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𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟔

Classification of
THz-TDS Signals with

Subtle Features

𝐓
𝐄𝐑𝐀𝐇𝐄𝐑𝐓𝐙 or T-ray signals obtained from THz-TDS carry in-

formation on the optical properties of a given sample under test.

Thus, the signals can be useful in classification, recognition, and

characterisation of materials. Many materials exhibit distinctive spectral re-

sponses, which are often easily recognisable. However, among similar sam-

ples, such as biological samples, which are lacking in distinct T-ray spectral

features, differences in the characteristic signals are subtle and thus do not

lend themselves to simple discrimination. Hence, the introduction of ma-

chine learning to automated classification of T-ray data is called for. This

chapter investigates the possibility of applying support vector machines

(SVMs) to classification of biological samples via their response to T-rays.

To reduce the large number of classification features, wavelet coefficients

representing the signals are selected as an input to the classifier.
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Chapter 6 Classification of THz-TDS signals with subtle features

6.1 Introduction

A typical THz-TDS system can be used in the application of material characterisation.

Furthermore, the data obtainable from the system can also be useful for classification

and recognition of materials. A number of experiments have demonstrated the use of

T-ray pulses for the classification of gases (Jacobsen et al. 1996, Lin et al. 2007), chem-

ical substances (Fischer et al. 2005b), biological tissue (Löffler et al. 2002), etc., which

may be hidden beneath an optically-opaque barrier, yet penetrable by T-rays. Often,

target materials produce T-ray spectral responses that have unique fingerprints due to

molecular rotational or vibrational transitions, allowing simple classification via pat-

tern matching.

In many cases, materials under study do not exhibit distinctive spectral features. Ex-

amples are large biomolecules, such as DNA and RNA (Fischer et al. 2005c), the vibra-

tional modes of which are affected by the inhomogeneity of the sample and the high

density of the modes (Markelz 2008). This prohibits a direct detection of the presence

of molecules. In this chapter, supervised machine learning is introduced to the classi-

fication of biological samples.

Even though several hundred classification features are available directly from T-ray

signals, the use of so many features should be avoided in the task of classification, due

to what is known as the curse of dimensionality (Bellman 1961). A compact representa-

tion of the signal is important in improving the classification accuracy and generali-

sation capability, and in reducing the calculation complexity. Wavelet multiresolution

analysis is very suitable in this regard, because the wavelet transform of a pulsed T-

ray signal results in a compact set of coefficients. In this work, many mother wavelets

and decomposition levels are trialled to find the best representation for a given set of

signals. In order to lessen the influence of the model selection on the classification accu-

racy, support vector machines (SVMs), which are virtually self-optimising, are adopted

for the task of classification.

The chapter is organised as follows. Previous work relevant to the applications of

the wavelet transform to T-ray signals is reviewed in Section 6.3. The properties of

wavelets that are favourable in the classification of T-ray signals are discussed in Sec-

tion 6.4. The principle of SVMs, along with a scheme to assess the accuracy, are briefly

covered in Section 6.5. Data acquisition for THz-TDS is explained in Section 6.6. In
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6.2 Research objective and framework

Section 6.7 the classification results are reported. Further analysis of the results is pre-

sented in Section 6.8.

6.2 Research objective and framework

Objective

To demonstrate the feasibility of using supervised machine learning for classification of

T-ray signals that contain broad rather than distinct spectral features. The classification

features that we exploit are the wavelet coefficients of T-ray signals, and the classifiers

are linear-kernel SVMs. The wavelet transform of a measured T-ray signal is known to

provide a compact yet informative feature set, suitable for the classification problem.

Framework

T-ray signals are obtained from THz-TDS with transmission-mode measurements. The

employed mother wavelets are limited to a series of Daubechies, Symlets, Coiflets, and

Biorthogonal wavelets. The classifiers used in this work are linear-kernel SVMs, which

rely on supervised learning. The available dataset is relatively small, compared to the

number of features.

6.3 Applications of wavelets to T-ray signals

Although THz-TDS is relatively new, many applications of wavelets to T-ray signals

obtained from THz-TDS have been suggested. Mittleman et al. (1996) described the

similarity between wavelets and T-ray waveforms, and demonstrated the feasibility

of using wavelet compression for compressing T-ray data. They further suggested us-

ing wavelet transforms for rapid parameter extraction and multiresolution analysis of

T-ray signals. Handley et al. (2002) determined the maximum compressible level of

wavelet compression that has no substantial impact on optical parameters extracted

from the compressed T-ray signals. Interestingly, it was found that significant infor-

mation is still preserved with only 20% of the wavelet coefficients.

Mittleman et al. (1998) discussed an application of the multiresolution analysis to de-

noising T-ray signals, and showed the superiority of the analysis to a parabolic Fourier

Page 160



Chapter 6 Classification of THz-TDS signals with subtle features

filter. Ferguson and Abbott (2001b) and Ferguson and Abbott (2001a) tested a wavelet

denoising technique with T-ray signals, particularly when they are strongly absorbed

by a biological sample. Soft-thresholding wavelet denoising can improve the SNRs of

the signals at the maximum of 10 dB when the fourth-order Coiflet wavelet is used.

Handley et al. (2004) exploited wide-band cross ambiguity functions (WBCAFs) for

estimating the absorption coefficient and refractive indices of materials. For the trans-

formation, instead of using a regular wavelet, a WBCAF adopts an arbitrary signal,

in this case the reference T-ray pulse, as a mother function. One major disadvantage

arises from the uncertainty principle of the representation. Wavelets and WBCAFs are

localised in neither the time nor frequency domain, and thus the material parameters

that are frequency-dependent are not accessible using such a representation. In ad-

dition, Handley et al. (2004) describe a wavelet analysis for T-ray signals containing

multiple reflections.

It can be seen that many applications for T-rays, such as denoising or compression, gain

advantages using wavelet representation. The compact representation of wavelets is a

particular aspect that motivates us to use the wavelet transformation in reduction of

the classification features of T-ray signals prior to the classification process.

6.4 Wavelet decomposition of T-ray signals

The reasonable number of features is important in the task of classification. A large

number of classification features inevitably leads to the occurrence of the curse of di-

mensionality (Bellman 1961). It is relevant to the slow convergence to the optimum of

a discriminant function in a high-dimensional space. More significantly, it causes the

problem of a classifier overfitting to a specific training set, and thus prohibits good

generalisation of a classifier. A way to avoid the overfitting problem is to use a large

training dataset. But in some cases, such as in biomedical applications, the number

of available observations in a dataset tends to be small, compared with the number of

features. Alternatively, feature subset selection methods (Ferguson et al. 2004, Kohavi

and John 1997) can also be used to avoid the problem at the expense of computational

cost. Another possibility is to use a compact representation of the signals, such as a

wavelet representation, in order to reduce the number of classification features.
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6.4 Wavelet decomposition of T-ray signals

A pulsed T-ray signal is very similar to a wavelet, because, as is the case for wavelets,

a T-ray waveform is localised in the scale-space domain—namely, the majority of T-

ray power is emitted in a short period of the order of picoseconds, whereas the power

spectrum distributes around a resonant frequency. In addition, the properties of T-

ray waveforms coincide with two characteristics of wavelets (Mittleman et al. 1996),

which are the admissibility and the regularity. The admissibility condition implies a

zero mean value of a function. The regularity condition assures that the first low-order

moments vanish. The significance of the close resemblance is that a T-ray pulse can

then be decomposed into a small number of wavelet coefficients. Thus the original

signal power is spread over a few coefficients and is not overly diluted—this is desirable

so that signal coefficients remain well above noise coefficients.

From the viewpoint in the time domain, a wavelet coefficient is a measure of corre-

lation between a signal f (t) and a daughter wavelet ψa,b(t), which is a scaled, a, and

shifted, b, version of a mother wavelet ψ(t). A daughter wavelet is defined as

ψa,b(t) =
1√∣a∣ψ

(
t− b

a

)
; a, b ∈ ℝ, a ∕= 0 . (6.1)

The wavelet transform for a discrete signal f (k), k ∈ 0, . . . , N − 1 with respect to a

daughter wavelet ψa,b(k) is given by

Wψ( f )(a, b) =
N−1

∑
k=0

f (k)ψa,b(k) = ⟨ f , ψ⟩ . (6.2)

In this work, only discrete wavelet families are considered owing to their compact sup-

port. These wavelet families include Daubechies, Coiflets, Symlets, and some Biorthog-

onal wavelets with high smoothness.

The scaling, a, and shifting, b, of a wavelet can take on every possible value, result-

ing in a large number of coefficients. This situation poses the problem of redundant

coefficients, defeating our intent of compact representation. Hence, a dyadic grid,

i.e., a = 2−j and b/a = l, where j, l ∈ ℤ is preferred in construction of wavelet

bases (Daubechies 1990). As a result, the coefficients generated according to the grid

are unlikely to be redundant.

In our implementation, Mallat’s multiresolution analysis (Mallat 1989) is used to de-

compose T-ray signals into multilevel approximations and details. As shown by a

wavelet decomposition tree in Figure 6.1, an original signal f is decomposed into sev-

eral sets of approximation and detail coefficients, cA and cD, respectively. At the first
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Chapter 6 Classification of THz-TDS signals with subtle features

f

cA
1

cD
1

cA
2

cD
2

cA
3

cD
3

Figure 6.1. Wavelet decomposition tree. A signal, f , is decomposed by wavelet transform into

several sets of approximation and detail coefficients, represented by cA and cD, re-

spectively. Those approximation coefficients hold the low-frequency information of the

signal, whilst the detail coefficients hold the high-frequency information. The subscript

denotes the level of decomposition.

step the signal is decomposed into cD1 and cA1. A sequence cD1 is associated with

the high frequency components of the signal. On the other hand, a sequence cA1 is

associated with the low frequency components. Subsequently, cA1 becomes an input

to the next decomposition level, giving cA2 and cD2. The decomposition process is

recursive until it reaches the last possible level, which depends on each wavelet. The

length of a sequence at a succeeding level is half of the length at a preceding level, i.e.,

if an original signal contains 200 points, cD1 or cA1 contains 100 points; cD2 or cA2 50

points; and so on. The classification of T-ray signals in the experiment is performed

with a sequence of detail or approximation coefficients at a particular level.

Since T-ray signals have a finite duration, a padding process (Liao et al. 2004) is nec-

essary to correct border distortion. Periodic padding is appropriate for a T-ray signal,

because the signal amplitude near the beginning and the end is close to zero, and hence

the signal can be concatenated periodically without introducing any significant arte-

fact. In addition, periodic padding can handle different sizes of decomposed sequences

resulting from different mother wavelets. It is worth noting that zero padding is not

recommended, as it may introduce irrelevant features to the classification problem.

6.5 Support vector machines and accuracy assessment

Essentially, the learning process for pattern classification attempts to determine the un-

known parameters of a discriminant function, with the expectation that the optimised
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6.5 Support vector machines and accuracy assessment

function can correctly assign classes or labels to unseen patterns. In supervised learn-

ing, a two-class discriminant function is constructed using a given training set that

includes input vectors (signals) xi and their corresponding labels yi;

(xi, yi) ∈ ℝ
k × {−1,+1} i = 1, . . . , ℓ, (6.3)

assuming that the pairs are drawn independently, identically distributed (iid) from an

unknown probability distribution P(x, y).

The concept of SVMs, laid out by Boser et al. (1992), is that the machine maps the input

vectors onto a higher-dimensional space—the so-called feature space, x �→ Φ(x) ∈
ℋ, and constructs an optimal hyperplane in that space. The mapping idea allows a

linear discriminant function to perform on a nonlinear problem. Mathematically, the

hyperplane in a high-dimensional space is given by

f (x) = w ⋅Φ(x) + b , (6.4)

where w ∈ ℋ is the normal vector of the hyperplane, and b is an offset between the

hyperplane and the origin. A point that lies on the hyperplane satisfies the condition

w ⋅Φ(x) + b = 0. In the case of perfect separation, i.e., no training error, the following

condition is held:

yi (w ⋅Φ(xi) + b) ≥ 1 ∀i . (6.5)

Thus a margin, or a perpendicular distance from the hyperplane to any closest point,

equals 1/∥w∥. The optimal hyperplane is constructed by maximising this distance,

according to the structural risk minimisation (SRM) principle (Vapnik 1998). This can

be formulated as a quadratic optimisation problem (Müller et al. 2001)

W2 = min
w,b

1
2
∥w∥2 , (6.6)

subject to Equation 6.5. As w lies in the feature space, the minimisation problem cannot

be solved for w and b directly. By introducing Lagrange multipliers αi, i = 1, . . . , l,

corresponding to the input vector xi, we form the following Lagrangian with respect

to the primary variables,

LP = W2(w, b, α)

= max
α

min
w,b

1
2
∥w∥2 −

l

∑
i=1

αi(yi(w ⋅Φ(xi) + b)− 1) ; αi ≥ 0 ∀i . (6.7)
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Chapter 6 Classification of THz-TDS signals with subtle features

The saddle points of the Lagrangian with respect to w and b are

∂LP

∂w
= w−

l

∑
i=1

αiyiΦ(xi) = 0 ⇒ w =
l

∑
i=1

αiyiΦ(xi) , (6.8a)

∂LP

∂b
= −

l

∑
i=1

αiyi = 0 ⇒
l

∑
i=1

αiyi = 0 . (6.8b)

By substituting Equations 6.8a and 6.8b back into Equation 6.7 and replacing Φ(xi)⋅
Φ(xj) with the kernel function K(xi, xj), we have the Lagrangian with respect to the

dual variable,

LD = W2(α) = max
α

l

∑
i=1

αi − 1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj) , (6.9)

subject to

αi ≥ 0 ∀i and
l

∑
i=1

αiyi = 0 . (6.10)

Using ordinary quadratic programming (QP) methods to solve for a set of Lagrange

multipliers, α, is not feasible for a large matrix. Particular methods designed for such

problems are chunking (Boser et al. 1992) or Osuna’s decomposition (Osuna et al. 1997).

In this work the method of sequential minimal optimisation (SMO), proposed by Platt

(1999), is employed to solve the Lagrangian in Equation 6.9.

Once a set of Lagrange multipliers is obtained, a non-linear discriminant function via

the kernel can be constructed from the hyperplane, or Equation 6.4, with the weights

w given by Equation 6.8a,

f (x) = sgn

(
l

∑
i=1

yiαiΦ(xi) ⋅Φ(x) + b

)
= sgn

(
l

∑
i=1

yiαiK(xi, x) + b

)
. (6.11)

In the case of linear-kernel SVMs, which are used throughout this work, the discrimi-

nant function is simplified to

f (x) = sgn (w ⋅ x + b) ; w =
l

∑
i=1

yiαixi . (6.12)

Equation 6.12 represents a trained classifier, and can therefore assign a label, f (x), to a

given input data, x. For further discussion on SVMs, please refer to, e.g., Burges (1998)

or Müller et al. (2001).
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6.6 Sample data acquisition

Leave-one-out cross validation

To assess the accuracy of a trained classifier, many methods are available, such as the

hold-out estimate or ν-fold cross validation. However, for a small dataset such as that

provided in this work, these methods are prone to extreme bias. Leave-one-out cross

validation is more suitable, because it gives a nearly unbiased estimate of the expected

generalisation error (Kohavi 1995).

The procedure for leave-one-out cross validation is as follows. Given that there are ℓ

vectors, the training process repeats ℓ times. For the first time, one particular vector is

held out, leaving the remaining ℓ− 1 vectors as a training set. Once the first training

process is completed, the classifier is tested with the holdout vector. By repeating this

procedure ℓ times with a different vector held out each time, all vectors are tested and

the classifier accuracy is achievable based on the ℓ− 1 training vectors.

6.6 Sample data acquisition

The measurement is performed using a standard THz-TDS system arranged in a trans-

mission mode (Ferguson and Zhang 2002). The T-ray emitter is a 2-mm-thick ⟨110⟩-
oriented ZnTe crystal, and the T-ray beam is detected using electro-optic sampling in

a 4-mm-thick (110) ZnTe crystal. The laser illuminating the emitter and detector is a

regeneratively amplified mode-locked Ti:sapphire laser producing 130 fs pulses with a

1 kHz repetition rate and an average power of 0.7 W. A lock-in amplifier time constant

of 10 ms is used.

Two types of biological cells, one is normal human bone (NHB) and the other is hu-

man osteosarcoma (HOS), are used in the experiment. Both are grown in identical

polyethylene flasks, transparent to T-ray radiation and thus enable spectroscopic mea-

surement of the live cells in a transmission geometry. A set of T-ray signals is obtained

providing spectroscopic information at 48 different locations for each flask. A signal at

each location contains 200 data points, with a total duration of 13.33 ps, sampled every

0.067 ps. The FWHM of the main pulse is approximately 0.5 ps, corresponding to the

signal bandwidth of 2 THz. Figure 6.2 shows average T-ray signals for the NHB and

HOS cells. The similarity between the two responses is obvious from the plot of the

difference signal.
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Figure 6.2. Average T-ray signals for HOS and NHB cells. In each case, the average signal

and its standard deviation are estimated from 48 measurements. The difference sig-

nal is calculated from ⟨ENHB(t)⟩ − ⟨EHOS(t)⟩, and the associated standard deviation

is calculated from [s2
NHB(t) + s2

HOS(t)]
1/2, where s2

NHB(t) and s2
HOS(t) represent the

variances for the NHB and HOS signals, respectively. The signals are vertically offset

for clarity.

6.7 Classification results

A set of 96 signals is available from the THz-TDS measurements. Half of the signals

belong to the HOS cells, and the rest belong to the NHB cells. Prior to the signal de-

composition and classification, the HOS signals are labelled the positive class, and the

NHB signals are labelled the negative class. These signals are decomposed using a par-

ticular wavelet to a particular level. The decomposed sequences are then classified by

a linear-kernel SVM based on the leave-one-out cross validation to find a wavelet and

level that result in the highest classification accuracy.

Table 6.1 shows the classification accuracy when the input features are the sequence

of wavelet coefficients obtained from Daubechies, Coiflets, or Biorthogonal wavelet

decomposition with a different order, sequence (approximation, cA, or detail, cD), and

level. The lengths of the coefficients at levels 1, 2, and 3 are 100, 50, and 25, respectively.

Each value in the table indicates the number of misclassified vectors from the total of

96 vectors based on the leave-one-out cross validation methodology. When used for

decomposition, Symlets lead to identical classification results to Daubechies, whilst
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6.7 Classification results

Table 6.1. Leave-one-out classification error from total 96 vectors. The values in the table

indicate the number of misclassified samples, whilst the values in braces indicate the

vector length. The classification results for Symlets decomposition are identical to those

for Daubechies decomposition, and thus are not shown here.

Wavelet Order
Misclassified sample

cD1{100} cA1{100} cD2{50} cA2{50} cD3{25} cA3{25}
Daubechies 1 21 9 19 15 18 17

2 29 8 12 12 9 18

3 27 13 16 13 8 15

4 30 16 24 11 12 22

5 40 19 13 13 6 19

6 34 15 18 14 14 24

7 38 13 25 8 15 20

8 44 12 17 13 13 20

9 44 12 29 14 14 24

10 41 12 32 6 17 21

Coiflets 1 21 15 24 10 16 18

2 31 19 25 11 15 21

3 32 14 23 11 13 16

4 33 14 24 10 10 24

5 36 18 27 10 9 16

Biorthogonal 1.3 21 9 13 14 15 20

1.5 20 9 19 10 9 21

2.4 26 17 16 17 13 13

2.6 26 15 22 11 17 20

2.8 26 18 11 16 19 21

3.9 32 13 15 11 14 14

Page 168



Chapter 6 Classification of THz-TDS signals with subtle features

5 10 15 20 25
5

10

15

20

Daubechies order

L
O

O
 c

la
ss

if
ic

at
io

n
 e

rr
or

 
fr
om

 t
ot

al
 9

6 
ve

ct
or

s

�

cD
3

cA
2

Figure 6.3. Leave-one-out (LOO) classification error for Daubechies decomposition. The

classification error is based on a total of 96 training/testing vectors obtainable from

Daubechies decomposition with different Daubechies orders. The sets of detail coeffi-

cients at decomposition level 3 (cD3) or approximation coefficients at level 2 (cA2) are

used as the classification features. The lines connecting the points are merely for better

perception.

Coiflets and Biorthogonal wavelets result in inferior accuracy to Daubechies. There-

fore, the Daubechies decomposition is emphasised. Up to three levels of decomposi-

tion are utilised, because the trial reveals that further decomposition levels produce

poorer classification accuracies. Also note that from the trial there is no improvement

beyond Daubechies 10. However, the classification error for cA2 and cD3 sequences

decomposed using higher Daubechies orders is given in Figure 6.3.

In Table 6.1, the classification results are listed with no apparent trend, either regard-

ing the decomposition level or wavelet order. Hence, to find the decomposition setting

that yields the highest classification accuracy, the trial-and-error strategy is seemingly

required. However, still some common trends for all wavelet families and orders are

observable. At the first decomposition level, the results for cA1 are consistently supe-

rior to those for cD1, implying the relevant information underlying cA1. When cA1

is decomposed into the next level, it is possible that this information is split into both

cD2 and cA2. This situation occurs in some cases such as Daubechies 1 or 2, since the
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6.8 Further analysis

classification accuracies for both cD2 and cA2 become worse. On the other hand, an im-

provement of the accuracy for cA2 in many other cases can be observed, for instance,

in all orders of Coiflets. Further, when cA2 is decomposed into cD3 and cA3, it can be

assumed from the results that the useful information resides in cD3. In addition, it is

arguable that the improvement of the classification accuracy at a finer decomposition

level contributes to the reduction of features by discarding irrelevant information.

The best classification result, 6 misclassified vectors or 93.8% accuracy, is obtainable by

using the features from the Daubechies decomposition. This rate of accuracy is better

than the best obtainable from Coiflet and Biorthogonal features, which is 90.63% (9

misclassified vectors). Specifically, the best accuracy of all (93.8%) is available from

cD3 decomposed by Daubechies 5 and cA2 decomposed by Daubechies 10. Choosing

between these two cases is ambiguous without an additional criterion. Nevertheless,

it can be concluded from the classification viewpoint that cD3 is superior—a sequence

cD3 with 25 coefficients is less susceptible to the curse of dimensionality than a sequence

cA2 with 50 coefficients.

6.8 Further analysis

Up to this point the optimal features, which are the cD3 coefficients decomposed from

the original signals using Daubechies 5, is determined. Hence, it implies that the infor-

mation provided by cD3 is highly relevant to the distinction between the two classes in

the given dataset. In this section, further investigation into cD3 is given. Note that in

this section the notation cD3 alone means a sequence of the detail coefficients at level

3, which is decomposed using Daubechies 5, unless stated otherwise.

6.8.1 Optimal features

The average cD3 coefficients and their standard deviations for each class of the sig-

nals are plotted in Figure 6.4. Although the cD3 sequence contains the most suitable

features for our classification problem, not all of its coefficients are relevant. Among

various feature selection methods (Kohavi and John 1997), the Fisher11 criterion score
11Historical note: R. A. Fisher lived and worked in Adelaide during the latter part of his career. He

delivered a series of 20 lectures at The University of Adelaide between 1959 and 1960. He died in

Adelaide in 1963.
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Figure 6.4. Coefficients, cD3, of T-ray signals for HOS and NHB cells. The coefficients are

obtainable from wavelet decomposition of the measured signals using the Daubechies 5

mother wavelet. Each plot represents the average coefficients, accompanied by the 1σ

standard deviation. The associated relevance scores are calculated by using the Fisher

criterion, given in Equation 6.13. The coefficients with bold scores are regarded as the

three most relevant features. The lines connecting the coefficients are merely for display

and are not physical.

(Pavlidis et al. 2001) provides a simple tool for quantitative evaluation of a feature.

Given that μ+
k and σ+

k are the mean and the standard deviation of feature k for the pos-

itive class, and μ−k and σ−k are the mean and the standard deviation of feature k for the

negative class, the Fisher score is calculated from

ci =
(μ+

i − μ−i )
2

(σ+
i )2 + (σ−i )2

. (6.13)

The calculated scores are assigned to the coefficients in Figure 6.4. The higher the score,

the more relevant the feature.

To provide a visual impression of the relevant features, two features with the highest

Fisher scores are selected to plotted against each other in a two-dimensional space.

The selected features are cD3(16) and cD3(25), where the numbers in the parentheses

indicate the coefficient indices. The two features give the Fisher scores of 1.90 and 2.05

respectively. The scattering of the 96 signals, each represented by the two features, is

shown in Figure 6.5. It can be seen that the signals in each class are well distributed
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6.8 Further analysis
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Figure 6.5. Scattering of the signals in the feature space. The feature space is defined by the

two optimal features, cD3(16) and cD3(25), which provide the highest Fisher criterion

scores of 1.9 and 2.05, respectively. Each dot in this space represents each measured

T-ray signal for either NHB or HOS cells.

in this feature space, and are nearly separable from the signals in the other class. The

separation is more obvious in a higher dimension, but that is difficult to perceive on a

two dimensional projection.

6.8.2 Information underlying the optimal features

To give insight into the wavelet coefficients relevant to the classification problem, the

cD3 sequence is transformed backward into the time domain and forward into the

frequency domain, as shown in Figures 6.6 and 6.7, respectively.

The time-domain signals in Figure 6.6, reconstructed from cD3, preserve the structure

of the original T-ray signals shown in Figure 6.2. Therefore, it can be inferred that the

sequence of wavelet coefficients is an appropriate compact representation of the T-ray

signal. In particular, an original time-domain signal contains 200 data points, whereas

a corresponding sequence of wavelet coefficients contains only 25 data points. Hence,

the compression ratio is as high as 1:8.
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Figure 6.6. Signals for HOS and NHB cells reconstructed from cD3 coefficients. The cD3

coefficients are obtainable from wavelet decomposition of the measured T-ray signals

for HOS and NHB cells. In the reconstruction process, the wavelet coefficients at other

decomposition levels are all suppressed to zero.
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Figure 6.7. Average spectra for HOS and NHB cells and frequency band for cD3. The

frequency band of this particular wavelet decomposition level covers a major part of the

measured T-ray spectra, whilst missing out a band below 0.5 THz. Hence this implies

that the cD3 coefficients can effectively retain most of the signal information.
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Figure 6.7 shows the frequency band for cD3 in comparison to the measured T-ray

spectra. The calculation shows that the frequency band for cD3 can retain 43% of the

T-ray energy. If the classification features are Fourier coefficients at the same frequency

range, i.e., from 0.5 to 2 THz, the number of features rises to 80—this number is esti-

mated from the magnitude and phase at the intrinsic frequency resolution of 37.5 GHz.

Thus, to represent the same information, it requires a larger number of features in the

frequency domain than in the wavelet domain.

6.9 Conclusion and potential extensions

Many materials have unique spectral features in the T-ray frequency range. Thus, the

sample spectra obtained from THz-TDS can be useful in the task of material classi-

fication. However, in a number of cases, specifically in the case of many biological

samples, no distinctive spectral features are observable, and the absence of distinctive

features prohibits simple classification. This work introduces machine learning to cope

with the classification problem. Supervised classifiers are used to classify two similar

groups of T-ray signals measuring two types of biological samples.

The wavelet coefficients of the T-ray signals are selected as features to be classified

by SVMs. A number of mother wavelets and decomposition levels are considered in

search for the best representation of the T-ray signals. For a particular mother wavelet

and decomposition level, a classification accuracy of as high as 93.8%, based on only

25 features, is achievable. The subsequent analysis shows the effective representation

of the optimal wavelet coefficients in the time and frequency domains.

The success rate in the classification of T-ray signals without distinctive features moti-

vates the implementation of machine learning for a number of T-ray applications. An

example application includes sensing a minute amount of a target material (Mickan et al.

2002c, Menikh et al. 2004), which requires relatively sophisticated equipment to am-

plify a small difference in signals. The introduction of machine classification may alle-

viate this requirement.

For a higher classification accuracy, an implementation of wavelet packet algorithms

(Wickerhauser 1991) to decompose of T-ray signals is an attractive extension. The

wavelet packet transform offers the flexibility to signal decomposition owing to its
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Chapter 6 Classification of THz-TDS signals with subtle features

ability to analyse both approximation and detail results to the maximum level. How-

ever, a more efficient technique than trial-and-error is required to assess the classifica-

tion accuracy, because many different sequences of coefficients are available from the

wavelet packet decomposition.

Having discussed the signal processing aspect of THz-TDS in Chapters 5 and 6, we

now turn to Part II of the thesis—system evaluation and optimisation—with Chapter 7

focusing on measurement uncertainty in THz-TDS.
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𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟕

Uncertainty in
THz-TDS Measurements

𝐌
𝐄𝐀𝐒𝐔𝐑𝐄𝐌𝐄𝐍𝐓𝐒 of optical constants at T-ray frequen-

cies have been performed extensively using THz-TDS.

Spectrometers, together with physical models explaining

the interaction between a sample and T-ray radiation, are progressively be-

ing developed. Nevertheless, measurement errors in the optical constants,

so far, have not been systematically analysed. This situation calls for a

comprehensive analysis of measurement uncertainty in THz-TDS systems.

The sources of error existing in a terahertz time-domain spectrometer and

throughout the parameter estimation process are identified. The analysis

herein quantifies the impact of each source on the output optical constants.

As a consequence, the evaluation of uncertainty opens up the possibility of

methodically enhancing measurement precision.
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7.1 Introduction

Components and techniques have been developed such that a THz-TDS spectrom-

eter can considerably overcome intrinsic problems from thermal background radia-

tion and atmospheric absorption. A THz-TDS waveform transmitted through a ma-

terial sample is typically rich in information, since its shape is altered by the mate-

rial’s characteristic frequency response. Sample and reference waveforms, once con-

verted by Fourier transform into the frequency domain, can be processed to extract the

frequency-dependent optical constants of a material by means of a reliable parameter

extraction method (see Chapter 4 for more details).

Nevertheless, even if one assumes that the parameter extraction process is nearly per-

fect, the operation of the hardware is far from ideal. Namely, measurements of signals

and associated parameters still contain errors, which affect the quality of the extracted

optical constants. Several sources of random and systematic errors exist throughout

the measurement process. These sources are, for instance, signal noise, sample mis-

alignment, thickness measurement variation, etc. Thus, for a reliable measurement,

the evaluation of uncertainty is critical in the optimisation of measurement accuracy.

The proposed uncertainty model is a combination of the analytical models for signifi-

cant error sources, and is applicable to transmission-mode THz-TDS.

Some merits of the uncertainty model proposed in this work are as follows: (i) the

model reduces the time spent in determining the measurement uncertainty, which pre-

viously was carried out using lengthy Monte Carlo simulations; (ii) the model allows

the evaluation and comparison of more than one source of error, rather than the noise

in the signal alone; (iii) the model offers a standard in the evaluation of uncertainty

in the optical constants obtained from THz-TDS, and thus permits assessment of and

comparison among results from different measurements; (iv) an overall uncertainty

determined from the model can be used in the discrimination of an intrinsic absorp-

tion peak from artefacts, as any peak that has a magnitude, relative to the baseline,

lower than the uncertainty level, can be labelled as an artefact; and (v) through the

model, a methodical optimisation of the measurement parameters is possible.

The work is organised as follows: Section 7.3 gives the background on THz-TDS mea-

surement and parameter extraction, and identifies an open question regarding the

analysis of error in the process. The question leads to an introduction to the evaluation

of uncertainty in Section 7.4, which can be skipped for those who are familiar with the

Page 179



7.2 Research objective and framework

subject. In Section 7.5 the sources of error in the THz-TDS measurement and parameter

extraction process are identified and characterised by analytical models, based on the

evaluation of uncertainty. The proposed models are validated with Monte Carlo sim-

ulations in Section 7.6, and some implications in the models are discussed. A practical

implementation of the developed uncertainty model is given in Section 7.7.

7.2 Research objective and framework

Objective

∙ To thoroughly identify sources of either random or systematic error, in a THz-

TDS measurement, which affect the characterised optical constants. The errors in-

volve both the spectrometer and the parameter extraction process. The errors are

considered under normal system operation. The consideration of error sources

is not specific to the type of terahertz generation/detection, i.e., photoconductive

antennas or nonlinear crystals.

∙ To provide a model for the evaluation of uncertainty in the optical constants,

measured by a transmission THz-TDS measurement. The model is composed of

many components, each explaining the relation between the variance/deviation

produced by an identified source of error and the variance/deviation in the opti-

cal constants. The proposed analytical models are verified with the results from

Monte Carlo simulation (MCS) or other numerical means. A case study on real

data is also given.

Framework

The assumptions of a THz-TDS measurement considered here are that (i) a sample

under measurement is a homogeneous dielectric slab with parallel and flat surfaces,

where the scattering of T-rays is negligible; (ii) the incident angle of the T-ray beam

is normal to the sample surface; (iii) the transverse dimension of the sample is larger

than the incident beam waist, so there is no edge diffraction; (iv) the reference signal is

measured under the same conditions as the sample signal, except for the absence of the

sample; (v) a random error is assumed to follow a normal probability distribution, un-

less stated otherwise; (vi) the resolution of the measuring apparatus is sufficiently high
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so that quantisation error is negligible, unless stated otherwise; (vii) the measuring in-

struments are well calibrated; and (viii) there is no human error in the measurements.

The evaluation of uncertainty is on the basis of the Guide to the Expression of Uncertainty

in Measurement—GUM, recommended by the International Organization for Standard-

ization (ISO) and its partners12 (ISO 1993). Some aspects of the guideline are tailored,

where appropriate. The technical terms, where applicable, follow the definitions pro-

vided in International Vocabulary of Basic and General Terms in Metrology—VIM, pub-

lished by the ISO in the name of its partners (ISO 2004).

7.3 THz-TDS for measurement of optical constants

The process of utilising THz-TDS in determining the optical constants of a sample

is composed of many steps, as illustrated in Figure 7.1. At the heart of the process

is the measuring device, a terahertz time-domain spectrometer, which has been pro-

gressively developed to achieve a higher SNR and wider bandwidth. The quantity

provided by a THz-TDS measurement is a time-domain signal. Thus, a physical model

that can relate the measured signal to the optical properties of a measured sample is re-

quired. This model is then used to estimate or extract the optical constants of a sample

from a recorded signal. The measurement is not ideal, and therefore incorporates er-

rors, which demand characterisation to quantify the overall measurement uncertainty.

Further details for each part of the measuring process are described below.

7.3.1 Measuring device—THz-TDS

A THz-TDS system comprises an ultrafast optical laser, a T-ray emitter/receiver, an

optical delay line, a set of guiding and collimating optics, and a material sample un-

der test. The ultrafast optical pulse is divided into two paths, a probe beam and a

pump beam, by a beam splitter. At the emitter, the optical pump beam stimulates

12The organisations that participate in GUM and VIM: the International Bureau of Weight and Mea-

sures (BIPM), the International Electrotechnical Commission (IEC), the International Federation of Clin-

ical Chemistry (IFCC), the International Organization for Standardization (ISO), the International Union

of Pure and Applied Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP),

and the International Organization of Legal Metrology (OIML).
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Figure 7.1. Parameter estimation process using THz-TDS measuring system. The process is

mainly composed of a T-ray spectrometer, a physical T-ray propagation model, and a

random process. The blue solid boxes represent well reported parts of the THz-TDS

measurement process, whereas the red dashed boxes have not been fully analysed and

are now addressed in this chapter. Modified from Grabe (2005).

T-ray pulsed radiation usually via either charge transport (Smith et al. 1988) or an op-

tical rectification effect (Xu et al. 1992), depending on the emitter type. A typical T-ray

system based on photoconductive antennas for emission and detection is shown in

Figure 7.2. The diverging T-ray beam is collimated and focused onto the sample by

the guiding and collimating optics. After passing through the sample, the T-ray beam

is recollimated and focused onto the receiver by an identical set of guiding and colli-

mating optics. At the receiver, the probe beam optically gates the T-ray receiver for a

short time duration compared to the arriving T-ray pulse duration. As in the case of

T-ray generation, the detection or gating can be performed via either charge transport

or electro-optic sampling (Wu and Zhang 1995). Synchronisation between the optical

gating pulse and the T-ray pulse allows the coherent detection of the T-ray signal at

each time instant. A complete temporal scan of the T-ray signal is enabled by the dis-

crete micromotion of a mechanical stage controlling the optical delay line. The system

delivers a time-resolved T-ray pulse, which is readily convertible to a wideband T-ray

spectrum via Fourier transform.
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Figure 7.2. THz-TDS system configured in transmission mode. The system consists of an

ultrafast optical laser, a T-ray emitter/receiver, an optical delay line, a set of mirrors,

and a material sample. The emitter and receiver shown are photoconductive antennas.

The optical beam path is indicated by small red arrowheads, and the T-ray beam path

by large green arrowheads.

7.3.2 Physical model and parameter extraction

A key aim of a THz-TDS measurement is to determine the frequency-dependent opti-

cal constants of a sample under test. However, a signal available from a THz-TDS sys-

tem is in the time domain, and suffers various effects determined by geometric optics,

i.e., reflection and refraction, influenced by the sample. This necessitates a physical

model to describe these effects and a measurement function to extract the constants

from the signal.

Typically, a T-ray signal that passes through a parallel-surfaced dielectric sample, at a

normal angle of incidence, can be expressed as a function of the frequency, assuming

no reflection, by

Esam(ω) = η
4n̂(ω)n0

[n̂(ω) + n0]2
⋅ exp

{
−jn̂(ω)

ωlθ
c

}
⋅ E(ω) , (7.1)

where E(ω) is the complex emitted wave; η is the transmission factor of free air sur-

rounding the sample; n0 is the refractive index of free air; n̂ is the complex refractive

index of the sample; and lθ is the propagation length inside the sample, which equals
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the sample thickness l for the normal angle of incidence. The complex refractive index,

n̂(ω) = n(ω)− jκ(ω), comprises the index of refraction, n(ω), and the extinction co-

efficient, κ(ω), which, together, are called the optical constants. In the above equation,

4n̂(ω)n0/[n̂(ω)+ n0]
2 is a consequence of the transmission at the sample-air interfaces,

and the exponential term represents the complex response of bulk material. In addition

to the sample response,

Eref(ω) = η ⋅ exp
{
−jn0

ωl
c

}
⋅ E(ω) , (7.2)

is the complex frequency response of a reference signal, i.e., a signal measured with

the same settings but with the absence of the sample.

The material parameter extraction process requires both Esam(ω) and Eref(ω), which

are determined from time-domain measurements. The sample response normalised by

the reference, or Esam(ω)/Eref(ω), yields the complex transfer function of a material in

the frequency domain:

H0(ω) =
4n̂(ω)n0

[n̂(ω) + n0]2
⋅ exp

{
−κ(ω)

ωl
c

}
⋅ exp

{
−j[n(ω)− n0]

ωl
c

}
. (7.3)

Often, the complex refractive index, n̂(ω), which is a component of the transmission

at air-sample interfaces, is approximated to a real index, n(ω), giving

H(ω) =
4n(ω)n0

[n(ω) + n0]2
⋅ exp

{
−κ(ω)

ωl
c

}
⋅ exp

{
−j[n(ω)− n0]

ωl
c

}
. (7.4)

This simplified transfer function facilitates the parameter extraction process, but also

introduces an error due to the approximation. Later, this type of error will be taken into

account, and a proper treatment will be provided in Section 7.5.4. Taking the argument

and logarithm of the simplified transfer function gives, respectively,

∠H(ω) = −[n(ω)− n0]
ωl
c

, (7.5a)

ln ∣H(ω)∣ = ln
[

4n(ω)n0

(n(ω) + n0)2

]
− κ(ω)

ωl
c

. (7.5b)

The optical constants can be deduced from Equations 7.5a and 7.5b as

n(ω) = n0 − c
ωl

∠H(ω) , (7.6a)

κ(ω) =
c

ωl

{
ln

[
4n(ω)n0

(n(ω) + n0)2

]
− ln ∣H(ω)∣

}
. (7.6b)
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The extracted optical constants are an ultimate outcome of a THz-TDS measurement

process, and from now on Equations 7.6a and 7.6b will be referred to as the measure-

ment functions. Quantities obtained from these measurement functions, to some ex-

tent, contain a measurement error from the input quantities, and this error motivates

the development of a proper procedure for the evaluation of the uncertainty in the

results.

7.3.3 Evaluation of uncertainty in THz-TDS measurement

Many sources of randomness affecting a THz-TDS signal have been reported so far.

These sources include laser intensity fluctuation (Son et al. 1992, Haus and Mecozzi

1993, Poppe et al. 1998), optical and electronic noise (van Exter and Grischkowsky

1990c, Duvillaret et al. 2000), delay line stage jitter (Letosa et al. 1996), registration er-

ror (Cohen et al. 2006), and so on. Mathematical treatment for these noise sources is

available in general. Contributions to the error in the estimated optical constants are

not only from the randomness in the signal, but also from imperfections in the physical

setup and parameter extraction process. These imperfections relate to, for example, the

sample thickness measurement, the sample alignment, and so on.

An example situation, where the evaluation of the uncertainty is critical, is considered

by Fischer et al. (2005a). The dynamic range of the experiment can be increased by aver-

aging a series of measured signals in the time domain. Averaging their corresponding

spectra does not affect the dynamic range (Fischer et al. 2005a). By averaging signals in

the time domain, the standard deviation, therefore, appears in the time domain with

the corresponding mean value. Accordingly, it requires an uncertainty model, which

can transform the standard deviation of a time-domain signal into the standard devia-

tion of the optical constants.

A few limited models for tracking the uncertainty in a THz-TDS measurement can

be found in the literature, but they are specific cases with loss of generality and thus

are only indirectly relevant to our discussion. For noise analysis, the model by Duvil-

laret et al. (2000) is used in the calculation of the uncertainty in the optical constants

impacted solely by noise in the reference and sample spectra. In double-modulated dif-

ferential time-domain spectroscopy (DTDS), the evaluation of uncertainty is employed

for numerical determination of the optimum thickness difference of a liquid sample

(Mickan et al. 2004). The evaluation focuses on a dual-thickness geometry, where the
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Fresnel transmission coefficient is absent from the transfer function. Confidence inter-

vals are established for the real and imaginary parts of the transfer function, which is

influenced by noisy spectra (Pupeza et al. 2007). These confidence intervals assist the

process of smoothing the estimated optical constants.

It would appear that the previous literature addresses development of the uncertainty

models for the optical constants in a superficial manner. In those cases, the work only

considers the influence of signal noise, and/or does not extend the model into the time

domain. Furthermore, the developed linear models are rarely verified by a nonlinear

numerical simulation. Based upon motivation from the requirements discussed earlier,

an evaluation of uncertainty for a THz-TDS measurement is established in this work,

with the aim of a comprehensive list of error sources in the system.

7.4 Methodology for evaluation of uncertainty

This section introduces a basic evaluation of uncertainty, presented in four subsec-

tions, as follows: Section 7.4.1 discusses some definitions usually found in the uncer-

tainty analysis. Evaluation of random and systematic errors with different paradigms

is given in Section 7.4.2. A means to determine and combine measurement uncertain-

ties in the case that an output quantity is a function of one or more input quantities is

shown in Section 7.4.3. The resolution limit in measurement, which can give rise to a

systematic error, is treated separately in Section 7.4.4.

7.4.1 General definitions

A general aim of the evaluation of uncertainty is to establish a quantity that exhaus-

tively quantifies ambiguity present in a measurement (Lira and Wöger 1997). An impli-

cation of the uncertainty is that it can reasonably localise the true value of a measurand

with respect to the mean value, although this statement is ambiguous as the true value

is by nature inaccessible. Nevertheless, no matter which viewpoint is held, an appro-

priate measurement result is always accompanied by an uncertainty, which is useful

in the justification of the experiment and in comparison among measurements.

Evaluation of measurement uncertainty can be categorised into two types, depend-

ing on the source of information. According to VIM (ISO 2004), Type A evaluation

Page 186



Chapter 7 Uncertainty in THz-TDS measurements

of uncertainty involves a direct statistical analysis of measurements under repeata-

bility conditions, whereas Type B involves obtaining a measurement uncertainty via

other means, such as a published value or a deduction from personal experience. In

this work, evaluation of measurement uncertainty in THz-TDS concerns both types of

evaluations.

Before further information about methodology for an evaluation of uncertainty is dis-

cussed, some important technical terms frequently used in the uncertainty community

are introduced. Consider Figure 7.3, where the variable X is subject to measurement.

The true value or measurand x0 is sought by the observer. In fact this value cannot be

accessed due to the lack of information about the systematic error, which constantly

biases the measurement result in one direction. What is obtainable with a single mea-

surement is an estimation xl, which deviates from the true value by both the systematic

and random errors. The average value of N statistically independent measurements

x
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x

x
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or measurand

expectation

arithmetic mean

f
x 
= μ

x 
- x
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x
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Figure 7.3. Some definitions and relations used in evaluation of uncertainty. The systematic

error biases the expectation from the true value, whereas the random error added to

the expectation yields the estimation. The confident interval localises the expectation

with regard to the arithmetic mean, and the uncertainty expands the interval to localise

the true value. This graph is related to Type A evaluation of measurement uncertainty,

where the evaluation is based on a statistical analysis obtained from repeatable mea-

surements. See Section 7.4.2 for the descriptions of confidence interval and uncertainty.

Modified from Grabe (2005).
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gives an arithmetic mean x = ∑
N
l=1 xl/N. An expectation, μx, which is free from ran-

dom error, would be achieved in the limit if the number of measurements becomes

infinite.

7.4.2 Evaluation of random and systematic errors

A random error, as mentioned earlier, is the difference between an estimation, xl, and

the expectation, μx. The evaluation of random error is to establish a confidence in-

terval that can localise the expectation μx, based on the data obtainable from a set of

estimations. The GUM guideline suggests that a confidence interval follows

x− kP√
N

sx ≤ μx ≤ x +
kP√

N
sx , (7.7)

where N is the number of measurements, kP is the coverage factor, and sx is the em-

pirical standard deviation of X. The coverage factor kP = 1 defines a standard mea-

surement uncertainty, whereas a higher value defines an expanded measurement un-

certainty. Determining the coverage factor kp from a specified level of confidence p

requires knowledge of the distribution of measurement results (see Annex G in ISO

(1993) for more information). The empirical variance of X is defined as

s2
x =

1
N − 1

N

∑
l=1

(xl − x̄)2 . (7.8)

The empirical standard deviation equals the positive square root of the empirical vari-

ance.

Measurement uncertainty must account for both the random error and the systematic

error, i.e., the uncertainty must be able to localise the true value with respect to the

arithmetic mean. The aforementioned systematic error is the difference between the

expectation μx and the true value x0, or fx = μx − x0. Thus, the uncertainty, localising

the true value, is an expansion of the confidence interval that localises the expectation.

Figure 7.3 elucidates these relations.

The evaluation of systematic error is subjective. On one hand, given that a rectangu-

lar probability distribution represents a systematic error, the uncertainty suggested by

GUM is a geometric combination between the standard deviations of the random and

systematic errors, or

ux = kP

√
s2

x
N

+
f 2
s,x

3
, (7.9)
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where fs,x/
√

3 is the standard deviation of a rectangular probability distribution that

covers [− fs,x, fs,x], which embraces an unknown fx. On the other hand, as a possible

alternative to GUM, Grabe assumes a constant systematic error defined over a specific

time period (Grabe 1987, Grabe 2001, Grabe 2005). Hence, the analysis of the systematic

error is separated from that of the random error, and the uncertainty is an arithmetic

combination between the confidence interval and the worst case term,

ux = kP
sx√
N

+ fs,x . (7.10)

In either case, a final measurement result is reported in terms of the arithmetic mean

and its uncertainty, or x± ux.

Further evaluation of systematic errors in THz-TDS measurement exploits either geo-

metric or arithmetic combination. The selection is based on the nature of the systematic

error. If the systematic error is definitive, i.e., it becomes the systematic deviation, the

worst-case scenario is adopted. Otherwise, a rectangular distribution and a geometric

combination satisfies the analysis.

7.4.3 Propagation and combination of measurement uncertainty

Often, a measurand, Φ, is a function of many input quantities, X1, X2, . . . , XM, and

Φ(X1, X2, . . . , XM) is called a measurement function. In this case the evaluation of

uncertainty needs augmentation to account for the propagation and combination of

input uncertainties. Possible means of the evaluation can be categorised into two types,

numerical or analytical.

An analytical evaluation supported by GUM provides an explicit solution to the prop-

agation and combination of uncertainty. Yet, it requires the linearity assumption of a

measurement function in the vicinity of interest. On the other hand, a numerical eval-

uation, in particular the Monte Carlo method (Weise and Zhang 1997, Joint Committee

for Guides in Metrology 2006), has an advantage over its analytical counterpart in that

it readily supports the propagation of uncertainty through a nonlinear function (Cox

and Harris 1999). Nevertheless, a drawback of the Monte Carlo method is that it is

time consuming and, therefore, not flexible. An additional Monte Carlo drawback is

that no analytical expression is available, and thus this prohibits further in-depth anal-

ysis of the measurement. Nevertheless, a Monte Carlo method is used in validation of

the result obtained from the analytical evaluation.
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With regard to the analytical evaluation, the propagation of variance, or equivalently,

the law of propagation of uncertainty, for the measurement function Φ is given by

s2
φ =

M

∑
i=1

(
∂φ

∂xi

)2

s2
xi
+ 2

M−1

∑
i=1

M

∑
j=i+1

∂φ

∂xi

∂φ

∂xj
sxixj . (7.11)

For the derivation see Appendix C.1. The sensitivity coefficient ∂φ/∂xi is calculated at

the arithmetic means of the input quantities. This expression also applies to the propa-

gation of the uncertainty of a systematic error that takes on a rectangular distribution.

For the propagation of a systematic error that assumes worst-case scenario, the law of

error propagation is

fs,φ =
m

∑
i=1

∣∣∣∣ ∂φ

∂x̄i

∣∣∣∣ fs,xi ;− fs,xi ≤ fxi ≤ fs,xi . (7.12)

Both Equations 7.11 and 7.12 are the first-order approximation, and hence valid for a

linear or approximately linear measurement function in the region of interest.

The effects of random and systematic errors could be combined either geometrically

or arithmetically, as discussed in Section 7.4.2. For example, the combined uncertainty

for a measurement function with two input quantities, in case of the geometric combi-

nation, is (Grabe 2001)

uφ̄ =
kP√

N

√(
∂φ

∂x̄

)2 (
s2

x +
f 2
s,x

3

)
+ 2

(
∂φ

∂x̄

)(
∂φ

∂ȳ

)
sxy +

(
∂φ

∂ȳ

)2 (
s2

y +
f 2
s,y

3

)
, (7.13)

and in case of the arithmetic combination it becomes (Grabe 2001)

uφ̄ =
kP√

N

√(
∂φ

∂x̄

)2

s2
x + 2

(
∂φ

∂x̄

)(
∂φ

∂ȳ

)
sxy +

(
∂φ

∂ȳ

)2

s2
y +

∣∣∣∣∂φ

∂x̄

∣∣∣∣ fs,x +

∣∣∣∣∂φ

∂ȳ

∣∣∣∣ fs,y ,(7.14)

where uφ̄ is the uncertainty for a result produced by function Φ(X, Y).

7.4.4 Measurement with resolution limit

The resolution limit of a measuring device can give rise to a systematic error. Occasion-

ally, this error is significant in comparison with the random error in an observation. It

is thus suggested that in such cases this limit be incorporated into an expression of

uncertainty (Lira and Wöger 1997). Consider the case that a device with its resolution

of δ gives an estimation xl of a quantity X, without any other error. An estimation
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of the same measurand obtained from a device with an infinitesimal resolution could

be any value in between xl ± δ/2, or in practice xl + Δ. The adjusted term Δ, with a

constraint ∣Δ∣ ≤ δ/2, is introduced to compensate the imperfect resolution. Obviously,

the probability distribution associated with the adjusted term Δ is rectangular with the

variance of δ2/12. This variance, therefore, contributes to the total variance of X, or,

mathematically (Lira and Wöger 1997)

s2
x +

δ2

12
, (7.15)

where s2
x is a variance due to random error. In practice, the resolution parameter, δ, is

an attribute of a measuring device, and therefore the treatment of resolution limit is a

Type B evaluation of uncertainty.

7.5 Sources of error in THz-TDS measurement

Many sources of error appear in a THz-TDS measurement and parameter extraction

process. Significant sources of error are shown in Figure 7.4, where they are listed

along with the parameter extraction process and accompanied by their class (random

or systematic). In addition to noise, the sample signal also contains reflections, which,

if not dealt appropriately, cause a systematic error. The error in the amplitude from

several measurements manifests itself as a variance (or deviation). It propagates down

the parameter extraction process, through to the Fourier transform and deconvolution

stages, producing the variance in the magnitude and phase of the estimated transfer

function. The parameter extraction process requires knowledge of the sample thick-

ness, sample alignment, and air refractive index, each of which have a degree of uncer-

tainty. This step introduces the variances to the estimation. Furthermore, an approxi-

mation to the model transfer function gives rise to a systematic error. At the output, all

these variances accumulate and contribute to the uncertainty in the extracted optical

constants.

Sections 7.5.1 to 7.5.6 provide an analysis for each source of error in detail, including

a connection between these errors and the variance in the optical constants. The com-

bination of all variances to produce the uncertainty in the optical constants is given in

Section 7.5.7.
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measured amplitude s²

Amplitude detection Electronic & optic noise

magnitude & phase s²

Fourier transform

magnitude & phase s²

Deconvolution

optical constant s²

Parameter extractionThickness measurement

random and systematic

Sample alignment

reference
spectrum

sample
spectrum

Refractive index of air

THz-TDS measurement

parameter extraction

reference
signal

sample
signal

Apprx. transfer function

random and systematic

random or systematic

systematic systematic

Fabry-Perot reflections

systematic

Figure 7.4. Sources of error in THz-TDS measurement. The sources of error in the red dashed

boxes occur in both the THz-TDS measurement and the parameter extraction process.

The errors produced by these sources are classified as either random or systematic. They

cause the variances and deviations, which propagate down the process, and eventually

contribute to the uncertainty in the extracted optical constants.

7.5.1 Random and systematic errors in T-ray amplitude

The T-ray amplitude is prone to variation induced by many sources of random and

systematic errors. As mentioned earlier, the sources of random error include laser in-

tensity fluctuation, optical and electronic noise, jitter in the delay stage, etc., whereas

the sources of systematic error include registration error, mechanical drift, etc. The

variation in the amplitude may embrace the effects from inhomogeneity in a sample or

among samples, if the sample is displaced or replaced with nominally identical sam-

ples during several measurements. What is considered here is the amplitude variance

model, which combines all these errors and assumes a normal probability distribution.

This treatment is valid although systematic error is involved, since the systematic error

drifts over time and thus cannot be tackled by the method proposed by Grabe (2001),

which requires a constant systematic error. The amplitude variance is often statistically

obtained from a number of repeated measurements, and thus is regarded as a Type A

evaluation.

Page 192



Chapter 7 Uncertainty in THz-TDS measurements

Regarding the natural difference between two types of error in the T-ray amplitude, a

random error occurs in a relatively short time scale, in contrast to a systematic error

that can be observed only when the measurement time span is long enough. In addi-

tion, the amplitude drift due to the systematic error changes in one direction over time.

Due to these facts, recording and averaging signals over a long time span increase the

amplitude variation. This scenario is demonstrated in Figure 7.5, in which the drift is

larger for a succeeding measurement. Therefore, measuring a T-ray signal is a compro-

mise between the random and systematic errors, i.e., recording over a short time can

avoid the drift, but not random error, while recording over a longer period averages

out the random error but accentuates the problem of drift.
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Figure 7.5. Amplitude variance of measured time-domain signals. The amplitude variance

is plotted against the time and the number of measurements. Any two succeeding

measurements are separated by approximately 40 sec. As the number of measurements

increases, the variance dramatically increases. The inset shows the arithmetic mean

of the 60 measurements. Interestingly, the two peaks in the variance occur at 11.8

and 12.7 ps, whereas the negative and positive peaks in the mean signal are at 11 and

12.4 ps, respectively. The result is most probably dominated by delay-line registration

and mechanical drift.
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Given the amplitude variances of the time domain reference and sample signals, de-

noted by s2
Eref

(k) and s2
Esam

(k), respectively, the amplitude-related variances in the opti-

cal constants read as

s2
n,E(ω) =

( c
ωl

)2
{

Asam(ω)

∣Esam(ω)∣4 +
Aref(ω)

∣Eref(ω)∣4
}

, (7.16a)

s2
κ,E(ω) =

( c
ωl

)2
{

Bsam(ω)

∣Esam(ω)∣4 +
Bref(ω)

∣Eref(ω)∣4 +

(
n(ω)− n0

n(ω) + n0

)2 s2
n,E(ω)

n2(ω)

}
, (7.16b)

where

Asam(ω) = ∑
k
ℑ2[Esam(ω) exp(jωkτ)]s2

Esam
(k) , (7.17a)

Aref(ω) = ∑
k
ℑ2[Eref(ω) exp(jωkτ)]s2

Eref
(k) , (7.17b)

Bsam(ω) = ∑
k
ℜ2[Esam(ω) exp(jωkτ)]s2

Esam
(k) , (7.17c)

Bref(ω) = ∑
k
ℜ2[Eref(ω) exp(jωkτ)]s2

Eref
(k) . (7.17d)

Here, k is the temporal index and τ is the sampling interval, and thus kτ is the time.

The summation is carried out over the time duration of a recorded T-ray signal. In the

equations, all the parameters are calculated at their mean value. For additive noise,

⟨s2
Eref

(k)⟩ = ⟨s2
Esam

(k)⟩. The derivation for Equation 7.16 can be found in Appendix C.2.

In Equation 7.16, the square of the thickness, l2, is a major factor. Increasing the thick-

ness will seemingly decrease the variance in the optical constants. A physical reason

behind this is that, for a very thin sample, the system might not be sensitive enough to

detect a small change in the amplitude and phase, which is masked by noise. A thicker

sample allows T-rays to interact more with the material, causing a larger change in

signal. But, this competes with the fact that ∣Esam(ω)∣ ∝ exp(−l) and thus increasing l

will lower the amplitude of a sample signal and lift the overall variance. A treatment

of the thickness-amplitude trade-off can be found in Chapter 8.

Equation 7.16 combines the effects from both the reference and sample signals. For

flexibility in some applications, the effects from the two can be separated. Thereby, the

variances in the optical constants due to the variance in the sample signal are

s2
n,Esam

(ω) =
( c

ωl

)2 Asam(ω)

∣Esam(ω)∣4 , (7.18a)

s2
κ,Esam

(ω) =
( c

ωl

)2
{

Bsam(ω)

∣Esam(ω)∣4 +

(
n(ω)− n0

n(ω) + n0

)2 s2
n,Esam

(ω)

n2(ω)

}
. (7.18b)
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Likewise, the variances in the optical constants due to the variance in a reference signal

are

s2
n,Eref

(ω) =
( c

ωl

)2 Aref(ω)

∣Eref(ω)∣4 , (7.19a)

s2
κ,Eref

(ω) =
( c

ωl

)2
{

Bref(ω)

∣Eref(ω)∣4 +

(
n(ω)− n0

n(ω) + n0

)2 s2
n,Eref

(ω)

n2(ω)

}
. (7.19b)

The separation of the effects from the reference and sample allows the evaluation of

the uncertainty, where the numbers of measurements for the sample and reference

signals are not equal. This separation scheme will be used later in Section 7.5.7, when

variances from all sources are combined to yield the overall uncertainty.

7.5.2 Random and systematic errors in sample thickness

One parameter that has an influence on the extracted optical constants is the propa-

gation distance of a T-ray beam inside a sample. The propagation distance equals the

sample thickness, when the angle of incidence of the beam is normal to the sample

surfaces. The variance associated with this thickness is partially due to a random er-

ror in thickness measurement, which may be subject to, for example, the mechanical

pressure exerted during thickness measurement, the rigidity of a sample, etc. Errors

in thickness can also occur due to a change in properties of the sample, for example,

a sample of biological tissue can shrink during the experiment due to dehydration or

a cryogenically frozen sample can have a different thickness to that measured at room

temperature. In addition to the random error, another critical factor contributing to the

variance in the thickness is the resolution of a measuring device, deemed systematic

error. These two types of error and their impact on the optical constants are evaluated

separately, in the following discussion.

Random error in sample thickness

Generally, a random error occurring in sample thickness measurements has a normal

distribution around a mean value. Given the sample thickness variance s2
l caused by

this error, by referring to the measurement functions in Equations 7.6a and 7.6b, the
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thickness-related variances of the optical constants are

s2
n,l(ω) =

[
n(ω)− n0

l

]2

s2
l , (7.20a)

s2
κ,l(ω) =

[
κ(ω)

l

]2

s2
l +

[
c

n(ω)ωl

(
n(ω)− n0

n(ω) + n0

)]2

s2
n,l(ω) , (7.20b)

where s2
l is typically determined from the statistical distribution of several observa-

tions, and thus the evaluation is denoted as Type A.

Equations 7.20a and 7.20b indicate that, with no limit, increasing the sample thickness

results in a decrease of the variance of the optical constants. However, a thicker sam-

ple also results in a weaker sample signal, which eventually gives rise to s2
n,E(ω) and

s2
κ,E(ω) in Equation 7.16.

Systematic error in sample thickness (resolution limit)

The resolution of a common thickness measuring device, such as a micrometer or cal-

liper, is relatively limited. This introduces a systematic error to the thickness measure-

ment. As a result, readout values are influenced from the combination of both random

and systematic errors. According to the analysis of the resolution limit in Section 7.4.4,

the variance in the thickness induced by the resolution limit is δ2
l /12, where δl is the

resolution of a measuring device.

The propagation functions, which link this variance to the variances in the optical con-

stants, are consistent with those in Equation 7.20. Thus,

s2
n,δ(ω) =

[
n(ω)− n0

l

]2 δ2
l

12
, (7.21a)

s2
κ,δ(ω) =

[
κ(ω)

l

]2 δ2
l

12
+

[
c

n(ω)ωl

(
n(ω)− n0

n(ω) + n0

)]2

s2
n,δ(ω) . (7.21b)

Because δl is obtained from a published value, the evaluation in Equation 7.21 is re-

garded as Type B. Similar to the thickness-related variances, the variances here de-

crease as the thickness increases unless the noise in the signal is considered.

7.5.3 Random or systematic error in sample alignment

When the angle of incidence of T-rays on a sample slab is not normal to the surfaces,

the transfer function becomes complicated. Specifically, overly tilting the sample will
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result in a complex propagation geometry, a deviated beam direction, and a lower T-

ray energy focused onto a detector. In order to avoid these complications, the angle of

incidence is typically assumed to be normal to the sample’s surface, so that a simple

transfer function can be adopted.

However, with manual placement and adjustment of the sample, it is likely that a

small misalignment can occur. The small misalignment of a sample causes a longer

propagation path of T-rays inside the sample, as illustrated in Figure 7.6. A change

in the propagation distance consequently affects the estimated optical constants of the

sample. The alignment error, therefore, needs to be taken into account in the evaluation

of uncertainty in optical constants.

The type of this error is dependent on experimental practice. If the sample is moved in

between several measurements, the error is random. On the other hand, if the sample

is fixed throughout measurements, the error from the sample alignment is systematic.

Despite the possible difference in practice, in this work the error in the sample align-

ment is considered systematic. The worst-case scenario can bound the error arising

from either case.

l

l
θ

incident beam path

sample: n-jκ

air: n
0

θ
i

θ
t

θ
i

Figure 7.6. Tilted sample in T-ray beam path. This exaggerated figure illustrates a small tilt

angle from the normal, which might occur due to manual misalignment of the sample.

The T-ray path inside the sample, lθ, is longer than the sample thickness, l, by the

factor of 1/ cos θt. The refraction angle, θt, is related to the incident angle (and the

tilting angle), θi, through Snell’s law, n sin θt = n0 sin θi, but for a small tilting angle,

θt ≈ θi.
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According to Figure 7.6, the propagation distance inside a sample, lθ, is a function of

the sample thickness, l, and the refraction angle, θt, or

lθ =
l

cos θt
. (7.22)

By assuming that the angle of refraction deviates in a small interval [− fθ, fθ] and has

its arithmetic mean at the origin, the deviation in the propagation distance is thus

fl = l
(

1
cos fθ

− 1
)

. (7.23)

Note that the numerical evaluation of an error propagation, as in the above equation,

is allowed by GUM. Given the deviation in the propagation distance, fl, the alignment-

related deviations of the optical constants, derived from Equations 7.6a and 7.6b, are

fn,θ(ω) =
n(ω)− n0

l
fl , (7.24a)

fκ,θ(ω) =
κ(ω)

l
fl +

c
n(ω)ωl

⋅ n(ω)− n0

n(ω) + n0
⋅ fn,θ(ω) . (7.24b)

Substituting fl from Equation 7.23 gives

fn,θ(ω) = [n(ω)− n0]

(
1

cos fθ
− 1

)
, (7.25a)

fκ,θ(ω) = κ(ω)

(
1

cos fθ
− 1

)
+

c
n(ω)ωl

⋅ n(ω)− n0

n(ω) + n0
⋅ fn,θ(ω) . (7.25b)

From the above equations, the deviation in the refractive index due to the sample align-

ment is independent of the sample thickness, whereas the deviation in the extinction

coefficient can reduce for a thicker sample.

7.5.4 Systematic error in the approximated transfer function

From Section 7.3.2, regarding the parameter extraction process, it can be seen that the

determination of optical constants is based upon an approximated transfer function.

This approximation certainly gives rise to an error in the estimated optical constants.

But, unlike any other error in the measurement process, the systematic error arising

from an approximated transfer function is recognisable and quantifiable. Furthermore,

it can be completely removed from the optical constants, if an exact technique for ma-

terial parameter extraction, such as that given in Duvillaret et al. (1996), Duvillaret et al.
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(1999), or Dorney et al. (2001a), is employed. However, a precise approach involves a

complicated iterative calculation, and most researchers trade off this complexity with

a small error from the approximation. Here, a treatment of the approximation is of-

fered to evaluate the error and to assist the selection of an appropriate approach in

determining the optical constants.

In this section, for lucidity, the exact transfer function in Equation 7.3 is referred to as

Hexact(ω), and its approximation in Equation 7.4 is referred to as Happx(ω). The phase

difference between the approximated and exact transfer functions is

f∠H(ω) = ∠Happx(ω)−∠Hexact(ω)

= − arg
{

4n̂(ω)n0

[n̂(ω) + n0]2

}
. (7.26)

In a similar way, the magnitude difference between the two functions is

fln ∣H∣(ω) = ln ∣Happx(ω)∣ − ln ∣Hexact(ω)∣
= ln

∣∣∣∣ 4n(ω)n0

[n(ω) + n0]2

∣∣∣∣− ln
∣∣∣∣ 4n̂(ω)n0

[n̂(ω) + n0]2

∣∣∣∣
= ln

∣∣∣∣∣n(ω)

n̂(ω)

[
n̂(ω) + n0

n(ω) + n0

]2
∣∣∣∣∣ . (7.27)

It is now clear that if κ ≈ 0, which makes n̂(ω) ≈ n(ω), then f∠H and fln ∣H∣ become

zero.

Derived from the measurement function in Equation 7.6a, the effect of the phase dif-

ference on the refractive index deviation is

fn,H(ω) =
c

ωl
∣ f∠H(ω)∣ . (7.28)

Likewise, derived from Equation 7.6b, the effect of the approximated transfer function

on the deviation of the extinction coefficient is

fκ,H(ω) =
c

ωl

[∣∣∣ fln ∣H∣
∣∣∣+ 1

n(ω)
⋅ n(ω)− n0

n(ω) + n0
∣ fn,H(ω)∣

]
. (7.29)

Obviously, the thickness, l, of a sample is an important factor in both fn,H(ω) and

fκ,H(ω). A thicker sample implies a lower contribution to the deviation of the optical

constants from the transfer function approximation. A physical explanation is that a

thick sample enhances the interaction between T-rays and the bulk material, as indi-

cated by the exponential terms in Equation 7.3. This enhanced interaction dominates

the transfer function, and dominates the effect of the approximation in Happx(ω).
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Here, the values of n(ω) and κ(ω) are estimated on the basis of a simplified trans-

fer function. Substitution of the approximated values of n(ω) and κ(ω) into Equa-

tions 7.28 and 7.29 can determine the approximated deviations, fn,H and fκ,H. These

deviations are not correction factors for the approximated optical constants, but are

rather used to demonstrate the magnitude of the difference between the approximated

and the exact values.

7.5.5 Systematic error from reflections

In the measurement of a sample, particularly in the case of parallel and shiny surfaces,

the reflections at air-sample interfaces always occur, resulting in reflected pulses in a

recorded signal. These reflections, or so-called Fabry-Pérot effect, can be removed to

some extent from the signal by some means prior to the parameter estimation. Other-

wise, the transfer function in Equation 7.4 must be amended to incorporate the Fabry-

Pérot effect, as follows:

HFP(ω) = FP(ω)H(ω) , (7.30)

where

FP(ω) =

{
1−

[
n̂(ω)− n0

n̂(ω) + n0

]2

⋅ exp
[
−2jn̂(ω)

ωl
c

]}−1

. (7.31)

In this case, the effect must be dealt with during the parameter estimation process by

an iterative method such as that of Duvillaret et al. (1996). But researchers often prefer

using a simple extraction method, in Equations 7.6a and 7.6b, where the Fabry-Pérot

effect is ignored. The effect then propagates to the extracted optical constants, where

it manifests itself as a systematic error. In response to that, this section proposes an

analytical model that can trace the propagation of a Fabry-Pérot effect, now a system-

atic error, from the spectrum to the optical constants. Quantification of this error can

show how large its contribution is toward the optical constants. In addition, the esti-

mated error from the Fabry-Pérot effect has merit in that it can be used to discriminate

real absorption features from oscillatory artefacts. If the peak amplitude, i.e., the ab-

sorption spectrum subtracted by its baseline, is lower than the estimated Fabry-Pérot

oscillation, then the peak is not of importance and can be regarded as an artefact.
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Recall that now there are two expressions of the transfer function: one is with the

Fabry-Pérot term, HFP(ω), and the other is an approximation, H(ω). The phase differ-

ence between the two transfer functions is

f∠FP(ω) = ∠H(ω)−∠HFP(ω)

= − arg {FP(ω)} . (7.32)

In a similar way, the magnitude difference between the two functions is

fln ∣FP∣(ω) = ln ∣H(ω)∣ − ln ∣HFP(ω)∣
= − ln ∣FP(ω)∣ . (7.33)

Derived from the measurement function in Equation 7.6a, the effect of reflections on

the refractive index deviation is

fn,FP(ω) =
c

ωl
∣ f∠FP(ω)∣ . (7.34)

Likewise, derived from Equation 7.6b, the effect of reflections on the deviation of the

extinction coefficient is

fκ,FP(ω) =
c

ωl

[∣∣∣ fln ∣FP∣
∣∣∣+ 1

n(ω)
⋅ n(ω)− n0

n(ω) + n0
∣ fn,FP(ω)∣

]
. (7.35)

Again, the sample thickness plays an important role in scaling the deviation caused by

the Fabry-Pérot effect. A longer propagation path within a sample results in a lower

deviation of the estimated optical constants. An explanation of this is that a longer

T-ray path length in a sample leads to a reduction in the amplitude of reflected pulses

in an exponential manner. The reduced amplitude of reflections makes the approxima-

tion more reasonable.

In our analysis, the values of n(ω) and κ(ω) are estimated without considering the

Fabry-Pérot effect. Substitution of the approximated values, n(ω) and κ(ω), into Equa-

tions 7.34 and 7.35 can determine the approximated deviations fn,FP and fκ,FP, but not

the actual deviations. Thus, fn,FP and fκ,FP are not correction factors for the optical

constants.

7.5.6 Systematic error in physical constants

The refractive index of air is slightly larger than unity, and is dependent on the temper-

ature and pressure. The value at 0.89 THz can be estimated from (Chamberlain et al.
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1965)

n0,exact = 1 +
86.26(5748 + T)p

T2 ⋅ 10−6 , (7.36)

where p is the partial pressure of water vapour in millimetres of mercury (mmHg) and

T is the temperature in Kelvin. At the temperature of 298.15 K (25∘C) the saturated

vapour pressure is 23.76 mmHg—this yields an index offset of 1.4× 10−4.

Nevertheless, the value of unity for air is always adopted instead of this exact calcu-

lation in the estimation of the optical constants for the sake of simplicity. Thus, this

approximation causes a systematic error, where the sign and magnitude of the varia-

tion is known a priori. The worst-case analysis is adopted in tracing the propagation of

this error to the output optical constants.

From the measurement function in Equation 7.6a, the refractive index deviation due to

the air-index deviation is

fn,n0(ω) = ∣ fn0 ∣ , (7.37)

where fn0 = n0− n0,exact. Furthermore, from Equation 7.6b, the deviation in the extinc-

tion coefficient is

fκ,n0(ω) =
c

ωl
⋅ n(ω)− n0

n(ω)n0
fn0 . (7.38)

The relation is straightforward and requires no validation by Monte Carlo simulation.

7.5.7 Uncertainty in optical constants: A combination of variances

As shown in Sections 7.5.1 to 7.5.6, many sources of error contribute to the variance

of the measured optical constants. This section suggests a combination of variances

caused by these sources to produce the uncertainty in the optical constants. The com-

bination could be either arithmetic or geometric, dependent on the type of source. The

information relating to the combining of variances can be found in Section 7.4.3.

The combined uncertainties for the refractive index and extinction coefficient are esti-

mated by addition of the variances and deviations derived so far, or

un(ω) = kP

√
s2

n,Esam

NEsam

+
s2

n,Eref

NEref

+
s2

n,l

Nl
+ s2

n,δ + fn,θ + fn,H + fn,FP + fn0 , (7.39a)

uκ(ω) = kP

√
s2

κ,Esam

NEsam

+
s2

κ,Eref

NEref

+
s2

κ,l

Nl
+ s2

κ,δ + fκ,θ + fκ,H + fκ,FP + fκ,n0 , (7.39b)
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where the coverage factor kP = 1 is for the standard uncertainty and kP > 1 for an

expanded uncertainty; NEsam and NEref are the numbers of measurements for the sam-

ple and reference signals, respectively; and Nl is the number of measurements for the

sample thickness. Because the sources of error are uncorrelated, no covariance terms

appear in the formulas.

It is advised that when the measurement uncertainty is reported, the coverage factor,

kP, and all the components used to reckon the uncertainty be listed out, along with

their evaluating method, i.e., Type A or Type B evaluation (ISO 1993). Typically, but not

always, s2
{n,κ},Esam

, s2
{n,κ},Eref

, and s2
{n,κ},l are Type A, or statistical observations, whereas

the rest of the components are Type B.

The calculation of uncertainty presented in this section follows a recommendation of

GUM in that the uncertainty is directly derivable from the contributing sources of error,

and it is directly transferable to other measurands, to which the optical constants are

relevant. For example, transferring from the uncertainty in the extinction coefficient to

that in the absorption coefficient is via uα = (2ω/c)uκ.

The uncertainty model enables further investigation for dominant sources of error in

the system, and also enables optimisation of the measurement. A parametric sensi-

tivity analysis can also be performed with these equations. It should, however, be

remembered that the uncertainty model is based on a linear approximation. This low-

order approximation is valid in the case where the sources of error have their variation

limited to a small vicinity. Section 7.6 validates this approximation by comparing the

results with those obtained from Monte-Carlo Simulation (MCS).

7.6 Validation of the uncertainty model with MCS

The viability of the uncertainty model given in Equation 7.39 depends on the validity

of the propagation models, which link the variance from the error source to that in the

optical constants. Derived based on the linear assumption, the propagation models are

valid within a certain range around a mean value. In order to validate the analytical

models, simulations are set up to observe their results in comparison to the results

obtained from Monte Carlo simulation (MCS) or other numerical means, which fully

supports the propagation of variance in a nonlinear function.
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7.6.1 Simulation settings

A T-ray signal is simulated by using the PCA model by Duvillaret et al. (2001) (see

Appendix B for more information). The parameters of the model are set as follows:

the laser pulse duration τlas = 120 fs, the free-carrier recombination time in the emitter

and receiver τtx = τrx = 300 fs, and the carrier collision time in the emitter and receiver

δτtx = δτrx = 180 fs. The temporal resolution and temporal window of the simulated

signal are 66 fs and 40 ps, respectively. This corresponds to the spectral resolution of

25 GHz. The sample signal is calculated using Equation 7.4 for the case where the ex-

perimental parameters are as follows: n− jκ = 3.0− 0.1j (κ = 0.1 equals α = 41.9 cm−1

at 1 THz), l = 100 μm, θi = 0∘, and n0 = 1. Figure 7.7 shows the simulated T-ray refer-

ence and sample signals and spectra, in the case that an additive white Gaussian noise

limits the maximum dynamic range of the sample spectrum to 20 dB. The magnitude

of the spectra decays towards higher frequencies, and thus the bandwidth is limited to

4 THz.

In the simulation, the values of standard deviation for each source of error are selected

in order to reflect the range of error present in reality. The simulation results are pre-

sented in terms of the standard deviation, s, rather than the variance, s2, since the

standard deviation has the same dimension as its corresponding parameter, which is

more intuitive.
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Figure 7.7. Simulated signals and spectra for reference and sample. The sample is a 100-μm-

thick dielectric slab, having a complex refractive index of n − jκ = 3.0− 0.1j. The

simulation model can be found in Appendix B. The white Gaussian noise limits the

dynamic range of the sample spectrum to 20 dB, and limits the signal bandwidth to

4 THz. The time-resolved signals are vertically offset for clarity.
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7.6.2 Random and systematic errors in T-ray amplitude

The proposed analytical model in Equation 7.16, which evaluates the variance in the

optical constants as a function of the variance in the signals’ amplitude, is validated

with MCS. The simulation parameters are given in Section 7.6.1, and the sample signal

is calculated using Equation 7.4. In this regard, five different levels of additive Gaus-

sian noise are established in the sample and reference signals, and these levels of noise

are preferably referred to in terms of the dynamic ranges of the sample spectrum from

30, 25, 20, 15, to 10 dB. The dynamic range, DR, is related backward to the standard

deviation in the amplitude of a signal, sE, via

DR (dB) = 10 log10

(
max E(k)

2sE(k)

)
. (7.40)

The factor of two multiplying the standard deviation is for the peak-to-peak noise am-

plitude. Practically, the noise in T-ray signals is, rather than additive, a function of the

amplitude, time, and frequency. However, that consideration is not necessary here, as

the simulation is intended to demonstrate the ability of the proposed model to trans-

fer the variance resulting from noise to the optical constants through the measurement

function.

Figure 7.8 shows the results from the simulation using analytical and numerical meth-

ods. In general, as the spectral magnitude decreases towards high frequencies, the

standard deviation in the optical constants increases proportionally. By comparing the

results from the analytical model and the MCS, it can be seen that a large disagree-

ment occurs at high frequencies, where the SNR is relatively low. This disagreement

is not from the limitation of the linear propagation model, because between 0.0 and

0.2 THz, where the SNR is also weak, the results from the two methods still fit rea-

sonably. An explanation is that the noise is too large to recover the meaningful optical

constants in the MCS, resulting in an exaggerated standard deviation. This situation

is not of concern for the applicability of the proposed analytical model, as the optical

constants at this range of low-SNR frequencies must always be discarded. In addition

to the disagreement at high frequencies, a small mismatch between the analytical and

numerical results occurs below 1 THz in case of sn,E. This mismatch is more likely due

to the model’s assumptions of linearity and vanishing covariance.

Comparison between the standard deviations of the refractive index, sn,E, and of the

extinction coefficient, sκ,E, in Figure 7.8 shows that the two deviations are equal in
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Figure 7.8. Standard deviation in optical constants due to signal noise. The solid lines rep-

resent results from a Monte Carlo Simulation (MCS), and the dotted lines from the

analytical models or Equation 7.16. The indicated dynamic range values are of the

sample signal. Each MCS result is from 2000 repetitive runs of the parameter extrac-

tion process. The thin grey lines show the level of the optical constants. No vertical

offsets have been added to the plot.

magnitude. This situation is general, because Equations 7.16 imply equality. More-

over, as indicated by the grey lines, the magnitude of κ is one order lower than of

n—the condition often found in most dielectric materials. Therefore, this convinces

one that, from the same measurement, the refractive index is more precise than the

extinction coefficient (and absorption coefficient). The physical reason responsible for

this observation remains an open question. The increased precision of the refractive

index suggests its higher sensitivity, which could be exploited in some applications,

such as T-ray biosensing.

The relatively high precision of n gives rise to a question: Is the extinction coefficient,

κ, converted from n via Kramers-Kronig relation, more reliable that the κ from a direct

measurement? The answer is no. From the results shown in Figure 7.8, following the

projection of n onto the κ space, it appears that the standard deviation sn,E would be

projected onto the κ space with the same scale, leading to a lowered sκ,E. But in fact,

the relation between sn and sκ through Kramers-Kronig relation is sκ = sn/
√

3, or sκ is

less than sn by only 57.7% (Riu and Lapaz 1999). Moreover, this projected standard de-

viation still does not consider the contribution of error from numerical transformation

limits, i.e., integration method, a finite number of points, and a restricted frequency
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range (Riu and Lapaz 1999). Conclusively, the hypothesis of sκ reduction by using the

Kramers-Kronig relation is ruled out.

7.6.3 Random and systematic errors in sample thickness

This section shows the validation via MCS of the propagation model in Equation 7.20,

which links the variance of the sample thickness to that of the optical constants. The

simulation parameters are given in Section 7.6.1, and the sample and reference signals

are free from noise. In the simulation, the standard deviation in the sample thickness is

varied from 1, 3, 5, 7, to 9 μm. For the MCS, in each case the sample signal is calculated

using Equation 7.4, and the optical constants are extracted using Equations 7.6, with

2000 values of the sample thickness. These thicknesses have a normal distribution

with a specified standard deviation. A set of the extracted optical constants is then

determined for its standard deviation.

Figure 7.9 illustrates the effect of the variance in the sample thickness on the variance in

the optical constants. The thickness considered is in the order of a hundred of microns,

whereas the standard deviation is around a few microns. In case of the refractive index

in Figure 7.9(a), the analytical model and the MCS yield the agreeable outputs, where

sn,l(ω) ∝ sl. For the case of the extinction coefficient in Figures 7.9(b), a large mismatch
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Figure 7.9. Standard deviation in optical constants due to thickness error. The solid lines

represent results from a Monte Carlo Simulation (MCS), and the dotted lines from the

analytical models in Equation 7.20. Each MCS result is from 2000 iterations of the

parameter extraction process.
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Figure 7.10. Extracted extinction coefficient at various random thicknesses. The actual ex-

tinction coefficient is 0.1 and is frequency dependent, whereas the actual thickness is

100 μm. By entering incorrect thicknesses into the parameter extraction process, a

series of false coefficients is obtained. The incorrect thickness runs from 99 μm to

101 μm with a 0.2 μm interval.

occurs between the analytical and numerical results, as the sκ,l determined from the

model is significantly larger than that from MCS, which contains a sharp fall. This

mismatch is most likely owing to the limitation of the linear-approximation model.

However, the analytical model is still useful, because the calculated variance bounds

the actual variance.

Noticeable in Figure 7.9(b), the standard deviation estimated from the MCS shows an

irregular profile, i.e., a sharp fall, as a function of the frequency. The cause of that ir-

regularity is manifested in Figure 7.10, where the extinction coefficient is estimated at

several incorrect thicknesses. It is obvious that if the thickness used in the parameter

extraction deviates from the actual thickness, the coefficient becomes a function of the

frequency and crosses its actual value at a certain frequency. The situation can be ex-

plained mathematically by referring to the parameter extraction in Equation 7.6. Sub-

stituting the measured magnitude and phase in Equation 7.5 into Equation 7.6 gives
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nest = n0 +
c

ωlest

{
[nact − n0]

ωlact

c

}
, (7.41a)

κest =
c

ωlest

{
ln

[
4nestn0

(nest + n0)2

]
− ln

[
4nactn0

(nact + n0)2

]
+ κact

ωlact

c

}
. (7.41b)

The subscript ‘act’ denotes an actual value hidden in the measured magnitude and

phase, and ‘est’ for an estimated value. If lest = lact, then nest = nact, and the actual

value of the extinction coefficient can be obtained. On the other hand, if lest ∕= lact,

then nest ∕= nact. Consequently, the logarithmic terms in Equation 7.41b do not vanish,

leaving κest as a function of the reciprocal of the frequency. In this regard, the fre-

quency where the thickness-related variance of κ is lowest, or the thickness-invariant

frequency, could possibly be exploited in some particular applications.

Note that since the propagation of variances that originate from the resolution limit

and the sample alignment exploits a similar model to that in Equation 7.20, which is

already validated in this section, their propagation models do not require a further

validation.

7.6.4 Systematic deviation from approximated transfer function

This section verifies the applicability of the proposed models in Equations 7.28 and

7.29, which evaluate the influence of the transfer function approximation on deviation

in the optical constants. Because the models provide the deviation, rather than the

variance, the results can be compared directly to the exact deviation without having

recourse to an MCS analysis. The setting of the simulation is similar to that described

in Section 7.6.1, except for the value of the extinction coefficient which runs from 0.001,

0.01, 0.1, to 1, while the sample thickness is fixed at 100 μm. In another situation, the

sample thickness varies from 50, 100, 500, to 1000 μm while κ = 0.1. In each case, the

sample signal is calculated using Equation 7.3, and the optical constants are extracted

using Equation 7.6. The exact deviation is the difference between the extracted optical

constants and their true value. The estimated deviation is obtained by substituting

the extracted optical constants and the related parameters into the proposed analytical

models in Equations 7.28 and 7.29. Figure 7.11 depicts the resultant deviations.

Clearly, the deviation decreases gradually towards higher frequencies, where the effect

of the approximation is lessened. In case that the thickness is fixed and the extinction
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Figure 7.11. Deviation in optical constants due to transfer function approximation. The solid

lines represent the exact deviations. The dotted lines are the results from the proposed

analytical models in Equations 7.28 and 7.29.

coefficient reduces, the deviation reduces proportionally. This is because a lower κ

means that n̂ = n− jκ is closer to n and subsequently the approximation of the trans-

fer function is more valid. On the other hand, if κ is fixed and the thickness reduces, the

deviation increases. A reduction in the sample thickness results in a lower contribu-

tion from bulk material interaction that influences the transfer function. Meanwhile,

the effect of transmission at the interfaces is more pronounced, invalidating the ap-

proximation.

By comparing the analytical and numerical results, it can be seen that the proposed

analytical model can estimate the deviation in the optical constants for a broad range

of κ and l, with a reasonable error from the approximated n and κ. But for a thin

sample at low frequencies, the model seems to encounter a limit. As discussed earlier, a

thin sample means that the factor of the transmission at air-sample interfaces becomes

more important and eventually invalidates the approximation. Substituting the optical
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constants with a large deviation into Equations 7.28 and 7.29 to estimate the deviation

is therefore not recommended.

7.6.5 Systematic deviation from reflections

As shown in Section 7.5.5, ignoring the Fabry-Pérot term from the parameter extraction

process, whereas the reflections are present in the signal, gives rise to a systematic er-

ror in the optical constants. This section verifies the proposed models in Equations 7.34

and 7.35, which estimate this type of error analytically. The simulation parameters are

the same as those described in Section 7.6.1, but now the temporal window of a sig-

nal is extended from 40 ps to 120 ps, to accommodate reflections, which arrive with a

longer delay. For the fixed sample thickness at 100 μm, two values of the extinction

coefficient, 0.001 and 1, are simulated. For the fixed extinction coefficient at 0.1, the

sample thickness varies from 50, 100, 500, to 1000 μm. In each case, the sample signal

is calculated using Equation 7.4 with the consideration of the Fabry-Pérot effect, and

the optical constants are extracted using Equation 7.6, where the effect is ignored. The

exact deviation is the difference between the extracted optical constants and their true

value. The estimated deviation is obtained by substituting the extracted optical con-

stants and the related parameters into the proposed analytical models in Equations 7.34

and 7.35. Figure 7.12 shows the deviations of the optical constants obtained from these

calculations.

A general trend which can be observed for all results is that the deviation decreases

towards higher frequencies. In addition, a sample with a larger thickness or a higher

absorption tends to result in a lower deviation of the optical constants, implying less

influence from the reflections. This is because in a sample with a long propagation

path or with a high absorption, the reflections are more absorbed and diminished from

a measured signal, and thus the estimated optical constants are closer to the actual

value. In contrast, for a sample with a low thickness or a low absorption, the reflections

are chiefly present in a measured signal, resulting in a large deviation in an estimation

of the optical constants.

Comparison between the numerical and analytical results shows no difference at a

low value of deviation. The higher deviation means the estimated optical constants

contain more error introduced by the reflections. Substituting the optical constants
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Figure 7.12. Deviation in optical constants due to reflections. The solid lines represent the

exact deviations. The dotted lines are the results from the proposed analytical models

in Equations 7.34 and 7.35.

with a large deviation into the analytical models in Equations 7.34 and 7.35 to estimate

the deviation, hence, gives results with a large error.

7.7 Practical implementation

The analytical models for the propagation of variance, developed and validated in the

earlier sections, are implemented with a set of T-ray measurements to demonstrate the

functionality. The measurements are carried out with a lactose sample by a free-space

transmission T-ray spectrometer.

The THz-TDS system in use employs photoconductive antennas (PCA) at the trans-

mitter and receiver. The pump laser is a mode-locked Ti:sapphire laser with a pulse

duration of 15 fs and a repetition rate of 80 MHz. This generates the T-ray pulse with a

FWHM of 0.4 ps, and its bandwidth spans from 0.1 to 3 THz. The time constant for the
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lock-in amplifier is set to 30 ms. The surrounding atmosphere is purged with nitrogen

to eliminate the effects of water vapour.

The lactose sample is prepared by mixing 25 mg of α-lactose monohydrate with HDPE

powder and pressing the mixture using a hydraulic press into a solid disk with a di-

ameter of 13 mm and a thickness of 1.85 mm. The sample is placed at the focal plane

between two off-axis parabolic mirrors. These mirrors have a focal length of 100 mm

and the collimated beam incident on the first mirror has a diameter of 35 mm. Accord-

ing to the theory of Gaussian beam optics (Saleh and Teich 1991), the depth of focus,

i.e., twice the Rayleigh length, is 2 mm for the 3-THz wavelength. Thus, the sample

thickness of 1.85 mm is thinner than the depth of focus of the highest-frequency com-

ponent. In addition, the largest waist diameter of the beam is 11 mm for the 0.1-THz

component, smaller than sample’s diameter, and thus does not lead to edge diffraction.

The reference and sample signals are measured alternately to assure that the drift in the

signal amplitude does not influence the result. The reference and sample signals are

both measured 10 times. The time between two consecutive measurements is 6 min on

average. Figure 7.13 shows the mean values of the reference and sample signals, along

with their standard deviations. No reflections are observed in the sample signal.

Measured by a micrometer with a resolution δ = 1 μm, the pellet of lactose has an

average thickness of 1.85 mm in the propagation direction, and the standard deviation

of the thickness from 10 measurements is sl = 5 μm. Let us suppose as a worst-case

that the tilting angle of the lactose sample during the measurements has a rectangular

distribution around the origin, bounded by fθ = ±2∘. Throughout the measurement,

the ambient temperature is approximately 25∘C and the humidity is 60%—this corre-

sponds to the saturated vapour pressure of 23.76 mmHg and the partial pressure of

14.26 mmHg. According to Equation 7.36, the refractive index of air is ≈ 1.0001.

Shown in Figure 7.14 are the optical constants of the lactose/HDPE pellet, n and κ,

their standard deviations, sn and sκ, their deviations, fn and fκ, and the combined

uncertainties, un and uκ, plotted on a logarithmic scale. The optical constants are de-

termined from a pair of the averaged reference and sample signals, using the measure-

ment functions in Equations 7.6a and 7.6b. The standard deviations, the deviations,

and the uncertainties are evaluated by using the proposed analytical models. For com-

parison, the standard deviations of n and κ due to the amplitude variation, or sn,E
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Figure 7.13. Average signals and standard deviations for reference and lactose. The reference

and lactose signals, each, are averaged over 10 measurements. The signals have a

temporal resolution of 0.0167 ps, and a total duration of 34.16 ps. The inset shows

the spectra of the reference and sample.

and sκ,E, are also evaluated numerically from the ten profiles of their respective val-

ues, available from ten pairs of the reference and sample signals. The analytical and

numerical evaluations appear to provide comparable values of sκ,E or sn,E. The slight

mismatch is likely caused by the first-order approximation in the analytical model.

The refractive index appears constant at n ≈ 1.46, but actually varies slightly with

the frequency. The extinction coefficient, on the other hand, is strongly dependent on

the frequency, and varies in between 0.001 and 0.01; two absorption resonances at 0.53

and 1.37 THz reproduce those reported in Fischer et al. (2005b). The variation in the

T-ray amplitude gives rise to sn,E and sκ,E equally. Because the extinction coefficient is

lower than the index of refraction by two orders of magnitude or more, the extinction

coefficient is thus significantly affected by sκ,E. Interestingly, the standard deviation in

n caused by the thickness variance, or sn,l, is higher than the standard deviation caused

by the amplitude variance sn,E. The deviations from the limited thickness resolution,

sn,δ and sκ,δ; from the tilting angle, fn,θ and fk,θ; and from the offset in refractive index,

fn0 and fκ,n0 , are less than the optical constants’ levels by four orders of magnitude,

and are deemed insignificant. The transfer function approximation causes a significant

impact in the case of the extinction coefficient, since at low frequencies the value of fκ,H
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Figure 7.14. Uncertainty for lactose measurement. The combined uncertainties in the optical

constants are plotted in comparison to the mean values of the optical constants and the

standard deviations introduced by various sources of error. The combined uncertainty

is calculated with the coverage factor kP = 1. Both subfigures share the same vertical

scale. In (a), the refractive index of the lactose/HDPE pellet is approximately 1.46,

compared to its combined uncertainty of 10−3. The major sources contributing to the

combined uncertainty are signal noise and thickness uncertainty. In (b), the extinction

coefficient is in the order of 10−3, compared to its combined uncertainty in the order of

10−4. The major source contributing to the combined uncertainty is signal noise. The

arrowheads indicate the low-frequency resonances of α-lactose at 0.53 and 1.37 THz.

is close to the value of sκ,E. Note that no deviation from the reflections is evaluated

here, as the reflections are not present in the signal.

The uncertainties un and uκ are evaluated with the coverage factor kP of 1. It can be

seen that the uncertainties are dominated by the effects from the amplitude variation,

sn,E or sκ,E. The values of un and uκ become larger at higher frequencies, where the

magnitude of the sample and reference spectra is low. The tendency of the uncertain-

ties with respect to the spectral position is similar to that of the results reported in

Bolivar et al. (2003), in which a similar THz-TDS system is used in characterisation of

some dielectric materials.
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7.8 Conclusion and potential extensions

Previously, the analysis of the sources of error in a THz-TDS measurement emphasised

the noise in a signal caused by electronic, optical, and mechanical components. Yet,

other sources of random and systematic errors, introduced during the signal measure-

ment and throughout the parameter extraction process, were overlooked. It is thus of

great importance to have an analysis that can quantify and relate the error from many

sources to the final parameters, i.e., the optical constants.

This work presents the evaluation of uncertainty in a THz-TDS measurement, with a

particular focus on a transmission mode measurement. Several sources, which con-

tribute to the measurement error, are identified. The relation between the variance or

deviation from each of these sources and that in the optical constants is derived. All the

contributing variances and deviations, affecting the optical constants, are combined to

give the total uncertainty in the measurement. The derived analytical models are suc-

cessfully validated with the Monte Carlo method or other numerical means. A test

of the models with experimental T-ray data obtained from lactose measurements also

provides validation, which enables a further comparative study of error from each part

of a THz-TDS system. The evaluation of uncertainty in this work, where applicable,

follows the guideline proposed in GUM (ISO 1993).

It should be noted that our assumption of a perfect sample results in the absence of

some sources of systematic and random errors, which could contribute to the uncer-

tainty in the optical constants. These sources are, e.g., the lack of parallelism of the

sample surfaces and the inhomogeneity and scattering by the sample (Franz et al. 2008).

Apart from those sample-related imperfections, a number of optical effects are omitted

from the widely used transfer function model, or Equation 7.3. These effects, particu-

larly arising from a beam-focusing configuration, include frequency-dependent beam

shape (beam waist at the focal point, Rayleigh length, beam divergence) (Gürtler et al.

2000), and beam defocusing by the sample. Treatment of these effects is appropriate

for future work.

The proposed model is applicable to any THz-TDS system, which produces sample’s

response in compliance with Equation 7.3. An adaptation of the model to deal with the

reflection mode THz-TDS or other tailored THz-TDS systems is feasible. Further accu-

racy in the evaluation of uncertainty, at an additional computational expense, can be

obtained by considering a higher-order analysis (Lira 2002) or a numerical approach,
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such as a Monte Carlo method (Joint Committee for Guides in Metrology 2006), which

is accepted as a supplementary to GUM.

The promising results in this chapter suggest that the proposed uncertainty model of-

fers a standard for evaluation of uncertainty in transmission THz-TDS measurements.

Therefore, measurements from different laboratories can be compared on the same ba-

sis. The number of repeated measurements depends on the nature of the error, i.e., if

the error does not drift over a given time span, the number of measurements should

be maximised; otherwise, if drift is observed, a different methodology is required. An-

other benefit of the proposed model is that it enables analytical optimisation and sen-

sitivity analysis for some measurement parameters, which often results in reduction of

the measurement uncertainty. As an example, the optimisation of a sample’s thickness

is determined based on this analysis, and will be presented in Chapter 8.

“. . . The evaluation of uncertainty is neither a routine task nor a purely mathematical one:

it depends on detailed knowledge of the nature of the measurand and of the measurement.

The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depend on

the understanding, critical analysis, and integrity of those who contribute to the assignment of its value.”

GUM (ISO 1993)
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𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟖

Material Thickness
Optimisation for THz-TDS

𝐇
𝐎𝐖 thick should a sample be for a transmission-mode THz-

TDS measurement? Should a sample be as thick as possible?

The answer is ‘no’. Although greater thickness allows T-rays

to interact more with bulk material, the SNR rolls off with thickness due

to signal attenuation. So, should a sample be extremely thin? Again, the

answer is ‘no’. A sample that is too thin renders itself nearly invisible to T-

rays, in such a way that the system can hardly sense the difference between

the sample and a free space path. Hence, where is the optimal boundary

between ‘too thick’ and ‘too thin’? The optimal trade-off is analysed and re-

vealed in this Chapter, where our approach is to find the optimal thickness

that results in the minimal uncertainty of measured optical constants.
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8.1 Introduction

In a transmission measurement, a THz-TDS system generates and detects coherent

broadband pulses, which, once transmitted through a sample, have their shape changed

in accordance with the sample’s frequency response. This enables estimation of optical

constants, or related quantities, of the sample from the measured pulses. Recent devel-

opments for the system mainly aim for wider bandwidth (Huber et al. 2000, Liu et al.

2004b) and faster scan rates (Jiang and Zhang 2000, Bartels et al. 2006, Yasui et al. 2005).

Another important aspect that needs consideration is the uncertainty in the extracted

optical constants.

The uncertainty in the optical constants is deemed crucial in many THz-TDS applica-

tions. Some applications that require a low uncertainty in measurement include quan-

tifying the sample amount (Jacobsen et al. 1996, Strachan et al. 2005, Gorenflo et al. 2006),

determining resonance frequencies (van Exter et al. 1989b), etc. In certain cases, a lower

uncertainty assists the interpretation of data at a critical point. An example is when a

small resonance is overwhelmed by noise, resulting in an ambiguous observation. In

such a case, reducing the uncertainty in the measurement could resolve the issue.

A major contribution to the uncertainty in the measured optical constants is from

the fluctuations and noise in the measured signals, which are mainly due to elec-

tronic (van Exter and Grischkowsky 1990b), optical (Poppe et al. 1998), and mechanical

(Cohen et al. 2006) components. Thus, in order to reduce the uncertainty in optical con-

stants, one may attempt to tackle the noise in the signals directly. It is known that using

a lock-in amplifier with an optical chopper to modulate T-ray signals (Mittleman et al.

1996) can reduce 1/ f noise due to laser fluctuations. Also increasing the signal strength

in the first place helps to lessen the effect of electrical and optical noise sources, by in-

creasing the SNR. However, both of these approaches cannot solve the problem of me-

chanical drift. Alternatively, multiple scans are taken so that repeated measurements

can be averaged in an attempt to reduce noise—however, this does not work if me-

chanical drift manifests between successive scans. A further approach to reduction of

the uncertainty in optical constants is hidden in the details of sample geometry and its

optimisation—for the first time we now analyse this case and back up our theory with

experimental results in this chapter.
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It is well known to every THz-TDS experimentalist that, in transmission-mode spec-

troscopy, a sample that is too thick has considerable bulk absorption and can sig-

nificantly reduce the signal power. In fact, the upper bound of the thickness for a

given absorption value is determined from the system’s dynamic range (Jepsen and

Fischer 2005). Therefore, a sample is usually made very thin as long as it can be me-

chanically supported. However, a sample that is too thin can also cause problems, as

the system might not be sufficiently sensitive to detect the resultant changes in the am-

plitude and phase of the signal. Both thickness extremes result in higher uncertainty in

the measured optical constants. In this chapter, the optimal trade-off between the two

extremes is determined, in order to minimise the uncertainty in optical constants.

This chapter is organised as follows: In Section 8.3, an analytical model relating the

variance in signals to the variance in optical constants is introduced. This model leads

to the optimisation of the sample thickness based on minimisation of the variance in

optical constants, as shown in Section 8.4. An analytical formula for optimum thick-

ness is verified by THz-TDS experiments with various materials in Section 8.5. The

usage of the formula is discussed in Section 8.6.

8.2 Research objective and framework

Objective

To determine the thickness of a sample optimised for a transmission-mode THz-TDS

measurement. The optimality, of the sample thickness, results in minimum noise-

related uncertainty of the measured optical constants. The optimisation is carried out

analytically, with the model relating the variance in measured time-domain signals to

the variance in extracted optical constants.

Framework

For the THz-TDS measurement considered here, our working assumptions are that (i)

the measurement is in transmission mode, (ii) the sample under test is a homogeneous

dielectric slab with parallel flat surfaces, where the scattering of T-rays is negligible,

(iii) the angle of incidence of the T-ray beam is normal to the sample surfaces, (iv) the

T-ray beam is well collimated, and (v) the reference signal is measured under the same

condition as the sample signal, except for the absence of the sample.
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8.3 Uncertainty in optical constants

The amplitude of T-ray signals is prone to noise induced by many sources. These

sources include laser intensity fluctuations, optical and electronic noise, jitter in the

delay stage, alignment error, mechanical drift, etc. Whilst most of the sources of error

obey a normal distribution, alignment error and mechanical drift do not. However, via

the Central Limit Theorem (Feller 1945, Trotter 1959), we might expect the resultant of

all the errors tends towards a normal distribution. Hence, considered here is an ampli-

tude variance model, which unifies all these errors and assumes a normal probability

distribution. The influence of this amplitude variance on the uncertainty in extracted

optical constants is shown in this section.

Given that the sample under a transmission-mode measurement has parallel and pol-

ished surfaces, and the angle of incidence of the incoming T-ray beam is normal to the

surfaces, the transfer function of the sample is expressed as

H(ω) =
Esam(ω)

Eref(ω)
= ττ′ ⋅ exp

{
−κ(ω)

ωl
c

}
⋅ exp

{
−j[n(ω)− n0]

ωl
c

}
, (8.1)

where Eref(ω) and Esam(ω) are the reference and sample signals in the frequency do-

main, l is the sample thickness, n(ω) and κ(ω) are the refractive index and the ex-

tinction coefficient of the sample, n0 is the refractive index of air, and τ and τ′ are the

transmission coefficients at the sample interfaces. The refractive index and the extinc-

tion coefficient, together called the optical constants, can be deduced from Equation 8.1

as

n(ω) = n0 − c
ωl

∠H(ω) , (8.2a)

κ(ω) =
c

ωl

{
ln ∣ττ′∣ − ln ∣H(ω)∣} . (8.2b)

Influenced by the variance in measured signals, the variances in refractive index, s2
n(ω),

and in extinction coefficient, s2
κ(ω), can be derived from Equation 8.2 using the law of

propagation of uncertainty. In brief, from the signal amplitudes in the time domain,

the variance is transferred to the variance of the magnitude and phase spectra in the

frequency domain via Fourier transform. Then the combination between the variances

of sample and reference measurements produces the variance in the transfer function

of a sample. The variance eventually appears over the optical constants. From this

analysis, the variances in the refractive index and in the extinction coefficient are given
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by, respectively,

s2
n(ω) =

( c
ωl

)2
{

Asam(ω)

∣Esam(ω)∣4 +
Aref(ω)

∣Eref(ω)∣4
}

, (8.3a)

s2
κ(ω) =

( c
ωl

)2
{

Bsam(ω)

∣Esam(ω)∣4 +
Bref(ω)

∣Eref(ω)∣4 +

(
n(ω)− n0

n(ω) + n0

)2 s2
n(ω)

n2(ω)

}
, (8.3b)

where

Asam(ω) = ∑
k
ℑ2[Esam(ω) exp(jωkΔ)]s2

Esam
(k) , (8.4a)

Aref(ω) = ∑
k
ℑ2[Eref(ω) exp(jωkΔ)]s2

Eref
(k) , (8.4b)

Bsam(ω) = ∑
k
ℜ2[Esam(ω) exp(jωkΔ)]s2

Esam
(k) , (8.4c)

Bref(ω) = ∑
k
ℜ2[Eref(ω) exp(jωkΔ)]s2

Eref
(k) . (8.4d)

Here, s2
Eref

(k) and s2
Esam

(k) are the variances associated with the reference and sample

signals, respectively; k is the sampling index number and Δ is the sampling interval,

and thus kΔ is the time; ℜ2 and ℑ2 denote the square of real and imaginary parts, re-

spectively. The summation is carried out over the time duration of the recorded T-ray

signal. In the equations, all parameters utilize mean values. The proposed model in

Equation 8.3 is successfully validated with Monte Carlo method. The complete deriva-

tion for Equation 8.3 can be found in Appendix C.2.

8.4 Optimisation of the sample thickness

From Equations 8.3a and 8.3b in Section 8.3, it can be inferred that four major vari-

ables, n(ω), κ(ω), l, and ∣Eref∣, govern the amplitude-related variance, s2
n or s2

κ. Op-

timising one of these parameters might help reduce the variance. Two of them, n(ω)

and κ(ω), are intrinsic to materials, and thus cannot be optimised. The signal strength,

∣Eref∣, without doubt, must be as large as possible—provided there is no damage to the

sample—in order to minimise the variance. The sample thickness, l, can usually be

controlled and thus may lend itself to optimisation.

The intricate relation between the sample thickness and the standard deviation in the

refractive index, sn, is simulated and demonstrated via a contour plot in Figure 8.1. As

we can see, at every frequency, there is an optimum sample thickness that gives the
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lowest sn. Figure 8.2 reveals the magnitude of sn and sκ as a function of the thickness,

estimated at three different example frequencies. The optimum thicknesses for the

simulated sample at these frequencies approximately span 300 μm to 1 mm. Moving

towards a thicker sample by an order of magnitude sees an increment of the standard

deviation by three orders. Moreover, moving towards a thinner sample by an order of

magnitude results in increased standard deviation by one order of magnitude. Select-

ing the sample thickness to correspond to desired minimum in Figure 8.2 is therefore

advantageous.

According to the transfer function in Equation 8.1,

∣Esam(ω)∣4 = (ττ′)4 exp
{
−4κ(ω)

ωl
c

}
∣Eref(ω)∣4 . (8.5)

Substituting Equation 8.5 into Equation 8.3a and reassigning the notation gives

s2
n(ω) =

C
l2

{
A′sam(ω)

exp(−4κωl/c)
+ Aref(ω)

}
, (8.6)

frequency (THz)

sa
m

p
le

 t
h
ic

kn
es

s

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10 μm

100 μm

1 mm

10 mm
optimum thickness: numerical
optimum thickness: analytical

global minimum

s
n sn

s
n

Figure 8.1. Standard deviation in refractive index against thickness and frequency. The

contours represent the simulated magnitude of sn, which is in fact comparable to that

of sκ. The optical constants are set to n− jκ = 3.0− 0.1j at all frequencies (κ = 0.1

equals α = 41.9 cm−1 at 1 THz). Additive white Gaussian noise limits the maximum

dynamic range of the reference spectrum to 40 dB. The position of the global minimum

relative to the frequency corresponds to the peak position of the reference spectrum.

The plot for the optimum thickness determined numerically appears jagged due to the

discrete nature of the simulation.
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Figure 8.2. Standard deviation in optical constants against sample thickness. The plots are

cross-sectional profiles of Figure 8.1, at selected frequencies 0.5, 1.0, and 1.5 THz. The

optimum thicknesses, where the standard deviation is minimal, are indicated by arrow-

heads. By moving towards a thicker sample, the standard deviation rapidly increases to

the point comparable to the values of the optical constants. The standard deviation at

high frequency is more sensitive to the thickness increment, as the T-ray magnitude at

high frequencies is relatively low.

where

C =
c2

ω2∣Eref(ω)∣4 and A′sam(ω) =
Asam(ω)

(ττ′)4 . (8.7)

Assuming that s2
E in A(ω) is not a function of l, we are now able to minimise s2

n(ω)

with respect to the thickness l. By taking the derivative of Equation 8.6 with respect to

l, we arrive at

∂s2
n(ω)

∂l
=

(
4

C
l2

κω

c
− 2

C
l3

)
A′sam(ω)

exp(−4κωl/c)
− 2

C
l3 Aref(ω) . (8.8)

The variances in the reference and sample spectra, Aref(ω) and Asam(ω), can be related

via the transfer function, as does the magnitude of the spectra in Equation 8.5,

Asam(ω) ≈ (ττ′)4 exp
{
−4κ(ω)

ωl
c

}
Aref(ω) . (8.9)

Note that the dependency of Asam(ω) on the sample thickness is an approximation,

and does not affect the optimisation. Substituting Equation 8.9 into Equation 8.8 and
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Table 8.1. Optimum sample thickness for some common materials. The optimum thickness for

THz-TDS measurement is determined using Equation 8.11. The absorption coefficients,

measured at room temperature, are taken from various sources: water (Thrane et al.

1995); PMMA, TPX (Fischer 2005); HDPE (Jin et al. 2006). Note that the absorption

coefficient can widely vary from sample to sample, in particular for plastics.

Material
0.5 THz 1.0 THz 1.5 THz

α (cm−1) lopt α (cm−1) lopt α (cm−1) lopt

Water 150 130 μm 200 100 μm – –

PMMA 5 4 mm 20 1 mm 40 0.5 mm

HDPE 2.0 10 mm 2.2 9.1 mm 2.4 8.3 mm

TPX 0.1 20 cm 0.5 4 cm 0.8 2.5 cm

equating to zero gives,(
4

C
l2

κω

c
− 2

C
l3

)
Aref(ω)− 2

C
l3 Aref(ω) = 0 , (8.10)

and further manipulation yields the optimum thickness:

lopt =
c

ωκ(ω)
=

2
α(ω)

. (8.11)

The resultant optimum thickness obtained using Equation 8.11 is in accordance with

the result obtained numerically, as demonstrated in Figure 8.1.

By substituting the optimum thickness in Equation 8.11 into Equation 8.5 and ignoring

reflection at the interfaces, we see that a sample with optimum thickness attenuates the

magnitude of the incident pulse by the factor of 1/e. The optimum thickness turns out

to be a distance that is equal to twice the penetration depth. Optimisation of the sample

thickness by starting from Equation 8.3b also delivers the same outcome. Notice that

the optimum thickness, lopt, relies on neither the index of refraction, n(ω), nor the

signal magnitude, ∣E(ω)∣. This is because the transmittance at the sample interfaces is

not a function of thickness. In addition, the sensitivity of the detector is not involved, as

the analysis aims for minimisation of the uncertainty, i.e., stability of the measurement,

for a given sensitivity.

In Table 8.1, some common dielectric materials with their optimal thicknesses are given,

according to Equation 8.11. In addition, it appears that the resultant thickness calcu-

lated from this equation is in close agreement with the result found numerically in

Page 227



8.5 Experiments and results

Mickan et al. (2004), in which the optimisation is for a differential thickness THz-TDS

measurement. For example, at 1 THz, the optimum thickness for dioxane, which has

κ = 0.013 or α = 5.45 cm−1, is reported to be 4 mm, and the optimum thickness for wa-

ter, κ = 0.478 or α = 200 cm−1, is 100 μm (Mickan et al. 2004). Using the same parame-

ters, the derived analytical expression given in Equation 8.11 estimates the thicknesses

for dioxane and water to be 3.7 mm and 100 μm, respectively.

8.5 Experiments and results

The experiments are performed using a fiber-coupled T-ray Picometrix 2000 system,

equipped with photoconductive antennas for T-ray generation and detection. The

pumping laser is a mode-locked Ti:Sa laser (MaiTai, Newport) with a central wave-

length of 800 nm, a pulse duration of <80 fs, and a repetition rate of 80 MHz. The

system generates pulsed T-ray radiation spanning 0.05 to 1.5 THz, with a maximum

dynamic range of 30 dB. The collimated beam diameter is approximately 25.4 mm. The

sample materials that are used in this study are PVC, PE, and water, which have unique

absorption characteristics. The reference measurement is made with a free path in two

runs, ten scans each, before and after every run of ten individual sample measure-

ments. The similarity of the variances of the two runs confirms no significant change

to the hardware during sample measurement.

8.5.1 Polyvinyl chloride: PVC

The measurement is carried out with normal-grade PVC, which is preformed in a rod

shape. The rod with a diameter of 50 mm is cut into four cylindrical segments, with

the thickness of 1 (0.967), 10 (9.977), 20 (19.869), and 50 (50.338) mm—the values in

parentheses are the average of five measurements with one standard deviation of ≈
±0.005 mm. The surfaces of these samples are well polished to minimise scattering.

Each sample is measured with a collimated beam from the THz-TDS system in the axial

direction for ten scans, and each scan is made after the previous scan within 30 sec.

Optical constants

The optical constants of PVC are extracted from the measurements of the 10-mm sam-

ple. The phase at low frequencies is extrapolated from the phase value between 0.05
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Figure 8.3. Optical constants of PVC. The constants are calculated from the average signal

probing a 10-mm-thick sample. The available bandwidth of the measurement is from

0.05 to 0.55 THz. The ripples in the curves are due to Fabry-Pérot reflections.

and 0.1 THz. Figure 8.3 shows the extracted optical constants. Clearly, the refrac-

tive index is nearly constant at 1.63, lower than the previously published value at

1.67 (Piesiewicz et al. 2007). The absorption coefficient increases quadratically, also

in accordance with (Piesiewicz et al. 2007). Note that small shifts in the refractive in-

dices of plastics at T-ray frequencies are known to be caused by slight hygroscopicity

(Balakrishnan et al. 2009b) and differences in the manufacturing process.

Optimum thickness

The optimum thickness for PVC, which supposedly yields the lowest variance in the

measured optical constants, is determined from the absorption coefficient using the

proposed model in Equation 8.11. However, the measured absorption coefficient con-

tains error from noise, water-vapour absorption, and Fabry-Pérot fringes. By assuming

that the absorption coefficient is well described by a parametric function, the measured

coefficient is initially smoothed by a second-order polynomial, which also enables ex-

trapolation of the coefficient towards a higher frequency range. Figure 8.4 illustrates

the optimum thickness determined directly from the measured coefficient and from

the fitting model. It can be seen that at frequencies around 1.0 THz, a sample thickness

of 1 mm would provide the lowest variance of the optical constants. In addition, at

low frequencies the optimum thickness increases by around one order of magnitude.
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Figure 8.4. Optimum thickness for PVC. The optimum thickness is determined from the measured

absorption coefficient. The solid line is a second-order polynomial fit to the absorption

coefficient between 0.05 and 0.55 THz. The horizontal dotted lines indicate the sample

thicknesses of 1, 10, 20, and 50 mm, available for the measurements.

Standard deviation

Figure 8.5 shows the standard deviations of the optical constants for the four PVC

samples, in terms of the unprocessed scatter plots and the fitting parametric curves. It

is evident that at 0.05-0.2 THz, the 50-mm-thick sample provides the lowest standard

deviation among the four samples; at 0.2-0.25 THz, the 20-mm-thick sample; at 0.25-

0.6 THz, the 10-mm-thick sample; and above 0.6 THz, the 1-mm-thick sample. This

optimum relation is in perfect agreement with the prediction in Figure 8.4, which is

derived using the proposed optimal-thickness model. The improvement in measure-

ment accuracy can be observed, for example, by comparing the standard deviations of

the 1-mm-thick and 50-mm-thick sample. At around 0.1 THz the standard deviation

for the thicker sample is ≈4×10−5, and that for the thinner sample is ≈2×10−3, or the

improvement of the standard deviation is by almost two orders of magnitude.

8.5.2 High-density polyethylene: HDPE

The material used in this experiment is a high-density polyethylene (HDPE), supplied

as a long cylindrical rod with a diameter of 50 mm. The rod is sliced into six samples,
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Figure 8.5. Standard deviations in optical constants of PVC. Each standard deviation is de-

termined from ten reference and ten sample signals. The dotted lines represent the

raw curves obtained from Equation 8.3, whereas the solid lines are from an analytical

function, exp(a1x6 + a2x5 + . . . + a6x + a7), fitted to the dotted lines. The missing

part of the curves in the high frequency range corresponds to the low SNR portion of

the measured spectra.

with the thickness of 1 (1.006), 10 (9.809), 20 (19.943), 50 (50.040), 100 (100.697), and 200

(201.294) mm. THz-TDS measurements are made in the axial direction of the samples

with ten scans for each sample. The interval between each scan is 45 sec.

Optical constants

Figure 8.6 shows the optical properties of HDPE, extracted from the 50-mm sample.

The phase at low frequencies is extrapolated from that between 0.05 and 1 THz. Ob-

viously, the refractive index is constant at 1.512 over the frequency range, and the ab-

sorption coefficient is nearly zero. The estimated refractive index is slightly lower than

previously published values at 1.53 (Jin et al. 2006, Piesiewicz et al. 2007), but the ex-

tinction coefficient is comparable to that in Piesiewicz et al. (2007).

Optimum thickness

Further analysis shows that the optimum thickness of HDPE determined using Equa-

tion 8.11 is higher than 20 mm for the frequency below 2 THz, as shown in Figure 8.7.

These sample thicknesses, although relatively thick, are expected to provide the lowest

uncertainty in the measurement of the optical constants. It is evident that the prepared
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Figure 8.6. Optical constants of HDPE. The constants are calculated from the average signal

probing the 50-mm-thick sample. The noise in the refractive index at low frequencies

is due to the low SNR of the probing signal.
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Figure 8.7. Optimum thickness for HDPE. The optimum thickness is determined from the mea-

sured absorption coefficient. The solid line is a second-order polynomial fit to the

absorption coefficient between 0.05 and 1 THz. The horizontal dotted lines indicate the

sample thicknesses of 1, 10, 20, 50, 100, and 200 mm, available for the measurements.
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Figure 8.8. Standard deviations in optical constants of HDPE. Each standard deviation is

determined from ten reference and ten sample signals. The dotted lines represent the

raw curves obtained from Equation 8.3, whereas the solid lines are from an analytical

function, exp(a1x5 + a2x4 + . . . + a5x + a6), fitted to the dotted lines. The missing

part of the curves in the high frequency range corresponds to the low SNR portion of

the measured spectra.

thicknesses of 1, 10, and 20 mm are suboptimal at all frequencies of interest, and, thus,

measurement at these thicknesses is vulnerable to high uncertainty. Moreover, the

sample thicknesses of 50, 100, and 200 mm are the best for measurement at 1.6, 1.0, and

0.6 THz, respectively.

Standard deviation

Figure 8.8 confirms the predicted optimum thickness for HDPE. By measuring the sam-

ples at various thicknesses, the standard deviations of the measured optical constants

can be compared. The sample thickness of 1 mm results in the highest standard devi-

ation for the given samples, and increase of the thickness reduces the deviation pro-

portionally. The 50 mm sample leads to the lowest standard deviation around 1.1 to

1.5 THz; the 100 mm sample, around 0.8 to 1.1 THz; and the 200 mm sample, below

0.8 THz. The results are in excellent agreement with the optimum thickness predicted

earlier in Figure 8.7. In addition, between 0.05 and 1.0 THz, the standard deviation for

the 200-mm-thick sample is better than that for the 1-mm-thick sample by two orders

of magnitude.
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8.5.3 Ultra-high molecular weight polyethylene: UHMWPE

The PE pellets used in this experiment are prepared by pressing amounts of pure ultra-

high molecular weight polyethylene (UHMWPE) powder in a pellet press at 10 tonnes.

The surfaces of the resulting pellets are an optical grade, and thus the surface scattering

is negligible. The available thicknesses of the pellets are as follows: 4.5 (4.542), 5.4

(5.414), 8 (8.066), 9 (9.142) mm. Note that the pellet press is limited to pellet thicknesses

below 10 mm. Each of the PE pellets is measured with a focused T-ray beam for ten

scans, with an interscan interval of 30 sec.

Optical constants

The optical constants of PE, extracted from the 9-mm sample, are shown in Figure 8.9.

In the extraction process, the phase spectrum at low frequencies is extrapolated from

the phase between 0.1 and 1 THz. The average index of refraction is 1.465, and the ab-

sorption coefficient is below 1 cm−1 up to 2 THz. The measured absorption coefficient

is in agreement with the value published in Fischer (2005), but a previously published

value of refractive index for UHMWPE is not available.
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Figure 8.9. Optical constants of UHMWPE. The constants are calculated from the average signal

probing the 9-mm-thick sample. The available bandwidth of the measurement is 0.05

to 1.8 THz. Water-vapour resonances are observed at 1.1, 1.17, and 1.4 THz in the

refractive index and the absorption coefficient.
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Figure 8.10. Optimum thickness for UHMWPE. The optimum thickness is determined from the

measured absorption coefficient. The solid line is a second-order polynomial fit to the

absorption coefficient between 0.4 and 1.8 THz. The horizontal dotted lines indicate

the sample thicknesses of 4.5, 5.5, 8, and 9 mm, available for the measurements.

Optimum thickness

The optimum thickness for PE is obtained by using Equation 8.11, as shown in Fig-

ure 8.10. As UHMWPE is virtually non-absorptive at low frequencies, no optimum

thickness below 0.4 THz is determinable. The exceptional transparency of PE causes a

considerably large optimum thickness, i.e., higher than 10 mm below 2 THz. Thus, the

thicknesses of the prepared pellets are suboptimal at all frequencies of interest.

Standard deviation

The standard deviations of the optical constants of PE at different thicknesses are

shown in Figure 8.11. At all frequencies of interest, the standard deviation decreases

with increase of the sample thickness. This result concurs with the calculation of the

optimum thickness, which shows the lowest standard deviation for a thicker sample.
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Figure 8.11. Standard deviations in optical constants of UHMWPE. Each standard deviation is

determined from ten reference and ten sample signals. The dotted lines represent the

raw curves obtained from Equation 8.3, whereas the solid lines are from an analytical

function, exp(a1x5 + a2x4 + . . . + a5x + a6), fitted to the dotted lines. The result for

the 8-mm pellet is very close to that of 9-mm, and thus is not shown here.

8.5.4 Liquid water

The measurement for liquid water is different from that for solid dielectrics in terms of

the propagation geometry. During measurement, water must be contained in a cell that

is equipped with a pair of transparent windows. The presence of the windows mod-

ifies the transfer function describing the measurement. Theoretically, the proposed

model of the optimum thickness is still valid in this case.

In the experiment, the cell in use is assembled from two parallel cycloolefine windows,

each with the thickness of 3 mm, and a replaceable spacer in between. The spacer

facilitates adjustment to the thickness of the liquid sample. Distilled water is injected

into the cell, which is pre-adjusted to accommodate various thicknesses, from 15, 30,

40, 60 (61), 80, to 170 μm. The sample with each thickness is measured with a focused T-

ray beam at the normal angle of incidence for ten scans, with a 45 sec interval between

scans. The reference is measured with the identical cell, filled with dry air only.

Optical constants

The optical constants of water, shown in Figure 8.12, are obtainable from the 170-

μm sample measurement, which provides the lowest disturbance due to Fabry-Pérot
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Figure 8.12. Optical constants of water. The constants are calculated from the average signal

probing a 170-μm-thick sample. The available bandwidth of the measurement is 0.05

to 0.8 THz. The ripples are caused by Fabry-Pérot reflections within the windows.

fringes. The phase at low frequencies is extrapolated from the phase value between

0.05 and 0.5 THz. Although the sample spectrum is normalised by the reference mea-

sured with a blank cell, the reflections induced by the windows cannot be completely

removed. The average refractive index is approximately 2.5, whereas the absorp-

tion coefficient rises linearly to 250 cm−1 at 0.8 THz. These values are consistent

with the optical constants of water at T-ray frequencies published in Afsar (1978) and

Thrane et al. (1995).

Optimum thickness

The exceptionally high absorption of water results in the requirement of a thin sample

under measurement. Calculated from the absorption coefficient using Equation 8.11,

the optimum thickness of water in the range between 0.05 to 2.0 THz is illustrated in

Figure 8.13. It is clear that for this frequency range, the optimum thickness lies between

40 and 200 μm. Decreasing the thickness further than 40 μm would cause an increase

in the variance at all frequencies.
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Figure 8.13. Optimum thickness for water. The optimum thickness is determined from the

measured absorption coefficient. The solid line is a second-order polynomial fit to

the absorption coefficient between 0.05 and 0.8 THz. The horizontal dotted lines

indicate the sample thicknesses of 15, 30, 40, 60, 80, and 170 μm, available for the

measurements.

Standard deviation

Figure 8.14 depicts the standard deviations of the optical constants of water measured

at different thicknesses. Notice that as the sample thickness decreases beneath 40 μm,

the standard deviation increases proportionally at all frequencies of interest. At 1.7 to

2.0 THz, the 40-μm sample shows the lowest standard deviation; at 0.4-1.7 THz, the 60-

μm and 80-μm samples; at 0.05-0.4 THz, the 170-μm sample. The results are agree well

with the prediction for the optimum thickness in Figure 8.13. The improvement of the

measurement precision can be clearly observed. By comparing the standard deviations

of 15-μm and 170-μm samples at 0.2 THz, it is seen that the difference in precision is

nearly one order of magnitude.

This experiment explicitly shows the impracticality of an excessively thin sample. Also

it shows the functionality of the optimum thickness equation, although the transfer

function of a sample in cell is different from that of a free-standing sample.
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Figure 8.14. Standard deviations in optical constants of water. Each standard deviation is

determined from ten reference and ten sample signals. The dotted lines represent the

raw curves obtained from Equation 8.3, whereas the solid lines are from an analytical

function, exp(a1x5 + a2x4 + . . . + a5x + a6), fitted to the dotted lines. The missing

part of the curves at higher frequencies corresponds to the low SNR portion of the

measured spectra.

8.5.5 Lactose

The sample materials used so far in Sections 8.5.1 to 8.5.4 have rather featureless spec-

tra. In contrast, for a more general case, polycrystalline α-lactose monohydrate is se-

lected for this experiment, because it has a distinctive absorption spectrum due to in-

termolecular resonance modes at lower T-ray frequencies. The sample pellets of lactose

with different thicknesses are prepared from lactose powder ground together with UH-

MWPE powder in the mass ratio of 1:3. The mixture powder is pressed at 10 tonnes

by a hydraulic press to produce six pellets with the diameter of 13 mm and the thick-

nesses from 0.4 (0.440), 0.8 (0.876), 1.6 (1.658), 2.4 (2.385), 3.2 (3.196), to 4.0 (4.014) mm,

all with optical-graded surfaces. The pellets are measured with a focused T-ray beam.

Eight scans are recorded for each pellet, and another eight for the reference. For this

experiment, the ambient measurement atmosphere is purged with nitrogen to reduce

the effects of water vapour absorption. It is worth noting that the measured results are

not for pure α-lactose monohydrate, but rather a α-lactose monohydrate/UHMWPE

mixture. However, for conciseness, this mixture is referred to as the lactose mix here-

after.
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Figure 8.15. Optical constants of lactose mix. The constants are calculated from the average

signal probing the 1.6-mm sample. The absorption peaks are pronounced at 0.53, 1.2,

and 1.37 THz, as indicated by the arrowheads, before the spectrum is overwhelmed

by noise beyond 1.6 THz.

Optical constants

The optical constants for the lactose mix, shown in Figure 8.15, are determined from

the 1.6-mm sample. The phase data at the frequencies lower than 0.05 THz are extrap-

olated from the data from 0.05 to 1.0 THz. Below 1.6 THz, the average value of the

refractive index is 1.513, and the absorption coefficient is less than 30 cm−1. The strong

absorption peaks, clearly observable at 0.53, 1.2, and 1.37 THz, reproduce the results

published in Fischer et al. (2005b).

Optimum thickness

The optimum thickness for the lactose mix, plotted in Figure 8.16, is determined from

the measured absorption coefficient using the developed equation. For those frequen-

cies below 1.2 THz, which contain no absorption peak, the optimum thickness is higher

than 4.0 mm. The available thicknesses of the sample are likely to provide the lowest

measurement uncertainty of the optical constants around the vicinities of absorption

peaks. More specifically, the 1.6-mm sample should give the lowest uncertainty for the

absorption peak at 0.53 THz, and the 0.8-mm sample gives the lowest uncertainty for

the peak at 1.37 THz.
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Figure 8.16. Optimum thickness for lactose mix. The optimum thickness is determined from

the measured absorption coefficient. The horizontal dotted lines indicate the sample

thicknesses of 0.4, 0.8, 1.6, 2.4, 3.2, to 4.0 mm, available for the measurements.

Standard deviation

To confirm the prediction of the optimum thickness, the standard deviation in the opti-

cal constants is determined, via the Monte Carlo method, from the repeated measure-

ments. As shown in Figure 8.17, the values of the standard deviation at each inter-

esting frequency are plotted against the thickness for clarity. Two frequencies at 0.53

and 1.37 THz are the locations of the absorption peaks of lactose, whilst another two

frequencies at 0.4 and 1.0 THz are the locations of the baseline away from the peaks.

It is clear from Figure 8.17 that at 0.53 and 1.37 THz, the sample thicknesses of 1.6 and

0.8 mm provide the lowest standard deviation in measurement, respectively. At the

frequencies of baseline, i.e., 0.4 and 1.0 THz, no optimum thickness is found in the

thickness range between 0.4 and 4 mm, and the standard deviation profiles become

lower towards a thicker sample thickness. The results in Figure 8.17 hence justify the

prediction of the optimum thickness in Figure 8.16.

8.6 Usage of the model

The proposed model for optimum thickness is frequency-dependent, and thus it can

determine the thickness for materials with any type of absorption response, provided
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Figure 8.17. Standard deviation in extinction coefficient of lactose mix. The values at each

thickness, indicated by the crosses, are determined from eight reference and eight

sample signals, using the Monte Carlo method. The frequencies 0.53 and 1.37 THz

correspond to the two first significant absorption peaks of the lactose spectrum. The

missing part of the 1.37-THz plot is due to the low SNR portion of the measured

spectra. The standard deviation in the index of refraction has a comparable value,

and hence is not shown here. The dotted lines are fitted to the measurements only for

visualisation.

that the absorption coefficient is available. In practice, this absorption coefficient can

be measured from a preliminary sample or obtained from a published value.

When selecting the optimum thickness, two options are available: (i) to have the widest

measurement bandwidth, or (ii) to have the lowest uncertainty at a particular fre-

quency. If the widest bandwidth is required, the maximum absorption value within

the reliable frequency range of the system should be used in determination of the op-

timum thickness. This results in a thinner sample thickness thus retaining the band-

width of the system and avoids dynamic range limited distortion, while providing a

reasonably low uncertainty in the measurement. There is a possibility that one might

need to observe a sample’s response in a narrow frequency range, with the highest

precision available from the instrument, for example, in order to resolve a weak ab-

sorption peak hidden beneath the noise or to quantify the ratio of a mixture. In such

cases, the optimum thickness calculated at the frequency of interest is indeed the best

selection.
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Despite the thickness optimality, there are some unrestricted lower and upper limits of

the thickness that are worth consideration. For a very thin sample, non-uniformities

in the sample geometry and in the bulk material tend to be pronounced. Relocation

of the sample during measurements may cause a large variation among measured sig-

nals (Markelz 2008). Although the variance in the signal’s amplitude encompasses

these effects, the dependence of the effects on the thickness is not taken into account

in the optimisation. In addition, thickness measurement for a thin sample is prone to

imprecision. Due to these concerns, special care must be given to the uniformity of

a sample with very thin optimum thickness and to the method of thickness measure-

ment. A concern for reflection removal may arise in the case of optimally thin samples,

for which the succeeding reflections temporally overlap and inseparable. However,

an iterative parameter extraction process can cope with those overlapping reflections

(Duvillaret et al. 1996, Duvillaret et al. 1999). For a very thick sample, beam defocus-

ing may cause an overestimation of the measured absorption coefficient. A collimated

beam or long-focal length beam system can alleviate the effect.

8.7 Conclusion and potential extensions

Currently, for a transmission THz-TDS measurement, there is no explicit criterion for

determining an appropriate thickness for a sample under measurement in the existing

literature. Traditionally, the selection of the sample thickness depends wholly on the

experience of an experimentalist. In many cases, the sample thickness is preferably

thin, to preserve the bandwidth of the signal. This is favourable so long as the un-

certainty in optical constants is properly considered. An excessively thin sample can

cause significant rise in the uncertainty of the optical constants that is influenced by

measurement noise.

This work offers a criterion in selecting the optimum thickness of a sample. Provided

that the absorption of a sample material at a frequency of interest can be estimated or

approximated, the proposed model can predict the optimum thickness, which gives

the lowest uncertainty in measurement. The derivation of the criterion is carried out

via minimising the uncertainty in optical constants—in terms of the variance or stan-

dard deviation—which is affected by the variance in measured time-resolved signals.
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The experiments, performed with PVC, PE (high density and UHMW), and water, rep-

resenting typical, low, and high absorption materials, confirm the validity and appli-

cability of the derived thickness criterion. By selecting an optimum thickness for a

sample under measurement, significant improvement in the standard deviation of the

optical constants can be observed. These examples with monotonically increasing ab-

sorption sufficiently support the model, because the model determines the optimal

thickness based on the absorption value at a particular frequency, regardless of the

morphology of the absorption spectrum. In addition, as a case study, another exper-

iment is performed with polycrystalline lactose, containing strong THz modes. An

excellent agreement between the theory and the experimental results is achievable.

Validated by the experiments, the proposed model can be used as a rule of thumb in

selecting the thickness for a sample to achieve the minimum uncertainty in measured

optical constants.

Another point, in conclusion, is that our analysis may apply in principle to optical and

other regimes. However, generally speaking, the T-ray experimentalist more readily

has control over the thickness, whereas the optical experimentalist tends to have more

control over signal power. This explains why the analysis herein becomes generally of

greater interest in the T-ray domain.

This chapter concludes Part II of the thesis—system evaluation and optimisation. Part

III—T-ray optics—starts with Chapter 9 that describes an implementation of antireflec-

tion coating operated in the T-ray regime.
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Quarter-Wavelength
Antireflection Coatings

for T-rays

𝐓
𝐑𝐀𝐍𝐒𝐏𝐀𝐑𝐄𝐍𝐓 windows are common to THz-TDS systems.

The general function of such windows is to contain a sample. Even

though the windows are transparent to T-rays, the attenuation due

to multiple reflections at window interfaces exists. There has been very little

work carried out to-date on the reduction of reflection losses, owing to the

recent emergence of T-ray technology. This chapter analyses the reduction

of T-ray reflection loss by means of a quarter-wavelength antireflection coat-

ing. Because T-ray wavelengths are much longer than visible wavelengths,

the antireflection layer for T-rays is much thicker than the usual optical case.

This motivates exploration of suitable coating materials and methods, dif-

ferent from those used for optical coatings, and the greater thickness also

suggests the feasibility of retrofittable coatings.
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Chapter 9 Quarter-wavelength antireflection coatings for T-rays

9.1 Introduction

Typically, when the electromagnetic field propagates through a slab of material, it ex-

periences two modes of amplitude attenuation—one is the absorption loss and the other

is the reflection loss. The absorption loss is due to bulk material, inside which molecules

absorb and convert the electromagnetic energy into vibrational motion or heat. This

type of loss has an exponential dependence on the extinction coefficient of material

and the propagation length. It is possible to control, i.e., decrease or increase, the ab-

sorption loss to some extent through temperature manipulation, since the extinction

coefficient is temperature-dependent.

Another cause of amplitude attenuation is reflection loss. In this case, the wave en-

ergy is not converted into other energy forms, but rather diverted to another direction.

When the field encounters an interface between two dielectrics, part of the field is re-

flected off a surface. The reflection direction and the reflection amplitude are predicted

by Snell’s law and Fresnel’s law, respectively. The important parameter in both laws

is the refractive index of material. In case of a normal angle of incidence at an air-

sample interface, the reflection coefficient is given by ρ = (n − 1)/(n + 1) and thus

the reflectance is ℛ = (n− 1)2/(n + 1)2, where n is the index of refraction of the sam-

ple. As n increases from unity to infinity, the reflectance increases from zero to unity.

The reflectance of some materials, typically used for T-ray windows, is illustrated in

Figure 9.1.

It would appear that amplitude attenuation due to the reflection loss becomes domi-

nant for transparent materials. This leads to the requirement for reducing such loss,

in particular when a transparent material functions as, for example, a window or sub-

strate. Through an antireflection coating on a window surface, the propagation direc-

tion can be controlled in such a way that it reduces the reflectance and enhances the

transmittance. The underlying mechanism of an antireflection coating is the interfer-

ence formed by reflections inside the coating layer. A simple illustration showing the

performance of the coating is given in Figure 9.2.

This chapter analyses the reduction of T-ray reflection loss by means of a quarter-

wavelength antireflection coating. Because T-ray wavelengths are much larger than

visible wavelengths, the antireflection layer for T-rays is much thicker than the usual

optical case. This creates an interesting opportunity for retrofittable antireflection lay-

ers in T-ray systems. An example structure composed of a T-ray transparent window,
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Figure 9.1. Reflectance of common materials at T-ray regime. The reflectance is calculated

from ℛ = (n− 1)2/(n + 1)2 for some common materials used as window or substrate.

The indices of refraction of these materials are for the T-ray radiation. The reflectance

shown here takes into account only one surface. When two surfaces, i.e., the entry and

exit faces of a slab, are considered, the reflectance increases to 2ℛ−ℛ2.

made from a high-resistivity silicon wafer, and a coating, made of common PE sheets

is demonstrated. A coating material is applied onto the surfaces of a silicon window

by means of supporting frame. This structure is characterised by a THz-TDS system,

which has a reliable frequency range between 0.2 and 1.0 THz.

This chapter is organised as follows. Section 9.3 briefly reviews the existing work on

antireflection coatings, which are effective at higher T-ray frequencies or the conven-

tional FIR band. Based on the characteristic matrix analysis in Section 9.4, the theory of

quarter-wavelength antireflection coatings is given in Section 9.5, leading to the mod-

els of reflectance and transmittance in Section 9.6. Section 9.7 explores some common

T-ray transparent materials, which can be used as either windows or coatings depend-

ing on their optical and mechanical properties. Possible coating techniques for T-ray

windows are summarised in Section 9.8. In Section 9.9 the retrofittable antireflection

coating technique is presented along with the measured transmittances of the windows

assembled by this technique.
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Figure 9.2. Antireflection coatings for silicon windows. The indicated transmittance and re-

flectance percentages are for (i) a particular transmitting frequency, (ii) a normal angle

of incidence, (iii) intrinsic silicon (no material absorption), and (iv) an appropriate

thickness and index of refraction for the coating layers. The angle of incidence is exag-

geratedly tilted for visualisation, and the arrows are not to scale.

9.2 Research objective and framework

Objective

∙ To explore materials and coating techniques suitable for quarter-wavelength an-

tireflection coating of T-ray transparent windows. The materials in use should

be easily available, and the coating methods should be uncomplicated. Yet, the

fabricated window should sustain the feasibility and reliability.

∙ To characterise the assembled antireflection windows in terms of its transmit-

tance by means of THz-TDS. The enhancement of the window transmittance

should follow the application of a suitable coating material. The measured trans-

mittances are verified with the characteristic matrix method.

Framework

The assumptions of the measurement carried out here are that: (i) an antireflection

window under measurement has parallel and flat surfaces; (ii) the angle of incidence
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9.3 Review of antireflection coatings for T-rays

of the T-ray beam is normal to the surface of the window; (iii) the incident beam is well

collimated, i.e., no divergence or convergence at infinity; (iv) dry air surrounds the T-

ray path; (v) the reference signal is measured under the same conditions as the sample

signal, except for the absence of the sample; and (vi) the transverse dimension of the

window and coating is large enough, so that no edge diffraction affects the result.

9.3 Review of antireflection coatings for T-rays

Some significant literature on antireflection windows operated with FTIR is covered

below in chronological order. The important material parameters, including index

of refraction, n, absorption coefficient, α, and thickness, l, given in the literature are

quoted to give clues on optical properties and structural dimensions. For comparison,

all values taking the frequency related definitions, i.e., wavelength or wavenumber,

are converted to the terahertz base units.

Polyethylene coating/many substrates (Armstrong and Low 1974). PE films (n =

1.5) were attached onto many substrate materials, i.e., synthetic sapphire, sili-

con, crystalline quartz, and calcium fluoride (CaF2), by means of thermal bonds.

The film thicknesses were in the order of ten microns. The spectroscopic data in

the 1.5 THz to 15 THz range showed an increase in the transmittance for every

substrate.

Quartz/germanium (Kawase and Hiromoto 1998). A plate of fused quartz (n = 2.0,

α = 1 cm−1) was glued onto one side of an intrinsic germanium (Ge: n = 4.0) or

gallium arsenide (GaAs: n = 3.6) substrate, and then the quartz was polished

to a thickness of approximately 20 μm. Measured by FTIR spectroscopy, the

coated germanium and gallium arsenide substrates exhibited 57-percent trans-

mittance at 1.74 THz, and 65-percent transmittance at 1.43 THz, respectively.

Later, Kawase et al. (2000) glued fused quartz onto two sides of the germanium

substrate to confirm the reproducibility. This configuration raised the transmit-

tance to 90 percent.

Polyethylene/silicon (Englert et al. 1999). Two LDPE sheets (n = 1.52, α = 66.8×
10−2cm−1, l=18.5 μm) were applied to both sides of a wedged silicon window

in a vacuum, and the LDPE-coated window was heated up to promote durabil-

ity. This structure attained up to 90-percent transmittance at 2.5 THz. The coated
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Chapter 9 Quarter-wavelength antireflection coatings for T-rays

window was used in aircraft, allowing highly-efficient narrowband remote sens-

ing of the FIR radiation.

Parylene/silicon (Gatesman et al. 2000). Parylene-C (n = 1.62, α = 11 cm−1, l =

24.0 μm) or parylene-D (n = 1.62, α = 11 cm−1, l = 26.5 μm) was deposited onto

both sides of each silicon substrate. The parylene-C and parylene-D coated sub-

strates gave the transmittance of 90 percent at 1.9 THz and 1.7 THz, respectively.

The authors noted that parylene coating thickness is not feasible below 1 THz.

Parylene-C/silicon (Hübers et al. 2001). A layer of parylene-C (n = 1.62, α = 27 cm−1,

l = 18.5 μm) was deposited on a surface of a silicon window. An FTIR measure-

ment showed 90% transmittance at 2.3 THz, and a significant enhancement from

1.5 to 3 THz. An application of the coating to a silicon lens, which was used in a

hot-electron-bolometric (HEB) mixer, resulted in a success reduction in the noise

temperature by an increment in the signal transmittance.

Silicon dioxide/germanium (Hosako 2003). A layer of silicon dioxide (SiO2, n = 2.10,

l = 20.9 μm) was deposited on a germanium substrate by the plasma-enhanced

chemical vapour deposition (CVD) method. The transmittance of the substrate

at 1.8 THz was increased to 55 %. Hosako (2004) and Hosako (2005) extended the

previous work to a two-period coating structure, each period of which contains

amorphous Si and SiO2. The coated germanium has a transmittance of over 90%

over a broad frequency band, centered at 1.8 THz.

Recently, a few papers reported studies on antireflection coatings with ultrafast T-ray

systems. For example, Löffler et al. (2005) employed THz-TDS to characterise a sili-

con substrate coated with a mixture of paraffin wax and silicon powder on one side.

The authors demonstrated only the amplitude spectrum of the sample, and the time-

resolved signal was omitted. Furthermore, it was claimed that the index of refraction

of the mixture is controllable by varying the mixture ratio, but there was no report on

this index nor the coating thickness.

A paper reported by Biber et al. (2004) involves an artificial antireflection coating, op-

erated with ultrafast T-ray systems. A silicon window was etched on both surfaces,

forming grids of an artificial dielectric with a depth of quarter wavelength. Inspected

by THz-TDS, this structure provided a relatively broadband high transmittance over

430-670 GHz. In addition, Brückner et al. (2007) proposed another artificial coating
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technique. A surface-relief grating or moth-eye structure was crafted on the surfaces

of a Topas window. Measured by a THz-TDS system, an enhancement in the trans-

mittance at 0.2 and 0.9 THz was attainable. However, the principles underlying these

techniques are beyond the scope of this work that focuses on homogeneous antireflec-

tion coatings.

It appears that almost all previous research addressed the designs and analyses of an-

tireflection windows in the FIR region, i.e., from 1.5 THz to tens of terahertz. However,

these designs are inappropriate for modern ultrafast T-ray systems, which operate in

the frequency range between 0.1 and 2.0 THz or higher. In addition, most prior mea-

surements were carried out via conventional FTIR spectroscopy, which delivers only

transmittance magnitude spectra. The capability of ultrafast T-ray systems has not

been fully exploited for characterising T-ray antireflection windows in the lower T-ray

regime.

9.4 Characteristic matrix method

The complexity of a calculation model based on ray tracing rises dramatically in the

case that a wave propagation through a structure with more than two parallel dielec-

tric interfaces is simulated. This is because the number of possible propagation paths

increases from inter-layer reflections. For instance, if only waves reflected at most four

times are taken into calculation, a dielectric slab (two interfaces) allows three trans-

mitting paths to occur. The number of transmitting paths rises to nine in a structure

with three parallel interfaces, and so on. It appears that the calculation complexity

can be alleviated by using the characteristic matrix method, where a composition of

dielectric layers is explained by an ordinary matrix multiplication. A derivation of the

characteristic matrix shown afterward is based on Hecht (1987).

Figure 9.3 shows an EM wave propagation across two dielectric interfaces. From the

figure, the total electric field at interface I, EI, equals the summation of the incident

field, EiI, and the reflected field, ErI. Since the electric and magnetic fields are con-

tinuous at an interface, the total electric field at interface I can also be expressed as the
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summation of the refracted field, EtI, and the reflected field from interface II, E′rII. Thus,

EI = EiI + ErI

= EtI + E′rII . (9.1)

The total magnetic field at interface I is derivable from the electric field via

HI = (EiI − ErI)Υ0

= (EtI − E′rII)Υ1 , (9.2)

where

Υ0 =

√
ε0

μ0
n0 cos θ0 , (9.3a)

Υ1 =

√
ε0

μ0
n1 cos θ1 . (9.3b)

n
1

E
iI

dielectric s

dielectric 1

dielectric 0

Figure 9.3. Electric and magnetic fields across two dielectric interfaces. Three dielectric slabs

with the refractive indices, n0, n1, and ns, constitute two interfaces, across which

the fields are continuous. Dielectric slabs 0 and s are assumed to be semi-infinite. At

interface I the angles of incidence and refraction are θ0 and θ1 to the normal, respectively.

At interface II the angles of incidence and refraction are θ1 and θs to the normal,

respectively. The propagation directions are denoted by the red dotted arrows, and the

polarisation directions are denoted by the green solid arrows. In this case the electric

field is σ-polarised (TE wave). Adapted from Hecht (1987).
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9.4 Characteristic matrix method

Assuming that dielectric s in Figure 9.3 is semi-infinite so that there is no reflection

from the back surface of the medium, the total electric field at interface II is

EII = EiII + ErII

= EtII , (9.4)

and the total magnetic field at interface II is

HII = (EiII − ErII)Υ1

= EtIIΥs , (9.5)

where

Υs =

√
ε0

μ0
ns cos θs . (9.6)

The relations between the fields within dielectric 1 are established through the propa-

gation coefficient, or

EiII = EtI ⋅ exp(−iγ1) , (9.7a)

ErII = E′rII ⋅ exp(+iγ1) , (9.7b)

where γ1 = ωn1l cos θ1/c. By substituting Equations 9.7a and 9.7b into Equations 9.4

and 9.5, the total electric and magnetic fields at interface II are rewritten as

EII = EtI ⋅ exp(−iγ1) + E′rII ⋅ exp(+iγ1) , (9.8)

and

HII =
[
EtI ⋅ exp(−iγ1)− E′rII ⋅ exp(+iγ1)

]
Υ1 . (9.9)

From Equations 9.1, 9.2, 9.8, and 9.9, the total fields at interface I can be related to the

total fields at interface II as

EI = EII cos γ1 + HII
i

Υ1
sin γ1 , (9.10)

and

HI = EIIΥ1i sin γ1 + HII cos γ1 . (9.11)

Equations 9.10 and 9.11 can be described in a matrix form as[
EI

HI

]
= M1

[
EII

HII

]
. (9.12)
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The matrix M1 is known as the characteristic matrix. For dielectric 1 the characteristic

matrix is defined as

M1 =

[
m11 m12

m21 m22

]
=

[
cos γ1 (i sin γ1)/Υ1

Υ1i sin γ1 cos γ1

]
. (9.13)

For a system of cascading N dielectric slabs, the total characteristic matrix is also avail-

able, as

Mtotal = M1M2M3 ⋅ ⋅ ⋅MN , (9.14)

where each numerical subscript denotes each dielectric layer, and the subscript ‘1’ de-

notes the top layer.

Transmission and reflection functions

In order to find the transmission and reflection functions of a slab or a system of slabs,

the total fields in Equation 9.12 are expanded to the incident, reflected, and transmitted

electric fields as [
EiI + ErI

(EiI − ErI)Υ0

]
= M1

[
EtII

EtIIΥs

]
. (9.15)

Expanding the matrix gives

EiI + ErI = m11EtII + m12EtIIΥs (9.16a)

(EiI − ErI)Υ0 = m21EtII + m22EtIIΥs . (9.16b)

Solving for the transmission function T(ω) = EtII/EiI and the reflection functions

R(ω) = ErI/EiI gives

T(ω) =
2Υ0

Υ0m11 + Υ0Υsm12 + m21 + Υsm22
, (9.17)

and

R(ω) =
Υ0m11 + Υ0Υsm12 −m21 − Υsm22

Υ0m11 + Υ0Υsm12 + m21 + Υsm22
. (9.18)

The above derivation is for the electric field polarised perpendicular to the plane of

incidence (TE wave), where

Υ0 =

√
ε0

μ0
n0 cos θ0 , Υ1 =

√
ε0

μ0
n1 cos θ1 , Υs =

√
ε0

μ0
ns cos θs . (9.19)
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It is also valid for the electric field polarised in the plane of incidence (TM wave),

provided that

Υ0 =

√
ε0

μ0
n0/ cos θ0 , Υ1 =

√
ε0

μ0
n1/ cos θ1 , Υs =

√
ε0

μ0
ns/ cos θs . (9.20)

It is worth noting that other expressions for the transmission and reflection functions

are available. These expressions include a recursive function for arbitrary dielectric

slabs (Orfanidis 2006), an approximate characteristic matrix for arbitrary dielectric

slabs (Born and Wolf 1999), a recursive function (Chebyshev polynomials) for pe-

riodic slabs (Born and Wolf 1999), and a non-recursive function for periodic slabs

(Mojahedi et al. 2000). However, the subsequent calculations are based on the char-

acteristic matrix method.

9.5 Quarter-wavelength antireflection coatings

Figure 9.4 shows the case of a window with an antireflection layer on one side, where

la is the coating thickness, and n0, na, and ns are the refractive indices of air, coating

material, and substrate, respectively. The window is assumed to be semi-infinite so

that there is no reflection from the back surface. Through the characteristic matrix

method, the optimum coating parameters, la and na, required for a zero reflectance at

a particular frequency will be derived in this section.

E H

incident direction

coating layern
a

airn
0

n
s

l

window

a

Figure 9.4. Antireflection-coated window. The single coating layer has the index of refraction of

na and the thickness of la. The transmittivity and reflectivity considered in this section

is for the case that the field direction is normal to the surface of a semi-infinite window.
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When the field direction is normal to the coated surface, from Equations 9.17 and 9.18

the transmission and reflection functions of the coating layer, independent of the po-

larisation, are simplified to

T(ω) =
2nan0

na(n0 + ns) cos(ωnala/c) + i(n0ns + n2
a) sin(ωnala/c)

, (9.21)

and

R(ω) =
na(n0 − ns) cos(ωnala/c) + i(n0ns − n2

a) sin(ωnala/c)
na(n0 + ns) cos(ωnala/c) + i(n0ns + n2

a) sin(ωnala/c)
, (9.22)

respectively.

Hence, the reflectance of the coating layer equals

ℛ = ∣R(ω)∣2 =
n2

a(n0 − ns)2 cos2(ωnala/c) + (n0ns − n2
a)

2 sin2(ωnala/c)
n2

a(n0 + ns)2 cos2(ωnala/c) + (n0ns + n2
a)

2 sin2(ωnala/c)
, (9.23)

and according to the law of energy conservation (assuming no absorption in the coat-

ing material), the transmittance is

𝒯 = 1−ℛ =
4n0nsn2

a

n2
a(n0 + ns)2 cos2(ωnala/c) + (n0ns + n2

a)
2 sin2(ωnala/c)

. (9.24)

At ωnala/c = aπ, a ∈ {0, 1, 2, . . .}, the transmittance becomes minimum and the re-

flectance becomes maximum, or

𝒯min =
4n0ns

(n0 + ns)2 , (9.25a)

ℛmax =
(n0 − ns)2

(n0 + ns)2 . (9.25b)

These expressions equal the transmittance and reflectance at an air-substrate interface

without a coating (Fresnel’s law).

On the other hand, the reversal of the extrema occurs at ωnala/c = (2a + 1)π/2, a ∈
{0, 1, 2, . . .}, or

𝒯max =
4n0nsn2

a

(n0ns + n2
a)

2 , (9.26a)

ℛmin =
(n0ns − n2

a)
2

(n0ns + n2
a)

2 . (9.26b)

From Equation 9.26, provided that

n2
a = n0ns , (9.27)
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the transmittance is unity and the reflectance is zero. In the case that the field is incident

in free space, where n0 = 1, the optimal refractive index of the coating is given by

na =
√

ns . (9.28)

This coating gives a zero reflectance at the frequency

fc =
c

4nala
, (9.29)

and its odd harmonics. Usually, the optimal frequency fc is pre-determined, and the

coating thickness la is selected according to Equation 9.29.

In a real situation Equation 9.28 cannot be satisfied due to the limited number of appro-

priate coating materials. Thus, a material with the closest index value is often adopted.

With such an unmatched index value, the transmission enhancement is still attainable

at fc and its odd harmonics, but in this case the transmittance does not reach unity.

It should be noted that Equation 9.29 can be rewritten in terms of optical thickness as

nala =
c

4 fc
=

λc

4
. (9.30)

The optical thickness of the coating layer is a quarter of the optimal wavelength. Thus

this kind of antireflection coating is so-called quarter-wavelength antireflection coating.

The effect of quarter-wavelength antireflection coating can be visualised as follows.

When the electromagnetic wave travelling in a low index layer is reflected off by a

higher index layer, its phase is shifted by 180∘, or a half wavelength. In the case of an

antireflection window, where n0 < na < ns, the wave reflected at either air-coating

or coating-window interface therefore experiences a half-wavelength phase shift. Fur-

thermore, the wave traversing a quarter-wavelength coating layer back and forth will

have an additional phase shift of a half wavelength. The phase shift due to bulk prop-

agation and the phase shift due to coating-window reflection are summed up to give

a full wavelength phase shift. The wave reflected from the air-coating interface with

a half wavelength phase shift will then destructively interfere with the wave reflected

from the coating-window interface with a full wavelength phase shift. The destructive

interference hence nullifies the total reflected wave.
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9.6 Reflectance and transmittance models

9.6.1 Reflectance of quarter-wavelength coated surface

The coating layer influences the field propagation from lower to higher index material

and vice versa in a similar way. This can be demonstrated via the reflectance models for

a silicon interface in Figures 9.5 and 9.6, for which the propagation direction is from air

to a silicon window and from a silicon window to air, respectively. These reflectances

are calculated using the squared modulus of Equation 9.18, and only the effect at the

air/silicon or silicon/air interface is taken into account without considering reflections

inside the silicon window. The coating material has an exact index value of
√

nsi, and
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Figure 9.5. Model reflectance at air-silicon interface. The reflectance is meshed versus the

T-ray frequency, f , and the angle of incidence, α. The silicon window has a frequency-

independent refractive index of nSi = 3.418 and no absorption. The coating material

has a refractive index of na =
√

nSi = 1.85, and the coating thickness is a quarter of 1-

THz wavelength or la = c/(4na × 1012) = 40.56 μm. Brewster’s angle for a air-silicon

interface at αBrewster = 73.69∘ can be seen in both cases of TM wave.
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Figure 9.6. Model reflectance at silicon-air interface. All parameters are identical to those

used in Figure 9.5, excepting that the field direction here is from silicon to air. The

critical angle at αcritical = 17.01∘, marked by the blue arrowheads, and the total internal

reflection beyond the critical angle can be seen in all cases.

a thickness of a quarter of 1-THz wavelength. The plots vary with the frequency and

angle of incidence, and also depend on the polarisation (TE or TM wave).

Consider Figure 9.5 for which the field propagation direction is from the air to silicon

window. In the case of the uncoated window in Figure 9.5(a) and (b), the reflectance

is constant over the frequency range for a particular angle of incidence. For TM wave

there appears Brewster’s angle, at which the reflectance is zero. When the window is

coated with a perfectly conditioned material, the reflectance, as shown in Figure 9.5(c)

and (d), becomes zero at a selected frequency—1.0 THz in this case, and lowered in

both wings, for both TE and TM waves. However, the general reflectance characteris-

tic of the coated window is still similar to that of the uncoated one. One feature that is

hardly observable from the model reflectance for the coated window is that, as the an-

gle of incidence inclines from the normal, the optimal frequency where the reflectance
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becomes zero experiences redshift. This is because a longer apparent optical axis in a

coating layer can accommodate a longer wavelength.

A similar effect is observable when the field direction is from the coated window to the

air, as shown in Figure 9.6 (c) and (d). The reflectance is zero at a desired frequency

and lowered on both sides of the spectrum. However, in this case the zero reflectance

is limited by total internal reflection at and beyond the critical angle. The total internal

reflection blocks the field transmission at all frequencies regardless of the polarisation

or the existence of a coating layer.

Nevertheless, these model reflectances are considered at a single surface of the win-

dow. In fact there are two additional effects involved in the real situation—the effect of

Fabry-Pérot interference introduced by the window, which causes fringes in the spec-

trum, and the effect of reflectance at the exit face of the window. These effects will be

incorporated into a calculation, based on the characteristic matrix method, and will be

shown in Section 9.6.2.

9.6.2 Transmittance of coated windows

The model transmittance of a window simulated in this section includes the effects

from front and back coatings and parallel window surfaces. The window and coatings

have the same parameters as those used in Figure 9.5. The transmittance of the un-

coated window is shown in Figure 9.7(a). The fringes in the transmittance (green solid

line) are caused by Fabry-Pérot interference between the internal reflections between

two parallel surfaces of the window. If these reflections are removed, the transmit-

tance will be flattened over the frequency range (red dotted line). When the window is

coated on one surface, the transmittance at a desired frequency—1.0 THz in this case—

is enhanced from 0.5 to 0.7, as shown in Figure 9.7(b). Obviously, the fringes at 1.0 THz

is reduced, as a result of the coating. When the window has coating layers on both

surfaces, the transmittance at 1 THz is further enhanced from 0.7 to unity, as depicted

in Figure 9.7 (c).

In the real situation, the fringes that plague a spectrum are hard to remove if the win-

dow is measured with conventional frequency-domain spectroscopy. However, with

THz-TDS this seems to be possible, since a THz-TDS system transmits short coherent

T-ray pulses which are temporally resolved at the detector. Once a pulse encounters
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Figure 9.7. Model transmittance of silicon window at normal angle of incidence. The thick-

ness of the silicon window is set to 1.5 mm. The coating material is set to have the index

of refraction na =
√

nSi = 1.85, and the thickness is a quarter of 1-THz wavelength

or la = c/(4na × 1012) = 40.56 μm. The green solid lines indicate the transmittance

incorporating Fabry-Pérot interference within the silicon window, and the red dotted

lines indicate the transmittance without the interference within the window.

internal reflections and takes a longer transmission path, it will be delayed, and can be

easily removed via windowing in the time domain if the pulse duration is shorter than

the delay time.

9.7 Transparent materials for antireflection windows

It has been shown in Section 9.5 that, in the operation of an antireflection window,

the interference mechanism dominates the frequency response, and hence the win-

dow and coating should be non-dispersive and non-absorptive in the T-ray frequency

band. Though, a limited number of T-ray transparent materials have been reported

thus far. Fortunately, the low absorption property of these materials implies that the

frequency dependence of the index of refraction is small, i.e., non-absorption implies

non-dispersion (Birch et al. 1981). Some of the common T-ray transparent materials,

including high-purity silicon and low-loss polymers, are discussed below. Further

information on the optical constants of these and other low-loss materials for T-ray

frequencies can be found in Lamb (1996) and Simonis (1982) and references therein.
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Table 9.1. Optical constants of selected materials. The data shown are indices of refraction, n,

and absorption coefficients, α, measured at room temperature. The data are compiled

from (a) Loewenstein et al. (1973) (below 2.1 THz), (b) Grischkowsky et al. (1990)

(below 2.0 THz), and (c) Fischer (2005) (below 2.8 THz). The numerical discrepancies

are possibly due to differences in manufacturing and testing processes. Empty entries

mean that data are unavailable.

Material
(a) (b) (c)

n α (cm−1) n α (cm−1) n α (cm−1)

SiO2 (Fused silica) 1.95 <8.0 1.95 <15.0

High-resistivity silicon 3.4175 <0.7 3.418 <0.1 3.41 <0.5

Synthetic diamond 2.36 <0.5

Germanium 4.006 <0.4 4.0 <3.0

Gallium Arsenide 3.59 <2.5

9.7.1 Float-zone silicon

Typically, high-resistivity silicon plays an important role as a bulk material for T-ray

components, such as lenses, beam splitters, or windows. In addition to its desir-

able physical and chemical properties, silicon’s exceptional transparency and non-

dispersive properties at T-ray frequencies are the most attractive in general. A high-

resistivity (>10 kΩ cm) and high-purity silicon crystal, grown by the float-zone (FZ)

method, shows, below 2 THz, an absorption coefficient lower than 0.05 cm−1 and a

constant index of refraction of 3.418±0.001 (Ohba and Ikawa 1988, Grischkowsky et al.

1990, Dai et al. 2004). Moreover, the optical isotropy of silicon allows flexible orien-

tation, regardless of the polarisation of the incident T-rays and the crystal orientation

(Grischkowsky et al. 1990). Its optical properties are shown in Table 9.1 in comparison

to other common materials.

9.7.2 Low-loss polymers

Many types of low-loss polymers are available, and some are listed in Table 9.2. Com-

parative to silicon, low-loss polymers are superior in terms of the conformation to the

surface. It is possible to mould the polymers to any shape; in particular, polymer films

with thicknesses in the order of T-ray wavelengths are viable. However, almost all
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Table 9.2. Optical constants of selected low-loss polymers. The data shown are indices of

refraction, n, and absorption coefficients, α, measured at room temperature. The data

are compiled from (a) Smith and Loewenstein (1975) (at 1.5 THz), (b) Birch et al.

(1981) (below 1.2 THz), (c) Fischer (2005) (below 2 THz), and (d) Jin et al. (2006)

(below 2.5 THz). The discrepancies are possibly due to differences in manufacturing and

testing processes. Empty entries mean that data are unavailable.

Material
(a) (b) (c) (d)

n α (cm−1) n α (cm−1) n α (cm−1) n α (cm−1)

LDPE 1.5138 <0.5

HDPE 1.518 1.4 1.5246 <0.5 <5.0 1.534 <3.0

TPX R⃝ 1.447 6.0 1.4600 <0.5 1.43 <1.0

PTFE 1.4330 <0.5 <1.5 1.445 <3.0

PCTFE 1.43,1.50 <4.0

PS 1.5912 <2.0

Cycloolefines 1.5-1.6 <0.5

polymers exhibit a weak birefringence, i.e., the index of refraction that is dependent

upon the incident direction and the polarisation (Smith and Loewenstein 1975). More-

over, unlike semiconductors, the optical properties of polymers vary from sample to

sample (Fischer 2005), and are dependent on many manufacturing parameters (Smith

and Loewenstein 1975). This variability suggests the need to measure the optical prop-

erties of each sample prior to its implementation.

In addition to those conventional polymers, two other types of polymers, i.e., picarin

(n ≈ 1.52) and cyclic olefin copolymer (n ≈ 1.52), have been introduced recently

(Sengupta et al. 2006). Unprecedented by other polymers, these two polymers have a

remarkable transparency in both T-ray and visible (including UV and NIR) frequency

regions. This double-transparency property is beneficial for optical-pump/THz-probe

experiments (Greene et al. 1991, Zielbauer and Wegener 1996). At declining cost, these

new polymers are commercially available in many forms.
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9.8 Coating techniques

Several coating techniques are commonly available for optical components, and coated

optical components can be found in a number of daily-used devices, e.g., camera

lenses, glasses, screen panels, and so on. Also the coating effect can occur in nature, so-

called thin-film interference or iridescence, which is visible as colourful patterns. Sam-

ples of natural coatings are soap bubbles, oil in water, and heated metals. For optical

wavelengths, coating thicknesses of a fraction of micron satisfy the interference condi-

tion, and thin film coating technologies, such as a vacuum evaporation or sputtering,

and coating materials, such as MgF2, SiO, or ZnS, can support such degrees of thick-

nesses.

But when it comes to longer T-ray wavelengths, much thicker coating layer(s), up to

tens of microns, are necessary to satisfy the interference condition. The coating ma-

terials and techniques used in optics are no longer applicable to these wavelengths

(Shao and Dobrowolski 1993), because the materials themselves are not transparent

when exposed to T-rays, and a deposited material cannot form a thick layer. Thus,

researchers have proposed alternative coating approaches suitable for FIR frequencies.

Some approaches are as follows:

Material adhesion involves preforming a thin film of material with a suitable index of

refraction to a desired thickness. This film is then applied to a substrate surface

in vacuum to avoid bubbles between layers. They could be attached together by

means of (i) a supporting frame with no adhesive (Krumbholz et al. 2006, Turchi-

novich et al. 2002), (ii) adhesive (Kawase and Hiromoto 1998), or (iii) thermal

bonds (Englert et al. 1999, Armstrong and Low 1974).

Chemical vapour deposition (CVD) involves a chemical reaction of suitable gases in

a controlled chamber, which results in desired materials deposited onto a pre-

pared substrate. The possible deposition techniques for FIR filter fabrication

are tetraethylorthosilicate-CVD (DeCrosta et al. 1996) and plasma-enhanced CVD

(Hosako 2003).

Spin coating enables coating of a material on a flat surface via centrifugal force. An

amount of a volatile solution is laid onto a substrate, which, afterwards, is spun

at a considerable speed to spread out the solution until the desired thickness is
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Table 9.3. Comparison of microlayer fabrication techniques. The comparisons are given in

general terms, and the characters could be different from these for a particular technique.

Character Adhesion Deposition Spin coating

Proper coating materials Limited Less limited Less limited

Fabrication time Short Long Moderate

Fabrication temperature Normal High Normal

Fabrication equipment Simple Complicated Moderate

Durability Low High Moderate

Formability No Yes No

Uniformity Low High High

obtained. The thickness of a coating depends on many factors, including the

spinning speed, solute concentration, etc (Lawrence 1988).

In general, there is a tradeoff between fabrication complexity and layer coating qual-

ity, when selecting the appropriate coating method. CVD definitely requires complex

equipment, and the deposition time is directly proportional to the coating thickness.

However, the final result is durable and uniform even on a complex substrate surface.

Material adhesion, in opposition, is much simpler in terms of fabrication, but a coating

cannot be applied to an uneven surface. Furthermore, a coating is prone to peeling

off a substrate unless heating is applied to the structure during fabrication (Armstrong

and Low 1974, Englert et al. 1999). Spin coating might be a compromise in terms of

the simplicity and durability. General comparisons among the techniques are given

in Table 9.3. In addition, comparisons among many specific methods can be found in

Hosako (2004).

9.9 Experiments and results

Due to its common use in T-ray systems, high-resistivity silicon is used as the window

material in this experiment. For the perfect transmittance, the coating material should

have an index of refraction equal to the square root of the silicon’s index, or
√

3.418 =

1.85. However, an ordinary material with the closest index is a series of polymers,

which has the index of approximately 1.5. This discrepancy is tolerable with a slightly

lower antireflection performance.
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Since the thickness of an antireflection coating for T-rays is in the order of tens of mi-

crons, it is possible to use a common PE sheet, which has a thickness ranging from ten

to a hundred microns. Using a preformed PE sheet as a coating not only avoids a com-

plex material fabrication technique, but also opens up the possibility of retrofittable

and interchangeable antireflection layers in T-ray systems. During an experiment, the

coating thickness can be rapidly changed to enhance the transmittance at desired fre-

quencies.

9.9.1 Optical properties of materials

Prior to testing for the transmittance of coated windows, the optical properties of bulk

materials, which will be used for the window and coating, are measured, as they may

possess some characteristic features introduced during the production processes. A

silicon wafer that will be used as a window, even though having a high resistivity,

may have a high absorption due to impurities. PE sheets often differ in their optical

characteristics, since the production process varies for each manufacturer.

Silicon window

Supplied by Siltronix, the window used in the experiments is an undoped (100) CZ-

grown silicon wafer polished on both sides with the thickness of 1.5213± 0.0021 mm

and the diameter of 102 mm. Through transmission-mode THz-TDS, the optical con-

stants in the frequency range from 0.2 to 1.0 THz can be found, as shown in Figure 9.8.

The measured index of refraction of the wafer is almost constant and comparable to the

value of 3.418 for float-zone silicon reported by Grischkowsky et al. (1990). However,

the measured absorption coefficient here is two orders of magnitude larger, in partic-

ular at low frequencies. Since the wafer is polished to the optical grade on both sides,

the scattering effect at the surfaces is negligible. Therefore, the high absorption could

be attributed to impurities as a consequence of the ingot growing process.

Polyethylene coating

Two LDPE sheets with the total thickness of 95.9± 4.6 μm are put together and mea-

sured for the optical constants in the T-ray frequency range. A thickness variation in a

low-grade PE sheet is relatively large. This can affect the measurement of the optical
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Figure 9.8. Measured optical constants of silicon. The index of refraction is constant over

frequencies of interest, whereas the absorption coefficient is high at low frequencies.

The fringes exist in both the refractive index and absorption coefficient are as a result

of Fabry-Pérot interference within the window.
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Figure 9.9. Measured optical constants of polyethylene. The index of refraction varies strongly

with the frequency. The absorption coefficient is small from 0.2 to 0.5 THz, and

increases rapidly after 0.5 THz.
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constants and, furthermore, the performance of the coating. Figure 9.9 shows the index

of refraction and the absorption coefficient of the PE sheet. In contrast with the value

found by Birch et al. (1981), the measured index of refraction varies over the frequency

range, rather than being fixed at 1.51. In addition, the absorption coefficient grows

rapidly in the frequency range from 0.5 to 1.0 THz. Impurities, bubbles, and surface

scattering could be associated with such a high absorption.

9.9.2 Assembling of antireflection windows

In order to allow rapid change of the coating, PE sheets are stuck onto the window via

a supporting frame without adhesion, as demonstrated in Figure 9.10. Changing the

coating thickness is simply carried out by replacing or adding PE sheets. The antireflec-

tion performance is verified for two coating thicknesses, 48± 2.3 μm and 103± 10 μm.

The thicker coating is composed of two polyethylene sheets, one has the thickness of

48 ± 2.3 μm and the other has the thickness of 55 ± 7.6 μm. The coating is applied

to both sides of the silicon window. According to the quarter-wavelength formula in

Equation 9.29, and assuming the index of refraction of polyethylene is 1.5, the thin

coating would be optimal at 1.04 THz, and the thick coating at 0.49 THz.

incident direction

metallic frame

polyethylene film silicon window

press together

Figure 9.10. Retrofittable coating system. Multiple sheets of PE are press fitted together against

the silicon window via the metallic frame. Combined together, these PE sheets perform

as an antireflection coating for the silicon window. Note that polyethylene sheets

cannot support a vacuum due to their porosity.
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9.9.3 Transmittance of coated windows

The transmittance of the thinly-coated and thickly-coated windows are shown in Fig-

ure 9.11 and 9.12, respectively, in comparison with the transmittance of the uncoated

window. In either case of coating, the fluctuations after the main T-ray pulse prohibit

removal of the reflections in the time domain, and thus the Fabry-Pérot fringes persist

in the transmittance spectra. In addition, the overall low transmittance of both coated

and uncoated windows is ascribed to the absorption of bulk silicon, grown by the CZ

method. The fringes and absorption do not hinder interpretation, as the relative trans-

mittance of the coated and uncoated windows is rather of importance. In the frequency

range between 0.7 and 1.0 THz, the thinly- or thickly-coated window exhibits a lower

transmittance than that of the uncoated window, because of the intrinsic absorption

of the PE sheets that becomes large in this frequency range (see Figure 9.9). The high

absorption of PE prevents observation of the antireflection performance between 0.7

and 1.0 THz.

In Figure 9.11 the thinly-coated window shows an enhancement in the transmittance

broadly from 0.3 to 0.6 THz, with the maximum at 0.45 THz. The position of the

maximum enhancement is in contradiction with the theoretical central frequency at

1.04 THz. For the thickly-coated window, the transmittance in Figure 9.12 exhibits two

enhancements at 0.3 and 0.6 THz. Again, these positions are in conflict with the ex-

pected central frequency at 0.49 THz and its odd harmonic at 1.47 THz. Even though

variations in the coating thickness are taken into consideration, the uncertainties in the

central frequencies are still not large enough to justify the measured results. The reason

behind these inconsistencies will be discussed in Section 9.9.4.

9.9.4 Analysis of measured transmittance

From the previous section, it is obvious that the measured transmittances are far differ-

ent from expectation. A possible reason is that air gaps might be present between the

coatings and the window, since no adhesive nor vacuum is applied between them. In

order to prove this assumption, the characteristic matrix method is employed to sim-

ulate situations where narrow air gaps exist between the thin or thick coating and the

window.
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Figure 9.11. Measured transmittance of thinly-coated window. The coated silicon window

shows the maximum transmittance enhancement at 0.45 THz. The inset shows the

main T-ray pulses passing through the uncoated and coated windows. The pulse for

the coated window is slightly delayed and intensified as a result of the coating.
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Figure 9.12. Measured transmittance of thickly-coated window. The coated silicon window

shows the maximum transmittance enhancement at 0.3 and 0.6 THz. The inset shows

the main T-ray pulses passing through the uncoated and coated windows. The pulse for

the coated window is slightly delayed and intensified, particularly in the high-frequency

components, as a result of the coating.
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Figure 9.13. Calculated and measured transmittances of thinly-coated window. Two air gaps,

each of which has the thickness of 45 μm, are inserted between the coating and the

window in the calculation.
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Figure 9.14. Calculated and measured transmittances of thickly-coated window. Four air

gaps, each of which have a thickness of 65 μm, are inserted between the coating and

the window in the calculation.
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Figure 9.13 compares the calculated and measured transmittances of the thinly-coated

window. In the calculation, two air gaps are set between the front and back coatings

and the window, and the optical constants of the silicon and PE are taken from the

experiment in Section 9.9.1. The thickness of the air gaps is varied in steps until the

calculated transmittance is close to the measured transmittance. The theoretical thick-

ness of each air gap is found to be around 45 μm.

Similarly, for the thick coating case, four air gaps are assumed between the four PE

sheets and the window. The calculation reproduces the transmittance when the gap

thickness is 65 μm. The comparison between the calculated and measured transmit-

tances for the thick coating is shown in Figure 9.14

The transmittance calculation by using the characteristic matrix method confirms that

the implemented retrofitting antireflection introduces the air gaps between the win-

dow and the coating. Despite that, the antireflection is still effective, but its operational

frequencies are offset from the theoretically designed frequencies.

9.10 Conclusion and potential extensions

So far, not many researchers have addressed the problem of window reflections in the

T-ray frequency region, in spite of the wide use of windows in THz-TDS systems. In

response to that, quarter-wavelength antireflection coatings for transparent windows

operated with T-rays have been studied in this chapter. The retrofittable system, allow-

ing rapid interchange of the coating thickness and coating material to accommodate

desired frequencies, is also demonstrated.

In the experiment, a silicon wafer, as a window, is coated by PE sheets with various

thicknesses. Even though the index of refraction of the PE coating is not perfectly

suited to the silicon window, the coating enhances the window transmittance to a

promising degree. However, the operational frequencies of the coating deviate from

theoretical expectation. Through a characteristic matrix analysis, it is found that the air

gaps present between the coatings and the window are responsible for the discrepancy.

A quarter-wavelength antireflection coating, demonstrated with T-rays in this chapter,

is effective in a narrow spectral range. A better antireflection performance, in terms

of an operational bandwidth, is possible via metamaterial coatings (Biber et al. 2004,
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Brückner et al. 2007), as mentioned earlier. In addition, a further improvement could

be attained using graded-index coatings. With this type of coating the EM wave can

pass through the window omnidirectionally with virtually no reflection at a very broad

frequency range. Graded-index coatings have been realised in the optical regime via

nanorod deposition (Gevaux 2007, Xi et al. 2007). Furthermore, an optional extension

to multilayer coatings, which are effective in dual frequency bands, as proposed by

Li et al. (1992), is appealing for some applications.

Having discussed the implementation of T-ray antireflection coating in this chapter,

in Chapter 10, also in Part III—T-ray optics, we demonstrates multilayer interference

filters that guide/block portions of the T-ray radiation. The operation of the filters can

be analysed via the characteristic matrix method, discussed earlier in Section 9.4.
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Quarter-Wavelength
Multilayer Interference

Filters for T-rays

𝐍
𝐔𝐌𝐄𝐑𝐎𝐔𝐒 applications for T-rays require a frequency-

selection technique to filter out an unwanted portion of the

frequency band. As T-ray characteristics are quasi-optical,

the techniques that have been developed for optics can be applied directly

to T-ray frequencies. An interesting technique for frequency selection is

based on interference in a multilayer structure. This chapter proposes con-

struction and characterisation of quarter-wavelength multilayer interfer-

ence filters operated with T-rays, where a particular interest is given to the

stop-band attenuation resulting from the filter structure.
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10.1 Introduction

Modern T-ray systems have opened up the relatively unexplored frequency range ly-

ing between the microwave and infrared. Consequently, a range of optical components

are required to manipulate T-rays, inasmuch as optical components are required to con-

trol visible, infrared, or ultraviolet radiation. These components may comprise lenses,

mirrors, parabolic mirrors, beam splitters, filters, polarisers, and so on. Most of the

components, which have been proposed, directly adopt principles from optics. This is

possible since T-ray characteristics are quasi-optical (Goldsmith 1992).

One of the common wave-manipulating components is a filter, which helps increase

SNR in some broadband systems. In the case of an electronic detector with an amplifier,

removal of unwanted frequencies with a filter leads to a greater amplifier gain without

saturating the amplifier. A number of T-ray filters have been realised to date, due to the

requirements of either conventional FTIR (Fourier Transform Infrared) spectroscopy

(Griffths and de Haseth 1986) or astronomical observations (Seeley et al. 1981). These

filters can be categorised into two major types, according to the applied optical power,

as active or passive filters. An active T-ray filter offers more flexibility in frequency

and/or energy tuning, but at the expense of complexity and cost. A passive filter, on

the other hand, is less complicated, but also less flexible in terms of its function.

Several approaches to passive T-ray filters are available, for example, reststrahlen re-

flection (Turner et al. 1965), particle scattering (Armstrong and Low 1974), photonic

bandgap crystals (Özbay et al. 1994a, Özbay et al. 1994b), perforated metal sheets (Renk

and Genzel 1962, Ulrich 1968, Winnewisser et al. 1998, Winnewisser et al. 1999, Win-

newisser et al. 2000), and interference in a multilayer structure. A multilayer interfer-

ence filter13 is an attractive option because of its structural simplicity yet optical func-

tionality. By using alternating thin films of T-ray transparent materials, with a proper

index arrangement, full control over a particular frequency band is easily attainable.

This work presents a study of the quarter-wavelength multilayer interference filter.

The operating frequency range covers the frequency of most ultrafast T-ray systems,

i.e., between 0.1 and 1.0 THz (Abbott and Zhang 2007). Our emphasis is on operation

13For simplicity in the following context an interference filter refers to a multilayer interference filter

and not other types of filters exploiting a similar interference mechanism. The same structure may be

found in other optical functions, and/or called by different names such as multilayer periodic structure,

dichroic filter, 1D photonic bandgap structure, 1D photonic crystal, Bragg mirror, dielectric mirror, etc.

Page 277



10.2 Research objective and framework

in the transmission mode, and the effects of altering the number of filter layers on the

transmittance profile. The study of these effects is facilitated by the fact that the sub-

millimetre structures allow a rapid change of the layer arrangement. Characterisation

of the fabricated filter by THz-TDS delivers a time-domain signal, rarely achievable by

other spectroscopic modalities. This evolving time-domain signal reveals significant

characteristics of the filter, in addition to the information obtainable from the transmit-

tance profile.

This work is organised as follows: Previous findings on T-ray multilayer interference

structures are given in Section 10.3. Section 10.4 provides the principle of quarter-

wavelength multilayer interference filters. Section 10.5 shows how the filter response

varies as a function of several parameters, including the optical length of each layer,

the step between high and low indices of refraction, and the number of periods. The

discussion of suitable materials and fabrication methods for the filters is given in Sec-

tion 10.6. Experimental results for a fabricated filter are given in Section 10.7.

10.2 Research objective and framework

Objective

∙ To design a series of quarter-wavelength multilayer interference filters, which

are operable with THz-TDS systems, i.e., in the frequency range between 0.1 and

1.0 THz or higher. This design is on a par with that of optical interference filters,

which are operated at a higher frequency range.

∙ To fabricate the designed filters from a set of suitable materials by an appropriate

fabrication method. The suitable materials imply that they have minimal disper-

sion and absorption in the T-ray frequency regime. An appropriate fabrication

method calls for simplicity, economy, and reliability.

∙ To characterise these fabricated filters using THz-TDS, in a transmission mode,

which reveals time-resolved broadband signals unattainable by any other class of

terahertz spectroscopy. Particular emphasis is given to the effects on the spectral

response as a function of the number of periods in the filter.
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Framework

The assumptions of the measurement carried out here are that: (i) an interference filter

under measurement has parallel and flat surfaces, (ii) the angle of the incident T-ray

beam is normal to the surface of the filter, (iii) the incident beam is collimated, (iv) dry

air surrounds the T-ray path and the filter, and also fully purges any air gaps within the

filter structure, (v) the reference signal is measured under the same conditions as the

sample signal, except for the absence of the sample, and (vi) the transverse dimension

of the filter is large enough, so that no edge diffraction affects the result.

10.3 Review of multilayer interference structures

For decades, FTIR spectroscopy has been widely employed in the study of materials in

the frequency range around the MIR (Griffths 1983). Accordingly, multilayer interfer-

ence structures operative in this frequency range, made of a number of different ma-

terials in various arrangements, are widely available. Provided there is no absorption,

the structures can be operated either as a filter or mirror dependent on the alignment,

as the two functions are complementary. Some multilayer structures used as FTIR mir-

rors are, for example:

Zinc sulphide/polyethylene (Shao and Dobrowolski 1993). Zinc sulphide (ZnS) lay-

ers were deposited onto PE sheets, the combination of which performed as a

narrow band mirror in the 1.5 to 6.0 THz frequency range (nZnS = 3.0, nHDPE =

1.53, nLDPE = 1.51, κPE < 2× 10−3).

Silicon/air (Schiwon et al. 2003). Multilayer broadband mirrors were constructed

from one to six layers of silicon wafers (n = 3.418, l = 10 μm) interleaved by vac-

uum gaps (n = 1, l = 44 μm). Through FTIR spectroscopy, the mirrors showed

a nearly constant reflectance spectrum from 1.2 to 3.9 THz and the optimum re-

flectance at 2.34 THz for the field incident at 40∘. The structure was used to build

a resonator cavity.

Other similar multilayer structures are designed for the frequencies between 0.1 and

1.0 THz, and characterised by THz-TDS. A series of these designs are, for example:
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StyroluxTM/PE and PE/air (Turchinovich et al. 2002). An all-plastic mirror was con-

structed from alternation of PE (n = 1.74, l = 200 μm) and StyroluxTM (n =

1.59, l = 310 μm) films. The mirror showed the high reflectivity at the funda-

mental frequency of 187 GHz with a FWHM of 16 GHz. Scattering by the rough

film surfaces was responsible for a low transmission at high frequencies. Achiev-

ing a wider FWHM required two materials with a larger step in the refractive

indices, which were realised by PE films (n = 1.73, l = 100 μm) and air gaps

(n = 1, l = 200 μm). The transmittance showed a fundamental stop-band at

386 GHz with a FWHM of 169 GHz. The invention was patented for its quarter-

wavelength configuration and for the operation in the frequency range between

5 GHz and 2 THz (Knobloch et al. 2005).

Polypropylene/silicon (Krumbholz et al. 2006). A T-ray omnidirectional mirror was

built from five layers of polypropylene (n = 1.53, l = 150 μm) mediated by

four layers of high-resistivity silicon (n = 3.418, l = 63 μm). Characterised by

THz-TDS in transmission and reflection modes, the mirror could reflect more

than 95% of the incident power with frequencies between 319 and 375 GHz at all

incidence angles regardless of the polarisation. The structure provided a higher

reflectivity than did the plastic mirror reported by Turchinovich et al. (2002). By

re-sequencing the layers, the structure shows a sharp transmission peak inside a

stop-band (Rutz et al. 2006b).

Alumina/alumina-zirconia (Rutz et al. 2006a). A rigid continuous structure was made

by tape casting and sintering of alumina (n = 3.17, l = 73 μm) and alumina-

zirconia (n = 4.16, l = 51 μm) into 25 alternating layers. Measured in the

transmission mode, this ceramic structure provided a stop-band between 0.3 and

0.38 THz in the normal direction, and a common stop-band between 0.32 and

0.38 THz in all directions. However, due to a high loss introduced by zirconia,

functioning of the filter or mirror was limited.

PP/PP+TiO2 (Jansen et al. 2007). A flexible mirror with a large step of refractive indices

was made of polymeric compounds, i.e., polypropylene (n = 1.5, l = 269 μm)

and polypropylene with TiO2 additive (n = 3.4, l = 111 μm). Both materials

were prepared by extrusion. The spectral response of the 5-period mirror showed

the centre of the reflectivity at 200 GHz with a FWHM of 150 GHz in all directions

and polarisations.
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These earlier studies examined materials and fabrication techniques suitable for the

operation of the multilayer structures in the T-ray frequency range. The fabricated

structures were expected to be used as mirrors for short-range or indoor T-ray commu-

nication. Thus, particular interest was given to economic material fabrication, which

provided structures with the highest reflectivity and broadest reflection band at any

angle of incidence. Our work, on the other hand, studies the dependency of the struc-

ture’s transmission characteristics on the number of material layers, when the structure

is used as a filter. A rapid change in the number of material layers is possible owing

to the large scale and retrofittability design of the structure. An elegant equation is

derived, showing a logarithmic relation between the number of layers and the attenu-

ation within a stop-band. Furthermore, our work supplements full data of the filter’s

response in terms of time-domain signals and phase responses. This serves to provide

more insight into the operation of the filter, in addition to the spectral transmittance.

10.4 Quarter-wavelength multilayer interference filters

A multilayer interference filter is composed of several dielectric layers with different

indices of refraction. Cascading these layers to form a periodic structure, as shown in

Figure 10.1(a), gives the transmittance profile in the stacking direction similar to that

shown in Figure 10.1(b). As the name implies, it is the interference mechanism that

controls the shape and position of pass-bands and stop-bands. Particularly, construc-

tive interference is responsible for the pass-bands, whereas destructive interference is

responsible for the stop-bands. To achieve any type of interference at any desired fre-

quency, the wave dispersion is the only parameter to be adjusted. This is made possible

by means of proper material arrangement, given that each material is nondispersive,

i.e., has a constant index of refraction, in the frequencies of interest.

Section 10.4.1 briefly discusses the characteristic matrix method, which is required to

analyse the response of a multilayer structure. Section 10.4.2 explains the required

quarter-wavelength optical thickness condition.
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10.4.1 Characteristic matrix method

In order to analyse the response of the described periodic structure, the characteristic

matrix method (Hecht 1987) is engaged. In brief, a characteristic matrix for a high-

index material layer, in the case that the wave propagation direction is parallel with

the stacking direction, is given by

MH =

[
cos

(
ω
c nHlH

)
j sin

(
ω
c nHlH

)
/nH

jnH sin
(

ω
c nHlH

)
cos

(
ω
c nHlH

)
]

, (10.1)

where nH and lH are the refractive index and the thickness attributed to a high-index

layer. Likewise, a matrix for a low-index layer is

ML =

[
cos

(
ω
c nLlL

)
j sin

(
ω
c nLlL

)
/nL

jnL sin
(

ω
c nLlL

)
cos

(
ω
c nLlL

)
]

. (10.2)

Here, nL and lL are the refractive index and the thickness attributed to a low-index

layer. When these layers of materials are stacked up to a periods, with the high-index

frequency
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Figure 10.1. Multilayer interference filter and its transmittance. (a) The structure comprises

a number of dielectric periods. Each period is constructed from high- and low-index

dielectric layers with the indices of refraction of nH and nL, and the thicknesses of lH

and lL, respectively. The periodic structure usually starts and ends with a high-index

material, and can be designated by (HL)aH, where H and L symbolise high- and low-

index materials, respectively, and a is the number of periods. (b) The transmittance

of this periodic structure features spectrally distributed stop-bands. The fundamental

stop-band has a central frequency of f0 and an effective width of Δ f .
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layers terminating both ends, the resulting characteristic matrix is simply obtainable

via matrix multiplications in the proper order,

Mtotal =

[
m11 m12

m21 m22

]
= (MHML)

aMH . (10.3)

The transmission function of the structure in free space is calculated from the total

characteristic matrix,

T(ω) =
2

m11 + m12 + m21 + m22
. (10.4)

This transmission function, T(ω), is related to the transmittance, 𝒯 (ω), via 𝒯 (ω) =

∣T(ω)∣2.

10.4.2 Quarter-wavelength optical thickness

Essentially, due to destructive interference from multiple reflections, the transmittance

of a dielectric layer with a refractive index n and thickness l has minima at

fN = (2N + 1)
c

4nl
; N = 0, 1, 2, . . . . (10.5)

This set of minima can be utilised for stop-bands of the filter. However, a single layer

cannot cause wide and deep enough stop-bands. Thus, alternate cascading of a num-

ber of layers made of two or more different materials, as illustrated in Figure 10.1, is

required. In order to enhance the stop-bands efficiently, the minima of those layers

must be at the same spectral position. This is made possible through an optical length

equalisation:

nHlH = nLlL =
c

4 f0
=

λ0

4
, (10.6)

where, again, the index of refraction and thickness of the high-index layer are denoted

by nH and lH, respectively, and those of the low-index layer are denoted by nL and lL,

respectively. From Equation 10.6, the optical thickness, nl, of a layer equals a quarter

of the wavelength of the first minimum or the fundamental stop-band. Hence, this for-

mulation leads to the term quarter-wavelength multilayer interference filter (Hecht 1987).
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10.5 Effects of structural parameters on filter response

Each parameter of the structural design has effects on the filter spectral response in a

unique way. The filter response, characterised by the position/width of the stop-band

and the attenuation inside a stop-band, is controlled via these parameters: the optical

length of each dielectric layer, the step between high and low indices of refraction, and

the number of periods. This section analyses and illustrates the relations between the

response of a quarter-wavelength interference filter and these factors.

10.5.1 Mathematical relations

From Equation 10.6, the central frequency of the first stop-band of the filter is given by

f0 =
c

4nl
. (10.7)

According to the equation, the optical length nl directly designates the central fre-

quency, f0, of the stop-band. Decreasing the optical thickness causes a blue-shift in

the central frequency. Changing n and l in reverse proportion has no effect on the

frequency f0.

Another important property of the filter is the width of a stop-band, Δ f . It is influenced

by the step between high and low indices of refraction, and is also scaled by the stop-

band position. This relation is given by (Orfanidis 2006)

Δ f
f0

=
4
π

arcsin
(

nH − nL

nH + nL

)
. (10.8)

If the difference between the two indices is small, the inverse sine and thus the width

of a stop-band approaches zero. If the difference is large, the inverse sine approaches

π/2, and the stop-band width approaches twice the central frequency. However, in

general due to a limit in the material variety, the width of a stop-band is comparable to

the value of the fundamental central frequency.

The last filter’s property considered here is the attenuation inside a stop-band, in par-

ticular the attenuation at fN, where N = 0, 1, 2, . . .. Substituting the quarter-wavelength

frequency from Equation 10.7 into Equations 10.1 and 10.2 yields, respectively,

MH =

[
0 j/nH

jnH 0

]
and ML =

[
0 j/nL

jnL 0

]
. (10.9)
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The total matrix is therefore

Mtotal = (MHML)
aMH = (−1)a j

[
0 na

L/na+1
H

na+1
H /na

L 0

]
, (10.10)

where, again, a is the number of periods in the filter. Following Equation 10.4, the

magnitude of the transmission function at f0 is

∣T( f0)∣ =
2

na
L/na+1

H + na+1
H /na

L

. (10.11)

In the case that the difference between nH and nL is reasonably large, the above equa-

tion can be approximated to

∣T( f0)∣ ≈ 2
nH

(
nL

nH

)a

. (10.12)

Taking a base-10 logarithm of the approximation results in

log10 ∣T( f0)∣ = a log10(nL/nH)− log10(nH) + 0.3 . (10.13)

It is obvious that the attenuation in the middle of a stop-band logarithmically depends

on the number of periods, a. This relation is also applicable to the transmission at fN,

where N = 1, 2, 3, . . . and so on. Also note that the attenuation at these frequencies is

independent of the physical thicknesses of the materials.

10.5.2 Simulation

The following simulations confirm the analytical expressions presented in Section 10.5.1.

The simulations help illustrate the transmittance of the filter affected by changes in the

optical thickness, the indices of refraction, and the number of periods. The results are

determined on the basis of characteristic matrix analyses. The transmittance is reported

in the range of 0 to 2 THz for the case of normal angle of incidence.

Effects of changes in the optical thickness on the central frequency and width of a stop-

band are exemplified in Figure 10.2. Obviously, the figure shows an inverse relation

between the optical thickness and the central frequency, as described by Equation 10.7.

When the optical thickness changes from 300, 150, to 100 μm, the central frequency

changes from 0.25, 0.5, to 0.75 THz, respectively. Also note that the width of a stop-

band, Δ f , is scaled in accordance with the central frequency—this relation is explained

in Equation 10.8.
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Figure 10.2. Simulated filter transmittance as a function of optical thickness. The structure

is composed of 3.5 dielectric periods, designated by (HL)3H. The high- and low-

indexed materials have nH = 3.418 and nL = 1, respectively, and their thicknesses are

determined from the optical thickness. The arrowheads indicate the position of f0.

Figure 10.3 illustrates the transmittance influenced by changes of the materials’ indices.

Increasing the index difference widens stop-bands, as described in Equation 10.8. An

interesting case is when nH = 3 and nL = 1, which allows Δ f = f0. In addition to the

stop-band widening, increasing the index difference intensifies the attenuation inside

a stop-band, as explained by Equation 10.13.

Finally, according to Equation 10.13, the number of periods, a, dictates the attenuation

inside a stop-band. Consider Figure 10.4 where the number of periods evolves from

1.5, 3.5, to 5.5. The attenuation at the middle of a stop-band increases logarithmically,

whereas the position and width of a stop-band remain unchanged. In a pass-band, in-

creasing the number of periods results in stronger and more oscillatory transmittance

ripples. It is worth noting that the number of layers should be reasonably low to pre-

vent accumulative absorption from bulk material and scattering at material interfaces,

which are not considered in the simulation.

10.6 Materials and fabrication techniques for the filter

This section provides some background discussion on materials and fabrication tech-

niques, needed for realisation of a T-ray interference filter. Fundamental requirements
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Figure 10.3. Simulated filter transmittance as a function of refractive indices. The structure

is composed of 3.5 dielectric periods, designated by (HL)3H. The optical length

is 150 μm, or the central frequency is 0.5 THz, and the physical thicknesses are

determined from the optical thickness.
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Figure 10.4. Simulated filter transmittance as a function of the number of periods. The

optical thickness is 150 μm, or the central frequency is 0.5 THz. The high- and

low-indexed materials have nH = 3.418 and nL = 1, respectively, and their physical

thicknesses are determined from the optical thickness.
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of material properties are similar to those required to realise optic filters, excepting that

now the effective frequency range shifts toward the longer wavelength. This results in

thicker material layers and completely different fabrication techniques.

10.6.1 Transparent materials

As mentioned earlier, a multilayer interference filter exploits the interference mech-

anism to control the stop-band and the pass-band. High efficiency of the interfer-

ence mechanism is achievable, provided that each material is non-dispersive and non-

absorptive in the T-ray frequency band. The non-dispersiveness of materials facili-

tates the design and sustains the uniformity of the interference mechanism throughout

the frequencies of interest. The non-absorption, including low scattering, of materials

avoids energy dissipation, which degrades the transmittance in the pass-band and also

heats up the structure undesirably.

In addition to the absorptive and dispersive properties of materials, there are a number

of other relevant factors, e.g., mechanical stability, chemical resistivity, thermal con-

ductivity, birefringence, temperature dependency, or optical transparency. Though,

the importance of each factor depends on a specific application. At this stage, for ordi-

nary filter tasks, the interest is principally in the absorptive and dispersive properties

of the material. In addition, some care is necessary to control mechanical stability and

birefringence.

Two dielectric materials, which reasonably satisfy the above requirements and have

a large difference in refractive index, are silicon and dry air. The first material, un-

doped high-resistivity float-zone (FZ) silicon, is known to have a negligible absorption

and a constant refractive index of 3.418 at T-ray frequencies (Grischkowsky et al. 1990,

Dai et al. 2004). The second material, dry air, has a unity refractive index and near

zero absorption for T-rays. Both silicon and air have no birefringence, and the optical

properties of silicon in the T-ray regime are independent of the crystal orientation.

10.6.2 Fabrication techniques

From the quarter-wavelength condition in Equation 10.6, it can be seen that the wave-

length of T-rays in the submillimetre region requires the dielectric layers to have the
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same order of thickness. This thickness requirement excludes most of the conventional

methods, used for fabrication of optical components, because those methods are op-

timised for coating in the order of a few microns. Some other potential fabrication

methods are suggested for T-ray components, for example:

Material adhesion assembles different dielectric materials by means of either a holder,

adhesive, or thermal bond. The applicability of these methods depends on the

types of materials in use. Examples of the structures that are assembled by these

methods are, for instance, Turchinovich et al. (2002) or Krumbholz et al. (2006).

Material deposition employs a chemical process to deposit desired materials onto a

substrate. This technique requires complicated deposition equipment. Further-

more, a practical deposit thickness is often in an order of a few microns, which is

too thin for use with T-ray wavelengths. A thicker layer is possible at the cost of

deposition time and mechanical instability.

Hybrid method utilizes both material adhesion and material deposition in the fabri-

cation. A suitable material is deposited onto a thin film, which is, afterwards,

stacked with other deposited films to form a multilayer periodic structure. This

method is used by, e.g., Shao and Dobrowolski (1993).

Air-gap method, a special case of material adhesion, eliminates the requirement for

a second material of different index of refraction by substitution of air or vac-

uum, which has an index of refraction of approximately unity. In addition to the

constant index, this method has an advantage concerning a low effective absorp-

tion, since free space has no absorption at all frequencies or can be considered

as an all-pass filter. Another advantage is that the problem of unintended air-

gaps (Krumbholz et al. 2006), present between layers, vanishes. Implementations

of this method can be found in, for example, Turchinovich et al. (2002) or Schi-

won et al. (2003). For the above reasons, the air-gap method is also preferred in

this work.

Other fabrication techniques suitable for constructing interference filters are, for exam-

ple, plastic coextrusion or tape casting and sintering of ceramics (Rutz et al. 2006a).

For visible light and nearby frequencies, according to Equation 10.6, the thickness of

each layer is in the order of submicrons, and thus a rigid substrate is required in order
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to support the periodic structure. However, this is not true for T-rays for which the

interference layer thickness is around a few tens to a few hundreds of microns. There-

fore, all of the layers can be stacked to form a free-standing structure, and a substrate

is unnecessary for the T-ray interference filter. This is beneficial because (i) the Fabry-

Pérot fringes induced by a thick substrate can be easily removed from the spectrum,

and (ii) the overall absorption of the structure is reduced.

10.7 Experiments and results

10.7.1 Design of the silicon-air filters

A batch of intrinsic FZ silicon wafers is supplied by Siltronix. Each wafer is polished

on one side, has a resistivity of > 1 kΩ, an orientation of (111), and a thickness of 50±
5 μm. Due to the Fabry-Pérot effect, or particularly the destructive interference, the

transmission of a single wafer has a minimum at f0 = c/(4nsilsi) = 0.439 THz, given

nsi = 3.418. This frequency is then set as the central frequency of the fundamental

stop-band. The thickness of an air gap, lair = 170.9 μm, is chosen to comply with the

quarter-wavelength condition in Equation 10.6. The width of a stop-band is estimated

at 0.32 THz, according to Equation 10.8.

The material layers, comprising silicon wafers and air-rings, are fitted together by a

HDPE frame, which exerts pressure on the structure via the elastic force of four iden-

tical springs. This spring-tight design helps reduce uneven forces at different surface

positions and for different numbers of layers. Also it facilitates the replacement and

retrofitting of material layers. The layout and design of the structure is given in Fig-

ure 10.5.

10.7.2 Characteristics of the silicon-air filters

The THz-TDS system, used in characterisation of the filters, is a fibre-coupled T-ray Pi-

cometrix 2000, equipped with photoconductive antennae for T-ray generation and de-

tection. The pumping laser is mode-locked Ti:Sa laser (MaiTai, Newport) with a central

wavelength of 800 nm, a pulse duration of <80 fs, and a repetition rate of 80 MHz. The

system produces T-ray pulses with a bandwidth from 0.1 to 1.0 THz and the maximum
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supporting frame made from HDPE
with inner diameter of 4 mm
and outer diameter of 6 mm or more

open ring holding airgap
made from a rigid material
with inner diameter of 40 mm,
outer diameter of 50 mm,
and thickness of 171±10 μm

float-zone silicon wafer
with diameter of 50 mm
and thickness of 50±5 μm

gripper made from springs
adjustable to accomodate

the different number of layers

Figure 10.5. Design of T-ray multilayer interference filter. The filter is composed of FZ silicon

wafers alternating with air gaps, created by open rings. The materials are held together

by a supporting frame made from high-density polyethylene (HDPE), and therefore the

layers can be readily swapped in and out, or changed. The diameter of the structure

is wide enough, so that the T-ray beam can pass through without edge diffraction.

dynamic range of 25 dB. The T-ray beam passing through the filter is well collimated

to avoid the difference in beam paths. The measurement for each filter is carried out

nine times, and then the time-domain pulses are averaged. Also, the reference signal,

measured with the same setting, is collected regularly to compensate amplitude drift

effects within the system. For each recorded signal, the temporal window is 555.22 ps

with a sampling interval of 33.9 fs. The Fourier transform of the pulse yields a spectral

resolution of 1.8 GHz, and the reduction in system’s bandwidth is not significant when

the filter is in place.

Figure 10.6 shows a set of pulses recorded from the silicon-air interference filters with

various numbers of silicon-air periods. Determined from the first zero crossing point,

each signal is delayed from its neighbour by 0.5 ps. The greater delays of the pulses are

Page 291



10.7 Experiments and results

110 115 120 125 130

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (ps)

am
p
lit

u
d
e 

(a
.u

.)
H

HLH

(HL)2H

(HL)3H

reference

(HL)4H

Figure 10.6. T-ray signals transmitted through interference filters. Only the signals inside

the 20-ps window from the total recording duration of 555.22 ps are shown. The H

measurement in fact represents the signal recorded from a single 50-μm silicon wafer.

The pulses are delayed, attenuated, and reshaped by the filters.

attributed to the increasing effective indices of refraction of the structures. The pulses

for (HL)aH structures exhibit very little difference in the maximum amplitudes, which

are approximately 40% of the reference amplitude. This is because the filters attenu-

ate the amplitude at the specific frequency range while preserving the rest. However,

the pulse shapes among the filters are largely distinctive. A possible likely cause is

the spectral ripple in the pass-band, which is shown in the transmittance profiles (Fig-

ure 10.7).

The transmittances shown in Figure 10.7 are evaluated from the spectra of the refer-

ence, Eref(ω), and of the filter, Efil(ω), using 𝒯 (ω) = ∣Efil(ω)/Eref(ω)∣2. From the

figure, the first stop-band locates between 0.2 and 0.5 THz, the centre of which is

at approximately 0.36 THz, and the FWHM is ≈ 0.3 THz. As the period of the fil-

ters increases, the attenuation in the middle of the stop-band increases logarithmically,

roughly at an order of magnitude per period. This logarithmic relation confirms the

theory in Equation 10.13, and is plotted explicitly in Figure 10.8. The filters have rip-

ples in the pass-band, i.e. between 0.0 and 0.2 THz, and between 0.5 to 0.9 THz, which

are stronger following the number of periods. Due to the limited dynamic range of the

system, it is not possible to render the second stop-band, which is beyond 0.9 THz.
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Figure 10.7. Transmittance of interference filters. For each filter, the first stop-band resides

between 0.2 and 0.5 THz, centered at 0.36 THz. The successive stop-bands at higher

frequencies are unresolvable due to the system bandwidth limit. The spectrum inside

the stop-band of the (HL)3H filter is noisy, because the attenuation reaches the noise

floor. The spectral transmittance for (HL)4H is not included, again due to the noise

limit. The calculation is based on a characteristic matrix analysis. Notice the different

ranges of the vertical scale.
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Figure 10.8. Transmittance of interference filters at 0.36 THz. The attenuation at the middle

of the first stop-band increases logarithmically with the number of periods. The error

bars represent one standard deviation either side of the mean—notice that the means

appear skewed and the error bars appear magnified to the right hand side because the

vertical scale is logarithmic. The calculation is based on Equation 10.13. The dotted

lines merely assist interpretation.

The phase response is extracted using φ(ω) = ∠Efil(ω)−∠Eref(ω)−ωL/c. The ωL/c

factor compensates the free space that occupies the structure’s area with the thickness

L = a(lH + lL) + lH in the reference measurement. The phase responses of the filters

are shown in Figure 10.9. It is clear that the phase is anomalous in the stop-band, in

the 0.2 to 0.5 THz region.

In spite of the appearance of the first stop-band, the central frequency of the stop-

band deviates from the expectation at 0.439 THz. This is more likely due to uneven

surfaces of the air-gap rings, which result in thicker air layers. Hence, in the simula-

tion, an adjustment to the material parameters is performed to compensate the struc-

tural thickness uncertainties. Through the fitting, using a characteristic matrix anal-

ysis (Hecht 1987), the thicknesses of the silicon wafers and air gaps are estimated at

60 μm and 220 μm, respectively, whereas their indices of refraction remain unchanged.

The simulation results accompany the measured transmittances and phase responses

in Figures 10.7 and 10.9.
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Figure 10.9. Phase response of interference filters. The phases are anomalous inside the stop-

band, i.e. between 0.2 and 0.5 THz. The spectral phase of (HL)4H is not included

here due to the limit of the system dynamic range. The calculation is based on a

characteristic matrix analysis.

10.8 Conclusion and potential extensions

A multilayer interference structure has an ability to manipulate the T-ray radiation in

a frequency-selective manner. This is the case despite the fact, most of the previous

work focuses on its operation as a mirror, or more precisely, the structure is studied for

its angle-dependent response to T-rays. Limited previous work presents its filtering

characteristics following changes in structural parameters.

In our work, a set of the T-ray interference structures is designed to be operated as filter,

in the transmission mode. Exploited in this work is a certain characteristic, namely the

dependence of the stop-band attenuation on the number of filter layers. An explicit

equation is derived, explaining the dependency in terms of a logarithmic relationship.

Realised according to the design, the filters are made from several ultrathin silicon

wafers and air gaps, assembled in a novel retrofittable way. Characterised by trans-

mission THz-TDS, the filters show an obvious stop-band spanning 0.2 to 0.5 THz with

its central frequency at 0.36 THz. The transmittance in the stop-band decreases at ap-

proximately an order of magnitude per silicon-air period, as predicted by the theory.
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A characteristic matrix analysis shows an agreement between the model and the mea-

surements at the estimated thicknesses of the silicon and air gap of 60 μm and 220 μm,

respectively.

Although the filter produces an apparent stop-band, it is known that the filter response

is spectrally periodic. This may not be practical if other responses such as if high-

pass, low-pass or band-pass are required. As a potential extension, filter cascading

schemes are introduced. They enable construction of an interference filter with an

arbitrary response. By cascading a set of multilayer interference filters, it is possible

to shape up any desired frequency response. Cascading of filters could be either in

a transmission-mode arrangement, where the total transmittance, 𝒯total, is calculated

from (Winnewisser et al. 1999)

𝒯total = 𝒯1𝒯2 . . . 𝒯m , (10.14)

or a reflection-mode arrangement (Shao and Dobrowolski 1993),

𝒯total = ℛ1ℛ2 . . .ℛm , (10.15)

where 𝒯m and ℛm are the individual transmittances and reflectances of each filter, re-

spectively. Arrangement of a filter in a reflection mode is somewhat more difficult than

arrangement in a transmission mode, as illustrated by some examples in Figure 10.10.

In the construction of the filter, although float-zone silicon is exceptionally transparent

to T-rays, its cost is rather high. A number of other low-loss materials can substitute

silicon in construction of the filter, with slightly inferior transparency. Bolivar et al.

(b) three mirrors(a) two mirrors (c) four mirrors

Figure 10.10. Interference filter cascading in reflection arrangement. Possible schemes for

cascading 2, 3, and 4 interference filters (mirrors) in a reflection arrangement. In

practice, the tilted angle of filters can be so small that the polarisation dependence

of filter response is negligible. After Shao and Dobrowolski (1993).
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Chapter 10 Quarter-wavelength multilayer interference filters for T-rays

(2003) suggests a range of low-loss yet low-cost dielectric materials, including steatite,

alumina, titania loaded polystyrene, and zirconium-tin-titanate. The refractive indices

of these materials span a wide range, which helps facilitate the design. Recently, in ad-

dition to those dielectrics, some polymers are introduced, e.g., picarin and cycloolefins

(Sengupta et al. 2006). These polymers are transparent to both T-rays and visible light,

and thus are attractive for some applications.

This chapter concludes Part III, T-ray optics, which is the last part of the thesis. In the

next chapter we summarises each individual chapter from Chapters 6 to 10 in the as-

pects of its background, methodology, result, future work, and original contributions.
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𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟏𝟏

Thesis Summary

𝐓
𝐇𝐈𝐒 chapter concludes the thesis. Chapters 1 to 4 contain review

material that embraces THz-TDS hardware, applications, and es-

sential signal processing techniques. Chapters 5 to 10 contain the

original contributions, divided into three major parts: signal enhancement

and classification, system evaluation and optimisation, and T-ray optics.

This chapter focuses on summarising the original contributions reported so

far.

Page 299



Page 300



Chapter 11 Thesis summary

11.1 Part I—signal enhancement and classification

Removal of water-vapour effects from THz-TDS measurements: Chapter 5

Background: Ambient water vapour is coupled to T-rays via its molecular rotational

transitions. In a THz-TDS measurement, this interaction leads to the appearance of

sharp resonances in the T-ray spectrum and corresponding fluctuations following the

main pulse in the time domain. These water vapour effects can mask the spectroscopic

data of the target. An effective solution to the problem is to purge the entire T-ray

beam path with dry air or a nonpolar gas, which does not interact with T-rays. This

approach, however, is not applicable to all situations.

Methodology: Digital signal processing is engaged in tackling the problem. A model

of water vapour resonances is precisely constructed from a spectroscopic database,

which provides all the essential resonance characteristics. This model is then decon-

volved from the measurement data. Theoretically, the deconvolution should com-

pletely remove the water vapour effects, but in fact many discrepancies between the

model and measurement exist. An elegant procedure allows fine-tuning of the model

to the measurement before the deconvolution is carried out.

Result: The method has a moderate success with removal of the effects from the ex-

perimental data. The quantitative measures demonstrate a significant improvement in

all aspects. In the time domain, the fluctuations after the main pulse are remarkably

reduced. Yet, in the frequency domain the corresponding spectra contain the distorted

resonances that are not removable. The distortion results from either the congestion of

the resonances or the noise in the measurement.

Future work: An improvement to the proposed method is required to deal with these

distorted resonances that cannot be modelled accurately, i.e. the method must be in-

sensitive to the resonance distortion. The method is envisaged for removal of the con-

taminating responses from the experimental data in the case that the sources of the

responses cannot be physically eliminated during the measurement.

Original contribution: For the first time, a means of digital signal processing is ex-

ploited to eliminate the artefacts introduced by ambient water vapour in THz-TDS

measurements (Withayachumnankul et al. 2008b).
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Classification of THz-TDS signals with subtle features: Chapter 6

Background: A number of materials have unique responses to the T-ray frequencies.

These responses manifest themselves as sharp resonances in the frequency domain

and fluctuations in the time domain—the unique features that are visually distinguish-

able. However, some other materials do not produce such fingerprint responses, and

in many cases the measured signals available from THz-TDS are nearly inseparable for

different materials of the same general class. A method substituting for visual recog-

nition is hence demanded.

Methodology: Machine learning, an effective and robust solution to a variety of clas-

sification and recognition problems, is involved in the classification of THz-TDS sig-

nals. Each THz-TDS signal measuring a sample is decomposed into a set of coefficients

via wavelet transform. These coefficients, compactly representing the original signal,

serve as the classification features that are relevant to the problem. A linear-kernel

SVM, as a classifier, is trained and tested by these features. It is expectable that the

trained SVM is capable of classifying similar signals.

Result: Using a particular set of wavelet coefficients as classification features, the

trained SVM can distinguish two highly correlated groups of signals measuring two

types of samples with an exceptional accuracy. The number of wavelet coefficients in

use is only a fraction of the number of data points in the original signals. The compact

representation of wavelet coefficients effectively wards off the curse of dimensionality

usually encountered in classification problems.

Future work: The selection of relevant wavelet coefficients is based on trial and er-

ror. A more efficient feature selection method is necessary. Furthermore, the classifica-

tion accuracy can be enhanced by using either adaptive wavelet transform or wavelet

packet algorithms to decompose the signals into a set of coefficients serving as classifi-

cation features.

Original contribution: For the first time, a robust machine learning method, together

with a wavelet transform, is exploited in order to classify THz-TDS signals that possess

broad indistinct features in the frequency domain (Withayachumnankul et al. 2005).
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11.2 Part II—system evaluation and optimisation

Uncertainty in THz-TDS measurements: Chapter 7

Background: THz-TDS is a technique capable of measuring the responses of materi-

als with the T-ray frequencies. Numerical parameter extraction is required to derive the

frequency-dependent optical constants of materials from the measurement. Though,

the sources of errors exist at the measurement stage and throughout the parameter

extraction process. These errors contribute to the uncertainty in the extracted optical

constants. So far no analytical method has been developed for characterising the im-

pact of these errors on the optical constants.

Methodology: A transmission-mode THz-TDS system is identified for its potential

sources of measurement errors that have an influence on the measured optical con-

stants. These sources encompass signal noise, approximations of the physical model,

and deviations in sample alignment and thickness measurement. The developed un-

certainty model quantifies the impact of these sources on the optical constants by

means of the law of propagation of uncertainty. All the analyses and expressions of

uncertainty, where applicable, follow an industrial standard recommended by ISO.

Result: The MCS method, as a benchmark for the developed uncertainty model, re-

veals the similarity between the analytical and numerical results for a wide range of

situations. The validity of the analytical model is also confirmed by an implementation

with experimental data. Though, small disparity between the analytical and numer-

ical results can be observed in some cases. The disparity more likely results from a

first-order approximation used in deriving the uncertainty model.

Future work: The analysis can be extended to cover other unaccounted sources of

error. These sources are, for instance, the nonidealities of the sample and probe beam.

A higher-order approximation for the propagation of uncertainty can decrease the dif-

ference between the analytical and numerical results, at the expense of complexity and

computational time. In addition, other arrangements of THz-TDS, such as reflection-

mode THz-TDS, can also benefit from similar analyses.

Original contribution: For the first time, the sources of error existing throughout

the THz-TDS measurement process are exhaustively identified and quantified, based

on the industrial guideline for expression of uncertainty (Withayachumnankul et al.

2008c, Withayachumnankul et al. 2007b).
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Material thickness optimisation for THz-TDS: Chapter 8

Background: In a transmission-mode THz-TDS measurement, a material sample that

is too thick or too thin can raise the problem of measurement uncertainty. Although

a greater thickness allows T-rays to interact more with bulk material, the measurable

SNR rolls off with thickness due to stronger signal attenuation. A sample that is too

thin renders itself nearly invisible to T-rays, in such a way that the system can hardly

sense the difference between the sample and free space path. It appears that a full

analysis of the sample thickness for THz-TDS has not been realised so far.

Methodology: The analysis for the optimum sample thickness is carried out through

the uncertainty model proposed in Chapter 7. The model, which expresses the vari-

ance in the optical constants in terms of the variance in the signal amplitudes, is deter-

mined for its saddle point with respect to the thickness. It turns out that the optimum

thickness equals twice the inverse of the absorption coefficient or twice the penetra-

tion depth. Theoretically, this thickness should result in the minimal uncertainty of the

measured optical constants.

Result: The derived model for the optimal thickness is supported by the results from

the experiments, performed with a number of materials with different T-ray character-

istics. For a particular case, the standard deviation in the measured optical constants

can be reduced by two orders of magnitude by using a sample with an optimum thick-

ness. However, as the absorption coefficient is typically a function of the frequency, the

optimum thickness is also a function of the frequency. Thus, a strategy for selecting the

optimum thickness to suit the measurement purpose is also developed.

Original contribution: For the first time, it is proved with a rigorous arithmetical

derivation that the thickness of a sample used in a transmission-mode THz-TDS mea-

surement should be twice the absorption length in order to minimise the measurement

uncertainty (Withayachumnankul et al. 2008a).
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11.3 Part III—T-ray optics

Quarter-wavelength antireflection coatings for T-rays: Chapter 9

Background: Energy loss by reflection becomes significant when the electromagnetic

wave propagates through an interface between two dielectrics with a high contrast in

refractive index, e.g. from air into a window. Nevertheless, little work to date has

addressed this issue in the T-ray frequency range. Although the fundamentals of an-

tireflection coatings can be borrowed from optics, some considerations regarding a

coating material that has suitable dielectric properties and a fabrication method that

can accommodate a desired coating thickness are necessary.

Methodology: A quarter-wavelength antireflection coating is exploited to reduce re-

flection. High-resistivity silicon is selected as a window material in the experiment as it

demonstrates a high contrast in refractive index relative to the index of air. According

to the antireflection theory, LDPE has its dielectric properties that are acceptable for

coating a silicon window. On top of that, the mechanical properties of LDPE support

the desired coating thickness, which is in the order of submillimetres. A frame is used

to press coating layers against the window without adhesive.

Result: The experiment is carried out using a THz-TDS system operated in the trans-

mission mode. The antireflection coating can effectively enhance the T-ray transmis-

sion of the window. However, the absorption at high frequencies of the coated window

increases remarkably, probably due to impurities and/or grain sizes in the commercial-

grade LDPE films. Furthermore, the characteristic matrix analysis shows that air gaps

are present between the coating and the window, resulting in a deviation of the effec-

tive antireflection frequencies.

Future work: The antireflection performance can be improved by using a coating

material that demonstrates a better index matching and lower absorption to T-rays.

Better adhesion between the coating and the window offers a better control over the

operational frequency of the coating. An improvement can also be expected from a

variety of other antireflection coating theories, such as multilayer coatings, graded-

index coatings, and metamaterial coatings, which have already been applied in other

frequency ranges.

Original contribution: For the first time, the windows transparent to T-rays are fab-

ricated to be antireflective based on the theory of quarter-wavelength antireflection

(Withayachumnankul et al. 2007a).
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Quarter-wavelength multilayer interference filters for T-rays: Chapter 10

Background: It is foreseeable that in the near future the requirement for T-ray com-

ponents, including filters, will increase rapidly following a higher demand for commu-

nication channels that will push carrier frequencies towards the subterahertz regime.

To date, many types of filters have been realised for T-rays and nearby frequencies.

A quarter-wavelength multilayer interference structure is another attractive option for

T-ray filters due to its simplicity and functionality.

Methodology: Quarter-wavelength multilayer interference filters are designed for

the operation in the T-ray frequency band. Two different dielectrics with a high con-

trast in refractive index and a high transparency are required for the construction of

the filters. Float-zone intrinsic silicon and free space are selected in this regard, not

only because of their suitable dielectric properties, but also their physical appearances.

Both of the materials are put together alternately in the form of periodic layers, sup-

ported by a specially designed polymer frame. Their thicknesses are well controlled to

encourage the interference in the T-ray frequencies.

Result: Measured by a transmission-mode THz-TDS system at a normal angle of in-

cidence, the filter exhibits an apparent stop-band centred at a designated frequency.

By increasing the number of layers, the attenuation inside the stop-band increases pro-

portionally. Another consequence of an increment in the filter layers is the occurrence

of the ripples in the pass-bands. These results reproduce well using the characteristic

matrix calculation.

Future work: The spectral response of a quarter-wavelength multilayer interference

filter is known to be periodic with respect to the frequency. Thus, this basic design may

not be satisfactory when a more intricate frequency response is sought. An approach to

modification of the filter response is available. By cascading a number of interference

filters having different characteristics, i.e. different stop-band positions and widths,

it is possible to create a desired spectral response. Moreover, other dielectrics may

substitute for float-zone silicon in order to reduce the cost for high-volume production.

Original contribution: For the first time, the quarter-wavelength multilayer inter-

ference filters effective for T-ray frequencies are studied for their characteristics with

respect to a particular structural parameter (Withayachumnankul et al. 2008d).
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