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6. PQ loop repeat proteins in living systems. 
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6.1. Introduction 

A large number of proteins from other living systems share sequence similarity with 

YDR352w and YOL092w (Figure 6-1). In general terms, the greater the similarity 

between two proteins, the higher the probability that they share common functions or 

properties. This premise drives the thought that proteins similar to the yeast PQ loop 

repeat proteins characterised are responsible for non-selective cation flux in other 

systems. By comparing protein sequences it is possible to infer which residues may be 

important for cation flux. 

 

6.2. Results and Discussion 

A difference in MA+ toxicity phenotype was observed between the strains ∑1278b, 

31019b and 26972c/2 (Figure 2-1). Analysis of the YDR352w, YOL092w and 

YBR147w genomic DNA sequences of each of these strains reveals differences 

predicted at the protein level (Figure 6-2). Of these changes, an alteration at Q30H in 

the 26972c2 sequence of YDR352w (Figure 6-2, A) is probably the most relevant. 

This mutation is within the very conserved first PQ loop repeat region. As it is so well 

conserved it is likely to perform an important role in the function of the cell. This 

mutation may result in the phenotypic differences observed between 31019b and 

26972c2 in terms of MA+ tolerance. Unfortunately there was no time to further 

validate this mutation and introduce similar substitutions in YDR352w and observe 

the effect on cation flux. Other mutations are also revealed through sequence 

alignment. YBR147w displays a higher degree of polymorphism between strains 
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compared to YDR352w and YOL092w (Figure 6-2, C). The introduction of a stop 

codon at 91Q in 31019b and frame shifts in the 31019b and ∑1278b sequences 

suggest YBR147w protein is of less functional importance than YDR352w and 

YOL092w and, since 31019b displays a viNSCC-like phenotype (Figure 2-1), 

YBR147w may not contribute to viNSCC mediated flux in yeast.  

 

Knowing the molecular identity of these proteins allows for speculation of their 

function and regulation. Functional analysis of Stm1, a protein of the PQ loop repeat 

family found in Schizosaccharomyces pombe (Chung et al., 2001) has revealed 

conserved residues that may be involved with G protein interaction. Two residues on 

the Stm1 sequence are identified as potential interaction sites, I197 and K199. 

Comparison of the Stm1 sequence with the amino acid sequences of YDR352w and 

YOL092w show that the I197 equivalent is conserved in YOL092w (Figure 6-2, B) 

and the K199 equivalent is conserved in YDR352w (Figure 6-2, A).  

 

Sequence alignments of proteins that share PQ loop repeat motifs may also reveal 

residues of particular interest (Figure 6-2). The loop regions that follow the PQ 

repeats that identify these proteins show a reasonable degree of conservation across 

phyla. The two putative G-coupled protein interaction residues described previously 

are found on the second loop motif (Figure 6-2). The PQ loop regions in these 

proteins show the greatest degree of conservation, in particular the P Q I motif found 

in the first PQ loop of YDR352w and in both domains of YOL092w and YBR147w. 

The second PQ loop of YDR352w has a conserved P Q L motif. For a more detailed 

analysis of structure-based function of these proteins, further work is required. 
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6.3. Materials and Methods 

 

6.3.1. Interrogation of online databases for putative viNSCC 

sequences. 

The protein sequence of YDR352w was retrieved from the Saccharomyces Genome 

Database (SGD) and the BLAST algorithm (Gish, 1996 - 2004) used to find similar 

sequences across all NCBI (http://www.ncbi.nlm.nih.gov/) databases available. 

Standard algorithm parameters were used. All hits were retrieved and downloaded in 

FASTA format.  

 

6.3.2. Sequence alignments and construction of phylogenetic trees 

Protein sequences retrieved were opened in MacVector (Symantec) and compiled into 

a single protein alignment file. The ClustalW alignment algorithm (Chenna et al., 

2003) was then used at standard settings with the exception of altering the matrix to 

BLOSUM and increasing the gap penalty for multiple alignments to 1. Once aligned, 

phylogenetic trees were constructed using the neighbour joining method, absolute 

difference and 1000 bootstrap replications. 

 

6.3.3. Cloning of yeast PQ loop repeat proteins, sequencing, alignment 

and domain prediction 

The genes YDR352w, YOL092w and YBR147w were sequenced from genomic DNA 

extracted from the strains 31019b, 26972c2, CY 152/162 and ∑1278b using flanking 
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primers (Figure 4-6) in conjunction with Big Dye v3.2 (Applied Biosystems). 

Resultant sequences were aligned with each other and those available on the 

Saccharomyces Genome Database (SGD) using MacVector (Accelrys). Prediction of 

trans-membrane domains, prediction of PQ loops and potential G protein interaction 

residues was done through the combination of protein alignments to S. pombe Stm1, 

and data generated from the software packages TMpred (Hofmann, 1993), DAS 

(Cserzo et al., 1997) and TMHMM  (Sonnhammer, 1998).  
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Figure 6-1: Phylogenetic tree of proteins that show significant similarity to the 

sequence of YDR352w. 

 

The protein sequence of YDR352w was used to BLAST NCBI databases and retrieve 

sequences that show similarity (See 6.3.1 and 6.3.2). The phylogenetic tree suggests 

YDR352w and YOL092w may be representative of two distinctions within this 

family as they form clear groupings.  
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*  = Possible G protein binding residue(s) based on comparison to the 

Schizosaccharomyces pombe protein Stm1.  

 

Figure 6-2: ClustalW alignments of PQ loop repeat proteins sequenced from 

various yeast strains. 

Genomic DNA sequences from 31019b, 26972c2, CY 152/162 and ∑1278b were 

sequenced and aligned with sequences available on the SGD, from the strain S288 

(6.3.3). Alignments show sequence specific polymorphisms and putative domains of 

importance (6.3.3). 

C cont. 

TMD 5 PQ loop 2 
* * 

TMD 6 

TMD 7 
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7.  General Discussion 
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7.1. S. cerevisiae PQ loop repeat proteins as viNSCCs 

The S. cerevisiae PQ loop repeat proteins YDR352w and YOL092w have been shown 

to catalyse a viNSCC current in Xenopus oocytes (see Chapter 5). Data obtained 

shows they both catalyse the flux of numerous cations, including K+, Na+ and NH4
+ 

across biological membranes. They have also been shown to be sensitive to external 

Ca2+ concentration, cation flux through these proteins decreases with increased 

external Ca2+ concentration. These data indicate these members of the PQ loop repeat 

protein family induce cation flux that is physiologically similar to other available 

viNSCC data (Tyerman et al., 1995; Bihler, 1998; Davenport, 1998; Davenport and 

Tester, 2000; Bihler, 2002; Demidchik, 2002a). 

 

7.2. viNSCCs as ubiquitous cation flux facilitators 

Evidence of viNSCC activity can be found across many phyla (Hagiwara et al., 1992; 

Siemen, 1993; Bihler, 1998; Davenport, 1998; Bihler, 2002; Demidchik, 2002a). 

Common physiology observed suggests a fundamental functionality is associated with 

the activity of these channels. As an extension of common function, the conservation 

of key residues in the amino acid sequences of the associated proteins is likely to 

maintain structure and function.  

 

7.3. PQ loop repeat proteins as cation channels 

Over-expression of YDR352w and YOL092w in the strain 31019b resulted in 

increased accumulation of MA+ and Na+ according to radiotracer studies (Chapter 4). 
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To complement these data, expression was induced in oocytes of Xenopus laevis and 

current, due to the flux of various cations, measured (Chapter 5).  

 

Properties that suggest these proteins are viNSCCs were gathered using both the yeast 

and Xenopus systems. When over-expressed in yeast, low affinity cation flux was 

observed (Figures 4-5, 4-6 and 4-7). Sensitivity of cation flux to Ca2+ and pH was also 

strongly suggested when these proteins were over-expressed (Figure 4-1 B and C). 

When expressed in the Xenopus system, evidence of channel like cation flux for 

numerous cations (Figures 5-1 to 5-10) was observed. Sensitivity of this flux to 

increasing Ca2+ concentrations was also observed in voltage clamped Xenopus 

oocytes (Figures 5-9 and 5-10).  

 

These data strongly suggest a viNSCC current in being induced, resulting in an 

increase of non-selective cation flux across these biological membranes. It does not, 

however, show the flux is occurring directly through these proteins. It is important to 

consider other possible causes of these phenotypes, especially since the expression 

patterns of these proteins in the systems will probably alter the ‘status quo’ of the 

systems used. It is possible the phenotypes observed are the result of an artefact from 

the expression of these proteins. Over expression of native yeast proteins could have a 

variety of effects, which may induce native viNSCCs and the use of voltage clamped 

Xenopus oocytes is far from a ‘natural’ system. Although inferences made from the 

observation of these data need to be approached cautiously, there is, however, 

evidence that supports the idea that ion flux occurs through these proteins. 
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The induction of this current through the expression of these proteins in both yeast 

and in Xenopus oocytes supports the hypothesis that these proteins directly catalyse 

the cation flux rather than induce native systems. If expression of YDR352w and 

YOL092w induced a native viNSCC, it is unlikely that it would do so in both yeast 

and Xenopus oocytes owing to the significant divergence in their cell biochemistries. 

Secondly, differences in currents catalysed by the expression of YDR352w and 

YOL092w in Xenopus oocytes suggest they catalyse cation flux themselves (Figures 

5-5, 5-6, 5-9 and 5-10). If they both catalysed the production of native viNSCCs, it is 

very unlikely they would be able to influence their physiology differently in such a 

manner.  

 
In Schizosaccharomyces pombe the PQ loop repeat homolog, STM1, is believed to 

interact with the heterotrimeric G protein subunit GPA2 and is termed a G protein 

coupled receptor (GPCR) (Chung et al., 2001). The interaction is predicted to be 

protein – protein and putatively involves amino acids in the PQ loop region (Figure 6-

2). Interestingly, other GPCRs have also been associated with cation flux in plants 

(Wang et al., 2001). AtGPA1 is a heterotrimeric G protein subunit in Arabidopsis 

thaliana which is associated with guard cell signalling through association with an 

unidentified GPCR. Null mutants of GPA1 show defects in ABA response and 

associated K+ flux profiles in guard cells. AtGPA1 shares 33% identity with the S. 

pombe GPA2, shown to interact with a PQ loop repeat protein. The association of G 

proteins, cation currents and potential interactions with PQ loop repeat proteins seem 

tantalisingly possible, although further work is required to demonstrate this.   

 

Mammalian systems are well studied in terms of G protein complexes and their 

interaction with GPCRs. Roughly 40 - 45% of drugs available target GPCRs and 
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subsequently signalling pathways (Filmore, 2004; Bjarnadottir et al., 2006). They are 

involved in numerous signalling pathways that involve cation flux, including 

olfactory responses, glutamate responses and sight signal transduction (Bjarnadottir et 

al., 2006). Several proteins that share similar protein sequences to YDR352w and 

YOL092w have been identified in the human genome. These six or seven trans-

membrane domain proteins may play a role in direct ion flux facilitation for one or 

more of these processes. 

 

 

7.4. Further Investigation 

 
Whilst the data gathered to this point strongly suggests the PQ loop repeat proteins 

YDR352w and YOL092w act as viNSCCs, further investigation is required to fully 

characterise them. 

 

Localisation of these proteins to specific membrane(s) will provide considerable 

information as to the function of these proteins. Large-scale protein screens have not 

revealed a specific membrane these proteins may be active in (Huh, 2003). Definitive 

intercellular localisation is required for these genes. 

 

A more comprehensive assay of the electrophysiological properties of these proteins 

is also required. This includes measurement of flux capacity for as many cations as 

possible to determine the true non-selective nature of this channel. Measurement of 

cation flux, pH influence and the exploration of channel blockers are also required, 

especially due to the structural information such an experiment will reveal.  
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Expression of truncated and mutated versions of these proteins is required to gain 

further structural information. This will also confirm the flux measured is due to ions 

travelling through these proteins and not due to an induced secondary reaction.  

 

The most exciting future work is, however, the analysis of related proteins found in 

other systems. The identification of plant viNSCCs has huge potential in terms of 

modulating salt stress in crops.  
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8. Appendix 
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8.1. Optimisation of conditions for the analysis of PQ loop 

repeat proteins in Xenopus laevis oocytes. 

 
Xenopus laevis oocytes are useful for exploring the electrophysiology of membrane 

bound proteins. We synthesised cRNA of YDR352w and used it to optimise 

conditions for cation flux analysis. Initial experiments used choline-Cl as the 

predominant cation in the bath solution. This is often used to allow good current flow 

without being transported itself due to its size. Choline+ was initially used in the 

bathing solution for the characterisation of PQ loop repeat proteins. 

  

8.1.1. Materials and Methods 

A minimal bath solution was used for these optimisation experiments, 200 mM 

mannitol buffered to pH 7.0 with a trace (approximately 2 mM) amount of Tris-Cl. 

Further cations were added as required. Synthesis and injection of cRNA were as 

5.4.1.1. Electrophysiology was carried out as in 5.4.1.2 with the exception that in 

these experiments a trace amount of Tris-Cl was used as a buffer whereas in the 

experiments in Chapter 5 used 5mM MES / Tris at pH 7.0.  

 

8.1.2. Results 

These experiments revealed a strong induction of current in oocytes injected with 

YDR352w cDNA when voltage was clamped at hyperpolarising potentials (Figure 8-

1A, Figure 8-2, A and B). This is indicative of the native Xenopus Ca2+ activated Cl- 
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channel (Weber, 1999). The induction of this current suggests that either the 

expressed protein is inducing the native Ca2+ activated Cl- channel or that YDR352w 

in facilitating the flux of Ca2+ into the oocyte and driving this Ca2+ activated Cl- 

channel current.  

 

With 1 mM CaCl2 and 2 mM MgCl2 in this basic buffer (Figure 8-1B; Figure 8-2 C 

and D), currents resembling the Ca2+ activated Cl- channel were present, although 

much reduced when compared to the choline-Cl based buffered traces.  

 

Replacing Ca2+ with Ba2+ further reduced the difference between the YDR352w 

injected oocytes and the water injected oocytes (Figure 8-1 C; Figure 8-2 E and F). 

Removal of all divalent cations, leaving only 5 mM MES/Tris, effectively abolished 

any inward positive / outward negative ion flux at negative potentials (Figure 8-1 D; 

Figure 8-2 G and H). 

 

8.1.3. Discussion 

The data gathered from this buffer optimisation suggests that choline+ is carried by 

YDR352w (see Chapter 5) and that Ca2+ influx is also increased into the oocyte. The 

induction of the Ca2+ activated Cl- current indicates that either the higher external Cl- 

concentration was inducing the Ca2+ activated Cl- channel or Ca2+ was being carried 

through YDR352w, which in turn activates the Cl- current. 
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8.2. Investigation of the NH4
+ flux properties of AtAMT 

1;4 and AtAMT 1;5 

 

8.2.1. Introduction 

Much research has been carried out in the characterisation of proteins of the 

MEP/AMT/Rh class. Heterologous expression in yeast mutants has played a major 

role in this characterisation, from initial identification of the S. cerevisiae MEPs 

(Marini et al., 1997) and the first AtAMT (Gazzarrini et al., 1999) to the subsequent 

characterisation of remaining Arabidopsis  AMTs  and the properties of the human 

RhAG and RhGK proteins. Recently, advances have been made using other systems 

such as Xenopus laevis oocyte expression (Ludewig et al., 2003)(Wood, 2006) and the 

construction of an Arabidopsis effectively devoid of functional AMTs for the 

characterisation of NH4
+ flux (Yuan et al., 2007; Yuan et al., 2007). A potential flaw 

exists in data collected in such a manner as NH4
+ efflux is difficult to measure and is 

often ignored. Using heterologous expression in the S. cerevisiae strain 31019b 

(Marini et al., 1997) the catalysis of NH4
+ influx and efflux due to the high affinity 

NH4
+ transporters AtAMT1;1, AtAMT1;2, AtAMT1;4 and AtAMT1;5 were 

investigated. 
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8.3. Results 

8.3.1. MA+ influx and efflux through AtAMTs expressed in 

Saccharomyces cerevisiae 

The NH4
+ analogue, methylammonium (MA+) was labelled with 14C MA+ and the 

influence of AtAMTs on the influx and efflux of MA+ measured in a S. cerevisiae 

expression system. Overall, all AtAMTs investigated showed a net influx of MA+ into 

yeast cells (Figure 8-3). This is consistent with published data (Gazzarrini et al., 1999; 

Shelden, 2001) (Loque and von Wiren, 2004; Yuan et al., 2007). To investigate the 

hypothesis that NH4
+/MA+ efflux was catalysed through AMTs (Britto, 2006) (Loque 

and von Wiren, 2004), a series of experiments were designed to further exploit the S. 

cerevisiae expression system (8.5.2 and 8.5.3). 

 
The efflux of MA from all samples tested followed a biphasic pattern. Initial efflux, 

from 0 to 5 minutes, was characterised by a rapid release of MA+ from the cells to the 

efflux buffer. The rate of efflux reduced from 5 to 30 minutes.  

 

In cells expressing AtAMT1;1, initial MA+ accumulation was 7.32 �mol MA+ / mg 

protein which fell to 1.41 �mol / mg protein within 5 minutes of efflux commencing 

in the NH4
+ / MA+ buffer (Figure 8-4). AtAMT1;2 ranged from 4.12 �mol MA+ / mg 

protein to  1.28 �mol MA+ / mg of protein , AtAMT1;4 from 3.08�mol MA+ / mg 

protein to 0.92 �mol MA+ / mg protein and AtAMT1;5 from 576 nmol MA+ / mg 

protein to 317 nmol MA+ / mg protein in this same buffer (Figure 8-4).  
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With the exception of AtAMT1;5 expressing cells, which is much lower overall, all 

other cells expressing AtAMTs had 14C labelled MA+ efflux curtailed when 

resuspended in a buffer consisting of 20 mM K2HPO4 / KH2PO4 only (Figure 8-4).   

 

To investigate if membrane potential influenced observed MA+ efflux, the protocol 

was modified to introduce high concentrations of K+ in the efflux buffer. Flux of K+ 

through native yeast proteins would certainly depolarise the membrane potential and 

recreate in some way conditions akin to the large-scale movement of MA+ through 

over-expressed AMTs. Depolarisation due to the addition of excess K+ did not induce 

MA+ efflux, unlike buffers containing MA+ / NH4
+ (Figure 8-5). 
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8.4. Discussion 

8.4.1. Putative AtAMT mediated MA+ efflux from yeast 

AMT mediated efflux of NH4
+ has been suggested as a possible mechanism of 

observed NH4
+ efflux phenotypes in plants (Loque and von Wiren, 2004). These data 

suggest that this may be the case, although further work is required to decisively 

answer this. 

 

The observed efflux is due either to the expressed AtAMTs facilitating MA+ efflux 

from the cells or through the activity of native yeast protein(s) (Figure 8-4). The 

influx of positively charged MA+ into the yeast cells will in part act to depolarise the 

plasma membrane (Borst-Pauwels, 1992; Wood, 2006) and thus reduce the energy 

requirements of MA+ efflux. Any passive diffusion through a native channel-like 

protein would increase with lowered membrane potential. Addition of 200 mM K+, 

depolarising membrane potential did not increase MA+ efflux. It is therefore unlikely 

that MA+ efflux is catalysed through native yeast channels using membrane potential 

as a driving force. Concentration gradients may also influence MA+ flux through 

channel-like proteins, as ion flux will occur from high to low concentration. This is 

particularly relevant in the event of membrane depolarisation occurring.  

 

8.4.2. Concentration gradient effects 

These data do not support MA+ flux down a concentration gradient as being the 

causative effect of observed efflux. Greater 14C labelled MA+ efflux is measured from 

cells resuspended in buffer containing MA+ and NH4
+ than without, therefore the 
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conditions with a reduced concentration gradient actually encourage MA+ efflux. 

Internal cellular MA+ concentration was also not a factor impacting observed efflux. 

Empty vector transformed cells loaded with MA+ at 50 mM concentration, to a point 

where their internal MA+ concentration is comparable to AMT expressing cells, did 

not exhibit the efflux response observed in AMT expressing yeast (Figure 8-4). 

 

8.4.3. Membrane depolarisation effects 

The rapid flux of NH4
+ or MA+ could lead to a depolarisation of membranes that 

would increase the probability of cations leaving the cell through passive transport 

(Wood, 2006). The addition of 200 mM KCl will result in strong membrane 

depolarisation (Borst-Pauwels, 1992; Maresova, 2006). Therefore, if efflux of MA+ is 

favoured by increasing depolarisation of cellular membranes, an increase of MA+ 

efflux should occur under these conditions. Our data showed very little difference in 

the amount of MA+ effluxed with the addition of 200 mM K+ to the efflux buffer, 

indicating that changes in yeast membrane potential has little influence on the rate of 

MA+ efflux in AtAMT expressing cells (Figure 8-5).  

 

8.4.4. MA+ / NH4
+ efflux 

NH4
+ efflux has been long observed in plant and yeast systems (Epstein, 1962; Wang 

et al., 1993, 1993; Ninnemann, 1994; Marini et al., 1997; Palková, 1997; Marini, 

2000). Increased NH4
+ efflux from plant roots as a response to high external NH4

+ 

concentration has been reported (Kronzucker, 2001) and theorised this to be an 

attempt by the plant to control cellular NH4
+ concentrations. A marked reduction in 
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the efflux of NH4
+ on the basis of the concentration external to the plant was 

observed, with lower concentrations inducing less efflux (Kronzucker, 2001).  

 

8.4.5. AtAMTs as effluxers of MA+ / NH4
+ 

AtAMTs have been classified as NH4
+ uniporters, a characteristic supported by recent 

Xenopus laevis oocyte expression analyses of AtAMT 1;1 (Wood, 2006) and AtAMT 

1;2 (Neuhauser et al., 2007), which show no evidence of NH4
+ efflux at depolarised 

membrane potentials. Likewise, expression of LeAMT1;2 in X. laevis oocytes 

strongly suggested a net inward flow of positive charge (Mayer, 2006). In this same 

study, however, the human Rhesus-like protein RhCG was shown to facilitate the 

electroneutral influx of MA+ into X. laevis oocytes. When expressed in the 

ammonium transport deficient strain 31019b, RhAG did not confer a growth rescue 

phenotype on media containing low NH4
+ nor did it result in toxicity when grown on 

media containing 125 mM MA. This phenotype is also observed when 31019b is 

transformed with the closely related RhAG protein (Marini et al., 2000), which was 

shown to contribute to NH4
+ efflux from yeast cells.  

 

Import / export are considered to be linked to the substrate binding site of the pore 

within the Mep / AMT / Rh proteins. The crystallisation of the E. coli AMTB protein 

strongly suggests that the unprotonated species, NH3, is transported rather than the 

NH4
+ that is generally accepted to be transported through plant AMTs. Mayer et. al, 

(2006) suggest the electro-neutral accumulation of MA+ in oocytes through RhCG 

occurs either through the passage of NH3 through the protein or the outward 

movement of a cation, probably H+, to compensate for the inward flux of NH4
+. These 

would both explain the accumulation of MA+ and the alkalinisation of the oocytes 
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cytosol observed. It is conceivable that in the case of Rh proteins, the maintenance of 

electro-neutral transport is achieved through the import of MA+ / NH4
+ coupled with 

the export of another cation. In conditions of high cellular NH4
+ / MA+ 

concentrations, the exported cation could quite possibly be MA+ / NH4
+. This would 

be an elegant and simplistic mechanism for the maintenance of NH4
+ concentrations 

within a cell type.  

 

Each AMT has a different affinity to NH4
+ / MA+ which in part limits the rate of 

NH4
+ uptake. If this was coupled to an efflux capability, presumably also with 

differing substrate affinities, it could lead to an effective and simplistic manner with 

which cellular NH4
+ could be controlled. 

 

This analysis of MA+ efflux and its relationship to AtAMTs in 31019b has resulted in 

data remarkably similar to that gathered during investigations of NH4
+ efflux from 

plants (Kronzucker, 2001). When empty vector transformed 31019b, loaded with a 

comparable amount of MA+, is subjected to varying external concentrations of MA+ 

and NH4
+, this response is absent. The presence of expressed AtAMTs undoubtedly 

contributes to this phenotype although further work is required to complete this line of 

research. 
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8.5. Materials and Methods 

8.5.1. Transformation of yeast expression vectors containing 

Arabidopsis AMTs into yeast. 

Clones of the Arabidopsis thaliana Col 0 AMTs in the yeast expression vector pYES3 

(Smith et al., 1995) were obtained from Dr. Brent Kaiser (AtAMT1;1), Dr. Megan 

Shelden (AtAMT1;2) and Dr. Sunita Ramesh (AtAMT1;4 and AtAMT1;5). Yeast 

strain 31019b (mep1∆, mep2∆, mep 3∆, URA3) was grown in liquid YPAD (yeast 

extract 1% (w/v), peptone 2% (w/v), D-glucose 2% (w/v) and adenine sulfate 0.004% 

(w/v) pH 6.5) at 28�C with constant shaking at 200 rpm to late-log phase. An aliquot 

of culture was used to inoculate 100ml of YPAD to OD600 = 0.1. Cells were grown at 

28�C with constant shaking at 200 rpm to an OD600 = 0.4 – 0.6. Cells were harvested 

by centrifugation at 4000 x g for 4 minutes and washed twice with sterile MilliQ H2O. 

Yeast were transformed using the lithium acetate / polyethylene glycol method (Gietz, 

1995). 100�L aliquots of transformed cells were plated on to YNB glucose solid 

media (yeast nutrient base (BD biosciences, San Jose, USA) 0.67% (w/v), D-glucose 

2% (w/v) pH 6.5) and incubated at 28�C for 2 days.  Individual colonies were selected 

for their ability to overcome the URA3 deficiency in yeast.  
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8.5.2. 14C labelled methylammonium influx into S. cerevisiae strain 

31019b expressing Arabidopsis AMTs. 

Cells were initially grown to late log phase in liquid YNB supplemented with 2% D-

glucose (w/v).  Cells were harvested by centrifugation and washed in milliQ H2O and 

then used to inoculate Grensons liquid media (pH 6.5) containing 0.1% L-proline and 

2% D-galactose to a final OD600 = 0.1. Cells were incubated overnight at 28�C with 

constant shaking (200 rpm) and harvested once they reached an OD600 of 0.4 – 0.7.   

Cells were washed twice in MilliQ H2O and then re-suspended in 20mM K2HPO4 / 

KH2PO4 buffer pH 6.5 containing 2% (w/v) D-galactose to give a final OD600 

between 4-6.  A 2x reaction buffer containing a defined concentration of 14C 

(Amersham) labelled MA+ and 20mM K2HPO4 / KH2PO4 buffer (pH 6.5) was added 

to an equal volume of resuspended cells at T = 0 and were shaken continuously in a 2 

ml Eppendorf tube. At the specified time, samples were removed, passed through a 

0.45�M nitrocellulose filter (Whatman) and washed with 10 ml of ice-cold 20 mM 

K2HPO4 / KH2PO4 buffer to cease MA+ flux. Membranes were collected, placed in a 

7 ml scintillation vial (Sarstedt) and 4 ml of aqueous scintillation fluid added (Perkin 

Elmer).  Samples were counted in a liquid scintillation counter (Packard) and counts 

(CPM) converted into the equivalent amount of MA+ and samples were normalised 

against total yeast protein in a typical reaction volume (Peterson, 1977). 

 

8.5.3. 14C labelled MA+ efflux from S. cerevisiae strain 31019b 

expressing Arabidopsis AMTs.                                  

Cells were initially grown to late log phase in liquid YNB supplemented with 2% D-

glucose (w/v).  Collected and washed cells were transferred to Grensons liquid media 

(pH 6.5) containing 0.1% L-proline and 2% D-galactose to a final OD600 = 0.1.  Cells 
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were grown to an OD600 = 0.4 – 0.7 and then resuspended in 20mM K2HPO4 / 

KH2PO4 reaction buffer (pH 6.5) containing 2% (w/v) D-galactose to give a final 

OD600 of 4-6.   Cells were then mixed with 14C-MA+ reaction buffer containing either 

0.5 mM MA+ (AMT containing cells) or 50 mM MA+ (pYES3 controls) for 30 

minutes. Cells were harvested by centrifugation at 13000 x g and the 14C labelled 

supernatant aspirated. Resuspension of the cells was in a 20mM K2HPO4 / KH2PO4 

based buffer at pH 6.5 with either no addition, 0.5mM MACl or 0.5mM MACl and 

5mM NH4Cl. In depolarisation experiments, resuspension was carried out in buffers 

as above but with the addition of 200 mM KCl. Samples were withdrawn at the 

specified time and filtered through a 0.45�M syringe filter (Bio Lab, Adelaide, 

Australia) and both the filter and the filtrate collected and counted separately. 
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Figure 8-1: Optimisation of bath solutions to analyse cation flux in Xenopus 

laevis oocytes expressing PQ loop repeat proteins 

 
Xenopus laevis oocytes were injected with either YDR352w cRNA or nuclease free 

H2O and incubated as described in the methods of Chapter 6. Oocytes were exposed 

to the standard voltage protocol (Chapter 5 Figure 12) in various bath solutions. (A) 

100 mM Choline Cl, 2mM MgCl2, 1 mM CaCl2, 5 mM MES/Tris pH 6.5; (B) 200 

mM Mannitol, 2 mM MgCl2, 1 mM CaCl2, pH 7.0 Tris; (C) 200 mM Mannitol, 2 mM 

MgCl2, 2 mM BaCl2, pH 7.0 Tris; (D) 200 mM Mannitol, 5mM MES/Tris pH 7.0. 

Buffer D showed no evidence of the Ca2+ activated Cl- channel and was used as a 

base for further experiments.  Data presented is the mean ± SE  (n ≥ 4 oocytes). 
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Figure 8-2: Representative traces produced through the optimisation of 

solutions. 

 
Representative traces of traces generated as part of collecting data for figure 1 A. 

Oocytes injected with cRNA of YDR352w are in panels A, C, E & G and H2O 

injected oocytes in panels B, D, F and H. Bathing solutions were: 100 mM Choline 

Cl, 2mM MgCl2, 1 mM CaCl2, 5 mM MES/Tris pH 6.5 (A and B); 200 mM Mannitol, 

2 mM MgCl2, 1 mM CaCl2, pH 7.0 Tris (C and D); 200 mM Mannitol, 2 mM MgCl2, 

2 mM BaCl2, pH 7.0 Tris (E and F); 200 mM Mannitol, 5mM MES/Tris pH 7.0 (G 

and H).  
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Figure 8-3: Accumulation of 14C labelled MA+ into yeast cells expressing 

Arabidopsis AMTs 

 
S. cerevisiae strain 31019b was transformed with AtAMTs and net influx of MA+ 

measured (section 8.5.2). Data expressed relative to total protein. Data is mean ± SE 

(n = 4). 
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Figure 8-4: The influence of expressing AtAMTs and external MA+ / NH4

+ 

concentration on 14C labelled MA+ efflux from yeast cells. 

 
S. cerevisiae strain 31019b was loaded with 14C labelled MA+ (section 8.5.3) and 

placed into an efflux buffer containing either 20 mM K2HPO4 / KH2PO4 (A and C) or 

20 mM K2HPO4 / KH2PO4 + 0.5 mM MA+ + 5 mM NH4
+ (B and D). Efflux of 14C 

labelled MA+ was measured both by measuring efflux into the surrounding buffer (A 

and B) and depletion from loaded cells (C and D).  
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Figure 8-5: Effect of membrane depolarisation on MA+ efflux from S. cerevisiae 

expressing Arabidopsis AMTs. 

 
 
S. cerevisiae strain 31019b was loaded with 14C labelled MA+ (section 8.5.3) and 

placed into an efflux buffer containing either 20 mM K2HPO4 / KH2PO4, 20 mM 

K2HPO4 / KH2PO4 + 200 mM KCl or 20 mM K2HPO4 / KH2PO4 + 0.5 mM MA+ + 5 

mM NH4
+ + KCl. Efflux of 14C labelled MA+ was measured for cells expressing 

AtAMT1;1 (A and B), AtAMT1;2 (C and D) and AtAMT1;4 (E and F). MA+ efflux 

was measured both as decreasing content in the cells (A, C and E) and as increasing 

concentrations in the buffer (B, D and F). 
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