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Appendix A

Electromagnetic Wave

Propagation Theory

The majority of the content in this appendix is not original to this Thesis, but has

been re-derived and expressed in a consistent nomenclature for completeness and ease

of discussion in the body of the work. Those parts that are original are highlighted as

such below. The theoretical and numerical results derived in the body of this thesis,

based on the theory below, are to the best of my knowledge all original by the hand of

the author.

A.1 Wave Equations

This review of the electromagnetic wave equations and their use is adopted from various

texts [14, 34, 146, 178, 179, 211, 212], brought together here in a manner consistent with

the remainder of this thesis and as a means of explaining the techniques used.

A.1.1 Maxwell’s Equations

First, begin by considering Maxwell’s equations within an arbitrary material:

∇× E = − ∂

∂t
B, (A.1)

∇× H =
∂

∂t
D + J, (A.2)

∇ · D = ρ, (A.3)

∇ · B = 0, (A.4)

where D = εE (called the electric displacement) and H = B/μ are the constitutive

relations relating the E and B fields to the ‘auxiliary’ [212] D and H fields, respectively.
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254 Appendix A

ρ is the free charge density and J is the free current within the material. In general one

can write the permittivity and permeability as the product of their vacuum and relative

values as ε ≡ ε(r) = εr(r)ε0 and μ ≡ μ(r) = μr(r)μ0, respectively.

While metals in waveguides used to be only practical for the microwave regime, there

is a significant resurgence of interest in metal waveguides in the area of plasmonics.

Nonetheless, here only dielectric materials are considered: non-magnetic materials with

zero charge density; such as glass or polymer. Thus we can set relative permeability

μr(r) = 1 and charge density ρ(r) = 0. This simplifies things considerably and is used

below in the derivation of the wave equations for propagation in dielectric media.

A.1.2 Time-Dependent Wave Equations in Simple Media

Wave equations for arbitrary electric and magnetic fields in homogeneous dielectric media

will now be derived.

Taking the curl of Eq. A.1 and substituting in Eq. A.2 with J = 0 (no currents in the

dielectric):

∇× (∇× E) = −μ
∂

∂t
∇× H

(by Eq. A.2) = −με
∂2E
∂t2

. (A.5)

Since only homogeneous media are being considered here, the permittivity ε is assumed

constant over all space. Eq. A.3 then implies ∇ · E = 0. Using this together with the

identity Eq. B.1, Eq. A.5 then implies:

∇2E − με
∂2E
∂t2

= 0 (A.6)

Similarly, taking the curl of Eq. A.2 (again setting J = 0), and substituting in Eq. A.1:

∇× (∇× H) = ε
∂

∂t
∇× E

(by Eq. A.1) = −με
∂2H
∂t2

.

Since only homogeneous media are being considered here, the permeability μ is assumed

constant over all space. Eq. A.4 then implies ∇ · H = 0. Using this together with the

identity Eq. B.1, Eq. A.7 then implies:

∇2H − με
∂2H
∂t2

= 0 (A.7)
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The solutions of Eqs. A.6 and A.7, for propagation in the direction of a unit vector k̂,

are of the form (generalised from [178]):

E = E0g(t ± r · k̂/v), (A.8)

H = H0g(t ± r · k̂/v), (A.9)

respectively, where g is any well-defined function and v is the wave velocity1. Taking

the positive value in the argument of g corresponds to wave propagation in the negative

k̂ direction, while taking the negative value corresponds to propagation in the positive

k̂ direction (assuming v > 0). By substituting Eqs. A.8 and A.9 back into Eqs. A.8 and

A.9, respectively, the wave velocity is found to be v = 1√
με = c√

μrεr
[14, 178].

An important special case of the solutions Eqs. A.8 and A.9 is when g(t) = eiωt (the

real part of g is taken when the physical fields are desired, as discussed in detail in the

next section). Assuming propagation in the z-direction, the waveform then becomes

g(t ± z/v) = eiω(t±z/v) = ei(ωt±βz), where the phase constant is defined as β = ω/v:

the phase shift per unit length along the propagation direction. Since the wave is

sinusoidal, it only has a singular frequency component, seeing v referred to as the phase

velocity [178].

A.1.3 Time Harmonic Wave Equations in Inhomogeneous Media

Here inhomogeneous dielectric media are considered but the time-dependence is dropped.

First, consider a time-harmonic (single angular frequency, ω) wave,

A(r, t) = Re{A(r) exp(−iωt)}, (A.10)

where A represents any of the fields E, B, D, or H. A is the complex amplitude of the

wave’s phasors. Here we shall relabel A(r) → A(r), but it should still be understood

that we take the real part when finally evaluating the fields.

Note that the time-dependent oscillatory term exp(−iωt) is the complex conjugate of

the exp(iωt) term typically used throughout the other sections of this thesis. Since the

real part of the fields are to be eventually taken, as per Eq. A.10, the choice is somewhat

arbitrary. The exp(−iωt) convention is adopted here in order to stay relatively close

to the well-known treatments of Joannopoulos et al. [34] and Snyder and Love [146],

which are combined here to an extent. Section A.1.4 also uses this sign convention. The

conventions as used in each section do not affect the results presented throughout this

thesis.
1This can be readily verified by substituting the solutions back into Eqs. A.6 and A.7
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Substitute Eq. A.10 (for E, H, D, and B) into Eq. A.1 and Eq. A.2 and using our

dielectric assumptions that μr(r) = 1 and ρ(r) = 0:

∇× E = iωB = iωμ0H, (A.11)

∇× H = −iωD = −iωεE, (A.12)

∇ · H = 0, (A.13)

∇ · (εrE) = 0, (A.14)

These are the chromatic wave equations in a dielectric medium of arbitrary relative

permittivity εr ≡ εr(r) = ε(r)/ε0. Recall that in a dielectric medium, the relative

permittivity is related to the refractive index n by εr = n2.

The E and H fields can be decoupled into individual wave equations as follows. We will

begin with the magnetic field. Divide each side of Eq. A.12 by εr ≡ εr(r) and then take

the curl [34]:

∇×
(

1
εr
∇× H

)
= −iωε0∇× E. (A.15)

Then substitute in the expression for ∇× E from Eq. A.11:

∇×
(

1
εr
∇× H

)
=
(ω

c

)2
H, (A.16)

This is clearly an eigenvalue equation as it can be re-written in the form ΘH = (ω/c)2H,

where the composite curl functions on the left side are represented by Θ. This is what is

often called the “master equation” in photonic crystal analysis (Joannopoulos et al. [34]

give a thorough account). Its namesake results from its versatility when used for the

analysis of infinitely periodic dielectric structures since the operator Θ is hermitian.

The same can be done for the electric field. Taking the curl of both sides of Eq. A.11:

∇× (∇× E) = iωμ0∇× H, (A.17)

and then substituting Eq. A.12 into the right hand side:

∇× (∇× E) = εr

(ω

c

)2
E, (A.18)

This form is less useful for photonic crystal analysis since the equivalent eigen-operator

to Eq. A.18 is not hermitian [34].

Eqs. A.16 and A.18 can be expanded into more manageable forms by using the vectorial

calculus relations of Eqs. B.1 and B.2. Consider first the vectorial wave equation for H,
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Eq. A.16. Using Eq. B.2 then B.1, the left hand side can be written as:

∇×
(

1
εr
∇× H

)
=

1
εr
∇× (∇× H) +

(
∇ 1

εr

)
× (∇× H)

(by Eq. B.1) =
1
εr

[
∇ (∇ · H) −∇2H

]
+
(
∇ 1

εr

)
× (∇× H)

(by Eq. A.13) = − 1
εr
∇2H +

1
ε2
r

(∇εr) × (∇× H)

=
1
εr

[
(∇lnεr) × (∇× H) −∇2H

]
.

Eq. A.16 can thus be written as:

∇2H + (nk)2 H = (∇lnεr) × (∇× H) . (A.19)

noting that ∇lnεr → ∇⊥lnεr when ∂εr/∂z = 0 as is typically the case for longitudinally

invariant waveguides as considered throughout this thesis.

A similar approach is taken for the vectorial wave equation for E, Eq. A.18. First, note

that Eq. A.14 can be expanded as:

∇ · (εrE) =∇εr · E + εr∇ · E = 0,

⇒ ∇ · E = − 1
εr
∇εr · E

= −∇lnεr · E.

Using Eq. B.2, the left hand side of A.18 can be written as:

∇× (∇× E) = −∇ (∇ · E) −∇2E

= −∇ (∇lnεr · E) −∇2E,

Eq. A.18 can thus be written as:

∇2E + ∇ (∇lnεr · E) + (nk)2 E = 0. (A.20)

While their separability makes the fields possible to solve via an eigen-value analysis, it is

at the cost of making the differential equations second-order2. Second order differential

equations are harder to solve than first order, with many different ways to solve them;

from analytical to numerical, depending on the system at hand.
2See comment of [212] p. 376.
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A.1.4 Wave Equations of a Longitudinally Invariant System

Let the the z axis be aligned with the longitudinal axis of the waveguide. Light propa-

gating within an infinitely long waveguide will always lend itself to be represented as a

superposition of a set of eigenmodes [146]. When this is the case, these modes may be

expressed as both time- and longitudinally-harmonic oscillating fields3:

E(r⊥, z) =E(r⊥)ei(βz−ωt), (A.21)

H(r⊥, z) =H(r⊥)ei(βz−ωt), (A.22)

where β is called the propagation constant of the wave. It is important to note that when

β is complex, Im {β} > 0 implies the existence of an inherent loss for the given mode,

i.e., β ∈ C ⇒ ei(βz−ωt) = ei(Re{β}z−ωt)e−Im{β}z, where the second exponential factor is

an explicit length-dependent exponential decay. From this we can define the confinement

loss (CL) of a mode. The oscillatory terms are only of concern when calculating the

relative power after some propagation distance Δz = z2 − z1 since, for a given modal

field distribution, E(r⊥, z2) = E(r⊥, z1). Explicitly, the relative power of the propagated

to the initial field is calculated as:

ΔP =
|E(r⊥, z2)ei(Re{β}z2−ωt2)e−Im{β}z2 |2
|E(r⊥, z1)ei(Re{β}z1−ωt1)e−Im{β}z1 |2

(t ∈ R) =
|e−Im{β}z2 |2
|e−Im{β}z1 |2

=e−2Im{β}Δz; (A.23)

an exponential power decrease with distance. Expressing this as a power loss in dB:

ΔP [dB] =10log10(ΔP )

=10log10(e
−2Im{β}Δz)

=20Im {β}Δzlog10(e)

=
20Δz

ln(10)
Im {β} , (A.24)

such that the loss, in dB, per unit length is:

CL =
20

ln(10)
Im {β} , (A.25)

and is called Confinement Loss.
3It is implicitly implied that the real part of these complex oscillatory fields is to be ultimately taken,

producing real valued field amplitudes [14, 212].



Electromagnetic Wave Propagation Theory 259

β foremost describes how the wave amplitude oscillates longitudinally but it is also

intimately related to the structure of the mode profiles, as well. In fact, β can be shown

to be an explicit function of the modal fields E(r⊥) and H(r⊥) themselves (Ref. [146],

Eq. 11-42):

βj =
(

μ0

ε0

)1
2 k

∫
A∞ n2Ej × H∗

j · ẑdA∫
A∞ n2|Ej |2dA

(A.26)

Similarly, analytic solutions to the longitudinal wave equations typically produce field

expressions that explicitly depend on β.

Also, the confinement loss can be calculated directly from the fields as per the integral

form for the imaginary component of the effective mode index [213]:

Im(ñ) =
1
2k

∮
δA S · n̂ dl∮
A S · ẑ dA

, (A.27)

where S = E×H is the Poynting vector and n̂ is the unit normal to an arbitrary contour

δA which surround an area A.

This expression for the confinement loss reveals something about it’s nature: the path

integral in the numerator quantifies the power escaping the waveguide; the integral in

the denominator quantifies the total axial power flow. Thus, the confinement loss is,

true to its name, a measure of the power escaping the waveguide for a given mode.

In this longitudinally invariant regime, the wave Equations A.20 and A.19 simplify, via

Eqs. A.21 and A.22, to:

∇2
⊥E + ∇

(∇εr

εr
· E
)

+ k2(εr − ñ2)E = 0, (A.28)

∇2
⊥H +

∇εr

εr
× (∇× H) + k2(εr − ñ2)H = 0. (A.29)

These are the full vectorial wave equations for guided waves in dielectric media and

are obviously eigenvalue equations, so their solutions will come in the form of spatial

eigenvectors (for E(r, θ) and H(r, θ)) coupled with scalar eigenvalues (the effective mode

index ñ = β/k). One can consider either ñ or β as the eigenvalue since k = 2π/λ

is a constant of the system. Eigen-solutions of a given system can form a discrete or

continuous set. The modes with discrete eigenvalues are referred to as bound or leaky

modes (see below) which, due to their discrete nature, means that the eigenvalues can be

countably labelled and categorised in ways that prove useful when analysing the fibre’s

behaviour.

An important distinction should be made here between bound, leaky and radiation

modes (e.g., Snyder and Love [146]). Bound modes are discrete eigenvalues of a given
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waveguide system with a purely real propagation constant and hence no inherent con-

finement loss. Radiation modes are essentially the remainder of the complete set of

discrete bound modes of the system and hence are not guided by the waveguide (in the

bound sense) and typically form a continuum of states. Leaky modes, like the loss-less

bound modes, are also discrete eigenvalues of a system but which exhibit a complex

propagation constant and hence an inherent confinement loss. Such leaky modes can be

shown to actually be a superposition of radiation modes which subsequently give rise to

the leaky mode’s quasi-bound nature [214]. This connection between the radiation and

leaky modes is very subtle and, as argued and demonstrated by Hu and Menyuck [214],

not presented comprehensively in the literature. Their work demonstrates that while this

complex connection between the mode types is highly nontrivial, one can nonetheless

analyse leaky structures by solving for the complex eigenvalues (as done in this thesis);

while their interpretation is mathematically distinct to a radiation mode superposition,

their physical interpretation is the same [214]. This is quite a remarkable feature of

leaky mode systems and one that seems to be often under-appreciated.

The full vectorial wave equations will not be used directly here, since no continuous gra-

dients appear in the considered refractive index distributions (which are ideally handled

by the ∇εr term). These forms of the wave equations are shown in order to show why

this problem is essentially an eigenvalue problem in even the most general case.

Eqs. A.28 & A.29 can be reduced to the so called Helmholtz equations when εr (hence n) is

approximately homogeneous in the medium4. Evaluating the curl function in cylindrical

coordinates (Eq. B.3) for the first two of the chromatic wave equations (Eqs. A.11 and

A.12) one finds:

1
r

∂

∂θ
Ez + iβEθ = −iωμ0Hr (A.30)

−iβEr −
∂

∂r
Ez = −iωμ0Hθ (A.31)

1
r

∂

∂r
(rEθ) −

1
r

∂

∂θ
Er = −iωμ0Hz (A.32)

1
r

∂

∂θ
Hz + iβHθ = iωε0n

2Er (A.33)

−iβHr −
∂

∂r
Hz = iωε0n

2Eθ (A.34)

1
r

∂

∂r
(rHθ) −

1
r

∂

∂θ
Hr = iωε0n

2Ez (A.35)

keeping in mind that we’re assuming the spatial dependence of all quantities, i.e., all

field components, Er,θ,z(r⊥) and Hr,θ,z(r⊥), and the refractive index, n, are functions of

4See Kiwano and Kitoh Eqs. 2.146 & 2.147
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the transverse coordinate vector r⊥ = (r, θ), and ε0 and μ0 are scalars. Eqs. A.30→ A.35

are thus the chromatic wave equations in cylindrical component form.

We can rearrange Eqs. A.30 → A.35 to express the derivatives of the longitudinal (z)

field components in terms of the transverse (r and θ) field components:

iβEθ − iωμ0Hr =
1
r

∂

∂θ
Ez (A.36)

−iβEr + iωμ0Hθ =
∂

∂r
Ez (A.37)

iωε0n
2Er − iβHθ =

1
r

∂

∂θ
Hz (A.38)

iωε0n
2Eθ + iβHr = − ∂

∂r
Hz (A.39)

By combining and rearranging Eqs. A.36 → A.39 we can express the transverse field

components in terms of the longitudinal field components. Also note that we have used

the relations: let the velocity of light in a vacuum be c ≡ 1/
√

ε0μ0 so k ≡ ω/c = ω
√

ε0μ0.

Eq.(A.37)×β+Eq.(A.38)×ωμ0 ⇒

Er = − i

k2n2 − β2

(
β

∂

∂r
Ez + ωμ0

1
r

∂

∂θ
Hz

)
(A.40)

Eq.(A.36)×β+Eq.(A.39)×ωμ0 ⇒

Eθ = − i

k2n2 − β2

(
β

1
r

∂

∂θ
Ez + ωμ0

∂

∂r
Hz

)
(A.41)

Eq.(A.36)×ωε0n
2+Eq.(A.39)×β ⇒

Hr = − i

k2n2 − β2

(
β

∂

∂r
Hz + ωε0n

2 1
r

∂

∂θ
Ez

)
(A.42)

Eq.(A.37)×ωε0n
2+Eq.(A.38)×β ⇒

Hθ = − i

k2n2 − β2

(
β

1
r

∂

∂θ
Hz + ωε0n

2 ∂

∂r
Ez

)
(A.43)

Thus, if one is able to find the longitudinal components, the transverse components can

be evaluated directly.

Wave equations for these z-component fields can be derived by substituting these ex-

pressions into the general wave equations [Eqs. A.30 → A.35]. Substitute Eqs. A.42 and
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A.43 into Eq. A.35 to get:

{
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+ k2(n2 − ñ2)

}
Ez = 0. (A.44)

Substitute Eqs. A.40 & A.41 into Eq. A.32 to get:

{
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+ k2(n2 − ñ2)

}
Hz = 0. (A.45)

Note that Eqs. A.44 & A.45 are essentially Helmoltz equations (in cylindrical coordi-

nates)5: [
∇2
⊥ + k2

(
n2 − ñ2

)]{Ez

Hz

}
= 0 (A.46)

5The actual form of the Helmholtz equation is (∇2 + k2n2)Az = 0; The ∂2

∂z2 term pulls down two
iβ terms from the longitudinal variation of the fields, exp(iβz), producing the −k2ñ2 term given above,
i.e., ∇2 → ∇2

⊥ − β2 for guided modes.



Electromagnetic Wave Propagation Theory 263

A.2 Planar Waveguides

Much of the following analysis is adapted from Refs. [14, 153, 178]. Where novel re-

sults or comments have been made by the author, they are highlighted as such (e.g.,

Corollaries A.1 and A.2).

The most structurally simple form waveguide is that of a single homogeneous planar

layer embedded in another homogeneous medium. Figure A.1 shows a schematic of such

a structure.

Consider first a ray picture of light propagation: the light wave is represented as a plane

wave travelling in a specific direction. The layer (the core) guides light by reflecting

the rays from each of the interfaces made with the surrounding medium (the cladding).

Figure A.1: Ray propagation within planar waveguides with either high- or low-
index cores. Top: A layer with a higher core refractive index than the surrounding
cladding. Bottom: The same waveguide but with a core index lower than the surround-
ing cladding. While each diagram represents the same guided longitudinal wavenumber
β (the ka vector is the same for each by design—this needn’t be the case), the trans-
mitted rays differ markedly depending on whether the ray penetrates into a higher or
lower refractive index region. All vector labels represent their amplitudes.
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Provided the index of refraction of the cladding is different to that of the core (i.e.,

na �= nb), the light will be reflected back into the layer. Once the light reaches the

other side of the core, it is again reflected back toward its centre. This trapping of the

light as it travels down the core is referred to as guidance or confinement. Figure A.1

demonstrates this light-ray guidance concept.

The relative values of the layer and cladding refractive indices greatly influences the

type of reflection undergone by the light as it interacts with the interface. If the core

index is larger than the cladding index (i.e., na > nb), and the angle the guided ray

makes with the interfaces is equal to or greater than a critical value (i.e., θ ≥ θc),

the light will succumb to total internal reflection (TIR). In this regime, all light is

confined to the core and none can escape into the cladding6. If, however, the ray is

incident below the critical angle, only a portion of the power of the light is reflected

back into the core, with the remainder escaping to the cladding, never to be recaptured.

For propagation over a certain distance, then, a certain amount of guided light power

will be lost from the guidance region by means purely due to the way the light is

confined (such as inherent material losses, say). This effect is known as confinement

loss. The waveguidance mechanisms behind confinement loss are not always as simple

as the example just described.

Most important for the work considered herein, light can also be guided within a core

of lower refractive index than the surrounding cladding (i.e., when na < nb). In this

regime, confinement loss occurs for all incidence angles of the guided rays within the

core. This is because no TIR regime exists for propagation from a low-index to a

high-index medium, hence there will always be some fraction of the light allowed to

escape the core guidance region. This is the precise reason why guiding light in low-

index media can be troublesome. While some applications can make do with the high

transmission losses that come with low-index guidance with a homogeneous cladding,

there is a wealth of rich physics and a plethora of unique applications that flow from

the various ways in which one can coerce light be guided within a region with a low

refractive index. Before these interesting phenomena and techniques can be discussed,

the aforementioned waveguidance fundamentals should be discussed in more detail.

6Although a portion of the light’s field will penetrate into the cladding as an evanescent field, it is
bound to the interface and cannot propagate away from the layer. This is discussed in more detail in
§ A.2.1.2
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A.2.1 Geometric Optics and the Plane Wave Picture

The following sections are mostly adapted from the excellent texts Refs. [14, 153], with

significant reworking by myself indicated where appropriate.

A.2.1.1 Plane Waves

The ray optics picture will now be extended to the case of plane waves; a regime closely

related to ray optics, or geometric optics. The ray picture is derived from the plane wave

picture: a ray is a linear path perpendicular to the phase fronts of a given plane wave,

and must thus point in the direction of the wavevector. When a ‘ray’ is referred to here,

one can typically assume it is interchangeable with the concept of a local plane wave7. It

is the first analytic tool discussed here as it is comparatively simple, it highlights some

important features of the waveguidance phenomena discussed later, and defines many

fundamental concepts used throughout this work.

Wave optics as used here involves approximating the guided light within the waveguide

as a multiply reflected plane wave. In a homogeneous medium of refractive index ni, a

plane wave will travel in the direction of its wave-vector [178]:

ki = kik̂i = nikk̂i = nik {cos θix̂ + sin θiẑ} , (A.47)

where k̂i is a unit vector in the direction of ki, λ is the free space wavelength of the

light wave, and k = 2π/λ is the free-space wavenumber. For a plane wave, the electric

and magnetic fields, E and H as defined in Section A.1.1, will at any point in time

have a constant amplitude on the infinite plane perpendicular to k̂i. These amplitudes

sinusoidally oscillate between their maxima and minima at an angular frequency ω = kc,

where c = 2.99792458 × 108ms−1 is the speed of light in vacuum [14, 178, 212]. This

unidirectional plane-wave propagation behaviour constitutes a light ray. Following from

the results of Section A.1.2, the fields of the plane wave can be represented as [14, 178,

212]:

A(ω, r) = A0e
i(ωt−ki·r) = A0e

iωte−i(kixx+kiyy+kizz), (A.48)

where A ≡ {E,H}, A0 is the field amplitude, and r = rr̂ is the radial coordinate vector.

Such waves indeed satisfy the wave equations in homogeneous media, as discussed in

Section A.1.2.

Unlike general electromagnetic waves, plane waves have a very simple relationship be-

tween their E and H fields. Assuming propagation in the z-direction, an x-polarised
7‘Local’ since, as discussed earlier, true plane waves are infinite in extent and can’t exist in the present

of inhomogeneities.
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electric wave field is represented as E = Ex̂ = E0e
i(ωt−kiz)x̂. By substituting this form

of E into the first of Maxwell’s Equations, Eq. A.1, only one of the curl term components

survives, producing ∇× E = ∂
∂zEŷ = −ikiEŷ. Equating this to the right hand side of

Eq. A.1, one finds H = ki
ωμE0e

i(ωt−kiz)ŷ = H0e
i(ωt−kiz)ŷ, where one defines H0 = ki

ωμE0.

The ratio of the electric and magnetic field amplitudes is then E0
H0

= ωμ
ki

=
√

μ
ε = η,

where η is known as the intrinsic impedance of the medium. In a dielectric (μ = μ0), as

considered here, the intrinsic impedance can be expressed as η =
√

μ0

ε = 1√
εr

√
μ0

ε0
= η0

ni
,

where η0 is the impedance of vacuum and ni is the refractive index of the local medium.

To summarise:

• At any point in time, the E and H fields of the plane wave have a constant value

on the infinite plane perpendicular to k̂i,

• The fields are linearly polarised in a specific direction within the plane perpendic-

ular to ki: E · k=0 and H · k=0,

• The electric field is always in phase with and perpendicular in polarisation to the

magnetic: |E(t)| = η0

ni
|H(t)|, E · H = 0.

While light propagation in more complicated structures, such as waveguides, sees these

conditions deviate in some way or other, plane wave theory is very useful for the more

complicated analyses required for the description of propagation within such structures.

A.2.1.2 Transmission and Reflection at an Interface

Figure A.2 depicts ray propagation across a planar interface made by two homogeneous

dielectric media. Rays propagating from the medium with refractive index na into

the medium with index nb approach the interface with wave-vector ka at an angle θa

to the interface normal and exit with wave-vector kb at an angle θb to the normal.

The other possibility is that a fraction (possibly all) all of the light can be reflected

from the interface, depicted by the k′a wave-vector in Fig. A.2. Figure A.2 also shows

the decomposition of the wave-vectors into Cartesian components: the x-component

kix = ki · x̂ and the z-component kiz = β = ki · ẑ; no y-component exists by the

orientation of the x-z-plane with the plane of incidence here. Integral to much of the

following work is that the longitudinal component kiz is conserved, as will be derived

later, i.e., the longitudinal component of the wave-vector has the same value before and

after transmission and reflection, so that one may set kaz = k′az = kbz = β; a direct

result of the Law of Refraction, Eq A.63. β thus becomes an important quantity when

considering the propagation of light through multiple interfaces, or when considering
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Figure A.2: Ray propagation across a plane interface from both a high to a low
refractive index (left, na > nb) and from a low to a high refractive index (right,na < nb).
Note how the longitudinal (z-dimension, here) component of ki, β, is conserved under
transmission and reflection. All vector labels represent their amplitudes.

the propagation of light along the interface plane (e.g., the z-axis). Such relationships

between the incident and transmitted and/or reflected wave-vectors can be derived by

considering the behaviour of the electric and magnetic fields at the interface, as will now

be demonstrated.

There are two independent types of incident plane waves on an interface: transverse

electric (TE) and transverse magnetic (TM) waves. The plane of incidence of an incom-

ing ray (such as those in Fig. A.2 or Fig. A.3) is defined as the plane common to the

incident wave-vector ki and a vector normal to the interface (e.g., the x-direction x̂ in

Fig. A.2 or the dashed line in Fig. A.3). This makes the plane of incidence equivalent to

the plane of the page for Figures A.2 and A.3. Figure A.3 demonstrates the relationship

between the incident and reflected and/or transmitted plane wave fields. An incident

wave is termed TE if the electric field is normal to the plane of incidence (and hence lies

in a plane parallel to the interface). Likewise, a wave is termed TM if its magnetic field

is normal to the plane of incidence8. Now, electromagnetic boundary conditions assert

that, in the absence of surface currents, the electric and magnetic fields tangential to
8The TE and TM polarisations are often called s and p polarisations in electromagnetic theory,

standing for the German senkrecht (perpendicular) and parallel (parallel) [178], respectively, referring to
the orientation of solely the electric field with respect to the plane of incidence.
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Figure A.3: Electric and magnetic fields of a plane wave before and after transmis-
sion and reflection at an interface. Left: A vector diagram representing an incoming
transverse electric (TE) plane wave. Right A similar diagram representing an incoming
transverse magnetic (TM) plane wave. Dark arrows represent propagation from a low-
to a high-index medium (na < nb), with incident, reflected and transmitted fields Aa,
A′a and Ab, respectively. The faint arrows represent high- to low-index propagation
with incident, reflected and transmitted fields A′b, Ab and A′a, respectively.

an interface must be continuous across that interface9 [14, 212]. This means that an

incident TE wave will be transmitted or reflected as a TE wave and similarly for the

TM equivalent; if this weren’t the case, reflected or transmitted waves would contain

field components that don’t exist in the incident wave, breaking the field continuity at

the interface. Arbitrary polarisation directions can be constructed from a superposition

of TE and TM polarisations.

Using the field components as shown in Fig. A.3, the continuity boundary condition

implies that at the interface (i.e., x = 0 in Fig. A.2) [14, 178]:

Eat + E′at = Ebt, (A.49)

Hat + H ′
at = Hbt, (A.50)

where the subscript t denotes the component of the vector tangential to the interface,

i.e., for field components not purely normal to the plane of incidence, the projection

upon the interface plane of the component in question must be taken (e.g., Ha for the
9Such boundary conditions are derivable directly from Maxwell’s equations [14, 212].
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TE case in Fig. A.3 projects onto the interface plane as −Hacosθa and simply as Ha for

the TM).

Using the wave-vectors as shown in Fig. A.2 and the spatio-temporal expression for the

fields as in Eq. A.48, these transmitted and reflected waves are expressed as, for TE

polarisation:

Ea = Ea0e
i(ωt−ka·r), (A.51)

E′a = E′a0e
i(ωt−k′

a·r), (A.52)

Eb = Eb0e
i(ωt−kb·r), (A.53)

and for TM polarisation:

Ha = Ha0e
i(ωt−ka·r), (A.54)

H ′
a = H ′

a0e
i(ωt−k′

a·r), (A.55)

Hb = Hb0e
i(ωt−kb·r). (A.56)

Applying the Cartesian wave-vector expression of Eq. A.47 to these waves:

ka = nak [cos θax̂ + sin θaẑ] , (A.57)

k′a = nak
[
− cos θ′ax̂ + sin(θ′a)ẑ

]
, (A.58)

kb = nbk [cos θbx̂ + sin θbẑ] . (A.59)

By substituting Eqs. A.51 to A.53 into Eq. A.49 (and similarly for the H equivalents),

enforcing the continuity boundary conditions on the incident, reflected and transmitted

plane waves, one finds:

Ea0e
i(ωt−ka·r) + E′a0e

i(ωt−k′
a·r) = Eb0e

i(ωt−kb·r), (A.60)

Ha0e
i(ωt−ka·r) + H ′

a0e
i(ωt−k′

a·r) = Hb0e
i(ωt−kb·r). (A.61)

In order for each of these two conditions to hold at a particular time for all points

on the interface, all three waves (incident, reflected and transmitted) must accumulate

the same phase shift per unit distance across the interface. In other words, the only

way to incorporate a spatially evolving phase into these explicit boundary conditions

is to add the same phase term to the arguments of each wavefunction. To see this,

arbitrarily setting the instantaneous time to be t = 0 and adding a spatial phase of φ to

the wavefunctions’ argument (ki · r → ki · r + φ with i ∈ {a,b}), all terms in Eqs. A.60

and A.61 can factor out a common term of e−iφ, which cancels directly, preserving
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the continuity boundary conditions Eqs. A.49 and A.50. Specifically considering the z-

direction along the interface, the accumulated spatial phase for a wave with wave-vector

k over some distance Δz is thus k · ẑΔz = kzΔz (see Section A.1.2). For this phase

term to be equal for all three waves, all waves’ wave-vector components in the interface

plane (kz) must all be equal. Thus, kz is equal for the incident, reflected and transmitted

waves, i.e., the transverse component of the incident wavenumber is conserved during

reflection and transmission. Because of this, one can set the transverse components to a

common value kaz = k′az = kbz = β, as shown in Figs. A.1 and A.2. This conservation of

longitudinal wavenumber becomes very important when considering more complicated

plane wave behaviour, such as multilayer optical structures.

Conservation of kz also leads to some vital relationships between the waves. By equating

z-component of Eqs. A.57 and A.58, one finds:

θa = θ′a, (A.62)

which is known as the Law of Reflection. By equating the z-component of Eqs. A.57

and A.59, one also finds:

na sin θa = nb sin θb, (A.63)

which is the well known Law of Refraction, also known as Snell’s Law or Descarte’s

Law10. An important corollary of Eq. A.63 is that rays traversing the interface for the

case na < nb transmit with smaller angles to the normal, whereas they transmit with

greater angles to the normal for na > nb, as depicted in Fig. A.2. This has important

consequences for the behaviour of modes within layer waveguides, discussed later.

The continuity boundary conditions can be used to also determine the amplitude of the

incident, reflected and transmitted fields. By substituting the waves’ transverse field

components of Fig. A.2 into Eqs. A.49 and A.50:

Ea + E′a = Eb, (A.64)

−Ha cos θa + H ′
a cos θa = −Hb cos θb, (A.65)

for TE polarised waves, and:

− Ea cos θa + E′a cos θa = −Eb cos θb, (A.66)

Ha + H ′
a = Hb, (A.67)

for TM polarised waves.
10It is now often recognised that the relation was first discovered by Ibn Sahl in the late 10th century.
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Recall that the electric and magnetic field ratios are Ea
Ha

= E′
a

H′
a

= η0

na
and Eb

Hb
= η0

na
.

Substituting them into Eq. A.65 produces:

− Eanacosθa + E′anacosθa = −Ebnbcosθb, (A.68)

for the TE waves, and substituting them into Eq. A.66 produces:

− Hanacosθa + H ′
anacosθa = −Hbnbcosθb, (A.69)

for the TM waves. Solving Eqs. A.64 and A.68 simultaneously leads to the reflection

(Γ) and transmission (T ) coefficients for the TE waves:

ΓTE ≡ E′a
Ea

=
na cos θa − nb cos θb

na cos θa + nb cos θb
=

kax − kbx

kax + kbx
,

TTE ≡ Eb

Ea
=

2kax

kax + kbx
= 1 + ΓTE,

(A.70)

(A.71)

and solving Eqs. A.67 and A.69 simultaneously leads to the reflection and transmission

coefficients for the TM waves:

ΓTM ≡ E′a
Ea

=
nb cos θa − na cos θb

nb cos θa + na cos θb
=

n2
bkax − n2

akbx

n2
bkax + n2

akbx
,

TTM ≡ Eb

Ea
=

2nanbkax

n2
bkax + n2

akbx
=

na

nb
(1 + ΓTE) .

(A.72)

(A.73)

Equations A.70 to A.73 describe the relative amplitudes of incident, reflected and trans-

mitted plane waves at the interface of two dielectrics, and are known as the Fresnel

Formulae. They can be expressed in a more compact form11 by using the trigonometric

identities Eqs. B.11 to B.13 and the Law of Refraction, Eq. A.63. For ΓTE:

ΓTE =
na cos θa − nb cos θb

na cos θa + nb cos θb

(÷ all by − nb) = −
cos θb − na

nb
cos θa

cos θb + na
nb

cos θa

(by Eq. A.63) = −
cos θb − sin θb

sin θa
cos θa

cos θb + sin θb
sin θa

cos θa

(× all by sin θa) = −sin θa cos θb − sin θb cos θa

sin θa cos θb + sin θb cos θa

(simplify via B.11) = −sin(θa − θb)
sin(θa + θb)

.

11Although Eqs. A.70 and A.72 must be used for normal incidence θa = θb = 0.
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Similarly for ΓTM:

ΓTM =
nb cos θa − na cos θb

nb cos θa + na cos θb

(÷ all by nb) = −
cos θa − na

nb
cos θb

cos θa + na
nb

cos θb

(by Eq. A.63) =
cos θa − sin θb

sin θa
cos θb

cos θa + sin θb
sin θa

cos θb

(× all by sin θa) =
sin θa cos θa − sin θb cos θb

sin θa cos θa + sin θb cos θb

(simplify via B.13) =
tan(θa − θb)
tan(θa + θb)

.

The wonderfully compact forms are thus:

ΓTE = −sin(θa − θb)
sin(θa + θb)

,

ΓTM =
tan(θa − θb)
tan(θa + θb)

.

(A.74)

(A.75)

These are the forms given in [14]. While they don’t appear explicitly in these expres-

sions, the refractive indices have influence through θa and θb via the Law of Refraction,

Eq. A.63.

Γ is often called the reflectivity and T the transmissivity of an optical system.

By considering the power of the incident, reflected and transmitted waves, it can be

shown (e.g., Ref. [14]-p. 43 and Ref. [153]-p. 65) that the Fresnel Formulae can be used

to express power reflection (R) and power transmission (T ) coefficients:

RTE,TM = |ΓTE,TM|2, (A.76)

TTE,TM =
kbx

kax
|TTE,TM|2. (A.77)

R and T are often called the reflectance and transmittance of the waves, respectively,

and represent the ratios of the power in the reflected or transmitted waves to that of

the incident wave. As expected from the principle of conservation of energy, they sum

to unity: RTE,TM + TTE,TM = 1. Figure A.4 shows R from normal to grazing incidence

(θ = 0 → π/2, expressed in degrees 0◦ → 90◦ for clarity).

The Principle of Reciprocity states that the behaviour of light in one direction must

be identical when the direction of propagation is everywhere reversed (by reversing the

direction of time, say). With this in mind, it is readily shown [153] that the Fresnel

Coefficients Γab and Tab for propagation from medium a into medium b (for both TE
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Figure A.4: Examples of TE and TM reflectance coefficients for a range of incidence
angles. The fraction of power reflected for unpolarised light is the arithmetic mean of
the reflectivities of the two orthogonal polarisations: 1

2 (RTE + RTM). Top: na = 1 and
nb = 1.6 ⇒ na < nb. Bottom: na = 1.6 and nb = 1 ⇒ na > nb. Note how the reflected
power falls to 0 for the TM polarisation at the Brewster condition θ = θB in both cases.

and TM polarisations) are related to the coefficients Γba and Tba for propagation from

medium b into medium a.

By definition, Eqs. A.70 to A.73 relate the incident to reflected and incident to trans-

mitted fields respectively as:

E′a = ΓabEa, (A.78)

Eb = TabEa, (A.79)

E′b = 0, (A.80)

where the nomenclature of Fig. A.3 has been used. The final condition (Eq. A.80) is

due to the nature of propagation across an interface (E′b could not be excited by the sole

incident field Ea).
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Consider now reversing the propagation directions of all rays by, say, a time-reversal.

The ray arrows of Fig. A.3 thus reverse direction. The Principle of Reciprocity implies

that the same laws of reflection and transmission hold for the time-reversed waves as for

the original waves. In this case, the field Ea is excited by the reflection of E′b and the

transmission of Eb and the field E′b is excited by the reflection of Eb and transmission

of E′a, such that:

Ea = ΓabE
′
a + TbaEb, (A.81)

E′b = ΓbaEb + TabE
′
a. (A.82)

Section A.3.1 discusses this further in the context of superposed forward and backward

propagating waves.

Eqs. A.78 to A.82 can be combined to produce the reflection and transmission reciprocity

relations12:

Γba = −Γab,

TabTba = ΓabΓba + 1.

(A.83)

(A.84)

Eq. A.83 is found by inserting Eq. A.79 into A.81, then inserting Eq. A.78. Eq. A.84 is

found by inserting Eq. A.80 into A.82, then inserting Eq. A.79.

The Fresnel Formulae can be used to derive other important relationships between the

rays. By setting ΓTM = 0, one finds that TM incident waves have no reflected wave

when:

nb cos θa = na cos θb. (A.85)

Using the Law of Refraction (Eq. A.63) this can be solved for the incident angle as13:

θB ≡ θa = tan−1

(
nb

na

)
, (A.86)

where θB is know as Brewster’s Angle, representing the incident angle at which all TM-

polarised light is transmitted across the interface; Figure A.4 shows an explicit example.

Similarly, for ΓTE = 0 to hold, one requires a condition which will be shown to be

unphysical for na �= nb:

na cos θa = nb cos θb. (A.87)

Dividing Eq. A.63 by Eq. A.87, one produces tan(θa) = tan(θb), which only has solutions

θa = θb ± π/2. Since only the domain 0 ≤ θa < π/2 is of interest here, then the solution
12A relation between Tab and Tba can also be derived [153]: Tba/[nb cos(θb)] = Tab/[na cos(θa)].
13Square Eqs. A.63 and A.85, add them, rearrange for cos2(θa), replace sin2(θb) with 1 − cos2(θb),

substitute for cos2(θb) using A.85, rearrange for cos θa, then θa. Simple trigonometry gives tan−1(y/x) =
cos−1(

p
x2/(x2 + y2)).
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is θa = θb. The only solution satisfying Eq. A.63, θa = θb = 0, cannot simultaneously

satisfy14 Eq. A.87, implying that no incidence angle θa can produce ΓTE = 0. This

gives the Brewster angle θB another unique property of behaving as a polarising angle

at which only TE waves are reflected.

A specific range of the incidence angle can also produce another important phenomenon:

total reflection. The Law of Refraction can be arranged as:

cos θb =

√
1 −
(

na

nb
sin2 θa

)2

. (A.88)

Recalling kbx = kb cos θb, one finds kbx = 0 when cos θb = 0, i.e., the transmitted ray is

directed along the interface. Equation A.88 implies this is the case when sin2 θa = nb
na

.

If the value of this term is increased, by increasing θa, then Eq. A.88 implies kbx ∈ C;

in fact, it’s purely imaginary15: kbx = −i|Im(kbx)|. In this case, the oscillatory factor of

the wavefunction Eq. A.48 adopts a real, negative, exponent, producing a decay term:

eiωte−i(kbxx+kbyy+kbzz) → eiωte−i(kbyy+kbzz)e−|Im(kbx)|x. Thus, the transmitted wave is

only allowed to propagate tangential to the interface (z-direction in Figs. A.1 and A.2)

with a decaying field amplitude normal to the interface (x-direction in Figs. A.1 and

A.2); this is known as an evanescent wave. This means there can be no net power

transport away from the interface, implying all incident power must be transferred to

the reflected wave. This is seen explicitly in that the power reflection coefficients are

unity in this case:

R = |ΓTE,TM|2 = ΓTE,TMΓ∗TE,TM

=
(kax − kbx)(kax − kbx)∗

(kax + kbx)(kax + kbx)∗

=
[kax + iIm(kbx)][kax + iIm(kbx)]∗

[kax − iIm(kbx)][kax − iIm(kbx)]∗

=
[kax + iIm(kbx)][kax − iIm(kbx)]
[kax − iIm(kbx)][kax + iIm(kbx)]

= 1.

14Which may seem strange as the two equations were solved simultaneously, until one recognises that
θa = θb = 0 produces sin = 0, removing the influence of Eq. A.87 on the condition. Eq. A.87 with
θa = θb = 0 requires na = nb which is the trivial case of a plane wave in a homogeneous medium.
This certainly produces no reflected wave, but the trivial scenario isn’t of interest for these analyses of
reflection and transmission.

15Since
√
−1 = ±i, the negative branch, −i, is taken here since +i produces a gain term, resulting in

an unphysical infinite field amplitude as x → ∞; unphysical at least for a single reflection/transmission
event as considered here—‘leaky modes’, discussed later, necessarily exhibit radially increasing field
amplitudes, although these are due to a longitudinal accumulation of the field leaked along the prior
length of a waveguide [178, 214] and [215] p.21.
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From Eq. A.88, the range of incident angles producing an imaginary kbx, and hence

total reflection, is thus:

θa ≥ θc = sin−1

(
nb

na

)
, (A.89)

where θc is known as the critical angle for total reflection. It is clear from Eq. A.89 that,

to be physically meaningful, total reflection requires na > nb. Total reflection cannot

occur when na < nb.

In this work, the transmission of light originating from a lower refractive index into

a higher refractive index, na < nb, is typically considered, e.g., the guidance of light

within a low-index layer. In this case, β = nak sin θa satisfies the condition β ≤ nak.

Exactly the same condition is required for the case of the transmission of light originating

from a higher refractive index into a lower refractive index, na > nb, except that total

reflection occurs when sin θa ≥ nb
na

(Eq. A.89). Total reflection thus occurs for the subset

of propagation constants (incidence angles) satisfying nbk < β ≤ nak. A very important

consequence of this is:

Corollary A.1. Conservation of β implies that the transmitted component of an exter-

nal ray incident on a high-index layer embedded in a low-index medium cannot satisfy

the conditions for total reflection within the layer.

Generalising this principle, Corollary A.1 implies:

Corollary A.2. Light originating from a low-index medium will never succumb to total

reflection at any subsequent parallel interface it may propagate across, provided the lay-

ers’ refractive indices are equal to or greater than the initial medium’s refractive index.

Corollary A.2 is very important when considering multilayer structures, discussed later.

These corollaries have been formulated specifically for this work, and are to the best of

my knowledge unique (at the very least in the context of the current work).

It is useful here to define the effective refractive index:

ñi =
βi

k
= ni sin θi, (A.90)

Across any interface ña = ñb, thanks to conservation of β. The permissible ranges of β

leading to the above Corollaries become:

Reflection and transmission: ña ≤ na ∀ na,b,

Total reflection: nb < ña ≤ na for na > nb.

(A.91)

(A.92)
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In other words, a ray in a low-index medium can only ever take values ña ≤ na and thus

always transmits some power across the interface, whereas a ray in a high-index medium

can also take higher ña values (up to nb) at which it undergoes total reflection.

The phase accumulated by a wave upon reflection can also be determined from the

reflection and transmission coefficients Γ and T . The field amplitudes of an incident

and reflected wave are related by ATE,TM = ΓTE,TMA
′
TE,TM. As well as describing the

change in amplitude of the field components, Γ can also accommodate phase changes.

Explicitly, one may decompose the reflection coefficient into amplitude and phase as

Γ = |Γ|eiδφ, where δφ is the change in phase of the wave after reflection. The phase of

a wave becomes critical when determining the waveguidance behaviour of a waveguide.

First consider the low- to high-index propagation case: na < nb. As discussed above,

kax,bx ∈ R in this case (no total reflection), so that θa,b ∈ R. The Law of Refraction

(Eq. A.63) then implies θa > θb. In this case, π ≥ θa − θb ≥ 0 and π ≥ θa + θb ≥ 0.

These conditions see sin(θa ± θb) ≥ 0. Eq. A.74 then implies ΓTE ∈ R
−. It must then

be true that sign(ATE) = −sign(A
′
TE). This corresponds to a change in phase of δφ = π

upon reflection for the TE wave.

The phase shift of a reflected TM wave is not as trivial since Eq. A.75 contains tan, not

sin, terms. For π/2 ≥ θa,b ≥ 0 with θa > θb, tan(θa−θb) ≥ 0 but tan(θa+θb) < 0 only for

θa + θb > π/2. Thus, for θa + θb ≤ π/2, ΓTM ∈ R
+ ⇒ sign(ATE) = sign(A

′
TE) ⇒ δφ = 0

(no phase shift occurs) but for θa+θb > π/2, ΓTM ∈ R
− ⇒ sign(ATM) = −sign(A

′
TM) ⇒

δφ = π (a π phase shift occurs).

In summary:

δφTE = π for π ≥ θa ≥ 0,

δφTM =

⎧⎨⎩0 for θa + θb ≤ π/2

π for θa + θb > π/2.

(A.93)

(A.94)

The incidence angle at which the TM phase jumps from 0 to π can be expressed solely

in terms of the incident angle and refractive indices via Eq. A.63: θa + θb = π/2 →
θa = π/2 − sin−1(na

nb
sin θa).

The case for high- to low-index index propagation, na > nb, will not be discussed

in as much detail as total reflection and the existence of θc makes the analysis quite

complicated (kax,bx ∈ C and θa,b ∈ C). Regardless, total reflection is not a focus of this

work. However, it is very important to note that it can be shown [14] that both the TE
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and TM polarisations undergo nontrivial phase shifts upon reflection in this regime:

tan
(

δφTE

2

)
= −

√
sin2 θa − n2

b/n2
a

cos θa
, (A.95)

tan
(

δφTM

2

)
= −

√
sin2 θa − n2

b/n2
a

(n2
b/n2

a) cos θa
, (A.96)

sometimes called the Goos-Hänchen phase shift. Both phases continuously increase from

0 to π as θa goes from θc to π/2. The fact that this phase shift not only depends on the

explicit values of na, nb and θa but is also transcendental in form is critical for observing

how its absence leads to the analytic nature of Eqs. A.93 and A.94 and hence to the

establishment, and subsequent novel utility, of the SPARROW model constructed in

Chapter 3.

A.2.1.3 Light Guidance in a Single Layer

The plane wave propagation, reflection and transmission behaviour presented in sections

A.2.1.1 and A.2.1.2 is used here to describe the light guidance properties of a single

dielectric layer. The basic principle is simple: a ray propagating within a layer will be

partially or totally reflected from an interface with the bounding medium; this happens

for each reflected ray on its opposing interface, essentially trapping the reflected rays

within the layer. This is the fundamental premise of waveguidance and is represented

schematically in Fig. A.1.

Hereon, two particular refractive indices will be discussed: n1 and n0 where n1 > n0.

The local index na and adjacent index nb (representing core and cladding indices of a

waveguide, for example, respectively) can take either of these values. In other words, na

and nb are arbitrary but n1 and n0 are fixed to values in which n1 > n0.

Total reflection will not be considered here since, according to Corollary A.2, any ray

originating from a low-index medium, as is the case for the majority of the present work,

cannot undergo total reflection within any surrounding (parallel) layer. Thus, only leaky

guidance within a given layer is of interest here.

More precisely, for a ray originating within a medium of lowest refractive index n0,

we are interested only in guided rays with effective indices ña below the n0-light-line

(ña < n0), which is strictly the full range of ñ available to a ray incident from n0 via

Eq. A.90 over all incidence angles 0 ≤ θa ≤ π/2.

Consider a homogeneous planar dielectric layer of refractive index na (the core) embed-

ded in an infinite homogeneous dielectric medium of refractive index nb (the cladding).
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The bottom schematic of Fig. A.1 shows one such example. Following the conventions

introduced in Fig. A.1, used in Sections A.2.1.1 and A.2.1.2, a given ray within the core

will have wave-vector ka and will be reflected at the core-cladding interface at an angle

θa to the interface normal. Rays transmitted across an interface have wave-vector kb

and make an angle θb with the interface normal.

The phase accumulated by plane wave with oscillatory term ei(ωt−k·r) (§ A.2.1.2) is:

Δφ = k · Δr = kxΔx + βΔz. (A.97)

Thus, the phase accumulated in the longitudinal dimension is βΔz and the accumulated

phase in the transverse dimension is kxΔx.

The slab waveguides will only support modes, leaky or otherwise, if the accumulated

transverse phase for one round-trip of the slab (traversing the slab twice due to reflection

from each interface) is an integer multiple of 2π. For both slabs, the transverse phase

accumulated by traversing the slab region once is kaxta. The forms of the low- and

high-index slabs’ phase relations thus differ only in their reflection terms which were

just discussed above. Since only the ñ ≤ n0 is of interest here, restricting oneself to light

originating from a low-index region (Corollaries A.1 and A.2), the phase shifts for each

case are only integer multiples of π (avoiding the Goos-Hänchen phase shift). Equating

the cumulative phase shifts to m2π (m ∈ Z
+), a dispersion relation for each waveguide

is derived [178, 198]:

kaxta =

⎧⎨⎩mπ for na > nb and m ∈ N

(m + 1)π for na < nb and m ∈ Z
+

(A.98)

where m = 0 is obviously not allowed for the high-index slab, implying that the m = 0

bound mode has no leaky counterpart [178]. By rearranging the phase relations and

setting a → 1 and b → 0 for the high-index (na = n1 > nb = n0) slab and a → 0 and

b → 1 for the low-index (na = n0 < nb = n1) slab, we find a unified dispersion relation:

ñmi =

[
n2

i −
(

miπ

tik

)2
] 1

2

, mi ∈ N (A.99)

such that m1 = m and m0 = m + 1. Groups of dispersion curves for a range of mode

orders are plotted in Fig. 3.3 (bottom) and subsequently in Figs. 3.4, 3.7 and 3.8.

Here it is convenient to define that m1 = 0 refers to the ñ-axis (k = 0) and m0 = 0 to

the n0-light-line (ñ = n0). It is easily shown that, while not representative of physical

modes, these definitions still satisfy Eqs. A.98 and A.99. Hereon the ‘SPARROW curves’
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will refer to both the physical slab dispersion curves (m1,0 ∈ N) and these m1,0 = 0 lines,

unless otherwise specified. The lower limit line ñ = 0 is also important but its inclusion

in this set is not required, as will soon be evident.

Note that Eq. A.99 is truly analytic since the non-analytic Goos-Hänchen phase shift [198]

that appears in the bound-mode (ñm1 > n0) solution of the high-index slab does not ap-

pear in these phase relations due to the nature of the reflective phase shifts for ñmi < n0.

Also note how Eq. A.99 depends only on ni, implying that, below the n0-light-line, the

dispersion properties of each slab depend only on the slab refractive index, not that of

the medium surrounding it.

Eq. A.99 can be arranged to give the k values of resonances of order mi for arbitrary ñ

as:

kmi =
miπ

ti

[
n2

i − ñ2
]− 1

2 , (A.100)

where, once expressed in wavelength, it is obvious that the forms of the large-core

Duguay-ARROW model (Eq. 3.2) and SPARROW model (Eq. A.100) are identical save

for two important differences: the SPARROW model is valid for all ñ ≤ n0 and depends

explicitly on t0.

A.3 Multilayer Planar Systems

A.3.1 Matrix Analysis of a Finite Multilayer Structure

The propagation of electromagnetic waves through multilayer structures is now consid-

ered. I will refer to the technique as the planar transfer matrix method (pTMM). The

basis of the analysis presented below is adopted from [153], although many expressions

have been reformulated somewhat differently for consistency. Many of the results of

Sections A.2.1.1 and A.2.1.2 are leveraged here.

Consider an arbitrary number of stratified dielectric layers producing a refractive index

profile:

n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n0, x < x0

n1, x0 < x < x1

n2, x1 < x < x2

...
...

nN , xN−1 < x < xN

nN+1, xN < x

, (A.101)
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where the interface between the mth and (m + 1)th layers sits at x = xm. There are

thus N layers (with indices 1 → N) surrounded by two infinite homogeneous regions (of

indices 0 and N + 1). Figure A.5 shows a schematic of such a structure. Each layer of

refractive index nm has thickness tm = xm − xm−1.

Across each interface, electric fields will behave according to the Fresnel Formulae,

Eqs. A.70 to A.73. As discussed in Section A.2.1.2, the Principle of Reciprocity al-

lows one to easily consider waves approaching an interface from either side. Since a

multilayer structure doesn’t just transmit but also partially reflects light at each and

every interface, one must indeed consider waves propagating in both directions. To this

end, one can define an arbitrary field in the mth layer as:

E =
[
Ame−ikmx(x−xm) + Bme+ikmx(x−xm)

]
ei(ωt−βz) (A.102)

where the amplitude Am corresponds to a wave propagating in the +x direction and Bm

to a wave in the −x direction. Figure A.5 demonstrates the field amplitude nomenclature

explicitly; where they must be distinguished, fields within a layer close to the +x side

will be designated with a prime (e.g., A′m), whereas those close to the −x side will

be unprimed (e.g., Am). As will be shown presently, the primed and unprimed fields

in a layer have the same magnitude and are related only by a phase term. Every wave

within all layers has the same value of β, due to conservation of longitudinal wavenumber

(Eq. A.63), i.e., β is independent of m. kmx is the transverse wavenumber, as defined

Figure A.5: Left: A schematic of a general finite planar multilayer optical structure,
Eq. A.101. As per Eq. A.102, waves of amplitude Am travel in the +x direction while
waves of amplitude Bm travel in the −x direction. Right: A zoom-in of an arbitrary
layer, defining the nomenclature for fields about either side of its interfaces.
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Figure A.6: A qualitative a representation of the incident, reflected and transmitted
waves related through the principle of reciprocity. As per Eq. A.102, waves of amplitude
Am travel in the +x direction while waves of amplitude Bm travel in the −x direction.
The reciprocal (time reversed) versions of the waves travel in the inverse direction. The
bold curved lines indicate which waves are involved in interactions for the original (1
wave generates 2) and reciprocal (2 waves generate 1) cases.

in Section A.2.1.2. The x-dependence of the fields across the layers is thus:

E(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A0e

−ik0x(x−x0) + B0e
ik0x(x−x0), x < x0

Ame−ikmx(x−xm) + Bmeikmx(x−xm), xm−1 < x < xm

AN+1e
−ik(N+1)x(x−xN ) + BN+1e

ik(N+1)x(x−xN ), x > xN .

(A.103)

It is possible to formulate a matrix equation relating the inner field amplitudes A0 and

B0 to the outer field amplitudes16 AN+1 and BN+1:(
A0

B0

)
= M

(
AN+1

BN+1

)
. (A.104)

This section will predominantly be devoted to deriving the form of M and its subsequent

properties.

First consider how the fields change across an arbitrary interface as represented by

Fig. A.6. By the Principle of Reciprocity, time-reversed waves are related as (Eqs. A.81
16The prime can be dropped from the N +1 region’s fields since the primed and unprimed distinction

becomes redundant in such an infinite homogeneous region.
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and A.82):

Aa = ΓabBa + TbaA
′
b, (A.105)

B′b = ΓbaA
′
b + TabBa. (A.106)

where Γ and T are the reflection and transmission coefficients defined in Section A.2.1.2.

Figure A.6 gives a qualitative representation of the original and reciprocal interactions.

Using these relations, one can construct a matrix relation between the fields on either

side of the interface: (
Aa

Ba

)
= Dab

(
A′b
B′b

)
. (A.107)

Dab can be expressed in terms of Γ and T . Rearranging Eq. A.105 and using Eq. A.83:

Ba =
Γab

Tab
A′b +

B′b
Tab

. (A.108)

Inserting this into Eq. A.106 and using Eq. A.83 then Eq. A.84, one finds:

Aa =
A′b
Tab

+
Γab

Tab
B′b, (A.109)

producing:

Dab =
1

Tab

(
1 Γab

Γab 1

)
. (A.110)

All other interfaces require the fields to also be propagated across the layer defined by

adjacent interfaces, not just transmitted or reflected at the first interface. Since each

wave simply accumulates a phase of φm = kmxtm in the x-dimension between the m and

the (m + 1)th interfaces, the field amplitudes between these two points (see Fig. A.5)

are thus related by: (
A′m
B′m

)
= Pm

(
Am

Bm

)
. (A.111)

where:

Pm =

(
eiφm 0

0 e−iφm

)
. (A.112)

such that for propagation across and between interfaces at xm and xm+1:(
Am−1

Bm−1

)
= Dm−1,mPm

(
Am

Bm

)
. (A.113)

This then allows one to express the evolution of the reciprocal fields from the outermost
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interface (x = xN+1) to the innermost (x = x0). With this in mind, it is clear that

propagation across the first interface (x = xN+1) needn’t consider initial phase accumu-

lation since the bounding medium is infinite, and the phase term becomes redundant.

The propagation of fields across the total system can thus be embodied in the M matrix

from Eq. A.104 as:

M =

(
M11 M12

M21 M22

)
=

(
N∏

m=1

Dm−1,mPm

)
DN,N+1. (A.114)

Directly from this, one can express the reflection and transmission coefficients for the

entire system. For propagation from the n0 region through to the nN+1 region, Γ0s and

T0s are found to be:

Γ0s =
B0

A0
=

M21

M11
,

T0s =
AN+1

A0
=

1
M11

.

(A.115)

(A.116)

where s ≡ N + 1 is defined for convenience. These expressions are derived from si-

multaneous equations provided by Eq. A.104 with BN+1 = 0 (physically required: no

incoming waves from infinity; BN+1 has nothing to have been reflected from, hence can’t

exist).

Just as for the single interface versions, Eqs. A.76 and A.77, from Γ0,N+1 and T0,N+1

one can define the reflectance (R0s) and transmittance (T0s) coefficients for the whole

system17:

R0s = |Γ0s|2 =
∣∣∣∣M21

M11

∣∣∣∣2 ,

T0s =
ksx

k0x
|T0s|2 =

ksx

k0x

∣∣∣∣ 1
M11

∣∣∣∣2 .

(A.117)

(A.118)

These coefficients can be evaluated for TE and TM waves for any conceivable stratified

planar system and are used explicitly in Chapter 3.

A.3.2 Bandgap Analysis of an Infinitely Periodic Multilayer Structure

While the matrix analysis of Section A.3.1 can be implemented for an arbitrary number of

layers N , the calculations become increasingly cumbersome as N → ∞; N ≥ 3 becomes

essentially prohibitive analytically and numerical calculations take longer for increasing
17This expression for T0s requires that the bounding media be dielectrics and the incident waves have

real k0x. The latter is satisfied when n0 is the lowest or equal-lowest refractive index in the system,
discussed in Section A.2.1.2, which is the case throughout this work.
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values of N . There is a more elegant way to describe the optical behaviour of an infinite

multilayer stack, involving mathematical techniques exploited predominantly in solid-

state physics. In fact, much of the following analysis is isomorphic to the Kronig-Penney

model used in solid-state physics to describe the energy levels of atomic lattices [181].

The treatment given here is similar to that from [153] but has been significantly reworked

in order to make it make clear, to simplify and to highlight the underlying physics of

certain theoretical forms in the current context (any results that appear quite different

in form to their equivalents in the cited references are described as such in the text).

An infinitely periodic multilayer structure is a essentially a one-dimensional lattice that

is invariant under lattice translation. For a lattice pitch Λ, Fig. 2.3 of Chapter 2, the

refractive index distribution must then satisfy:

n(x + Λ) = n(x). (A.119)

The most general one dimensional structure satisfying this condition is that of Eq. A.101,

but where the pattern repeats indefinitely for x < x0 and x > xN , i.e., a lattice unit cell

is then represented by a sub-section of the structure within some range x = xm → xm+Λ

for any m. Of course, it naturally follows that the sum of the unit cell’s layers’ thicknesses

sum to the pitch Λ =
∑N

m=0 tm.

The Bloch-Floquet theorem states that solutions for the appropriate wave equations

over this structure must be of the form [34]:

EK(x, z) = EK(x)e−iβze±iKx, (A.120)

where Ek(x) has the same periodicity as the supporting lattice:

EK(x + Λ) = EK(x), (A.121)

and K is called the Bloch wave number. The ambiguity in the sign of the exponential

argument comes from the fact that the Bloch wave can propagate either direction over

the one dimensional lattice. The fields between unit cells of the lattice thus differ by

a phase of KΛ, i.e., since the field amplitude EK at two points separated along the

x-dimension by a distance Λ must be the same, via Eq. A.120, the fields must differ by

a unitary factor expressing the accumulated phase EK → EKe−iKΛ (for propagation in

the positive x direction). In other words, the fields propagating across the unit cell are

related as: (
Am

Bm

)
= e±iKΛ

(
Am−N

Bm−N

)
. (A.122)
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Similar to the treatment in Section A.3.1, the propagation of fields across a unit cell

(Fig. A.5) can be described via a transfer matrix formulation:(
Am−N

Bm−N

)
= M

(
Am

Bm

)
, (A.123)

much like Eq. A.104. Indeed, the decomposition of M from Eq. A.114 also holds here,

where the relevant layers are only those of a unit cell and not of the entire (infinite)

system at hand.

Equations A.122 and A.123 both represent propagation of fields across the entire unit

cell. Combining them gives:(
M11M12

M21M22

)(
Am

Bm

)
= e∓iKΛ

(
Am

Bm

)
, (A.124)

which is clearly an eigenvalue equation with eigenvalue eiKΛ. According to general result

of Eq. B.9, this unit cell transfer matrix has eigenvalues:

e∓iKΛ = Tr(M/2) ±
√

Tr2(M/2) − det(M), (A.125)

where the ∓ and ± aren’t necessarily correlated.

The N = 2 special case is now focused on, the above results being valid for any number

of unit cell layers. The refractive index profile of a unit cell is thus:

n(x) =

⎧⎨⎩n1, xm−2 < x < xm−1

n2, xm−1 < x < xm,
, (A.126)

where nm+2 = nm by the periodic construction. The thickness of the unit cell is equal

to the lattice pitch Λ = tm + tm−1 = xm − xm−2.

The transfer matrix can thus be decomposed as per Eq. A.114:

M = D12P2D21P1. (A.127)

Terms from right to left (also Fig. A.5): propagation across layer with refractive index

n1, propagation across interface of refractive index n1 to n2, propagation across layer

with refractive index n2, propagation across interface of refractive index n2 to n1. The

end terms are different (P and D matrices), not both D matrices as in Eq. A.114,

since the unit cell repeats indefinitely (there is no final infinite homogeneous medium to
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propagate into); the expression for M must begin with a D and finish with a P , or vice

verca, in order to represent the periodicity of the system.

The details of the following deviate quite a bit from the treatment of [153] in that I

consider Γ and T explicitly in the matrices here. I feel this makes the analysis simpler

and more intuitive and also makes derivations based on the results easier to construct.

Expanding Eq. A.127 using Eqs. A.110 and A.112:

M = D12P2D21P1

=
1

T12T21

(
1 Γ12

Γ12 1

)(
eiφ2 0

0 e−iφ2

)(
1 Γ21

Γ21 1

)(
eiφ1 0

0 e−iφ1

)

=
1

T12T21

(
eiφ2 e−iφ2Γ12

eiφ2Γ12 e−iφ2

)(
eiφ1 e−iφ1Γ21

eiφ1Γ21 e−iφ1

)

=
1

T12T21

(
eiφ1eiφ2 + eiφ1e−iφ2Γ12Γ21 e−iφ1e−iφ2Γ12 + e−iφ1eiφ2Γ21

eiφ1eiφ2Γ12 + eiφ1e−iφ2Γ21 e−iφ1e−iφ2 + e−iφ1eiφ2Γ12Γ21

)
, (A.128)

implying (Eq. A.114):

M11 =
1

T12T21

(
eiφ1eiφ2 + eiφ1e−iφ2Γ12Γ21

)
=

eiφ1

T12T21

(
eiφ2 + e−iφ2Γ12Γ21

)
(by Eq. B.14) =

eiφ1

T12T21
[(1 + Γ12Γ21) cos φ2 + (1 − Γ12Γ21)i sinφ2]

(by Eq. A.84) = eiφ1

[
cos φ2 +

(
2

T12T21
− 1
)

i sinφ2

]
, (A.129)

M12 =
1

T12T21

(
e−iφ1eiφ2Γ21 + e−iφ1e−iφ2Γ12

)
=

e−iφ1

T12T21

(
eiφ2Γ21 + e−iφ2Γ12

)
(by Eq. A.83) = e−iφ1

Γ21

T12T21

(
eiφ2 − e−iφ2

)
= e−iφ1

Γ21

T12T21
2i sinφ2, (A.130)
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M21 =
1

T12T21

(
eiφ1eiφ2Γ12 + eiφ1e−iφ2Γ21

)
=

eiφ1

T12T21

(
eiφ2Γ12 + e−iφ2Γ21

)
(by Eq. A.83) = −eiφ1

Γ21

T12T21

(
eiφ2 − e−iφ2

)
= −eiφ1

Γ21

T12T21
2i sinφ2, (A.131)

M22 =
1

T12T21

(
e−iφ1eiφ2Γ12Γ21 + e−iφ1e−iφ2

)
=

e−iφ1

T12T21

(
eiφ2Γ12Γ21 + e−iφ2

)
(by Eq. B.14) =

e−iφ1

T12T21
[(1 + Γ12Γ21) cos φ2 − (1 − Γ12Γ21)i sinφ2]

(by Eq. A.84) = e−iφ1

[
cos φ2 −

(
2

T12T21
− 1
)

i sinφ2

]
. (A.132)

More succinctly:

M11 = eiφ1

[
cos φ2 +

(
2

T12T21
− 1
)

i sinφ2

]
M12 = e−iφ1

Γ21

T12T21
2i sinφ2

M21 = −eiφ1
Γ21

T12T21
2i sinφ2

M22 = e−iφ1

[
cos φ2 −

(
2

T12T21
− 1
)

i sinφ2

]
.

(A.133)

(A.134)

(A.135)

(A.136)

which holds for both TE and TM polarisations, taking the correct ΓTE,TM and TTE,TM

for each case. This formulation, and its derivation, is unique to this Thesis and is more

general than that typically shown in the literature [36, 153], as only Γ and T themselves

are used, an explicit form of them not being required.

The form of the transfer matrix in [36, 153] can be deduced from this by explicitly

expanding Γ and T via Eqs.A.70 to A.73. For TE polarisation:(
2

T12T21
− 1
)

=
(k1x + k2x)2

2k1xk2x
− 1 =

k2
1x + k2

2x

2k1xk2x
=

1
2

(
k1x

k2x
+

k2x

k1x

)
, (A.137)

and:

Γ21

T12T21
=

(
k2x−k1x
k1x+k2x

)
(

2k1x
k1x+k2x

2k2x
k1x+k2x

) =
(k2x − k1x)(k1x + k2x)

4k1xk2x
=

1
4

(
k2x

k1x
− k1x

k2x

)
, (A.138)
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The expansions for the TM polarisation produces exactly the same forms but with klx →
n2

l klx (as per Eqs. A.70 to A.73). Substituting Eqs. A.137 and A.138 into Eqs. A.133 to

A.136, for TE waves:

MTE
11 = eik1xt1

[
cos(k2xt2) +

i

2

(
k1x

k2x
+

k2x

k1x

)
sin(k2xt2)

]
MTE

12 =
ie−ik1xt1

2

(
k2x

k1x
− k1x

k2x

)
sin(k2xt2)

MTE
21 =

−ieik1xt1

2

(
k2x

k1x
− k1x

k2x

)
sin(k2xt2)

MTE
22 = e−ik1xt1

[
cos(k2xt2) −

i

2

(
k1x

k2x
+

k2x

k1x

)
sin(k2xt2)

]
.

(A.139)

(A.140)

(A.141)

(A.142)

and for TM waves (instead using the klx → n2
l klx forms of Eqs. A.137 and A.138):

MTM
11 = eik1xt1

[
cos(k2xt2) +

i

2

(
n2

1k1x

n2
2k2x

+
n2

2k2x

n2
1k1x

)
sin(k2xt2)

]
MTM

12 =
ie−ik1xt1

2

(
n2

2k2x

n2
1k1x

− n2
1k1x

n2
2k2x

)
sin(k2xt2)

MTM
21 =

−ieik1xt1

2

(
n2

2k2x

n2
1k1x

− n2
1k1x

n2
2k2x

)
sin(k2xt2)

MTM
22 = e−ik1xt1

[
cos(k2xt2) −

i

2

(
n2

1k1x

n2
2k2x

+
n2

2k2x

n2
1k1x

)
sin(k2xt2)

]
.

(A.143)

(A.144)

(A.145)

(A.146)

These explicit forms of M for the TE and TM waves are identical to those given in [36,

153] but they were arrived at here through a more general route here.

In either formulation, one can readily see that:

M22 =M∗
11, (A.147)

M21 =M∗
12. (A.148)

Indeed, from the precursor (Eq. A.128) of the general form of M (Eqs. A.133→ A.136),

and with the knowledge that Γ, T ∈ R in the absence of total reflection (θ ∈ R), as is

the case for the work at hand, one finds:

M11M22 = |M11|2 =
1

(T12T21)2
(eiφ1eiφ2 + eiφ1e−iφ2Γ12Γ21)(e−iφ1e−iφ2 + e−iφ1eiφ2Γ12Γ21)

=
1

(T12T21)2
[(Γ12Γ21)2 + (e2iφ2 + e−2iφ2)Γ12Γ21 + 1], (A.149)
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M12M21 = |M12|2 =
1

(T12T21)2
(e−iφ1eiφ2Γ21 + e−iφ1e−iφ2Γ12)(eiφ1e−iφ2Γ21 + eiφ1eiφ2Γ12)

=
1

(T12T21)2
[Γ2

21 + Γ2
12 + (e2iφ2 + e−2iφ2)Γ12Γ21]

(by Eq. A.83) =
(e2iφ2 + e−2iφ2 − 2)Γ12Γ21

(T12T21)2
. (A.150)

The matrix M is then found to be unitary (its determinant is unity):

det(M) = M11M22 − M12M21 = |M11|2 − |M12|2

=
[(Γ12Γ21)2 + (e2iφ2 + e−2iφ2)Γ12Γ21 + 1] − (e2iφ2 + e−2iφ2 − 2)Γ12Γ21

(T12T21)2

=
(Γ12Γ21)2 + 2Γ12Γ21 + 1

(T12T21)2

=
(Γ12Γ21 + 1)2

(T12T21)2

(by Eq. A.84) = 1. (A.151)

Since M is unitary, by Section B.2, its two eigenvalues must be the inverse of each other.

From Eq. A.124, the eigenvalues e∓iKλ satisfy this requirement. These eigenvalues must

then satisfy [using Eq. A.125 with det(M) = 1]:

e∓iKΛ =
M11 + M22

2
±
√(

M11 + M22

2

)2

− 1. (A.152)

The ∓ and ± aren’t necessarily correlated.

By adding the two eigenvalues together, one can then solve for the Bloch wavenumber

itself:

K(ñ, ω) =
1
Λ

cos−1 [Re(M11)] (A.153)

where Eq. A.147 has been used, producing M11 + M22 = M11 + M∗
11 = Re(M11).

Immediately one can say that for waves with ñ and ω producing |Re(M11)| ≤ 1, K

will be real and hence, by the field expression of Eq. A.120, correspond to Bloch waves

propagating in one or the other direction across the infinite structure without loss.

However, if a wave produces |Re(M11)| > 1, then K will be complex and hence have

an imaginary part: K = mπ
Λ ± iKi, where Ki ∈ R

+. More precisely, for Re(M11) > 1,

K = mπ
Λ + iKi, and for Re(M11) ≤ −1, K = (m+1)π

Λ − iKi, due to the nature of the

cos−1 function. By Eq. A.120, Re(M11) > 1 thus corresponds to a Bloch wave with

exponential dependence eiKx, in order to avoid an unphysical gain term. Similarly,

Re(M11) ≤ −1 corresponds to a Bloch wave with exponential dependence e−iKx. This
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Bandgap condition/region K(ñ, ω) Bloch wave

Re(M11) > 1 K = mπ + iKi EK(x)e−iβzeiKx

Re(M11) ≤ −1 K = (m + 1)π − iKi EK(x)e−iβze−iKx

Table A.1: Physically allowed Bloch wavenumbers and fields for the two fundamental

bandgap conditions, arising from the general condition |Re(M11)| > 1, which defines the

bandgap regions on the (ñ, ω) plane. Ki ∈ R
+. The branches of the cos−1 function are unique

to order m ∈ Z.

analysis is summarised in Table A.1. These summarised points I have derived specifically

for this Thesis since they are subtle but necessary for the proper treatment of this

problem; to the best of my knowledge these relations are not discussed in the literature,

possibly being implicitly assumed or simply for brevity.

Therefore, for |Re(M11)| > 1, the physically permitted Bloch wave is evanescent and

decays exponentially into the structure. Waves residing in this region of the (ñ, ω) plane

are said to be within the structure’s bandgaps, i.e., the regions in between the banded

regions in which the Bloch waves are permitted to propagate.

The edges of the bandgaps are thus defined by the equality |Re(M11)| = 1.

It is noteworthy that, via Eqs. A.133 to A.136, the expression can be expanded for both

TE and TM polarisations as:

Re(M11) =
eiφ1

2

[
cos φ2 +

(
2

T12T21
− 1
)

i sinφ2

]
+

e−iφ1

2

[
cos φ2 −

(
2

T12T21
− 1
)

i sinφ2

]
=

eiφ1 + e−iφ1

2
cos φ2 +

(
2

T12T21
− 1
)

eiφ1 − e−iφ1

2
i sinφ2

= cos φ1 cos φ2 −
(

2
T12T21

− 1
)

sinφ1 sinφ2

(by Eq. B.15) =
1 +
(

2
T12T21

− 1
)

2
cos(φ1 + φ2) +

1 −
(

2
T12T21

− 1
)

2
cos(φ1 − φ2)

=
cos(φ1 + φ2)

T12T21
+
(

1 − 1
T12T21

)
cos(φ1 − φ2). (A.154)
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A.4 Homogeneous Cylindrical Waveguides

The asymptotic analyses below are not trivial and are not made as explicit in the liter-

ature as they could be. I have tried to expand on the analysis here to demonstrate the

particulars of the derivations made in Ref. [5].

As will be shown later, physical insight can be drawn by considering the similarities

between guidance within a Bragg fiber and a simple dielectric ‘tube’ (a circular air

hole surrounded by a uniform dielectric, see Fig. A.7). The tube was one of the first

structures considered for telecommunications [5, 7]. Marcatili et al. [5] describe the

theory of propagation within tube structures using the general solution to the step-

index waveguide of Stratton [6] where the core refractive index n0 can be higher or

lower than the cladding index n1. The core diameter is tcore = t0 = 2a (a is the core

radius).

The main difference between the two cases is that the truly bound modes of the n0 > n1

case are replaced by the fundamentally leaky modes of the n0 < n1 case (like the tube).

We begin by considering the most general case of arbitrary fields and work towards the

case of guided waves in a step-index waveguide for both n0 > n1 and, of most interest

for this work, n0 < n1 (Fig. A.7).

Figure A.7: Schematic of a cylindrical depressed-core dielectric waveguide (a tube)
with infinite cladding extent. Here the notation is simplified as n0 = ncore and n1 =
nclad, and t0 = tcore = 2a and t1 = tclad.
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A.4.1 Arbitrary Fields from Cylindrical Wavefunctions

Any electromagnetic field within a homogeneous and isotropic domain can be repre-

sented, in cylindrical coordinates, by a linear combination of the elementary cylindrical

wave functions [6]-§ 6.4:

ψlβki
= eilθJl(

√
k2

i − β2r)e±iβz−iωt, (A.155)

ψlβki
= eilθH

(1)
l (
√

k2
i − β2r)e±iβz−iωt. (A.156)

Equation A.155 applies to propagation within spatially finite domains (including the

r = 0 axis) since the Bessel function of the first kind Jl(r) is finite at r = 0. For

propagation in media far from such regions, though, the wavefunction must behave

appropriately. The wavefunction of Eq. A.156 satisfies this since as r → ∞, the

spatial part reduces asymptotically to
√

2
πre−i π

2
(l+ 1

2
)eire±iβz (Eq. B.34), representing

a sinusoidal wave propagating radially outward, as expected for a wave far from its

source. Note that if the propagating mode has a propagation constant β ∈ R produc-

ing
√

k2
i − β2 = iIm{

√
k2

i − β2}, then, using the relation Kn(z) ≡ π
2 in+1H

(1)
n (iz), the

cladding field becomes evanescent (exponentially decaying as r → ∞), as expected for

waveguides with ncore > nclad which produce such β. This behaviour explicitly demon-

strates the main difference between bound- and leaky-mode guidance.

These cylindrical (scalar) wavefunctions can be used to find the values of the vectorial

electric and magnetic fields. From a general consideration of the impedances of the

individual field components, one can show that the field components can be expressed

in terms of wavefunctions such as Eqs. A.155 and A.156 as ([6]-§ 6.6); for transverse

electric (TE) components:

Er = ± iμω

r

∂ψ

∂θ
, Eθ = ±− iμω

∂ψ

∂r
, Ez = 0,

Hr = ±iβ
∂ψ

∂r
, Hθ = ± iβ

r

∂ψ

∂θ
, Hz =

(
k2

i − β2
)
ψ,

and for transverse magnetic (TM) components:

Er = ±iβ
∂ψ

∂r
, Eθ = ± iβ

r

∂ψ

∂θ
, Ez =

(
k2

i − β2
)
ψ,

Hr = ± ik2
i

μω

1
r

∂ψ

∂θ
, Hθ = ± ik2

i

μω

∂ψ

∂r
, Hz = 0.

Here TE fields are defined in that the longitudinal electric field component is absent:

Ez = 0, [6]-§ 6.1. In the same sense, transverse magnetic fields are defined by Hz = 0.

While typically consistent, much care must be taken when interpreting the connection

with the TE and TM fields of the ray picture discussed in Sections A.2.
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When initial conditions are given over a plane or cylindrical surface, a solution may be

constructed by a superposition of elementary wave functions such as those in Eqs. A.155

and A.156. For fixed values of ki and β and a given set of elementary wavefunctions

ψl, by superposing the above impedance-derived field components, an arbitrary solution

would thus be:

Er = iβ
∞∑

l=−∞
al

∂ψl

∂r
− μω

r

∞∑
l=−∞

lblψl,

Eθ = −β

r

∞∑
l=−∞

lalψl − iμω
∞∑

l=−∞
bl

∂ψl

∂r
, (A.157)

Ez =
(
k2

i − β2
) ∞∑

l=−∞
alψl,

Hr =
k2

i

μω

1
r

∞∑
l=−∞

lalψl + iβ

∞∑
l=−∞

bl
∂ψl

∂r
,

Hθ =
ik2

i

μω

∞∑
l=−∞

al
∂ψl

∂r
− β

r

∞∑
l=−∞

lblψl, (A.158)

Hz =
(
k2

i − β2
) ∞∑

l=−∞
blψl,

where al and bl are coefficients that can be determined from initial conditions.

A.4.2 Waveguidance Along a Cylinder

The general expressions above for an arbitrary field in cylindrical coordinates, Eqs. A.157

and A.158, can now be applied to the specific case of a cylindrical waveguide. No

restrictions on the core or cladding material are made yet18, except that the core has

refractive index na and the cladding nb. Let the core radius be a and the cladding be

infinite.

Since guided waves must have finite amplitude within the guidance region, r < a, accord-

ing to the previous section, Bessel functions of the first kind must be used (Eq. A.155).

Outside of the guidance region, r > a, the wave fields must behave correctly at infinity.

According to the previous section, Hankel functions must be used here. Indeed, the

asymptotically sinusoidal behaviour of H
(1)
l (r) (Section A.4.1 and Appendix B.4.2) as

r → ∞ is strictly required for the cladding fields of waveguide radiation modes [146,

178, 214], and so its requirement here is natural.
18Including the possibility of non-unity μr and complex ni (i.e., metals), although this isn’t of as much

interest as the dielectric case (μr = 1, ni ∈ R) for this work.
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Using this knowledge, we can now determine the forms of the fields inside and outside

the cylinder. For all points r < a (in the core):

Er =
∞∑

l=−∞

[
iβa

u
J ′l (ur/a)al −

μaωla2

u2r
Jl(ur/a)bl

]
Fl,

Eθ = −
∞∑

l=−∞

[
lβa2

u2r
Jl(ur/a)al +

iμaaω

u
J ′l (ur/a)bl

]
Fl, (A.159)

Ez =
∞∑

l=−∞
[Jl(ur/a)al]Fl,

Hr = −
∞∑

l=−∞

[
lkaa

2

μaωu2r
Jl(ur/a)al +

iβa

u
J ′l (ur/a)bl

]
Fl,

Hθ =
∞∑

l=−∞

[
ik2

aa

μaωu
J ′l (ur/a)al −

lβa2

u2r
Jl(ur/a)bl

]
Fl, (A.160)

Hz =
∞∑

l=−∞
[Jl(ur/a)bl] Fl,

and for all points r > a (in the cladding):

Er =
∞∑

l=−∞

[
iβa

v
H

(1)′
l (vr/a)cl −

μbωla2

v2r
H

(1)
l (vr/a)dl

]
Fl,

Eθ = −
∞∑

l=−∞

[
lβa2

v2r
H

(1)
l (vr/a)cl +

iμbaω

v
H

(1)′
l (vr/a)dl

]
Fl, (A.161)

Ez =
∞∑

l=−∞

[
H

(1)
l (vr/a)cl

]
Fl,

Hr = −
∞∑

l=−∞

[
lkaa

2

μbωv2r
H

(1)
l (vr/a)cl +

iβa

v
H

(1)′
l (vr/a)dl

]
Fl,

Hθ =
∞∑

l=−∞

[
ik2

aa

μbωv
H

(1)′
l (vr/a)cl −

lβa2

v2r
H

(1)
l (vr/a)dl

]
Fl, (A.162)

Hz =
∞∑

l=−∞

[
H

(1)
l (vr/a)dl

]
Fl,

where:

u = a
√

k2n2
a − β2 = ak

√
n2

a − ñ2, (A.163)

v = a
√

k2n2
b − β2 = ak

√
n2

b − ñ2, (A.164)

and the azimuthal periodicity and longitudinal and temporal oscillations are taken care

of with:

Fl = eilθ+iβz−iωt. (A.165)
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The prime above the Bessel and Hankel functions implies differentiation with respect to

the argument.

The coefficients al, bl, cl, and dl are as yet undetermined. They can be related, however,

by enforcing the required continuity boundary conditions at the interface; across r = a,

the tangential components of the fields (Eθ, Hθ, Ez, Hz) are continuous. By equating the

ith terms of the tangential components in Eqs. A.159 and A.160 with their counterparts

in Eqs. A.161 and A.162, one finds, from the tangential components of E:

lβ

u2
Jl(u)al +

iμaω

u
J ′l (u)bl =

lβ

v2
H

(1)
l (v)cl +

iμbω

v
H

(1)′
l (v)dl, (A.166)

Jl(u)al = H
(1)
l (v)cl, (A.167)

and from the tangential components of H:

ik2
a

μaωu
J ′l (u)al −

lβ

u2
Jl(u)bl =

ik2
b

μbωv
H

(1)′
l (v)cl −

lβ

v2
H

(1)
l (v)dl, (A.168)

Jl(u)bl = H
(1)
l (v)dl. (A.169)

Recasting as a matrix equation:⎛⎜⎜⎜⎜⎜⎝
Jl(u) 0 −H

(1)
l (v) 0

0 Jl(u) 0 −H
(1)
l (v)

lβ
u2 Jl(u) iμaω

u J ′l (u) − lβ
v2 H

(1)
l (v) − iμbω

v H
(1)′
l (v)

ik2
a

μaωuJ ′l (u) − lβ
u2 Jl(u) − ik2

b
μbωvH

(1)′
l (v) lβ

v2 H
(1)
l (v)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
al

bl

cl

dl

⎞⎟⎟⎟⎟⎟⎠ = Aα = 0. (A.170)

This set of equations represent a homogeneous system of linear equations (Aα = 0) of the

coefficients al, bl, cl, and dl, which admits a nontrivial solution only when its determinant

disappears: det(A) = 0. Given this, the propagation constant β can be determined by

enforcing the condition det(A)=0, which is independent of the value of the coefficients

themselves.
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Evaluating det(A) by expanding it into minors, and setting Jl(u) → J and H
(1)
l (v) → H

for convenience, one finds:

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

J 0 −H 0

0 J 0 −H
lβ
u2 J iμaω

u J ′ − lβ
v2 H − iμbω

v H ′
ik2

a
μaωuJ ′ − lβ

u2 J − ik2
b

μbωvH ′ lβ
v2 H

∣∣∣∣∣∣∣∣∣∣∣
=J

∣∣∣∣∣∣∣∣
J 0 −H

iμaω
u J ′ − lβ

v2 H − iμbω
v H ′

lβ
u2 J − ik2

b
μbωvH ′ lβ

v2 H

∣∣∣∣∣∣∣∣− H

∣∣∣∣∣∣∣∣
0 J −H

lβ
u2 J iμaω

u J ′ − iμbω
v H ′

ik2
a

μaωuJ ′ − lβ
u2 J lβ

v2 H

∣∣∣∣∣∣∣∣
=J

{
J

∣∣∣∣∣ − lβ
v2 H − iμbω

v H ′

− ik2
b

μbωvH ′ lβ
v2 H

∣∣∣∣∣− H

∣∣∣∣∣
iμaω

u J ′ − lβ
v2 H

lβ
u2 J − ik2

b
μbωvH ′

∣∣∣∣∣
}

− H

{
−J

∣∣∣∣∣ lβ
u2 J − iμbω

v H ′
ik2

a
μaωuJ ′ lβ

v2 H

∣∣∣∣∣− H

∣∣∣∣∣ lβ
u2 J iμaω

u J ′
ik2

a
μaωuJ ′ − lβ

u2 J

∣∣∣∣∣
}

=J2

[
−
(

lβ

v2

)2

H2 −
(

iμbω

v

)(
ik2

b

μbωv

)
H ′2
]

− JH

[
−
(

iμaω

u

)(
ik2

b

μbωv

)
J ′H ′ −

(
lβ

u2

)(
lβ

v2

)
JH

]
+ JH

[(
lβ

u2

)(
lβ

v2

)
JH +

(
iμbω

v

)(
ik2

a

μaωu

)
J ′H ′

]
+ H2

[
−
(

lβ

u2

)2

J2 −
(

iμaω

u

)(
ik2

a

μaωu

)
J ′2
]

=J2H2

[
2
(

lβ

u2

)(
lβ

v2

)
−
(

lβ

u2

)2

−
(

lβ

v2

)2
]

+ JJ ′HH ′
[(

iμaω

u

)(
ik2

b

μbωv

)
+
(

iμbω

v

)(
ik2

a

μaωu

)]
− J2H ′2

(
iμbω

v

)(
ik2

b

μbωv

)
− J ′2H2

(
iμaω

u

)(
ik2

a

μaωu

)
= − J2H2l2β2(1/u2 − 1/v2)2

− JJ ′HH ′[(μb/μa)k2
a + (μa/μb)k2

b]/(uv)

+ J2H ′2(k2
b/v2)

+ J ′2H2(k2
a/u2). (A.171)

and then by enforcing det(A) = 0 and dividing all by J2H2:

J ′2

u2J2
k2

a +
H ′2

v2H2
k2

b − J ′H ′

uvJH
[(μb/μa)k2

a + (μa/μb)k2
b] = l2β2(1/u2 − 1/v2)2. (A.172)
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Factorising this and replacing the indices and arguments of the functions, one gets:⎡⎣μa

u

J
′
l (u)

Jl(u)
− μb

v

H
(1)
l

′
(v)

H
(1)
l (v)

⎤⎦⎡⎣ k2
a

μau

J
′
l (u)

Jl(u)
− k2

b

μbv

H
(1)
l

′
(v)

H
(1)
l (v)

⎤⎦ = l2β2

(
1
u2

− 1
v2

)2

(A.173)

which for purely dielectric media (μi → 1) becomes:

⎡⎣ J
′
l (u)

uJl(u)
+

H
(1)
l

′
(v)

vH
(1)
l (v)

⎤⎦⎡⎣n2
0

J
′
l (u)

uJl(u)
+ n2

1

H
(1)
l

′
(v)

vH
(1)
l (v)

⎤⎦ = l2
β2

k2

(
1
u2

+
1
v2

)2

(A.174)

This is the dispersion relation or characteristic equation for the cylindrical waveguide.

It can be used to determine the longitudinal phase accumulation per unit length, the

propagation constant β, of an arbitrary supported mode. Since Eq. A.174 is transcen-

dental, it must be solved numerically. Alternatively, one can enforce approximations to

simplify its manipulation. Note that these days it is far more common for textbooks to

cover the derivation of raised-core cylindrical waveguide where n0 > n1 (the ‘step-index

fibre’) due to the overwhelming influence of the now indispensable silica step-index fibre

used throughout modern telecommunications. Indeed, it can be shown that Eq. (A.174)

reduces to the typical full-vector dispersion equation for this more familiar raised-core

step index fiber when one enforces na > ñ > nb, and noting the relation between

the modified Bessel function of the second kind and the first order Hankel function

Kn(z) ≡ π
2 in+1H

(1)
n (iz). A worked demonstration of this is given in Appendix B.4.1

A.4.3 Asymptotic Form of Dielectric Tube Modes

Consider now an air/vacuum-core (n0 = 1), such as in Fig. 2.2. Making the reasonable

assumptions [5]:

ka  |l|ulm, (A.175)

|(β/k) − 1| � 1, (A.176)

the problem is simplified substantially. a is the core radius, as defined above. ulm is

the mth zero of the Bessel function Jl−1(ulm) where l and m are the azimuthal and

radial quantum numbers of a given mode respectively; Table A.2 shows a selection of

approximations to some low-order zeroes. Inequality (A.175) states that the wavelength

of the guided light must be much smaller than the core and that only low-order modes

be considered, while inequality (A.176) restricts accurate analysis to modes with β close

to the air-line β = k. These assumptions are satisfied by most of the structures and

modes considered here.
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l ↓ m → 1 2 3 4
1 2.405 5.52 8.654 11.796

2 or 0 3.832 7.016 10.173 13.324
3 or -1 5.136 8.417 11.62 14.796
4 or -2 6.380 9.761 13.015 16.223

Table A.2: Approximate values of low-order zeroes ulm of Jl−1(z) for z ∈ R, i.e., values

producing Jl−1(ulm) = 0. The degeneracy for values |l| > 1 arises from the Bessel function

index symmetry property J−l = (−1)lJl.

Using these assumptions, the dispersion relation can be manipulated to give the propa-

gation constant analytically [5]:

β =
2π

λ

{
1 − 1

2

(
ulmλ

2πR

)2
}

+ i
(ulm

2π

)2 λ2

R3
νl, (A.177)

where νl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√

n2
1−1

for TE0m

n2
1√

n2
1−1

for TM0m

n2
1+1

2
√

n2
1−1

for HElm.

An important corollary of this is that all the mode types (TE,TM, and HE) of a given

set (l,m) are degenerate in Re{β} under this approximation. Im{β}, however, is po-

larization dependent. This is a result of the Brewster phenomenon mentioned in Sec-

tion A.2.1.2, and for the same reasons, sees the TM mode always having a higher loss

than the TE. The hybrid modes have a loss somewhere in between since their wave-

vectors are composed of both TE and TM components (i.e., they correspond to skew

rays in the plane-wave regime).

Note how modes lying close to the light-line have the lowest loss: as λ decreases, Re{β}
approaches k0 monotonically while Im{β} is proportional to λ2 and hence decreases.

From a ray picture, β approaching the light-line is equivalent to bound rays approach

glancing incidence, thus confinement loss is reduced as the Fresnel reflectance is increased

(Fig. A.4).
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A.5 Periodic Multilayer Cylindrical Waveguides:

Bragg Fibres

A.5.1 Transfer Matrix Solution of a Bragg Fibre

I will refer to the method shown here as the cylindrical transfer matrix method (cTMM)

since it is conceptually identical to the pTMM from Section A.3.1 discussed above, ex-

cept that here cylindrical waves, as discussed in Section A.4.1, are used to describe

guidance within structures consisting of concentric cylindrical features (forming annular

layers). As formulated here, the method is applied to the focus of this Thesis, Bragg fi-

bres (two annular layer types), but the treatment can easily be generalised to arbitrarily

many types of layers (layers of arbitrary thickness, refractive index and number). The

technique shown here closely follows that of Yeh and Yariv [37] but here I have explicitly

expanded many of the subtle derivation steps. It is noteworthy that the Bessel func-

tion basis treatment of [37] has been comprehensively reformulated in terms of Hankel

functions19 and analysed further by Street and de Sterke [39]. The use of the former

formulation here is arbitrary.

A Bragg fibre typically consists of a central cylindrical core region of low refractive index

enveloped by concentric, alternating, rings of two high-index dielectric materials. The

refractive index distribution for an arbitrary number of layers is represented by:

n(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ncore, 0 ≤ r < r0

n1, rm ≤ r < rm+1

n0, rm+1 ≤ r < rm+2,

, (A.178)

where m ∈ {0, 2, 4, . . .}. rcore ≡ r0 and ncore are the radius and refractive index of the

core defect, respectively. The inner ring of a Bragg fibre typically has a higher refractive

index than the second, such that n1 > n0. By definition, the core has refractive index

equal to or lower than the cladding layers’: ncore ≤ n0.
19Since the first and second order Hankel functions naturally form a complete set; they are complex

superpositions of Jl and Yl, as per Section B.4.2.
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More specifically, for N layers, one has the distribution:

n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ncore, 0 ≤ r < r0

n1, r0 ≤ r < r1

n0, r1 ≤ r < r2

n1, r2 ≤ r < r3

...
...

n0, rN−1 ≤ r < rN

n1, r ≥ rN

, (A.179)

where the terminating substrate is arbitrarily high-index, simply because this is often

the case of concern for this work. The precise values of the refractive indices is of little

concern for the derivation of the solution here.

The treatment here is similar to that for the homogeneous cladding case of Section A.4,

but where the fields in each of the layers must be considered. The pioneering approach

of [37] forms the basis of the method used here. As such, the dielectric assumption won’t

be enforced for this section, permitting arbitrary μr, noting that the dielectric case is

trivially derived by setting μr → 1 in the results.

As per Section A.1.4, this longitudinally invariant waveguide will support longitudinally

and temporally harmonic fields, Eqs. A.21 and A.22:

E(r⊥, z) =E(r⊥)ei(βz−ωt),

H(r⊥, z) =H(r⊥)ei(βz−ωt).

The waveguide theory covered in Section A.1.3 shows that, within a given homogeneous

region (such as the core or a layer), the transverse components of the fields may be

expressed in terms of the longitudinal components via Eqs. A.40 to A.43. The problem

thus reduces to one of solving for Ez and Hz only. These longitudinal components

were shown to satisfy their own wave equations, Eqs. A.44 and A.44, which are explicit

cylindrical formulations of the Helmholtz equation (Eq. A.46):

[∇2
⊥ + k2(n2μr − ñ2)]

{
Ez

Hz

}
= 0.
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General solutions to this wave equation are [37]:

Ez = [AmJl(klxr) + BmYl(kmxr)] cos(lθ + φm), (A.180)

Hz = [CmJl(klxr) + DmYl(kmxr)] cos(lθ + ψm), (A.181)

where Jl and Yl are ordinary Bessel functions of the first and second kind (Section B.4),

respectively, Am, Bm, Cm and Dm are arbitrary weighting coefficients of the Bessel func-

tions, φ and ψ account for an arbitrary azimuthal phase in the fields, l ∈ Z determines

the order of the solutions, and m ∈ {core, 1, 2} determines the homogeneous region the

local fields are in. klx = k
√

n2
l − ñ2 has the same form as per previous sections, but

where μ terms are accommodated. The fields about an arbitrary cladding interface at

r = ρ are taken as:

{Ez, Hz} =

⎧⎨⎩[{A1, C1}Jl(k1xr) + {B1, D1}Yl(k1xr)] cos(lθ + {ψ1, φ1}) r < ρ

[{A2, C2}Jl(k2xr) + {B2, D2}Yl(k2xr)] cos(lθ + {ψ2, φ2}) r > ρ
.

(A.182)

Arbitrarily, this particular example has a type 1 layer for the small r side of the interface

and a type 2 layer on the other side—the opposite will hold for an adjacent interface.

These two arbitrary solutions in adjoining regions can be related by enforcing continuity

boundary conditions at the r = ρ interface; the field components tangential to the inter-

face (Ez, Hz, Eθ, Hθ) must be continuous across r = ρ. The Bessel function amplitudes

of Eqs. A.182 can thus be related as:⎛⎜⎜⎜⎜⎜⎝
A2

B2

C2

D2

⎞⎟⎟⎟⎟⎟⎠ = M21(ρ)

⎛⎜⎜⎜⎜⎜⎝
A1

B1

C1

D1

⎞⎟⎟⎟⎟⎟⎠ (A.183)

M21 thus represents a transfer matrix, relating the field amplitudes on one side of the

interface to those on the other. In this sense, this treatment is very similar to the matrix

approach for determining the fields of a multilayer planar system in Section A.3.1.

The form of M21 is now considered.

The continuity of Ez and Hz at r = ρ implies the cos terms must be equal such that:

φ1 =φ2 = φ, (A.184)

ψ1 =ψ2 = ψ. (A.185)
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With this given, equating the Bessel terms for Ez and Hz gives, respectively:

A1Jl(k1xρ) + B1Yl(k1xρ) = A2Jl(k2xρ) + B2Yl(k2xρ), (A.186)

C1Jl(k1xρ) + D1Yl(k1xρ) = C2Jl(k2xρ) + D2Yl(k2xρ). (A.187)

Note that ∂/∂(k1xρ) of Eq. A.187 produces:

k1x[C1J
′
l (k1xρ) + D1Y

′
l (k1xρ)] = k2x[C2J

′
l (k2xρ) + D2Y

′
l (k2xρ)], (A.188)

where, as in previous sections, the prime indicates derivation with respect to the argu-

ment, and it is noted that for some function F (k2xρ):

∂F (k2xρ)
∂(k1xρ)

=
∂F (k2xρ)
∂(k2xρ)

∂(k2xρ)
∂(k1xρ)

= F ′(k2xρ)
∂k2x

∂k1x
= F ′(k2xρ)

∂k2x

ñ

ñ

∂k1x
= F ′(k2xρ)

k2x

k1x
.

Substituting Eqs. A.182 into Eq. A.40, the continuity of Eθ implies [37]:

1
k2

1x

{
l

ρ
[A1Jl(k1xρ) + B1Yl(k1xρ)] sin(lθ + φ)

+
ωμ1k1x

β
[C1J

′
l (k1xρ) + D1Y

′
l (k1xρ)] cos(lθ + ψ)

}
= {LHS|1 → 2}, (A.189)

Where the right hand side implies it has the same functional form as the left hand side

(LHS) but where the index 1 is replaced by 2. Factoring out the sin and cos terms

from A.189, one finds:

l

ρ

[
A1Jl(k1xρ) + B1Yl(k1xρ)

k2
1x

− A2Jl(k2xρ) + B2Yl(k2xρ)
k2

2x

]
sin(lθ + φ)

=
ωμ1k1x

β

{
μ1

k1x
[C1J

′
l (k1xρ) + D1Y

′
l (k1xρ)] − μ2

k2x
[C2J

′
l (k2xρ) + D2Y

′
l (k2xρ)]

]
cos(lθ + φ).

(A.190)

From this result, Eqs. A.186 and A.188 imply that the grouped Bessel terms can not

cancel out due to the factor of 1/kmx for the Am and Bm unprimed coefficient terms

and the μm/kmx factor for the Cm and Dm primed coefficient terms (the trivial case of

k1x = k2x being neglected). One can thus deduce the equivalence (up to a sign) of the

sin and cos factors since they hold all the θ dependence, producing tighter restrictions

on the azimuthal phase terms:

sin(lθ + φ) = ± cos(lθ + ψ) (A.191)

⇒ φ =ψ ± π

2
. (A.192)
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Incidentally, similarly to Eq. A.189, the continuity of Hz implies:

1
k2

1x

{
l

ρ
[C1Jl(k1xρ) + D1Yl(k1xρ)] sin(lθ + ψ)

+
ωε1k1x

β
[A1J

′
l (k1xρ) + B1Y

′
l (k1xρ)] cos(lθ + φ)

}
= {LHS|1 → 2}. (A.193)

With the knowledge that φ = ψ ± π
2 , and arbitrarily setting φ = 0, the ambiguity in the

± term allows the z-components to be classified into two categories, I and II:

Ez =[AJl(kmxr) + BYl(kmxr)]

⎧⎨⎩cos(lθ) Category I

sin(lθ) Category II
, (A.194)

Hz =[CJl(kmxr) + DYl(kmxr)]

⎧⎨⎩sin(lθ) Category I

cos(lθ) Category II
. (A.195)

Since only sin or cos terms appear (and hence can be factored out and cancelled) for the

continuity conditions under a specific Category, the boundary conditions Eqs. A.186,

A.187, A.189 and A.193 can be re-written in simpler forms. For Category I:

A1Jl(k1xρ) + B1Yl(k1xρ) ={LHS|1 → 2} (A.196)

C1J
′
l (k1xρ) + D1Y

′
l (k1xρ) ={LHS|1 → 2} (A.197)

1
k2

1x

{
l

ρ
[A1Jl(k1xρ) + B1Yl(k1xρ)]

+
ωμ1k1x

β
[C1J

′
l (k1xρ) + D1Y

′
l (k1xρ)]

}
={LHS|1 → 2}, (A.198)

1
k2

1x

{
l

ρ
[C1Jl(k1xρ) + D1Yl(k1xρ)]

+
ωε1k1x

β
[A1J

′
l (k1xρ) + B1Y

′
l (k1xρ)]

}
={LHS|1 → 2}. (A.199)

Category II bears the same results but with the coefficient l/ρ → −l/ρ (due to the

difference in coefficient signs between Eqs. A.189 and A.193). These relations can be

written as a matrix equation:

M1(ρ)

⎛⎜⎜⎜⎜⎜⎝
A1

B1

C1

D1

⎞⎟⎟⎟⎟⎟⎠ = M2(ρ)

⎛⎜⎜⎜⎜⎜⎝
A2

B2

C2

D2

⎞⎟⎟⎟⎟⎟⎠ (A.200)
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where:

Mm(ρ) =

⎛⎜⎜⎜⎜⎜⎝
Jl(kmxρ) Yl(kmxρ) 0 0

ωεm
βkmx

J ′l (kmxρ) ωεm
βkmx

Y ′l (kmxρ) l
k2

mxρ
Jl(kmxρ) l

k2
mxρ

Yl(kmxρ)

0 0 Jl(kmxρ) Yl(kmxρ)
l

k2
mxρ

Jl(kmxρ) l
k2

mxρ
Yl(kmxρ) ωεm

βkmx
J ′l (kmxρ) ωεm

βkmx
Y ′l (kmxρ)

⎞⎟⎟⎟⎟⎟⎠ . (A.201)

Note the very close similarity to the boundary condition matrix equation for the ho-

mogeneous cladding cylindrical waveguide, Eq. A.170, derived in the previous section.

This is to be expected since the system is almost identical, save for the existence of a

multiplicity of interfaces which permit both incoming and outgoing waves in a given

domain. The treatment of the two cases is slightly different here for purely historical

reasons. Indeed, one would expect to recover Eq. A.170 for the case of a single interface

here.

The matrix M21 of Eq. A.183 can thus be re-written as:

M21 = M2(ρ)−1M1(ρ), (A.202)

where, after significant matrix manipulation, one can show [36] the form of M21 is

explicitly:

M21 =
π

2
k2xρ

⎛⎜⎜⎜⎜⎜⎝
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞⎟⎟⎟⎟⎟⎠ , (A.203)
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where [37]:

m11 = Jl(k1xρ)Y ′l (k2xρ) − (k2xn2
1/k1xn2

2)J
′
l (k1xρ)Yl(k2xρ),

m12 = Yl(k1xρ)Y ′l (k2xρ) − (k2xn2
1/k1xn2

2)Y
′
l (k1xρ)Yl(k2xρ),

m13 = (βl/ωn2
2)(1/k2xρ − 1/k1xρ)Jl(k1xρ)Yl(k2xρ),

m14 = (βl/ωn2
2)(1/k2xρ − 1/k1xρ)Yl(k1xρ)Yl(k2xρ),

m21 = (k2xn2
1/k1xn2

2)J
′
l (k1xρ)Jl(k2xρ) − Jl(k1xρ)J ′l (k2xρ),

m22 = (k2xn2
1/k1xn2

2)Y
′
l (k1xρ)Jl(k2xρ) − Yl(k1xρ)J ′l (k2xρ),

m23 = (βl/ωn2
2)(1/k1xρ − 1/k2xρ)Jl(k1xρ)Jl(k2xρ),

m24 = (βl/ωn2
2)(1/k1xρ − 1/k2xρ)Yl(k1xρ)Jl(k2xρ),

m31 = (βl/ωμ2)(1/k2xρ − 1/k1xρ)Jl(k1xρ)Yl(k2xρ),

m32 = (βl/ωμ2)(1/k2xρ − 1/k1xρ)Yl(k1xρ)Yl(k2xρ),

m33 = Jl(k1xρ)Y ′l (k2xρ) − (k2xμ1/k1xμ2)J ′l (k1xρ)Yl(k2xρ),

m34 = Yl(k1xρ)Y ′l (k2xρ) − (k2xμ1/k1xμ2)Y ′l (k1xρ)Yl(k2xρ),

m41 = (βl/ωμ2)(1/k1xρ − 1/k2xρ)Jl(k1xρ)Jl(k2xρ),

m42 = (βl/ωμ2)(1/k1xρ − 1/k2xρ)Yl(k1xρ)Jl(k2xρ),

m43 = (k2xμ1/k1xμ2)J ′l (k1xρ)Jl(k2xρ) − Jl(k1xρ)J ′l (k2xρ),

m44 = (k2xμ1/k1xμ2)Y ′l (k1xρ)Jl(k2xρ) − Yl(k1xρ)J ′l (k2xρ),

(A.204)

The characteristic equation for the waveguide can be determined by constructing a global

matrix M satisfying: ⎛⎜⎜⎜⎜⎜⎝
AN+1

BN+1

CN+1

DN+1

⎞⎟⎟⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎜⎜⎝
A0

B0

C0

D0

⎞⎟⎟⎟⎟⎟⎠ , (A.205)

where:

M =
0∏

m=N

Mm+1,m (A.206)

Given this formulation, as for the tube waveguide and multilayer stack analyses above,

one must enforce the condition that there are no incoming waves on the outermost

interface [39]. Finally, one can then solve the composite system by finding the roots of

the condition det(M) = 0, again as for the tube case earlier. The roots, the eigenvalues

of the system, are the propagation constants β ∈ C of the supported eigenmodes.

In practice, one must use a numerical root-finding technique to solve for these β eigenval-

ues. For this work, the robust numerical root-finding function fsolve of the commercial
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program Matlab was employed, from which a precision beyond the values presented in

this work was obtained.

Note that one can reduce this 4×4 matrix formulation down to a 2×2 when considering

only TE or TM mode solutions [39], which can increase the numerical computation

efficiency significantly.
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Mathematical Miscellany

As the literature often leaves derivations and logical steps up to the reader to make

explicit, I have made an effort here to describe some fundamental mathematical concepts

and results that would otherwise be difficult to derive in the context they are referenced.

While the content in this Appendix cites the work of others where appropriate, it has

been adapted so as to adequately fit the nomenclature and structure of this Thesis.

B.1 Differential Calculus

These vectorial calculus identities (e.g., see the appendices of Ref. [146]) are indispens-

able for some derivations shown within:

∇× (∇× A) = ∇ (∇ · A) −∇2A, (B.1)

∇× (ψA) = ψ∇× A + (∇ψ) × A, (B.2)

for some vector field A and scalar field ψ.

By evaluating the curl of an arbitrary vector field A = Arr̂ + Aθθ̂ + Azẑ in cylindrical

coordinates, one derives the ‘rotation formula’:

∇× A =
[
1
r

∂Az

∂θ
− ∂Aθ

∂z

]
r̂ +
[
∂Ar

∂z
− ∂Az

∂r

]
θ̂ +
[
1
r

∂

∂r
(rAθ) −

1
r

∂Ar

∂θ

]
ẑ, (B.3)

B.2 Matrix Eigenvalues

Consider the eigenvalue equation:

Ax = λx (B.4)

309
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with 2x2 matrix:

A =

[
a b

c d

]
. (B.5)

For the eigenvalue equation to have nonzero solutions, one requires det(A − λI) = 0

producing the characteristic equation:

det(A − λI) = (a − λ)(d − λ) − bc (B.6)

= λ2 − λ(a + d) + ad − bc (B.7)

= λ2 − λTr(A) + det(A). (B.8)

Being a quadratic equation, it has general solutions:

λ± = Tr(A/2) ±
√

Tr2(A/2) − det(A). (B.9)

recalling that in general Tr(xA) = xTr(A). These solutions are only valid for a 2x2

matrix system.

The product of the two eigenvalues is:

λ+λ− =
[
Tr(A/2) +

√
Tr2(A/2) − det(A)

] [
Tr(A/2) −

√
Tr2(A/2) − det(A)

]
= Tr2(A/2) −

[
Tr2(A/2) − det(A)

]
= det(A). (B.10)

A unitary matrix has unit determinant: det(A) = 1. The eigenvalues of a unitary matrix

are thus the inverse of one another since Eq. B.10 implies λ+λ− = 1.

B.3 Trigonometric Functions

Many derivations of ray optics relations require frequent use of trigonometric identities.

Those used in this work are:

sin(α ± β) = sinα cos β ± sinβ cos α, (B.11)

cos(α ± β) = sinα cos α ∓ sinβ cos β, (B.12)

which can be readily derived via the Euler formula: e±iθ = sin θ ± i cos θ.
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A nontrivial tan identity can be derived from these:

tan(α − β)
tan(α + β)

=
sin(α − β) cos(α + β)
cos(α − β) sin(α + β)

=
(sinα cos β − sinβ cos α)(cos α cos β − sinβ sinα)
(cos α cos β + sinβ sinα)(sinα cos β + sinβ cos α)

=
sinα cos α(sin2 β + cos2 β) − sinβ cos β(sin2 α + cos2 α)
sinα cos α(sin2 β + cos2 β) + sin β cos β(sin2 α + cos2 α)

=
sinα cos α − sinβ cos β

sinα cos α + sinβ cos β
, (B.13)

where sin2 + cos2 = 1 has been used.

The Euler formula can be used to also find:

αeiθ ± βe−iθ = (α ± β) cos θ + (α ∓ β)i sin θ, (B.14)

and

α cos θ cos φ ± β sin θ sinφ =
α ∓ β

2
cos(θ + φ) +

α ± β

2
cos(θ − φ). (B.15)

B.4 Bessel Functions

Bessel’s differential equation:

z2 d2y

dz2
+ z

dy

dz
+
(
z2 − n2

)
y = 0 (B.16)

has solutions which are linear combinations of the Bessel functions of the first and second

types Jν(z) and Yν(z), respectively. The modified Bessel’s equation:

z2 d2y

dz2
+ z

dy

dz
−
(
z2 + n2

)
y = 0 (B.17)

has solutions which are linear combinations of the modified Bessel functions of the first

and second types Iν(z) and Kν(z), respectively.

The properties of these functions are well known and can be found in most elementary

text books on differential calculus. Here we consider properties of these functions which

are nontrivial but vital to analysis within the main body of this work.
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B.4.1 Reduction of General Step-Index Dispersion Equation to the

Well-Known ncore > nclad Case

It is easily shown that Eq. (A.174) reduces to the typical full-vector dispersion equation

for the more familiar raised-core step index fiber [146, 178, 179] when one enforces

ncore > neff ≥ nclad, and noting the relation between the modified Bessel function of the

second kind and the first order Hankel function [216]:

Kn(z) ≡ π

2
in+1H(1)

n (iz), (B.18)

producing derivative:

K ′
n(z) ≡ π

2
in+2H(1)′

n (iz), (B.19)

and thus the ratio:
H

(1)′
n (iz)

H
(1)
n (iz)

= −i
K ′

n(z)
Kn(z)

. (B.20)

For ncore = n1 > ñ ≥ nclad = n0, v becomes imaginary1 as:

v = k
√

nclad − ñ = ik
√

ñ − nclad, (B.21)

ensuring the argument is positive. Defining W = iv and U = u from Eqs. A.163 and

A.164, the characteristic equation (Eq. A.174) becomes:[
J ′l (U)

UJl(U)
− H

(1)′
l (iW )

iWH
(1)
l (iW )

][
n2

0

J ′l (U)
UJl(U)

− n2
1

H
(1)′
l (iW )

iWH
(1)
l (iW )

]
= l2

β2

k2

(
1

U2
− 1

(iW )2

)2

.

(B.22)

Using Eq. B.20, this becomes:[
J ′l (U)

UJl(U)
+

K ′
l(W )

WKl(W )

] [
n2

0

J ′l (U)
UJl(U)

+ n2
1

K ′
l(W )

WKl(W )

]
= l2

β2

k2

(
1

U2
+

1
W 2

)2

. (B.23)

Dividing through by n0 and defining the so-called V-parameter as:

V 2 = U2 + W 2 = ak
√

n2
1 − n2

0, (B.24)

one arrives at:[
J ′l (U)

UJl(U)
+

K ′
l(W )

WKl(W )

] [
J ′l (U)

UJl(U)
+
(

n1

n0

)2 K ′
l(W )

WKl(W )

]
=
(

lβ

n0k

)2( V

UW

)4

; (B.25)

precisely the form of the raised-core step-index fibre characteristic equation of Ref. [146].
1Taking the positive branch to maintain the functional form of the characteristic equation.
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B.4.2 Asymptotic Form of H
(1)
ν (z)

The first order Hankel function is typically defined as a complex linear combination of

the Bessel function of the first kind Jν(z) and the Bessel function of the second kind2

Yν(z):

H(1)
ν (z) = Jν + iYν(z), (B.26)

where z ∈ C in general. Incidentally, the second order Hankel function is defined as:

H(2)
ν (z) = Jν − iYν(z). (B.27)

It is useful to determine the asymptotic form of the Hankel functions; here we are

interested in H(1)(z) for z ∈ R as z → ∞. Arfken [216] discusses Bessel functions and

their asymptotic forms at length.

Following the treatment of Arfken [216]3, one considers first the modified Bessel function

of the second kind Kν(z), expressed in terms of H
(1)
ν (z) via Eq. B.18. Kν(z) has an

integral representation:

Kν(z) =
√

π(
ν − 1

2

)
!

(z

2

)ν
∫ ∞

1
e−zx

(
x2 − 1

)ν− 1
2 dx, for ν > −1

2
. (B.28)

Here only z ∈ R is of interest, but this expression holds for {z ∈ C| − π
2 < arg(z) < π

2 }.
It can be shown that this integral representation of Kν(z) satisfies the modified Bessel

equation Eq. B.17 (as it should) and has the proper normalisation [216].

For large z, Eq. B.28 can be written as:

Kν(z) =

√
2
πz

e−z(
ν − 1

2

)
!

∫ ∞

1
e−ttν−

1
2

(
1 +

t

2z

)ν− 1
2

dt. (B.29)

Using the binomial theorem [216]:

(x + 1)ν =
∞∑

j=0

(
ν

j

)
xj . (B.30)

to expand the integrand factor of (1 + t
2z )ν− 1

2 , Eq. B.28 can be expressed as:

Kν(z) =

√
2
πz

e−z(
ν − 1

2

)
!

∞∑
r=0

(ν − 1
2)!

(ν − r − 1
2)!

(2z)−r

∫ ∞

1
e−ttν−

1
2

(
1 +

t

2z

)ν+r− 1
2

dt. (B.31)

2Often called Neumann functions and represented instead by Nν(z)
3Ref. [216], p. 398 and pp. 402-406
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By integrating each term in the sum, Eq. B.31 produces the sought asymptotic expansion

of Kν(z):

Kν(z) =

√
2
πz

e−z

[
1 +

4ν2 − 12

1!8z
+

(4ν2 − 12)(4ν2 − 32)
2!(8z)2

+ . . .

]
(B.32)

where the square and factorial symbols have not been evaluated for the terms 12 and 1!

to indicate the recursive pattern for subsequent terms of the expansion.

Using this asymptotic expansion of Kν(z) with the definition B.18, one finds the asymp-

totic expansion for H
(1)
ν (z):

H(1)
ν (z) =

√
2
πz

e−i π
2
(ν+ 1

2
)eiz

[
1 + i

4ν2 − 12

1!8z
− (4ν2 − 12)(4ν2 − 32)

2!(8z)2
+ . . .

]
. (B.33)

Both Eqs. B.32 and B.33 are actually also valid for {z ∈ C| − π < arg(z) < π}, but

again, only z ∈ R is of interest here.

Thus, due to the asymptotic nature of the series, for sufficiently large z, one can ap-

proximate the series by the truncation:

H(1)
ν (z) ≈

√
2
πz

e−i π
2
(ν+ 1

2
)eiz for z  1

2

∣∣ν2 − 1
4

∣∣ . (B.34)
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