure 5.16: SEM (left) and transmission microscope (right) images of Fibre Da.
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Figure 5.17: Transmission power spectrum of Fibre Da normalised to the source
spectrum. Blue: A 5.8 cm long sample with the spectrum measured to a 1 nm resolution.
Light grey: The same spectrum measured with 5 nm resolution. Red: A 4 cm sample
measured at 5 nm resolution, artificially vertically offset from the first sample for ease
of representation. Note the alignment of the major peaks between the two samples.

latter also overlayed on the same plot—light grey). The lower spectrum is artificially

vertically offset from the first for ease of representation.

Strong resonant features are shown in the spectra for these samples of Fibre Da. This is a

significant departure from the smooth asymptotic behaviour one would expect were the

light not experiencing a strong resonant interaction with the cladding; as demonstrated

experimentally by Argyros et al. using a hexagonal-lattice polymer HC-MOF design, the

lack of a resonant interaction with the cladding produces guidance similar to a simple

tube [95].
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F2 Schott Glass Sellmeier Material Dispersion Fit

Formula nF2(λ) =
√

1 + ΣiBiλ2/(λ2 − Ci)

Coefficients

B1 B2 B3

1.34533359 0.209073176 0.937357162

C1 C2 C3

0.00997743871 0.0470450767 111.886764

Sample calculations

λ (μm) nF2

0.35 1.6742 . . .
0.4 1.6522 1.0 1.6031
0.45 1.6388 1.2 1.5996
0.5 1.6299 1.4 1.5968
0.6 1.6190 1.55 1.5949
0.7 1.6126 1.6 1.5943
0.8 1.6084 1.8 1.5918
0.9 1.6054 2.0 1.5892

. . . 2.3 1.5850

Table 5.3: Sellmeier formula, empirically derived coefficients and selected values for
the F2 glass from Schott used in this work. Coefficient values taken from the official
Schott F2 glass datasheet; applicable at least for the range λ = 334.1 nm → 2325.4 nm.
A selection of refractive indices are also calculated from the Sellmeier formula are also
given, covering the visible to the NIR spectrum. Values of nF2 truncated to 5 significant
figures.

A critical observation here is that these spectral peaks (Fig. 5.17) closely correspond to

the antiresonance conditions one expects from the cladding structure! This is shown in

Fig. 5.17 by the alignment of the measured transmission peaks with the antiresonance

wavelengths represented by the array of vertical grey lines. These lines actually corre-

spond to the antiresonance conditions of the first cladding ring which, as per Table 5.2,

has a thickness of tring,1 ≈ 2.4 μm. Were one to ignore the material dispersion of the

glass, the antiresonance conditions could be evaluated directly from the ARROW reso-

nance condition of Eq. 2.4, with antiresonances corresponding to half-integer resonance

orders m = 1
2 , 3

2 , . . ., as discussed in § 2.3.3. These half-integer mth order resonances will

be referred to here as the antiresonance orders m which a related to the resonances as

m = m + 1
2 = 1, 2, . . .

In order to compare these antiresonance wavelengths with the experimentally measured

transmission spectra here, however, the material dispersion of the glass must be explic-

itly considered. To do this I have employed the Sellmeier refractive index dispersion fit;

a Sellmeier function is an empirically derived fit (to terms of inverse powers of wave-

length) to many precisely measured data-points of the glass refractive index, allowing

the calculation of a well-defined approximation to the glass index at any wavelength
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within the fit’s range of applicability (λ = 334.1 nm → 2325.4 nm here, according to the

official Schott F2 datasheet). The Sellmeier formula and coefficients used are shown in

Table 5.3 with a selected range of calculated indices listed as a reference.

In enforcing a wavelength dependent refractive index, the antiresonance condition of

Eq. 2.4 is no longer analytic. One must then solve the antiresonance condition nu-

merically. This has been done here by finding the roots (with respect to λ) of the

Sellmeier-based antiresonance expression (derived from Eq. 2.4):

2t

m

√
nF2(λ)2 − n2

0 − λ = 0, (5.2)

where nF2(λ) is the polynomial Sellmeier function of Table 5.3 and the second refractive

index is assumed constant (a good assumption for air and many liquids relative to

the glass). For a given m and t, there is one root for this equation, λAR
m . The grey

vertical lines of Fig. 5.17 represent the antiresonances calculated using this method in

which t = tring,1 = 2.45 μm and m = 6 → 14 (lowest orders correspond to the longest

wavelength and vice versa).10 The values of the inner ring antiresonance wavelengths

including material dispersion are summarised in Table 5.4.

The incorporation of material dispersion is critical when comparing with the experimen-

tal results as can be evidenced by noting that, when one does the substitution in the

calculations, resonance shifts of up to a whole order are possible when replacing the

Sellmeier glass index with a constant value. These differences between the resonances

for incorporated and ignored material dispersion are also non-uniform in λ due to the

nonlinear nature of the Sellmeier fit. The paramount importance of incorporating ma-

terial dispersion was also demonstrated explicitly in the experimental and theoretical

analysis of liquid-filled Bragg fibres earlier in § 4.

The observed spectral peaks thus correspond to the 6th to the 14th antiresonances of the

first glass cladding layer. Note that this agreement is observed in spite of the subsequent

glass rings having substantially varying thicknesses which would produce quite different

resonance wavelengths. This is of little surprise given that, as discussed by many other

works (e.g. [9, 99, 100, 149]), the innermost layers have a dominant influence over the

reflectivity of the cladding structure since the electromagnetic fields of the guided light

are largest there, decaying as they penetrate the structure towards the subsequent rings

(as demonstrated for the idealised air-Bragg structure in Fig. 2.7).

The measured spectral peaks don’t appear to be regular, however. This is likely due to

one of two reasons. First that the varying thicknesses of rings in the cladding, Table 5.1,
10This value for the inner ring thickness differs to that listed as the measured thickness by 50 nm

(≈ 2%), within the fabrication and measurement error tolerances mentioned above.
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Fibre Da (tring,1 = 2.45 μm)

m λm (nm) nF2 S%
m,m+1 Δ%

S λm|S=0.99

6 1113.8 1.6010 15.0982 6.4980
7 945.66 1.6043 13.0354 7.5033
8 822.39 1.6076 11.4422 8.5082
9 728.29 1.6112 10.1723 9.5130
10 654.21 1.6152 9.1339 10.5181
11 594.45 1.6195 8.2669 11.5237
12 545.31 1.6242 7.5301 12.5300
13 504.25 1.6293 6.8943 13.5373
14 469.48 1.6350 6.3382 14.5457

Fibre E (tring,1 = 6.3 μm)

m λm (nm) nF2 S%
m,m+1 (%) Δ%

S λm|S=0.99 (%)

17 957.67 1.6040 5.5904 17.502
18 904.14 1.6053 5.2793 18.503
19 856.41 1.6066 4.9991 19.505
20 813.59 1.6079 4.7453 20.506
21 774.99 1.6093 4.5142 21.508
22 740.00 1.6107 4.3029 22.509
23 708.16 1.6122 4.1089 23.511
24 679.06 1.6137 3.9301 24.512
25 652.37 1.6153 3.7646 25.514
26 627.82 1.6169 3.6110 26.516
27 605.14 1.6186 3.4680 27.517
28 584.16 1.6203 3.3345 28.519
29 564.68 1.6221 3.2095 29.520
30 546.56 1.6240 3.0921 30.522
31 529.66 1.6260 2.9817 31.524
32 513.86 1.6280 2.8776 32.526
33 499.08 1.6301 2.7791 33.528
34 485.21 1.6322 2.6859 34.530

Table 5.4: Antiresonance wavelengths for F2 glass layers incorporating material dis-
persion corresponding to the inner rings of Fibres Da and E (inner layer thicknesses
taken from Table 5.2). The refractive indices corresponding to the antiresonance wave-
lengths are also listed (calculated from the Sellmeier material dispersion fitting function
of Table 5.3.). S%

m,m+1 = (1 − Sm,m+1) × 100. Δ%
S λm = Δλm/(λm − λm+1) × 100.

Values are truncated to 5 significant figures. The antiresonances listed correspond to
those shown in Figs. 5.16, 5.18 and 5.21.
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produce misaligned (but coupled) resonances with the fields of the guided core light,

contributing to the total transmission spectrum—where many of the antiresonance peaks

of the layers align, large peaks in the transmission spectrum would be observed. The

dips in the spectrum could also possibly be due to strong couplings of the core modes

to the cladding modes supported in the glass web or holes.

The first phenomenon, that of misaligned and coupled resonances producing the va-

riety of spectral features, is analysed numerically in the next chapter using the FEM

introduced in § 2.3.4 and used in §§ 2 and 3.6.

The latter phenomenon might not be such a great concern following the discussions of

the works of Ref. [9, 142, 145, 159] (discussed in § 1.2.3) where it has been shown how

coupling to cladding modes is far less significant than the resonances with the cladding

struts in Von Neumann Wigner guiding HC-MOFS such as the Kagomé- and square-

lattice fibres. The spider-web fibre shown here has many similarities to such fibres,

including a large cladding pitch which is attributed to suppression of such core/cladding

mode interactions [9, 142, 145, 159]. Furthermore, it is clear from the microscope images

in transmission mode, that the cladding guides light efficiently in both its glass regions

and holes when light is couple to them. This suggests the absence of a cladding bandgap

but, from the core mode transmission spectra above, clearly the existence of an antires-

onance guidance mechanism for the core mode. The spider-web fibre thus likely also

guides via a Von Neumann Wigner mechanism, similar to that demonstrated in wave-

guides such as the Kagomé fibre above (the core mode loss spectrum is dominated by

the cladding resonances, coupling only very weakly to the cladding modes themselves—

Chapter 1, Fig. 1.7). Of course, further theoretical and experimental investigation is

required to be sure of it.

Note how the major transmission peaks observed from each sample in Fig. 5.17 are

aligned with the other sample’s. This implies that there is a good stability in the

structural dimensions from sample to sample. As discussed earlier, instabilities during

the fibre drawing process could disrupt the longitudinal stability of a given structural

feature (changing the size of a hole or ring thickness, say). Since resonant interactions

with the cladding structure are very sensitive to the cladding feature dimensions, stable

fibre drawing conditions are paramount for fibres such as these. If there were a strong

diameter variation along the length of the fibre, say, the high-loss spectral features of the

cladding would vary along the length, too, such that the observed transmission spectra

of sufficiently long lengths of fibre would have their resonant features ‘washed out’ due

to the integrated effect of the various spectral features generated along the length of the

fibre. The fact that the peaks appear consistent between samples here implies that the

unavoidable ∼ ±1% outer-diameter variation under the fibre fabrication technique used
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here doesn’t translate to significant changes of the internal structure. It is likely that

the structural fluctuations thus induce a global scaling, fluctuating the cladding rings

by the same relative scale. The repercussions of this are discussed in detail later.

From carefully measured transmission spectra, one can derive the loss spectrum of the

fibre. The loss spectra are calculated by considering a specific wavelength and the

associated fibre sample length and transmission power values. A linear least-squares

fit to the data points of power versus sample length is calculated. The slope of this

linear fit represents the average power difference measured across all samples for that

wavelength, hence the loss per unit length. Repeating this for all wavelengths produces

a transmission loss spectrum.

Figure 5.18 shows two of the transmission spectra (top) measured from samples ranging

from lengths L = 11 cm → 5.8 cm±0.5 mm used to calculate the loss spectrum (bottom)

of a sample of Fibre Da. Only the wavelength range 450 nm → 700 nm is considered

as the fibre was too lossy for longer wavelengths using longer lengths of fibre and the

transmission spectrum is limited by the sensitivity of the OSA. Without an accurate

reading for such low power levels, the data would skew the loss calculations, so they are

thus omitted.

One can see how spectral features which otherwise might not appear obvious from the

transmission spectra alone become more apparent when the loss is measured. In par-

ticular, note the existence of clear loss minima dips which are surrounded by multiple

less pronounced minima. These minima correspond precisely to the transmission peaks

in Fig. 5.18, as one would expect: the spectral features corresponding to the lowest loss

produce the highest transmission peaks over a given length of fibre.

More importantly, as for the transmission peaks, the principal loss minima have an

excellent correspondence with the calculated antiresonances of the first cladding ring

(grey vertical lines, Fig. 5.18). The transmission peaks and loss minima shown in Fig.5.18

thus correspond to inner-ring resonances of order m = 6 → 14.

Note how the behaviour describe theoretically in § 2.4 is observed in these loss spectra:

higher-order antiresonances produce guided modes of lower loss (following a predominant

downward trend in a similar manner to the tube waveguide equivalent). It is unclear as to

what the precise modal content of the guided light is for the transmission measured here

for Fibre Da, although it is likely that it is dominated by the HE11 owing to asymptotic

single-modedness [39, 43, 63, 65, 171] and the fact that the optical micrograph of Fig. 5.16

suggests a Gaussian-like transverse intensity distribution (similar to the HE11 mode).

Further investigation is required in both the experimental and theoretical analysis of

these fibres to determine the behaviour and influence of the mode content further.
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Figure 5.18: Top: The transmission power spectra, normalised to the source spec-
trum, measured for a sample of Fibre Da for the longest (solid red, L = 11 cm) to
shortest (solid green, L = 5.8 cm) lengths used in the cut-back loss measurement. Bot-
tom: The transmission loss curve (blue) calculated from a series of transmission curves
from a sample cut back over a range of lengths: L = 11 cm → 5.8 cm. Grey vertical
lines: antiresonance wavelengths for the inner cladding ring, incorporating material
dispersion, taken from Table 5.4. Note how the loss minima and transmission maxima
are aligned with the calculated antiresonance wavelengths. Modal confinement loss
curves of equivalent tube waveguides (same 25 μm core diameter but with an infinite
homogeneous cladding) are overlayed; Dashed red: HE11, Dashed green: TE01.

Fig. 5.18 also compares the measured loss spectrum to the equivalent tube waveguide

(Dcore = 25 μm with an F2 glass cladding). The asymptotic analytic approximation for

the modes of a tube guide presented in § 2.3.1 and derived in § A.4.3; the large core

diameter ensures the asymptotic approximation is valid (§ A.4.3). The dashed curves

represent the confinement loss of the lowest order modes of the tube guide (HE11 and

TE01). The HE11 mode thus represents the minimum theoretical loss of a perfect tube

waveguide. As for the antiresonance calculations above, the full chromatic dispersion of

the glass is considered when calculating the tube modes’ CL by employing the Sellmeier

refractive index function of Table 5.3.
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Note that the material loss of the glass is negligible for the wavelengths considered. For

example, according to the official Schott F2 glass datasheet, the internal transmittance

of a 25 mm sample of F2 glass is about 0.997 over the visible spectrum, corresponding

to a bulk optical loss of about 0.5 dB/m, which is well below the transmission losses

measured for all fibre samples considered here. Similarly, the bulk transmittance for

wavelengths into the NIR like, say, 1.55 μm is stated as 0.989, corresponding to a bulk

optical loss of about 2 dB/m. Since the majority of the light is guided within the

hollow core of these fibres, assuming a generous mode-field/material overlap of about

10%, the loss attributed to the glass would be at least less than 0.2 dB/m. When

comparing this material absorption loss to the total loss of the current fabricated fibres

(∼ 100 dB/m, e.g. Fig. 5.18, and Fig. 5.21 later), for all intents and purposes the glass

can be approximated to be transparent for the wavelengths used here; confinement loss

and structural scattering features (such as surface capillary waves or similar surface

roughness) are considered the dominant loss mechanisms. Indeed, following refinements

to the design and fabrication of these fibres, the goal would be to reduce the confinement

loss as far as to make the material loss an appreciable fraction of the transmission loss,

thus reducing the problem to material engineering rather than optical design.
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5.4.2 2-Ring Spider-Web Fibre—Fibre E

Figure 5.19 shows an SEM and transmission microscope image of Fibre E. A significant

amount of light is clearly guided within the core with an apparently white appearance.

As for Fibre Da, the microscope image was created by focusing the microscope lamp onto

the fibre end-face, coupling as much as possible into the core—since the condenser lens

of the microscope isn’t designed for this, coupling a significant amount of light into the

cladding is unavoidable, resulting in the coloured appearance of the cladding structure

and some weak guidance in the outer cladding holes (permitted due to the Von Neumann

Wigner nature of the guidance mechanism). When coupling light into the fibre on the

optical table (as in Fig. 5.15), the cladding light is greatly diminished.

Figure 5.19: SEM (left) and transmission microscope (right) images of Fibre E.

Figure 5.20: Transmission power spectrum of Fibre E, normalised to the source spec-
trum. The spectrum was measured using a ≈ 5 cm long sample and a spectral resolution
of 1 nm. Note the regularity of the peaks with almost no sub-peaks or disruptions to the
spectrum. These transmission peaks do not align with the antiresonance wavelength of
the cladding rings—discussed further in the text.
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The transmission spectrum of a short length (≈ 5 cm) of Fibre E is shown in Fig. 5.20.

Note the regularity of the peaks with almost no sub-peaks or disruptions to the spectrum

as was observed for Fibre Da. These transmission peaks are very strong and much more

obvious than those of Fibre Da. The peaks are clearly more numerous than those of

Fibre Da, though, which is entirely due to the larger cladding ring thicknesses producing

a larger number of resonances over the same spectral range; recall the antiresonance

condition requires λm ∝ t/m such that thicker rings will produce more (higher-order)

resonances over a given spectral region. This explains the white appearance of the

core light: the many transmission peaks over the visible spectrum conspire to give the

appearance of white light.

Figure 5.21 shows the transmission spectra of a range of lengths of Fibre E. Note how

the transmission peaks, as for Fibre Da above, align with the calculated antiresonances

(which include materials dispersion—their values are listed in Table 5.4). All measured

transmission peaks, that is, except for those of the shortest sample shown. The 4.18 cm

long sample, whose transmission spectrum was shown more clearly in Fig. 5.20, does not

exhibit peaks that align with the calculated antiresonances and don’t appear to even

align with integer fractions of them, either.

It is likely that this anomalous behaviour for the short lengths is an artifact of multi-mode

guidance. Over such a short propagation distance, higher-order modes may not have

accumulated sufficient loss in order to be discriminated sufficiently from the lowest order

modes (as per the discussions of asymptotic single-modedness in Chapter 1, say). With

the current fibre designs, confinement loss would be the predominant asymptotic mode

discrimination mechanism (since it is likely the largest loss mechanism, as discussed).

This asymptotic loss explanation is backed-up by the observation that these transmission

peaks decay quickly as the length of the sample is increased (Fig. 5.21). However,

this decay effect could also be due to the accumulation of losses due to fabrication

imperfections (scale fluctuations, say) along the length of the fibre, which is discussed

in far more detail presently.

Either way, the 4.18 cm length sample certainly produces the most regular transmission

peaks with a large peak-to-trough height. Incidentally, it was observed that these peaks

were very sensitive to coupling alignment and even to small disturbances to the fibre

such as applying pressure to the jacket (being careful not to disturb the alignment). This

suggests that this higher-order core mode resonance behaviour could find an unexpected

application to strain sensing, for example, although further investigation is required.

This anomalous short-length behaviour aside, the transmission spectra of Fig. 5.21 (top)

show that the transmission of Fibre E is quite similar to that of Fibre Da in that

the transmission peaks align with their calculated inner-ring antiresonances. In this
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Figure 5.21: Top: The transmission power spectra, normalised to the source spec-
trum, measured for a sample of Fibre E for the longest (solid red, L = 26.3 cm) to
shortest (solid green, L = 4.18 cm) lengths used in the cut-back loss measurement.
Bottom: The transmission loss curve (blue) of Fibre E calculated from a series of trans-
mission curves from a sample cut back over a range of lengths: L = 26.3 cm → 11.2 cm
(the 4.18 cm sample is neglected). Grey vertical lines: antiresonance wavelengths for
the inner cladding ring, incorporating material dispersion, taken from Table 5.4. Note
how the loss minima and transmission maxima are aligned with the calculated antireso-
nance wavelengths. Modal confinement loss curves of equivalent tube waveguides (same
40 μm core diameter but with an infinite homogeneous cladding) are overlayed—Dashed
red: HE11, Dashed green: TE01.

longer length regime, then, it appears that the inner ring is once again predominantly

responsible for the antiresonance behaviour—investigated further via a full numerical

analysis in § 5.5. Taking the measured transmission spectra for a range of sample lengths,

such as those shown in Fig. 5.21 (top—excluding the shortest sample as discussed), one

can calculate the transmission loss spectrum using the same method as discussed for

Fibre Da earlier. Fig. 5.21 shows this loss spectrum, comparing it to the losses one

would expect from the lowest order modes of a simple tube.



Soft-Glass Air-Bragg Fibres via Extrusion 229

As for Fibre Da, Fibre E demonstrates the general trend of decreasing loss with decreas-

ing wavelength following the trend of the tube modes. Once again, one observes that

on top of this trend are superposed strong resonance-based loss dips. This is a signif-

icant observations, implying that even with cladding ring and struts features as large

as those of Fibre E, and with as few layers, resonance effects are still easily observed.

These results indicate that there is great merit in refining the design to produce struc-

tures of thinner cladding features in order to widen the low-loss bandwidths (by further

separating the resonances) and at the same time decreasing their minimum achievable

confinement loss. This last comment may appear at odds with the work of Chapter 2 in

which it was shown that higher-order resonances produce lower CL. However, it must

be appreciated that the inclusion of such large struts into the structure has a significant

in increasing its loss (demonstrated in the numerical results in § 5.5). Furthermore, as

shown in Table 5.4, the resonances of Fibre E are very high order (up to m = 34 for

those in the spectrum shown here). These very high-order resonances are more suscep-

tible to structural deformations than lower-order resonances, increasing the total loss of

a length of fibre. This effect can already be seen in the transmission and loss spectra

of Fibre E in Fig. 5.21 in that the resonance effect observed flatten out towards shorter

wavelengths.

Given these comments, it is clear that the implications of structural fluctuations on the

guidance of Fibre E must be considered more carefully. It will now be shown how a

fabrication tolerance induced scale fluctuation of ±1% (that of the fabrication appara-

tus used to draw these fibres) will shift the various resonances by different amounts,

especially for higher-order resonances. This can be quantified analytically, as is now be

shown.

Consider a structural scale factor S which scales the thickness t1 of a glass layer as t1 →
t′1 = St1. Neglecting material dispersion, Eq. 2.4 implies λm = 2t1Δn/m for a resonance

of order m (as usual, antiresonances correspond to m = 1
2 , 3

2 , . . .) and geometric refractive

index difference factor
√

n2
1 − n2

0. The resonance wavelength thus shifts under the layer

scaling as λm → 2St1Δn/m = Sλm. For the mth resonance wavelength to shift to the

lth resonance wavelength, one requires a scale factor Sm,l such that λm → λl = Sm,lλm.

The equality implies the scale factor is related only to the two resonance orders as

Sm,l = m/l. The order parameter l can be considered as continuous such that λl can

be tuned to any wavelength to which Sm,l gives the scale factor required to shift λm to

that wavelength. Thus, in the absence of material dispersion, the wavelength shift of a

given resonance under a layer thickness scale transformation is totally independent of

the structure itself and only dependent on the resonance orders one is shifting from (m)

and to (l) as embodied in Sm,l = m/l.
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Take the case of l = m + 1; larger m will thus produce lower Sm,l as the ratio of m and

m+1 becomes smaller and smaller. e.g. S1,2 = 0.5 (a 50% decrease) but S34,35 ≈ 0.9714

(a 2.86% decrease). So already one can see how higher-order resonances require far

smaller perturbation to the layer dimensions to be shifted to the adjacent resonance.

This clearly has repercussions here with respect to fabrication tolerances and diameter

control during fibre drawing and is discussed in detail below.

Material dispersion can also be incorporated into this resonance scaling analysis. If

one uses numerical root-finding of the Sellmeier-based resonance equation, Eq. 5.2, one

need only consider the resonance orders as just discussed since the material dispersion

is incorporated into the equation by default. However, it is useful to formulate an

analytical treatment to make the analysis more intuitive. The task here, then, is to

take the pre-calculated roots of Eq. 5.2 and then calculate the scale-shifted resonance

wavelengths using only the analytic resonance condition, Eq. 2.4, by incorporating the

material dispersion by hand. This can only be done when shifting between resonances

calculated in the initial numerical root-finding since they are the only points for which the

precise refractive index has already been calculated (shifting to an unknown resonance

requires knowledge of the refractive index at that new wavelength which thus requires

the root-finding technique, obviating the use of an analytical analysis).

Assume a set of resonances have been calculated by numerically calculating the roots of

Eq. 5.2, such as the results in Table 5.4, producing a set of resonance orders, wavelengths

and (Sellmeier) refractive indices. By incorporating material dispersion in this way, one

must consider that Δn =
√

n2
1 − n2

0 has a wavelength dependence via n1 = n1(λ);

this would be the F2 glass Sellmeier dispersion relation of Table 5.3 for the case here,

so that n1 = nF2(λ). When this is the case, Δn(λm) also changes with the layer

scale (shifting from resonance m to l) as Δn(λm) → Δn(λl). The initial resonance

is λm = 2t1Δn(λm)/m and the other known resonance to which λm is to be shifted is

λl = 2t1Δn(λl)/l. By scaling the layer thickness t1 by a factor Sm,l, the mth resonance

is shifted to the lth only when the t1 → m
l

Δn(λl)
Δn(λm) = Sm,lt1, as can be confirmed by

substituting directly into the form of λm. This implies Sm,l = m
l

Δn(λl)
Δn(λm) .

As mentioned earlier, scale-based resonance shifts are critical in the presence of fibre

fabrication instabilities. The scale of the fabricated fibres considered here exhibited a

≈ ±1% diameter variation during drawing, occurring over length scales of ∼ 10 cm. It

is thus critical to determine how such structural variations affect guidance. The worst

case scenario for observation of antiresonant transmission peaks would be the shifting

of resonances over the length of the fibre, due to scale fluctuations, such that the an-

tiresonance conditions (m = 1
2 , 3

2 , . . .) of one part of the fibre overlap with the resonance

conditions of another (m = 1, 2, . . .). In this case, later sections of the fibre would filter
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out the transmission peaks of the earlier sections, flattening out the transmission spec-

trum. To get a feel for the extent to which this may occur in the fibres considered here,

using the methods above one can calculate the scaling factors required to achieve this

resonance/antiresonance overlap condition. Since the antiresonance conditions for the

fibres of interest have already been calculated in Table 5.4, for convenience the condition

for shifting those antiresonances one order up (m → m + 1) will be considered rather

than shifting them by half an order as just discussed (avoiding the need to calculate the

associated resonances and their Sellmeier-based refractive indices). The resonance/an-

tiresonance overlap will thus occur for approximately half of the calculated scale factor

(up to material dispersion).

Table 5.4 shows the scale factors required, Sm,m+1, in order to shift the calculated

antiresonance wavelengths up by one order. The listed quantity is the percentage by

which t1 must decrease in order to shift the resonance to the next order: S%
m,m+1 = (1−

Sm,m+1)×100. It is the case that for both Fibre Da and E that the required shift becomes

less and less for increasing antiresonance orders. This behaviour is dominated by the

m/l = m/(m + 1) factor as discussed earlier for the case ignoring material dispersion

(the inclusion of dispersion typically alters the scale percentage in the second significant

figure here—critical for higher-order resonances). Indeed, the highest observed order of

Fibre E, m = 34, requires only a ≈ 2.7% decrease in inner layer thickness to have its

wavelength totally shifted to the next higher order.

This implies that a scaling as small as about half of that, 1.35%, is enough to shift

the antiresonance into a resonance. As discussed above, this behaviour would lead to

a flattening of the transmission spectrum due to a continuously shifted transmission

comb throughout the fibre length. Since the fabrication tolerances of these fibres are

≈ ±1%, this behaviour should be expected for high-order antiresonance peaks. Indeed,

this is precisely the behaviour observed of the transmission and loss spectra in Fig. 5.21,

discussed earlier. One can thus make the conclusion that the fabrication of such fibres

with thick rings, producing very high-order resonances, will easily succumb to fabrication

tolerances and a fluctuation of the structural features, resulting in degradation of the

very transmission peaks that are of interest.

In contrast, one can see in the loss spectrum of Fibre Da (Fig. 5.18) exhibits much

more obvious loss dips than Fibre E (Fig. 5.21). In particular, the loss feature with

highest visibility11 for Fibre Da (at the lowest-order anti-resonance shown on the figure at

λ = 654.21nm—from Table 5.4) is well defined (with an inverted Gaussian appearance)

and has a considerable depth of ≈ 125dB/m. The most visible loss feature of Fibre E,
11loosely defined here as Peak-to-trough depth of a given dip feature.
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on the other hand, has a depth of only ≈ 20dB/m, owing to the overlap of higher-order

resonances due to the fabrication tolerances.

Due to the sensitivity of higher-order resonances, their exploitation would be ideal for

sensing applications, for example, such as refractive index (via filling the fibre) or strain

sensing (by bending or deforming it). This suggests that there may be some merit in the

design of these spider-web fibres in order to explicitly exploit higher-order resonances,

but this would require some refinement of the fabrication process before their visibility

becomes appreciable enough for practical use. However, given the observations of the

anomalous highly-visible transmission peaks of the short sample of Fibre E (Fig. 5.20),

the effect of the resonances of higher-order core modes might provide an alternative

route to such resonance-based sensing applications.

It seems more apparent that the refinement of the fabrication process to produce thinner

cladding features, producing well-separated resonances and broader bandwidth and lower

loss transmission, is a more meritous endeavor since all of the necessary phenomena

(within the restrictions of the current fabrication abilities) have been demonstrated

above.

In the following section, the properties of the fabricated 2-ring spider-web fibre are

simulated using a FEM technique. This analysis has the ability to explain many of the

guidance properties of the fibre and, importantly, is used to show that the inner cladding

ring resonance has a dominant effect on the confinement loss, with small perturbations

due to the second ring which has a different thickness; this justifies the exclusive use of

the inner ring resonances in the above analyses and explains its close agreement with

experiment.

5.5 Finite Element Analysis

of a Fabricated Fibre Structure

Here some results of a finite element analysis (the FEM as used here is discussed in

§ 2.3.4) upon the 2-ring spider-web fibre, Fibre E, are presented. As discussed in § 2.3.4,

the FEM as implemented in this thesis is able to solve for the (leaky) guided modes of

an arbitrary waveguide geometry using the fully-vectorial wave equations (§ A.1), ideal

for accommodating the complex fibre structures considered above (few other modelling

techniques can offer such flexibility with respect to structure and ease of use while main-

taining precise and relatively fast calculations). In modelling the fabricated structure

here, properties of the waveguide can be numerically investigated in ways inaccessible

to other modelling techniques (such as the more simple antiresonance analysis above).
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In particular, the effect of the inclusion of struts and surface-tension-induced deforma-

tions to the fibre structure will be investigated and compared to the equivalent modes of

an idealised equivalent structure (perfect concentric rings). It will also be demonstrated

that the model predicts the existence of discernible resonances in spite of the large struts

of the cladding structure, in accordance with observations from experiment.

Fibre E was considered for the FEM analysis since Fibre Da has a more complex structure

and finer spectral detail. The complex structure requires a fine FEM mesh to resolve

sufficient detail to produce a stable numerical result which requires a significant amount

of computer memory, placing a limit on the memory require by the computer used and

the minimum amount of time required per iteration of the calculation (a prohibitive

amount in this case). The fine detail seen in the experimental transmission spectrum

above would require many fine steps in wavelength to resolve when trying to calculate

a numerical comparison; coupled with a relatively long calculation time per iteration, a

single mode spectrum can potentially take months to complete. Since the analysis here

is somewhat preliminary, just providing an insight into some of the fundamental modal

behaviours of the full waveguide structure, such calculation times as prohibitive. The

transmission and loss spectra of Fibre E above (Figs. 5.20 and 5.21) have a relatively

regular appearance with well-defined peaks undulating across the spectrum, rather than

peaks amidst fine detail as for Fibre Da. One can thus get away with the use of larger

steps in the spectral FEM calculations since the spectral features would be expected to

reveal themselves more readily.

A geometry approximating the glass-air boundaries of the SEM of Fibre E (Figs. 5.14

and 5.19) was generated. Because the glass/air boundary of the SEM image is inher-

ently ‘blurred’, the definition of this boundary is somewhat arbitrary up to the spatial

measurement precision of the SEM, taken to be ≈ 0.2 μm here. This boundary is thus

essentially a contour residing at a greyscale value mid-way between the black of the air

regions and the grey of the glass. Issues with SEM resolution dictating the precision to

which a numerical model geometry can be based are well known, especially with respect

to FEM techniques [189]. Nonetheless, the general features are primarily of interest here,

rather than precise descriptions of modal spectra. Certainly, in light of the knowledge

that the ≈ ±1% fabrication tolerances discussed above can have a significant effect on

the guidance properties, the ±0.2 μm (≈ ±3% of Fibre 3’s average ring thicknesses)

measurement uncertainty becomes less of a concern. In other words, by basing the anal-

ysis on the geometrical parameters of the SEM, the guidance properties of a segment of

fibre lying within the fabrication tolerances is sufficient for consideration here.

Figure 5.22 (top-left) shows a constructed geometry consisting completely of circular

boundary sections and (fewer) linear segments, configured to approximate the SEM
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derived geometry of Fig. 5.14 (left) just discussed. The core and rings are concentric

circles. The rounded edges of the cladding holes are circular segments whose radii

of curvature sum to a value equal to or less than the thickness of the particular air

layer. The struts are defined by rectangles whose edges coincide with the apexes of the

edge circles. The geometry parameters were tuned by hand so as to closely match the

SEM-derived contour geometry. The final parameters used were: Dcore = 40.9145 μm,

tring,glass = 6.25 μm, 5.481 μm, tring,air = 11.94 μm, 16.96 μm, tstrut = 6.3145 μm.3.3 μm,

rhole,1 = 55%, 25% of tring,air, rhole,2 = 65%, 35% of tring,air, rPML = 145 μm (inner radius

of PML), tPML = 1 μm. Double values refer first to the inner then outer quantities.

rhole,i refer to the radii of curvature of the corners of the holes (innermost, outermost)

as a fraction of the associated air layer (i = 1—inner, i = 2—outer).

In constructing this cross-sectional structure from geometrical shapes, it exhibits a 16-

fold symmetry (8 rotation and 1 mirror), meaning it belongs to the C8,ν symmetry

group [184]. Due to the symmetry of the constructed geometry, one can truncate the

domain to a 1/16 azimuthal slice. Owing to group theoretical arguments, this truncated

domain can be used to simulate modes for which the boundary conditions support a

given mode [184, 185]. Only the TE and TM modes can be modelled using the 1/16th

fundamental slice, since hybrid modes require at least a quarter-plane domain in order

to induce electric and magnetic boundary conditions on the internal domain boundaries

(one electric and one magnetic). The smaller domain considered here can be used to

solve for TE modes by setting all domain boundaries to electric conductors and the TM

modes by setting all boundaries to the equivalent magnetic condition [184, 185].

Beyond enforcing boundary conditions upon the internal domain boundaries, the region

external to the waveguide structure must be truncated appropriately. As discussed

in § 2.3.4, the termination of the exterior of a solution domain using perfectly matched

layers is a means of approximating a surrounding homogeneous medium of infinite extent.

The PML itself is incorporated into the FEM calculation as an artificial inhomogeneous,

anisotropic, absorbing medium. This requires a tensorial description of the artificial

permittivity of the medium such that field lines approaching from any direction and of

any amplitude are attenuated in a similar manner. The PML formulation used here is

discussed in detail in Refs. [182, 187].

By truncating the solution domain using the symmetry and absorbing PML techniques

just described, the number of mesh elements required in order to discretise the geome-

try and solve for the appropriate eigenmodes is greatly reduced. Indeed, the calculation

wouldn’t be at all possible without the inclusion of an absorbing PML boundary domain

(reducing the effectively infinite cladding region to a finite one). The exploitation of the
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symmetry of the structure and supported modes allows a further reduction in the re-

quired number of mesh elements (by a factor of 16 here). Each vertex (node) and edge of

a mesh element represents a set of field amplitudes and phases which, in aggregate across

the entire mesh, form the characteristic discretised matrix of the waveguide system [183];

the fewer mesh elements required, the more efficient the calculation in terms of requires

memory and computational power. Indeed, without truncating the domain to this ex-

tent, the following calculations would be prohibitive, requiring greater computational

resources than readily available to me at the time of research. As for all FEM calcula-

tions within this thesis, the commercial FEM package COMSOL Multiphysics [182] is

employed.

Fig. 5.22 shows the reduced domain with an example of a generated discretisation mesh

using COMSOL’s advanced mesh generation routines. The maximum average mesh

element edge sizes for each domain are: core—0.5 μm, glass structure—0.15 μm, PML—

0.05 μm. The air-holes are meshed using a preset automatic growth factor, reaching a

maximum element size in their centre of about the same as the core. These mesh

parameters result in the generation of approximately 100, 000 mesh elements in total,

using between 5 GB to 10 GB of system RAM with each iteration taking approximately

10 minutes (requiring a total calculation time of over a week for the spectra calculated

here).

As for previous sections above, the Sellmeier form of the glass refractive index is used

in all FEM calculations here. i.e. an accurate material dispersion description is used

making the refractive index wavelength dependent as per Table 5.3.

First, an idealised version of the geometry is modelled. As done in Chapter 2, one ignores

the struts of the geometry such that all that remains are perfect concentric rings. All

other parameters are kept the same as those defined for the realistic geometry above,

sans connective struts.

Figure 5.23 shows the calculated ñ and CL for the TE01 and TM01 modes over a wave-

length range of λ = 0.5 μm → 0.6 μm. This range is covered by the experimental

transmission spectrum data for Fibre E in Figs. 5.20 and 5.21. In order to sample out

these modes from all solutions found, only modes with an integrated Poynting vector

(S) z-component Sz in the core greater than 75% of the total modal power, and val-

ues of ñ > 0.9997, were considered. The integral measure of Sz is a mode’s so-called

power fraction in the core and is expressed as: Pcore =
∫
core Szdrdθ/

∫
domain Szdrdθ where

S = E × H and Sz = S · ẑ.

One can immediately see in Fig. 5.23 how the anti-crossings (discontinuities) present in

the effective index spectrum approximately coincide with the resonances of the inner
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Figure 5.22: Top-left: Full geometrical reconstruction of the cross-sectional micro-
structure of Fibre E. Dark regions: glass. White regions: air. The thin annulus around
the edge of the structure represents the PML. Structural and material parameters used
in the model are discussed in the text. Top-right: Representations of the three primary
stages of the FEM calculation: truncation of the full geometry to a minimal sector
(1/16th angular segment), distribution of the generated finite element mesh upon the
truncated geometry, an example of a solution of the model (Sz of the TE01 mode at
λ = 543.5 nm). Bottom-left: Zoom-in of the mesh. Bottom-right: A slice of the shown
Sz surface.

ring for both mode types. This is almost identical to the band-edge behaviour of the

guided modes calculated in Chapter 2 for a similar idealised geometry; for that case,

though, all rings were of equal thickness. Also similar to the Chapter 2 case is the fact

that the edges of the TM discontinuities occur further from the resonance than for the

TE, likely due to an analogous Brewster effect as discussed at length in the chapter.

The important point to note here is that the current behaviour occurs in spite of the

fact that the second ring has a significantly different thickness, producing resonances

generally far offset (Fig. 5.23, bottom) from those of the inner ring.

This is in agreement with much of the observed behaviour in experiment for both Fibre E
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Figure 5.23: FEM calculations of Re(ñ) and CL TE01 and TM01 mode spectra of
an idealised model of Fibre E. Blue points: TE01 mode. Cyan points: TM01 mode.
Red curve: Re(ñ) of the equivalent tube guide (TE and TM are degenerate). Dashed
curves: CL of the equivalent tube guide modes; blue, TE01; cyan, TM01. Vertical grey
lines: resonance wavelengths λm of the inner (solid) and outer (dashed) glass rings.

and Fibre Da where the transmission peaks and loss minima coincided with the inner-

layer resonances. As argued there, this behaviour is predominantly because the guided

mode field has a greater amplitude at the interface of the first ring than the second,

due to it decaying into the structure; this decay is explored explicitly for the realistic

geometry presently. Indeed, from the fundamental field-based integral expression for

β (Eq. A.26), as light is permitted within a certain cladding features β (or ñ) will be

influenced predominantly by those features in which it has the largest field amplitude,

as argued in Chapter 2.

The confinement loss calculations shown in Fig. 5.23 are also in agreement with this

behaviour, with the high-loss regions approximately coinciding with the inner-ring res-

onances. While not as convincing as the discontinuities imbued by the inner-ring reso-

nances, the outer-ring resonances (dotted vertical grey lines) do seem to influence the

CL spectra of both modes. Indeed, the CL curves appear to become warped, as if they

are influenced by a loss feature; indeed, this loss feature is likely the coupling to the
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Figure 5.24: FEM calculations of Re(ñ) and CL of the TE01 mode of a realistic model
of Fibre E. Red curve: Re(ñ) of the equivalent tube guide. Dashed curve: CL of the
equivalent tube guide mode. Vertical grey lines: resonance wavelengths λm of the inner
glass ring.

second cladding layer close to its resonance. In line with this reasoning, the effect is

strongest when the outer-layer resonances sit closest to the middle of adjacent inner-

layer resonances. Of note is that the TM mode appears to adopt a similar shape to the

TE, but at the expected larger loss value. Nonetheless, the loss values themselves don’t

appear to be influenced too severely, the CL remaining a few order of magnitude below

the equivalent tube mode CL curves.

Note the fact that while the inner-ring resonances predict the high-loss regions of the

fibre both in theory and experiment, they do not explain the anomalous (but highly

regular and visible) transmission peaks of the short length sample of Fibre E shown in

Fig. 5.20 and Fig. 5.21. As per the argument above, these anomalous peaks are likely the

result of the cumulative effect of higher-order modes that aren’t appreciably attenuated

over the short length and that potentially don’t satisfy the same resonance conditions as

the lower order modes for this fabricated structure. This warrants further investigation

by simulating such higher order modes with the FEM as for the low-order modes here.



Soft-Glass Air-Bragg Fibres via Extrusion 239

The realistic geometry is now considered. Figure 5.24 shows the calculated ñ and CL

for the TE01 mode over a wavelength range of λ = 0.51 μm → 0.6 μm. Immediately

obvious is that the mode trajectory is no longer ‘smooth’ but consists of many points

apparently locally scattered about a common curve. The reason for this becomes more

apparent when one takes a closer look at the modal fields themselves.

Figure 5.25 shows the longitudinal and radial Poynting vector components Sz = S · ẑ

and Sr = S · r̂, respectively, over the computation domain. The mode is sampled at a

wavelength of λ = 543.5 nm which is close to an antiresonance of the inner ring. The

normalisation constant used is the total axial power over the full computation domain:

Stot.
z =

∫
Sz(r, θ)drdθ. Since arbitrary units are sufficient here, this normalisation isn’t

strictly required, but was used in the plotted quantities, nonetheless. The logarithm of

these quantities is taken in order to reveal the small-amplitude detail that is otherwise

visually imperceptible; for example, the solution surface plot shown in Fig. 5.22 is a

linear representation of Sz—only the core power is apparent since the field amplitudes

in the core are so large compared to those of the cladding which appear to be almost

uniformly zero on the linear scale. However, Figure 5.25 shows how the cladding fields

and power certainly are not null and exhibit an incredibly rich variety of features which

are and vitally important for the understanding of the guidance properties at play.

Of particular note is the ‘speckled’ nature of the mode intensity in the high-index (glass)

cladding regions. This can be thought of as the result of complex scatterings and in-

terference off of the various cladding features (rings, struts, rounded corners, etc.); in

the same way one can employ a wave interference technique in describing the origin of

conventional waveguide modes, a more complicated, non-uniform, waveguide structure

produces nontrivial mode patterns. This speckle pattern shifts rapidly with changing

wavelength. It should be noted that the mesh parameters used for the spectra calcu-

lations here do not fully resolve this speckle pattern; the features described here are

the result of observing solutions manually (one by one) with increased mesh parameters

that can resolve the pattern sufficiently (which takes a much longer time to calculate).

Fully resolved or not, the waveguide behaviour discussed here is observed to be simi-

lar. With this rapid local fluctuation of the modal fields, cumulative properties of the

mode such as ñ and CL will also naturally fluctuate. The scattered nature of the data

points just mentioned is a result of complex interference interplay12. Nonetheless, it is

apparent that these fluctuations do not destroy the general trends exhibited by ñ and

CL as shown in Fig. 5.24. This rapid fluctuation (in CL at least) was observed in the CL
12Surface-mode type interactions may also be at play, manifest due to the broken symmetry that the

struts provide and the rich variety of potential cladding modes (created by this speckle effect) with which
to create anti-crossings. The resonance-based argument for the fluctuations is more likely, however, given
that no obvious anti-crossing events were observed between the resonances for the simulations discussed
(although a thorough investigation was not performed).
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Figure 5.25: FEM calculation of normalised longitudinal (Sz/Stot.
z , top) and radial

(Sr/Stot.
z , bottom) time-average Poynting vector components (axial and radial power

flow) for the TE01 mode of Fibre E at λ = 543.5 nm. Red curve: linear data slice from
the centre of the core region along the domain edge intersecting the air holes and rings.
Grey curve: similar linear data slice but along the opposing edge which passes through
the centre of the strut. Black lines: the interfaces between glass and air (edges of the
rings and struts).
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calculations for the spider-web type hexagonal ring structure in § 2.7.2 (Fig. 2.12) and

also observed in similar FEM calculations for hollow-core Kagomé fibre structures [145],

so its emergence here is not too surprising owing to the similarities between the struc-

tures as argued earlier. Given the apparent generality of this speckle phenomenon to

(at least) VNW guiding waveguides, there is ample justification for further study on its

origins and implications.

It will be noted that these rapid fluctuations do not appear in the measured transmission

or loss spectra of the fabricated fibres (also discussed in § 2.7.2). This can qualitatively

be explained by arguments of fabrication tolerances. Since the structural dimensions

naturally fluctuate during the fibre drawing process, as discussed at length above, these

rapid fluctuations would significantly overlap over a given practical length. Just as for the

arguments above relating to the ‘washing out’ of resonance features due to overlapping

resonances, the overlapping of these rapid fluctuations would have the effect of smoothing

out their appearance. Indeed, this is precisely the effect considered in Ref. [154] in

which a convolution method was employed to accommodate for the smoothing effect of

structural fluctuations on the modal dispersion of chirped-cladding HC-MOFs 13. Also,

these rapid fluctuations have been observed in the numerical calculations of Ref. [145],

for example, and yet, as here, the experimental results of the equivalent fabricated fibre

(e.g., Ref. [9]) indicate a relatively smooth transmission and loss spectrum (assuming

that sufficient spectral resolution has been achieved during the measurements).

Just as for the Kagomé structure calculations of Ref. [145], the scattered points of the

CL calculations still appear to adhere to a general trend reminiscent of the idealised

equivalent geometry’s behaviour. As the resonances of the inner-ring are approached,

the loss of the guided mode increases dramatically. This implies that in spite of the

complex nature of the guided light within the realistic cladding structure, the resonances

of the rings still play a dominant role. This observation is mirrored in all experimental

results shown above and is a critical observation for this research.

Indeed, a natural corollary of this is that the concept of antiresonance appears to survive

for the realistic geometry case too since the CL spectra appear to reach a (somewhat

stochastic) local minimum mid-way between the resonance wavelengths. Given this

strong relationship in experiment and theory to the behaviour of waveguides such as the

Kagomé fibre (as discussed numerous times throughout this thesis, e.g, §§ 1.4 and 2.7.2)

it is most likely that the spider-web fibres here guide via a Von Neumann Wigner guid-

ance mechanism which allows the existence of an antiresonance confinement mechanism

in the midst of an effective continuum of cladding modes.
13Although, as mentioned in § 1.2.3, it was not explained how or why the structural convolution

technique of Ref. [154] works, except that it produced numerical results closer to experiment than the
untreated data.
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Another critical result of the power distributions shown in Fig. 5.25 is the effect of

the rings and struts on the guided light. The curves below the surface plots represent

slices of the surface data along one or other of the two primary domain edges. The

data is sampled from the centre of the core region along the domain edge. The red

curve corresponds to the edge intersecting the air holes and rings. The light grey curve

corresponds to the edge intersecting the centre of the strut. As for the idealised case of

Chapter 2, the rings (or more precisely, the air gaps between the rings) clearly allow the

mode field to decay rapidly as it propagates away from the core area. This is critical

for the reduction of confinement loss since the integrated amplitude of Sr across the

boundary is a direct measure of the confinement loss itself, as per Eq. A.27; the lower

the power at the boundary, the lower the confinement loss.

Thus, one can immediately see why the calculated confinement loss of the realistic

geometry is so much higher than that of the idealised geometry (the latter had CL a few

orders of magnitude below that of the equivalent tube, Fig. 5.23, but the former had a

minimum CL less than one order below the equivalent tube’s, Fig. 5.23). The reason

lies in the fact that the struts are, perhaps unsurprisingly, very efficient at outcoupling

the light from the core, almost as waveguides in their own right. This is seen in the

fact that, as shown in Fig. 5.25, the radial and longitudinal power fluxes along the strut

are much higher than those through the rings. Indeed, the strut appears to maintain a

steady outgoing power flux amplitude along its length until it emerges into the jacket

whereupon the light diffracts rapidly into jet-like features, reaching the domain boundary

at a very high level. Nonetheless, as discussed, the antiresonance effects and exponential

decay within the air regions between the rings sees the power flux drop rapidly across

the rings, providing the only mechanism capable of reducing the loss below that of a

simple tube.

A sensible conclusion from this would thus be that a reduction of strut thickness would

naturally decrease the CL of the waveguide. Preliminary calculations (not presented)

suggest that the resultant phenomenology due to altering the strut thickness (or hole

radii of curvature) is nontrivial, but is nonetheless a logical step in the direction to

refining the design of these spider-web HC-MOF designs. Since thinner rings are also

required in order to reduce CL and widen the transmission bands, as discussed, the next

obstacle in fabrication is to reduce the minimum fabricable feature size. This was a goal

at the outset of the fabrication designs and trials and requires refinement of both the

extrusion and, more importantly, fibre drawing techniques (inflation in particular). The

extrusion technique is already capable of producing high-quality preforms, so given the

success of other silica- and polymer-based fibres such as the Kagomé- and square-lattice

fibres discussed in Chapter 1, it seems likely that these goals of fabrication procedure

refinement are within reach; namely, the inflation of the structure to produce large
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cladding pitch and large air-filling fraction fibres with thin struts and rings down to the

target thicknesses of ≈ 300 nm. If met, such spider-web structures could produce broad

transmission spectra over the visible and near-infrared, with a view to extend into the

mid-infrared, with all of the benefits of the flexible spider-web geometry and its guidance

properties discussed throughout.

5.6 Concluding Remarks

The design, fabrication and simulation of soft-glass hollow-core microstructured optical

has been presented.

The cross-sectional structure of the HC-MOFs was ultimately based on a spider-web

design in which the cladding consists of concentric polygonal rings that are supported by

colinear connective struts at there apexes. This design was arrived at after fabrication

trials utilising offset struts exhibited significant surface-tension effects, distorting the

target structure (§ 5.3.1). The colinear nature of the struts of the spider-web design

works with the surface tension to produce fibre structures that naturally maintain their

structural integrity during fabrication (§ 5.3.2).

Preforms, which are subsequently drawn down to fibre (§ 5.2.2), were fabricated via an

extrusion process in which a bulk soft-glass billet is heated up to its transition temper-

ature, softening it, allowing it to be pushed through a structured die (§ 5.2.1). Upon

exiting the structured end-face of the die and cooling, the glass forms the solid preform

structure. Extrusion is a vital component to the fabrication process since its flexibility is

amenable to the unique structural requirements of the for spider-web fibres that would

make them difficult to fabricate by other preform fabrication methods such as capillary

stacking, drilling, or casting.

The guidance properties of the fabricated fibres were demonstrated experimentally (§ 5.4).

Multiple transmission peaks were observed in the visible to near infra-red spectrum both

considered fibres. Transmission losses of the fibres was measured using a cut-back tech-

nique. The regions of high loss for both fibres were shown to correspond to the wave-

lengths satisfying the resonance conditions of the inner cladding ring; with the low-loss

regions generally satisfying the anti-resonance conditions. Material dispersion of the

lead-silicate glass used had to be considered in the resonance calculations in order to

achieve a close agreement between the calculations and the experimental results.

Extending the antiresonance analysis, it was shown that the structural fluctuations dur-

ing the fibre drawing process are likely responsible for the reduction in discrimination

between the high and low loss features of the demonstrated 2-ring spider-web fibre,
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resulting in a ‘flattening out’ of the transmission and loss spectra towards lower wave-

lengths. The predominance of this effect for the 2-ring fibre compared to the other,

4-ring, version, was shown to be due to the fact that the rings of the 2-ring version

were much thicker and thus exhibited much higher-order resonances in the measured

spectral region. It was quantitatively demonstrated how higher-order resonances are

more sensitive to structural fluctuations and hence more susceptible to overlapping each

other (§ 5.4.2), washing out their appearance in the measured transmission spectra due

to the cumulative losses of the overlapping resonances. The effect upon the 4-ring fibre

was less pronounced due to the fact that it exhibited thinner rings, hence lower-order

resonances that are less sensitive to perturbations.

The modal properties of the fabricated 2-ring fibre were analysed via a numerical finite-

element method (§ 5.5). For both idealised and, importantly, realistic structural repre-

sentations of the fibre structure, the resonances of the inner ring were found to produce

the dominant effect on the confinement loss spectrum. This is an important observation

since the second cladding ring has a different thickness and hence supports resonances

at different wavelengths. These results are in accordance with that observed from ex-

periment and represent a validation for considering only the resonances of the inner ring

in the antiresonance analyses. The second ring was found to only have a more subtle

effect on the shape of the CL spectra, with the inner ring producing the strongest reso-

nance features (Fig. 5.23), as would be expected due to the guided fields having greatest

intensity at the inner ring.

These results highlight that the spider-web HC-MOF design certainly behaves as is

expected from theory, demonstrating that they have the potential to adopt the best

features of air-Bragg and Kagomé fibres. however, in order to increase the transmission

bandwidth and lower the losses of these fibres, further research is required into the

means of decreasing the minimum structural feature sizes down to the target thickness

of ≈ 300 nm, presumably via an inflation technique during the drawing process. Active

inflation attempts were attempted and reported above (§ 5.3.2, Fig. 5.12), but the poor

structural fidelity indicates the technique requires refinement, possibly via differential

pressurisation of the various cladding hole types or by employing a larger draw-down

ratio under a self-pressurisation mechanism.

If these fabrication obstacles can be overcome, spider-web HC-MOFs could produce

broad transmission spectra over the visible and near-infrared, with a view to extend

into the mid-infrared, with all of the benefits of the flexible spider-web geometry and its

guidance properties discussed throughout.
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Conclusion and Future Work

W
aveguidance in media with a low refractive index can be challenging due to the

propensity for light to seek regions of higher index. Coercing light to be guided

within a region of low index is nontrivial and can be approached using a number of

various waveguidance phenomena and waveguide designs.

The work within this Thesis was related to two primary themes:
• The fabrication, analysis and simulation of single-material hollow-core microstruc-

tured optical fibres made from soft-glass via an extrusion process;

Chapters 2 and 5.

• The guidance behaviour of binary–layered-cladding waveguides with cores of arbi-

trary refractive index equal to or less than the lowest of the cladding;

Chapters 2, 3 and 4.

The first theme, regarding soft-glass hollow-core fibres, was the initial motivation of

this research: there was little literature on hollow-core guidance within optical fibres

made from soft-glasses, and no reports of the fabrication and demonstrated guidance

of such a fibre. Such fibres hold great promise for applications to mid-IR guidance,

high-power delivery, nonlinear optics and sensing, as well as novel properties for the

conventional shorter wavelength spectrum. Today, while this gap in the suite of reported

fibre architectures still exists, there have been numerous theoretical, fabrication and

experimental works reporting progress, but none detailing the successful fabrication and

demonstration of a soft-glass hollow-core optical fibre.

The findings presented in Chapter 5 detail the successful and novel fabrication of such

fibres using an extrusion preform fabrication process. By exploiting the guidance mech-

anisms and principles discussed in the literature, and summarised in the Introduction,

the fibre’s cross-sectional microstructure design was akin to a spider-web: concentric

polygonal rings supported by colinear radial struts - a geometry that works with the

natural surface tension effects of the glass during fabrication to produce considerable

structural fidelity. The fabrication of this novel structure is currently unique to, and

247
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ideally suited to, the extrusion method. It was demonstrated how the fabricated fibres

indeed guided by an antiresonance effect in the absence of full cladding bandgaps, akin

to the Von Neumann Wigner guidance mechanism.

While these results constitute a proof of principle of the suitability of the fibre design,

further work is required to refine it in order to reduce the confinement losses and control

the guidance properties. Most importantly, a means of increasing the air-filling fraction

of the structure is critical to broadening and lowering the loss of the core-guidance

wavelength ranges. While self-inflation appears to be the ideal means of inflating this

structure, it is limited by the size of the preform itself and the apparatus used to produce

and draw it. The alternative, active inflation, resembles a significant obstacle due to

the variable inflation of the differently sized cladding holes, warranting investigation into

more complex inflation techniques, such as variable and controlled pressure for individual

cladding holes during the drawing process.

If such obstacles can be overcome, the spider-web design via the extrusion method

represents a way towards the fabrication of low loss hollow-core microstructured fibres

fabricable in a variety of extrudable glasses, from silicates to chalcogenides. In fact, a

simplified version of the structure, having only one cladding ring, has been demonstrated

in silica [149] and would be an ideal structure to initially investigate for such future work

since the antiresonance guidance mechanism would still be substantial but with a more

simple structure. There is also a potential wealth of theoretical insights to be discovered

about the guidance behaviour and mechanisms of such fibres, with some findings reported

in §§ 2.7, 5.4 and 5.5 that demonstrate and discuss novel guidance phenomena.

In reviewing the literature in order to determine the best approach to achieve the above

goal of a guiding soft-glass hollow-core fibre, it became obvious that there was a large

array of different guidance mechanisms and waveguide structures that exploit them. The

Introduction presents a thorough review of these mechanisms and structures together

with a discussion of their relationships, similarities and differences. It became apparent

that there were still significant areas that weren’t connected in the literature. This

lead to the discovery that the antiresonance and bandgap mechanisms in binary-layered

optical structures have a deep connection (Chapter 3).

These findings ultimately led to the investigation of the second theme above, regarding

binary-layered cladding low-index core waveguides. This theme was identified as a com-

plementary avenue of research while investigating the guidance properties of air-Bragg

fibres (closely related to the final spider-web design here). Chapter 2 demonstrated

how higher-order bandgap along the low-index light-line could produce core-mode con-

finement losses much lower than those achievable by simply scaling the core diameter.

During this research, the discovery of a nontrivial, but somewhat regular, topology of



Conclusion and Future Work 249

bandgaps below the low-index light-line of a silica air-Bragg fibre suggested that there

was a rich physical insight to be had in explaining this bandgap structure. To investigate

this, the antiresonance/bandgap unification I had found was exploited in order to con-

struct the Stratified Planar Antiresonant Reflecting Optical Waveguide (SPARROW)

model, presented in Chapter 3. The SPARROW model is applicable to any binary-

layered optical structure and describes the resonances of the layers below the light-line.

This chapter also showed that this representation of layer resonances could be used

to quantitatively describe nontrivial features of bandgap and reflectance spectra, using

completely analytic forms. The SPARROW model is thus a powerful and simple tool

for the fundamental analysis and design of binary-layered optical media, in particular

layered cladding dielectric waveguides with core refractive indices equal to or less than

the lowest cladding index.

Following recent work by Hsueh et al. [202], the relationship between the SPARROW

model resonance intersection points and the Bloch bandgap closure points can be shown

to be mathematically exact and points a way to further fundamental investigations

into the connection between the Bloch theory and (anti)resonance. Also, the novel

analyses of Chapter 3, connecting the reflectance response of multilayer structures with

the resonance and antiresonance of each layer, are particularly promising given recent

findings of Zhang et al. [210] whose work was published in the final month of compiling

the final version of this thesis. They demonstrated a simple reflectance-based analysis

for a precise approximation to multilayer-cladding confinement loss, obviating the need

for complicated numerical models. This suggests promising future work in which the

unification of resonance and reflectance phenomena in Chapter 3 are integrated into

this simplified confinement loss model, providing both novel insight into the physical

mechanisms and also producing a simple means of designing such waveguides.

This lead to the motivation for the experimental investigation of Chapter 4 in which the

sub–light-line bandgap spectrum of a Bragg fibre was probed by systematically filling

the hollow core with liquids of various refractive indices. The transmission spectrum

of the Bragg fibre was observed to shift to shorter wavelengths after as the refractive

index of the liquid within the core was increased and different regions of the bandgap

spectrum were probed by the shifted effective mode index. Of particular note was that,

in order to reasonably compare the experimentally observed transmission spectra with

the Bloch bandgap windows, the cladding material dispersion had to be taken into

account (rarely considered in the literature and a direct result of the novel nature of

the varying core index throughout the wide bandgap spectrum). The particular fibre

used had a cladding bandgap spectrum with only a single, fundamental, bandgap within

the measured (visible) spectrum; further work would ideally use a fibre with a more

complex cladding bandgap structure within the spectrum and core indices of interest
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(by fabricating thicker layers, say) which would be more amenable to analysis via the

SPARROW model.

Refinement of the experimental procedure is required in order to better understand the

interaction of the guided modes with the TE and (particularly) TM bandgap spectra.

With the consideration of alternate fibre designs, such sensitivities could be enhanced,

making the multilayer liquid-core waveguide a promising architecture for, say, microflu-

idic refractive index sensing as recently suggested by Skorobogatiy et al. [19].

While the initial intentions for the research towards this thesis were relatively well defined

(the fabrication of a guiding soft-glass hollow-core optical fibre), what was discovered

was an incredibly rich suite of waveguidance phenomena and their applications to varied

waveguide architectures, from optical fibres to on-chip devices. Their understanding

and applications are rapidly progressing thanks to a vibrant research community keen

to demonstrate and exploit these versatile waveguidance phenomena and the structures

made to support them. The work presented in this thesis has gone some small way to

advancing this effort, from bringing together fundamental concepts within the initially

disparate areas of antiresonance and bandgap waveguide mechanics for 1-D layered me-

dia, to the design, fabrication and analysis of novel soft-glass hollow core fibres. I look

forward to observing the rapid progress of this field in the time to come, and where

possible, to continuing my own small but incremental contributions to it.

K. J. Rowland
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