Engineering Aspects of Terahertz Time-Domain Spectroscopy

by

Withawat Withayachumnankul

B Eng (Electronic Engineering, Honours) King Mongkut's Institute of Technology Ladkrabang, Thailand, 2001 M Eng (Electronic Engineering) King Mongkut's Institute of Technology Ladkrabang, Thailand, 2003

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical & Electronic Engineering Faculty of Engineering, Computer & Mathematical Sciences The University of Adelaide, Australia

December, 2009

© 2009 Withawat Withayachumnankul All Rights Reserved

Conten	ts	iii
Abstrac	t	xi
Statem	ent of Originality	xiii
Acknow	ledgements	xv
Conven	tions	xvii
Publica	tions	xix
List of	Figures	xiii
List of	Tables	xix
Chapte	r 1. Introduction	1
1.1	Definition of T-rays	3
1.2	Generation and detection of T-rays using THz-TDS	5
1.3	Applications for T-rays	6
1.4	Prospects for T-rays	7
1.5	Thesis outline	8
1.6	Summary of original contributions	10
Chapte	r 2. Terahertz time-Domain spectroscopy: THz-TDS	11
2.1	Introduction	13
2.2	Major T-ray generation and detection techniques	16
	2.2.1 Quantum cascade lasers & quantum well photodetectors	17
	2.2.2 Frequency mixers	17
	2.2.3 Fourier transform infrared spectroscopy	18
	2.2.4 Terahertz time-domain spectroscopy: THz-TDS	19

2.3	Early o	developments of THz-TDS sources and detectors	20
	2.3.1	Photoconductive antennas	21
	2.3.2	Nonlinear crystals	26
2.4	Princij	ples for THz-TDS sources and detectors	31
	2.4.1	Photoconductive antennas—photocarrier transport	31
	2.4.2	Nonlinear crystals—nonlinear optical processes	36
2.5	Transr	nission-mode THz-TDS	41
2.6	Varian	ts of THz-TDS	44
	2.6.1	Spectroscopy	44
	2.6.2	Imaging	48
	2.6.3	Tomography & other 3D imaging	49
2.7	Conclu	asion	51
Chapter	r 3. A p	oplications of THz-TDS	53
3.1	Introd	uction	55
3.2	Funda	mental spectroscopic studies	56
	3.2.1	Regular dielectrics	56
	3.2.2	Semiconductors	59
	3.2.3	Liquids—relaxation processes	62
	3.2.4	Gases—rotational transitions	64
	3.2.5	Crystalline materials—vibrational transitions	65
	3.2.6	Biomolecules	68
3.3	Advar	nced applications	69
	3.3.1	Gas sensing and recognition	72
	3.3.2	Pharmaceutical assessment	74
	3.3.3	Medical and dental diagnostics	76
	3.3.4	Biosensing	78
	3.3.5	Security screening	80
	3.3.6	Miscellaneous nondestructive testing	83
3.4	T-ray a	absorption of water	85
3.5	Safety	concerns on T-rays and THz-TDS	86
3.6	Conclu	asion	89

Chapter	⁻ 4. Ma	aterial characterisation with THz-TDS	91
4.1	Introd	uction	93
4.2	Resear	ch objective and framework	94
4.3	Propag	gation of electromagnetic wave in dielectrics	94
	4.3.1	Propagation across an interface—Fresnel equations	95
	4.3.2	Propagation through a dielectric slab	96
	4.3.3	Fabry-Pérot effects	98
4.4	Transn	nission-mode THz-TDS	100
	4.4.1	Single-sample measurement	100
	4.4.2	Dual-sample measurement	102
	4.4.3	Multiple-sample measurement	104
	4.4.4	Measurement of a sample in a cell	106
4.5	Reflect	ion-mode THz-TDS	107
	4.5.1	Single-reflection measurement	108
	4.5.2	Double-reflection measurement	112
4.6	Miscel	laneous signal processing for THz-TDS	115
	4.6.1	Signal averaging in the time and frequency domains	115
	4.6.2	Signal denoising	117
	4.6.3	Phase unwrapping	118
	4.6.4	Removal of Fabry-Pérot effects	120
4.7	Conclu	asion	122
Chapter	5. Re	moval of water-vapour effects from THz-TDS measurements	123
5.1	Introd	uction	125
5.2	Resear	ch objective and framework	126
5.3	Effects	of water vapour on pulsed T-ray signal	127
5.4	Model	of water vapour absorption and dispersion	128
	5.4.1	Line strength and line position	129
	5.4.2	Linewidth	130
	5.4.3	Lineshape	131
	5.4.4	Ensemble of rotational transition resonances	132

	5.4.5	Continuum absorption
5.5	Remov	val of H_2O response by direct deconvolution
	5.5.1	Water vapour as a black box
	5.5.2	Deconvolution of model H_2O response from sample signal 137
	5.5.3	Deconvolution between sample and reference signals 138
	5.5.4	Limitation of the algorithm
5.6	Remov	val of H_2O response by strength tuning $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 139
	5.6.1	Water vapour as black boxes
	5.6.2	Strength-tuning algorithm
	5.6.3	Fluctuation ratio
	5.6.4	Generality and limitation of the algorithm
5.7	Result	s
	5.7.1	Free-path measurement
	5.7.2	DL-phenylalanine measurement
	5.7.3	Lactose measurement
	5.7.4	Performance evaluation of the strength-tuning algorithm 153
5.8	Conclu	usion and potential extensions
Chapter	r 6. Cla	assification of THz-TDS signals with subtle features 157
6.1	Introd	uction
6.2	Resear	ch objective and framework 160
6.3	Applic	cations of wavelets to T-ray signals
6.4	Wavel	et decomposition of T-ray signals
6.5	Suppo	rt vector machines and accuracy assessment
6.6	Sampl	e data acquisition
6.7	Classif	fication results
6.8	Furthe	r analysis
	6.8.1	Optimal features
	6.8.2	Information underlying the optimal features
6.9	Conclu	usion and potential extensions

Ch	apter	7. Un	certainty in THz-TDS measurements	177
	7.1	Introd	uction	179
	7.2	Resear	cch objective and framework	180
	7.3	THz-T	DS for measurement of optical constants	181
		7.3.1	Measuring device—THz-TDS	181
		7.3.2	Physical model and parameter extraction	183
		7.3.3	Evaluation of uncertainty in THz-TDS measurement	185
	7.4	Metho	dology for evaluation of uncertainty	186
		7.4.1	General definitions	186
		7.4.2	Evaluation of random and systematic errors	188
		7.4.3	Propagation and combination of measurement uncertainty	189
		7.4.4	Measurement with resolution limit	190
	7.5	Source	es of error in THz-TDS measurement	191
		7.5.1	Random and systematic errors in T-ray amplitude	192
		7.5.2	Random and systematic errors in sample thickness	195
		7.5.3	Random or systematic error in sample alignment	196
		7.5.4	Systematic error in the approximated transfer function	198
		7.5.5	Systematic error from reflections	200
		7.5.6	Systematic error in physical constants	201
		7.5.7	Uncertainty in optical constants: A combination of variances	202
	7.6	Valida	tion of the uncertainty model with MCS	203
		7.6.1	Simulation settings	204
		7.6.2	Random and systematic errors in T-ray amplitude	205
		7.6.3	Random and systematic errors in sample thickness	207
		7.6.4	Systematic deviation from approximated transfer function	209
		7.6.5	Systematic deviation from reflections	211
	7.7	Practic	cal implementation	212
	7.8	Conclu	usion and potential extensions	216
ՐԻ	antor	Q N/	atorial thickness optimisation for THz TDS	210
CI				219
	0.1	mtrod		221

	8.2	Resear	ch objective and framework	2
	8.3	Uncert	tainty in optical constants	3
	8.4	Optim	isation of the sample thickness \ldots \ldots \ldots \ldots \ldots \ldots 224	4
	8.5	Experi	ments and results	8
		8.5.1	Polyvinyl chloride: PVC	8
		8.5.2	High-density polyethylene: HDPE	0
		8.5.3	Ultra-high molecular weight polyethylene: UHMWPE 234	4
		8.5.4	Liquid water	6
		8.5.5	Lactose	9
	8.6	Usage	of the model	1
	8.7	Conclu	usion and potential extensions	3
Րհ	anto		ustor wavelength antiroflection coatings for T rays	Б
CII	9 1	J. Qu	uction 24	7
	9.1	Recor	ch objective and framework	á
	9.2 9.3	Roviov	w of antireflection coatings for T-rays	פ ה
	9.5 9.1	Charac	ctaristic matrix mathed	2
	9. 1 9.5	Ouarte	ar-wavelength antireflection coatings	2 6
	9.6	Rofloct	tance and transmittance models	a
	9.0	0.6.1	Poflostance of quarter wavelength coated surface	9 0
		9.0.1	Transmittance of goated windows	ァ 1
	07	7.0.2 Tranco	arent materials for antirefloation windows	ר ר
	9.7	11ansp	Elest zone silicon	2
		9.7.1	Low loss polymore 26	2 2
	0.8	9.7.2	$\begin{array}{c} \text{Low-loss polymers} \\ \text{a tashnigues} \\ \end{array} $	5
	9.0	Even	mente and reculte	<i>c</i>
	9.9		Ontical grammatics of motorials	0
		9.9.1	A second line of antipulation avia desire	/ ^
		9.9.2	Assembling of antireflection windows	9
		9.9.3	Iransmittance of coated windows	U C
	0.10	9.9.4	Analysis of measured transmittance	U c
	9.10	Conclu	1 sion and potential extensions $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 273$	3

Chapte	r 10. Quarter-wavelength multilayer interference filters for T-rays	275
10.1	Introduction	. 277
10.2	Research objective and framework	. 278
10.3	Review of multilayer interference structures	. 279
10.4	Quarter-wavelength multilayer interference filters	. 281
	10.4.1 Characteristic matrix method	. 282
	10.4.2 Quarter-wavelength optical thickness	. 283
10.5	Effects of structural parameters on filter response	. 284
	10.5.1 Mathematical relations	. 284
	10.5.2 Simulation	. 285
10.6	Materials and fabrication techniques for the filter	. 286
	10.6.1 Transparent materials	. 288
	10.6.2 Fabrication techniques	. 288
10.7	Experiments and results	. 290
	10.7.1 Design of the silicon-air filters	. 290
	10.7.2 Characteristics of the silicon-air filters	. 290
10.8	Conclusion and potential extensions	. 295
Chapte	r 11. Thesis summary	299
11.1	Part I—signal enhancement and classification	. 301
11.2	Part II—system evaluation and optimisation	. 303
11.3	Part III—T-ray optics	. 305
Append	lix A. Miscellaneous relations	307
A.1	Relation between optical and dielectric constants	. 309
A.2	Kramers-Kronig relations	. 310
Append	lix B. Analytical models for T-ray signals	311
B.1	Modelling for transmitting photoconductive antenna	. 313
B.2	Modelling for receiving photoconductive antenna	. 314
Append	lix C. Uncertainty propagation	317
C.1	Law of propagation of uncertainty	. 319
C.2	Propagation of variance from the amplitude	. 321

References	325
Glossary	361
Acronyms	363
Index	367
Biography	373

Abstract

Terahertz time-domain spectroscopy (THz-TDS) is a technique capable of measuring optical constants of materials with T-ray frequencies, bounded between 0.1 and 10 THz. Owing to the infancy of the technology, much work has to be carried out to improve its utility and reliability. Engineering aspects become vital to support its operation that relies on physical phenomena. This thesis, in the arena of engineering, encompasses a variety of original THz-TDS projects, which aim for (**Part I**) signal enhancement and classification, (**Part II**) system evaluation and optimisation, and (**Part III**) T-ray optics:

- **Part I** is relevant to enhancement and classification of T-ray signals via digital signal processing. In one project, information underlying T-ray signals is enhanced through numerical removal of unwanted artefacts that are introduced by the response of water vapour during the measurement. In another project, machine learning is recruited in classification of visually indistinguishable T-ray signals probing materials of the same general class.
- **Part II** focuses on THz-TDS systems with a particular interest in the measurement precision. An ISO standard for the evaluation of measurement uncertainty is adopted for assessing the uncertainty in THz-TDS measurements. The result is an analytical uncertainty model, which allows an improvement in the measurement precision through optimisation of a model parameter in the subsequent work.
- **Part III** involves design, fabrication, and characterisation of THz-TDS hardware components, i.e., antireflection windows and multilayer interference filters. The designs are based upon conventional optical interference theory. Despite that, required materials and fabrication processes are completely different from those used in optics due to the distinctive operating wavelengths, which dictate material responses and structural dimensions.

In addition to these parts of the original contributions, the thesis offers an introductory background to THz-TDS, in the areas of hardware, applications, and data processing.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

December 20, 2009

Signed

Date

Acknowledgements

I would like to express my deep gratitude to my principal supervisor, Prof Derek Abbott. He expressed the promptness and concern since my very first email to him, and that has been unchanged throughout the period under his supervision. He has never said 'impossible'. His encouraging attitude has been helpful for propelling my work. Painstakingly smearing red ink on my manuscripts could be one of his favourite hobbies. Derek's 'out of the box' thinking inspires me to approach the problems in different ways.

Another key person whom I am strongly indebted to is my co-supervisor, Dr Bernd M. Fischer. His long experience with T-rays and THz-TDS has been of great importance towards my research. He has always given critical comments upon the drafts. I have endured many hard times in thoroughly revising the drafts to satisfy his strict requirements. But eventually it turned out that it was worth doing so. He defined the word 'quality' for the research. I would also like to thank my co-supervisor, Dr Samuel P. Mickan, who has provided critical suggestions in various areas of my research.

I owe very much to T-ray people at the University of Freiburg, particularly Morten Franz and Andreas Thoman who allowed me to access some vital experimental data. Critical suggestions were also contributed by other T-ray experts, including Dr H. C. Liu of the National Research Council of Canada, Dr Peter H. Siegel of Caltech & Jet Propulsion Laboratory, and Dr Peter de Maagt of the European Space Agency.

Other great scholars at the University of Adelaide, who have been occasionally provided critical comments on my research/administrative work, include Dr Brian W.-H. Ng, Dr Bradley Ferguson, Dr Mark D. McDonald, Dr Matthew Berryman, Dr Bruce Davis, Dr Tamath Rainsford, Dr James Giesbrecht, Dr Murray Hamilton, and Prof Bevan Bates. I would like to thank all of them.

Thanks are also due to all colleagues in the Adelaide T-ray group, in particular, Benjamin S. Y. Ung, Hungyen Lin, Shaoming Zhu, and Henry Ho for being of help in everything, Shaghik Atakaramians for her fruitful discussions, and Gretel M. Png for her courtesy induction. Other people include Jegathisvaran 'Jega' Balakrishnan, Inke Jones, and Tjun H. Tan. It is my pleasure to have great moments with them.

Acknowledgements

During my candidature, administrative work has been assisted by Rose-Marie Descalzi, Colleen Greenwood, Philomena Jensen-Schmidt, Ivana Rebellato, Danny Di Giacomo, and Stephen Guest. Other supporting people include the technical officers, Ian Linke, Alban O'Brien, and Brandon F. Pullen, and the IT support officers, David Bowler and Mark J. Innes. People who helped augment my academic writing skill in the early days here are Caroline 'Candy' Gray and Karen Adams.

Back at my university in Thailand the scholars who contributed to my academic background are Assoc Prof Manas Sangworasil, Asst Prof Chuchart Pintavirooj, Asst Prof Supan Tungjitkusolmun, and Sakapan Klaydokjan of King Mongkut's Institute of Technology Ladkrabang.

Major financial support has been provided by Australian Endeavour International Postgraduate Scholarship (EIPRS) and the University of Adelaide Scholarship for Postgraduate Research. Travel grants were from SPIE Contingency Travel Grant and the School of Electrical & Electronic Engineering, the University of Adelaide. Other sources of funds include the IEEE LEOS Graduate Student Fellowship and the SPIE Scholarship in Optical Science and Engineering. The Adelaide T-ray program has been supported by the Australian Research Council (ARC), the Sir Ross and Sir Keith Smith Fund, the Defence Science and Technology Organisation (DSTO), and NHEW P/L.

Last but not least, my appreciation goes towards my mother and father, who always endow me with infinite support. No words can fully explain my gratefulness to them.

W. Withayachumnankul

Conventions

- **Referencing** The Harvard style is used for referencing and citation in this thesis.
- **Spelling** Australian English spelling is adopted, as defined by the Macquarie English Dictionary (Delbridge 2001).
- **System of units** The units comply with the international system of units recommended in an Australian Standard: AS ISO 1000—1998 (Standards Australia Committee ME/71, Quantities, Units and Conversions 1998).
- **Physical constants** The physical constants comply with a recommendation by the Committee on Data for Science and Technology: CODATA (Mohr and Taylor 2005).
- **Frequency band definition** It is preferential to refer to the spectrum band from 0.1 to 10 THz as 'T-rays', according to an argument by Abbott and Zhang (2007), rather than 'terahertz'. However, 'terahertz time-domain spectroscopy—THz-TDS' and 'terahertz gap' are acceptable owing to the general acceptance.

Publications

Journal publications

- WITHAYACHUMNANKUL-W., FISCHER-B. M., FERGUSON-B., DAVIS-B. R., AND ABBOTT-D. (2009). A systemized view of superluminal wave propagation, *Proceedings of the IEEE*, (Accepted, 23-09-2009).*
- WITHAYACHUMNANKUL-W. AND ABBOTT-D. (2009). Metamaterials in the Terahertz Regime, *IEEE Photonics Journal*, **1**(2), pp. 99–118. (**Invited**).*
- WITHAYACHUMNANKUL-W., FISCHER-B. M., AND ABBOTT-D. (2008). Numerical removal of watervapour effects from THz-TDS measurements, *Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences*, **464**(2097), pp. 2435–2456.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., LIN-H., AND ABBOTT-D. (2008). Uncertainty in terahertz time-domain spectroscopy measurement, *Journal of Optical Society of America B: Optical Physics*, **25**(6), pp. 1059–1072.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., AND ABBOTT-D. (2008). Material thickness optimization for transmission-mode terahertz time-domain spectroscopy, *Optics Express*, **16**(10), pp. 7382– 7396.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2008). Quarterwavelength multilayer interference filter for terahertz waves, *Optics Communications*, **281**(9), pp. 2374–2379.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Retrofittable antireflection coatings for T-rays, *Microwave and Optical Technology Letters*, **49**(9), pp. 2267–2270.
- WITHAYACHUMNANKUL-W., PNG-G., YIN-X. X., ATAKARAMIANS-S., JONES-I., LIN-H., UNG-B. S. Y., BALAKRISHNAN-J., NG-B. W.-H., FERGUSON-B., MICKAN-S. P., FISCHER-B. M., AND ABBOTT-D. (2007). T-ray sensing and imaging, *Proceedings of IEEE*, **95**(8), pp. 1528-1558. (Invited).
- WITHAYACHUMNANKUL-W., FERGUSON-B., RAINSFORD-T., MICKAN-S. P., AND ABBOTT-D. (2006). Direct Fabry-Pérot effect removal, *Fluctuation and Noise Letters*, **6**(2), pp. L227–L239.*
- WITHAYACHUMNANKUL-W., FERGUSON-B., RAINSFORD-T., MICKAN-S. P., AND ABBOTT-D. (2005). Simple material parameter estimation via terahertz time-domain spectroscopy, *IEE Electronics Letters*, **41**(14), pp. 800–801.*

Conference publications

- WITHAYACHUMNANKUL-W., UNG-B. S. Y., FISCCHER-B. M., AND ABBOTT-D. (2009). Measurement of linearity in THz-TDS, *Proceedings IRMMW-THz*, Korea, DOI: 10.1109/ICIMW.2009.5324721.*
- WITHAYACHUMNANKUL-W. AND ABBOTT-D. (2008). Survey of terahertz metamaterial devices, *Proceedings SPIE Smart Structures, Devices, and Systems IV*, Melbourne, Australia, **7268**, article number 72681Z.*
- WITHAYACHUMNANKUL-W., FISCHER-B. M., AND ABBOTT-D. (2008). Optimization of material thickness for THz-TDS, *Proceedings IRMMW-THz*, USA, DOI: 10.1109/ICIMW.2008.4665677.
- LIN-H., **WITHAYACHUMNANKUL-W.**, FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2008). Gas recognition with terahertz time-domain spectroscopy and reference-free spectrum: a preliminary study, *Proceedings IRMMW-THz*, California, USA, DOI: 10.1109/ICIMW.2008.4665829.*
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Transmission characteristic of T-ray multilayer interference filter, *Proceedings SPIE Photonics: Design, Technology, and Packaging III*, Canberra, Australia, **6801**, article number 68011G.
- NG-D., WONG-F. T., **WITHAYACHUMNANKUL-W.**, FINDLAY-D., FERGUSON-B., AND ABBOTT-D. (2007). Classification of osteosarcoma T-ray responses using adaptive and rational wavelets for feature extraction, *Proceedings SPIE Complex Systems II*, Canberra, Australia, **6802**, article number 680211.*
- LIN-H., WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Gas recognition with terahertz time-domain spectroscopy and spectral catalog: A preliminary study, *Proceedings SPIE Terahertz Photonics*, Beijing, China, **6840**, article number 68400X.*
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). T-ray multilayer interference filter, *Proceedings IRMMW-THz*, Cardiff, UK, pp. 307–308.
- LIN-H., **WITHAYACHUMNANKUL-W.**, FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). THz time-domain spectroscopy uncertainties, *Proceedings IRMMW-THz*, Cardiff, UK, pp. 222–223.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Removal of water-vapor-induced fluctuations in T-ray signals: A preliminary study, *Proceedings SPIE Noise* and Fluctuations in Photonics, Quantum Optics, and Communications, Florence, Italy, 6603, article number 660323.
- WITHAYACHUMNANKUL-W., LIN-H., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2007). Analysis of measurement uncertainty in THz-TDS, *Proceedings SPIE Photonic Materials, Devices, and Applications II*, Gran Canaria, Spain, **6593**, article number 659326. (Invited).
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2006). Retrofittable T-ray antireflection coatings, *Proceedings SPIE Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems III*, Adelaide, Australia, **6415**, article number 64150N.
- WITHAYACHUMNANKUL-W., FISCHER-B. M., MICKAN-S. P., AND ABBOTT-D. (2006). Thickness determination for homogeneous dielectric materials through THz-TDS, *Proceedings IRMMW-THz*, Shanghai, China, p. 448.*

- WITHAYACHUMNANKUL-W., FERGUSON-B., RAINSFORD-T., FINDLAY-D., MICKAN-S. P., AND ABBOTT-D. (2005). Classification of osteosarcoma via terahertz time-domain spectroscopy, *Proceedings IFMBE International Conference on BioMedical Engineering (ICBME)*, **12**, Singapore. (CD only).
- WITHAYACHUMNANKUL-W., FERGUSON-B., RAINSFORD-T., FINDLAY-D., MICKAN-S. P., AND ABBOTT-D. (2005). T-ray relevant frequencies for osteosarcoma classification, *Proceedings SPIE Photonics: Design, Technology, and Packaging II*, Brisbane, Australia, **6038**, article number 60381H.
- RAINSFORD-T., PNG-G. M., WITHAYACHUMNANKUL-W., FERGUSON-B., MICKAN-S. P., AND ABBOTT-D. (2005). T-rays in biomedicine and security, *Proceedings IEEE Lasers & Electro-Optics Society (LEOS) Annual Meeting*, Sydney, Australia, pp. 116–117. (Invited).*
- WITHAYACHUMNANKUL-W., FERGUSON-B., RAINSFORD-T., MICKAN-S. P., AND ABBOTT-D. (2005). Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration, *Proceedings SPIE Photonic Materials, Devices, and Applications,* Sevilla, Spain, 5840, pp. 221– 231.*

Note: Articles with an asterisk are not directly relevant to this thesis.

List of Figures

1.1	Electromagnetic spectrum	3
1.2	T-ray band in different units	4
1.3	THz-TDS system	5
1.4	Thesis outline and original contributions	8

2.1	Experiments around the T-ray regime as of 1924	14
2.2	Timeline for THz-TDS development	21
2.3	First photoconductive switch	22
2.4	First photoconductive antennas	24
2.5	Čherenkov-like radiation in a nonlinear crystal	28
2.6	EO spectroscopy in two configurations	29
2.7	Photoconductive antenna	33
2.8	Measured T-ray signal and spectrum from PCAs	34
2.9	Free-space EO sampling system	39
2.10	Polarisation state of the optical beam	40
2.11	THz-TDS systems in transmission mode	42
2.12	Simulated spatio-frequency distribution of focused T-ray Gaussian beam	44
2.13	THz-TDS system in reflection mode with PCA transmitter/receiver	45

3.1	Measured optical constants for some glasses	57
3.2	Measured optical constants for some plastics	58
3.3	Measured absorption spectra for amorphous and polycrystalline glucose	66
3.4	Measured absorption spectra for polycrystalline phenylene oligomers .	67
3.5	Molecular structures and measured spectra for nucleobases and nucleosid	es 71
3.6	Measured spectrum for cigarette smoke at pressure of 950 hPa \ldots .	73
3.7	Measured absorption spectra for some medicines	75

List of Figures

3.8	Bioaffinity between biotin and avidin	79
3.9	Measured absorption spectra for some explosives and clothes	81
3.10	Measured absorption spectra for cocaine and morphine	81
3.11	Heating effects on water of T-rays	87

4.1	Reflection and refraction of an incident wave at interface 95
4.2	Wave propagation paths through a slab of a homogeneous dielectric 97
4.3	Simulated Fabry-Pérot effect in the time domain
4.4	Simulated Fabry-Pérot effect in the frequency domain
4.5	Geometry for dual-sample measurement
4.6	Geometry for sample-in-cell measurement
4.7	Geometry for single-reflection measurement
4.8	Geometry for double-reflection measurement
4.9	Spectra averaged by using different schemes
4.10	Wavelet-denoised spectra 118
4.11	Phase wrapping
4.12	Phase unwrapping 120
4.13	Repetitive Fabry-Pérot removal

5.1	Effects of water vapour on T-ray pulse and spectrum	128
5.2	Model and measurement of H_2O absorption and dispersion profiles	133
5.3	Model and measurement of H_2O absorption $\ldots \ldots \ldots \ldots \ldots \ldots$	134
5.4	Model and measurement of H_2O dispersion	134
5.5	Model of spectroscopic system	136
5.6	Model of spectroscopic system with decomposed H_2O response $\ . \ . \ .$	140
5.7	Strength-tuning algorithm	142
5.8	Gaussian window applied to T-ray signal	143
5.9	Variation of fluctuation ratio	144
5.10	T-ray signals measured in a free path setting	146

5.11	Signal differences for free-path measurement
5.12	T-ray spectra measured in a free path setting
5.13	T-ray signals measured with DL-Phenylalanine sample in place 149
5.14	Signal differences for DL-Phenylalanine measurement
5.15	T-ray spectra measured with DL-Phenylalanine sample in place 150
5.16	T-ray signals and spectra for reference and lactose
5.17	T-ray signals for reference and lactose in different conditions 152
5.18	Absorption coefficients of lactose extracted from different signals 152

6.1	Wavelet decomposition tree	163
6.2	Average T-ray signals for HOS and NHB cells	167
6.3	Leave-one-out (LOO) classification error for Daubechies decomposition	169
6.4	Coefficients, cD_3 , of T-ray signals for HOS and NHB cells	171
6.5	Scattering of the signals in the feature space	172
6.6	Signals for HOS and NHB cells reconstructed from cD_3 coefficients	173
6.7	Average spectra for HOS and NHB cells and frequency band for cD_3 .	173

7.1	Parameter estimation process using THz-TDS measuring system 182
7.2	THz-TDS system configured in transmission mode
7.3	Some definitions and relations used in evaluation of uncertainty 187
7.4	Sources of error in THz-TDS measurement
7.5	Amplitude variance of measured time-domain signals
7.6	Tilted sample in T-ray beam path
7.7	Simulated signals and spectra for reference and sample
7.8	Standard deviation in optical constants due to signal noise
7.9	Standard deviation in optical constants due to thickness error 207
7.10	Extracted extinction coefficient at various random thicknesses 208
7.11	Deviation in optical constants due to transfer function approximation 210
7.12	Deviation in optical constants due to reflections

List of Figures

7.13	Average signals and standard deviations for reference and lactose	214
7.14	Uncertainty for lactose measurement	215

8.1	Standard deviation in refractive index against thickness and frequency . 225
8.2	Standard deviation in optical constants against sample thickness 226
8.3	Optical constants of PVC
8.4	Optimum thickness for PVC
8.5	Standard deviations in optical constants of PVC
8.6	Optical constants of HDPE
8.7	Optimum thickness for HDPE
8.8	Standard deviations in optical constants of HDPE
8.9	Optical constants of UHMWPE
8.10	Optimum thickness for UHMWPE
8.11	Standard deviations in optical constants of UHMWPE
8.12	Optical constants of water
8.13	Optimum thickness for water
8.14	Standard deviations in optical constants of water
8.15	Optical constants of lactose mix
8.16	Optimum thickness for lactose mix
8.17	Standard deviation in extinction coefficient of lactose mix
 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 	Standard deviations in optical constants of HDPE 23. Optical constants of UHMWPE 23. Optimum thickness for UHMWPE 23. Standard deviations in optical constants of UHMWPE 23. Optical constants of water 23. Optimum thickness for water 23. Optical constants of lactose mix 23. Optical constants of lactose mix 23. Standard deviations in optical constants of water 23. Optical constants of lactose mix 24. Optimum thickness for lactose mix 24. Standard deviation in extinction coefficient of lactose mix 24.

9.1	Reflectance of common materials at T-ray regime	248
9.2	Antireflection coatings for silicon windows	249
9.3	Electric and magnetic fields across two dielectric interfaces	253
9.4	Antireflection-coated window	256
9.5	Model reflectance at air-silicon interface	259
9.6	Model reflectance at silicon-air interface	260
9.7	Model transmittance of silicon window at normal angle of incidence	262
9.8	Measured optical constants of silicon	268

9.9	Measured optical constants of polyethylene	268
9.10	Retrofittable coating system	269
9.11	Measured transmittance of thinly-coated window	271
9.12	Measured transmittance of thickly-coated window	271
9.13	Calculated and measured transmittances of thinly-coated window	272
9.14	Calculated and measured transmittances of thickly-coated window	272

10.1	Multilayer interference filter and its transmittance
10.2	Simulated filter transmittance as a function of optical thickness 286
10.3	Simulated filter transmittance as a function of refractive indices 287
10.4	Simulated filter transmittance as a function of the number of periods 287
10.5	Design of T-ray multilayer interference filter
10.6	T-ray signals transmitted through interference filters
10.7	Transmittance of interference filters
10.8	Transmittance of interference filters at 0.36 THz
10.9	Phase response of interference filters
10.10	Interference filter cascading in reflection arrangement

B.1	Normalised pulse profiles in PCAs	314
B.2	Normalised spectra of T-ray pulse and photocurrent density	315

List of Tables

3.1	Optical constants of some substances at 1 THz	60
3.2	Studies of semiconductors using THz-TDS	62
3.3	Monomers and polymers of biomolecules studied by THz-TDS	70
3.4	Performance among spectral ranges exploited in security screening	80
4.1	Multiplication factors for a propagating wave	98
5.1	Lorentz, Vleck-Weisskopf, and Gross profiles	131
5.2	Performance evaluation of the strength-tuning algorithm	153
6.1	Leave-one-out classification error from total 96 vectors	168
8.1	Optimum sample thickness for some common materials	227
9.1	Optical constants of selected materials	263
9.2	Optical constants of selected low-loss polymers	264
9.3	Comparison of microlayer fabrication techniques	266