
 

PUBLISHED VERSION  

 

 

Falkenberg, Laura Jane; Burnell, Owen William; Connell, Sean Duncan; Russell, Bayden D.  
Sustainability in Near-shore Marine Systems: Promoting Natural Resilience, Sustainability, 
2010; 2(8):2593-2600 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access 
article distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/63788 

 

PERMISSIONS 

 

http://www.mdpi.com/about/openaccess 
 
 
All articles published by MDPI are made available under an open access license worldwide 
immediately. This means: 

• everyone has free and unlimited access to the full-text of all articles published in 
MDPI journals, and 

• everyone is free to re-use the published material given proper accreditation/citation of 
the original publication. 

 

 

 

 

   

http://hdl.handle.net/2440/63788�
http://hdl.handle.net/2440/63788�
http://www.mdpi.com/about/openaccess�


Sustainability 2010, 2, 2593-2600; doi:10.3390/su2082593 

 

sustainability 
ISSN 2071-1050 

www.mdpi.com/journal/sustainability 

Communication  

Sustainability in Near-shore Marine Systems: Promoting 

Natural Resilience 

Laura J. Falkenberg, Owen W. Burnell, Sean D. Connell and Bayden D. Russell * 

Southern Seas Ecology Laboratories, School of Earth & Environmental Sciences, University of 

Adelaide, DX650 418, South Australia, 5005, Australia; E-Mails: laura.falkenberg@adelaide.edu.au 

(L.J.F.); owen.burnell@adelaide.edu.au (O.W.B.); sean.connell@adelaide.edu.au (S.D.C.) 

* Author to whom correspondence should be addressed; E-Mail: bayden.russell@adelaide.edu.au;  

Tel.: +61-8-8303-6587; Fax: +618-8303-6224. 

Received: 1 July 2010; in revised form: 6 August 2010 / Accepted: 13 August 2010 /  

Published: 16 August 2010 

 

Abstract: Accumulation of atmospheric CO2 is increasing the temperature and 

concentration of CO2 in near-shore marine systems. These changes are occurring 

concurrently with increasing alterations to local conditions, including nutrient pollution 

and exploitation of selected biota. While the body of evidence for the negative effects of 

climate change is rapidly increasing, there is still only limited recognition that it may 

combine with local stressors to accelerate degradation. By recognizing such synergies, 

however, it may be possible to actively manage and improve local conditions to ameliorate 

the effects of climate change in the medium-term (e.g., by reducing nutrient pollution or 

restoring populations of herbivores). Ultimately, however, the most effective way to 

increase the sustainability of near-shore marine systems into the future will be to decrease 

our reliance on carbon-based sources of energy to reduce the negative effects of  

climate change. 
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1. Introduction  

As the human population has grown, so too has the extent and rate at which the environment is 

modified [1]. While it has long been recognized that human activities directly alter local-scale 

processes, such as changes to primary productivity through nutrient-pollution or its consumption 
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through fishing of foragers [2-4], it is only recently that global-scale influences have started to receive 

recognition [5,6]. We now recognize that human activity is driving unprecedented change to climate 

beyond that attributable to natural variation [7-9]. While the body of evidence for the negative effects 

of climate change on natural systems is rapidly increasing, there is still only limited understanding of 

how multiple stressors, such as increasing CO2 and temperature, may combine to accelerate 

degradation [10-13]. More worrying, however, is that the impact of climate change will manifest at 

local scales, and as such, will also interact with local stressors that have been degrading the 

environment for decades, potentially accelerating change to natural systems.  

2. Synergistic Effects and Accelerated Degradation 

The oceans currently absorb ~30% of the CO2 emitted into the atmosphere. It is now well 

established that the resulting reduction in pH (or ocean acidification) has negative effects on calcifying 

organisms [14-18]. An important recognition, however, is that in marine systems multiple climate 

parameters (e.g., temperature and pH) are inherently linked to one another via atmospheric CO2 

concentration [19,20], and may create complex outcomes which cannot be predicted through studying 

variables independently [13,21,22].  

Most research into the effects of climate change on marine systems has considered acidification or 

temperature in isolation and there is a lack of knowledge about the extent of these interactions [23,24]. 

The few studies that have focussed on the interactions between these two parameters have 

demonstrated conflicting responses, showing possibilities of both synergistic negative effects on 

organisms [11,12] and others where the effects are not of a multiplicative nature [25]. Importantly, 

while organisms may show some resistance to independent stressors, their sensitivity is often altered 

under the concurrent application of multiple changes, resulting in effects of a larger magnitude than 

anticipated from the study of independent stressors [11-13,22]. Further, there is recent evidence that 

combinations of climate factors, such as elevated CO2 and temperature, may have synergistic positive 

effects on some non-calcareous algae which facilitate ecosystem shifts, thus producing a negative 

ecological outcome [10]. 

Of even greater concern is how changing climates will combine with local environmental impacts. 

Numerous stressors, particularly nutrient pollution and exploitation of selected biota, have resulted 

from human activities and produced environmental conditions distinct from those experienced at any 

other time in history [26]. As the effects of climate change will manifest at similar scales to these local 

stressors, it is likely that they will combine to alter conditions that maintain system function through 

amplifying feedbacks, compounding effects and synergies [27,28]. For example, in temperate marine 

waters canopies of algae form forests analogous to tropical rainforests. These canopies are a 

foundation for marine systems, providing structure that enables stabilization of physical environments, 

survival of associated species and economic benefit for human societies [29,30]. On many coasts of 

the world, however, these canopies are being replaced by small filamentous algal turfs [31-33], 

causing massive loss of biodiversity and ecological function. This current decline is being driven by 

elevated nutrients from land-derived sources [34-36]. Furthermore, it has only recently been 

recognized that increasing [CO2] may increase the productivity of non-calcareous algae, particularly 

the opportunistic species which facilitate system shifts, suggesting that the decline of algal canopies 
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will be accelerated into the future as local nutrient pollution interacts with increasing [CO2] to increase 

the abundance of turf-forming algal species which inhibit the recovery of algal forests [10,37].  

Nutrient-driven loss of the dominant habitat forming taxa is also well documented in tropical 

ecosystems, where macroalgae overgrow and smother reef-building corals [38]. As with kelp 

dominated systems, this habitat loss is accelerated under a combination of perturbations such as 

increased nutrients and harvesting of herbivores [39,40]. With the increasing body of literature 

demonstrating the negative effects of increasing [CO2] on corals, it is likely that the interaction 

between increasing [CO2] and nutrients will cause a synergistic negative effect on coral reefs from two 

directions, the negative effect on corals and the positive effect on non-calcareous macroalgae. 

Therefore, while the study of climate stressors on individual organisms provides insights into species 

level responses and adaptation, an understanding of local-to-global scale interactions between multiple 

stressors on communities is required to identify mechanisms of increasing resilience of systems into 

the future. 

3. Promoting Natural System Resilience 

Current projections of climate driven change to oceanic pH are based primarily upon ocean physics, 

with the biological components of these predictions currently lacking in sophistication [20]. 

Subsequently, the current understanding of the potential for natural biological interactions to provide 

both regional and global resilience to ocean acidification remains limited. Increasing CO2 and the 

associated reduction in pH is influenced by the photosynthesis and respiration of marine  

organisms [18,41-43]. For example, diurnal pH fluctuations in coastal sub-tidal zones caused by 

photosynthesis and respiration can be in the range of 0.2–0.3 units [44]. However, it is the very cause 

of this variation that may ameliorate some of the negative effects of climate change; it has been 

predicted that future CO2 may enhance the productivity of marine plants and potentially some  

non-calcifying algae [24,45-47]. Implementing conservation measures to protect large habitat-forming 

algae and seagrasses (c.f. algal turfs which reduce habitat complexity) could allow this adaptive 

capacity to moderate ocean acidification and buffer against some of the negative effects associated 

with increased [CO2]. While this buffering effect is likely to provide global benefits via increased 

carbon sequestration, additional local actions to maintain biomass of photosynthetic organisms in 

systems (e.g., kelp forests or seagrass meadows) may help decrease the effects of elevated CO2 within  

these localities. 

Another management tool to enhance the resilience of systems to climate change would be to 

remove the potential for synergies between climate change and local conditions that have been altered 

by human activities. The presence of herbivores can moderate the effect of local pollution  

(i.e., elevated nutrients) through consumption of bloom-forming macroalgae that drive ecosystem 

shifts at the expense of complex habitat-formers [40,48-51]. There is also evidence that the presence of 

herbivores may increase the resilience of systems to climate-related stressors, as seen with the 

recovery of coral reefs from bleaching events [52]. Therefore, protection of herbivores from harvesting, 

such as through the establishment of Marine Protected Areas, could increase the resilience of natural 

systems to both local and global stressors. 

This moderating effect of herbivory can, however, be overwhelmed by longer-term eutrophication 

events [48,50,53]. Further, it can be reasonably predicted that ocean acidification may disrupt the 
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feeding biology of some herbivores [54,55], restricting their ability to effectively control the nutrient 

or climate-enhanced growth of algae. Therefore, reducing the potential for synergies between local 

conditions and climate change may only be possible by reducing the nutrient load entering marine 

waters from terrestrial sources [37]. Recognition of the need to increase resilience in natural systems 

has lead to more proactive management of local stressors in some regions. In South Australia, local 

government now recognizes the global-local connections of future change, and has implemented  

long-term policy to upgrade wastewater treatment plants and to recapture storm-water to produce 

recycled water for residential and industrial use. While concerned mainly with the provision of 

freshwater for human use, this policy also reduces the nutrient rich discharge that has primarily 

contributed to phase shifts on metropolitan reefs from kelp to turf-dominated [32,34]. 

While recent experimental work indicates that the reduction of pollution or supporting populations 

of herbivores may increase resilience of near-shore marine systems [37,52], it is likely that the regional 

biological context will be an important consideration. In regions which have naturally eutrophic waters 

(e.g., upwelling zones) and strong herbivory it may be more appropriate to use Marine Protected Areas 

to support natural populations of herbivores. Conversely, elevated nutrients can have 

disproportionately large effects in regions which have oligotrophic waters and weak herbivory [56] so 

restricting terrestrial based sources of nutrient pollution may be more affective in maintaining system 

resilience under future climates. Further, regional assessments of the potential impact of climate 

change show that it’s effects will vary geographically and that actions to ameliorate climate change 

will need to differ among regions [57,58]. Therefore, to maximize the effectiveness of actions to 

increase the resilience of natural systems to climate change, it will be necessary to identify the  

regional drivers of systems (e.g., nutrients vs. herbivory) and the likely drivers of future change  

(e.g., temperature vs. increasing [CO2]) 

What we are yet to identify is whether local mitigation measures are likely to be more effective 

when implemented before forecasted climates arrive [59]. Recruitment of habitat-forming species is 

key to ecosystem resilience [60], and both local and global perturbations tend to promote species 

which inhibit recruitment of habitat-forming species [31,34,40,52]. Therefore, it is likely that locations 

which have already undergone loss of habitats driven by anthropogenic perturbations will be less likely 

to recover to their ―natural‖ state if local amelioration actions are implemented after global stressors 

have passed a threshold where recruitment of habitat-forming species is inhibited.  

4. Conclusions  

The anticipated synergies between local conditions and increasing temperature and CO2 have clear 

implications for the function of marine systems globally. In the medium-term, it may be possible to 

promote the resilience of natural systems by either reducing local stressors or supporting populations 

of organisms which will alter the effects of these stressors. Management which limits nutrient addition 

(i.e., stops waste water outfall) or protects herbivores from fishing (e.g., Marine Protected Areas) will 

restrict the growth of bloom-forming algae and possibly prevent system shifts to less desirable states, 

especially if such strategies are implemented in unison. Such management actions cannot, however, 

ameliorate the effect of negative synergies between climate factors (e.g., CO2 and temperature) and 

ultimately the only way to mitigate the effects of climate change is to reduce reliance on carbon-based 

sources of fuel [61]. This understanding is particularly important as managing global-scale changes is 



Sustainability 2010, 2              

 

2597 

inherently difficult because their sheer magnitude requires an international effort to implement policy 

change and because their effects are so long-lasting, if not permanent. 
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