### Developments in Double-Modulated Terahertz Differential Time-Domain Spectroscopy

by

#### Jegathisvaran Balakrishnan

B.Eng. (Electrical & Electronic, Honours), The University of Adelaide, 2005

Thesis submitted for the degree of

#### **Doctor of Philosophy**

in

School of Electrical & Electronic Engineering, The Faculty of Engineering, Computer, and Mathematical Sciences The University of Adelaide, Australia

February, 2010





© 2010 Jegathisvaran Balakrishnan All Rights Reserved



# Contents

| Headi   | ng       |                          |   |            |   | Pa | age  |
|---------|----------|--------------------------|---|------------|---|----|------|
| Conten  | ts       |                          |   |            |   |    | iii  |
| Abstrac | ct       |                          |   |            |   |    | ix   |
| Statem  | ent of ( | Driginality              |   |            |   |    | xi   |
| Acknow  | ledgme   | ents                     |   |            |   |    | xiii |
| Thesis  | Conven   | tions                    |   |            |   |    | xv   |
| Publica | tions    |                          |   |            |   |    | xvii |
| List of | Figures  |                          |   |            |   |    | xix  |
| List of | Tables   |                          |   |            |   |    | xxv  |
| Chapte  | r 1. Int | roduction and Motivation |   |            |   |    | 1    |
| 1.1     | Introd   | uction                   | • |            |   |    | 2    |
| 1.2     | Thesis   | overview                 | • |            |   |    | 3    |
| 1.3     | Origin   | al contribution          |   | •          | • | •  | 5    |
| Chapte  | r 2. Ele | ectromagnetic spectrum   |   |            |   |    | 7    |
| 2.1     | Introd   | uction                   | • | , <b>.</b> |   |    | 8    |
|         | 2.1.1    | Objectives and framework | • | , <b>.</b> |   | •  | 9    |
| 2.2     | In the   | Beginning                | • |            |   |    | 9    |
|         | 2.2.1    | Radiowaves               | • | , <b>.</b> |   |    | 9    |
|         | 2.2.2    | Microwaves               | • | , <b>.</b> |   |    | 9    |
|         | 2.2.3    | T-rays                   |   | . <b>.</b> |   |    | 11   |
|         | 2.2.4    | Infrared                 | • | •          | • | •  | 13   |

|        | 4.3.5    | Polycarbonate (PC)                                         | 56 |
|--------|----------|------------------------------------------------------------|----|
|        | 4.3.4    | Poly(methyl methacrylate)–(PMMA)                           | 56 |
|        | 4.3.3    | TOPAS Cyclic-olefin copolymer (COC) 5013L10 & 6013S04      | 51 |
|        | 4.3.2    | Polytetrafluoroethylene (PTFE)                             | 50 |
|        | 4.3.1    | High density polyethylene (HDPE)                           | 48 |
| 4.3    | Polyn    | ner T-rav spectroscopy                                     | 47 |
| 4.2    | Polyn    | ners today                                                 | 46 |
|        | 4.1.1    | Objectives and framework                                   | 45 |
| 4.1    | Brief    | introduction on macromolecules or polymers                 | 44 |
| Chapte | er 4. T  | Hz dielectric properties of polymer materials              | 43 |
| 3.4    | Chap     | ter summary                                                | 42 |
|        | 3.3.1    | Assumption and method of extraction                        | 36 |
| 3.3    | Data a   | analysis                                                   | 35 |
|        | 3.2.5    | Novel antenna mounts                                       | 33 |
|        | 3.2.4    | THz-TDS configuration                                      | 27 |
|        | 3.2.3    | Photoconductive antennas                                   | 27 |
|        | 3.2.2    | Terahertz pulse detection using a photoconductive detector | 25 |
|        | 3.2.1    | Terahertz pulse emission using photoconductive emitters    | 23 |
| 3.2    | Princi   | ples of terahertz pulse emission and detection             | 23 |
|        | 3.1.1    | Objectives and framework                                   | 22 |
| 3.1    | Introc   | luction                                                    | 22 |
| Chapte | er 3. To | erahertz time-domain spectroscopy (THz-TDS)                | 21 |
| 2.3    | Chap     | ter summary                                                | 19 |
|        | 2.2.8    | $\gamma$ -rays                                             | 17 |
|        | 2.2.7    | X-rays                                                     | 16 |
|        | 2.2.6    | Ultraviolet (UV)                                           | 14 |
|        | 2.2.5    | Visible light                                              | 14 |

| 5.1    | Introduction                                                  | 62  |
|--------|---------------------------------------------------------------|-----|
|        | 5.1.1 Objectives and framework                                | 62  |
| 5.2    | Polar and non-polar polymers                                  | 63  |
|        | 5.2.1 Polymer hygroscopicity                                  | 63  |
| 5.3    | Sample preparation                                            | 63  |
| 5.4    | Analysis                                                      | 64  |
| 5.5    | Results and discussion                                        | 66  |
| 5.6    | Chapter summary                                               | 70  |
| Chapte | r 6. THz-TDS sample cells for liquid spectroscopy             | 71  |
| 6.1    | Introduction                                                  | 72  |
|        | 6.1.1 Objectives and framework                                | 74  |
| 6.2    | Window cell geometries                                        | 74  |
|        | 6.2.1 Single-thickness window cell geometry                   | 74  |
|        | 6.2.2 Air tight window cell geometry                          | 80  |
|        | 6.2.3 Dual-thickness window cell geometry                     | 83  |
|        | 6.2.4 Reflection window cell geometry                         | 87  |
| 6.3    | Chapter summary                                               | 88  |
| Chapte | r 7. THz material parameter extraction using a spinning wheel | 91  |
| 7.1    | Introduction                                                  | 92  |
|        | 7.1.1 Objectives and framework                                | 92  |
| 7.2    | THz-DTDS and Double-modulated THz-DTDS                        | 93  |
| 7.3    | Spinning wheel                                                | 95  |
| 7.4    | Simulation                                                    | 97  |
| 7.5    | Experimental Method                                           | 101 |
|        | 7.5.1 Lock-in amplifier configuration                         | 101 |
| 7.6    | Analysis                                                      | 103 |
| 7.7    | Results and discussion                                        | 105 |
|        | 7.7.1 Polyvinyl chloride: PVC                                 | 105 |
| 7.8    | Chapter summary and recommendation                            | 109 |
|        |                                                               |     |

#### Contents

| Chapte  | r <b>8. Fi</b> x | ked dual-thickness terahertz liquid spectroscopy              | 111 |
|---------|------------------|---------------------------------------------------------------|-----|
| 8.1     | Introd           | uction                                                        | 112 |
|         | 8.1.1            | Objectives and framework                                      | 113 |
| 8.2     | Spinni           | ng wheel                                                      | 113 |
| 8.3     | Experi           | mental configuration                                          | 115 |
|         | 8.3.1            | Lock-in amplifier setting                                     | 116 |
|         | 8.3.2            | Sample preparation                                            | 117 |
| 8.4     | Mathe            | matical formula                                               | 117 |
|         | 8.4.1            | Spinning wheel accuracy verification                          | 118 |
| 8.5     | Result           | s and discussion                                              | 119 |
|         | 8.5.1            | Water                                                         | 121 |
|         | 8.5.2            | Methanol                                                      | 121 |
|         | 8.5.3            | Ethanol                                                       | 121 |
| 8.6     | Chapte           | er summary                                                    | 126 |
| Chapter | r <b>9. T</b> h  | nesis conclusion and recommendation                           | 127 |
| 9.1     | Introd           | uction                                                        | 128 |
| 9.2     | Thesis           | conclusions                                                   | 128 |
|         | 9.2.1            | Review of Electromagnetic spectrum                            | 128 |
|         | 9.2.2            | Review of THz dielectric properties of polymer materials      | 128 |
|         | 9.2.3            | Review of THz-TDS sample cells for liquid spectroscopy        | 128 |
|         | 9.2.4            | Review of THz material parameter extraction using a spinning  |     |
|         |                  | wheel                                                         | 129 |
|         | 9.2.5            | Review of Fixed dual-thickness terahertz liquid spectroscopy  | 129 |
| 9.3     | Recom            | mendation and future directions                               | 130 |
| 9.4     | Summ             | ary of original contributions                                 | 131 |
| 9.5     | In clos          | ing                                                           | 131 |
| Append  | ix A. N          | Aodelling terahertz signal extraction using lock-in amplifier | 133 |
| A.1     | Terahe           | ertz signal recovery using lock-in amplifier                  | 134 |
|         | A.1.1            | Objectives and framework                                      | 135 |
|         |                  |                                                               |     |

| A.2         | Terahe   | ertz signal extraction for a THz-TDS                         | 135 |
|-------------|----------|--------------------------------------------------------------|-----|
|             | A.2.1    | Mathematical expression of the THz-TDS signal recovery using |     |
|             |          | a single lock-in amplifier                                   | 136 |
| A.3         | Terahe   | ertz signal extraction for a double-modulated THz-DTDS       | 138 |
|             | A.3.1    | Mathematical expression of the double-modulated THz-DTDS     |     |
|             |          | signal recovery using two lock-in amplifiers                 | 139 |
| A.4         | Chapt    | er summary                                                   | 143 |
| Append      | lix B. 1 | Ferahertz detection of substances                            | 145 |
| B.1         | Introd   | uction                                                       | 146 |
|             | B.1.1    | Objectives and framework                                     | 146 |
| B.2         | Metho    | odology                                                      | 147 |
| B.3         | Experi   | imental Setup                                                | 148 |
| B.4         | Result   | s and discussion                                             | 149 |
| B.5         | Conclu   | usion and recommendation                                     | 151 |
| Append      | lix C. F | Experimental Equipment                                       | 153 |
| C 1         | Conve    | entional THz time-domain spectrometer                        | 154 |
| <b>C</b> .1 | C 1 1    | Modelocked femtosecond leser                                 | 151 |
|             | C.1.1    | VDC Mation controller                                        | 155 |
|             | C.1.2    |                                                              | 156 |
|             | C.1.3    |                                                              | 157 |
|             | C.1.4    | SR540 chopper controller                                     | 158 |
|             | C.1.5    | Optical components                                           | 159 |
|             | C.1.6    | Mechanical components                                        | 159 |
| C.2         | Data a   | equisition for conventional THz-TDS                          | 160 |
| C.3         | Doubl    | e-modulated THz-DTDS spectrometer                            | 160 |
|             | C.3.1    | Double-modulated THz-DTDS                                    | 162 |
|             | C.3.2    | Dual lock-in amplifier configuration                         | 162 |
|             | C.3.3    | Spinning wheel                                               | 163 |
| C.4         | Data a   | cquisition for double-modulated THz-DTDS                     | 164 |
|             |          |                                                              |     |

#### Appendix D. Matlab Algorithms

#### Contents

| D.1                | Conventional THz-TDS analysis program                 | 168 |
|--------------------|-------------------------------------------------------|-----|
| D.2                | Double-modulated THz-DTDS analysis program            | 175 |
| D.3                | Modelling conventional THz-TDS signal extraction      | 183 |
| D.4                | Modelling double-modulated THz-DTDS signal extraction | 187 |
| Bibliography       |                                                       | 199 |
| Symbols & Glossary |                                                       | 207 |
| Index              | Index                                                 |     |
| Résumé             | Résumé                                                |     |
| Scientif           | ic Genealogy                                          | 213 |

# Abstract

Recent years have seen a plethora of significant advances in terahertz (THz or T-ray) technology with the rapid development of the ultrafast femtosecond laser system. By definition, THz refers to an electromagnetic wave located between the microwave and infrared regions of the electromagnetic spectrum.

Over the last two decades, there has been an enormous interest in improving the sensitivity of spectroscopic measurements on liquids in the terahertz regime. Liquid studies at terahertz frequencies (0.1 - 10 THz) allow analysis of chemical composition and provides a better understanding of the solvation dynamics of various types of liquids. This Thesis focusses on developing a novel spinning wheel device using a doublemodulated terahertz differential time-domain spectroscopy (double-modulated THz-DTDS) scheme coupled with a simultaneous dual-waveform acquisition technique for increasing the sensitivity and repeatability of liquid studies. The spinning wheel device promises a rapid succession of measurements, requiring one mechanical delay scan for the sample and reference signals.

The double-modulated THz-DTDS scheme with simultaneous dual-waveform acquisition was first introduced by Mickan *et al.* (2004). This Thesis builds upon this former work with a modification in the signal extraction technique. In this work, a step-by-step systematic engineering approach has been employed for the development of the spinning wheel device.

The Thesis is categorised into several parts leading to the development of the spinning wheel device. The first part provides a review on the historical development of the electromagnetic spectrum and a review of the state-of-the-art regarding THz generation and detection based on transient photoconductivity. Identifying an optimal polymer window material forms the second part of this Thesis. Here, a range of polymer materials are tested for low hygroscopicity and high transmission coefficient. The third part of the Thesis reviews various window cell geometries used in liquid spectroscopy measurements. A detailed data analysis technique is described for each geometry. The fourth part of the Thesis presents a prototype of the novel spinning wheel mechanism for THz material parameter extraction using the double-modulated THz-DTDS scheme. A proof-of-principle showing that the amplitude noise of a THz

#### Abstract

system decreases as a function of the spinning wheel modulation frequency is demonstrated. Preliminary experiments indicate the potential of this technique for achieving a better noise performance, which is of significance particularly for THz spectroscopy of polar liquids where the signal-to-noise ratios are typically low due to high absorption coefficient. The initial demonstration of the spinning wheel technique leads to THz spectroscopy of liquids based on a fixed dual-thickness window geometry. Here, a rapid switching between two fixed liquid sample thicknesses is introduced.

# **Statement of Originality**

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

28 February, 2010

Signed

Date

# Acknowledgments

Looking back at my four years of study at the School of Electrical & Electronic Engineering, The University of Adelaide, as a PhD student, there are many people that I would like to acknowledge. Without their help and support, this Thesis would never be possible.

Foremost, I would like to express my sincere gratitude to my supervisor Prof Derek Abbott for the continuous support of my PhD research, for his motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of the research and writing of this Thesis. I could not have imagined having a better supervisor and mentor for my PhD research. A special thanks to my co-supervisor Dr Bernd Fischer for his encouragement, insightful comments, and for the continuous flow of ideas. Also, I would like to thank my second co-supervisor Dr Samuel Peter Mickan for the pioneering idea of the spinning wheel.

I thank my fellow colleagues: Gretel Png, Matthew Trinkle, Muammar Kabir, Dr Peter Cooke, Shaghik Atakaramians, and Withawat Withayachumnankul for stimulating discussions. I thank Wolf Carius (Sigma Tools Pty. Ltd.), Henry Ho, and Pavel Simcik for technical support. Also, I offer my regards and blessings to all of those who supported me in any respect during the completion of the Thesis.

A special thanks are due to Muammar Kabir for proof-reading this Thesis.

I owe my loving thanks to my parents for their priceless support. Also, I thank my girlfriend, Doyeon Kim for bringing light into my life.

I wish to express my warm and sincere thanks to Dr Joshua V. M. Kuma, Director (Operations), Minerals, Metals, and Materials Technology Centre (M3TC): National University of Singapore, for his inspiration and encourgement towards bringing about the completion of this Thesis work.

I gratefully acknowledge the School of Electrical & Electronic Engineering at the University of Adelaide for the divisional scholarship that has allowed me to complete my Thesis. I would like to thank the IEEE South Australia and Mr Huang Hong Hee, Managing Director of Highway International Pte Ltd, Singapore, for generous travel grants. Jegathisvaran Balakrishnan, February 2010.

# **Thesis Conventions**

The following conventions have been adopted in this Thesis:

1. **Definitions.** The T-ray band is defined in this Thesis to span from 0.1 to 10 THz (where 1 THz is  $10^{12}$  cycles/s). This is an emerging definition in the literature (Abbott and Zhang 2007).

2. **Notation.** The acronyms and symbols used in this Thesis are defined in the Symbols and Glossary on page 207.

3. **Spelling.** Australian English spelling conventions have been used, as defined in the Macquarie English Dictionary (A. Delbridge (Ed.), Macquarie Library, North Ryde, NSW, Australia, 2001).

4. **Typesetting.** This document was compiled using LAT<sub>E</sub>X2e. TeXnicCenter was used as text editor interfaced to LAT<sub>E</sub>X2e. Adobe Illustrator CS2 was used to produce schematic diagrams and other drawings.

5. **Mathematics.** MATLAB code was written using MATLAB Version R2007b/R2008a; URL: http://www.mathworks.com.

6. **Referencing.** The Harvard style has been adopted for referencing.

7. **URLs.** Universal Resource Locators are provided in this Thesis for finding information on the world wide web using hypertext transfer protocol (HTTP). The information at the locations listed was current on 17 December 2009.

### **Publications**

#### **Journal Articles**

- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2009). Low noise spinning wheel technique for THz material parameter extraction, *Optics Communications*, DOI: 10.1016/j.optcom.2010.01.042.
- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2009). Fixed dual-thickness terahertz liquid spectroscopy using a spinning sample technique, *IEEE Photonics Journal*, **1**(2), pp. 88–98.
- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2009). Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy (THz-TDS), *Applied Optics*, **48**(13), pp. 2262 – 2266.
- WITHAYACHUMNANKUL-W., PNG-G. M., YIN-X. X., ATAKARAMIANS-S., JONES-I., LIN-H. Y., UNG-B. S. Y., BALAKRISHNAN-J., NG-B. W.-H., FERGUSON-B., MICKAN-S. P., FISCHER-B., AND ABBOTT-D. (2007). T-ray sensing and imaging, Proceedings of the IEEE, 95(8), pp. 1528–1558 (Invited).

### **Conference Articles**

- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2009). Low-noise terahertz material parameter extraction using a spinning wheel, *Proceedings IRMMW-THz*, Busan, South Korea, DOI: 10.1109/ICIMW.2009.5325568.
- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2008). Double-modulated DTDS-THz liquid spectroscopy using a novel spinning wheel technique, *Proceedings IRMMW-THz*, California, USA, DOI: 10.1109/ICIMW.2008.4665816.
- **BALAKRISHNAN-J.**, FISCHER-B. M., AND ABBOTT-D. (2007). Hygroscopicity of window materials using terahertz time-domain spectroscopy (THz-TDS), *Proceedings IRMMW-THz*, Cardiff, Wales, UK, pp. 206 – 207.
- UNG-B., **BALAKRISHNAN-J.**, FISCHER-B. M., NG-B. W.-H. AND ABBOTT-D. (2007). Terahertz detection of substances for security related purposes, *Proceedings of SPIE*, *Smart Structures, Devices, and Systems III*, Adelaide, Australia, **6414**, art. no. 64140V.

- BALAKRISHNAN-J., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Investigation on improving the noise performance of T-ray liquid spectroscopy via double-modulated differential time-domain spectroscopy, *Proceedings SPIE, Biomedical Applications of Micro- and Nanoengineering III*, Adelaide, Australia, 6416, art. no. 64160V.
- BALAKRISHNAN-J., FISCHER-B. M., MICKAN-S. P, AND ABBOTT-D. (2006). Novel T-ray liquid spectroscopy via double-modulated differential time-domain spectroscopy, *Proceedings IRMMW-THz*, Shanghai, China, DOI: 10.1109/ICIMW.2006.368654.
- UNG-B., BALAKRISHNAN-J., FISCHER-B. M., MICKAN-S. P., NG-B. W.-H., AND ABBOTT-D. (2006). Substance Detection for Security Screening Using Terahertz Imaging Technology, *Proceedings IRMMW-THz*, Shanghai, China, DOI: 10.1109/ICIMW.2006.368655

# **List of Figures**

| Figure |                              | Page |
|--------|------------------------------|------|
| 1.1    | The electromagnetic spectrum | . 2  |
| 1.2    | Thesis structural flow chart | . 5  |

| 2.1  | The electromagnetic wave                                                  | 8  |
|------|---------------------------------------------------------------------------|----|
| 2.2  | Heinrich Rudolf Hertz (1857 - 1894)                                       | 10 |
| 2.3  | Hertz's laboratory appratus                                               | 10 |
| 2.4  | Microwave radiation sources: Reflex klystron and magnetron                | 11 |
| 2.5  | Generation and detection of THz radiation using photoconductive an-       |    |
|      | tennas                                                                    | 12 |
| 2.6  | Sir William Frederick Herschel (1738 - 1822) and his experimental setup   | 13 |
| 2.7  | Sir Isaac Newton (1643 - 1727)                                            | 14 |
| 2.8  | Isaac Newton's experimental setup to illustrate visible spectrum of light |    |
|      | generated from sunlight                                                   | 15 |
| 2.9  | Johann Wilhelm Ritter (1776 - 1810)                                       | 15 |
| 2.10 | Wilhelm Konrad Röntgen (1845 - 1923)                                      | 16 |
| 2.11 | X-ray of Röntgen's wife's hand with a ring                                | 17 |
| 2.12 | Paul Ulrich Villard (1860 - 1934)                                         | 18 |
| 2.13 | Experimental setup for $\gamma$ -ray generation                           | 18 |
|      |                                                                           |    |

| 3.1 | Transmitting photoconductive switch                                       | 24 |
|-----|---------------------------------------------------------------------------|----|
| 3.2 | Photocurrent and electric field amplitude of the THz radiation as a func- |    |
|     | tion of time                                                              | 25 |
| 3.3 | H-structured photoconductive detector switch                              | 26 |
| 3.4 | Illustration of repetitive sampling with variable delay                   | 28 |
| 3.5 | Photoconductive antennas                                                  | 29 |

#### List of Figures

| 3.6  | THz time domain spectrometer                                     | 30 |
|------|------------------------------------------------------------------|----|
| 3.7  | Custom built THz time-domain spectrometer                        | 30 |
| 3.8  | Typical temporal profile and spectral amplitude                  | 32 |
| 3.9  | Novel custom-built antenna mount module                          | 35 |
| 3.10 | Homogeneous sample test                                          | 36 |
| 3.11 | Terahertz data analysis procedures for a 3 mm PMMA polymer sheet | 41 |
|      |                                                                  |    |

| 4.1  | Hermann Staudinger (1881-1965)                                                                   | 44 |
|------|--------------------------------------------------------------------------------------------------|----|
| 4.2  | Monomer and polymer structures of ethylene                                                       | 45 |
| 4.3  | Structure of polyethylene                                                                        | 45 |
| 4.4  | Molecular chain representation of thermoplastic and thermoset polymers                           | 46 |
| 4.5  | Classification of linear chain thermoplastic polymers                                            | 47 |
| 4.6  | Absorption coefficient ( $\alpha$ ) and refractive index ( $n$ ) spectra of HDPE                 | 49 |
| 4.7  | Repeating units of PTFE                                                                          | 50 |
| 4.8  | Absorption coefficient and refractive index spectra of PTFE                                      | 52 |
| 4.9  | Repeating units of TOPAS <sup>TM</sup> COC copolymer $\ldots \ldots \ldots \ldots \ldots \ldots$ | 53 |
| 4.10 | Absorption coefficient ( $\alpha$ ) and refractive index ( $n$ ) of COC 5013L10                  | 54 |
| 4.11 | Absorption coefficient ( $\alpha$ ) and refractive index ( $n$ ) of COC 6013S04                  | 55 |
| 4.12 | Repeating units of PMMA                                                                          | 56 |
| 4.13 | Absorption coefficient ( $\alpha$ ) and refractive index ( $n$ ) of PMMA                         | 57 |
| 4.14 | Repeating units of PC                                                                            | 58 |
| 4.15 | Absorption coefficient ( $\alpha$ ) and refractive index ( $n$ ) of PC                           | 59 |
|      |                                                                                                  |    |

| 5.1 | Process diagram of the experiment | 64 |
|-----|-----------------------------------|----|
| 5.2 | Absorption spectra of PMMA        | 66 |
| 5.3 | Absorption spectra of PC          | 67 |
| 5.4 | Absorption spectra of COC 6013S04 | 69 |
|     |                                   |    |

6.1 Transmission notation for a single-thickness window cell geometry . . . 77

| 6.2  | Bruker's liquid cell                                                     | 78 |
|------|--------------------------------------------------------------------------|----|
| 6.3  | Starna's fixed thickness cylinderical liquid cell                        | 78 |
| 6.4  | Custom-built variable thickness liquid cell                              | 79 |
| 6.5  | Custom-built fixed thickness liquid cell                                 | 80 |
| 6.6  | Transmission notation for air tight window cell geometry                 | 81 |
| 6.7  | T-ray transmission notation for dual-thickness window cell geometry      | 84 |
| 6.8  | Dual-thickness liquid sample cell                                        | 86 |
| 6.9  | T-ray reflection notation for window cell geometry at normal incidence . | 87 |
| 6.10 | Reflection geometry liquid cell setup                                    | 88 |
|      |                                                                          |    |

| 7.1  | The hammer-like sample holder for a differential measurement technique 93       |
|------|---------------------------------------------------------------------------------|
| 7.2  | Spinning wheel for double-modulated THz-DTDS polymer measurements 95            |
| 7.3  | Polymer sample design for a double-modulated THz-DTDS measurement 96            |
| 7.4  | Flowchart of the simulation process for mean and amplitude signal ex-           |
|      | traction                                                                        |
| 7.5  | Simulated mixer output at $n$ th step of the delay stage in frequency domain 99 |
| 7.6  | Time-domain simulated output signal of a mixer at $n$ th step of the delay      |
|      | stage                                                                           |
| 7.7  | Double-modulated DTDS spectrometer schematic for polymer materials              |
|      | measurement                                                                     |
| 7.8  | Lock-in amplifier configuration for mean and amplitude signals extraction103    |
| 7.9  | Mean and amplitude waveforms of PVC                                             |
| 7.10 | Absorption coefficient and refractive index of PVC                              |
| 7.11 | Noise percentage, $\mu_x$ of the THz system detected using a spinning wheel     |
|      | technique as a function of modulation frequency                                 |

| 8.1 | Spinning wheel for double-modulated DTDS dual-thickness liquid mea- |     |
|-----|---------------------------------------------------------------------|-----|
|     | surement                                                            | 114 |
| 8.2 | Fixed dual-thickness geometry of COC 5013L10 window cell            | 115 |
| 8.3 | A double-modulated DTDS spectrometer schematic for dual-thickness   |     |
|     | liquid measurement                                                  | 116 |

#### List of Figures

| 8.4                                           | Lock-in amplifier settings for mean and amplitude signal extraction $11$                                                                                                                                                                                                                                                                                                                                                                                           | 7                                    |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 8.5                                           | Time traces of a double-modulated dual-thickness liquid spectroscopy . 12                                                                                                                                                                                                                                                                                                                                                                                          | 0                                    |
| 8.6                                           | Refractive index and absorption coefficient of distilled water                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                    |
| 8.7                                           | Refractive index and absorption coefficient of methanol                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                    |
| 8.8                                           | The absorption coefficient and refractive index of ethanol                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                    |
| 8.9                                           | Sample thickness error present at random positions in the thin and thick                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
|                                               | liquid layer of the fixed dual-thickness liquid sample holder                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                    |
| A.1                                           | Small signal hidden under a large noise signal                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                    |
| A.2                                           | Lock-in amplifier setup for conventional THz-TDS small signal recovery 13                                                                                                                                                                                                                                                                                                                                                                                          | 6                                    |
| A.3                                           | Simulated terahertz signal extraction for a standard THz-TDS at the $n$ th stars of the delay stars                                                                                                                                                                                                                                                                                                                                                                | 0                                    |
| A 4                                           | step of the delay stage                                                                                                                                                                                                                                                                                                                                                                                                                                            | ð                                    |
| A.4                                           | recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                    |
| A.5                                           | Simulated mixer output at <i>n</i> th step of the delay stage in frequency domain 14                                                                                                                                                                                                                                                                                                                                                                               | 2                                    |
| R 1                                           | Simulation of a faux suitcase and contents                                                                                                                                                                                                                                                                                                                                                                                                                         | .7                                   |
| B.2                                           | Picometrix <sup>TM</sup> T-Ray 2000 spectrometer 14                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                    |
| B.3                                           | Absorption curves of $\alpha$ -lactose, clean and laced samples of the faux suit-                                                                                                                                                                                                                                                                                                                                                                                  | 0                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |
|                                               | case                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                    |
|                                               | case                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                    |
| C.1                                           | case                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                    |
| C.1<br>C.2                                    | case    15    Conventional terahertz time-domain spectrometer A MiraSeed Ti-sapphire femtosecond modelocked laser                                                                                                                                                                                                                                                                                                                                                  | 0<br>4<br>5                          |
| C.1<br>C.2<br>C.3                             | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15                                                                                                                                                                                                                                                | 0<br>4<br>5<br>6                     |
| C.1<br>C.2<br>C.3<br>C.4                      | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15         Photograph of SR830 lock-in amplifier       15                                                                                                                                                                                         | 0<br>4<br>5<br>6<br>7                |
| C.1<br>C.2<br>C.3<br>C.4<br>C.5               | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15         Photograph of SR830 lock-in amplifier       15         SR540 Chopper system       15                                                                                                                                                   | 0<br>4<br>5<br>6<br>7<br>8           |
| C.1<br>C.2<br>C.3<br>C.4<br>C.5<br>C.6        | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15         Photograph of SR830 lock-in amplifier       15         SR540 Chopper system       15         Screen shot of the LabVIEW program for conventional THz-TDS spec-       16                                                                | 0<br>4<br>5<br>6<br>7<br>8           |
| C.1<br>C.2<br>C.3<br>C.4<br>C.5<br>C.6        | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15         Photograph of SR830 lock-in amplifier       15         SR540 Chopper system       15         Screen shot of the LabVIEW program for conventional THz-TDS spectrometer       16         Dealth and the LabVIEW DEDE       16            | 0<br>4<br>5<br>6<br>7<br>8           |
| C.1<br>C.2<br>C.3<br>C.4<br>C.5<br>C.6<br>C.7 | case       15         Conventional terahertz time-domain spectrometer       15         A MiraSeed Ti-sapphire femtosecond modelocked laser       15         XPS motion contoller and motorised delay stage       15         Photograph of SR830 lock-in amplifier       15         SR540 Chopper system       15         Screen shot of the LabVIEW program for conventional THz-TDS spectrometer       16         Double-modulated THz-DTDS spectrometer       16 | 0<br>4<br>5<br>6<br>7<br>8<br>1<br>2 |

| C.9  | The spinning wheel prototype                                       | 164 |
|------|--------------------------------------------------------------------|-----|
| C.10 | Screen shot of LabVIEW program for double-modulated THz-DTDS spec- |     |
|      | trometer                                                           | 165 |

# **List of Tables**

| Table |                                                                                    | Pa | ge |
|-------|------------------------------------------------------------------------------------|----|----|
| 2.1   | Electromagnetic spectrum definitions                                               |    | 19 |
| 3.1   | Water lines in THz regime                                                          |    | 34 |
| 4.1   | Terahertz dielectric properties of polymer materials                               |    | 60 |
| 5.1   | The variation in absorption coefficient and hygroscopicity of polymer<br>materials | r  | 68 |