Design, Characterisation and Optimisation of a SAW Correlator Driven, Wireless, Passive Microvalve For Biomedical Applications

by

AJAY CHANDRA TIKKA

Master of Engineering, RMIT University, Australia 2004.

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering The University of Adelaide, Australia

October, 2009

© 2009 AJAY CHANDRA TIKKA All Rights Reserved

Contents

Conten	ts	iii
Abstrac	t	vii
Statem	ent of Originality	ix
Acknow	ledgments	xi
Abbrevi	ations and Symbols	xiii
Publica	tions	vii
List of	Figures	xix
List of	Tables	xiii
Chapte	1. Introduction	1
1.1	Motivation	1
	1.1.1 Conventional Microvalves	3
	1.1.2 Wireless SAW Technology	6
1.2	Objectives	9
1.3	Research Focus	11
	1.3.1 SAW Parameter Extraction Using Finite Element Analysis	14
	1.3.2 Finite Element Method Modelling of SAW Correlator	15
	1.3.3 A SAW Based Remotely Actuated Microvalve Modelling	17
	1.3.4 Wireless Telemetry System for the Implanted Microvalve	18
1.4	Thesis Structure	20
Chapte	2. SAW Parameter Extraction Using Finite Element Analysis	23
2.1	Introduction	23
2.2	Coupling-of-modes Model	25

2.3	P-matrix Model		
2.4	COM	P-matrix Parameters and Extraction Techniques	32
	2.4.1	Test Structures	33
	2.4.2	Perturbation Method	34
	2.4.3	Finite Element Method-Spectral Domain Analysis (FEM/SDA) .	35
	2.4.4	Finite Element Method-Boundary Element Method (FEM/BEM)	35
	2.4.5	Direct Finite Element Method (FEM)	37
2.5	FEM c	of a Infinite Periodic Grating	39
	2.5.1	Geometry	39
	2.5.2	Periodic Boundary Conditions	40
2.6	Result	S	41
	2.6.1	Modal Analysis	42
	2.6.2	Harmonic Analysis	43
2.7	Param	eter Extraction	45
2.8	Exper	imental Validation of Extracted Parameters	48
2.9	Concl	usion	51
Chapte	r 3. Fi	nite Element Method Modelling of SAW Correlator	53
Chapte 3.1	r 3. Fi Introd	nite Element Method Modelling of SAW Correlator	53 53
Chapte	r 3. Fi Introd SAW (nite Element Method Modelling of SAW Correlator uction	53 53 55
Chapte 3.1	r 3. Fin Introd SAW 0 3.2.1	nite Element Method Modelling of SAW Correlator uction	53 53 55 58
Chapte 3.1 3.2	r 3. Fi Introd SAW (3.2.1 3.2.2	nite Element Method Modelling of SAW Correlator uction	53 53 55 58 62
Chapte 3.1	r 3. Fi Introd SAW (3.2.1 3.2.2 SAW (nite Element Method Modelling of SAW Correlator uction	 53 55 58 62 63
Chapte 3.1 3.2	r 3. Fin Introd SAW (3.2.1 3.2.2 SAW (3.3.1	nite Element Method Modelling of SAW Correlator uction Correlator Coding Schemes Signal Correlation Correlator Modelling Techniques Delta Function Modelling	 53 55 58 62 63 64
Chapte 3.1 3.2	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2	nite Element Method Modelling of SAW Correlator uction	 53 53 55 58 62 63 64 65
Chapte 3.1 3.2 3.3	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2 3.3.3	ite Element Method Modelling of SAW Correlator uction	 53 53 55 58 62 63 64 65 67
Chapte 3.1 3.2	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2 3.3.3 Correl	nite Element Method Modelling of SAW Correlator uction Correlator Coding Schemes Signal Correlation Correlator Modelling Techniques Delta Function Modelling Equivalent Circuit Modelling Finite Element Method Modelling ator design using FEM	 53 53 55 58 62 63 64 65 67 71
Chapte 3.1 3.2 3.3	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2 3.3.3 Correl 3.4.1	nite Element Method Modelling of SAW Correlator uction Correlator Coding Schemes Signal Correlation Correlator Modelling Techniques Delta Function Modelling Equivalent Circuit Modelling Finite Element Method Modelling ator design using FEM Geometry	 53 53 55 58 62 63 64 65 67 71 71
Chapte 3.1 3.2 3.3 3.4	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2 3.3.3 Correl 3.4.1 3.4.2	nite Element Method Modelling of SAW Correlator uction Correlator Coding Schemes Signal Correlation Correlator Modelling Techniques Delta Function Modelling Equivalent Circuit Modelling Finite Element Method Modelling ator design using FEM Geometry Boundary Conditions	 53 53 55 58 62 63 64 65 67 71 71 73
Chapte 3.1 3.2 3.3	r 3. Fin Introd SAW 0 3.2.1 3.2.2 SAW 0 3.3.1 3.3.2 3.3.3 Correl 3.4.1 3.4.2 Fabric	nite Element Method Modelling of SAW Correlator uction Correlator Coding Schemes Signal Correlation Correlator Modelling Techniques Delta Function Modelling Equivalent Circuit Modelling Finite Element Method Modelling ator design using FEM Geometry	 53 53 55 58 62 63 64 65 67 71 71

Contents

	3.6.1	Harmonic Analysis	77
	3.6.2	Transient Analysis	80
	3.6.3	Effect of the shear horizontal wave component on the correlator	
		response	81
	3.6.4	Correlator response analysis for mismatched code	83
3.7	Conclu	usion	84
Chapter	r 4. A	SAW Based Remotely Actuated Microvalve Modelling	85
4.1	Introd	uction	85
4.2	SAW c	levices for Microfluidic Applications	87
	4.2.1	Acoustic Streaming	88
4.3	Wirele	ss Microvalve Design	90
	4.3.1	Principle of Operation	91
	4.3.2	Electroacoustic Correlation	95
	4.3.3	Electrostatic Actuation	96
4.4	Microo	hannel Electrostatic Actuation	99
4.5	Results and Discussion		
4.6	Conclu	asion	105
Chapter	r 5. W i	ireless Telemetry System for the Implanted Microvalve	107
5.1	Introd	uction	107
5.2	Desigr	Considerations	110
	5.2.1	Inductive Coupling of a SAW Correlator	110
	5.2.2	Biomedical Application	113
	5.2.3	Human Body Phantom	114
5.3	Transn	nitter Receiver Architecture of a Wireless Powered Microvalve	117
5.4	Induct	ive Link Design	119
	5.4.1	Implanted Coil/Antenna	119
	5.4.2	Handheld Coil/Antenna	123
	5.4.3	Coupling in the Presence of Human Body Phantom	124
5.5	Result	s and Discussion	128

Contents

	5.5.1	Quality Factor and Effective Inductance	128
	5.5.2	Received Relative Signal Strength	130
	5.5.3	Coil Misalignment and Implant Tilting	134
5.6	Concl	usion	136
			107
Chapte	er 6. C	onclusion	137
6.1	Sumn	nary	138
6.2	Futur	e Perspective	141
Appen	Appendix A. Appendix		143
Bibliography		145	
DIDIIOB	арпу		143
Index			159

Abstract

The culmination of rapid advances made in the areas of microelectromechanical systems (MEMS), nonregenerative power sources, nanotechnology, and biomedical engineering have resulted in the expansion of their horizons in modern medicine for the deployment of a wide array of implantable devices. However, the lifetime and remote interrogability of implants, specifically used for drug delivery applications, has been an issue of contention, as their deployment period is limited by the battery life and the device size. Furthermore, not much research effort is directed towards remotely controlled flow manipulation using passive components. These shortcomings are addressed in this thesis by employing surface acoustic wave (SAW) technology to design a novel RF powered, secure coded, active microvalve with fully passive components. By combining the complex signal processing capabilities of the acoustic wave correlator with the electrostatic actuation of the microchannel, the advantages of both the mechanisms are incorporated into a novel microvalve design. Fluid pumping can be achieved at ultrasonic frequencies by electrostatically actuating the edge clamped microchannel, placed in between the compressor interdigital transducer's (IDT's) of two identical SAW correlators. The ability to wirelessly administer doses of drug accurately, for an extended period of time, at an inaccessible target location, through an implanted microvalve has the potential to revolutionise health care for long-term, controlled drug release applications.

Three specific and diverse areas within MEMS, the new device builds on, are investigated by taking a comprehensive design, modelling, optimisation and experimental validation approach for majority of the research endeavors in the thesis. The first area corresponds to SAW technology followed by microfluidics, and body-centric communications; driven by the ultimate goal to demonstrate the operational feasibility of a human implanted, wirelessly controlled microvalve. The proposed specialised design necessitated a thorough understanding of the multiple coupled physics phenomena at the process level, before fabrication, for the critical investigation and refinement of the individual microvalve components. A comprehensive finite element modelling technique, where the complete set of partial differential equations are solved, was used to design these microvalve components with low level of abstraction to enable an automatic inclusion of the majority of the second order effects.

As a starting point for the FEM modelling of SAW devices, an infinite periodic grating was modelled to analyse the freely propagating eigenmodes and eigenvalues with modal analysis; and electrically active waves and electrical admittance with harmonic analysis. A curve fitting technique was employed to extract the COM/P-matrix model parameters from these FEM results. Furthermore, an experimental validation of the parameters extracted using this novel combination of FEM and fitting techniques was carried out by fabricating a number of delaylines and comparing the physical structure response with the formulated P-matrix model. On the other hand, the modelling of a 2 and 3-dimensional, 5×2-bit Barker sequence encoded acoustic wave correlator was demonstrated using FEM. The correlator's response was quantified in terms of harmonic analysis, to obtain the electrical admittance and output voltage profile, and transient analysis, to study the acoustic wave propagating characteristics and correlation pulses. The validation of these simulation results was carried out by fabricating the SAW correlators using optical lithographic techniques. A good agreement between the numerical and experimental results highlighted the feasibility and potential of using FEM for application specific modelling of SAW correlators.

The complexity involved in combining the electroacoustic correlation and electrostatic actuation mechanisms, necessitated a systematic design and optimization of the novel microvalve which is best possible with FEM. In this thesis, the emphasis was on the design and optimisation of a novel microfluidic structure through the deflection analysis, both, to verify the functionality of the concept and to investigate the working range of the structure. Secure interrogability of the microvalve was demonstrated by utilising finite element modelling of the complete structure and the quantitative deduction of the code dependent, harmonic and dynamic transient microchannel actuation. A numerical and experimental analysis of the biotelemetry link for the microvalve was undertaken in the vicinity of numerical and physical human body phantoms, respectively. To accurately account for the path losses and to address the design optimisation, the receiver coil/antenna was solved simultaneously with the transmitter coil/antenna in the presence of a human body simulant using 3-dimensional, high frequency electromagnetic, FEM modelling. The received relative signal strength was numerically and experimentally derived for a miniature ($6 \times 6 \times 0.5$ mm), square spiral antenna/coil when interrogated by a hand-held $8 \times 5 \times 0.2$ cm square spiral antenna/coil in the near field. Finally, the experimental results confirmed well with the FEM analysis predictions and hence ascertained the applicability of the developed system for secure interrogation and remote powering of the newly proposed microvalve.

Statement of Originality

Name: Ajay Chandra Tikka

Program: Doctor of Philosophy (PhD)

This work contains no material which has been accepted for the award of any degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

26th October, 2009

Signed

Date

Acknowledgments

As I ponder over my research endeavors for the past 3.5 years, it does not take much time to realise that this dissertation materialised mainly due to the guidance and support of numerous individuals.

First and foremost, I would like to thank my supervisor Dr. Said Al-Sarawi for reposing trust in me, introducing me to various multi-disciplinary projects, willingness to discuss everything under the sun, and being a bedrock of support and assurance. I am indebted to you for tirelessly reviewing all our publications including this thesis. It has been an honor and a pleasure working with you. I express my gratitude to my co-supervisor Professor Derek Abbott for his unwavering support and guidance. You never cease to amaze me with your unbound energy and omnipresent capabilities!

I gratefully acknowledge the funding agency Australian Research Council (ARC) Discovery for the generous grant which facilitated this research. Furthermore, I extend my sincere thankfulness to Dr. Igor Switala and his team from the Defence Science and Technology Organisation (DSTO), for the useful discussions and assistance with the fabrication of SAW devices and miniature antennas. Your abundant enthusiasm and patience have made an immense difference. I would also like to thank Mr. Leonard Green from Adelaide Microscopy for his support with microanalysis of the structures. I had the privilege of holding several discussions and later visiting Professor Vijay K. Varadan (University of Arkansas, USA). I hold him in the highest esteem for inspiring me with his vision for smart structures and emerging technologies.

I would like to express my appreciation for all the fellow researchers at the University of Adelaide for creating a conducive environment. In particular, Don for your friendship and support in both good times and hard times. It would have been a rough ride without you. Ben and Akhilesh for the useful discussions and assistance with setting up the test equipment.

Lastly, I would like to thank my family for always being there: Mom and Dad for their unconditional love and support and Vinay, my brother, for encouraging me to pursue a PhD. Thank you all!

Abbreviations and Symbols

Abbreviations

AC	Alternating Current
BAW	Bulk Acoustic Wave
BEM	Boundary Element Method
BPSK	Binary Phase Shift Keying
COM	Coupling Of Modes
DC	Direct Current
DIL	Dual In Line
DOF	Degress Of Freedom
EM	Electromagnetic
FDS	Frequency Domain Sampling
FDTD	Finite Difference Time Domain
FEM	Finite Element Method
FM	Frequency Modulation
HFEM	Hybrid Finite Element Method
IDT	Interdigital Transducer
LSAW	Leaky Surface Acoustic Wave
MEMS	Microelectromechanical Systems
MLS	Maximum Length Sequence
MR	Metallization Ratio
PBC	Periodic Boundary Condition
Q-factor	Quality Factor
Q-factor RF	Quality Factor Radio Frequency
RF	Radio Frequency
RF RFID	Radio Frequency Radio Frequency Identification
RF RFID RTO	Radio Frequency Radio Frequency Identification Remote Turn On
RF RFID RTO SAW	Radio Frequency Radio Frequency Identification Remote Turn On Surface Acoustic Wave
RF RFID RTO SAW SDA	Radio Frequency Radio Frequency Identification Remote Turn On Surface Acoustic Wave Spectral Domain Analysis
RF RFID RTO SAW SDA SEM	Radio Frequency Radio Frequency Identification Remote Turn On Surface Acoustic Wave Spectral Domain Analysis Scanning Electron Microscope
RF RFID RTO SAW SDA SEM STW	Radio Frequency Radio Frequency Identification Remote Turn On Surface Acoustic Wave Spectral Domain Analysis Scanning Electron Microscope Surface Transverse Wave

Symbol	Name	Unit
a	displacement vector	m
Α	delayline admittance matrix	mixed
A_0	overlapping area	m ²
В	bandwidth	Hz
B(f)	susceptance	S
С	loaded wavenumber	rad/m
С	stiffness	N/m^2
С	capacitance	F
C_n	normalised capacitance	F
C_p	periodic capacitance	F
D	electrical flux	C/m^2
DR_o	dispersion relation for open circuit grating	-
DR_s	dispersion relation for short circuit grating	-
d	distance	m
E	electric field	V/m
E _c	electromechanical coupling energy	J
E_k	electric field vector	V/m
е	piezoelectric stress constant	C/m^2
F	force	Ν
F_E	electrostatic force	Ν
F^E	nodal electrostatic force	Ν
F_N	noise figure	dB
\mathbf{F}^N	nodal force vector	Ν
\mathbf{F}^{TH}	thermal force vector	Ν
f_c	center frequency	Hz
f_B	bit rate	Hz
f_{M+}	anti-symmetric SAW modal frequency	Hz
f_{M-}	symmetric SAW modal frequency	Hz
G	gain	-
G(x)	Green's function	mixed
G(f)	conductance	S
G(f)	transfer function	mixed
[G]	strain-displacement matrix	mixed
8	spacing between coil turns	m
Н	magnetic field strength	A/m

Symbol	Name	Unit
Ι	current	А
[I]	identity matrix	-
j	unit imaginary number	-
Κ	Boltzmann's constant	-
[K]	structural stiffness matrix	mixed
$[K_d]$	dielectric permittivity matrix	mixed
L	IDT length	m
L	inductance	Н
L _{eff}	effective inductance	Η
l _{avg}	average diameter of the square spiral	m
l _{tot}	total length of the square spiral	m
М	mutual inductance	Н
[M]	mass matrix	mixed
[N]	structural shape function	mixed
$[N_E]$	electrical shape function	mixed
N_B	binary bits	-
п	normalised wavenumber	-
п	number of coil turns	-
Р	power	W
P(f)	P-matrix	mixed
р	period of the grating	m
<i>p</i> _a	radiation pressure	Pa
Q	quality factor	-
9	complex charge of the electrodes	С
q_n	nodal charge density	C/m
R	resistance	Ω
R _s	residual vector of elastostatic field	-
R _e	residual vector of electromechanic field	-
S	strain	-
S ₁₂	insertion loss	dB
S_{P}	power density	W/m^2
SNR	signal-to-noise ratio	-
Т	stress	N/m^2
T_C	temperature	°C
T_B	bit time	sec

t_s substrate thicknessm u particle displacementm V voltage V v_i nodal electrical potential V W width of the coilm Y admittance S Z impedance Ω ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuum Vs/Am λ wave lengthm λ_t wave length in lossy mediumm v Velocity m/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivity F/m ρ mass densitykg/m ³ ϕ electrical scalar potential V σ conductivity S/m^2 ∇ gradient of a scalar field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vector N/m^2 δ_p penetration depthm α fill ratio-	Symbol	Name	Unit
V voltage V v_i nodal electrical potential V w width of the coilm W admittanceS Z impedance Ω ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm v Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter Nep/m ϵ_r relative dielectric constant- ϵ_t complex permittivity F/m ρ mass densitykg/m ³ ϕ electrical scalar potential V σ conductivity S/m^2 ∇ gradient of a scalar fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vector N/m^2 δ_p penetration depthm ac fill ratio-	t_s	substrate thickness	m
v_i nodal electrical potentialV W width of the coilm Y admittanceS Z impedance Ω ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm v Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm a fill ratio-	и	particle displacement	m
Wwidth of the coilmYadmittanceSZimpedance Ω ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm v Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm α fill ratio-	V	voltage	V
YadmittanceSZimpedance Ω ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ ∇_{L} divergence of a vector fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	v_i	nodal electrical potential	V
Zimpedance Ω ω angular frequency $rads^{-1}$ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm v Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter Nep/m ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	W	width of the coil	m
ω angular frequencyrads ⁻¹ μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm	Ŷ	admittance	S
μ propagation constant- μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameterNep/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV ∇ gradient of a scalar fieldm^{-1} ∇_c divergence of a vector fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm	Ζ	impedance	Ω
μ_0 permeability of vacuumVs/Am λ wave lengthm λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter Nep/m ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	ω	angular frequency	$rads^{-1}$
λ wave lengthm λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar field m^{-1} ∇_c divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	μ	propagation constant	-
λ_t wave length in lossy mediumm ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	μ_0	permeability of vacuum	Vs/Am
ν Velocitym/s δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ relative dielectric constant- ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm ⁻¹ ∇_{-} divergence of a vector fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ae fill ratio-	λ	wave length	m
δ normalised COM wavenumber- κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar fieldm^{-1} ∇_{-1} divergence of a vector fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm a fill ratio-	λ_t	wave length in lossy medium	m
κ COM reflection- γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m ³ ϕ electrical scalar potentialV σ conductivityS/m ² ∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m ² δ_p penetration depthm ϵ fill ratio-	ν	Velocity	m/s
γ COM attenuation parameterNep/m α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	δ	normalised COM wavenumber	-
α COM transduction parameter $\Omega^{-1/2}m^{-1}$ ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar field m^{-1} ∇_L divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	κ	COM reflection	-
ϵ permittivityF/m ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar fieldm^{-1} $\nabla_{.}$ divergence of a vector fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	γ	COM attenuation parameter	Nep/m
ϵ_r relative dielectric constant- ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar fieldm^{-1} ∇ .divergence of a vector fieldm^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	α	COM transduction parameter	$\Omega^{-1/2} m^{-1}$
ϵ_t complex permittivityF/m ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar fieldm ⁻¹ ∇ .divergence of a vector fieldm ⁻¹ Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	ϵ	permittivity	F/m
ρ mass densitykg/m³ ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	ϵ_r	relative dielectric constant	-
ϕ electrical scalar potentialV σ conductivityS/m² ∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthm α fill ratio-	ϵ_t	complex permittivity	F/m
σ conductivity S/m^2 ∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vector N/m^2 δ_p penetration depthm $lpha$ fill ratio-	ρ	mass density	kg/m ³
∇ gradient of a scalar field m^{-1} ∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vector N/m^2 δ_p penetration depthm α fill ratio-	ϕ	electrical scalar potential	V
∇ .divergence of a vector field m^{-1} Θ_D diffraction angle- σ^M Maxwell stress vector N/m^2 δ_p penetration depthmæfill ratio-	σ	conductivity	S/m^2
Θ_D diffraction angle- σ^M Maxwell stress vectorN/m² δ_p penetration depthmæfill ratio-	∇	gradient of a scalar field	m^{-1}
σ^M Maxwell stress vectorN/m² δ_p penetration depthmæfill ratio-	abla.	divergence of a vector field	m^{-1}
δ_p penetration depth m æ fill ratio -	Θ_D	diffraction angle	-
æ fill ratio -	σ^M	Maxwell stress vector	N/m^2
	δ_p	penetration depth	m
δ_c skin depth m	æ	fill ratio	-
	δ_c	skin depth	m

Publications

Book Chapter Publications

1. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2009). Loading analysis of a remotely interrogatable passive microvalve, *Recent Advances in Sensing Technology - Lecture notes in Electrical Engineering Series*, Springer-Verlag, Accepted for Publication.

Journal Publications

2. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2008). Modelling a surface acoustic wave based remotely actuated microvalve, *Smart Materials & Structures*, 18, p. 045014.

3. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2008). Acoustic wave parameter extraction with application to delay line modelling using finite element analysis, *Sensors and Transducer Journal*, 95(8), pp. 26-39.

Referred Conference Publications (full paper)

4. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2009). Contactless energy transfer for a SAW based implanted microvalve, *Proc. of IEEE Regional Symposium on Micro and Nano Electronics*, pp. 513-517.

5. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2008). Wireless telemetry system for a SAW based microvalve, *Proc. of SPIE Biomedical Applications of Micro- and Nanoengineering IV Conference*, Vol. 7270, p. 727018.

6. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2008). A remotely interrogatable passive microactuator using SAW correlation, *Proc. of* 3rd *International Conference on Sensing Technology*, pp. 46-51.

7. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2008). Finite element analysis of a 3-dimensional acoustic wave correlator response for variable acoustic modes, *Proc. of SPIE Modeling, Signal Processing, and Control for Smart Structures Conference* 2008, Vol. 6926, p. 692603.

8. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2007). Finite element modelling of SAW correlator, *Proc. of SPIE BioMEMS and Nanotechnology III Conference*, Vol. 6799, p. 679915.

9. TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2007). SAW parameter extraction using finite element analysis, *Proc. of* 2nd *International Conference on Sensing Technology*, pp. 393-398.

10. TIKKA-A., AL-SARAWI-S., ABBOTT-D., WONG-M., AND SCHUTZ-J. (2006). Improving the security and actuation of wireless controlled microvalve, *Proc. of SPIE Smart Structures, Devices, and Systems Conference*, Vol. 6414, p. 64130D.

11. DISSANAYAKE-D., TIKKA-A., AL-SARAWI-S., AND ABBOTT-D. (2006). A radio frequency controlled microvalve for biomedical applications, *Proc. of SPIE Smart Materials IV Conference*, Vol. 6413, p. 64140U.

Referred Conference Publications (abstract)

12. DISSANAYAKE-D., TIKKA-A., AND AL-SARAWI-S. (2006). Use of ANSYS in design and analysis of piezoelectrically actuated microvalves for biomedical applications, *Proc. of ANSYS Australasian User Conference*.

13. DISSANAYAKE-D., TIKKA-A., AND AL-SARAWI-S. (2006). Biomedical applications of a wireless controlled microvalve, *Proc. of The Australian Health and Medical Research Congress*, Abs. 1059.

List of Figures

1.1	A two-port SAW delayline device	7
1.2	Schematic diagram of a wireless interface between the interrogating sys-	
	tem and a passive SAW device	8

2.1	Counter propagating waves satisfying Bragg condition	26
2.2	SAW transducer with counter propagating modes	28
2.3	P-matrix representation of an IDT.	30
2.4	Synchronous one-port resonator for parameter extraction	34
2.5	A periodic structure with two electrodes	40
2.6	Anti-symmetric SAW mode (f_{M+}) at 80.48 MHz $\ldots \ldots \ldots \ldots \ldots$	42
2.7	Symmetric SAW mode (f_{M-}) at 82 MHz	42
2.8	SAW displacement contour	44
2.9	FEM computed admittance magnitude curve	45
2.10	FEM computed admittance curve with real and imaginary parts at f_{M+}	
	modal frequency	47
2.11	SEM photograph of the fabricated SAW delayline	49
2.12	Simulated and measured frequency response of the delay line	50

3.1	Surface acoustic wave correlator with an input IDT and a coded output	
	IDT	57
3.2	SAW correlator transmitter receiver configuration.	58
3.3	The correlation result of a length 5 Barker sequence	59
3.4	The correlation result of a length 5 Barker sequence, where the input	
	signal has a 1-bit error.	60
3.5	Basic structure of the coded interdigital transducer showing relative po-	
	larity of finger pairs and the underlying SAW waveform	63
3.6	A 13-bit Barker sequence SAW correlator's response using delta function	
	model	65

List of Figures

3.7	Equivalent circuit model of a SAW correlator	66
3.8	The two FEM SAW device modelling approaches for infinite periodic	
	structures (a) and finite structures (b).	69
3.9	Meshed acoustic wave correlator model	72
3.10	SAW device fabrication flow.	75
3.11	SEM photograph of a 7 \times 5-bit Barker sequence SAW correlator with 10	
	μ m linewidth	76
3.12	The fabricated SAW devices mounted on a 54 pin DIL carrier	76
3.13	Electrical admittance response of the correlator when there is a code match.	78
3.14	Surface acoustic wave displacement contour for a substrate thickness of	
	10λ	79
3.15	A frequency sweep of the voltage across the output IDT when there is a	
	code match.	80
3.16	Transient response of the voltage across the output IDT	81
3.17	Displacement at the output IDT along the (a) longitudinal direction. (b)	
	Surface normal direction. (c) Shear horizontal direction	82
3.18	Voltage across the output IDT when there is a code mismatch (a) delay-	
	line input (b) noncorrelating input.	83

4.1	Acoustic streaming of liquid using a SAW device	89
4.2	Wireless microvalve transmitter-receiver configuration	91
4.3	Principle of operation of the microvalve in the OFF and ON states	94
4.4	Parallel plate electrostatic actuator	96
4.5	Microchannel electrostatic model	99
4.6	A 3-dimensional meshed microchannel structure	101
4.7	A frequency sweep of the centre deflection of the two diaphragms, when the code matches, for various acoustic modes	102
4.8	Displacement and electric potential contour plots of the check valves at SAW modal frequency.	103
4.9	Transient centre deflection of two diaphragms in the y direction, when the code matches, at SAW modal frequency	104

4.10 The channel gap between the check valves when there is a code mismatch105

5.1	Inductive powering system of a wireless microvalve with an implanted coil/antenna and a transmitter coil/antenna 109
5.2	Inductively coupling SAW devices for a one-port and two-port configu- ration
5.3	Equivalent circuit of the inductive link when coupled to a SAW correlator 112
5.4	SAW correlator based microvalve transmitter receiver configuration 118
5.5	Geometry and lumped equivalent circuit of square spiral configuration . 121
5.6	SEM photograph of a 12-turn square spiral coil/antenna on a 128° YX LiNbO ₃ wafer
5.7	The fabricated miniature coils mounted on a 54 pin DIL carrier 124
5.8	Snapshot of a 3-turn spiral handheld coil/antenna on a FR-4 substrate . 125
5.9	Equivalent circuit of the inductive link with spirals for both handheld and implant coils
5.10	Simulation setup for the design of the inductive coupled telemetry system127
5.11	Quality factor (<i>Q</i>) and inductance (L_{eff}) of the implanted coil 129
5.12	Measured S_{11} of the handheld coil $\ldots \ldots \ldots$
5.13	S_{12} coupling between the implanted and transmitter coil when the medium is air and human body phantom
5.14	Measured S_{12} response when the distance between the implanted coil and the transmitter coil is 10 cm and the medium is human body phantom 133
5.15	S_{12} coupling when the distance between the coils is 5 cm and the transmitter coil is tilted by 30° and 60°

List of Tables

1.1	Current application domains of microvalves	4
1.2	Microvalve actuation principles	5
2.1	Normalized COM parameters	32
2.2	COM Parameters of a SAW resonator with gold electrodes on a 128° YX-cut LiNbO ₃ substrate	48
3.1	Known Barker code sequences	60
3.2	Maximum length sequences	61
3.3	Golay sequences	61
5.1	Maximum permissible human exposure to electromagnetic field in a	
	controlled environment	114
5.2	Dielectric properties of muscle tissue	115
5.3	Body tissue recipe for liquid phantom	116
5.4	Coefficients for inductance expressions	122