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Abstract

Inspired by the insects’ incredible visual capabilities, many vision motion detection

systems were proposed and developed. The Reichardt Correlator, as a bio-inspired vi-

sion motion detector is commonly used for velocity estimate of objects. Traditionally,

the received signals in receptors in a Reichardt Correlator are digitised at bit depths of

8 or greater and sampled at Nyquist rate. Its implementation requires relatively com-

plicated arithmetic units to cope with the processing of the samples. This is considered

as bringing heavy computation burden to the motion detection system.

In this thesis, a new approach for using oversampled, low bit depth representations

for velocity estimation using the Reichardt Correlator is developed. This is achieved

by considering the trade-off between oversampling ratio and bit depth, commonly

found in oversampled data converters. After using real images as stimuli to the Re-

ichardt Correlator, it was found that using lower bit depths and oversampling can

retain the accurate velocity estimation performance, and at the same time, reduce the

system arithmetic complexity. As a result, a sigma-delta conversion was proposed to

pre-process the input signals to the Reichardt Correlator. In this approach, the im-

age information is encoded as 1-bit oversampled representation. The long term aim

is to have a scheme whereby the required system arithmetic complexity can be made

simpler. In this step, three different panoramic images were used as the stimuli in sim-

ulations. The core contribution of this thesis is an investigation between the trade-off

in performance and arithmetic complexity using the Reichardt Correlator as a velocity

estimator in vision system, rather than elaborating the Reichardt Correlator, which can

result in a more complex arithmetic implementation.

The performance of the proposed approach is evaluated by comparing oversampled

results with traditional representations. The comparisons results show that the pro-

posed approach can achieve better performance in terms of optimal velocity detection,
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Abstract

under reduced system arithmetic complexity. Because of the image contents, small os-

cillations and a slight loss in velocity estimation accuracy was observed. Since the ap-

proach can reduce system arithmetic complexity are the primary considerations, small

oscillations and inaccurate velocity detection can be tolerated.
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Chapter 1

Introduction

I
NSPIRED by the insects’ incredible visual system, many artifi-

cial vision research have focussed on the visual systems of insects

to develop artificial visual motion detection systems. These initia-

tives have benefited from the underlying fundamental aspects of biological

vision. The bio-inspired vision systems mimic the insects’ visual system,

which can offer several advantages in comparison to the traditional camera-

processor approach, such as speed, system size and large dynamic range.

Through the description of the insects’ visual behaviour, the motivation and

aims of this research are presented.
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1.1 Motivation

1.1 Motivation

The research on bio-inspired motion detection is one of the most active areas in today’s

engineering field. Directional motion detection demonstrates a response of visual in-

formation processing in animals [2]. Many types of biological motion detection sys-

tems in animals are used to help them catch a prey, or escape from a predator. In terms

of this motion detection, the flying insects are capable of tracking and chasing objects

in complex environments with remarkable speed and accuracy, despite their small size

and relatively simple visual motion detection systems. Insects can estimate their own

movements from the overall movement of their visual field [3]. Humans and other

animals can even use the information of motion detection to complete more complex

tasks, like distinguishing different objects by relative motion or estimating velocity of

objects [4].

Many animals have elaborated motion detection systems as the ability to sense its dy-

namic environment which is very important for survival. Take flying insects as an

example, their brains are very small, typically contain one hundred thousand times

fewer neurons than humans [2]. Despite this, insects are capable of carrying out much

more complex motion processing from visual stimuli. They can use their visual motion

detection system to control flying direction [5], and to navigate and fly through obsta-

cles [6], detect borders between objects [7], find out distance to individual object [8]

and total distance moved [9]. In many aspects, insect motion detection systems are

far more intelligent than the current artificial robotics systems in the task of motion

detection and velocity estimation [10].

On the other hand, along with the development of mixed signal processing and very

large scale integration (VLSI) techniques, a number of visual motion detection algo-

rithms have been embedded in vision systems, by integrating photo detectors and dig-

ital signal processing elements into a single VLSI chip. One of the main targets of vision

chips is achieving a reliable estimate of velocity for objects, or generally, motion detec-

tion. There is an ever-growing need for vision systems, which can detect and track

targets, navigate and search objects. The applications of motion detection are com-

prehensive, such as blind spot overtaking monitoring, visual replacement for artificial
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Chapter 1 Introduction

intelligence, collision avoidance systems, surveillance, robotics and aerial unmanned

vehicles [11, 12].

The research on insect vision systems is considered to provide a key to answering many

different aspects of artificial motion detection systems. Because of a large proportion

of advanced species’ brain is dedicated to visual information processing, the motion

detection in flying insects is extremely fast and accurate, typically requiring a few mil-

liseconds for computation [13]. This illustrates the importance of visual information in

biological systems. Therefore, researching and understanding of the biological motion

detection can offer new ideas to computer vision researchers for elaborating artificial

vision system. In fact, through recent research on biological vision, many algorithms

for motion detection have been proposed. Some of these algorithms have been struc-

tured as models, used in particular biological visual systems for motion detection [14].

The most successful and most frequently applied model amongst the bio-inspired mo-

tion detection models is the Reichardt Correlator, which was first proposed by Hes-

senstein, Reichardt and Varju as a model for motion detection in the beetle Chloro-

phanus [15]. It has gained widespread application, since a large body of evidence from

visual motion experiments support the Reichardt Correlator as a visual model for mo-

tion detection in flying insects [2, 3, 13, 16–18]. Moreover, the Reichardt Correlator and

its mathematical equivalents also can be applied to model human vision [19], as well

as to model pigeon vision [20]. The basic concept of the Reichardt Correlator model

is to correlate responses in parallel from two nearby spatial locations after delaying

one of the two signals. Chapter 2 will describe the Reichardt Correlator model and its

concept of operation in detail.

Currently, there are many vision systems, with inbuilt photo detectors and motion

computation processing elements, to implement the task of motion detection. How-

ever, some algorithms are very complicated, and have different limitations [21]. More-

over, from system arithmetic complexity and power consumption point of view, a sim-

pler motion computation algorithm is needed to perform fewer mathematical opera-

tions, and are consequently preferred over more complex algorithms. Therefore, the
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1.2 Aims of research

biologically inspired motion detection system, Reichardt Correlator, is further devel-

oped in this thesis. Through the proposed approaches of using oversampled, low bit

depth to represent the input stimuli for the Reichardt Correlator, to demonstrate the

trade-off between system performance and arithmetic complexity.

1.2 Aims of research

In this thesis, computational and analytical approaches to investigate the basic Re-

ichardt Correlator’s performance for the task of velocity estimation are proposed. Fol-

lowing this, the aim is to implement the proposed approaches of using different bit

depth representations, that are sampled at different oversampling rates to represent the

detected stimuli. Since the lower bit depth representation can simplify the complexity

of an arithmetic implementation, in order to investigate the performance of velocity es-

timation, the proposed approaches will be compared with the conventional approaches

of using 8 bit representations and Nyquist sampling rate to represent the input signal

to the Reichardt Correlator. This will be achieved by reviewing the Reichardt Correla-

tor, using different kinds of images as stimuli in simulations. In the part of simulations,

the sine grating images will be used firstly to validate the principle idea, and then, nat-

ural and panoramic images will be used to highlight the limitations of the Reichardt

Correlator. After that, the proposed approaches are investigated, namely using differ-

ent bit depth representations, sampling at different oversampled rates for the stimulus

signal, then evaluating the correlator response for this proposed approaches. The Re-

ichardt Correlator processing is performed on this oversampled stimuli, with reduced

precision of the different bit representations providing a trade-off against increased

sampling rate, with expected benefits of reduced realisation costs. At last, through the

simulation results on proposed approaches to investigate the trade-off between system

performance and arithmetic implementation.

Currently, there are many elaborated Reichardt Correlators published in the literature

to improve its reliably in terms of velocity estimation [2, 13, 22]. The core intellectual

idea behind this research is to examine the different signal representations and to un-

derstand the trade-off in performance and complexity using the Reichardt Correlator
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Chapter 1 Introduction

as the velocity estimator in vision system, rather than elaborating the Reichardt Corre-

lator to improve its performance.

1.3 Contribution of research

The focus in this thesis is to investigate the performance and complexity of the velocity

estimation using the Reichardt Correlator. Using a full correlation in such estimator is

impractical due to massive computational requirements, which precludes their use in

hardware implementations due to power requirements. In this thesis, a velocity es-

timator using reduced data precision is proposed. This exploits oversampling of the

input stimulus to achieve lower complexity arithmetic elements compared to full reso-

lution implementation of the velocity estimator. It is found that the system can result in

less implementation complexity without increasing a significant loss in performance.

1.4 Thesis organisation

This thesis begins with the introduction in Chapter 1. The background and literature

review about the different motion detection algorithms and the Reichardt Correlator

model, are presented in Chapter 2. Chapter 3 introduces the principle behind the bit

depth, and oversampled representation. Chapter 4 demonstrates the results through

simulating the performance of the proposed velocity estimator using real image stim-

uli. Chapter 5 presents the conclusion and future work.
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Chapter 2

Background and Literature
Review

M
OTION detection in insects’ visual system inspired

researchers and resulted in numerous algorithms and

models. One of these models is the Reichardt Correlator,

which mimics two pixels in an insect’s eyes. Some background knowledge

about different motion detection algorithms and the Reichardt Correlator

model will be presented in this chapter. The proposed approach in this the-

sis will then be presented.
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2.1 Mathematical basis for motion detection

2.1 Mathematical basis for motion detection

Bio-inspired artificial vision study is considered to provide most useful source of ideas

for many vision systems which is intended to interact with its environment. This ap-

proach to vision research builds on bio-inspired vision by utilising some of the ba-

sic observations obtained from the development and implementation of vision algo-

rithms [2]. When developing algorithms, arithmetic complexity issues are often com-

pletely ignored. Through review of many motion detection algorithms, Moini [21]

had proposed that the driving force behind many motion detection algorithms are re-

liability and flexibility, for operation in real environment rather than physical imple-

mentation. As a result, many algorithms cannot run in real-time even on advanced

computers.

In real-time, motion cues provide a very valuable source of visual information. Track-

ing a target in a cluttered environment requires extensive computational architecture.

In nature, even a small housefly is adept at pursing its prey with fast and accurate

speed, and so bio-mimetic algorithms are a novelty and potentially a fruitful way of

looking at this problem. In order to avoid collisions or become the food source of

predators, flying insects have to sense their position and ego-motion with regard to the

objects in three dimensional environment that surround them. Since the objects in the

environment can move, animals are also required to detect motion, which means they

need to estimate the velocity of the input signals at the receptors, in the animal’s mo-

tion detection system. Typically, the receptors used for motion detection system are ar-

ranged in a two dimensional array, therefore, the visual information that are available

to the animal’s motion analysis system relates to the projection of three dimensional

velocity vectors on the two dimensional image plane of the receptor array [23]. If the

motion need to be analysed, the first step is to estimate the apparent object images’

motion in the image plane, or its image motion field. Then, motion field is estimated in

the image plane spanned by the observer’s photo receptors, and the three dimensional

velocity field needs to be derived from the two dimensional motion field. After that,

by combining these outputs of motion analysis with position evaluation, it will allow
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Chapter 2 Background and Literature Review

an insect to estimate its ego-motion in the environment and motion of objects which is

detectable by the receptor array.

In the literature, many motion detection models have been developed. There is a larger

number of computational models for motion detection, all these motion field estima-

tion needs the input of at least two image instances in time, which need to be com-

pared with each other. According to this requirement, motion detection models can

be classified into three fundamentally different groups in this identification process:

intensity-based, feature-based and correlation-based. Intensity-based algorithms use

some linearly-filtered version of the image brightness for motion processing [24]. In

feature-based algorithms, some features in the image such as corners, edges, blobs and

templates are found, and tracked over time [25]. In correlation-based algorithms, ei-

ther the raw image or the processed image is correlated with the previous frame to find

a movement in the image [26].

However, these approaches have their shortcomings [21]. The main problem in intensity-

based algorithms is known as the aperture problem. Since it looks at localised process-

ing without any concern about the structure of the whole image, whereby the direction

of motion of an object cannot be determined uniquely, when looked at from a small

aperture. Feature-based algorithms face the correspondence problem, where the fea-

ture in one frame are to be matched with corresponding features in the previous frame.

A particular concern with correlation-based detection in some applications is the hefty

computation requirements of computing the correlation sequences. In the following

section, more details about the three motion detection approaches will be given.

2.1.1 Intensity-based motion detection

Intensity-based motion detection approach was first used in the field of computer im-

age processing and was later developed in the modelling of biological systems [27].

This approach is an approximation of the motion fields from spatial and temporal dif-

ferences in the intensity or brightness and profiles of the image frames to be compared.

Two of the widely know intensity based models are: spatio-temporal gradient mod-

els [28] and spatio-temporal energy models [19].
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In spatio-temporal gradient models, gradient algorithms utilise the image’s spatial and

temporal derivatives to estimate velocity, under the assumption of the overall intensity

of the image remains constant. The intensity of the spatial and temporal gradients

can be used to decide the optical flow. Horn and Schunck developed a approach for

determining the optic flow from the measurements of spatial and temporal intensity

gradients, based on the assumption that the brightness is constant [29]. As long as this

assumption holds, the gradient algorithm measures velocity directly and independent

of contrast. However, since this makes use of derivatives, the spatio-temporal gradient

algorithm is susceptible to high-frequency noise [24].

In spatio-temporal energy models, motion detectors measure spatiotemporal correla-

tions induced by moving objects or self-motion. While other motion detection models

are common among the researchers in computer vision, the spatio-temporal energy

models have become more popular among the physiologists and biologists [30]. Adel-

son [19] proposed a spatio-temporal energy model, it includes a set of detectors to

measure the spatio-temporal energy of the visual field within a range of spatial and

temporal frequencies, however, because of the spatio-temporal correlation is used, the

spatio-temporal energy algorithms are hard to implement in hardware implementa-

tion.

As a result, this approach is more constraints and require more spatio-temporal infor-

mation. The intensity-based approaches have resulted in more complex algorithms.

Therefore, there are a number of difficulties in applying intensity-based models to de-

tect image sequences. A major problem is that spatio-temporal derivatives are very

sensitive to discontinuities in image intensity [23].

2.1.2 Feature-based motion detection

Feature-based motion detection, or correspondence-based approaches are used to de-

tect the motion through tracking of salient features contained in an image. Considering

the detection of motion as a change in the position of distinguishable features in an im-

age frame, these models propose that motion detection can be accomplished by first

finding features in the image and then matching the corresponding features in the next
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frame [25]. In real scenes, a large number of the images may not contain useful infor-

mation. Therefore, these salient features, like corners, critical points, edges and shapes

can all be seen as tokens, which can provide the most useful information about the

scene. Thus, feature-based approaches for motion detection can reduce the amount of

information by concentrating on the displacement of feature of interest in a sequence

of images. However, there are two major issues which may cause problems for feature-

based motion detection [21]. Firstly, features must be reliably and accurately detected

in each image frame. Secondly, the correspondence problem may confuse the process

of tracking the displacement of one feature from an image to the next [31]. For dense

image motion fields, it becomes difficult to decide which feature in the image at time t

corresponds to which feature at time t + ∆t.

The salient features such as corners, edges, lines and templates are divided into two

types. The first is purely spatial feature, the spatial features are two dimensional fea-

ture, like corners and edges. Corners are mainly defined by points of high curvature in

the image boundaries [32]. Edges and lines can also be used in other tasks, such as seg-

mentation. Due to its relative structural simplicity and clear definition, edge detection

is one of the most developed tasks in computer vision [33, 34]. The other one is spatio-

temporal features, it is a three dimensional feature like templates [35]. There have

also been much research on the development of spatio-temporal algorithms [19,36–39].

However, the feature-based algorithms have the disadvantage of low reliability and of-

ten difficulties when run into dense image motion fields [23].

2.1.3 Correlation-based motion detection

In correlation based motion detection models, each frame is correlated with the previ-

ous frame. Movement in parts of the image can be detected by observing the location

of maximum correlation with respect to the previous frame [21]. In intensity-based al-

gorithms, the derivatives are involved in the processing directly. In feature-based algo-

rithm, the derivatives are used indirectly for detecting features. In contrast, correlation-

based approaches do not require any form of spatial and temporal derivatives of the

intensity to compute motion, unlike the other two approaches. Due to the integrative
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rather than differentiative nature of these approaches, the models that use correlation-

based algorithm produce more robust output. However, the correlation-based mod-

els generally need more arithmetic operations, which can increase the computational

cost [26].

The correlation-based approach is also often used as correlator, or matched-filter in

communication systems, often used for detecting and estimating the time of arrival

of a known pulse, obtained by correlating the known signal with a delayed version

of itself. It can achieve maximum signal-to-noise ratio (SNR), under the assumption

of additive Gaussian white noise [40]. Two dimensional correlation algorithms are

often used in image processing. This correlation-based motion detection algorithm

calculates the correlation value between two discrete time signals, we set them as x(n)

and y(n), where y(n) is a delayed signal of x(n) plus an additive noise, and y(n) can

be written as:

y(n) = x(n − K) + N(n), (2.1)

where K is a random positive integer implies the delayed discrete time, N(n) is the

noise, then the correlation between x(n) and y(n) is

r(n) =
∞

∑
m=−∞

y(m)x(m + n). (2.2)

Using Eq. (2.1) in Eq. (2.2), the correlation between x(n) and y(n) can be written as:

r(n) =
∞

∑
m=−∞

[x(m − K) + N(m)]x(m + n)

=
∞

∑
m=−∞

[x(m − K)x(m + n) + N(m)x(m + n)]. (2.3)

In general, x(n) is not correlated with noise signal N(n), so the highest value of r(n) is

relative to the match of x(n) and y(n). The property of n at which makes the r(n) reach

the maximum value is an estimate of delay K. The use of this feature shall be exploited

for the purpose of velocity estimation.

A sequence of images are sampled at regular time intervals, τ. If the received signal

is the image frame at time t, the previous image frame is at time t − τ in the images

sequence. The correlation detector would reach a peak value at a spatial lag which
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would correspond to the amount of image shift and the temporal sampling interval,

and it follows that the velocity can be computed from a knowledge of this spatial shift

and the temporal sampling interval. From Eq. (2.3), it is clear that the computations

require an O(n2) complexity, where n is the length of the signals. Furthermore, from

the arithmetic complexity perspective, correlation detectors will require many multiply

operations, which lead to high power consumption and implementation costs.

An example of correlation-based motion detection model is the Reichardt Correla-

tor [24], whose output is equivalent to the output of the spatiotemporal motion energy

model proposed by Adelson and Bergen [19]. More details about Reichardt Correlator

will be given in following section.

2.2 Biological motion detection models

2.2.1 The biological insect visual system

The research into insect vision system has offered approaches to solve the different

aspects of motion detection systems. The insect visual system contains very complex

neural structure, most of them are still needs more investigation. However, compared

with more complex animals, insects have a visual system of intermediate complexity.

This kind of visual systems can be mimicked through less complex models and algo-

rithms and can be developed for computer vision systems. This simplicity is the secret

to the effectiveness visual system in insect. In other animals, the perceived image is

completely transferred to the brain and a huge neural structure processes the image.

In insects, however, many of the tasks, such as the perfect recognition of objects, have

either been eliminated or simplified [13]. The insects visual system has been researched

for many years, it is found that motion detection plays a predominant role in the visual

system of insects. Its neural structure has been partially understood, and through ex-

perimental results which match well to the neural structures, many motion detection

models are proposed and used in many aspects [12, 41–43].

Figure 2.1 illustrates a cross section of the house-fly’s brain and compound eyes as an

example, insects have compound eyes in both sides of the head. This visual structure
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has evolved to give the insect the ability of moving accurately in the same environment

that other animals with much more complex vision move, but with simpler visual

system. This system is composed of four neural layer: retina, lamina, medulla and

lobular.

Figure 2.1. The cross section of the house-fly’s brain with the compound eyes. The insect

visual system is classified into four layers, retina, lamina, medulla and lobula. Figure

modified from [13]

Retina contains a large array of photoreceptor, used to sample the visual field [22]. It

has been found that from the response of the photoreceptor to an input image, the

retina has the function of spatial low-pass filter and some degree of temporal filter-

ing [13]. Lamina is a curved plate beneath the retina. Laughlin [44] in his work gave

the clear evidence that some kind of temporal high-pass filtering takes place in the

lamina. Medulla is the most complex layer of the insect visual system. Douglass and

Strausfeld experimentally found that the motion sensitive cells in medulla serve as

components of an array of elementary motion detectors (EMD) [45]. Lobula contains

wide field, directionally selective motion detection neurons. It receives the inputs from

medullary cells and conveys the outputs to higher levels in the neural structure to per-

form higher level functions, such as detection of whole frame motion [13].
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2.2.2 The bio-inspired Reichardt Correlator model

The Reichardt Correlator model was first proposed by Reichardt and Hessenstein,

they deduced this model for motion detection from experiments on beetle chloro-

phanus [15]. This bio-inspired model is categorised under correlation-based motion

detection.

Df

A B

D D

Input A Input B

Receptor A Receptor B

Delay filter A Delay filter B

M MMultiplier A Multiplier B

+
+ -

CorA = DelayA * InputB CorB = DelayB * InputA

Output = CorA - CorB

Figure 2.2. The basic Reichardt Correlator model. The Reichardt Correlator samples two input

signals A and B with a fixed spatial angle ∆ϕ. The two time-dependent inputs passes

through a delay filter (D) before multiplied by the other, undelayed, signal. Then, the

two correlations CorA and CorB are subtracted to produce a output. A positive output

indicates a rightward motion, a negative output indicates a leftward motion, and a zero

means no motion.

A simplified model of the Reichardt Correlator is shown in Figure 2.2. It is function-

ally similar to the operations of insects’ visual systems. Firstly, like most insect visual

systems, this model has at least two receptors. They are used to sample the signals

at two fields on the retina. Secondly, the arrangement between the two receptors is

asymmetric to achieve directional selectivity. Finally, the interaction of the two signals

is nonlinear [23]. Buchner [46] has termed the asymmetrically nonlinear interaction

between two input channels as an elementary motion detector (EMD). So, the basic
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structure of Reichardt correlator contains four elements: (1) Two elementary motion

detectors (EMD), (2) Two linear delay filters (D), (3) Two multipliers (M) and (4) One

subtracter.

The Reichardt Correlator’s principle of operation is as follows: Two EMDs A and B are

used to perceive the motion of objects and create two time-dependent input signals.

The two EMDs need to be separated by an spatial angle ∆ϕ , and these signals then

pass through a temporal delay (linear delay filter D) before multiplying with the non-

delayed signal from the other channel, if the signal from A is delayed appropriately,

the two signals will match. In order to have the similar sensitivity to both directional

motion and to cancel excitation by stationary stimuli, a parallel delay and multiply

operation takes place with a delay on the opposite arm. In the end, the results of two

correlators are subtracted to produce a single time-dependent correlator output. A

positive output signal indicates a rightward motion, a negative output signal indicates

a leftward motion, and a zero output means lack of motion.

The Reichardt Correlator is simple and has low computational complexity, but it has

dependencies on variations in image conditions, such as contrast, spatial frequency

and velocity. Chapter 4 shows the dependence of the Reichardt Correlator on image

content through simulations. Although the basic Reichardt Correlator model can ob-

tain more meaningful responses for different image velocities, however, it suffers from

two major shortcomings. First, the standard deviation of the correlator response is

large relative to its mean, with relative error values ranging from 3.3 to 76 for natural

images [13]. Second, the stimulated mean correlator response of the Reichardt Cor-

relator (with ∆Φ = 1.08◦ and a first-order delay filter with time constant τ = 35ms)

for most images peaks at a velocity in the range 35◦ − 40◦/sec [22], yet, the insects’ vi-

sual systems can commonly track objects with the velocities in the range of hundreds

degree per second [37]. The velocity response curves that are obtained from the sim-

ulation often have a bell-like shape. The velocity at the peak of these bell-like shape

response curves is called the optimum velocity. In the range of lower or faster than

the optimum velocity, the one response value correspond to two different velocities.

These velocities, which are beyond the optimum velocity will be misinterpreted, there-

fore, the useful range of detected velocities is from zero to the optimum velocity. In
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addition, the delay unit is an important element in the Reichardt Correlator. A small

delay filter time constant would raise the peak response velocity, but experimentally

observed time constants are not sufficiently low to account for the fact that insects may

turn and track targets at velocities up to hundreds of degrees per second [37]. In order

to solve these above problems, Dror [22] has elaborated the basic Reichardt Correla-

tor which can help to overcome these problems, the response of elaborated Reichardt

Correlator is raising the peak response velocity and lowering the relative error.

Figure 2.3. The Elaborated Reichardt Correlator model. T,D,H and M are depicted temporal

filters; S is represented spatial filter: ρ and ξ are saturation functions(compressive

nonlinearities). The subunit subtraction may be unbalanced, with weights gpos and

gneg. The outputs of the various EMDs undergo two-dimensional spatial integration Σ,

which may be non-uniform, with weights represented by wi. For simplicity, this figure

omits a number of demonstrated nonlinear and adaptive phenomena. Figure modified

from [22].

Figure 2.3 shows the elaborated Reichardt Correlator proposed by Dror, which include

additional spatial and temporal prefiltering, saturation, integration, and adaptation

operations that would help to improve the correlators’ performance. On the other

hand, these additional components would raise the implementation complexity of the
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2.3 Motion detection against velocity estimation

elaborated Reichardt Correlator. In this thesis, the basic Reichardt Correlator is cho-

sen as the focus of the research. The correlator will be combined with the proposed

approach of using different bit depth representations, sampling at different oversam-

pled rates for the stimulus signal as the input to the Reichardt Correlator to bring the

benefits in reducing the arithmetic implementation complexity, and at the same time,

obtain accurate system performance.

2.3 Motion detection against velocity estimation

Many research works have found out that the correlation-based models are sensitive

to object speed, and so affects the ability to measure velocity accurately [9, 30, 47]. If

the input signal to the Reichardt Correlator is a simple sinusoid, the output response

changes with velocity, contrast, and spatial frequency. The response curve obtained

has a bell-like shape, starting with low velocity rising to a peak value with velocity

increases and then decreasing back to zero with further velocity increases. For natural-

istic images, the output responses fluctuate heavily and become much more difficult

to explain. Furthermore, the Reichardt Correlator model are sensitive to velocity, as

well as sensitive to the higher order derivatives of velocity [47]. Adelson and Bergern

motivated by research in human psychophysics, proposed other models for motion

detection, named spatiotemporal energy models [19]. However, these models can be

expressed as a simple Reichardt Correlator and are equal mathematically, and so both

of them experience the same problems.

It is clear that humans, and many other animals have the ability to behave and per-

form tasks which rely on visual velocity estimation. For example, Srinivasan found

the honeybees can perform the tasks of velocity estimation from a series of behavioural

experiments [9]. In view of these evidence, Srinivasan has proposed that humans and

insects possess two parallel systems for velocity estimation, one is capable of correla-

tion and the other is capable of velocity estimation [48]. Moreover, the psychophysical

researchers through using the ratios of outputs of correlators with different spatial and

temporal tuning to measure the velocity [19, 49].

Page 18



Chapter 2 Background and Literature Review

Results from many experiments showed that statistical characteristic of natural images

play an important role in associating the correlator response with motion velocity, also

verified that additional physiological components of the correlator model can improve

the accuracy of the Reichardt Correlator as a velocity estimator [2, 50, 51].

2.4 Velocity estimation performance criteria

In order to compare the performance of different velocity estimation systems, one must

put them in a same quantitative standard of accuracy performance. However, estab-

lishing this kind of standard is difficult for biological visual systems. This is because in

the visual field, different biological visual tasks need different information on motion.

For example, when insects are chasing an object, the primary requirement is tracking a

small moving object successfully, but when they are flying, insects just need to distin-

guish their position and judge the distance between themselves and the surrounding

environment. Hence, they should have the ability to estimate local velocity. Some mo-

tion detection system can measure the local velocity accurately, and some can measure

accurately in global velocity, while others can only carry out with in a particular range

of velocities [17].

In view of all these different possible criteria, Dror [22] put forward two basic require-

ments for a good performance velocity estimation system:

• At a specific velocity, the image motion should always output the same response.

• At different velocities, the output response to motion should significantly differ

from the response at other velocities.

In this thesis, these two basic requirements from the quantitative standard to investi-

gate the Reichardt Correlator response performance for different images and different

approaches will be used.
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2.5 Related works

Insects are remarkably adept at manoeuvering their way with seemingly great ease and

navigating themselves through complex and unpredictable environments. Research

into insect vision has provided great insights into the functioning of visual processing

systems. This line of research spans many different fields, including behavioral, neu-

rophysiological and physiological sciences [22]. Insights obtained have subsequently

been used to improve the motion detection approaches in real environment, it can lead

effectively use in various fields to enhance the safety and quality of artificial systems.

Srinivasan et al. [52] studied the optomotor response in insect visual system which

is a turning response evoked by the apparent movement of the visual environment,

serves to stabilise the insect’s orientation with respect to the environment. Then, they

proposed new model for motion detection to improve the stability of the performance

with respect to the environment.

Indiveri and Douglas [43] developed vision sensors, called neuromorphic vision sen-

sors which are based on the fly visual systems. Neuromorphic sensors are specialised

sensory processing functions implemented by analog electronic circuits that are in-

spired by biological systems. This computational architecture, dense processing, small

size, and low power consumption of neuromorphic sensors make them attractive for

constructing artificial sensor systems that attempt to emulate biological processing.

They also provide qualitative processing for machine vision tasks on autonomous mo-

bile robots.

Moini et al. [53] were inspired by the insect visual system and the template model for

insect vision, built blocks of a motion detection chip in VLSI. Their model comprises

two one-dimensional 64-cell arrays as well as front-end analog circuitry for visual pro-

cessing and digital control circuits.

Through the elaboration, the bio-inspired motion detection can be applied to various

fields. Mota et al. [11, 54] described a bio-inspired motion detection algorithm based

system, which is able to efficiently segment overtaking cars using a sparse map of

features from the visual field of the rear-view mirror. Reiser and Dickinson [55] have
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shown the detection of expanding optic flow patterns based on bio-inspired visual

system, their simple control system is a viable model for obstacle avoidance which can

be used in robotic control. Moreover, Aubepart and Franceschini [12] put the optic

flow sensors in Micro-Air-Vehicles (MAVs) for stabilisation and guidance purposes.

Higgins [56] and Komuro [34] both described a new vision chip architecture for high-

speed target tracking. The number of pixels and the processing speed are improved

by the implementation of a special algorithms which utilises a property of high-speed

vision and introduction of bit-serial and cumulative summation circuits.

In this thesis, the Reichardt Correlator is chosen as the velocity estimation model. Has-

senstein and Reichardt [57] developed this famous motion detection model which is

through mimicking the insect vision. Due to its low computational costs in estimat-

ing motion vectors, it can be realised in real-time motion detection algorithms. In

fact, the architecture for many motion detection chips is based on the Hassenstein-

Reichardt model [21]. However, a mass of experiments and mathematical derivations

suggest that the basic Reichardt Correlator although exquisitely sensitive to motion,

the output response is affected by the image condition, such as contrast and spatial

frequency [23, 58]. Hence, a number of elaborations for the Reichardt Correlator are

conducted to improve its accuracy and stability [22, 52].

Contrast in an image is one of the main problems which affect the performance of

the basic Reichardt Correlator. Tan et al. [59], Rajesh et al. [2] have adapted different

approaches to reduce the contrast effect in motion detection. Tan’s approach is to re-

duce the dependency of contrast as early as possible in hardware and leave the actual

motion detection to the digital processing part, they designed a front-end module for

the pre-processing of the input. In Rajesh’s paper, the contrast gain reduction is im-

plemented by a feedback adaptive process. The gain of the EMD (elementary motion

detector) inputs is reduced by a signal derived from the rectified and low-pass filtered

outputs of a local EMD pool with different local preferred direction, fed back to control

the gain of the EMD inputs.

Another problem that affect the performance of the basic Reichardt Correlator is fre-

quency, which can manifest as spatial or temporal frequency. Dror et al. [58] in their
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study examined the accuracy with which realistic Reichardt Correlator can provide

velocity estimates in an organism’s natural visual environment. Analysis and simula-

tions suggest that processes commonly found in visual systems, such as pre-filtering,

response compression, integration, and adaptation, improve the reliability of velocity

estimation and expand the range of velocities coded. Rajesh et al. [2, 13] further inves-

tigated and expanded Dror’s model to improve the correlator performance. Through

their neurobiological experiments suggest that adaptive mechanisms decrease EMD

dependence on pattern contrast and improve reliability.

After reviewing all the above related work, it can be seen that the basic Reichardt

Correlator can be improved through adding components or elaborating the system.

However, the system complexity is one aspect that has been often neglected in most

of presented research. Adding components bring the benefit in performance, but this

implies a trade-off with the system complexity. In this thesis, the core idea is not to

elaborate the basic Reichardt Correlator in pursuit of accuracy velocity estimation, but

instead investigates approaches to reduce arithmetic complexity of the basic Reichardt

Correlator, while maintaining its level of velocity estimation performance.
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Chapter 3

Proposed Methodology

T
HE core idea of this work is to use low bit depths and oversam-

pling to represent the input signal to the Reichardt Correlator for

velocity estimation. This chapter introduces the principle behind

the approaches of low bit representation and oversampling techniques. Us-

ing theoretical arguments and simulations, it will demonstrate that using

the proposed approaches an effective velocity estimation performance can

be produced, while yielding potential arithmetic implementation benefits.
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3.1 Introduction

In the literature, the simple Reichardt Correlator has many shortcomings as a velocity

estimation system, namely its strong dependence on contrast and spatial frequency in

the input signal. On the other hand, full correlation-based algorithms while less de-

pendent on spatial frequency, have very high computation requirements. Moreover,

full correlation requires a high arithmetic complexity, that can translate to high power

consumption. Therefore, a particular motivation is the development of a reliable ve-

locity estimator using relatively simple arithmetic elements. In this line of pursuit,

the following approach is proposed for this thesis, Figure 3.1 shows the research block

diagram:

Reichardt
Correlator

k bits
ADC

Velocity estimation

Estimation system

k bits
ADC

x (t)1

x (t)2
x (n)2

x (n)1
Photo sensor 1

Photo sensor 2

Figure 3.1. Digitisation velocity estimation system. The aim in this research is to use different

bit depths and sampling rates in the Reichardt Correlator to investigate the trade-off

between system performance and system arithmetic complexity.

In this research, the strategy to reducing arithmetic complexity is to use lower bit

depths to represent input signals. The proposed system samples and quantises the

input signals x1(t) and x2(t) to digital representations x1(n) and x2(n), respectively.

The sampling rates can be Nyquist rate or oversampling rate. Compared with Nyquist

sample rate, the oversampling rate is many times higher. In this thesis, the following

oversampling factors are used: 16, 32 and 64 times the Nyquist rate. After quantisation

and sampling, the digital signals are applied as inputs to the Reichardt Correlator, and

the attained response is used to estimate the velocity.
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This chapter describes the operation of proposed approaches and makes a compari-

son of these alterative digitisation strategies, namely the combination of different bit

depths and sampling rates. The results will serve as an illustration of the trade-off be-

tween velocity estimation performance and system arithmetic complexity in the con-

text of the Reichardt Correlator. In this spirit, three different options for the representa-

tion of the signals are investigated, corresponding to various bit depths and sampling

rates.

The bit depths and sampling rates used are shown in Table. 3.1:

Table 3.1. The parameters used in the simulations. The simulations in the research uses

different bit depth representations and different sampling rates to represent the input

signals to the Reichardt Correlator.

Bit depths 1, 2, 3, 4, 5, 6, 7, 8

Sampling rates Nyquist, 16x, 32x, 64x

The input signal stimuli in this work are derived from several types of images: sine

grating image, naturalistic image and panoramic image. The sine grating image is

chosen since it is simple and only contains a single spatial frequency. Then, naturalis-

tic and panoramic images are used to validate the system performance as they contain

multiple spatial frequencies. Throughout the simulations in this thesis, the simplify-

ing assumption is made that all image motions are uniform and take place along the

horizontal axis. This assumption avoids the need to compute two dimensional corre-

lations, and instead only take one dimensional correlations on corresponding rows in

successive frames. Since the image motion is uniform across all the rows, the over-

all response of velocity estimation can be calculated by taking the mean value of the

estimates from all rows. The details are described in Chapter 4.

3.2 Bit depth

Bit depth is an image processing term. It describes the number of bits used to represent

the value of a single pixel in a greyscale bitmapped image or video frame buffer. It
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represents the number of finely defined levels of brightness that can be expressed in an

image. It is proposed that lower bit depths used in the image representation can bring

benefit in lowing the computational complexity, and so reduce the complexity of the

arithmetic implementation.

Figure 3.2 shows a RGB model image of a person in an indoor environment, which will

be used as a naturalistic image in this thesis. This image will subsequently be referred

to as ‘friend’.

Figure 3.2. RGB ‘friend’ image. The RGB color model is a color model in which red, green and

blue color are used together in various ways to reproduce a broad array of colors. In

order to simplify the work, greyscale images corresponding to the luminance information

of this image are used in the simulation.

The ‘friend’ image is chosen as the input signal since it contains numerous different

spatial frequencies. Spatial frequency, in the study of visual motion, is mainly ex-

pressed as the number of cycles per degree of visual angle. Different spatial frequen-

cies express different information about the contents on image. High spatial frequen-

cies represent abrupt spatial changes in the image, such as edges and corners. On

the other hand, low spatial frequencies represent global information about the shape,

such as general orientation and proportions [60]. It has been previously established

that spatial frequency greatly affects the performance of the Reichardt Correlator, this

impact will be discussed in details in Chapter 4.
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Chapter 3 Proposed Methodology

(a) 8-bit representation. (b) 7-bit representation. (c) 6-bit representation.

(d) 5-bit representation. (e) 4-bit representation. (f) 3-bit representation.

(g) 2-bit representation. (h) 1-bit representation.

Figure 3.3. Naturalistic ‘friend’ greyscale image at various bit depths. Examples of the natu-

ralistic images used in simulations throughout this thesis. Using the lower bit depths to

reduce the arithmetic complexity which in terms of dependence on the number of bits

in the data’s representation.

In this thesis, in order to simplify the work, the chrominance information in the RGB

images are discarded. All the images in this study are greyscale images which con-

tain only luminance information. The greyscale digital image in computing is an im-

age which the value of each pixel is a single sample, that is, it carries only intensity

information. Images of this sort, also known as greyscale image, are composed exclu-

sively of shades of gray, varying from black at the weakest intensity to white at the

strongest [61]. The greyscale is used in bit depths, 1 to 8-bit to represent the images.
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3.2 Bit depth

For example, an 8-bit image has an brightness that is encoded in 28 = 256 different

grey levels from white to black. Similarly, a 7-bit image contains 27 = 128 different

grey levels from white to black, 1-bit image which is also named as binary image only

contains black or white. Figure 3.3 is the greyscale images of ‘friend’ from 8 to 1-bit.

(a) 8-bit representation. (b) 7-bit representation.

(c) 6-bit representation. (d) 5-bit representation.

(e) 4-bit representation. (f) 3-bit representation.

(g) 2-bit representation. (h) 1-bit representation.

Figure 3.4. The ‘sine grating’ greyscale images at various bit depths. Using different bit depths

to represent the ‘sine grating’ image, the motivation is same as ‘friend’.

It is clear that the higher bit representation of images have the greater fidelity. Moving

from 8 to 1-bit, the degradation in image quality is obvious. In the 8-bit image of

Figure 3.3 (a), the facial features are vivid, and the different pieces of equipment in

the indoor environment can be distinguished easily. However, along with the decrease

in bit depth, the features in the image are increasingly more difficult to distinguish.

In the 1-bit image of Figure 3.3 (h), the facial features of the person and background
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environment can hardly be distinguished, since there are only two greyscale levels

(black and white) to represent the information in image.

Figure 3.4 shows the sine grating images at various bit depths which will be used as

input signal stimuli. These images will collectively be referred to as ‘sine grating’. It

can be seen that varying the bit depth has the same impact on image fidelity as for the

image ‘friend’.

From earlier discussion in Section 2.1.3, it is clear that a low bit depth is favourable

from an arithmetic complexity perspective. The purpose of this work is to investigate

the effect of different bit depths on the Reichardt Correlator’s performance as a veloc-

ity estimator. Therefore, it is necessary to simulate the Reichardt Correlator response

when using input stimuli encoded at different bit depths.

3.3 Interpolating

Generally, in digital signal processing technology, the original signal must be sampled

at a rate which is at least twice of the highest in-band frequency. This is known as

the Nyquist condition. If satisfied, this condition implies the obtained discrete time

signal can be used to reconstruct the original continuous time signal without errors.

The traditional sampling process is shown in Figure 3.5, which shows the use of an

anti-aliasing filter to ensure the removal of all frequencies above the half sampling

rate.

Continues signal
Anti-aliasing

Filter

ts

Sampling

Discrete time
signal

Figure 3.5. The traditional sampling process. The continuous time signal can be converted to

discrete time signal throughout sampling processing. The anti-aliasing filter is used to

filter out unwanted frequency components to ensure that all frequencies in the signal

to be sampled are less than twice the sampling frequency.

In this thesis, all the input signals to the Reichardt Correlator are stimuli arising from

moving images. For a simple signal like sinusoid, the output response can be derived
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A B

D D

Input A Input B

Receptor A Receptor B

Delay filter A Delay filter B

M MMultiplier A Multiplier B

+
+ -

CorA = DelayA * InputB CorB = DelayB * InputA

Output = CorA - CorB

V

S (t)1 S (t)2Df

Figure 3.6. The basic Reichardt Correlator model with rightward motion input. S1(t) and

S2(t) are the input in continuous time, after converted in discrete time signals, they

represented as S1(n) and S2(n). This sampling process may not result in a value that

is an integer multiples of sampling time.

analytically. Figure 3.6 shows the Reichardt Correlator with two input receptors A and

B. The figure also shows a potential moving sinusoid signal in front of two receptors.

The input signal at receptors A and B are S1(t) and S2(t), respectively. The angular

distance between A and B is ∆ϕ, y(x) is the input signal value to receptor at image’s

pixel x, and the image stimulus is moving from A to B at velocity v. Using these

notations, the following expressions can be written at time t0 as:

t = t0.

Therefore, S1(t0) = y(x0),

S1(t) = y(x0 + vt),

S2(t) = y(x0 + ∆ϕ + vt).
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In discrete time, t = n · ts =
n
fs

, (3.1)

S1(n) = y(x0 +
v
fs
· n). (3.2)

Then, S2(n) = y(x0 + ∆ϕ +
v
fs
· n). (3.3)

where n in Eq. (3.1) indicates the sample index. Since x denotes an image pixel index,

it needs to have an integer value in Eq. (3.2) and Eq. (3.3). However, the value of v
fs
· n

may not result in a value that is an integer multiple of sampling time. In such cases, the

exact stimulus value y(x0 + ∆ϕ + v
fs
· n) cannot be determined. To address this issue,

the linear interpolation approach is used, as illustrated in Figure 3.7.

0

s

v
x n

f

ê ú
+ê ú

ë û
0 1

s

v
x n

f

ê ú
+ +ê ú

ë û
0

s

v
x n

f
+

P1

P2

P3

Figure 3.7. The linear interpolation. This is a method of curve fitting using first-order polynomial

interpolation. It is heavily employed in mathematics and numerous applications including

computer graphics. Linear interpolate is a simple form of interpolation. The symbol

⌊ ⌋ denotes the floor operation.

From the principle of linear interpolation, if the two known points are given by the

coordinates (x0, yo) and (x1, y1), the linear interpolation is the straight line between

these points. For a value x in the interval (x0, x1), the value y along the straight line is

given by:
y − y0

x − x0
=

y1 − y0

x1 − x0
, (3.4)

which can be derived geometrically from Figure 3.7. Solving Eq. (3.4) for y, gives:
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3.3 Interpolating

y = y0 +
y1 − y0

x1 − x0
· (x − x0). (3.5)

Figure 3.7 shows the process of linear interpolation, P1 is the first sample point and

P2 is the subsequent sample point, point P3 is the interpolated value. The symbol

⌊ ⌋ denotes the floor operation. So, from Eq. (3.5), the interpolated value P3 can

be calculated as an approximation of the instantaneous stimulus experienced by the

receptor B.

Figure 3.8. The panoramic ‘scenery’ image. The 30th row of ‘scenery’ is used to implement the

linear interpolation process. The white line indictes the 30th row.
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Figure 3.9. Stimulated sample values at receptor A and B for velocity of 10 degrees per

second, 30th row of ‘scenery’. (a) shows the 30th row of ‘scenery’ plotted as a

function of horizontal sample points. (b) shows stimulated stimuli S1(t) and S2(t) at

receptors A and B, respectively.

The panoramic image in Figure 3.8 is one of the images used in this thesis, this image

is subsequently referred to as ‘scenery’. In this instance, its row is used to illustrate

the linear interpolation process described above. For example, the 30th row of this

panoramic image will be used as shown in Figure 3.9 (a). If velocity is set to 10 degrees

per second, a sampling frequency of 60 Hz, and a thousand sample points are taken,
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then the simulated stimuli at receptors A and B are shown in Figure 3.9 (b) (the blue

curve represents the signal received by receptor A, and the red curve represents the

signal received by receptor B.).

It is clear that the input at S1 and S2 are almost same. Indeed, from Eqs. (3.2) and (3.3),

S2(t) should simply be shifted (by ∆ϕ) versions of S1(t). If the velocity is set to 100

degrees per second, the sampling frequency and sampled points are kept the same,

then Figure 3.10 shows the stimulated stimuli with higher velocity at receptors A and B.
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Figure 3.10. Stimulated sample value at receptor A and B for velocity of 100 degrees per

second, 30th row of ‘scenery’. (a) shows the 30th row of ‘scenery’ plotted as a

function of horizontal sample points. (b) shows stimulated stimuli S1(t) and S2(t) at

receptors A and B, respectively.

Compared with the interpolated value at a lower velocity, the higher velocity inter-

polated stimuli signals has more repetitions, as a direct result of greater number of

revolutions per unit of time. These results help with understanding the behaviour

response of the Reichardt Correlator as discussed in details in Chapter 4.

3.4 Oversampling

Real-world image signals are analog, but it is necessary to converted the visual stim-

uli into the digital domain using an analog to digital converter (ADC). The analog-

to-digital conversion for a signal is often described in terms of two separate opera-

tions: uniform sampling in time, and quantisation in amplitude. The Nyquist rate
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3.4 Oversampling

ADC samples at twice the bandwidth of the signal. In order to ensure the signal is

indeed band-limited to half the Nyquist sample rate, an anti-aliasing filter with a very

sharp cutoff response is often needed. Once the signal is sampled, the samples must

also be quantised in amplitude to a finite set of output values for processing by a dig-

ital computer. The quantised output amplitudes are usually represented by a digital

code word composed of a finite number of bits. The digital code words are often said

to be in pulse code modulation (PCM) format. As described, the ADC requiring an

anti-aliasing filters with sharp cutoff frequency. This is necessary to maximise the use

of available bandwidth without exceeding the Nyquist limit. For Nyquist rate convert-

ers, each sampled signal is quantised at the full resolution or precision of the converter.

The high resolution measurement is related to the maximum ratio of signal’s dynamic

range. The resolution of such converters implemented on VLSI chips is limited by

the fabrication process. If Nyquist rate ADC has 8-bit of resolution, the comparator

is required to be able to resolve voltage better than VFs/28, where VFs is the full sup-

ply voltage used in the comparator design [59]. As a result, achieving high resolution

Nyquist rate converters are extremely difficult to attain in current integrated circuit

technology.

In signal processing, oversampled conversion is a technique that improves the res-

olution of samples, by increasing the correlation between samples, and this can be

leveraged to reduce the number of bits required per sample while still maintaining the

same overall conversion precision. Oversampling is the process of sampling a signal

with a sampling frequency significantly higher than twice of the bandwidth or highest

frequency of the signal being sampled. There are three main reasons for performing

oversampling:

1. Reduce the complexity of the ADC by not requiring expensive analog anti-aliasing

filters. By increasing the sample rate, the demands on the anti-aliasing filter is re-

duced, and so the filters have lower complexity and can be made less expensively.

2. Using this approach, the higher-resolution A/D and D/A conversion can be

achieved at low cost. Since digital signal processing techniques are used in place

of complex and precise analog components.
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3. Noise reduction. This will be introduce in Section 3.5.

In essence, oversampling pulse code modulation (PCM) conversion changes the dis-

tribution of the quantisation noise power. This has the effect of reducing the con-

tained quantisation noise in the signal band. On the other hand, using the technique

of noise shaping in addition to oversampling will allow for high resolution conversion

of relatively low bandwidth signal, and provides a trade-off between sampling and bit

depth [62]. Commonly there are two types of oversampling ADC, namely error differ-

ence and sigma-delta modulator. In the next section, more details about the features of

oversampling and noise shaping in sigma-delta ADC from image digitisation point of

view will be discussed.

3.5 Oversampling, with noise shaping

It has been mentioned above that the oversampling PCM often integrates with noise

shaping process, using 1-bit quantisation to convert an analog signal to the digital do-

main. This kind of ADCs were named oversampling sigma-delta A/D converter which

was first proposed by Inose and Yasuda [63] in 1964. However, the sigma-delta ADC

only obtained popularity after the relevant development in VLSI digital technology

has matured to a certain extent.

In comparison with Nyquist rate conversion, sigma-delta conversion samples input

analog signal at higher sampling rates. Therefore, the noise in signal which is the

frequency component out of the needed frequency can be filtered by a simple low-pass

filter, since the noise components which are closed to the sampling frequency can be

aliased back into the signal band [64]. The oversampled conversion produce the same

noise power with Nyquist conversion, however, due to the higher sampling rate, its

frequency distribution is much reduced in band compared to the Nyquist ADC.

Figure 3.11 shows the quantisation noise power Pe( f ) for Nyquist sampling rate fs1 and

oversampling rate fs2 with a signal band of fB. The blue shadowed rectangular area

represents the noise power produced by a Nyquist rate converter, and the unshadowed
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3.5 Oversampling, with noise shaping

area represents the noise power produced by an oversampling converter. The areas

underneath the two rectangles are the same, but the noise power outside the signal

band for the oversampling converter can be greatly attenuated with a digital low-pass

filter following the conversion [62]. Such approach cannot be used with the Nyquist

rate converter.

fs1

2
= fB

fs2

2

Oversampled rate PCM conversion

Nyquist rate PCM conversion

P (f)e

f

Figure 3.11. Quantisation noise power for Nyquist rate and oversampling rate. For Nyquist

rate sampling, all the quantisation noise power represented by the area of the tall

shadowed rectangle, occurs across the signal bandwidth. In the oversampled case,

the same noise power, represented by the area of the unshadowed rectangle. The

bandwidth fs2 is much greater than the signal bandwidth fB.

This process can bring benefit to the design and implementation of the ADC, since it

provides an alternative to realising a complex analog anti-aliasing filter. Instead, more

digital signal processing is needed after the conversion. Figure 3.12 is a model of first

order sigma-delta ADC. The system consists of a sigma-delta modulator, followed by

a digital decimator. The sigma-delta modulator consists of a discrete time integrator, a

quantiser and a DAC used to convert the digital signal back to an analog signal in the

feedback path.
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The principle of oversampling sigma-delta ADC is as follows: the input signal x(t)

is sampled at oversampled frequency, a feedback signal ya(t) from 1-bit DAC is sub-

tracted with the x(t) and the residue signal u(t) is accumulated by an integrator. The

output of the integrator v(n) is quantised to generate a 1-bit digital bit stream. This

digital output decides the sign of the feedback, if the digital output is 1, it feeds back a

large negative signal to be subtracted from the input signal. This feedback loop keeps

the output of the integrator small so that the output can track the amplitude of the

input signal.

+ +
x(t) y(n)

z
-1

Discrete time integrator

u(t)

y (t)a

DAC

v(n)
+

e(n)

Quantiser

First Order Sigma Delta Modulator

Low Pass
Filter

w(n)
D

Digital signal processing

Digital Decimator

Sampled data (discrete time) analog signal processing

Figure 3.12. First order sigma-delta modulator A/D system. The difference signal between

input x(t) and the analog representation ya(t) which from the feedback loop, after

through the discrete time integrator, is quantised to produce y(n). Then, y(n) is

processed by subsequent digital signal processing.

Another important process in sigma-delta ADC is noise shaping. It is the process of

nonlinear quantisation and feedback loop combined to shift some noise to frequen-

cies beyond the input signal spectrum [62]. The integrator in sigma-delta conversion

plays the role of loop filter in the modulator, the integrator in terms of playing the role

of low-pass filter for the input signal, and of high-pass filter for quantisation noise.

The connection for a continuous time modulator can be explained with the aid of Fig-

ure 3.13 as follows:
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+
X(s) Y(s)

s

Integrator
+

-

1
+

e(s): Quantisation noise

Figure 3.13. The integral process in sigma-delta conversion. The modulator can be modeled

in the s domain, with an ideal integrator represented with transfer function of 1
s , and

the DAC in feedback loop is considered to be ideal. This is used to illuminate the

important fact of noise shaping.

It can be derived from Figure 3.13, when e(s) = 0, the signal transfer function is:

Y(s) = X(s)− s · Y(s),
Y(s)
X(s)

=
1

s + 1
. (3.6)

Eq. (3.6) indicates that the integrator acts as low-pass filter for input signal. When

X(s) = 0, the noise transfer function is:

Y(s) = −Y(s)(
1
s
) + e(s),

Y(s)
e(s)

=
1

1 + 1
s
=

s
s + 1

. (3.7)

Eq. (3.7) shows that the integrator acts as high-pass filter for the quantisation noise.

The sigma-delta conversion is using oversampling and noise shaping to push the noise

outside the band of interest. The oversampling does not change the total noise power,

instead redistributes it [62]. So the input signal through sigma-delta conversion can

push the noise to high frequency band, and then using digital low-pass filter to filter

these noise components.

Here two sinusoids with different frequencies are used as the input signal to sigma-

delta conversion, the frequencies are chosen to be 10 Hz and 100 Hz for illustration

purpose. Using Matlab as simulation tool, the processes of oversampling and noise

shaping are shown in Figures 3.14 and 3.15.

Figures 3.14 (a) and 3.15 (a) are the input of sinusoid curve, and (b) in Figures 3.14

and 3.15 are using oversampling and 1-bit quantisation to represent the sinusoid. In
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(a) The input sinusoid signal.
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(b) The modulator output for sinusoidal in-

put.
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(d) Single-sided amplitude spectrum of the

modulator output.

Figure 3.14. The sigma-delta conversion processing for 10 Hz sinusoidal input. (a) to (b) show

the processes of quantisation and noise shaping. In subfigure (b), after quantisation,

the input analog sinusoid signal (a) is represented by the values of +1 and -1. In

(d), after noise shaping, the quantisation noise is pushed from the signal band to high

frequencies band.

Figures 3.14 (c) and 3.15 (c), it can be observed that the two frequencies, 10 Hz and

100 Hz which contained in the two sinusoids are shown in spectra of sinusoid. In Fig-

ures 3.14 (d) and 3.15 (d), after the processing of oversampled single-bit representation

and noise shaping, which can be viewed as pushing quantisation noise power from

the signal band to high frequencies. Then, this part of noise can be filtered by a sim-

ple digital low-pass filter in future digital processing. However, if the high resolution

conversion is needed, it will require high speed digital processing, as the sampling has
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(a) The input sinusoid signal.
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(b) The modulator output for sinusoidal in-

put.
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(c) The power spectra of sinusoid.
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modulator output.

Figure 3.15. The sigma-delta conversion processing for 100 Hz sinusoidal input. These four

sub-figures show the same operation as figure 3.14.

to operate at the oversampled rate. The analog circuit complexity is traded for digital

circuit complexity, which is simpler to implement than analog circuit in modern VLSI

technology [64].

3.6 Summary

In this chapter, in order to investigate the trade-off between the performance and arith-

metic implementation using the Reichardt Correlator as velocity estimator, the theory

and background of proposed approaches of bit depth, oversampling technique and
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noise shaping were introduced. Through analysis and simulations, the proposed ap-

proaches can bring benefit as reducing the arithmetic operation. These approaches will

be applied to the Reichardt Correlator in this thesis to provide the needed background

to expand on modelling and simulations of the Reichardt Correlator in the next chap-

ter.
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Chapter 4

Reichardt Correlator
Response

T
HIS chapter reports on the simulation results of the proposed

velocity estimation algorithm. The investigation is conducted us-

ing proposed approaches combine with a basic Reichardt Corre-

lator. The sampling rate and input signal bit depth are varied to examine

their effects on the velocity estimation. The results show the trade-off be-

tween the accuracy of velocity estimation performance and the bit depth

used to represent samples of visual stimulus signals, where the latter is

strongly related to the complexity of the required arithmetical implemen-

tation.
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4.1 Mathematical description of the Reichardt Correlator

4.1 Mathematical description of the Reichardt Correlator

Section 2.2 discussed the bio-inspired motion detection known as the Reichardt Cor-

relator, and introduced this configuration and its operating principles in detail. It was

Df

A B

D D

Input A Input B

Receptor A Receptor B

Delay filter A Delay filter B

M MMultiplier A Multiplier B

+
+ -

CorA = DelayA * InputB CorB = DelayB * InputA

Output = CorA - CorB

V

Figure 4.1. The basic Reichardt Correlator model with rightward motion input. This figure

also shows a potential input signal, a sinusoid with amplitude C and spatial frequency

fs moving from left to right with velocity v.(repeat from Figure 3.6.)

discussed that the basic Reichardt Correlator of Figure 4.1 produces a bell-shaped out-

put in response to a moving stimulus. In this section, a mathematical derivation to

determine the response characteristics for sinusoidal stimulus will be presented. A

sinusoid input is assumed here to simplify the derivation. Furthermore, natural sig-

nals can be decomposed into a sum of different sinusoidal components due to Fourier

theory. Suppose an input sinusoid stimulus with contrast C and spatial frequency fs

(cycles/◦) is moving from left to right, (i.e. from input A to input B) with a horizontal

velocity v, as shown in Figure 4.1. Then the temporal frequency of the input signal

at any receptor is ft = fsv. Since the spatial angle between the receptors A and B is

∆ϕ, receptor A is located at x = 0, and receptor B is located at x = ∆ϕ, using x to de-

scribe the horizontal coordinate. This general sinusoidal stimulus is parameterised by
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contrast, spatial and temporal frequency. As a time and space function, the sinusoidal

pattern is:

C cos(2π ftt − 2π fsx).

Then the signals at input A and input B are given by:

A(t) = C cos(2π ftt), (4.1)

B(t) = C cos(2π ftt − 2π fs∆ϕ). (4.2)

Suppose the linear delay filter has temporal frequency response D( ft) = X( ft)e−jθ( ft),

where X( ft) indicates the amplitude of delay filter temporal frequency response and

θ( ft) indicates the phase. Therefore, the signals A(t) and B(t) after delay filter D are

AD(t) and BD(t), which can be written as:

AD(t) = CX( ft) cos[2π ftt − θ( ft)], (4.3)

BD(t) = CX( ft) cos[2π ftt − 2π fs∆ϕ − θ( ft)]. (4.4)

The Reichardt Correlator computes the product of the delayed signals AD(t) and BD(t)

with the original signals in the opposite branch, A(t) and B(t), to obtain corA and corB.

These are then subtracted to produce the correlator output response R(t):

R(t) = AD(t)B(t)− BD(t)A(t). (4.5)

From Eqs. (4.1) to (4.5), and by using the two trigonometric identities:

cos α × cos β =
1
2
[cos(α + β) + cos(α − β)],

cos α − cos β = −2 sin(
α + β

2
) sin(

α − β

2
).

Eq. (4.5) can be written as:

R(t) = AD(t)B(t)− BD(t)A(t)

=
C2X(t)

2
{cos[4π ftt − 2π fs∆ϕ − θ( ft)] + cos[2π fs∆ϕ − θ( ft)]}

−C2X(t)
2

{cos[4π ftt − 2π fs∆ϕ − θ( ft)] + cos[−2π fs∆ϕ − θ( ft)]}

=
C2X(t)

2
{cos[2π fs∆ϕ − θ( ft)]− cos[2π fs∆ϕ + θ( ft)]}

= −C2X(t)
2

{cos[2π fs∆ϕ + θ( ft)]− cos[2π fs∆ϕ − θ( ft)}

= C2X(t) sin(2π fs∆ϕ) sin[θ( ft)]. (4.6)
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4.1 Mathematical description of the Reichardt Correlator

Here, the delay filter is assumed to be a first order low-pass filter with impulse re-

sponse d(t) = 1
τ e−t/τ for t > 0, where τ is the time constant of the delay filter. In the

frequency domain, the temporal frequency response of this filter is the Fourier trans-

form of its impulse response:

D( ft) =
1

1 + j2π ftτ

=
1√

1 + (2π ftτ)
2 e−j arctan(2π ftτ)

= X( ft)e−jθ( ft),

where

X( ft) =
1√

1 + (2π ftτ)
2 , (4.7)

θ( ft) = arctan(2π ftτ),

and

sin[θ( ft)] =
2π ftτ√

1 + (2π ftτ)2
. (4.8)

Importing Eq. (4.7) and (4.8) into Eq. (4.6), and simplify, then the response can be writ-

ten as:

R(t) =
C2

2πτ

ft

ft
2 + 1/(2πτ)2

sin(2π fs∆ϕ). (4.9)

Eq. (4.9) is the mathematical expression for the Reichardt Correlator output under si-

nusoidal excitation. There have also been other derivations of this result but using

different notations [16, 46]. Now, let us examine the parameters contained in Eq. (4.9)

one by one:

• R(t) is the output of the Reichardt Correlator, this is the value from which the

moving velocity can be estimated.

• ft is the temporal frequency of sinusoidal input.

• fs is spatial frequency, it is a characteristic of any structure that is periodic across

space. The spatial frequency is a measure of how often the structure repeats per

unit of distance. For example, the sinusoid grating only contains single spatial
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frequency, but natural images contain multiple spatial frequencies. For a sinusoid

signal, the spatial frequency is related to ft by: ft = fsv.

• C is the contrast or brightness. In visual perception of the real world, contrast is

determined by the difference in the color and brightness of the object and other

objects within the same field of view. It is the primary information used to dis-

tinguish an object from other objects and the background.

• ∆ϕ indicates the spatial distance between two receptors, and represents the inter-

ommatidial angle in the eyes of insects. This inter-receptor angle is found to be

∆ϕ = 1.08◦, from observations of the physiologically realistic range for flies [65].

• τ is the time constant in first order low-pass delay filter. In all simulations in

this thesis, τ was set to 35ms, as this is the temporal frequency tuning matches

that found experimentally in typical large flies such Calliphora, Eristalis, and

Volucella [37].

From Eq. (4.9) above, it is clear that the Reichardt Correlator output is affected by all

these parameters. In real environment, although the spatial angle between receptors

∆ϕ and time constant τ are fixed, the output is still affected by contrast, spatial and

temporal frequency, or, since ft = fsv, equivalently affected spatial frequency and

velocity. There have been much research focused on attenuating the impact of con-

trast and spatial frequency on the Reichardt Correlator response, and experiments sup-

ported that elaborated Reichardt Correlator structures can mitigate these impact [2,13,

22, 49, 58, 66]. However, these elaborated Reichardt Correlators are significantly more

complicated and will undoubtedly increase the complexity of the arithmetic imple-

mentation. Therefore, in this thesis, the basic Reichardt Correlator is still adopted as

motion detector, combined with different representations for the signal samples. The

aim is to explore the resulting performance of the Reichardt Correlator under various

numerical representation schemes.
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4.2 Simulation of the basic Reichardt Correlator

4.2 Simulation of the basic Reichardt Correlator

As mentioned in Section 2.2, the output of the Reichardt Correlator is a time-dependent

response. The input signals pass through delay filters, multipliers and subtracter to

produce an output signal. A positive output response value indicates an object move-

ment direction is from left to right, while a negative output response value indicates

an object movement from right to left, and a zero output means a stationary object. In

this manner, Figure 4.2 assumes there is a zero-mean sinusoid moving from right to

left through the two receptors of the Reichardt Correlator. Using Matlab to simulate

the whole process in each element of the Reichardt Correlator, the response curves are

obtained and shown in Figure 4.3.

Df

A B

D D

Input A Input B

Receptor A Receptor B

Delay filter A Delay filter B

M MMultiplier A Multiplier B

+
+ -

CorA = DelayA * InputB CorB = DelayB * InputA

Output = CorA - CorB

V

Figure 4.2. The basic Reichardt Correlator model with leftward motion input. In order to

show the response in each element of the Reichardt Correlator, it assumes a potential

input sinusoid signal moving from right to left.

Figure 4.3 shows the input sinusoidal response in each element of the Reichardt Corre-

lator. The last sub-figure shows a response which is decreasing from zero to a negative
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constant, hence indicating the sinusoid is moving from right to left. This result is con-

sistent with the theoretical derivation.
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Figure 4.3. The input sinusoidal signal responses in each element of the Reichardt Corre-

lator. It can be seen clearly that the sinusoid response in each element from input to

output. It also can be concluded from negative value in response that the input signal

has leftward motion.

If the direction of the moving sinusoid is changed, from left to right, the output re-

sponse of the Reichardt Correlator will appear as show in Figure 4.4 (a), where the

response increases from zero to a positive constant. In Figure 4.4 (b), the response

curve is located at zero on the time axis, which indicates a stationary object relative to

two receptors at all times.

In order to illustrate the other dependencies of the Reichardt Correlator, we return to

the mathematical expression for the Reichardt Correlator in Eq. (4.9). Firstly, suppose

the response value R(t) in Eq. (4.9) is for the Reichardt Correlator of the form shown
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4.2 Simulation of the basic Reichardt Correlator

in Figure 4.1, where ∆ϕ between the two receptors is 1.08◦ and the delay filter D is

a first order low-pass filter with time constant τ = 35ms. The input to the Reichardt

Correlator is a zero-mean sinusoid with contrast C, spatial frequency fs and temporal

frequency ft, is moving from left to right by velocity v degrees per second (◦/s).
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Figure 4.4. The Reichardt Correlator directionally sensitive motion responses. (a) shows the

positive valued response indicates rightward motion. (b) shows the zero valued response

indicates no motion.

According to Eq. (4.9), the response depends on the contrast, spatial frequency and

temporal frequency, but the effects are separable. The different steady-state output

response curves are shown in Figure 4.5.
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Figure 4.5. Velocity response to sinusoidal input with varying contrasts. The higher contrast

has a higher response along velocity axis.
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In Figure 4.5, the response strength of stimulant increase corresponds to an increase

in the contrast level. In a real environment, the contrast in every signal varies incon-

sistently, therefore the responses of the Reichardt Correlator will vary accordingly as

well. This sensitivity to contrast is generally considered to be a disadvantage of the

basic Reichardt Correlator.

Figure 4.6 shows the Reichardt Correlator response as a function of spatial and tempo-

ral frequency for contrast C = 1. In Figure 4.6 (a), the response is negative for some

sufficiently high spatial frequencies, since the inputs effectively under-sample the si-

nusoidal signal. This phenomenon known as spatial aliasing [22]. The response curve

peaks at a lowest optimal spatial frequency of fs,opt =
1

4∆ϕ , as shown in (a). This is con-

sistent with the term sin(2π fs∆ϕ) in Eq. (4.9). At a given spatial frequency, according

to the identity of ft = fsv, the temporal frequency will increase along with an increase

in velocity, as shown in Figure 4.6 (b). However, ft appears in Eq. (4.9) through the

term ft

ft
2+1/(2πτ)2 , so the output will not increase monotonically with ft. Instead, the

response reaches an optimum response when ft,opt = 1
2πτ , and then decrease mono-

tonically as velocity increases further past this point.
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Figure 4.6. Response of the Reichardt Correlator with varying spatial and temporal frequen-

cies. (a) show the response as a function of spatial frequency for the optimal temporal

frequency, ft =
1

2πτ . (b) shows the response as a function of temporal frequency for

the lowest optimal spatial frequency, fs =
1

4∆ϕ .
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Figure 4.7. Velocity response with varying spatial frequencies. The velocity estimation varying

with the spatial frequency.

Assume a sinusoidal grating with spatial frequency fs moving with increasing velocity,

the response will increase until the velocity reaches an optimum value given by:

vopt =
ft,opt

fs
=

1
2π fsτ

,

and then decrease gradually toward zero, as is shown in Figure 4.7. The Figure 4.7

also shows that optimal value for the velocities are different at different fs. When the

spatial frequency is set at optimal value fs,opt =
1

4∆ϕ , the correlator response provides

an unambiguous estimation of velocity at 19.6◦/s, which is the peak of the bell-like

shape curve. When the velocity increases further than 19.6◦/s, the response values are

same as the responses at velocities below 19.6◦/s. This critical velocity is named opti-

mal velocity, which can be interpreted as the highest velocity which can be estimated

unambiguously by the Reichardt Correlator.

In Section 4.1, the spatial angle ∆ϕ between the two receptors was discussed. The

spatial angle decides the spatial frequency tuning; varying ∆ϕ changes the spatial fre-

quency optimal value and makes the spatial frequency produce negative outputs, as

shown in Figure 4.8 (a) and (b). The curves in Figure 4.8 are used as a reference only,

and ∆ϕ is assumed to be fixed in this chapter’s simulation.

The final parameter affecting the response of the Reichardt Correlator is τ, which is

the time constant in delay filter. The delay filter acts as temporal frequency tuning. In

all the simulations contained in this thesis, a first order delay filter with time constant
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Figure 4.8. Response of the Reichardt Correlator with varying spatial frequencies and spa-

tial angles. (a) shows the responses with varying spatial frequencies. (b) shows the

responses with varying spatial angles ∆ϕ. Even with in fixed velocity, the stimulant with

different spatial frequencies keep on varying, and this is same with spatial angle.

τ=35ms is choose [37]. This value is chosen to avoid temporal aliasing, and it has been

showed that other choices for τ can cause the Reichardt Correlator to produce negative

output in response to certain temporal frequencies [22].

In summary, the output response of the Reichardt Correlator is highly dependent on

velocity, contrast, spatial frequency and temporal frequency. However, due to its in-

herent simple arithmetic structure, the basic Reichardt Correlator is adopted in this

thesis. In the next section, in order to investigate the performance of the Reichardt

Correlator further, different types of images will be used as input signals, and then

the proposed approaches of using different bit depth representation and oversampling

will be elicited in more details.

4.3 Performance of the Reichardt Correlator using the

Proposed Approaches

As a bio-inspired motion detector, the Reichardt Correlator has lower computational

complexity than other motion detection algorithms [23], and a series of VLSI motion
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sensors have adopted this model [21]. In Sections 4.1 and 4.2, the basic Reichardt Cor-

relator model shown in Figure 4.1 was discussed. This section will investigate the

performance of the Reichardt Correlator, for different input sample bit depths, with

oversampling under natural image stimulation. The proposed approaches were de-

scribed in Chapter 3. The aim of these approaches are to explore the performance of

velocity estimation of the Reichardt Correlator under different quantisation and sam-

pling conditions.

In this section, the spatial angle between two front receptors is ∆ϕ = 1.08◦ [65] and a

first order low-pass filter with time constant τ=35ms are assumed [22, 37]. The input

signals to the Reichardt Correlator will be stimulated receptor signals under stimulus

from the images ‘sine grating’ (Figure 3.4), ‘friend’ (Figure 3.3), and ‘scenery’ (Fig-

ure 3.8). Moreover, three natural panoramic images, named ‘forest’, ‘garden’, ‘build-

ing’, are added, and these are shown in Figure 4.9. All the images in simulation are

8-bit greyscale. It is assumed that all images are moving from left to right in front of

the two receptors of the Reichardt Correlator along the horizontal axis, at velocity v, in

degrees per second (◦/s).

In order to investigate the performance of the Reichardt Correlator, from simple to

complex images, the sequence of inputs into the Reichardt Correlator for each ap-

proach are:

1. ‘Sine grating’. This is a simple image, and contains only a single frequency.

2. ‘Friend’. This windowed image is a naturalistic image with multiple spatial fre-

quencies. It contains objects found in an indoor environment.

3. ‘Panoramic images’. Four panoramic images are used as stimuli throughout this

investigation. They represent some plausible visual scenes as processed by in-

sects. These images are ‘scenery’, ‘forest’ , ‘building’ and ‘garden’. The ‘scenery’

is used firstly in panoramic image stimulation, since it is simpler than other

panoramic images, and contains 964 pixels horizontally and 101 pixels vertically.

In comparison, the other three panoramic images are 14659 x 1648 pixels in size.
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(a) Forest in 8-bit representation.

(b) Garden in 8-bit representation.

(c) Building in 8-bit representation.

Figure 4.9. 8-bit depth representation of natural images used in the simulations as stimuli.

These panoramic images are used to represent the visual scenes as processed by insects.

The larger images require more time in simulation processing, so the more com-

plex panoramic images are only used in the last phase to thoroughly investigate

the performance of the Reichardt Correlator.

All the simulations are implemented using Matlab, to take advantage of its flexible

processing and toolbox capabilities.

4.3.1 General approach

In Sections 4.1 and 4.2, with single frequency sinusoid as an input to the Reichardt

Correlator, we came to the following conclusions:

• The basic Reichardt Correlator has attractive implementation for its striking sim-

plicity, and the output response is sensitive to the motion detection.

• The basic Reichardt Correlator performance is highly dependent on both the con-

trast and spatial frequency of the sinusoid image.
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However, in the real world, moving objects that need to be detected are not simple

sinusoids. In the following simulations, sine grating image and real-world images are

applied to the input of the Reichardt Correlator to show the performance of the output

response.
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(b) Velocity responses for ‘friend’.
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(c) Velocity response for ‘garden’.

Figure 4.10. Velocity response for three images with varying contrasts. The contrast affect

the response of the Reichardt Correlator, regardless of image type. Moreover, the

optimal velocities are different for each image. This is considered as effect by different

spatial frequencies in images.

Figure 4.10 shows the different responses of the Reichardt Correlator output for three

types of image signals. It can be seen that these response curves share the same bell-

like shape. As velocity increases form 0◦/s to 3000◦/s , the response rises from zero to

a maximum value, and then falls off towards zero. Three different contrasts are tested,
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and it is clear that contrast has a direct impact on the output response regardless of the

image. Moreover, it should be noted that the peak response value in three response

curves are not same, that is, are not located at the same optimal velocity. This phe-

nomenon is influenced by the different spatial frequencies contained in image, since

these are highly variable for different types of images. It can be concluded that con-

trast and spatial frequency are parts of the limitations of basic Reichardt Correlator for

natural images.

The simulations were conducted by firstly processing a number of rows of an images.

Each row generates simulated receptor signals for different velocities. The outputs are

averaged across all rows to obtain the response curves in Figure 4.10. In order to elicit

the effect of spatial frequency on the Reichardt Correlator response, individual rows of

the input images will be analysed.

Figure 4.11 shows how different spatial frequencies in an image affect the Reichardt

Correlator output response. The ‘friend’ image is a windowed naturalistic image with

multiple spatial frequencies, the first row represents the top line in this image when

using Matlab image processing toolbox (IPT) [67] for the simulations. The 400th row

is near the centre of the image, since ‘friend’ has 600 rows in total. Two black lines are

used to show the 1st and 400th row in ‘friend’ in Figure 4.11 (a).

Figure 4.11 (a) shows that the first row only contains the background and the corner

of wall, and does not have much information or changes in the greyscale represen-

tation. However, in the zone which 400th row passes through, there are laboratory

equipment, human figure, computer and many other objects. Therefore, it is rich in

information and contains rapid changes in the greyscale representation. This is exactly

the reason why the curves in Figure 4.11 (c) have more accurate response curves than

the curves in Figure 4.11 (b). The image motion direction is from left to right, accord-

ing to the conclusion of directional response, the output response should be positive.

In Figure 4.11 (b), however, the response curves for three different contrasts all indi-

cate negative value starting from the velocity equal to 1000◦/s. This negative value is

caused by the first row lacking meaningful image information, with the most distin-

guishable feature being the edge of corner of the wall. When the image is moving at
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high velocity synchronously with fewer fidelity information, the output will obtain the

inaccurate response. However, this inaccurate negative value is too small to affect the

mean of response, which is approximately 10−3 in magnitude. Since the image signal

response takes the average of all rows’ correlator responses, this small negative value

has less influence on the overall mean response. As shown in Figure 4.10 (b), the mean

response curve for ‘friend’ image, shows a positive response along with the velocity

axis, correctly indicating the motion is from left to right.

(a) 8-bit depth representation of ‘friend’ image.
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(c) Velocity responses generated by 400th row of

‘friend’.

Figure 4.11. Velocity response for two fixed rows of ‘friend’ with varying contrasts. Compared

with (b) and (c), the 400th row have more accurate velocity response than 1st row.

This is caused by lacking image information in 1st row.

In this section, through using different types of input images to the basic Reichardt

Correlator model, it can be concluded that the basic Reichardt Correlator is sensitive
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to the motion direction for all image types, and its output response magnitude is de-

pendent on the contrast and spatial frequency contained in the image. This limitation

can be partially solved by an elaborated Reichardt Correlator [2, 13, 22, 49, 58, 66]. In

Section 3.2, the approach of using different bit depths to represent image samples is

proposed. Using low bit representation is mainly motivated by the pursuit of low

computational complexity, as having lower bits can relieve the power consumption

and complexity of arithmetic in the visual motion detection system. In the next sec-

tion, the performance for different bit depths image in the input to the basic Reichardt

Correlator will be studied, and from the output response we can investigate the penalty

on velocity estimation performance.

4.3.2 Effect of bit depth on the Reichardt Correlator response

The images of ‘sine grating’, ‘friend’ and ‘scenery’ are used to investigate the effect of

bit depth representations. In Section 3.2, the effect of varying bit depths for the ‘sine

grating’ and ‘friend’ images, shown in Figures 3.4 and 3.3. In Figure 4.12, shows the

eight different bit depth from 8 down to 1-bit representation for ‘scenery’.

In the 8-bit representation of ‘scenery’, the visual features such as the sky, buildings,

trees, shadows, and the edges between different objects are clear. As the bit depth

decreases from 8-bit down to 1-bit, it becomes increasingly hard to distinguish the

features such as the sky, building, trees, shadows, and the edges become increasingly

unreliable. The image is visually degraded and results in a low fidelity representation

at low bit depths, especially for bit depths lower than 3-bit. It has the similar impact

on ‘sine grating’ and ‘friend’. In order to show the effect of bit depth on the Reichardt

Correlator response, the eight bit depth images of ‘sine grating’, ‘friend’ and ‘scenery’

will be input as stimulus to investigate the system performance.

Figure 4.13 shows the output responses for different bit depth representations of ‘sine

grating’. It can be seen that all bit depth representations are all equally affected by con-

trast, with high contrasts achieving high responses. Since the ‘sine grating’ is moving

from left to right, all response curves have positive values, and the response curves

Page 59
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(a) 8-bit representation.

(b) 7-bit representation.

(c) 6-bit representation.

(d) 5-bit representation.

(e) 4-bit representation.

(f) 3-bit representation.

(g) 2-bit representation.

(h) 1-bit representation.

Figure 4.12. Eight different bit representations ‘scenery’ used in the simulation as stimuli.
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(a) 8-bit response.
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(b) 7-bit response.
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(c) 6-bit response.
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(d) 5-bit response.
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(e) 4-bit response.
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(f) 3-bit response.
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(g) 2-bit response.
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(h) 1-bit response.

Figure 4.13. Velocity estimates for ‘sine grating’ in eight bit depths with varying contrasts.

From 8 to 2-bit, the response axis changed scales as 0 to 0.25, the 1-bit response axis

is 0 to 1. It indicates the lower bit has higher response along velocity axis.
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increase until the velocity reaches the optimal value and then, decrease gradually to-

ward zero. It is also can be seen that, for the same set value of contrast, the lower bit

representations have higher optimal velocity responses. However, the same optimal

velocity is shared by all bit depths. It can be concluded that the proposed technique of

using low bit representations can raise the dynamic range of output response for ‘sine

grating’ stimuli, while preserving the same optimal velocity.
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Figure 4.14. Effect of eight different bit depth representations for ‘sine grating’. The eight

curves for different bit depth in the same axis can clearly show the lower bit represen-

tation have higher velocity response.

Figure 4.14 shows the response of different bit depths from 8 to 1-bit for ‘sine grating’

images on the same axis. There is a set of curves near the bottom velocity axis, which

are the 8 to 3-bit representation curves. They all have low response values, and it is

particularly hard to distinguish the curves from 8 to 4-bit representations. The green

line with asterisk corresponds to the 2-bit representation response, which is easy to

distinguish from higher bit representation response curves, and have relative high dy-

namic range in response values. However, the 2-bit representation response curve, like

the higher bit depth curves, retains almost the same response value from the velocity of

100◦/s to 3000◦/s. The red line with asterisk curve is the 1-bit representation response,

and it has the highest dynamic range of response performance. It can be seen from 1-

bit representation curve that the response value at each velocity from 0 to 3000◦/s are
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more distinguishable than other curves, and it has the highest response value. In this

instance, it is clear that lower bit depth representations have better response curves for

velocity estimation.
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Figure 4.15. Effect of eight different bit depth representations for ‘friend’. This effect is same

as the ‘sine grating’. The 1-bit representation has the higher velocity response than

the other seven bit representations.

In order to further investigate the performance of the Reichardt Correlator on natural

images, the ‘friend’ and ‘scenery’ images will be used respectively at different bit depth

representations. Figure 4.16 shows the response curves for different bit depth repre-

sentation of the ‘friend’ image. From 8 to 1-bit, it shows broadly the same behaviour as

for ‘sine grating’: the response curves are highly affected by contrast, and the lower bit

depths have higher dynamic ranges in their responses. Setting the full contrast curves

on the same axis in Figure 4.15, three sets of curves are also emerged. The first set

of curves correspond to 8 to 3-bit representation curves which are hard to distinguish

from each other. The second set of curve is 2-bit representation curve (green line with

asterisk) which has a higher dynamic range of response than the first set of curves. The

red line with asterisk is the 1-bit representation curve, which has the highest dynamic

range performance among all the curves. Thus, the same conclusions can be drawn as

for the ‘sine grating’.

Figure 4.17 shows the different bit depth representation response curves for the ‘scenery’

image signal. Comparing the response curves for the different bit depths, the output
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(a) 8-bit response.
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(b) 7-bit response.
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(c) 6-bit response.
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(d) 5-bit response.
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(e) 4-bit response.
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(f) 3-bit response.
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(g) 2-bit response.
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(h) 1-bit response.

Figure 4.16. Velocity estimates for ‘friend’ in eight different bit depths with varying con-

trasts. It should be notices that from 8 to 4-bit, the response axis changed scales as

0 to 0.04, the 3 to 1-bit response have larger scales in response axis.
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(a) 8-bit response.
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(b) 7-bit response.
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(c) 6-bit response.
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(d) 5-bit response.
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(e) 4-bit response.
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(f) 3-bit response.
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(g) 2-bit response.

10
1

10
2

10
3

10
4

0

0.05

0.1

0.14

velocity(°/s)

R
es

po
ns

e

velocity vs response at different contrasts, 1−bit

 

 
contrast=0.3
contrast=0.6
contrast=0.9

(h) 1-bit response.

Figure 4.17. Velocity estimates for ‘scenery’ in eight bit depths with varying contrasts. From

8 to 1-bit, the response axis in the same scale as 0 to 0.14, however, it can be clearly

seen that the 1-bit response curves have higher optimal response than 8 to 2-bit.

Page 65



4.3 Performance of the Reichardt Correlator using the Proposed Approaches

response performance shows the same influences from contrast and bit depth repre-

sentation, as for the ‘sine grating’ and ‘friend’. Applying full contrast and putting the

different bit depth representation response curves on the same axis, Figure 4.18 shows

the similar performance to the ‘sine grating’ and ‘friend’ (in Figure 4.14 and Figure 4.16,

respectively).
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Figure 4.18. Effect of eight different bit depth representations for ‘scenery’. The bit depth

have the same effect on the different bits ‘scenery’, the behaviour is same as ‘sine

grating’ and ‘friend’.

From the above simulations, it can be seen that all these response curves share the same

bell-like shape. It should be noted that despite the response curves of ‘sine grating’,

‘friend’, ‘scenery’ having the same shape, the response values for any given velocity

are not the same. This is caused by differences in the image details.

Figures 4.19 (a) and 4.19 (b) show the response of the Reichardt Correlator for first

row of ‘friend’ image, but at 8-bit and 1-bit representations respectively. Obviously,

the 1-bit response curve has better velocity estimation characteristics than the 8-bit re-

sponse. Since this simulation has assumed the motion is from left to the right, the

response should show positive values. The suspected reason for the misleading Re-

ichardt Correlator response at 8-bit is the mainly slow gradual changes in the wall

failing to register large correlator outputs. In contrast, the binary 1-bit representations

will introduce abrupt signal changes which would cause large correlator responses.
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(a) 8-bit response for the 1st row.
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(b) 1-bit response for the 1st row.

Figure 4.19. Velocity response of different bit depth representations for single row in ‘friend’

with varying contrasts. Compared with (a) and (b), it can be seen that using 1-bit

representation, the velocity response of 1st row have more accurate performance than

8-bit.

One may notice that although 8-bit response in Figure 4.19 (a) has negative values, the

response of the whole 8-bit ‘friend’ in Figure 4.16 (a) has positive response values. This

is due to the whole response being the mean of all row responses. The tiny contribution

from row 1 (10−3) does not affect the accuracy of the overall response.

In the current section, through investigation of the different bit depth representations

for image samples, it can be concluded that using lower bit depths represent the input

signal to the Reichardt Correlator, the output response have better velocity estimation

performance curve, and lower bit depth representations can partially mitigate the in-

fluence of spatial frequency. In the next section, using oversampling to raise sample

rate is proposed and investigated through simulations.

4.3.3 Effect of oversampling on the Reichardt Correlator response

Sampling is a necessary step to capture an analog signal to a digital from suitable for

processing on a computer. In this process, an analog-to-digital conversion is used to

perform the sampling to convert the continuous time signal to discrete time signal.

In Section 3.4, the definition of Nyquist sample rate and oversampling rate have been
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given. Sampling signals at Nyquist rate, which is a sample frequency twice the signal’s

maximum in-band frequency, is the fundamental requirement to reconstruct original

signal from sampled signal. Through the investigation in reduction in different bit

depth representation, it can be concluded that using lower bit depth to represent the

input signals to the Reichardt Correlator, does not affect the Reichardt Correlator’s

peak response. Using 1-bit representation yields the highest response among various

bit depths, and this reduction in word length is tremendously advantageous from an

arithmetic implementation viewpoint. However, when using lower bit depths, a large

amount of signal information will be lost, but this loss can be traded-off against an

increase in sampling rate. In next section, the response of the Reichardt Correlator for

different sampling rates will be studied, and from the output response, we investigate

the impact of varying sampling rate on the performance of the Reichardt Correlator.
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(a) Sampled at Nyquist sampling rate 60 Hz.
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(b) Sampled at 32X oversampling rate 1920 Hz.

Figure 4.20. Velocity response of 8-bit ‘friend’ for different sampling rates with varying

contrasts. The curves in (a) and (b) for the same contrast have the same response

dynamic range. However, the oversampling rate has the higher optimal velocity, which

is 105◦/s, compared 20◦/s when sampled at Nyquist rate.

At first, the 8-bit ‘friend’ image in Figure 3.2 will be used as input signal, sampled at

Nyquist rate. Since experiments on human vision show that humans can distinguish

frequencies up to 30 Hz [68], therefore, 60 Hz is chosen as the Nyquist rate in this

work. For comparison, sampling is also performed at 1920 Hz, which corresponds to
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a 32 times oversampling. These two different sample signals are fed into the Reichardt

Correlator to obtain the different response curves shown in Figure 4.20.

In Figure 4.20, the two graphs show the response of two different sampled signals with

different contrasts. For each graph, it can be seen that the contrast affects the response

at both sampling rates. When Nyquist rate sampled signal is used, the response curves

are shown in Figure 4.20 (a). Compared with the response curves of the oversampled

signal in Figure 4.20 (b), the optimum velocity shifts from 20◦/s (for fs = 60 Hz) to the

105◦/s (for fs = 1920 Hz). Besides, for each different contrast signal, the differently

sampled signals have the same peak responses. Therefore, sampling rate does not

affect the shape of the Reichardt Correlator response, although higher sampling rates

are more suited to the detection of higher velocities. However, contrast factor still plays

a major role in all responses.

Figure 4.21 shows the Reichardt Correlator responses at the different sampling rates

on 8-bit ‘scenery’ image.
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(a) Sampled at Nyquist sampling rate.
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(b) Sampled at 32X oversampling rate.

Figure 4.21. Velocity response of ‘Scenery’ for different sampling rates with varying con-

trasts. The different sampling rates have the same effect as ‘friend’. Sampling at

oversampling rate has higher optimal velocity.

From Figure 4.21, the same conclusions can be drawn as for the response of ’friend’:

oversampled input almost has the same performance as Nyquist rate input and for

each contrast; the different rate of sampled signal has the same peak response. The

same shift in optimal velocity is observed for ‘scenery’, which suggests that higher fs
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is suitable for detecting higher velocities. There is one point should be noticed that in

Figure 4.21 (b), the response curve oscillates for velocities faster than 1000◦/s. How-

ever, this oscillation does not affect the result of velocity estimation. Since the response

curve has a bell-like shape, when the detected velocity is greater than the optimum

velocity, the response curve begin to fall off, and cause aliasing with a lower velocity.

It is for this reason that responses for velocities greater than optimum velocity are not

considered.

In Section 4.3.2, the approach of using fewer bits to represent input signal is proposed.

It shows better velocity estimation performance and can bring simpler arithmetic im-

plementation. In this section, the simulated image samples that have full contrast im-

ages are used, with different bit depths ranging from 8 to 1-bit and sampled at two

different sampling frequencies, which are Nyquist rate (60 Hz) and 32 times oversam-

pling rate (1920 Hz).
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(a) Sampled at Nyquist sampling rate with differ-

ent bit depths.
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(b) Sampled at 32X oversampling with different

bit depths.

Figure 4.22. Velocity response of ‘friend’ for different sampling rates with different bit

depths representation. For the different bit depths, the sampling rate has the same

effect on the velocity response.

Figure 4.22 shows the simulations of different bit depths with different sampling rates

for the ‘friend’ image. For each sampling rate, the different bit depth curves show the

same performance trend as in Figure 4.15: lower bit depths achieves higher responses

for the same velocity. Comparing the curves between the two sampling rates with
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same bit depth representation, the optimal velocity is shifted. In Figure 4.22 (a), the

optimal velocity is located in 15◦/s (for fs = 60 Hz ). When sampled at oversampling

rate, the optimal velocity shifts to 105◦/s ( for fs = 1920 Hz). Figure 4.23 shows the

response curves for ‘scenery’ image under the same approach, the same conclusions

can be obtained.
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(a) Sampled at Nyquist sampling rate with differ-

ent bit depths.
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(b) Sampled at 32X oversampling with different

bit depths.

Figure 4.23. Velocity response of ‘Scenery’ for different sampling rates with different bit

depths representation. These curves have the same velocity response performance

as ‘friend’.

From the above simulations, the 1-bit representation with oversampling rate shows

excellent velocity estimation performance. In the next section, the approach of using

single bit, with oversampling rate and noise shaping to process the input signal will be

proposed, this is discussed in Section 3.5, where a sigma-delta modulator is used.

4.3.4 Effect of oversampling with noise shaping on the Reichardt

Correlator response

From the results of earlier investigations, the combined basic Reichardt Correlator and

noise shaping interface is shown in Figure 4.24.

The receptors A and B capture signals, that are sampled and quantised for processing.

While most converters capture signals at relatively high bit depth and Nyquist rate, the
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Sampling &
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Figure 4.24. The combined Reichardt Correlator and 1-bit oversampling interface. Instead of

the signal applied to the Reichardt Correlator directly, the system first performs high

sampling rate conversion on the image sequence along the time dimension, to achieve

oversampled time series for each pixel. Then, the oversampled series is subjected to

quantisation to 1-bit samples. Finally, the 1-bit samples are input to the Reichardt

Correlator as stimulus. Since the 1-bit samples are used, the multiplies in each branch

can be replaced as 1-bit XOR operations, which can greatly reduce the arithmetic

complexity.

sigma-delta conversion operates by using single bit quantisation, trades-off sampling

rate with bit depth. Figure 4.25 shows a first order sigma-delta modulator used in the

following simulations.

+ +
x(n) w(n) y(n)

comparator
w(n-1)

z
-1

integrator

Figure 4.25. The first order Sigma-Delta digital converter. The input digital signal x(n) is

subjected to this sigma-delta digital converter to generate the output digital signal

y(n) after processed by using 1-bit oversampling rate with noise shaping processing.
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The signal x(n) is an sampled time signal, which is then subjected to a sigma-delta

digital modulator. The modulator contains a subtractor, an integrator, and a compara-

tor to generate 1-bit samples with a feedback loop. Using this approach, the origi-

nal image signal is represented as single bit digital signal, which is only represented

by +1 and -1 values. The resultant digital signal is input to the Reichardt Correlator

to produce a response. This processing is supposed to bring later benefit of simpli-

fied arithmetic, since compared with some traditional analog to digital conversion,

the sigma-delta modulator operating with oversampling and single bit representation

has demonstrated low cost and high performance conversion. It is accepted that with

advances in digital microelectronics and mixed signal techniques, the Reichardt Cor-

relator is significantly simplified under 1-bit operation. In this section, we use this

approach to simulate the Reichardt Correlator and analyse the output response, to ex-

amine its velocity estimation performance.

(a) Forest in 5 strips.

(b) Garden in 5 strips.

(c) Building in 5 strips.

Figure 4.26. Panoramic images cut into five strips. These shorter strips is used for analysis of

the system performance based on image content.

The images used in the simulations are panoramic images of outdoor scenes, chosen

to have different overall brightness, contrast and spatial frequency content. They are
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4.3 Performance of the Reichardt Correlator using the Proposed Approaches

named as ‘forest’, ‘garden’ and ‘building’, shown in Figure 4.9 (a), (b) and (c) respec-

tively. There is one aspect which is different with the previous simulation: in order to

investigate the qualitative effects of image content on the motion estimation algorithm,

the three panoramic images are divided into 5 horizontal strips with each strip contain-

ing approximately 35 rows. The divided images are shown in Figure 4.26. These strips

are then subjected to identical processing, and their results are compared.

In the following simulations, the received signals by two receptors in front of the Re-

ichardt Correlator are converted rows in each image individually, with the direction of

velocity from left to the right. The velocity is varied from 1 degree per second to 3000

degrees per second. Two sets of comparison are used to investigate the performance of

the proposed approach: firstly, using single bit samples, different oversampling rates

with noise shaping are applied to the received signals. In order to investigate the re-

sponse effect of the proposed scheme, three different sampling rates are set: 960 Hz,

1920 Hz, and 3840 Hz, which represent 16 times, 32 times and 64 times of Nyquist sam-

pling rate of 60 Hz, respectively. After that, a comparison of output response from two

different signal representation will be put together in one axis for each strip of each

image. One is using single bit, 1920 Hz sampling rate with noise shaping to represent

signal while the other one is the conventional received signal representation in recep-

tor in a Reichardt Correlator, which is digitised at 8-bit depth and sampled at Nyquist

rate. This approach was implemented in Matlab to examine whether the proposed

approach can achieve an accurate response.

The first set of comparisons with different oversampling rates with noise shaping, are

shown in Figures 4.27, 4.28 and 4.29 for each strip of ‘forest’, ‘garden’ and ‘building’,

respectively. The second set of comparisons are shown in Figures 4.30, 4.31 and 4.32,

which uses two different signal representations: single bit sampled at 1920 Hz sam-

pling rate with noise shaping and conventional 8-bit sampled at Nyquist rate. The sim-

ulations were drawn on the same axis to facilitate direct comparison of the responses.

Figures 4.27, 4.28 and 4.29 show the velocity responses when using the oversampling

scheme with single bit representation with noise shaping for ‘forest’, ‘garden’, ‘build-

ing’ images, respectively. From all the sub-figures contained in these three figures, it
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(c) Strip 3 (71-105).
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(d) Strip 4 (106-140).
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Figure 4.27. The velocity estimation curves for ‘forest’ strips at different over-sampling

rates. Through the five graphs, it can be seen that sample at higher rate, the opti-

mum velocity which corresponds to highest response is moving to right along with the

velocity axis.
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Figure 4.28. The velocity estimation for ‘garden’ strips at different over-sampling rates.

These five strips perform the same response curves like ‘forest’, as the over-sampling

rate is changed.
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Figure 4.29. The velocity estimation for ‘building’ strips at different over-sampling rates.

The same effect on response curves when changing the over-sampling rate can still be

seen from these five graphs.
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can be seen see that all the curves have bell-like shape, and for velocity from 1◦/s to

3000◦/s, the output responses rise from zero to a peak value and then decreasing to

zero gradually. Since the simulation is aimed at objects moving from left to right, all

the mean output responses have positive values. For the different images but at the

same sampling rate, the responses share almost the same optimal velocity, correspond-

ing to the same peak response. When sampling rate is 960 Hz, the optimal velocities are

expressed in green line with asterisk and found to be in the range of 40◦/s to 50◦/s. For

1920 Hz, the optimal velocities are expressed in red line with diamond and found to

be in the range of 60◦/s to 70◦/s, and for 3840 Hz, the optimal velocities are expressed

in blue line with dot and found to be in the range of 100◦/s to 110◦/s. In other words,

when higher sampling rates are adopted, higher velocities can be detected. However,

some oscillations can be observed in the responses, such as Figure 4.28 (e), and Fig-

ure 4.29 (d). This inaccurate performance lead to inaccurate velocity estimates in the

low velocity range (v < 10◦/s). These inaccuracies are caused by the lack of image fea-

ture contain in image. Since the images are divided into five strips, it is observed that

the inaccuracy often occurs in the simulation for bottom or top strips. For example,

‘garden’ image, the top and bottom strips contain mostly information for the sky or

ground, in contrast to the middle strips, which contains mostly trees. After using 1-bit

depth representation in these strips, the top and bottom strips are represented by white

and black, and do not show many significant changes along the strips. Furthermore, at

high oversampling rates, the sampling interval is much reduced, so, for slow motion,

entire strips show few differences between successive frames, and it is often impossi-

ble to compute any meaningful response. That is the reason which causes the output

response of the Reichardt Correlator to have inaccurate performance. (i.e. oscillations

for low v)

After investigation into the performance of using 1-bit depth with oversampled rep-

resentation and noise shaping, the velocity estimation effectiveness by the Reichardt

Correlator of the proposed scheme will be simulated under two different settings:

first scheme is simulation under the input samples is 8-bit representation sampled at

Nyquist rate. Second scheme is simulation under the proposed scheme of using 1-bit,

oversampled in 1920 Hz (32 times Nyquist rate) with noise shaping for input samples.
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Figure 4.30. The velocity estimation curves for ‘forest’ strips with different signal represen-

tations. These five graphs show the response curves for single bit representation with

oversampling rate and 8-bit response with Nyquist rate.
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(b) Strip 2 (36-70).
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Figure 4.31. The velocity estimation for ‘garden’ strips with different signal representations.

The same performance as ‘forest’.
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Figure 4.32. The velocity estimation for ‘building’ image strips with different signal repre-

sentations. It can be seen that the different ‘building’ strips are performed accurate

response curves as ‘forest’ and ‘garden’.
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The responses from the two settings will be presented on one axis for each strip of

images.

Figures 4.30, 4.31 and 4.32 show the velocity estimation under two different settings

for the five strips of ‘forest’, ‘garden’ and ‘building’ images. From the three figures,

we can see that all the response curves have bell-like shape and positive mean values

as an accurate velocity estimation, regardless of the representation approach used. It

can be seen that the red line with diamond, which corresponds to 8-bit, Nyquist rate

sampled signals, the Reichardt Correlator provides lower responses than the blue line

with asterisk which corresponds to the 1-bit, oversampled representation. The optimal

velocities for 8-bit, Nyquist rate representation are located in the range between 10◦/s

to 15◦/s. However, the degradation is occurring in the low range of velocities. When

using the 1-bit, oversampled representation, for low velocities ranging from 1◦/s to

20◦/s approximately, the corresponding responses are almost same. In addition, in this

velocity range, the 8-bit, Nyquist sampling rate representation has the more accurate

velocity estimation performance.

4.4 Summary

This chapter has presented the Reichardt Correlator response for velocity estimation

from mathematical description to simulation results. In order to simplify the arith-

metic complexity, we attempted to reduce the bit depth to represent the digital signals,

and use oversampling to sample the digital signals. From the simulation results, the

performance of the basic Reichardt Correlator which under the proposed approach

of using oversampled 1-bit representation for velocity estimation is investigated, and

found to offer accurate performance despite a large reduction in complexity. In the

next and final chapter, we will summarise and discuss the work presented and then

suggest future research directions.
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Chapter 5

Conclusions and future
directions

T
HIS chapter presents a summary of the key findings and their

significance. Then the conclusions will be discussed. The thesis

will conclude with recommendations for future research.
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5.1 Summary

5.1 Summary

This thesis has represent a lower bit depths at oversampled signals representation

study based on the bio-inspired motion detector of the Reichardt Correlator. The lower

bit depths with oversampled representation is considered to be a means to reducing the

arithmetic complexity in computational implementation, and at the same time, achiev-

ing the accurate velocity estimation performance.

The background knowledge about different motion detection algorithms and the Re-

ichardt Correlator model have been studied in Chapter 2. The proposed approaches

which are using lower bit depths and oversampled representation were presented in

Chapter 3. The simple ‘sine grating’ image, naturalistic ‘friend’ image and panoramic

‘scenery’ image were used as stimuli to implement the proposed approaches. After

that, the sigma-delta conversion which operating at 1-bit oversampled representation

with noise shaping was proposed to combine with the Reichardt Correlator have been

studied in Chapter 3. The simulations and analysis of the proposed approaches com-

bined with the Reichardt Correlator, and the results from the comparison between pro-

posed and conventional representations were reported in Chapter 4.

5.2 Conclusions

Conventionally, the input signals to the Reichardt Correlator are often digitised at bit

depths of 8 or greater and sampled at Nyquist rate. Its implementation requires rela-

tively complicated arithmetic units to copy with the processing of the sample. In this

thesis, we developed a different approach of signal representation that is using 1-bit,

oversampled with noise shaping to compare with the conventional approach of 8-bit

representation with sample at Nyquist rate. The approach of this thesis differs from

many Reichardt Correlator modelling studies. Instead of improving the complex com-

ponents into the basic Reichardt Correlator to elaborate it as more accuracy motion

detector, the aim of this work is to devise a scheme whereby the required complexity

arithmetic units can be made simpler. Therefore, the main aim of the project is not

to attempt to improve the Reichardt Correlator performance, but to understand the
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trade-off in performance using the Reichardt Correlator as the velocity estimator in the

vision system.

The performance of the developed approaches are evaluated using Matlab simulation.

The input signals sampled as 8-bit at Nyquist rate are defined as the baseline to com-

pare with which the proposed representation of 1 bit and for oversampled signals.

Simulation results show that proposed approaches outperformed the conventional ap-

proach. Compare with the conventional representation, under the reduction in arith-

metic complexity, the velocity estimation results from the 1-bit oversampled represen-

tation have higher dynamic range in velocity response. Moreover, the estimation of

optimal velocity is higher than the conventional approach, the optimal velocity in the

approach of 1-bit oversampled representation is 100◦/s to 110◦/s compared with 10◦/s

to 15◦/s of optimal velocity estimation in 8-bit at Nyquist rate. However, the higher

optimal velocity estimation is trade-off against the accurate estimation in the lower ve-

locity range of 1◦/s to 20◦/s. From the consideration of reducing system arithmetic

complexity and achieving the accurate motion detection performance, the proposed

approach is shown that a 1-bit oversampled representation can obtain accurate veloc-

ity estimation performance when combined with the basic Reichardt Correlator.

5.3 Future work

The approach of using 1-bit oversampled representation for the input signal to the

basic Reichardt Correlator offered reasonable performance in velocity estimation. The

analysis and simulation results show that the approach outperforms than the 8 bit,

Nyquist sampled rate signal. However, some aspects of the approach still need to be

improved.

Firstly, the reliability of the proposed system performance is still affected by the image

conditions. For applications where the image contains multiple spatial frequencies, or

the contrast is changing, the system can occasionally yield unreliable performance. In

this case, the output responses are often different with the same velocity. Therefore,

developing an adaptive algorithm for suitable the different image conditions need to

be done in the future work.
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In addition, when using 1-bit oversampled representation, the faster velocities can be

detected. However, this comes with it a trade-off against the low velocities’ range de-

tected. Moreover, for low velocities, the 8 bit, Nyquist rate representation has accurate

and reliable performance. Future work can be conducted to address this concern, with

perhaps further elaboration of the Reichardt Correlator model.

The 1-bit oversampled signal representation combined with the Reichardt Correlator

can not only provide the reduction in system arithmetic complexity, but also obtain

the accurate velocity estimation performance. It is anticipated that more and more bio-

inspired vision detection systems can utilise 1-bit oversampled representations and

novel applications will arrive. However, there are still many challenges in bio-inspired

vision detection system, and future work should be carried out to make this technology

really progress beyond laboratory demonstrations.
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Appendix A

Matlab Code

I
N the course of this thesis, I performed repeated simulations of the

Reichardt Correlator responses to images in Matlab. The Matlab

code which is used to simulate the performance of the combined

Reichardt Correlator (Figure 4.24) is attached in the appendix.
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A.1 Matlab code 1: first order Sigma-Delta conversion

A.1 Matlab code 1: first order Sigma-Delta conversion

%------------------------------------------------%

%-------first order Sigma-Delta conversion-------%

%------------------------------------------------%

function y = sigma_delta_1st(x)

x=(double(x)-128)/128; %used to make the value x between -1 and +1

y=zeros(size(x)); w1=y; y(1)=-1; for idx = 2:length(x)

ytmp=w1(idx-1);

y(idx) = 2*(ytmp>=0)-1;

w1(idx)=x(idx)-y(idx)+w1(idx-1);

end y=int8(y);

A.2 Matlab code 2: the combined Reichardt Correlator

with 1-bit oversampling interface

%-----------------------------------------------%

%-------the combined Reichardt Correlator-------%

%-----------------------------------------------%

clc;

clear;

tic;

%--------------variable declaration--------------%

tau=0.035; %time constant in first order low-pass filter 35ms

delphi=1.08; %spatial distance between two receptors (degree units)

%-----loops the contrasts to get Velocity response for each contrast-----%

%for contrast=0.3:0.3:1; %contrast vary from 0 to 1
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contrast=1;

velocity_vector=logspace(log10(2),log10(3000),30); %degrees per second

Response=[];%an empty cell array to store total responses for each velocity

i=1;%used to increase the Response array so that every addition to it will

%be at the end of the array

%--------LOOPS THROUGH THE VELOCITY VECTOR--------%

for loop_counter=1:length(velocity_vector)

velocity = velocity_vector(loop_counter);

disp([’Iteration: v= ’ num2str(velocity)])

%--------Reads an image into data using imread--------%

Image_data = imread(’forest.png’); %input image

w=length(Image_data); %in pixel units

pixels_per_degree = w/360; %panoramic image

v=velocity*pixels_per_degree; %velocity in pixels per second

%-------Nyquist rate & oversampling rate declaration--------%

% fs=60; %Nyquist rate ’b--’

% fs=960; %16x ’k’

fs=1920; %32x ’b’

% fs=3840; %64x ’r’

% variable=v/fs;

dist=round(delphi*pixels_per_degree); %distance in pixel units

x0=1; %starting point

n=1:1:floor(w /(( 2*pixels_per_degree) / fs ));

%----------Correlates first row of the data----------%

R=1;

disp([’Iteration: ’ num2str(R)])
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A.2 Matlab code 2: the combined Reichardt Correlator with 1-bit oversampling
interface

data=Image_data(R,:); % image data to read in the current row only

%----------------linear interpolation in s1----------------%

s1t=x0+(v/fs).*n;

if floor(s1t)<w

w1_s1=double(data(floor(s1t)));

w2_s1=double(data(floor(s1t)+1));

a_s1=s1t-floor(s1t);

s1=(1-a_s1).*w1_s1+a_s1.*w2_s1 ; % if data_data is not integer

else

s1t=mod(floor(s1t-1),w)+1;

w1_s1=double(data(floor(s1t)));

w2_s1=double(data(floor(s1t-1)+1));

a_s1=s1t-floor(s1t);

s1=(1-a_s1).*w1_s1+a_s1.*w2_s1 ; % if data_data is not integer

end

S1=double(s1);

%----------------quantisation----------------%

s11=mat2gray(S1)*255;

% s11 = mat2gray(floor(s11/128)); %1bit

% s11 = mat2gray(floor(s11/128)); %2bit

% s11 = mat2gray(floor(s11/128)); %3bit

% s11 = mat2gray(floor(s11/128)); %4bit

% s11 = mat2gray(floor(s11/128)); %5bit

% s11 = mat2gray(floor(s11/128)); %6bit

% s11 = mat2gray(floor(s11/128)); %7bit

% s11 = mat2gray(floor(s11/1)); %8bit

%----------------sigma-delta conversion----------------%

% s1s=s11*contrast; % no sigma-delta conversion ’rd’

Page 90



Appendix A Matlab Code

s1s=double(sigma_delta_1st(s11)); % sigma-delta conversion ’b*’

%----------------linear interpolation in s2----------------%

s2t=x0+(v/fs).*n+dist;

if floor(s2t)<w

w1_s2=double(data(floor(s2t)));

w2_s2=double(data(floor(s2t)+1));

a_s2=s2t-floor(s2t);

s2=(1-a_s2).*w1_s2+a_s2.*w2_s2 ; % if data_data is not integer

else

s2t=mod(floor(s2t-1),w)+1;

w1_s2=double(data(floor(s2t)));

w2_s2=double(data(floor(s2t-1)+1));

a_s2=s2t-floor(s2t);

s2=(1-a_s2).*w1_s2+a_s2.*w2_s2 ; % if data_data is not integer

end

S2=double(s2);

%----------------quantisation----------------%

s22=mat2gray(S2)*255;

% s22 = mat2gray(floor(s22/128)); %1bit ’r*-’

% s22 = mat2gray(floor(s22/128)); %2bit

% s22 = mat2gray(floor(s22/128)); %3bit

% s22 = mat2gray(floor(s22/128)); %4bit

% s22 = mat2gray(floor(s22/128)); %5bit

% s22 = mat2gray(floor(s22/128)); %6bit

% s22 = mat2gray(floor(s22/128)); %7bit

% s22 = mat2gray(floor(s22/1)); %8bit ’r:d’

%----------------sigma-delta conversion----------------%

% s2s=s22*contrast; %no sigma-delta conversion
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A.2 Matlab code 2: the combined Reichardt Correlator with 1-bit oversampling
interface

s2s=double(sigma_delta_1st(s22)); % sigma-delta conversion

%----------low-pass filter butterworth----------%

%-------uses convolution with Butterworth filter-------%

sample_rate=v; % pixels per second

cutoff=1;

order=1; % order of the filter

Wn=cutoff/(sample_rate/2);

[b,a]=butter(order,Wn); % Butterworth IIR filter

s1d=filter(b,a,s1s); %signal delayed by filter

s2d=filter(b,a,s2s); %signal delayed by filter

%--------output of correlator--------%

corA=25.*s1d.*s2s;

corB=25.*s2d.*s1s;

totalCor=corB-corA; %prepares an array for concatanation of other rows

%--------correlation for the rest of rows--------%

for R=2:35

disp([’Iteration: ’ num2str(R)])

data = Image_data(R,:); % image data to read in the current row only

%----------------linear interpolation in s1----------------%

s1t=x0+(v/fs).*n;

if floor(s1t)<w

w1_s1=double(data(floor(s1t)));

w2_s1=double(data(floor(s1t)+1));

a_s1=s1t-floor(s1t);

s1=(1-a_s1).*w1_s1+a_s1.*w2_s1 ; % if data_data is not integer

else

s1t=mod(floor(s1t-1),w)+1;
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w1_s1=double(data(floor(s1t)));

w2_s1=double(data(floor(s1t-1)+1));

a_s1=s1t-floor(s1t);

s1=(1-a_s1).*w1_s1+a_s1.*w2_s1 ; % if data_data is not integer

end

S1=double(s1);

%----------------quantisation----------------%

s11=mat2gray(S1)*255;

% s11 = mat2gray(floor(s11/128)); %1bit

% s11 = mat2gray(floor(s11/128)); %2bit

% s11 = mat2gray(floor(s11/128)); %3bit

% s11 = mat2gray(floor(s11/128)); %4bit

% s11 = mat2gray(floor(s11/128)); %5bit

% s11 = mat2gray(floor(s11/128)); %6bit

% s11 = mat2gray(floor(s11/128)); %7bit

% s11 = mat2gray(floor(s11/1)); %8bit

%----------------sigma-delta conversion----------------%

% s1s=s11*contrast; %no sigma-delta conversion

s1s=double(sigma_delta_1st(s11)); %sigma-delta conversion

%----------------linear interpolation in s2----------------%

s2t=x0+(v/fs).*n+dist;

if floor(s2t)<w

w1_s2=double(data(floor(s2t)));

w2_s2=double(data(floor(s2t)+1));

a_s2=s2t-floor(s2t);

s2=(1-a_s2).*w1_s2+a_s2.*w2_s2 ; % if data_data is not integer

else

s2t=mod(floor(s2t-1),w)+1;
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A.2 Matlab code 2: the combined Reichardt Correlator with 1-bit oversampling
interface

w1_s2=double(data(floor(s2t)));

w2_s2=double(data(floor(s2t-1)+1));

a_s2=s2t-floor(s2t);

s2=(1-a_s2).*w1_s2+a_s2.*w2_s2 ; % if data_data is not integer

end

S2=double(s2);

%----------------quantisation----------------%

s22=mat2gray(S2)*255;

% s22 = mat2gray(floor(s22/128)); %1bit ’r*-’

% s22 = mat2gray(floor(s22/128)); %2bit

% s22 = mat2gray(floor(s22/128)); %3bit

% s22 = mat2gray(floor(s22/128)); %4bit

% s22 = mat2gray(floor(s22/128)); %5bit

% s22 = mat2gray(floor(s22/128)); %6bit

% s22 = mat2gray(floor(s22/128)); %7bit

% s22 = mat2gray(floor(s22/1)); %8bit ’r:d’

%----------------sigma-delta conversion----------------%

% s2s=s22*contrast; %no sigma-delta conversion

s2s=double(sigma_delta_1st(s22)); %sigma-delta conversion

%----------low-pass filter butterworth----------%

%-------uses convolution with Butterworth filter-------%

sample_rate = v; % pixels per second

cutoff=1;

order = 1; % order of the filter

Wn = cutoff/(sample_rate/2);

[b,a] = butter(order,Wn); % Butterworth IIR filter

s1d = filter(b,a,s1s); %signals delayed by filter

s2d = filter(b,a,s2s);
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%--------output of correlator A,B (half correlator)--------%

corA=25.*s1d.*s2s;

corB=25.*s2d.*s1s;

Cor=corB-corA;%prepares an array for concatanation of other rows of arrays

totalCor=cat(1,totalCor,Cor); %concantantes all rows into one array

end

%---------------response vs velocity---------------%

MeanCor=mean(totalCor,2); %means the response

MeanCor2=mean(MeanCor);

Response{1,i}=MeanCor2; %stores the repsonse in the array

i=i+1; %increases i to increase array position

end %end of velocity_vector;

Response1 = cell2mat(Response);%convert cell array to single matrix

semilogx(velocity_vector,Response1);%plots veloctiy versus response

xlabel(’velocity(\circ/s)’);%x lable

ylabel(’Response’);%y lable

title(’velocity vs response, forest’)

hold on;%holds figure to plot repeatedly on same figure

toc;

% end % end of contrast loop

A.3 Brief instruction on the Matlab code

The Matlab version is v7.6 or later versions. Matlab code 1 is implemented the Sigma-

Delta conversion, which is used to quantise the input signal value between -1 and
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A.3 Brief instruction on the Matlab code

+1. Matlab code 2 is implemented the combine Reichardt Correlator with 1-bit over-

sampling interface. As shown in Figure 4.24, the code is contained the functions of

apperceive the signal, sampling and interpolating, quantisation and noise shaping,

delay, 1-bit multiply, subtract, and plot the response curves. The different input im-

ages can be input in the syntax of Image data=imread(‘input image’), different over-

sampling rates are listed in the sampling rate declaration, the responses and velocities

are semilogarithmic plotted using syntax of semilogx(velocity vector, Response1).
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