

Uncertainty Analysis Methods For Multi-Criteria Decision Analysis

by Kylie Marie Hyde

A Thesis submitted for the Doctor of Philosophy Degree

The University of Adelaide School of Civil and Environmental Engineering

May 2006

Abstract

Planning, design and operational decisions are made under complex circumstances of multiple objectives, conflicting interests and participation of multiple stakeholders. Selection of alternatives can be performed by means of traditional economics-based methods, such as benefit-cost analysis. Alternatively, analyses of decision problems, including water resource allocation problems, which involve trade-offs among multiple criteria, can be undertaken using multi-criteria decision analysis (MCDA). MCDA is used to assist decision makers (DMs) in prioritising or selecting one or more alternatives from a finite set of available alternatives with respect to multiple, usually conflicting, criteria.

In the majority of decision problems, MCDA is complicated by input parameters that are uncertain and evaluation methods that involve different assumptions. Consequently, one of the main difficulties in applying MCDA and analysing the resultant ranking of the alternatives is the uncertainty in the input parameter values (i.e. criteria weights (CWs) and criteria performance values (PVs)). Analysing the sensitivity of decisions to various input parameter values is, therefore, an integral requirement of the decision analysis process. However, existing sensitivity analysis methods have numerous limitations when applied to MCDA, including only incorporating the uncertainty in the CWs, only varying one input parameter at a time and only being applicable to specific MCDA techniques.

As part of this research, two novel uncertainty analysis approaches for MCDA are developed, including a distance-based method and a reliability based approach, which enable the DM to examine the robustness of the ranking of the alternatives. Both of the proposed methods require deterministic MCDA to be undertaken in the first instance to obtain an initial ranking of the alternatives. The purpose of the distance-based uncertainty analysis method is to determine the minimum modification of the input parameters that is required to alter the total values of two selected alternatives such that rank equivalence occurs. The most critical criteria for rank reversal to occur are also able to be identified based on the results of the distance-based approach. The proposed stochastic method involves defining the uncertainty in the input values using probability distributions, performing a reliability analysis by Monte Carlo Simulation and undertaking a significance analysis using the Spearman Rank Correlation Coefficient. The outcomes of the stochastic uncertainty analysis approach include a distribution of the total values of each alternative based upon the expected range of input parameter values. The uncertainty analysis methods are implemented using a software program developed as part of this

research, which may assist in negotiating sustainable decisions while fostering a collaborative learning process between DMs, experts and the community. The two uncertainty analysis approaches overcome the limitations of the existing sensitivity analysis methods by being applicable to multiple MCDA techniques, incorporating uncertainty in all of the input parameters simultaneously, identifying the most critical criteria to the ranking of the alternatives and enabling all actors preference values to be incorporated in the analysis.

Five publications in refereed international journals have emerged from this research, which constitute the core of the thesis (i.e. PhD by Publication). The publications highlight how uncertainty in all of the input parameters can be adequately considered in the MCDA process using the proposed uncertainty analysis approaches. The methodologies presented in the publications are demonstrated using a range of case studies from the literature, which illustrate the additional information that is able to be provided to the DM by utilising these techniques. Publications 1 and 2 (Journal of Environmental Management and European Journal of Operational Research) demonstrate the benefits of the distance-based uncertainty analysis approach compared to the existing deterministic sensitivity analysis methods. In addition, the benefits of incorporating all of the input parameters in the uncertainty analysis, as opposed to only the CWs, are illustrated. The differences between global and non-global optimisation methods are also discussed. Publications 3 and 4 (Journal of Water Resources Planning and Management and Journal of Multi-Criteria Decision Analysis) present the stochastic uncertainty analysis approach and illustrate its use with two MCDA techniques (WSM and PROMETHEE). Publication 5 (Environmental Modelling & Software) introduces the software program developed as part of this research, which implements the uncertainty analysis approaches presented in the previous publications.

Despite the benefits of the approaches presented in the publications, some limitations have been identified and are discussed in the thesis. Based on these limitations, it is recommended that the focus for further research be on developing the uncertainty analysis methods proposed (and in particular the program, and extension of the program) so that it includes additional MCDA techniques and optimisation methods. More work is also required to be undertaken on the Genetic Algorithm optimisation method in the distance-based uncertainty analysis approach, in order to simplify the specification of input parameters by decision analysts and DMs.

Declaration

I, **Kylie Marie Hyde**, declare that the work presented in this thesis is, to the best of my knowledge and belief, original and my own work, except as acknowledged in the text, and that the material has not been submitted, either in whole or in part, for a degree at this or any other university.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:

Dated:

Acknowledgements

The balance of personal life with doctoral research is a complex multi-criteria decision analysis problem. A doctoral candidate is forced to trade-off recreation time against time spent with a computer and a ceiling high stack of journal papers.

(Hajkowicz, 2000)

I wish to thank my supervisors, Associate Professor Holger Maier and Dr Chris Colby for their encouragement, guidance and support over the four year period it has taken to complete this study. This thesis would not have been completed without the enthusiasm and dedication of Associate Professor Holger Maier.

I would also like to acknowledge the role of the Australian Research Council, the Department for Water, Land, Biodiversity and Conservation, and the Department of Trade and Economic Development in providing funding for this project. This funding enabled two overseas trips to be undertaken, including attendance at an international summer school on MCDA in Montreal, Canada and two international conferences in Whistler, Canada and Coimbra, Portugal.

Particular thanks must also be given to directors and staff of Australian Water Environments who enabled me to work part-time for the first two and a half years of my PhD and the Environment Protection Authority who allowed me to take time off during the last nine months of the PhD so that it could be completed.

I would like to extend my best wishes to my fellow postgraduate students for their support and understanding. In particular, Michael Leonard and Rob May for their assistance with programming in Visual Basic for Applications and especially to Michael Leonard for provision of his genetic algorithm code.

Finally, I would like to thank my family, friends and partner, Michael, for their understanding, great patience and encouragement to complete.

Publications

The following publications and conference presentations have arisen from this research:

Journal Papers:

Hyde, K.M., Maier, H.R., (2006), Distance-Based and Stochastic Uncertainty Analysis for Multi-Criteria Decision Analysis in Excel using Visual Basic for Applications, Environmental Modelling & Software, In Press.

Hyde, K.M., Maier, H.R., Colby, C.B., (2006), New Distance-based Uncertainty Analysis Approach to Multi-Criteria Decision Analysis, European Journal of Operational Research, Under Review.

Hyde, K.M., Maier, H.R., Colby, C.B., (2005), A Distance-Based Uncertainty Analysis Approach to Multi-Criteria Decision Analysis for Water Resource Decision-making, Journal of Environmental Management, Vol 77, Iss 4, pp 278-290.

Hyde, K.M., Maier, H.R., Colby, C.B., (2004), Reliability-based approach to MCDA for water resources, Journal of Water Resources Planning and Management, Vol 130, Iss 6, pp 429-438.

Hyde, K.M., Maier, H.R., Colby, C.B., (2003), Incorporating Uncertainty in the PROMETHEE MCDA Method, Journal of Multi-Criteria Decision Analysis, Vol 12, Iss 4-5, pp 245-259.

Conference Papers:

Hyde, K.M., Maier, H.R., (2004), "Distance Based Uncertainty Analysis for Multi-Criteria Decision Analysis in Excel using Visual Basic for Applications", Mini Euro Conference 2004 – Managing Uncertainty in Decision Support Models, Coimbra, Portugal, 22 – 24 September.

Hyde, K.M., Maier, H.R., (2004), "Incorporating a Distance-based Uncertainty Analysis Approach to PROMETHEE", MCDM 2004 – New Paradigms for New Decisions, Whistler, Canada, 6 – 11 August.

Hyde, K.M., Maier, H.R., Colby, C.B., (2003), "The Applicability of Robustness Measures to Water Resources Decision-making", MODSIM Conference Proceedings, International Congress on Modelling and Simulation, Integrative Modelling of Biophysical, Social and Economic Systems for Resource Management Solutions, Townsville, Australia, July 14 – 17.

Table of Contents

Preamble

Abstract	i
Declaration	iii
Acknowledgements	iv
Publications	v
Table of Contents	vii
List of Appendices	xi
List of Figures	xii
List of Tables	xiii
Glossary of Selected Acronyms and Notation	xvii

CHAPTER 1 INTRODUCTION

1.1	Research problem background	. 1
1.1.1	Water resources	1
1.1.2	Decision making	2
1.2	Research problem statement	. 4
1.3	Research aim and objectives	. 6
1.4	Value of research	. 7
1.5	Organisation of thesis	. 9

CHAPTER 2 DECISION THEORY

	-
-	J
_	_

1

2.1	Purpose of decision support	13
2.2	Approaches to decision support	15
2.2.1	Benefit cost analysis	15
2.2.2	Environmental impact assessment	17
2.2.3	Life cycle assessment	18
2.2.4	Ecological footprint	19
2.2.5	Agent modelling	20
2.2.6	Triple bottom line	21
2.2.7	Multi-criteria decision analysis	22
2.3	Selection of decision support method	24
2.4	Definition of MCDA terminology	25

2.5	MCDA process	26
2.5.1	Identification of decision makers, actors and stakeholders	27
2.5.2	Identification of objectives and criteria	29
2.5.3	Identification of alternatives	31
2.5.4	Selection of MCDA technique(s)	33
2.5.5	Assignment of performance values	43
2.5.6	Standardisation of criteria performance values	44
2.5.7	Weighting the criteria	46
2.5.8	MCDA technique specific parameters	58
2.5.9	Ranking the alternatives	62
2.5.10	Sensitivity analysis	63
2.5.11	Making a decision – consensus	64
СНАРТЕ	R 3 EXISTING SENSITIVITY ANALYSIS METHODS	67
3.1	Introduction	67
3.2	Deterministic sensitivity analysis methods	69
3.2.1	Barron and Schmidt (1988)	72
3.2.2	Mareschal (1988)	73
3.2.3	Rios Insua and French (1991)	75
3.2.4	Wolters and Mareschal (1995)	76
3.2.5	Janssen (1996)	77
3.2.6	Triantaphyllou and Sanchez (1997)	78
3.2.7	Ringuest (1997)	80
3.2.8	Guillen <i>et al.</i> (1998)	81
3.2.9	Proll <i>et al.</i> (2001)	82
3.2.10	Jessop (2004)	83
3.2.11	Summary	84
3.3	Stochastic sensitivity analysis methods	85
3.3.1	Janssen (1996)	86
3.3.2	Butler <i>et al.</i> (1997)	87
3.3.3	Jessop (2002)	88
3.3.4	Summary	88
3.4	Extensions of existing MCDA techniques	89
3.4.1	PROMETHEE	89
3.4.2	ELECTRE	91
3.4.3	Multi-attribute utility theory	92
3.5	Discussion	92

97

CHAPTER 4 PROPOSED MCDA UNCERTAINTY ANALYSIS APPROACH	
4.1	Introduction

4.2

4.3

4.4

4.5 4.6

1	Introduction	97
2	Deterministic MCDA	100
3	Distance-based uncertainty analysis approach	101
4.3.1	Concept	101
4.3.2	Formulation	103
4.3.3	Optimisation	107
4.3.4	Interpretation of results	111
4.3.5	Practical considerations	112
4	Stochastic uncertainty analysis approach	113
4.4.1	Concept	113
4.4.2	Formulation	114
4.4.3	Reliability analysis	117
4.4.4	Interpretation of results	118
5	Discussion	122
6	Implementation of proposed uncertainty analysis approach	123
4.6.1	Introduction	123
4.6.2	Program description	125

CHAPTER 5 COMPARISON OF PROPOSED MCDA UNCERTAINTY ANALYSIS APPROACH WITH EXISTING SENSITIVITY ANALYSIS METHODS

151

5.1	Introduction	151
5.2	PROMETHEE, Mareschal (1988) sensitivity analysis & distance- based uncertainty analysis	153
5.2.1	Background to case study	153
5.2.2	Problem formulation	154
5.2.3	Results	155
5.2.4	Discussion	160
5.3	WSM, Rios Insua and French (1991) sensitivity analysis method & distance-based uncertainty analysis approach	161
5.3.1	Background to case study	161
5.3.2	Problem formulation	162
5.3.3	Results	164
5.3.4	Discussion	167

5.4	WSM, Ringuest (1997) sensitivity analysis & distance-based uncertainty analysis	169
5.4.1	Background to case study	169
5.4.2	Problem formulation	169
5.4.3	Results	171
5.4.4	Discussion	175
5.5	WSM, Guillen <i>et al.</i> (1998) sensitivity analysis & distance-based uncertainty analysis	176
5.5.1	Background to case study	176
5.5.2	Problem formulation	176
5.5.3	Results	178
5.5.4	Discussion	180
5.6	WSM, Butler <i>et al.</i> (1997) sensitivity analysis & stochastic uncertainty analysis approach	182
5.6.1	Background to case study	182
5.6.2	Problem formulation	182
5.6.3	Results	185
5.6.4	Discussion	193
5.7	Summary	194

CHAPTER 6 PUBLISHED JOURNAL PAPERS

Publication 1	198
Statement of authorship	198
Discussion	199
Publication 2	201
Statement of authorship	202
Discussion	202
Publication 3	205
Statement of authorship	205
Discussion	205
Publication 4	208
Statement of authorship	208
Discussion	209
Publication 5	209
Statement of authorship	209
Discussion	210
	Publication 1 Statement of authorship Discussion Publication 2 Statement of authorship Discussion Publication 3 Statement of authorship Discussion Publication 4 Statement of authorship Discussion Publication 5 Statement of authorship Discussion

195

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 213

7.1	Decision theory	.213
7.2	MCDA process	.214
7.3	Proposed MCDA uncertainty analysis approaches	.216
7.4	Published papers	.217
7.5	Limitations and recommendations for further research	.219

CHAPTER 8 REFERENCES

221

List of Appendices

Appendix A Applications of MCDA

- A1 Applications of MCDA to water resource management decision problems
- A2 Applications of MCDA to non-water resources decision problems

Appendix B Description of MCDA techniques

- B1 Outranking techniques
- B2 Value / Utility systems
- B3 Distance-based approaches
- B4 Verbal decision analysis
- Appendix C MCDA decision support systems
- Appendix D Criteria weighting techniques
 - D1 Direct criteria weighting techniques
 - D2 Indirect criteria weighting techniques
- Appendix E Structure of the VBA program
- Appendix F Published, and accepted for publication, journal papers

List of Figures

Figure 1.1	Flow chart summarising contents of thesis12
Figure 2.1	Summary of the MCDA process27
Figure 2.2	Classification of MCDA techniques according to Hajkowicz <i>et al.</i> (2000)35
Figure 2.3	PROMETHEE generalised criterion functions
Figure 4.1	MCDA approach with proposed uncertainty analysis methods98
Figure 4.2	2D Concept of proposed distance-based uncertainty analysis approach103
Figure 4.3	Steps in the proposed stochastic uncertainty analysis approach114
Figure 4.4	Program structure
Figure 4.5	Example of MCDA uncertainty analysis initial choice form
Figure 4.6	Example of MCDA uncertainty analysis initialisation form
Figure 4.7	Example of the PROMETHEE generalised criterion functions form
Figure 4.8	Example of the criteria descriptions and preference directions form130
Figure 4.9	Example of the performance value input data worksheet
Figure 4.10	Example of the choice of uncertainty analysis method form
Figure 4.11	Example of the distance-based uncertainty analysis form
Figure 4.12	2 Example of the form where user defined PV ranges for distance-based uncertainty analysis are entered
Figure 4.13	B Example of the Solver input parameters form
Figure 4.14	Example of the Genetic Algorithm input parameters form
Figure 4.15	5 The process of a standard Genetic Algorithm
Figure 4.16	Example of stochastic uncertainty analysis form
Figure 4.17	' Example of an error message when utilising the stochastic uncertainty analysis program
Figure 5.1	Uniform distribution for PV1 Alternative 3, Butler et al. (1997) case study 184
Figure 5.2	Total values of alternatives obtained using WSM for the Butler <i>et al.</i> (1997) case study
Figure 5.3	Comparison of mean ranks obtained by using the Butler <i>et al.</i> (1997) and proposed stochastic uncertainty analysis approach when randomly varying the CWs
Figure 5.4	Comparison of mean ranks for various scenarios using the proposed stochastic uncertainty analysis approach, Butler <i>et al.</i> (1997) case study
Figure 5.5	Cumulative frequency distribution for the results of alternatives when CWs and PVs are simultaneously varied, Butler <i>et al.</i> (1997) case study
Figure 5.6	Spearman rank correlation coefficients for Alternative 5, when CWs and PVs are simultaneously varied, Butler <i>et al.</i> (1997) case study

List of Tables

Table 1.1	Some applications of MCDA reported in Australia	. 8
Table 2.1	The key elements of the MCDA process	28
Table 2.2	Sample strategy table for identifying alternatives	32
Table 2.3	Summary of a selection of studies comparing MCDA techniques	40
Table 2.4	Common methods for linear standardisation of performance measures in the effects table	45
Table 2.5	A selection of comparative studies of criteria weighting methods	52
Table 3.1	Summary of selected deterministic sensitivity analysis methods utilised with MCDA	70
Table 3.2	Summary of selected stochastic sensitivity analysis methods	86
Table 3.3	Number of citations of sensitivity analysis methods presented in Chapter 3	95
Table 4.1	Critical values of +/- z for the Wilcoxon Rank Sum test1	20
Table 4.2	Spearman Rank Correlation Coefficient example calculation (d = 4)1	22
Table 4.3	Example of how the program maintains CW rank order1	35
Table 4.4	GA input parameters used in case studies in the literature1	43
Table 5.1	Summary of sensitivity analysis methods presented and compared in Chapter 51	.52
Table 5.2	Input parameter values in example decision problem assessed by Mareschal (1988)1	.53
Table 5.3	Upper and lower limits for the input parameters used in the distance- based uncertainty analysis of the Mareschal (1988) case study1	.56
Table 5.4	Overall total flows obtained by Mareschal (1988) and by using Level 1 generalised criterion functions for each criterion1	.56
Table 5.5	Weight stability intervals determined by Mareschal (1988) for full stability of the ranking of the alternatives1	.57
Table 5.6	Weight stability intervals determined by Mareschal (1988) for partial stability of the ranking of the alternatives where Alt 4 remains the highest ranked alternative	.58
Table 5.7	Euclidean distances obtained by using the proposed distance-based uncertainty analysis approach, simultaneously varying CWs, Mareschal (1988) case study1	.59
Table 5.8	Optimised CWs obtained from distance-based uncertainty analysis for alternatives outranking Alternative 4, varying CWs only, Mareschal (1988) case study	.59
Table 5.9	Optimised CWs and PVs for Alternative 2 to outrank Alternative 4, Mareschal (1988) case study1	.60
Table 5.10) Input parameter values in floodplain management decision problem assessed by Rios Insua and French (1991)1	.62
Table 5.11	Upper and lower limits for the input parameters used in the distance- based uncertainty analysis of the Rios Insua and French (1991) case study1	.63

Table 5.12	Overall total values obtained by Rios Insua and French (1991) in rank order
Table 5.13	Euclidean distances for the highest ranked alternative compared with the other alternatives, Rios Insua and French (1991) case study
Table 5.14	Changes in CWs for Alternative 6 to outrank Alternative 1 obtained using the proposed distance-based uncertainty analysis approach and altering CWs only, Rios Insua and French (1991) case study
Table 5.15	Optimised CWs and PVs for Alternative 6 outranking Alternative 1 using the proposed distance-based uncertainty analysis approach, Rios Insua and French (1991) case study
Table 5.16	Input parameter values in example decision problem assessed by Ringuest (1997)
Table 5.17	Upper and lower limits for the input parameters used in the distance- based uncertainty analysis of the Ringuest (1997) case study170
Table 5.18	Results obtained by Ringuest (1997) for CWs only, Alternative 1 greater than Alternative 2
Table 5.19	Results obtained by Ringuest (1997) for CWs only, Alternative 3 greater than Alternative 2173
Table 5.20	Distance-based uncertainty analysis solutions and bounds, altering CWs only, Ringuest (1997) case study173
Table 5.21	Distance-based uncertainty analysis solutions, Alternative 1 outrank Alternative 2, altering CWs and PVs, Ringuest (1997) case study
Table 5.22	Input parameter values in example decision problem assessed by Guillen <i>et al.</i> (1998)177
Table 5.23	Upper and lower bounds of input parameters for analysis of Guillen <i>et al.</i> (1998) case study
Table 5.24	Changed CWs based on Guillen et al. (1998) robustness values
Table 5.25	Optimised CWs using proposed distance-based uncertainty analysis approach, Guillen <i>et al.</i> (1998) case study179
Table 5.26	Optimised CWs and PVs using proposed distance-based uncertainty analysis approach, Guillen <i>et al.</i> (1998) case study
Table 5.27	Input parameter values in example decision problem assessed by Butler <i>et al.</i> (1997)
Table 5.28	Upper and lower limits for the input parameters used to define the uniform distributions for the proposed stochastic uncertainty analysis, Butler <i>et al.</i> (1997) case study
Table 5.29	Total values and associated rank order obtained using WSM with input parameter values provided by Butler <i>et al.</i> (1997)
Table 5.30	Results of stochastic analysis undertaken by Butler <i>et al.</i> (1997) with completely random CWs
Table 5.31	Results of the proposed stochastic uncertainty analysis approach altering CWs only,
Table 5.32	Results of stochastic analysis with random CWs and PVs, Butler <i>et al.</i> (1997) case study
Table 5.33	Probability matrix that Alternative <i>m</i> obtains rank <i>r</i> , Butler <i>et al.</i> (1997) case study

Table 6.1	Summary of journal papers (published or accepted for publication)196
Table 6.2	Examples of applications of MCDA in the Journal of Environmental Management
Table 6.3	Examples of applications of MCDA in the Journal of Water Resources Planning and Management206

Glossary of Selected Acronyms and Notation

<u>Acronyms</u>

AHP	Analytic Hierarchy Process
ANN	Artificial Neural Network
BCA	Benefit Cost Analysis
CAM	Conflict Analysis Model
CGT	Cooperative Game Theory
СР	Compromise Programming
СТР	Composite Programming
CWs	Criteria Weights
DEA	Data Envelope Analysis
DISID	Displaced Ideal
DIVAPIME	Determination d'Intervalles de Variation pour les Parametres d'Importance des Methodes Electre
DM	Decision Maker
DSS	Decision Support System
DST	Dempster-Shafer Theory
EF	Ecological Footprint
EIA	Environmental Impact Assessment
EIS	Environmental Impact Statement
ELECTRE	Elimination and Choice Translating Reality (Elimination Et Choix Tradusiant la Réalité)
ESAP	Evaluation and Sensitivity Analysis Program
EVI	Expected Value of Information
EVPI	Expected Value of Perfect Information

GA	Genetic Algorithm
GAIA	Graphical Analysis for Interactive Assistance
GIS	Geographical Information System
GP	Goal Programming
GRAPA	Graphical Point Allocation
GRG2	Generalised Reduced Gradient Nonlinear Optimisation Method
GRS	Graphical Rating Scale
HDT	Hasse Diagram Technique
HIPRE	Hierarchical Preference Analysis Software
IMGP	Interactive Multiple Goal Programming
	Importance Order of Criteria
100	
105	Judamental Analysis System
5,10	Sudgmental / marysis System
LCA	Life Cycle Assessment
LHS	Latin Hypercube Sampling
MACBETH	Measuring Attractiveness by a Categorical Based Evaluation Technique
MAS	Multi-Agent Systems
MADM	Multiple Attribute Decision Making or Modelling
MAUT	Multi-Attribute Utility Theory
MAVF	Multi-Attribute Value Function
MAVT	Multi-Attribute Value Theory
MCA	Multiple Criteria Analysis
MCDA	Multi-Criteria Decision Analysis
MCE	Multi-Criteria Evaluation
MCQA	Multi-Criterion Q Analysis
MCQA MCS	Multi-Criterion Q Analysis Monte Carlo Simulation
MCQA MCS MDI	Multi-Criterion Q Analysis Monte Carlo Simulation Minimum Discrimination Information

MEW	Multiplicative Exponent Weighting
MODM	Multi-Objective Decision Making
MODS	Multi-Objective Decision Support
NA	Not Applicable
NAIADE	Novel Approach for Imprecise Assessment and Decision Evaluations
NPV	Net Present Value
PC	Preference Cones
PROBE	Preference Robustness Evaluation
PROMETHEE	Preference Ranking Organisation METHod for Enrichment Evaluations
PROTR	Probabilistic Trade-off Development Method
PVs	Performance Values
PW	Present Worth
SAW	Simple Additive Weighting
SMAA	Stochastic Multiobjective Acceptability Analysis
SMAA-O	Stochastic Multicriteria Acceptability Analysis with Ordinal Criteria
SMART	Simple Multi-Attribute Rating Technique
SMARTER	SMART Exploiting Ranks
STEM	Step Method
SWT	Surrogate Worth Trade-Off
TBL	Triple Bottom Line
TOPSIS	Technique for Order Preference by Similarity to an Ideal Solution
UNK	Unknown
UTA	Utility Additive

VAS	Visual Analogue Scale
VBA	Visual Basic for Applications
VIP	Variable Interdependent Parameters
WA	Weighted Average
WLAM	Weighted Linear Assignment Method
WPM	Weighted Product Method
WSM	Weighted Sum Method
ZAPROS	Closed Procedures Near Reference Situations (abbreviation of Russian words)
Z-W	Zionts-Wallenius

Notation

d_e or L_2	Euclidean distance
d_m or L_1	Manhattan distance
d_k	Kullback-Leibler distance
$LL_{x'}$ and $UL_{x'}$	lower and upper limits, respectively, of the PVs of each criterion for the initially lower ranked alternative
LL_{xh} and UL_{xh}	lower and upper limits, respectively, of the PVs of each criterion for the initially higher ranked alternative
LL_w and UL_w	lower and upper limits, respectively, of each of the CWs
Μ	total number of criteria
p	preference threshold
q	indifference threshold
Ų(a _γ)opt	modified total value of the initially lower ranked alternative obtained using the optimised parameters
V(<i>a_x)opt</i>	modified total value of the initially higher ranked alternative obtained using the optimised parameters
W _{mi}	initial CW of criterion <i>m</i>
W _{mo}	optimised CW of criterion m

X _{mnli}	initial PV of criterion m of initially lower ranked alternative n
X _{mnlo}	optimised PV of criterion m of initially lower ranked alternative n
X _{mnhi}	initial PV of criterion m of initially higher ranked alternative n
X _{mnho}	optimised PV of criterion m of initially higher ranked alternative n
П(<i>a,b</i>)	outranking degree of every alternative <i>a</i> over alternative <i>b</i>
φ+	leaving flow
φ-	entering flow